WorldWideScience

Sample records for water vapour diffusion

  1. Diffusion and flow of water vapours in chromatographic Alumina gel

    International Nuclear Information System (INIS)

    Khan, M.; Shah, H. U.

    2005-01-01

    The kinetics of sorption of water vapours in chromatographic alumina gel was studied. Water vapours are adsorbed on the gel at temperature (15 degree C) at different constant relative pressure from 0.1-0.93 p/p. Rate constant, Effective diffusivities, Knudsen diffusivities and bulk diffusivities were determined through Fick type equation. Total pore volume is 0.498 cc g-1 and specific surface area comes to be 465 m2 g-1 as obtained by Gurvitsch rule and Kieselve's quantities respectively. An average pore radius (hydraulic) is 1.1x10/sub -7/ cm. The study of these quantities provide a strong basis for evaluating surface properties. (author)

  2. Thermal diffusion of water vapour in porous materials: fact or fiction?

    DEFF Research Database (Denmark)

    Janssen, Hans

    2011-01-01

    diffusion. Thermal diffusion opponents, on the other hand, assert that these thermal transports are negligibly small. This paper resolves that contradiction. A critical analysis of the investigations supporting the occurrence of thermal diffusion reveals that all are flawed. A correct reinterpretation...... its negligible magnitude. It can in conclusion be stated that thermal diffusion is of no importance for building science applications, leaving vapour pressure as the sole significant transport potential for the diffusion of water vapour in porous materials. (C) 2010 Elsevier Ltd. All rights reserved....

  3. Heat and water mass transfer in unsaturated swelling clay based buffer: discussion on the effect of the thermal gradient and on the diffusion of water vapour

    Energy Technology Data Exchange (ETDEWEB)

    Robinet, J.O. [Euro-Geomat-Consulting (France)]|[Institut National des Sciences Appliquees (INSA), 35 - Rennes (France); Plas, F. [Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA), 92 - Chatenay Malabry (France)

    2005-07-01

    The modelling of heat, mass transfer and the behaviour coupled thermo-hydro-mechanical in swelling clay require the development of appropriate constitutive laws as well as experimental data. This former approach, allows the quantitative validation of the theoretical models. In general modelling approaches consider dominant mechanisms, (i) Fourier law for diffusion of heat, (ii) generalized Darcy law for convection of liquid water, (iii) Flick law for diffusion of water vapour, and elastic-plastic models wit h hydric hardening and thermal damage/expansion for strain-stress behaviour. Transfer of dry air and water under thermal gradient and capillary (e.g. suction) gradient in unsaturated compacted swelling clays consider evaporation, migration and condensation. These transfers take into account the capillary effect. This effect is an evaporation of liquid water in the hot part for temperature higher than 100 C associated with a, diffusion of water vapor towards cold part then condensation, and convection of liquid water with gradient of suction in the opposite direction of the water vapour diffusion. High values of the diffusion coefficient of the vapour water are considered about 10{sup -7}m{sup 2}/s. Some thermal experiments related (i) low values of the water vapour diffusion coefficient in compacted swelling clays, 2004) and (ii) a significant drying associated with a water transfer even for temperature lower than 100 C. Other enhancement phenomena are used to explain these data and observations: the vaporization is a continuous process. At short term the mechanism of drying at short term is the thermal effect on the capillary pressure (e.g. surface tension depending of temperature); the thermal gradient is a driving force. When a temperature gradient is applied, diffusion occurs in order to reach equilibrium, e.g. to make the chemical potential (m) of each component uniform throughout. This mechanism is called thermal diffusion. This paper proposes a discussion

  4. Atomic origins of water-vapour-promoted alloy oxidation.

    Science.gov (United States)

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K; Baer, Donald R; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M; Xu, Zhijie; Wang, Chongmin

    2018-05-07

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion 1-4 . Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys 5,6 . However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  5. Water vapour loss measurements on human skin.

    NARCIS (Netherlands)

    Valk, Petrus Gerardus Maria van der

    1984-01-01

    In this thesis, the results of a series of investigations into the barrier function of human skin are presented. In these investigations, the barrier function was assessed by water vapour loss measurements of the skin using a method based on gradient estimation.... Zie: Summary and conclusions

  6. The impact of water vapour on climate

    International Nuclear Information System (INIS)

    Zittel, W.; Altmann, M.

    1994-01-01

    Do water vapour emissions from a solar hydrogen system affect the climate? This question was investigated by the authors. They state: The comparison with natural emissions by evaporation shows that emissions caused by energy generation, regardless of whether they stem from fossil, nuclear or regenerative energy systems, are negligible with a proportion of 0.005%. On the other hand, carbon dioxide emissions with a proportion of 4%, constitute a factor which already impedes the natural cycle. (orig.) [de

  7. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J.; Ovarlez, H. [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1997-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  8. Water vapour measurements during POLINAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Ovarlez, J; Ovarlez, H [Centre National de la Recherche Scientifique, 91 - Palaiseau (France). Lab. de Meteorologie Dynamique

    1998-12-31

    The POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor)1 experiment has been performed within the framework of the Environment Programme of the Commission of the European Community. It was devoted to the study of the pollution from aircraft in the North Atlantic flight corridor, in order to investigate the impact of pollutants emitted by aircraft on the concentrations of ozone and other trace gases in the upper troposphere and lower stratosphere. For that experiment the water vapour content was measured with a frost-point hygrometer on board of the DLR Falcon research aircraft. This instrument is described, and some selected results are given. (author) 19 refs.

  9. Measurement of water vapour transport through a porous non-hygroscopic material in a temperature gradient

    DEFF Research Database (Denmark)

    Hansen, Thor; Padfield, Tim; Hansen, Kurt Kielsgaard

    2014-01-01

    This was an experiment to identify the driving potential for water vapour diffusion through porous materials in a temperature gradient. The specimen of mineral fibre insulation was placed between a space with controlled temperature and relative humidity and a space with a controlled, higher...... temperature, and a measured but not controlled relative humidity (RH). This assembly was allowed to reach equilibrium with no vapour movement between the spaces, as tested by a constant RH on each side and by zero flux of water vapour measured in the cold side chamber. The RH and temperature values were...

  10. Study of water vapour adsorption kinetics on aluminium oxide materials

    Science.gov (United States)

    Livanova, Alesya; Meshcheryakov, Evgeniy; Reshetnikov, Sergey; Kurzina, Irina

    2017-11-01

    Adsorbents on the basis of active aluminum oxide are still of demand on the adsorbent-driers market. Despite comprehensive research of alumina adsorbents, and currently is an urgent task to improve their various characteristics, and especially the task of increasing the sorption capacity. In the present work kinetics of the processes of water vapours' adsorption at room temperature on the surface of desiccant samples has been studied. It was obtained on the basis of bayerite and pseudoboehmite experimentally. The samples of pseudoboehmite modified with sodium and potassium ions were taken as study objects. The influence of an adsorbent's grain size on the kinetics of water vapours' adsorption was studied. The 0.125-0.25 mm and 0.5-1.0 mm fractions of this sample were used. It has been revealed that the saturation water vapor fine powder (0.125-0.25 mm) is almost twofold faster in comparison with the sample of fraction 0.5-1.0 mm due to the decrease in diffusion resistance in the pores of the samples when moving from the sample of larger fraction to the fine-dispersed sample. It has been established that the adsorption capacity of the pseudoboehmite samples, modified by alkaline ions, is higher by ˜40 %, than for the original samples on the basis of bayerite and pseudoboehmite.

  11. Carbon dioxide and water vapour characteristics on the west coast ...

    Indian Academy of Sciences (India)

    Carbon dioxide, water vapour, air temperature and wind measurements at 10 Hz sampling rate were carried out over the ... seasonal and annual variations in the CO2 bal- ance. Hence, it is .... motion below produced by shear stress near the.

  12. GPS Tomography: Water Vapour Monitoring for Germany

    Science.gov (United States)

    Bender, Michael; Dick, Galina; Wickert, Jens; Raabe, Armin

    2010-05-01

    Ground based GPS atmosphere sounding provides numerous atmospheric quantities with a high temporal resolution for all weather conditions. The spatial resolution of the GPS observations is mainly given by the number of GNSS satellites and GPS ground stations. The latter could considerably be increased in the last few years leading to more reliable and better resolved GPS products. New techniques such as the GPS water vapour tomography gain increased significance as data from large and dense GPS networks become available. The GPS tomography has the potential to provide spatially resolved fields of different quantities operationally, i. e. the humidity or wet refractivity as required for meteorological applications or the refraction index which is important for several space based observations or for precise positioning. The number of German GPS stations operationally processed by the GFZ in Potsdam was recently enlarged to more than 300. About 28000 IWV observations and more than 1.4 millions of slant total delay data are now available per day with a temporal resolution of 15 min and 2.5 min, respectively. The extended network leads not only to a higher spatial resolution of the tomographically reconstructed 3D fields but also to a much higher stability of the inversion process and with that to an increased quality of the results. Under these improved conditions the GPS tomography can operate continuously over several days or weeks without applying too tight constraints. Time series of tomographically reconstructed humidity fields will be shown and different initialisation strategies will be discussed: Initialisation with a simple exponential profile, with a 3D humidity field extrapolated from synoptic observations and with the result of the preceeding reconstruction. The results are compared to tomographic reconstructions initialised with COSMO-DE analyses and to the corresponding model fields. The inversion can be further stabilised by making use of independent

  13. Retrieving mesospheric water vapour from observations of volume scattering radiances

    Directory of Open Access Journals (Sweden)

    P. Vergados

    2009-02-01

    Full Text Available This study examines the possibility for a theoretical approach in the estimation of water vapour mixing ratios in the vicinity of polar mesospheric clouds (PMC using satellite observations of Volume Scattering Radiances (VSR obtained at the wavelength of 553 nm. The PMC scattering properties perturb the underlying molecular Rayleigh scattered solar radiance of the background atmosphere. As a result, the presence of PMC leads to an enhancement in the observed VSR at the altitude of the layer; the PMC VSRs are superimposed on the exponentially decreasing with height Rayleigh VSR, of the PMC-free atmosphere. The ratio between the observed and the Rayleigh VSR of the background atmosphere is used to simulate the environment in which the cloud layer is formed. In addition, a microphysical model of ice particle formation is employed to predict the PMC VSRs. The initial water vapour profile is perturbed until the modelled VSRs match the observed, at which point the corresponding temperature and water vapour profiles can be considered as a first approximation of those describing the atmosphere at the time of the observations. The role of temperature and water vapour in the cloud formation is examined by a number of sensitivity tests suggesting that the water vapour plays a dominant role in the cloud formation in agreement with experimental results. The estimated water vapour profiles are compared with independent observations to examine the model capability in the context of this study. The results obtained are in a good agreement at the peak of the PMC layer although the radiance rapidly decreases with height below the peak. This simplified scenario indicates that the technique employed can give a first approximation estimate of the water vapour mixing ratio, giving rise to the VSR observed in the presence of PMC.

  14. Intercomparison of TCCON and MUSICA Water Vapour Products

    Science.gov (United States)

    Weaver, D.; Strong, K.; Deutscher, N. M.; Schneider, M.; Blumenstock, T.; Robinson, J.; Notholt, J.; Sherlock, V.; Griffith, D. W. T.; Barthlott, S.; García, O. E.; Smale, D.; Palm, M.; Jones, N. B.; Hase, F.; Kivi, R.; Ramos, Y. G.; Yoshimura, K.; Sepúlveda, E.; Gómez-Peláez, Á. J.; Gisi, M.; Kohlhepp, R.; Warneke, T.; Dohe, S.; Wiegele, A.; Christner, E.; Lejeune, B.; Demoulin, P.

    2014-12-01

    We present an intercomparison between the water vapour products from the Total Carbon Column Observing Network (TCCON) and the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA), two datasets from ground-based Fourier Transform InfraRed (FTIR) spectrometers with good global representation. Where possible, comparisons to radiosondes are also included. The near-infrared TCCON measurements are optimized to provide precise monitoring of greenhouse gases for carbon cycle studies; however, TCCON's retrievals also produce water vapour products. The mid-infrared MUSICA products result from retrievals optimized to give precise and accurate information about H2O, HDO, and δD. The MUSICA water vapour products have been validated by extensive intercomparisons with H2O and δD in-situ measurements made from ground, radiosonde, and aircraft (Schneider et al. 2012, 2014), as well as by intercomparisons with satellite-based H2O and δD remote sensing measurements (Wiegele et al., 2014). This dataset provides a valuable reference point for other measurements of water vapour. This study is motivated by the limited intercomparisons performed for TCCON water vapour products and limited characterisation of their uncertainties. We compare MUSICA and TCCON products to assess the potential for TCCON measurements to contribute to studies of the water cycle, water vapour's role in climate and use as a tracer for atmospheric dynamics, and to evaluate the performance of climate models. The TCCON and MUSICA products result from measurements taken using the same FTIR instruments, enabling a comparison with constant instrumentation. The retrieval techniques differ, however, in their method and a priori information. We assess the impact of these differences and characterize the comparability of the TCCON and MUSICA datasets.

  15. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  16. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  17. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    Science.gov (United States)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  18. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  19. Impact of major volcanic eruptions on stratospheric water vapour

    Directory of Open Access Journals (Sweden)

    M. Löffler

    2016-05-01

    Full Text Available Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry–climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg – Modular Earth Submodel System (ECHAM/MESSy Atmospheric Chemistry (EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño–Southern Oscillation (ENSO are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  20. A miniature discriminating monitor for tritiated water vapour

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, R.A.H.; Ravazzani, A.; Pacenti, P. [European Commission, JRC, Institute for Advanced Material, Ispra, Vatican City State, Holy See (Italy); Campi, F. [Nuclear Engineering Dept., Polytechnic of Milan (Italy)

    1998-07-01

    In detecting tritium in air (or other gas) for worker safety, it is important to discriminate between tritiated water vapour and elemental tritium, because the first is much more easily absorbed in the lungs. We haveinvented (patent pending) an innovative discriminating monitor which works better than existing designs, and is much smaller. The air (or other sample gas) passes over a large surface area of solid scintillator, which is surface-treated to make it hygroscopic. Tritiated water vapour in the air exchanges continuously, rapidly and reversibly with the water in the thin hygroscopic layer; which is of the order of 1 micron thick. The beta-emissions from tritium in the hygroscopic layer hit the solid scintillator, causing flashes of light that are detected by a photomultiplier. The new discriminating monitor for tritiated species in air offers superior performance to existing discriminating monitors, and is much smaller. It is planned to develop a portable version which could serve as a personal tritium monitor. (authors)

  1. Thermally decarboxylated sodium bicarbonate: Interactions with water vapour, calorimetric study

    Directory of Open Access Journals (Sweden)

    Natalia Volkova

    2013-06-01

    Full Text Available Isothermal titration calorimetry (ITC was used to study interactions between water vapour and the surface of thermally converted sodium bicarbonate (NaHCO3. The decarboxylation degree of the samples was varied from 3% to 35% and the humidity range was 54–100%. The obtained enthalpy values were all exothermic and showed a positive linear correlation with decarboxylation degrees for each humidity studied. The critical humidity, 75% (RHo, was determined as the inflection point on a plot of the mean−ΔHkJ/mole Na2CO3 against RH. Humidities above the critical humidity lead to complete surface dissolution. The water uptake (m was determined after each calorimetric experiment, complementing the enthalpy data. A mechanism of water vapour interaction with decarboxylated samples, including the formation of trona and Wegscheider’s salt on the bicarbonate surface is proposed for humidities below RHo. Keywords: Isothermal titration calorimetry, Sodium bicarbonate, Sodium carbonate, Trona salt, Wegscheider’s salt, Enthalpy, Relative humidity, Pyrolytic decarboxylation

  2. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  3. Heavy water leak detection using diffusion sampler

    International Nuclear Information System (INIS)

    Joshi, M.L.; Hussain, S.A.

    1990-01-01

    In the Pressurrised Heavy Water Reactors (PHWRs) detection of the sources of heavy water leaks is importent both for the purpose of radiation hazard control as well as for the reduction of escape/loss of heavy water which, is an expensive nuclear material. This paper describes an application of tritium diffusion sampler for heavy water leak detection. The diffusion sampler comprises an usual tritium counting glass vial with a special orifice. The counting vial has water vapour, deficient in HTO concentration. The HTO present outside diffuses in the vial through the orifice, gets exchanged with water of the wet filter paper kept at the bottom and the moisture in the vial atmosphere which has HTO concentration lower than that outside. This results in continuation of net movement of HTO in the vial. The exchanged tritium is counted in liquid scintillation spectrometer. The method has a sensitivity of 10000 dpm/DAC-h. (author). 2 figs., 2 ta bs

  4. Transport mechanisms through PE-CVD coatings: influence of temperature, coating properties and defects on permeation of water vapour

    International Nuclear Information System (INIS)

    Kirchheim, Dennis; Jaritz, Montgomery; Hopmann, Christian; Dahlmann, Rainer; Mitschker, Felix; Awakowicz, Peter; Gebhard, Maximilian; Devi, Anjana; Brochhagen, Markus; Böke, Marc

    2017-01-01

    Gas transport mechanisms through plastics are usually described by the temperature-dependent Arrhenius-model and compositions of several plastic layers are represented by the CLT. When it comes to thin films such as plasma-enhanced chemical vapour deposition (PE-CVD) or plasma-enhanced atomic layer deposition (PE-ALD) coatings on substrates of polymeric material, a universal model is lacking. While existing models describe diffusion through defects, these models presume that permeation does not occur by other means of transport mechanisms. This paper correlates the existing transport models with data from water vapour transmission experiments. (paper)

  5. Multiscale network model for simulating liquid water and water vapour transfer properties of porous materials

    NARCIS (Netherlands)

    Carmeliet, J.; Descamps, F.; Houvenaghel, G.

    1999-01-01

    A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is

  6. Utility of DMSP-SSM/I for integrated water vapour over the Indian seas

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    Recent algorithms for Special Sensor Microwave/Imager (DMSP-SSM/I) satellite data are used for estimating integrated water vapour over the Indian seas. Integrated water vapour obtained from these algorithms is compared with that derived from radiosonde observations at Minicoy and Port. Blair islands. Algorithm-3 of ...

  7. Water vapour retrieval using the Precision Solar Spectroradiometer

    Science.gov (United States)

    Raptis, Panagiotis-Ioannis; Kazadzis, Stelios; Gröbner, Julian; Kouremeti, Natalia; Doppler, Lionel; Becker, Ralf; Helmis, Constantinos

    2018-02-01

    The Precision Solar Spectroradiometer (PSR) is a new spectroradiometer developed at Physikalisch-Meteorologisches Observatorium Davos - World Radiation Center (PMOD-WRC), Davos, measuring direct solar irradiance at the surface, in the 300-1020 nm spectral range and at high temporal resolution. The purpose of this work is to investigate the instrument's potential to retrieve integrated water vapour (IWV) using its spectral measurements. Two different approaches were developed in order to retrieve IWV: the first one uses single-channel and wavelength measurements, following a theoretical water vapour high absorption wavelength, and the second one uses direct sun irradiance integrated at a certain spectral region. IWV results have been validated using a 2-year data set, consisting of an AERONET sun-photometer Cimel CE318, a Global Positioning System (GPS), a microwave radiometer profiler (MWP) and radiosonde retrievals recorded at Meteorological Observatorium Lindenberg, Germany. For the monochromatic approach, better agreement with retrievals from other methods and instruments was achieved using the 946 nm channel, while for the spectral approach the 934-948 nm window was used. Compared to other instruments' retrievals, the monochromatic approach leads to mean relative differences up to 3.3 % with the coefficient of determination (R2) being in the region of 0.87-0.95, while for the spectral approach mean relative differences up to 0.7 % were recorded with R2 in the region of 0.96-0.98. Uncertainties related to IWV retrieval methods were investigated and found to be less than 0.28 cm for both methods. Absolute IWV deviations of differences between PSR and other instruments were determined the range of 0.08-0.30 cm and only in extreme cases would reach up to 15 %.

  8. Mixed garnet laser crystals for water vapour DIAL transmitter

    Science.gov (United States)

    Treichel, Rainer; Czeranowsky, Christoph; Ileri, Bilge; Petermann, Klaus; Huber, Günter

    2017-11-01

    There are more or less well established technologies such as the optical-parametric-oscillator (OPO), the Raman-laser, and the Ti-Sapphire laser, which are able to emit laser light in the region of the water vapour absorption lines. For WALES the regions of about 935 nm, 942 nm, and 944 nm have been identified as the most suitable wavelength ranges. However, each of these laser designs is highly sophisticated. Current baseline for WALES is the Ti-Sapphire laser. A fourth possibility to achieve these wavelength ranges is to shift the groundstate laser lines (938 nm and 946 nm) of the Nd:YAG laser by replacing Aluminium and Yttrium by other rare earth elements. Changes of the host lattice characteristics lead to a shift of the upper and lower laser levels. These modified crystals are summarized under the name of "Mixed Garnet" crystals. Only the Mixed Garnet lasers can be pumped directly with diode laser and use a direct approach to generate the required laser pulses without frequency conversion. Therefore no additional non-linear crystals are needed and a higher electric to optical efficiency is expected as well as single frequency operation using spectral tuning elements like etalons. Such lasers have the great potential to fulfil the requirements and to become the preferred transmitter concept for WALES as well as for follow up missions. Within a ESA study several crystal compositions have been grown, spectrally characterised and analysed. Absorbed space radiation energy in the crystal lattice causes colour centres, which can reabsorb the pump and laser wavelength and consequently reduce the laser gain considerably. Co-dopants such as Chromium and Cerium are able to suppress the colour centres and are candidates for effective radiation hardening. The results of the crystal tuning, the co-doping with different radiation hardeners and the radiation tests will be presented. There applicability for a space based water vapour DIAL transmitter will be discussed.

  9. Tritium gas and tritiated water vapour behaviour in the environment from releases into the atmosphere from fusion reactors

    International Nuclear Information System (INIS)

    Velarde, Marta; Perlado, Manuel

    2001-01-01

    The diffusion of tritium from fusion reactors follows different ways according to the present chemical form, tritium gas or tritiated water vapour. The atmospheric conditions, speed and direction of the wind, rain intensity or stability class, are key factors in the dry and wet deposition. The obtained results demonstrate that the wet deposition is critical for the incorporation of the tritiated water vapour to the natural biological chain. However, the dry deposition is the factor that influences in the tritium gas form. The conversion of HT into HTO in the soil is rapid (1-7 days), and 20% of HT deposited in the soil is reemitted to the atmosphere in the form HTO, while the rest incorporates into the biological cycle. The rain factor accelerates the incorporation of tritium to the ground, the superficial waters and the underground waters

  10. Adsorption Of Water And Benzene Vapour In Mesoporous Materials

    Directory of Open Access Journals (Sweden)

    Paulina Taba

    2008-11-01

    Full Text Available Mesoporous materials have attracted the attention of many researchers due to the potential applications promised by the materials. This article discusses adsorption of water and benzene vapour in mesoporous materials (mesoporous silica: MCM-41, MCM-48 and their modification. MCM-41 and MCM-48 were synthesized hydrothermally at 100 oC using cethyltrimethylammonium chloride or dodecyltrimethylammonium bromide for MCM-41 (C16 or MCM-41 (C12 respectively and a mixture of cethyltrimethylammonium bromide and Triton X-100 for MCM-48 as templates. Their modifications were conducted by silylation of MCM-41 (C16 and MCM-48 with trimethylchloro silane (MCM16-TMCS and MCM48-TMCS and t-butyldimethylchloro silane (MCM16-TBDMCS and MCM48-TBDMCS. Results showed that MCM-41 and MCM-48 materials had hydrophobic features which were shown in the small amount of water adsorption at low P/P0. The hydrophobicity of samples used in this study decrease in the sequence: MCM-41 (C16 > MCM-48 > MCM-41 (C12. The hydrophobicity increased when MCM-41 and MCM-48 were silylated with TMCS or TBDMCS. All unsilylated MCM materials show higher affinity to benzene at low P/P0 than the silylated samples. The results of water and benzene adsorption showed that silylated samples are promising candidates as selective adsorbents for organic compounds.

  11. Formation of calcium phosphates by vapour diffusion in highly concentrated ionic micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Iafisco, M. [Alma Mater Studiorum Universita di Bologna, Dipartimento di Chimica ' ' G. Ciamician' ' , Via Selmi 2, 40126 Bologna (Italy); Universita del Piemonte Orientale, Dipartimento di Scienze Mediche, Via Solaroli 4, 28100 Novara (Italy); Delgado-Lopez, J.M.; Gomez-Morales, J.; Hernandez-Hernandez, M.A.; Rodriguez-Ruiz, I. [Laboratorio de Estudios Cristalograficos, IACT CSIC-UGR, Edificio Lopez Neyra, Avenida del Conocimiento, s/n 18100 Armilla (Spain); Roveri, N. [Alma Mater Studiorum Universita di Bologna, Dipartimento di Chimica ' ' G. Ciamician' ' , Via Selmi 2, 40126 Bologna (Italy)

    2011-08-15

    In this work we have used the sitting drop vapour diffusion technique, employing the ''crystallization mushroom '' to analyze the evolution of calcium phosphate crystallization in micro-droplets containing high initial concentrations of Ca{sup 2+} and HPO{sub 4}{sup 2-}. The decomposition of NH{sub 4}HCO{sub 3} solution produces vapours of NH{sub 3} and CO{sub 2} which diffuse through the droplets containing an aqueous solution of Ca(CH{sub 3}COO){sub 2} and (NH{sub 4}){sub 2}HPO{sub 4}. The result is the increase of pH by means of the diffusion of NH{sub 3} gas and the doping of the calcium phosphate with CO{sub 3}{sup 2-} ions by means of the diffusion of CO{sub 2} gas. The pH of the crystallization process is monitored and the precipitates at different times are characterized by XRD, FTIR, TGA, SEM and TEM techniques. The slow increase of pH and the high concentration of Ca{sup 2+} and HPO{sub 4}{sup 2-} in the droplets induce the crystallization of three calcium phosphate phases: dicalcium phosphate dihydrate (DCPD, brushite), octacalcium phosphate (OCP) and carbonate-hydroxyapatite (HA). The amount of HA nanocrystals with needle-like morphology and dimensions of about 100 nm, closely resembling the inorganic phase of bones, gradually increases, with the precipitation time up to 7 days, whereas the amount of DCPD, growing along the b axis, increases up to 3 days. Then, DCDP crystals start to hydrolyze yielding OCP nanoribbons and HA nanocrystals. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Vapour and air bubble collapse analysis in viscous compressible water

    Directory of Open Access Journals (Sweden)

    Gil Bazanini

    2001-01-01

    Full Text Available Numerical simulations of the collapse of bubbles (or cavities are shown, using the finite difference method, taking into account the compressibility of the liquid, expected to occur in the final stages of the collapse process. Results are compared with experimental and theoretical data for incompressible liquids, to see the influence of the compressibility of the water in the bubble collapse. Pressure fields values are calculated in an area of 800 x 800 mm, for the case of one bubble under the hypothesis of spherical symmetry. Results are shown as radius versus time curves for the collapse (to compare collapse times, and pressure curves in the plane, for pressure fields. Such calculations are new because of their general point of view, since the existing works do not take into account the existence of vapour in the bubble, neither show the pressure fields seen here. It is also expected to see the influence of the compressibility of the water in the collapse time, and in the pressure field, when comparing pressure values.

  13. Modelling water vapour permeability through atomic layer deposition coated photovoltaic barrier defects

    Energy Technology Data Exchange (ETDEWEB)

    Elrawemi, Mohamed, E-mail: Mohamed.elrawemi@hud.ac.uk [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Blunt, Liam; Fleming, Leigh [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Bird, David, E-mail: David.Bird@uk-cpi.com [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Robbins, David [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Sweeney, Francis [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom)

    2014-11-03

    Transparent barrier films such as Al{sub 2}O{sub 3} used for prevention of oxygen and/or water vapour permeation are the subject of increasing research interest when used for the encapsulation of flexible photovoltaic modules. However, the existence of micro-scale defects in the barrier surface topography has been shown to have the potential to facilitate water vapour ingress, thereby reducing cell efficiency and causing internal electrical shorts. Previous work has shown that small defects (≤ 3 μm lateral dimension) were less significant in determining water vapour ingress. In contrast, larger defects (≥ 3 μm lateral dimension) seem to be more detrimental to the barrier functionality. Experimental results based on surface topography segmentation analysis and a model presented in this paper will be used to test the hypothesis that the major contributing defects to water vapour transmission rate are small numbers of large defects. The model highlighted in this study has the potential to be used for gaining a better understanding of photovoltaic module efficiency and performance. - Highlights: • A model of water vapour permeation through barrier defects is presented. • The effect of the defects on the water vapour permeability is investigated. • Defect density correlates with water vapour permeability. • Large defects may dominate the permeation properties of the barrier film.

  14. WAVE-E: The WAter Vapour European-Explorer Mission

    Science.gov (United States)

    Jimenez-LLuva, David; Deiml, Michael; Pavesi, Sara

    2017-04-01

    In the last decade, stratosphere-troposphere coupling processes in the Upper Troposphere Lower Stratosphere (UTLS) have been increasingly recognized to severely impact surface climate and high-impact weather phenomena. Weakened stratospheric circumpolar jets have been linked to worldwide extreme temperature and high-precipitation events, while anomalously strong stratospheric jets can lead to an increase in surface winds and tropical cyclone intensity. Moreover, stratospheric water vapor has been identified as an important forcing for global decadal surface climate change. In the past years, operational weather forecast and climate models have adapted a high vertical resolution in the UTLS region in order to capture the dynamical processes occurring in this highly stratified region. However, there is an evident lack of available measurements in the UTLS region to consistently support these models and further improve process understanding. Consequently, both the IPCC fifth assessment report and the ESA-GEWEX report 'Earth Observation and Water Cycle Science Priorities' have identified an urgent need for long-term observations and improved process understanding in the UTLS region. To close this gap, the authors propose the 'WAter Vapour European - Explorer' (WAVE-E) space mission, whose primary goal is to monitor water vapor in the UTLS at 1 km vertical, 25 km horizontal and sub-daily temporal resolution. WAVE-E consists of three quasi-identical small ( 500 kg) satellites (WAVE-E 1-3) in a constellation of Sun-Synchronous Low Earth Orbits, each carrying a limb sounding and cross-track scanning mid-infrared passive spectrometer (824 cm-1 to 829 cm-1). The core of the instruments builds a monolithic, field-widened type of Michelson interferometer without any moving parts, rendering it rigid and fault tolerant. Synergistic use of WAVE-E and MetOp-NG operational satellites is identified, such that a data fusion algorithm could provide water vapour profiles from the

  15. Thermalisation of high energy electrons and positrons in water vapour

    Science.gov (United States)

    Munoz, A.; Blanco, F.; Limao-Vieira, P.; Thorn, P. A.; Brunger, M. J.; Buckman, S. J.; Garcia, G.

    2008-07-01

    In this study we describe a method to simulate single electron tracks of electrons in molecular gases, particularly in water vapour, from relatively high energies, where Born (Inokuti 1971) approximation is supposed to be valid, down to thermal energies paying special attention to the low energy secondary electrons which are abundantly generated along the energy degradation procedure. Experimental electron scattering cross sections (Munoz et al. 2007) and energy loss spectra (Thorn et al. 2007) have been determined, where possible, to be used as input parameters of the simulating program. These experimental data have been complemented with optical potential calculation (Blanco and Garcia 2003) providing a complete set of interaction probability functions for each type of collision which could take place in the considered energy range: elastic, ionization, electronic excitation, vibrational and rotational excitation. From the simulated track structure (Munoz et al. 2005) information about energy deposition and radiation damage at the molecular level can be derived. A similar procedure is proposed to the study of single positron tracks in gases. Due to the lack of experimental data for positron interaction with molecules, especially for those related to energy loss and excitation cross sections, some distribution probability data have been derived from those of electron scattering by introducing positron characteristics as positroniun formation. Preliminary results for argon are presented discussing also the utility of the model to biomedical applications based on positron emitters.

  16. Water vapour and ozone profiles in the midlatitude upper troposphere

    Directory of Open Access Journals (Sweden)

    G. Vaughan

    2005-01-01

    Full Text Available We present an investigation of upper tropospheric humidity profiles measured with a standard radiosonde, the Vaisala RS80-A, and a commercial frost-point hygrometer, the Snow White. Modifications to the Snow White, to enable the mirror reflectivity and Peltier cooling current to be monitored during flight, were found to be necessary to determine when the instrument was functioning correctly; a further modification to prevent hydrometeors entering the inlet was also implemented. From 23 combined flights of an ozonesonde, radiosonde and Snow White between September 2001 and July 2002, clear agreement was found between the two humidity sensors, with a mean difference of <2% in relative humidity from 2 to 10km, and 2.2% between 10 and 13km. This agreement required a correction to the radiosonde humidity, as described by Miloshevich et al. (2001. Using this result, the dataset of 324 ozonesonde/RS80-A profiles measured from Aberystwyth between 1991 and 2002 was examined to derive statistics for the distribution of water vapour and ozone. Supersaturation with respect to ice was frequently seen at the higher levels - 24% of the time in winter between 8 and 10km. The fairly uniform distribution of relative humidity persisted to 120% in winter, but decreased rapidly above 100% in summer.

  17. The thermotidal exciting function for water vapour absorption of solar radiation

    Directory of Open Access Journals (Sweden)

    M. BONAFEDE

    1976-06-01

    Full Text Available The thermotidal exciting function J is considered, for
    the absorption of solar radiation by water vapour, according to the model
    derived by Siebert. The Mugge-Moller formula for water vapour absorption
    is integrated numerically, using experimental data for the water vapour
    concentration in the troposphere and the stratosphere. It appears that
    Siebort's formula is a reasonable approximation at low tropospheric levels
    but it dramatically overestimates the water vapour thermotidal heating
    in the upper troposphere and in the stratosphere. It seems thus possible
    that, if the correct vertical profile is employed for J , the amplitudes and
    phases of the diurnal temperature oscillations and of the tidal wind speeds
    may suffer significant changes from those previously calculated and possibly explain the three hours delay of the observed phases from the computed values.

  18. Venera 15: Water vapour in the middle atmosphere of Venus

    Science.gov (United States)

    Ignatiev, N. I.; Moroz, V. I.; Zasova, L. V.; Khatuntsev, I. V.

    1999-01-01

    In 1983, spectra of Venus in the region of 6-40 μm were measured by means of the Fourier Spectrometer aboard the Venera 15 orbiter. It covered local solar times from 4 a.m. to 10 a.m. and from 4 p.m. to 10 p.m. in the latitude range from -65° up to 87°. The results of an extended processing and analysis of these data are presented. Time and spatial variations of the water vapour were found. Most of the measurements fall in the range of 5-15 ppm, which is close to the early results. The effective altitude of sounding is approximately equal to the altitude where the optical depth τ = 1. Two latitude regions can be distinguished: (A) 20° 60°, which are characterised by different altitudes of the level of τ = 1: 62 and 55 km respectively. Mean mixing ratios near this level in the two regions are almost the same, but the partial pressures and mass densities in region (B) are 2-4 times greater than those in region (A). In region (A) a weak dayside maximum and a nightside minimum were observed. Region (B) is of inhomogeneous structure, and the retrieved mixing ratio has greater uncertainty and may probably change from the detection limit of 1 ppm up to 30 ppm. Although the retrieval of H2O mixing ratio altitude profile from the Venera 15 data appeared to be impossible, indirect indications were found that at least in region (A) the mixing ratio decreases with altitude.

  19. The water vapour flux above Switzerland and its role in the August 2005 extreme precipitation and flooding

    Energy Technology Data Exchange (ETDEWEB)

    N' Dri Koffi, Ernest; Maetzler, Christian [Bern Univ. (Switzerland). Inst. of Applied Physics; Graham, Edward [Bern Univ. (Switzerland). Inst. of Applied Physics; University of the Highlands and Islands, Stornoway, Scotland (United Kingdom). Lews Castle College

    2013-10-15

    The water budget approach is applied to an atmospheric box above Switzerland (hereafter referred to as the 'Swiss box') to quantify the atmospheric water vapour flux using ECMWF ERA-Interim reanalyses. The results confirm that the water vapour flux through the Swiss box is highly temporally variable, ranging from 1 to 5 x 10{sup 7} kg/s during settled anticyclonic weather, but increasing in size by a factor of ten or more during high speed currents of water vapour. Overall, Switzerland and the Swiss box 'import' more water vapour than it 'exports', but the amount gained remains only a small fraction (1% to 5%) of the total available water vapour passing by. High inward water vapour fluxes are not necessarily linked to high precipitation episodes. The water vapour flux during the August 2005 floods, which caused severe damage in central Switzerland, is examined and an assessment is made of the computed water vapour fluxes compared to high spatio-temporal rain gauge and radar observations. About 25% of the incoming water vapour flux was stored in Switzerland. The computed water vapour fluxes from ECMWF data compare well with the mean rain gauge observations and the combined rain-gauge radar precipitation products. (orig.)

  20. The millennium water vapour drop in chemistry–climate model simulations

    Directory of Open Access Journals (Sweden)

    S. Brinkop

    2016-07-01

    Full Text Available This study investigates the abrupt and severe water vapour decline in the stratosphere beginning in the year 2000 (the "millennium water vapour drop" and other similarly strong stratospheric water vapour reductions by means of various simulations with the state-of-the-art Chemistry-Climate Model (CCM EMAC (ECHAM/MESSy Atmospheric Chemistry Model. The model simulations differ with respect to the prescribed sea surface temperatures (SSTs and whether nudging is applied or not. The CCM EMAC is able to most closely reproduce the signature and pattern of the water vapour drop in agreement with those derived from satellite observations if the model is nudged. Model results confirm that this extraordinary water vapour decline is particularly obvious in the tropical lower stratosphere and is related to a large decrease in cold point temperature. The drop signal propagates under dilution to the higher stratosphere and to the poles via the Brewer–Dobson circulation (BDC. We found that the driving forces for this significant decline in water vapour mixing ratios are tropical sea surface temperature (SST changes due to a coincidence with a preceding strong El Niño–Southern Oscillation event (1997/1998 followed by a strong La Niña event (1999/2000 and supported by the change of the westerly to the easterly phase of the equatorial stratospheric quasi-biennial oscillation (QBO in 2000. Correct (observed SSTs are important for triggering the strong decline in water vapour. There are indications that, at least partly, SSTs contribute to the long period of low water vapour values from 2001 to 2006. For this period, the specific dynamical state of the atmosphere (overall atmospheric large-scale wind and temperature distribution is important as well, as it causes the observed persistent low cold point temperatures. These are induced by a period of increased upwelling, which, however, has no corresponding pronounced signature in SSTs anomalies in the tropics

  1. Sampling system of atmospheric water vapour for analysis of the γ sub(D) relationship

    International Nuclear Information System (INIS)

    Foloni, L.L.; Villa Nova, N.A.; Salati, E.

    1979-01-01

    The development of a system to water vapour air, for natural isotopic composition analysis of hydrogen is presented. The system uses molecular sieve, type '4A', without cooling agent and permits the choice of a sampling time, variyng from a few minutes to many hours, through the control of the admission of vapour flux. The system has good performance in field conditions, with errors of the order of + -3,0 0 /00 in the γ sub(D)( 0 /00) measurements [pt

  2. Water vapour and methane coupling in the stratosphere observed using SCIAMACHY solar occultation measurements

    Directory of Open Access Journals (Sweden)

    S. Noël

    2018-04-01

    Full Text Available An improved stratospheric water vapour data set has been retrieved from SCIAMACHY/ENVISAT solar occultation measurements. It is similar to that successfully applied to methane and carbon dioxide. There is now a consistent set of data products for the three constituents covering the altitudes 17–45 km, the latitude range between about 50 and 70° N, and the period August 2002 to April 2012. The new water vapour concentration profiles agree with collocated results from ACE-FTS and MLS/Aura to within  ∼  5 %. A significant positive linear change in water vapour for the time 2003–2011 is observed at lower stratospheric altitudes with a value of about 0.015 ± 0.008 ppmv year−1 around 17 km. Between 30 and 37 km the changes become significantly negative (about −0.01 ± 0.008 ppmv year−1; all errors are 2σ values. The combined analysis of the SCIAMACHY methane and water vapour time series shows the expected anti-correlation between stratospheric methane and water vapour and a clear temporal variation related to the Quasi-Biennial Oscillation (QBO. Above about 20 km most of the additional water vapour is attributed to the oxidation of methane. In addition short-term fluctuations and longer-term variations on a timescale of 5–6 years are observed. The SCIAMACHY data confirm that at lower altitudes the amount of water vapour and methane are transported from the tropics to higher latitudes via the shallow branch of the Brewer–Dobson circulation.

  3. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    Directory of Open Access Journals (Sweden)

    M. Casado

    2016-07-01

    Full Text Available Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014–January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying

  4. Dew-point measurements at high water vapour pressure

    Science.gov (United States)

    Lomperski, S.; Dreier, J.

    1996-05-01

    A dew-point meter capable of measuring humidity at high vapour pressure and high temperature has been constructed and tested. Humidity measurements in pure steam were made over the temperature range 100 - 1500957-0233/7/5/003/img1C and a vapour pressure range of 1 - 4 bar. The dew-point meter performance was assessed by comparing measurements with a pressure transmitter and agreement between the two was within 0957-0233/7/5/003/img2% relative humidity. Humidity measurements in steam - air mixtures were also made and the dew-point meter readings were compared to those of a zirconia oxygen sensor. For these tests the dew-point meter readings were generally within 0957-0233/7/5/003/img2% relative humidity of the oxygen sensor measurements.

  5. Steam/water separation device for drying a wet vapour

    International Nuclear Information System (INIS)

    Sundheimer, P.

    1986-01-01

    The aim of the present invention is to dry a wet vapour which flows up to the device. The device has at least a group of steam dryer elements in a zone in which there is a vertical apertured panel; this vertical apertured panel is a metal grille with baffles the inlet steam flow to make it horizontal or slightly inclined to the bottom. The invention applies more particularly, to PWR steam generators [fr

  6. A simple passive method of collecting water vapour for environmental tritium monitoring

    International Nuclear Information System (INIS)

    Iida, T.; Fukuda, H.; Ikebe, Y.; Yokoyama, S.

    1995-01-01

    To investigate the average behaviour of tritium in an atmospheric environment, it is necessary to collect water vapour in air over a long period at numerous locations. For the purpose of the study, the passive method was developed: this is handy, low-priced and could collect water vapour in air without motive power. This paper describes the characteristics of the passive collecting method, the performance of water collection in outdoor air and the measurements of tritium concentrations in water samples collected by the passive method. (author)

  7. MEDUSA: The ExoMars experiment for in-situ monitoring of dust and water vapour

    Science.gov (United States)

    Colangeli, L.; Lopez-Moreno, J. J.; Nørnberg, P.; Della Corte, V.; Esposito, F.; Mazzotta Epifani, E.; Merrison, J.; Molfese, C.; Palumbo, P.; Rodriguez-Gomez, J. F.; Rotundi, A.; Visconti, G.; Zarnecki, J. C.; The International Medusa Team

    2009-07-01

    Dust and water vapour are fundamental components of the Martian atmosphere. In view of tracing the past environmental conditions on Mars, that possibly favoured the appearing of life forms, it is important to study the present climate and its evolution. Here dust and water vapour have (and have had) strong influence. Of major scientific interest is the quantity and physical, chemical and electrical properties of dust and the abundance of water vapour dispersed in the atmosphere and their exchange with the surface. Moreover, in view of the exploration of the planet with automated systems and in the future by manned missions, it is of primary importance to analyse the hazards linked to these environmental factors. The Martian Environmental Dust Systematic Analyser (MEDUSA) experiment, included in the scientific payload of the ESA ExoMars mission, accommodates a complement of sensors, based on optical detection and cumulative mass deposition, that aims to study dust and water vapour in the lower Martian atmosphere. The goals are to study, for the first time, in-situ and quantitatively, physical properties of the airborne dust, including the cumulative dust mass flux, the dust deposition rate, the physical and electrification properties, the size distribution of sampled particles and the atmospheric water vapour abundance versus time.

  8. SPATIO-TEMPORAL ESTIMATION OF INTEGRATED WATER VAPOUR OVER THE MALAYSIAN PENINSULA DURING MONSOON SEASON

    Directory of Open Access Journals (Sweden)

    S. Salihin

    2017-10-01

    Full Text Available This paper provides the precise information on spatial-temporal distribution of water vapour that was retrieved from Zenith Path Delay (ZPD which was estimated by Global Positioning System (GPS processing over the Malaysian Peninsular. A time series analysis of these ZPD and Integrated Water Vapor (IWV values was done to capture the characteristic on their seasonal variation during monsoon seasons. This study was found that the pattern and distribution of atmospheric water vapour over Malaysian Peninsular in whole four years periods were influenced by two inter-monsoon and two monsoon seasons which are First Inter-monsoon, Second Inter-monsoon, Southwest monsoon and Northeast monsoon.

  9. Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site

    Science.gov (United States)

    Weaver, Dan; Strong, Kimberly; Schneider, Matthias; Rowe, Penny M.; Sioris, Chris; Walker, Kaley A.; Mariani, Zen; Uttal, Taneil; McElroy, C. Thomas; Vömel, Holger; Spassiani, Alessio; Drummond, James R.

    2017-08-01

    Water vapour is a critical component of the Earth system. Techniques to acquire and improve measurements of atmospheric water vapour and its isotopes are under active development. This work presents a detailed intercomparison of water vapour total column measurements taken between 2006 and 2014 at a Canadian High Arctic research site (Eureka, Nunavut). Instruments include radiosondes, sun photometers, a microwave radiometer, and emission and solar absorption Fourier transform infrared (FTIR) spectrometers. Close agreement is observed between all combination of datasets, with mean differences ≤ 1.0 kg m-2 and correlation coefficients ≥ 0.98. The one exception in the observed high correlation is the comparison between the microwave radiometer and a radiosonde product, which had a correlation coefficient of 0.92.A variety of biases affecting Eureka instruments are revealed and discussed. A subset of Eureka radiosonde measurements was processed by the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) for this study. Comparisons reveal a small dry bias in the standard radiosonde measurement water vapour total columns of approximately 4 %. A recently produced solar absorption FTIR spectrometer dataset resulting from the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) retrieval technique is shown to offer accurate measurements of water vapour total columns (e.g. average agreement within -5.2 % of GRUAN and -6.5 % of a co-located emission FTIR spectrometer). However, comparisons show a small wet bias of approximately 6 % at the high-latitude Eureka site. In addition, a new dataset derived from Atmospheric Emitted Radiance Interferometer (AERI) measurements is shown to provide accurate water vapour measurements (e.g. average agreement was within 4 % of GRUAN), which usefully enables measurements to be taken during day and night (especially valuable during polar night).

  10. Effect of water vapour absorption on hydroxyl temperatures measured from Svalbard

    Directory of Open Access Journals (Sweden)

    J. M. Chadney

    2017-03-01

    Full Text Available We model absorption by atmospheric water vapour of hydroxyl airglow emission using the HIgh-resolution TRANsmission molecular absorption database (HITRAN2012. Transmission coefficients are provided as a function of water vapour column density for the strongest OH Meinel emission lines in the (8–3, (5–1, (9–4, (8–4, and (6–2 vibrational bands. These coefficients are used to determine precise OH(8–3 rotational temperatures from spectra measured by the High Throughput Imaging Echelle Spectrograph (HiTIES, installed at the Kjell Henriksen Observatory (KHO, Svalbard. The method described in this paper also allows us to estimate atmospheric water vapour content using the HiTIES instrument.

  11. Distribution of tritium in water vapour and precipitation around Wolsung nuclear power plant.

    Science.gov (United States)

    Chae, Jung-Seok; Lee, Sang-Kuk; Kim, Yongjae; Lee, Jung-Min; Cho, Heung-Joon; Cho, Yong-Woo; Yun, Ju-Yong

    2011-07-01

    The distribution of tritium in water vapour and precipitation with discharge of tritiated water vapour and meteorological factors was studied around the Wolsung nuclear power plant (NPP) site during the period 2004-2008. The tritium concentrations in atmospheric water vapour and precipitation had a temporal variation with relatively high values in the early summer. Spatial distribution of tritium concentrations was affected by various factors such as distance from the NPP site, wind direction, tritium discharge into the atmosphere and atmospheric dispersion factor. The annual mean concentrations of atmospheric HTO and precipitation were correlated with the amount of gaseous tritium released from the Wolsung NPP. The tritium concentrations in precipitation decrease exponentially with an increase of the distance from the Wolsung NPP site.

  12. Discovery of water vapour in the carbon star V Cygni from observations with Herschel/HIFI

    NARCIS (Netherlands)

    Neufeld, D. A.; Gonzalez-Alfonso, E.; Melnick, G.; Pulecka, M.; Schmidt, M.; Szczerba, R.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Menten, K.; Olofsson, H.; Planesas, P.; Schoier, F. L.; Teyssier, D.; Waters, L. B. F. M.; Edwards, K.; McCoey, C.; Shipman, R.; Jellema, W.; de Graauw, T.; Ossenkopf, V.; Schieder, R.; Philipp, S.

    2010-01-01

    We report the discovery of water vapour toward the carbon star V Cygni. We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 1(11)-0(00) para-water transition at 1113.3430 GHz in the upper sideband of the Band 4b receiver. The observed spectral line profile is nearly

  13. WATER VAPOUR PERMEABILITY PROPERTIES OF CELLULAR WOOD MATERIAL AND CONDENSATION RISK OF COMPOSITE PANEL WALLS

    Directory of Open Access Journals (Sweden)

    Janis IEJAVS

    2016-09-01

    Full Text Available Invention of light weight cellular wood material (CWM with a trade mark of Dendrolight is one of innovations in wood industry of the last decade. The aim of the research was to define the water vapour permeability properties of CWM and to analyse the condensation risk of various wall envelopes where solid wood cellular material is used. To determine the water vapour permeability of CWM, test samples were produced in the factory using routine production technology and tested according to the standard EN 12086:2014. Water vapour permeability factor (μ and other properties of six different configurations of CWM samples were determined. Using the experimental data the indicative influence of geometrical parameters such as lamella thickness, number of lamellas and material direction were investigated and evaluated. To study the condensation risk within the wall envelope containing CWM calculation method given in LVS EN ISO 13788:2012 was used. To ease the calculation process previously developed JavaScript calculation software that had only capability to calculate thermal transmittance was extended so that condensation risk in multi-layer composite walls can be analysed. Water vapour permeability factor in CWM is highly direction dependant. If parallel and perpendicular direction of CWM is compared the value of water vapour permeability factor can differentiate more than two times. Another significant factor for condensation risk analysis is overall thickness of CWM since it directly influences the equivalent air layer thickness. The influence of other factors such as lamella thickness, or groove depth is minor when water vapour permeability properties are compared. From the analysis of CWM performance in building envelope it can be concluded that uninsulated CWM panels used during winter months will pose the risk of condensation damage to structure, but the risk can be reduced or prevented if insulation layer is applied to the CWM panel wall

  14. Microwave measurements of the absolute values of absorption by water vapour in the atmosphere.

    Science.gov (United States)

    Hogg, D C; Guiraud, F O

    1979-05-31

    MEASUREMENT of the absolute value of absorption by water vapour at microwave frequencies is difficult because the effect is so small. Far in the wings of the absorption lines, in the so-called 'windows' of the spectrum, it is especially difficult to achieve high accuracy in the free atmosphere. But it is in these windows that the behaviour of the absorption is important from both applied and scientific points of view. Satellite communications, remote sensing of the atmosphere, and radioastronomy, are all influenced by this behaviour. Measurements on an Earth-space path are reported here; the results indicate a nonlinear relationship between absorption and water-vapour content.

  15. Influence of chemisorption products of carbon dioxide and water vapour on radiolysis of tritium breeder

    Energy Technology Data Exchange (ETDEWEB)

    Zarins, Arturs, E-mail: arturs.zarins@lu.lv [University of Latvia, Institute of Chemical Physics, Kronvalda Boulevard 4, LV-1010 Riga (Latvia); Kizane, Gunta; Supe, Arnis [University of Latvia, Institute of Chemical Physics, Kronvalda Boulevard 4, LV-1010 Riga (Latvia); Knitter, Regina; Kolb, Matthias H.H. [Karlsruhe Institute of Technology, Institute for Applied Materials (IAM-WPT), 76021 Karlsruhe (Germany); Tiliks, Juris; Baumane, Larisa [University of Latvia, Institute of Chemical Physics, Kronvalda Boulevard 4, LV-1010 Riga (Latvia)

    2014-10-15

    Highlights: • Chemisorption products affect formation proceses of radiation-induced defects. • Radiolysis of chemisorption products increase amount of radiation-induced defects. • Irradiation atmosphere influence radiolysis of lithium orthosilicate pebbles. - Abstract: Lithium orthosilicate pebbles with 2.5 wt% excess of silica are the reference tritium breeding material for the European solid breeder test blanket modules. On the surface of the pebbles chemisorption products of carbon dioxide and water vapour (lithium carbonate and hydroxide) may accumulate during the fabrication process. In this study the influence of the chemisorption products on radiolysis of the pebbles was investigated. Using nanosized lithium orthosilicate powders, factors, which can influence the formation and radiolysis of the chemisorption products, were determined and described as well. The formation of radiation-induced defects and radiolysis products was studied with electron spin resonance and the method of chemical scavengers. It was found that the radiolysis of the chemisorption products on the surface of the pebbles can increase the concentration of radiation-induced defects and so could affect the tritium diffusion, retention and the released species.

  16. Reaction of soda-lime-silica glass melt with water vapour at melting temperatures

    Czech Academy of Sciences Publication Activity Database

    Vernerová, Miroslava; Kloužek, Jaroslav; Němec, Lubomír

    2015-01-01

    Roč. 416, MAY 15 (2015), s. 21-30 ISSN 0022-3093 R&D Projects: GA TA ČR TA01010844 Institutional support: RVO:67985891 Keywords : glass melt * sulfate * water vapour * bubble nucleation * melt foaming * glass melting Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.825, year: 2015

  17. Water vapour trends at several tropospheric levels over South America between 1973 and 2003

    International Nuclear Information System (INIS)

    Morales, L.; Mattar, C.; Da-Silva, L.; Abarca, R.

    2009-01-01

    In this paper water vapour trends were analyzed at several tropospheric levels over South America between 1973 and 2003. It was carried out using in situ values retrieved by 15 radiosonde stations and NCEP NCAR Reanalysis data (NNR). NNR and radiosonde water vapour data were linked to Koeppen-Geiger climatic zones to calculate anomalies, trends, and the non-parametric statistical significance for each mandatory level. A methodology used to process radiosonde data is shown. Water vapour trends in tropical climates presented positive decadal trends. This is statistically significant for the first mandatory levels retrieved by radiosonde. The highest values are presented in average with NNR; the decadal magnitude for climate Af being 0.15 g kg -1 for 1000 and 925 h Pa, and for climate As 0.27 g kg -1 for 925 and 850 h Pa. For non-tropical climates the magnitude trends of specific humidity are affected by the spatial resolution of NNR, which is seen when comparing the results received by the radiosondes. Finally, this paper shows the initial results of water vapour content trends in the last three decades over South America. Strong climatic events and synoptic oscillations were not commented upon.

  18. Water vapour rises from the cooling towers for the ATLAS detector at Point 1

    CERN Multimedia

    Brice, Maximilien

    2015-01-01

    Electronics on the ATLAS detector produce heat when the experiment is running. An elaborate cooling system keeps the detector from overheating. On the surface, the warm water vapour that rises from the detector 100metres underground is clearly visible from the ATLAS cooling towers on the CERN Meyrin site in Switzerland.

  19. Detection of the contamination of air by tritiated water vapour around the reactor EL3

    International Nuclear Information System (INIS)

    Lebouleux, P.; Ardellier, A.; Valero, S.

    1968-01-01

    The authors describe the apparatus used for the detection of the tritiated water vapour contamination in the air around the reactor EL 3. The apparatus consists of two air-circulation ionisation chambers; the air in one of these is dried by passage through a silica-gel column. By carrying out a differential measurement of the ionization currents, it is possible to measure the tritiated water vapour concentration. A theoretical study of the response of the chambers is carried out for two types of emission of the tritiated water vapour: continuous, or in bursts. The experimental work comprises: calibration in the measurement range employed; study of the selectivity for other active gases; study of typical accidents; the interpretation of the results in the case of discontinuous emission, taking into account the desorption from the walls of the measurement chamber, a phenomenon which is observed during the emptying process. The authors give finally actual examples of how to use the results. The apparatus built makes it possible to detect, in less than ten minutes, contamination by tritiated water vapour in the presence of other active gases, in a measurement range of between 3 and 2200 MPC, and with an accuracy of about 25 per cent. A transposition to calculations of the risk to workers should be made with the utmost caution; an envelope of this risk can be drawn up more or less accurately depending on particular cases. (authors) [fr

  20. Behaviour of carbon dioxide and water vapour flux densities from a disturbed raised peat bog

    NARCIS (Netherlands)

    Nieveen, J.P.; Jacobs, A.F.G.

    2002-01-01

    Measurements of carbon dioxide and water vapour flux densities were carried out for a disturbed raised peat bog in the north of the Netherlands during an 18 month continuous experiment. Tussock grass (sp. Molinea caerulae) mainly dominated the vegetation of the bog area. The maximum leaf area index

  1. Diffusion of condenser water discharge

    International Nuclear Information System (INIS)

    Iwakiri, Toshio

    1977-01-01

    Thermal and nuclear power stations in Japan are mostly located in coastal area, and the cooling water is discharged into sea as warm water. Recently, large interest is taken in this matter, and it is desirable to predict the diffusion of warm discharge accurately and to take effective measures for lowering the temperature. As for the methods of predicting the diffusion of warm discharge, simplified estimation, mathematical analysis and hydrographical model experiment are used corresponding to objects and conditions. As for the measures to lower temperature, the method of discharging warm water into deep sea bottom was confirmed to be very effective. In this paper, the phenomena of diffusion of warm discharge in sea, the methods of predicting the diffusion of warm discharge, and the deep sea discharge as the measure for lowering temperature are outlined. The factors concerning the diffusion of warm discharge in sea are the conditions of discharge, topography and sea state, and the diffusion is roughly divided into mixing diffusion in the vicinity of warm water outlet and eddy diffusion in distant region. It is difficult to change artificially the conditions of diffusion in distant region, and the measures of raising the rate of dilution in near region are effective, therefore the deep sea discharge is adopted. (Kako, I.)

  2. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water

    KAUST Repository

    Vakarelski, Ivan Uriev; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2014-01-01

    We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 104 and 106, spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies. © the Partner Organisations 2014.

  3. The Investigation of Isotopic Composition of Precipitation and water vapour by Using Air Mass Trajectories and Meteorological Parameters

    International Nuclear Information System (INIS)

    Dirican, A.; Acar, Y.; Demircan, M.

    2002-01-01

    In last century there are so many studies were carried out about stable isotopes of precipitation. The Researchers, study in this field directed to examine origin and transport of water vapour. To investigate the conditions of precipitation formation parallel with climatic changes, stable isotopes using as a powerful tool. So that a project coordinated by IAEA. In this presentation we will give some parts of this project which was carried out in Turkey. First results were obtained for 2001 year. The one of the first result which was obtained in this project is the relation between air temperature and isotopic composition of precipitation collected in Ankara Antalya and Adana station. Second was the observation of temporal variation of stable isotope composition in precipitation and water vapour in relation with water vapour transport. δD and δ 18 O content of atmospheric water vapour examined for January - December 2001 time interval. 27 precipitation event had been examined, starting from endengered place and following to trajectories until to reach Turkey, by using ground level and 500mbar synoptic charts. The observed δD and δ 18 O variations of water vapour is related with the endengered place (Atlantic Ocean, Mediterranean Sea, etc.) of water vapour. The isotopic composition of local precipitation forms by regional meteorological factors. In this study δD and δ 18 O relation of event, daily precipitation and water vapour were defined

  4. Low pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    DEFF Research Database (Denmark)

    Fumagalli, F; Kylian, O; Amato, Letizia

    2012-01-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can...... be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several...... operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water...

  5. GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment

    Science.gov (United States)

    Champollion, C.; Masson, F.; Bouin, M.-N.; Walpersdorf, A.; Doerflinger, E.; Bock, O.; Van Baelen, J.

    2005-03-01

    Water vapour plays a major role in atmospheric processes but remains difficult to quantify due to its high variability in time and space and the sparse set of available measurements. The GPS has proved its capacity to measure the integrated water vapour at zenith with the same accuracy as other methods. Recent studies show that it is possible to quantify the integrated water vapour in the line of sight of the GPS satellite. These observations can be used to study the 3D heterogeneity of the troposphere using tomographic techniques. We develop three-dimensional tomographic software to model the three-dimensional distribution of the tropospheric water vapour from GPS data. First, the tomographic software is validated by simulations based on the realistic ESCOMPTE GPS network configuration. Without a priori information, the absolute value of water vapour is less resolved as opposed to relative horizontal variations. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers was operated for 2 weeks within a 20×20-km area around Marseille (southern France). The network extends from sea level to the top of the Etoile chain (˜700 m high). Optimal results have been obtained with time windows of 30-min intervals and input data evaluation every 15 min. The optimal grid for the ESCOMTE geometrical configuration has a horizontal step size of 0.05°×0.05° and 500 m vertical step size. Second, we have compared the results of real data inversions with independent observations. Three inversions have been compared to three successive radiosonde launches and shown to be consistent. A good resolution compared to the a priori information is obtained up to heights of 3000 m. A humidity spike at 4000-m altitude remains unresolved. The reason is probably that the signal is spread homogeneously over the whole network and that such a feature is not resolvable by tomographic techniques. The results of our pure GPS inversion show a correlation with

  6. Absorption by water vapour in the 1 to 2 μm region

    International Nuclear Information System (INIS)

    Smith, K.M.; Ptashnik, I.; Newnham, D.A.; Shine, K.P.

    2004-01-01

    The near-IR (in the range 5000-10 000 cm -1 , 1-2 μm) bands of water vapour have been measured in absorption in the laboratory at sub-Doppler spectral resolution (up to 0.0054 cm -1 after numerical apodisation) by Fourier transform spectroscopy. Measurements have been made at 296 K on pure water vapour (at pressures between 2 and 20 hPa) and mixtures of water and air (at total pressures of 100 and 1000 hPa), at optical path lengths in the range 0.26-9.75 m. Measured absorption intensities have been compared with values calculated using the HITRAN 2000 molecular database. These comparisons indicate that the intensities of the 2ν(1.4 μm) and 2ν+δ(1.14 μm) bands are underestimated in HITRAN 2000 by approximately 15% and 20%, respectively, for pure water vapour measurements, and 12% for both bands in the case of water-air mixtures. The ν+δ (1.86 μm) band is in good agreement (0.4% for pure water vapour and less than 6% for mixtures with air) with HITRAN 2000. For typical atmospheric conditions, these absorption bands are sufficiently strong that radiation is fully absorbed at wavelengths in the region of the band centres. Hence the extra absorption that has been identified has only a modest impact (0.16 W m -2 or about 0.2%) on the global-mean clear-sky absorption of solar radiation. The impact in the upper troposphere is several times larger

  7. Vertical distribution of deuterium in atmospheric water vapour: problems in application to assess atmospheric condensation models

    International Nuclear Information System (INIS)

    Taylor, C.B.

    1984-01-01

    The paper assesses the use of the author's data by Rozanski and Sonntag to support a multi-box model of the vertical distribution of deuterium in atmospheric water vapour, in which exchange between vapour and falling precipitation produces a steeper deuterium concentration profile than simpler condensation models. The mean deuterium/altitude profile adopted by Rozanski and Sonntag for this purpose is only one of several very different mean profiles obtainable from the data by arbitrary selection and weighting procedures; although it can be made to match the specified multi-box model calculations for deuterium, there is a wide discrepancy between the actual and model mean mixing ratio profiles which cannot be ignored. Taken together, the mixing ratio and deuterium profiles indicate that mean vapour of the middle troposphere has been subjected to condensation at greater heights and lower temperatures than those considered in the model calculations. When this is taken into account, the data actually fit much better to the simpler condensation models. But the vapour samples represent meteorological situations too remote in time from primary precipitation events to permit definite conclusions on cloud system mechanisms. (Auth.)

  8. Prediction of water vapour sorption isotherms and microstructure of hardened Portland cement pastes

    International Nuclear Information System (INIS)

    Burgh, James M. de; Foster, Stephen J.; Valipour, Hamid R.

    2016-01-01

    Water vapour sorption isotherms of cementitious materials reflect the multi-scale physical microstructure through its interaction with moisture. Our ability to understand and predict adsorption and desorption behaviour is essential in the application of modern performance-based approaches to durability analysis, along with many other areas of hygro-mechanical and hygro-chemo-mechanical behaviour. In this paper, a new physically based model for predicting water vapour sorption isotherms of arbitrary hardened Portland cement pastes is presented. Established thermodynamic principles, applied to a microstructure model that develops with hydration, provide a rational basis for predictions. Closed-form differentiable equations, along with a rational consideration of hysteresis and scanning phenomena, makes the model suitable for use in numerical moisture simulations. The microstructure model is reconciled with recently published 1 H NMR and mercury intrusion porosimetry results.

  9. Study of the Quantum Efficiency of CsI Photocathodes Exposed to Oxygen and Water Vapour

    CERN Document Server

    Di Mauro, A; Piuz, François; Schyns, E M; Van Beelen, J B; Williams, T D

    2000-01-01

    The operation of CsI photocathodes in gaseous detectors requires special attention to the purity of the applied gas mixtures.We have studied the influence of oxygen and water vapour contaminations on the performance of CsI photocathodes for theALICE HMPID RICH prototype. Measurements were done through comparison of Cherenkov rings obtained from beamtests. Increased levels of oxygen and water vapour did not show any effect on the performance. The results of this studyfound a direct application in the way of storing CsI photocathodes over long periods nad in particular in the shipment of theHMPID prototype from CERN to the STAR experiment at BNL. (Abstract only available,full text to follow)

  10. Apocrustacyanin C(1) crystals grown in space and on earth using vapour-diffusion geometry: protein structure refinements and electron-density map comparisons.

    Science.gov (United States)

    Habash, Jarjis; Boggon, Titus J; Raftery, James; Chayen, Naomi E; Zagalsky, Peter F; Helliwell, John R

    2003-07-01

    Models of apocrustacyanin C(1) were refined against X-ray data recorded on Bending Magnet 14 at the ESRF to resolutions of 1.85 and 2 A from a space-grown and an earth-grown crystal, respectively, both using vapour-diffusion crystal-growth geometry. The space crystals were grown in the APCF on the NASA Space Shuttle. The microgravity crystal growth showed a cyclic nature attributed to Marangoni convection, thus reducing the benefits of the microgravity environment, as reported previously [Chayen et al. (1996), Q. Rev. Biophys. 29, 227-278]. A subsequent mosaicity evaluation, also reported previously, showed only a partial improvement in the space-grown crystals over the earth-grown crystals [Snell et al. (1997), Acta Cryst. D53, 231-239], contrary to the case for lysozyme crystals grown in space with liquid-liquid diffusion, i.e. without any major motion during growth [Snell et al. (1995), Acta Cryst. D52, 1099-1102]. In this paper, apocrustacyanin C(1) electron-density maps from the two refined models are now compared. It is concluded that the electron-density maps of the protein and the bound waters are found to be better overall for the structures of apocrustacyanin C(1) studied from the space-grown crystal compared with those from the earth-grown crystal, even though both crystals were grown using vapour-diffusion crystal-growth geometry. The improved residues are on the surface of the protein, with two involved in or nearby crystal lattice-forming interactions, thus linking an improved crystal-growth mechanism to the molecular level. The structural comparison procedures developed should themselves be valuable for evaluating crystal-growth procedures in the future.

  11. Annealing of polycrystalline thin film silicon solar cells in water vapour at sub-atmospheric pressures

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Píč, Vlastimil; Benda, V.; Fejfar, Antonín

    2014-01-01

    Roč. 54, č. 5 (2014), s. 341-347 ISSN 1210-2709 R&D Projects: GA MŠk 7E10061 EU Projects: European Commission(XE) 240826 - PolySiMode Grant - others:AVČR(CZ) M100101216 Institutional support: RVO:68378271 Keywords : passivation * water vapour * thin film solar cell * polycrystalline silicon (poly-Si) * multicrys- talline silicon (m-Si) * Suns-VOC Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use

  12. The influence of heat pre-treatment on the sorption of water vapour on bentonite

    Czech Academy of Sciences Publication Activity Database

    Mokrejš, P.; Zikánová, Arlette; Hradil, David; Štulík, K.; Pacáková, V.; Kočiřík, Milan; Eić, M.

    2005-01-01

    Roč. 11, č. 1 (2005), s. 57-63 ISSN 0929-5607 R&D Projects: GA ČR(CZ) GA104/02/1464; GA MŠk(CZ) LN00A028 Institutional research plan: CEZ:AV0Z40400503 Keywords : adsorption * bentonite * montmorillonite * water vapour Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.323, year: 2005

  13. The effect of coherent stirring on the advection?condensation of water vapour

    OpenAIRE

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-01-01

    Atmospheric water vapour is an essential ingredient of weather and climate. Key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. In order to investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls the moisture...

  14. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  15. Ozone and water vapour in the austral polar stratospheric vortex and sub-vortex

    Directory of Open Access Journals (Sweden)

    E. Peet

    2004-12-01

    Full Text Available In-situ measurements of ozone and water vapour, in the Antarctic lower stratosphere, were made as part of the APE-GAIA mission in September and October 1999. The measurements show a distinct difference above and below the 415K isentrope. Above 415K, the chemically perturbed region of low ozone and water vapour is clearly evident. Below 415K, but still above the tropopause, no sharp meridional gradients in ozone and water vapour were observed. The observations are consistent with analyses of potential vorticity from the European Centre for Medium Range Weather Forecasting, which show smaller radial gradients at 380K than at 450K potential temperature. Ozone loss in the chemically perturbed region above 415K averages 5ppbv per day for mid-September to mid-October. Apparent ozone loss rates in the sub-vortex region are greater, at 7ppbv per day. The data support, therefore, the existence of a sub-vortex region in which meridional transport is more efficient than in the vortex above. The low ozone mixing ratios in the sub-vortex region may be due to in-situ chemical destruction of ozone or transport of ozone-poor air out of the bottom of the vortex. The aircraft data we use cannot distinguish between these two processes. Key words. Meteorology and atmospheric dynamics polar meteorology – Atmospheric composition and structure (middle atmosphere–composition and chemistry

  16. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour.

    Science.gov (United States)

    Martin, T L; Coe, C; Bagot, P A J; Morrall, P; Smith, G D W; Scott, T; Moody, M P

    2016-07-12

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  17. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    Science.gov (United States)

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W.; Scott, T.; Moody, M. P.

    2016-07-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  18. Energetics and dynamics of the neutralization of clustered ions in ammonia and water vapour

    International Nuclear Information System (INIS)

    Sennhauser, E.S.; Armstrong, D.A.

    1978-01-01

    The energetics and dynamics of neutralization reactions of clustered ions in ammonia and water vapour have been analysed. Neutralization rate coefficients were calculated for the ions in ammonia and for H + .(H 2 O)sub(n) combining with various clustered anions in water vapour up to densities of 4 x 10 19 molecule cm -3 at 390 K. In the case of ammonia, calculations were also performed at 298 K. For all systems, fractional contributions of the neutralization coefficients for specific cluster sizes to the overall coefficient αsub(eff) were evaluated. The computed value of αsub(eff) for NH 3 was in reasonable agreement with experimental data in the [NH 3 ] range 0.3 to 4 x 10 19 molecule cm -3 , and general trends stemming from the effects of increasing ion mass were pointed out. Calculations of energies of individual cluster sizes indicate possible neutralization reaction mechanisms. With some exception, proton transfer is the only possible path and no H atoms should be formed. This is in general agreement with literature results for water vapour at approximately 390 K and with [H 2 O] >= 2 x 10 x 10 19 molecule cm -3 . (author)

  19. Adsorption of water vapour and the specific surface area of arctic zone soils (Spitsbergen)

    Science.gov (United States)

    Cieśla, Jolanta; Sokołowska, Zofia; Witkowska-Walczak, Barbara; Skic, Kamil

    2018-01-01

    Water vapour/nitrogen adsorption were investigated and calculated the specific surface areas of arctic-zone soil samples (Turbic Cryosols) originating from different micro-relief forms (mud boils, cell forms and sorted circles) and from different depths. For the characterisation of the isotherms obtained for arctic soils, the Brunauer-Emmet-Teller model was then compared with the two other models (Aranovich-Donohue and Guggenheim-Anderson-de Boer) which were developed from Brunauer-Emmet-Teller. Specific surface area was calculated using the Brunauer-Emmet-Teller model at p p0-1 range of 0.05-0.35 for the water vapour desorption and nitrogen adsorption isotherms. The values of total specific surface area were the highest in Cryosols on mud boils, lower on cell forms, and the lowest on sorted circles. Such tendency was observed for the results obtained by both the water vapour and nitrogen adsorption. The differences in the values of specific surface area at two investigated layers were small. High determination coefficients were obtained for relationships between the specific surface areas and contents of clay and silt fraction in Cryosols. No statistically significant correlation between the total carbon amount and the values of specific surface area in Cryosols has been found.

  20. Remote sensing of water vapour profiles in the framework of the Total Carbon Column Observing Network (TCCON

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2010-12-01

    Full Text Available We show that the near infrared solar absorption spectra recorded in the framework of the Total Carbon Column Observing Network (TCCON can be used to derive the vertical distribution of tropospheric water vapour. The resolution of the TCCON spectra of 0.02 cm−1 is sufficient for retrieving lower and middle/upper tropospheric water vapour concentrations with a vertical resolution of about 3 and 8 km, respectively. We document the good quality of the remotely-sensed profiles by comparisons with coincident in-situ Vaisala RS92 radiosonde measurements. Due to the high measurement frequency, the TCCON water vapour profile data offer novel opportunities for estimating the water vapour variability at different timescales and altitudes.

  1. Middle atmospheric water vapour and dynamics in the vicinity of the polar vortex during the Hygrosonde-2 campaign

    Directory of Open Access Journals (Sweden)

    S. Lossow

    2009-07-01

    Full Text Available The Hygrosonde-2 campaign took place on 16 December 2001 at Esrange/Sweden (68° N, 21° E with the aim to investigate the small scale distribution of water vapour in the middle atmosphere in the vicinity of the Arctic polar vortex. In situ balloon and rocket-borne measurements of water vapour were performed by means of OH fluorescence hygrometry. The combined measurements yielded a high resolution water vapour profile up to an altitude of 75 km. Using the characteristic of water vapour being a dynamical tracer it was possible to directly relate the water vapour data to the location of the polar vortex edge, which separates air masses of different character inside and outside the polar vortex. The measurements probed extra-vortex air in the altitude range between 45 km and 60 km and vortex air elsewhere. Transitions between vortex and extra-vortex usually coincided with wind shears caused by gravity waves which advect air masses with different water vapour volume mixing ratios.

    From the combination of the results from the Hygrosonde-2 campaign and the first flight of the optical hygrometer in 1994 (Hygrosonde-1 a clear picture of the characteristic water vapour distribution inside and outside the polar vortex can be drawn. Systematic differences in the water vapour concentration between the inside and outside of the polar vortex can be observed all the way up into the mesosphere. It is also evident that in situ measurements with high spatial resolution are needed to fully account for the small-scale exchange processes in the polar winter middle atmosphere.

  2. UTLS water vapour from SCIAMACHY limb measurementsV3.01 (2002-2012).

    Science.gov (United States)

    Weigel, K; Rozanov, A; Azam, F; Bramstedt, K; Damadeo, R; Eichmann, K-U; Gebhardt, C; Hurst, D; Kraemer, M; Lossow, S; Read, W; Spelten, N; Stiller, G P; Walker, K A; Weber, M; Bovensmann, H; Burrows, J P

    2016-01-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) aboard the Envisat satellite provided measurements from August 2002 until April 2012. SCIAMACHY measured the scattered or direct sunlight using different observation geometries. The limb viewing geometry allows the retrieval of water vapour at about 10-25 km height from the near-infrared spectral range (1353-1410 nm). These data cover the upper troposphere and lower stratosphere (UTLS), a region in the atmosphere which is of special interest for a variety of dynamical and chemical processes as well as for the radiative forcing. Here, the latest data version of water vapour (V3.01) from SCIAMACHY limb measurements is presented and validated by comparisons with data sets from other satellite and in situ measurements. Considering retrieval tests and the results of these comparisons, the V3.01 data are reliable from about 11 to 23 km and the best results are found in the middle of the profiles between about 14 and 20 km. Above 20 km in the extra tropics V3.01 is drier than all other data sets. Additionally, for altitudes above about 19 km, the vertical resolution of the retrieved profile is not sufficient to resolve signals with a short vertical structure like the tape recorder. Below 14 km, SCIAMACHY water vapour V3.01 is wetter than most collocated data sets, but the high variability of water vapour in the troposphere complicates the comparison. For 14-20 km height, the expected errors from the retrieval and simulations and the mean differences to collocated data sets are usually smaller than 10 % when the resolution of the SCIAMACHY data is taken into account. In general, the temporal changes agree well with collocated data sets except for the Northern Hemisphere extratropical stratosphere, where larger differences are observed. This indicates a possible drift in V3.01 most probably caused by the incomplete treatment of volcanic aerosols in the retrieval. In all other regions a

  3. Characterization of sorption properties of selected soils from Lublin region by using water vapour adsorption method

    Science.gov (United States)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-04-01

    *The studies were carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545 Among many methods proposed to study sorption properties of soils an analysis of adsorption/ desorption isotherm is probably the easiest and most convenient one. It characterizes both quantity and quality of mineral and organic components and also their physical and physicochemical properties. The main aim of this study is comparison of sorption properties of selected Polish soils by using water vapour adsorption method. Samples were taken from the depth of 0-20 cm, from the Lublin region, eastern Poland. Soils were selected on the basis of their different physicochemical properties and were classified as: Haplic Fluvisol, Haplic Chernozem, Mollic Gleysol, Rendzic Phaeozem, Stagnic Luvisol, Haplic Cambisol (WG WRB 2006). Data taken from experimental adsorption isotherms were used to determine parameters of monolayer capacity, specific surface area and the total amount of vapour adsorbed at relative pressure of 0.974. Obtained adsorption and desorption isotherms reviled that adsorbate molecules interacted with the soil particles in different extent. Similar monolayer capacity was observed for Haplic Fluvisol, Haplic Chernozem and Stagnic Luvisol, while for Mollic Gleysol was more than 4 times higher. Mollic Gleysol was also characterized by highest values of specific surface area as well as quantity of adsorbed vapour at relative pressure of 0.974. Higher sorption was caused by presence of soil colloids which contains functional groups of a polar nature (mainly hydroxyls, phenolic and carboxyls). These groups similarly to silicates, oxides, hydratable cations as well as electric charge form adsorption centres for water vapour molecules.

  4. The exchange reaction between deuterium and water vapour on platinum deposited over a hydrophobic support

    International Nuclear Information System (INIS)

    Itsuo, Iida; Junko, Kato; Kenzi, Tamuru

    1977-01-01

    Isotope exchange reaction between deuterium gas and water vapour at room temperature and below on platinum deposited on hydrophobic supports such as polytetrafluoroethylene (PTFE) or Porapak Q (copolymer of styrene and divinylbenzene) was studied and the results were compared with those of the exchange reaction on platinum over hydrophilic support such as alumina. It was demonstrated that the exchange reaction at temperatures below the boiling point of water is markedly retarded by the multilayer adsorption of water over the platinum catalyst deposited on hydrophilic support, whereas the platinum catalyst on hydrophobic support exhibited a high catalytic activity, being not retarded by the water, forming no multilayer of adsorbed water over platinum surface. Therefore in the case of the hydrogen isotope exchange reaction on platinum over hydrophobic support, the chemical exchange rate can be measured even under a saturated vapour pressure of water. The surface area of platinum was estimated by hydrogen chemisorption and hydrogen titration and specific activities of the catalyst were calculated at both room temperature and freezing point of water, which revealed that the specific rate of this reaction does not differ so much over various supports. (orig.) [de

  5. Electron drift velocities in He and water mixtures: Measurements and an assessment of the water vapour cross-section sets

    International Nuclear Information System (INIS)

    Urquijo, J. de; Juárez, A. M.; Basurto, E.; Ness, K. F.; Robson, R. E.; White, R. D.; Brunger, M. J.

    2014-01-01

    The drift velocity of electrons in mixtures of gaseous water and helium is measured over the range of reduced electric fields 0.1–300 Td using a pulsed-Townsend technique. Admixtures of 1% and 2% water to helium are found to produce negative differential conductivity (NDC), despite NDC being absent from the pure gases. The measured drift velocities are used as a further discriminative assessment on the accuracy and completeness of a recently proposed set of electron-water vapour cross-sections [K. F. Ness, R. E. Robson, M. J. Brunger, and R. D. White, J. Chem. Phys. 136, 024318 (2012)]. A refinement of the momentum transfer cross-section for electron-water vapour scattering is presented, which ensures self-consistency with the measured drift velocities in mixtures with helium to within approximately 5% over the range of reduced fields considered

  6. Studies of the kinetics and mechanism of the oxidation of uranium by dry and moist air. A model for determining the oxidation rate over a wide range of temperatures and water vapour pressures

    Energy Technology Data Exchange (ETDEWEB)

    McGillivray, G.W. (Atomic Weapons Establishment, Aldermaston, Reading (United Kingdom)); Geeson, D.A. (Atomic Weapons Establishment, Aldermaston, Reading (United Kingdom)); Greenwood, R.C. (Atomic Weapons Establishment, Aldermaston, Reading (United Kingdom))

    1994-01-01

    The rate of oxidation of uranium metal by moist air has been measured at temperatures from 115 to 350 C and water vapour pressures from 0 to 47 kPa (350 Torr). From this and from previously reported data, a model has been developed which allows the rate of uranium oxidation to be calculated at any particular combination of temperature and water vapour pressure of interest, in the range 0-350 C and 0-101.3 kPa (760 Torr). The model is based on the assumption that the surface concentration of water determines the rate of reaction and that the adsorption of water onto the oxide follows a Langmuir type isotherm. Theoretical plots of rate as a function of water vapour pressure and Arrhenius plots derived from the model have been shown to be in good agreement with experimental data. The model assumes separate contributions to the overall observed rate from oxygen and water vapour. Surface studies have been carried out using SIMS (secondary ion mass spectrometry). Depth profiling of the oxide produced by isotopically labelled reagents ([sup 18]O[sub 2] and H[sup 18][sub 2]O), has shown that oxygen from both reactants is incorporated into the oxide layer in the ratio predicted by the kinetic model. This supports a mechanism in which oxygen and water vapour produce separate diffusing species (possibly O[sup 2-] and OH[sup -]). (orig.)

  7. Studies of the kinetics and mechanism of the oxidation of uranium by dry and moist air A model for determining the oxidation rate over a wide range of temperatures and water vapour pressures

    Science.gov (United States)

    McGillivray, G. W.; Geeson, D. A.; Greenwood, R. C.

    1994-01-01

    The rate of oxidation of uranium metal by moist air has been measured at temperatures from 115 to 350°C and water vapour pressures from 0 to 47 kPa (350 Torr). From this and from previously reported data, a model has been developed which allows the rate of uranium oxidation to be calculated at any particular combination of temperature and water vapour pressure of interest, in the range 0-350°C and 0-101.3 kPa (760 Torr). The model is based on the assumption that the surface concentration of water determines the rate of reaction and that the adsorption of water onto the oxide follows a Langmuir type isotherm. Theoretical plots of rate as a function of water vapour pressure and Arrhenius plots derived from the model have been shown to be in good agreement with experimental data. The model assumes separate contributions to the overall observed rate from oxygen and water vapour. Surface studies have been carried out using SIMS (secondary ion mass spectrometry). Depth profiling of the oxide produced by isotopically labelled reagents ( 18O 2 and H 218O), has shown that oxygen from both reactants is incorporated into the oxide layer in the ratio predicted by the kinetic model. This supports a mechanism in which oxygen and water vapour produce separate diffusing species (possibly O 2- and OH -).

  8. Stable isotope characterization of pan-derived and directly sampled atmospheric water vapour

    International Nuclear Information System (INIS)

    Maric, R.; St. Amour, N.A.; Gibson, J.J.; Edwards, T.W.D.

    2002-01-01

    Isotopic characterization of atmospheric water vapour, δ A , and its temporal variability are important prerequisites for quantifying water balance of surface reservoirs and partitioning of evaporation and transpiration fluxes using isotope techniques. Here we present results from a detailed comparison of several methods for determining δ A in field situations, (i) by back-calculation from isotopic and micrometeorological monitoring of a steady-state terminal reservoir (standard Class-A evaporation pan) using boundary-layer mass transfer models [1], (ii) through direct (cryogenic) sampling of ambient atmospheric moisture, and (iii) using the precipitation-equilibrium approximation (i.e., δ A =δ P - ε*)

  9. Efficient quantification of water content in edible oils by headspace gas chromatography with vapour phase calibration.

    Science.gov (United States)

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2018-06-01

    An automated and accurate headspace gas chromatographic (HS-GC) technique was investigated for rapidly quantifying water content in edible oils. In this method, multiple headspace extraction (MHE) procedures were used to analyse the integrated water content from the edible oil sample. A simple vapour phase calibration technique with an external vapour standard was used to calibrate both the water content in the gas phase and the total weight of water in edible oil sample. After that the water in edible oils can be quantified. The data showed that the relative standard deviation of the present HS-GC method in the precision test was less than 1.13%, the relative differences between the new method and a reference method (i.e. the oven-drying method) were no more than 1.62%. The present HS-GC method is automated, accurate, efficient, and can be a reliable tool for quantifying water content in edible oil related products and research. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  10. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    Science.gov (United States)

    Richardson, M. I.

    2002-12-01

    Seasonally-active water can be defined to include any water reservoir that communicates with other reservoirs on time scales of a year or shorter. It is the interaction of these water reservoirs, under the influence of varying solar radiation and in conjunction with surface and atmospheric temperatures, that determines the phase-stability field for water at the surface, and the distribution of water in various forms below, on, and above the surface. The atmosphere is the critical, dynamical link in this cycling system, and also (fortunately) one of the easiest to observe. Viking and Mars Global Surveyor observations paint a strongly asymmetric picture of the global seasonal water cycle, tied proximately to planetary eccentricity, and the existence of residual ice caps of different composition at the two poles. The northern summer experiences the largest water vapour columns, and is associated with sublimation from the northern residual water ice cap. The southern summer residual carbon dioxide ice cap is cold trap for water. Asymmetry in the water cycle is an unsolved problem. Possible solutions may involve the current timing of perihelion (the water cap resides at the pole experiencing the longer but cooler summer), the trapping of water ice in the northern hemisphere by tropical water ice clouds, and the bias in the annual-average, zonal-mean atmospheric circulation resulting from the zonal-mean difference in the elevation of the northern and southern hemispheres. Adsorbed and frozen water have proven harder to constrain. Recent Odyssey Gamma Ray Spectrometer results suggest substantial ground ice in the mid- and high-latitudes, but this water is likely below the seasonal skin depth for two reasons: the GRS results are best fit with such a model, and GCM models of the water cycle produce dramatically unrealistic atmospheric vapour distributions when such a very near surface, GRS-like distribution is initialized - ultimately removing the water to the northern and

  11. The ratio DT/μ for electrons in water vapour at 294 K

    International Nuclear Information System (INIS)

    Elford, M.T.

    1995-01-01

    The ratio D T /μ for electrons in water vapour (294 K) has been measured by the Townsend-Huxley method as a function of E/N (where E is the electric field strength and N the gas number density) at vapour pressures ranging from 0.103 to 0.413 kPa. For E/N ≤ 30 Td, where attachment and ionisation may be neglected, the values are found to be independent of vapour pressure and of the current ratio relation used to derive D T /μ values from the measured current ratios. The uncertainty of these D T /μ values is estimated to be T /μ measured at E/N > 30 Td were found to be strongly pressure dependent, the strength and sign of the dependence depending on E/N and the current ratio relation used. Since extrapolation to infinite pressure at each E/N value did not give the same value of D T /μ, it has not been possible to derive reliable D T /μ values for this higher E/N range. Possible causes of the observed pressure dependences are discussed. The present data are in good agreement with the values predicted by Ness and Robson for values of E/N ≤ 24 Td. 17 refs., 1 tab., 5 figs

  12. Dynamic behaviour of bubbles of water vapour at a temperature lower than the boiling temperature

    International Nuclear Information System (INIS)

    Jansen, Franz

    1966-01-01

    This research thesis reports the study of the theoretical movement of the wall of vapour water bubbles in a sub-saturated boiling regime, i.e. with an average water temperature lower than the boiling temperature. While assuming that bubbles have an initial translational speed at the beginning of their condensation, the author shows that their shrinkage should result in an accelerated displacement in a direction normal to the wall and inward the liquid. Layers of hot water initially close to the wall would therefore be quickly transported towards cold water areas. Experiments allowed, in some cases, the acceleration of bubbles during their condensation to be noticed: for low sub-saturations in still water and for high sub-saturations in water in forced convection, even though, in this last case, the determination of accelerations is more delicate [fr

  13. The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol

    Science.gov (United States)

    Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi

    2018-01-01

    The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending on the

  14. Water vapour and wind measurements by a two micron space lidar

    Science.gov (United States)

    Ghibaudo, J.-B.; Labandibar, J.-Y.

    2018-04-01

    AEROSPATIALE presents the main results of the feasibility study under ESA contract on a coherent 2μm lidar instrument capable of measuring water vapour and wind velocity in the planetary boundary layer. The selected instrument configuration and the associated performance are provided, and the main critical subsystems identified (laser configuration, coherent receiver chain architecture, frequency locking and offsetting architecture. The second phase of this study is dedicated to breadboard the most critical elements of such an instrument in order to technologically consolidate its feasibility.

  15. Passivation effect of water vapour on thin film polycrystalline Si solar cells

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Müller, Martin; Becker, C.; Fejfar, Antonín

    2016-01-01

    Roč. 213, č. 7 (2016), s. 1969-1975 ISSN 1862-6300 R&D Projects: GA MŠk LM2015087; GA ČR GA13-12386S Grant - others:AV ČR(CZ) DAAD-16-27 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : passivation, * plasma hydrogenation * silicon * solar cells * thin films * water vapour Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2016

  16. Water vapour flux divergence over the Arabian Sea during 1987 summer monsoon using satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; RameshKumar, M.R.

    the AS or the southern Indian Ocean. Another question which remains unanswered is whether all the NFD over AS is utilized only for precipitation over the Indian subcontinent or part of it is utilized for precipitation over the other southeast Asian countries. Only a... detailed and systematic surface and upper air data collection programme over the tropical Indian Ocean can throw light on the above questions. WATER VAPOUR FLUX DIVERGENCE OVER THE ARABIAN SEA 207 500 60’ 700 80” 500 60” 70” 500 60’ 70” 60” 700 Fig. 7...

  17. Competition for water vapour results in suppression of ice formation in mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    E. L. Simpson

    2018-05-01

    Full Text Available The formation of ice in clouds can initiate precipitation and influence a cloud's reflectivity and lifetime, affecting climate to a highly uncertain degree. Nucleation of ice at elevated temperatures requires an ice nucleating particle (INP, which results in so-called heterogeneous freezing. Previously reported measurements for the ability of a particle to nucleate ice have been made in the absence of other aerosol which will act as cloud condensation nuclei (CCN and are ubiquitous in the atmosphere. Here we show that CCN can outcompete INPs for available water vapour thus suppressing ice formation, which has the potential to significantly affect the Earth's radiation budget. The magnitude of this suppression is shown to be dependent on the mass of condensed water required for freezing. Here we show that ice formation in a state-of-the-art cloud parcel model is strongly dependent on the criteria for heterogeneous freezing selected from those previously hypothesised. We have developed an alternative criteria which agrees well with observations from cloud chamber experiments. This study demonstrates the dominant role that competition for water vapour can play in ice formation, highlighting both a need for clarity in the requirements for heterogeneous freezing and for measurements under atmospherically appropriate conditions.

  18. Electrical Behaviour of Chitosan-Silver Nanocomposite in Presence of Water Vapour

    Directory of Open Access Journals (Sweden)

    Bal Yadav

    2017-04-01

    Full Text Available This paper presents the synthesis, characterization of the nanocomposite of silver and chitosan polymer composite reinforced by cellulose fibre and its electrical behaviour in presence of water vapour. The coated paper has been characterized by XRD, IR, SEM and EDX techniques. The size of silver nanoparticles is found to be around 9 nm and deposited uniformly. Chitosan, as well as cellulose, contain a hydrogen attached to electronegative nitrogen and oxygen. This gives a favourable environment for the formation of hydrogen bonds. IR peaks of the composite infer the intermolecular hydrogen bonding between the two constituents. The SEM pictures show that the coating of the fibres with nanoparticles is quite uniform. EDX analysis shows that the coated filter paper has sufficient amount of silver along with carbon and oxygen. The coated paper shows good sensitivity towards humidity. It gives excellent linearity in response with a concentration of water vapour after heat treatment of composite at 130 °C. The sensitivity of the sensor is 0.8 MΩ per unit of relative humidity. Sensing properties originate from protonic conductivity from adsorbed water molecule.

  19. Competition for water vapour results in suppression of ice formation in mixed-phase clouds

    Science.gov (United States)

    Simpson, Emma L.; Connolly, Paul J.; McFiggans, Gordon

    2018-05-01

    The formation of ice in clouds can initiate precipitation and influence a cloud's reflectivity and lifetime, affecting climate to a highly uncertain degree. Nucleation of ice at elevated temperatures requires an ice nucleating particle (INP), which results in so-called heterogeneous freezing. Previously reported measurements for the ability of a particle to nucleate ice have been made in the absence of other aerosol which will act as cloud condensation nuclei (CCN) and are ubiquitous in the atmosphere. Here we show that CCN can outcompete INPs for available water vapour thus suppressing ice formation, which has the potential to significantly affect the Earth's radiation budget. The magnitude of this suppression is shown to be dependent on the mass of condensed water required for freezing. Here we show that ice formation in a state-of-the-art cloud parcel model is strongly dependent on the criteria for heterogeneous freezing selected from those previously hypothesised. We have developed an alternative criteria which agrees well with observations from cloud chamber experiments. This study demonstrates the dominant role that competition for water vapour can play in ice formation, highlighting both a need for clarity in the requirements for heterogeneous freezing and for measurements under atmospherically appropriate conditions.

  20. Retrieval of total water vapour in the Arctic using microwave humidity sounders

    Science.gov (United States)

    Cristian Scarlat, Raul; Melsheimer, Christian; Heygster, Georg

    2018-04-01

    Quantitative retrievals of atmospheric water vapour in the Arctic present numerous challenges because of the particular climate characteristics of this area. Here, we attempt to build upon the work of Melsheimer and Heygster (2008) to retrieve total atmospheric water vapour (TWV) in the Arctic from satellite microwave radiometers. While the above-mentioned algorithm deals primarily with the ice-covered central Arctic, with this work we aim to extend the coverage to partially ice-covered and ice-free areas. By using modelled values for the microwave emissivity of the ice-free sea surface, we develop two sub-algorithms using different sets of channels that deal solely with open-ocean areas. The new algorithm extends the spatial coverage of the retrieval throughout the year but especially in the warmer months when higher TWV values are frequent. The high TWV measurements over both sea-ice and open-water surfaces are, however, connected to larger uncertainties as the retrieval values are close to the instrument saturation limits.This approach allows us to apply the algorithm to regions where previously no data were available and ensures a more consistent physical analysis of the satellite measurements by taking into account the contribution of the surface emissivity to the measured signal.

  1. Airborne hygrometer calibration inter-comparison against a metrological water vapour standard

    Science.gov (United States)

    Smorgon, Denis; Boese, Norbert; Ebert, Volker

    2014-05-01

    Water vapour is the most important atmospheric greenhouse gas, which causes a major feedback to warming and other changes in the climate system. Knowledge of the distribution of water vapour and its climate induced changes is especially important in the upper troposphere and lower stratosphere (UT/LS) where vapour plays a critical role in atmospheric radiative balance, cirrus cloud formation, and photochemistry. But, our understanding of water in the UT/LS is limited by significant uncertainties in current UT/LS water measurements. One of the most comprehensive inter-comparison campaigns for airborne hygrometers, termed AQUAVIT (AV1) [1], took place in 2007 at the AIDA chamber at the Karlsruhe Institute of Technology (KIT) in Germany. AV1 was a well-defined, referred, blind inter-comparison of 22 airborne field instruments from 17 international research groups. One major metrological deficit of AV1, however, was, that no traceable reference instrument participated in the inter-comparison experiments and that the calibration procedures of the participating instruments were not monitored or interrogated. Consequently a follow-up inter-comparison was organized in April 2013, which for the first time also provides a traceable link to the international humidity scale. This AQUAVIT2 (AV2) campaign (details see: http://www.imk-aaf.kit.edu/aquavit/index.php/Main_Page) was again located at KIT/AIDA and organised by an international organizing committee including KIT, PTB, FZJ and others. Generally AV2 is divided in two parallel comparisons: 1) AV2-A uses the AIDA chamber for a simultaneous comparison of all instruments (incl. sampling and in-situ instruments) over a broad range of conditions characteristic for the UT/LS; 2) AV2-B, about which this paper is reporting, is a sequential comparison of selected hygrometers and (when possible) their reference calibration infrastructures by means of a chilled mirror hygrometer traced back to the primary National humidity standard

  2. The oxidation of stainless steels in water vapour-oxygen mixtures. Design and development of an original equipment

    International Nuclear Information System (INIS)

    Uller, Leonardo.

    1981-02-01

    A device including a thermobalance placed in a tight housing has been conceived and built. This apparatus is suitable to submit metallic samples to the action of dry oxygen, deoxygenated water vapour or mixtures of water vapour and oxygen. The first results obtained with this device, at 600 0 C, and for a 18-10 stainless steel are: - in the presence of deoxygenated water vapour, one observes very fast oxidation kinetics, with a roughly parabolic law (K approximately equal to 3x10 -2 mg 2 .cm -4 .h -1 ); - the addition of oxygen from about 10 vpm onwards, induces an important initial slowing down of the kinetics; - the duration of this 'induction' period rises with increasing the oxygen content of the water vapour, but the protection of the alloy due to the action of oxygen remains temporary; - in another way, experiments begun with water vapour, were continued with pure oxygen, and reciprocally. During these 'mixed' experiments, the weight increases were continually recorded. A swift slowing down has been observed in the first case and an important acceleration in the second one [fr

  3. Data on thermal conductivity, water vapour permeability and water absorption of a cementitious mortar containing end-of-waste plastic aggregates

    OpenAIRE

    Di Maio, Luciano; Coppola, Bartolomeo; Courard, Luc; Michel, Frédéric; Incarnato, Loredana; Scarfato, Paola

    2018-01-01

    The data presented in this article are related to the research article entitled “Hygro-thermal and durability properties of a lightweight mortar made with foamed plastic waste aggregates ” (Coppola et al., 2018). This article focuses the attention on thermal conductivity, water vapour permeability and water absorption of a lightweight cementitious mortar containing foamed end-of-waste plastic aggregates, produced via foam extrusion process. Thermal conductivity, water vapour permeability ...

  4. Swelling behaviour of Early Jurassic shales when exposed to water vapour

    Science.gov (United States)

    Houben, Maartje; Barnhoorn, Auke; Peach, Colin; Drury, Martyn

    2017-04-01

    The presence of water in mudrocks has a largely negative impact on production of gas, due to the fact that water causes swelling of the rock. Removing the water from the mudrock on the other hand could potentially shrink the rock and increase the matrix permeability. Investigation of the swelling/shrinkage behaviour of the rock during exposure to water vapour is of key importance in designing and optimizing unconventional production strategies. We have used outcrop samples of the Whitby Mudstone and the Posidonia shale [1], potential unconventional sources for gas in North-western Europe, to measure the swelling and shrinkage behaviour. Subsamples, 1 mm cubes, were prepared by the Glass Workshop at Utrecht University using a high precision digitally controlled diamond wafering saw cooled by air. The mm cubes were then exposed to atmospheres with different relative humidities either in an Environmental Scanning Electron Microscope (ESEM) or in a 3D dilatometer. So that the sample responses to exposure of water vapour could be measured. Parallel to the bedding we found a swelling strain between 0.5 and 1.5 %, perpendicular to the bedding though swelling strain varied between 1 and 3.5%. Volumetric swelling strain varied between 1 and 2% at a maximum relative humidity of 95%. Volumetric swelling strains measured in the Early Toarcian Shales are similar to the ones found in coal [2], where the results suggest that it might be possible to increase permeability in the reservoir by decreasing the in-situ water activity due to shrinkage of the matrix. [1] M.E. Houben, A. Barnhoorn, L. Wasch, J. Trabucho-Alexandre, C. J. Peach, M.R. Drury (2016). Microstructures of Early Jurassic (Toarcian) shales of Northern Europe, International Journal of Coal Geology, 165, 76-89. [2] Jinfeng Liu, Colin J. Peach, Christopher J. Spiers (2016). Anisotropic swelling behaviour of coal matrix cubes exposed to water vapour: Effects of relative humidity and sample size, International Journal of

  5. Intercomparison of in-situ and remote sensing δD signals in tropospheric water vapour

    Science.gov (United States)

    Schneider, Matthias; González, Yenny; Dyroff, Christoph; Christner, Emanuel; García, Omaira; Wiegele, Andreas; Andrey, Javier; Barthlott, Sabine; Blumenstock, Thomas; Guirado, Carmen; Hase, Frank; Ramos, Ramon; Rodríguez, Sergio; Sepúveda, Eliezer

    2014-05-01

    The main mission of the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) is the generation of a quasi-global tropospheric water vapour isototopologue dataset of a good and well-documented quality. We present a first empirical validation of MUSICA's remote sensing δD products (ground-based FTIR within NDACC, Network for the Detection of Atmospheric Composition Change, and space-based with IASI, Infrared Atmospheric Sounding Interferometer, flown on METOP). As reference we use in-situ measurements made on the island of Tenerife at two different altitudes (2370 and 3550 m a.s.l., using two Picarro L2120-i water isotopologue analyzers) and aboard an aircraft (between 200 and 6800 m a.s.l., using the homemade ISOWAT instrument).

  6. REFIR/BB initial observations in the water vapour rotational band: Results from a field campaign

    International Nuclear Information System (INIS)

    Esposito, F.; Grieco, G.; Leone, L.; Restieri, R.; Serio, C.; Bianchini, G.; Palchetti, L.; Pellegrini, M.; Cuomo, V.; Masiello, G.; Pavese, G.

    2007-01-01

    There is a growing interest in the far infrared spectral region 17-50 μm as a remote sensing tool in atmospheric sciences, since this portion of the spectrum contains the characteristic molecular rotational band for water vapour. Much of the Earth energy lost to space is radiated through this spectral region. The Radiation Explorer in the Far InfraRed Breadboard (REFIR/BB) spectrometer was born because of the quest to make observations in the far infrared. REFIR/BB is a Fourier Transform Spectrometer with a sampling resolution of 0.5 cm -1 and it was tested for the first time in the field to check its reliability and radiometric performance. The field campaign was held at Toppo di Castelgrande (40 o 49' N, 15 o 27' E, 1258 m a. s. l.), a mountain site in South Italy. The spectral and radiometric performance of the instrument and initial observations are shown in this paper. Comparisons to both (1) BOMEM MR100 Fourier Transform spectrometer observations and (2) line-by-line radiative transfer calculations for selected clear sky are presented and discussed. These comparisons (1) show a very nice agreement between radiance measured by REFIR/BB and by BOMEM MR100 and (2) demonstrate that REFIR/BB accurately observes the very fine spectral structure in the water vapour rotational band

  7. The effect of coherent stirring on the advection–condensation of water vapour

    Science.gov (United States)

    Vanneste, Jacques

    2017-01-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow. PMID:28690417

  8. The effect of coherent stirring on the advection-condensation of water vapour

    Science.gov (United States)

    Tsang, Yue-Kin; Vanneste, Jacques

    2017-06-01

    Atmospheric water vapour is an essential ingredient of weather and climate. The key features of its distribution can be represented by kinematic models which treat it as a passive scalar advected by a prescribed flow and reacting through condensation. Condensation acts as a sink that maintains specific humidity below a prescribed, space-dependent saturation value. To investigate how the interplay between large-scale advection, small-scale turbulence and condensation controls moisture distribution, we develop simple kinematic models which combine a single circulating flow with a Brownian-motion representation of turbulence. We first study the drying mechanism of a water-vapour anomaly released inside a vortex at an initial time. Next, we consider a cellular flow with a moisture source at a boundary. The statistically steady state attained shows features reminiscent of the Hadley cell such as boundary layers, a region of intense precipitation and a relative humidity minimum. Explicit results provide a detailed characterization of these features in the limit of strong flow.

  9. Intercomparison of radiative forcing calculations of stratospheric water vapour and contrails

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, Gunnar [Dept. of Geosciences, Univ. of Oslo (Norway); Center for International Climate and Environmental Research-Oslo (CICERO), Oslo (Norway); Kvalevaag, Maria [Dept. of Geosciences, Univ. of Oslo (Norway); Raedel, Gaby; Cook, Jolene; Shine, Keith P. [Dept. of Meteorology, Univ. of Reading (United Kingdom); Clark, Hannah [CNRM/GAME Meteo France, Toulouse (France); Lab. d' Aerologie, Univ. de Toulouse (France); Karcher, Fernand [CNRM/GAME Meteo France, Toulouse (France); Markowicz, Krzysztof; Kardas, Aleksandra; Wolkenberg, Paulina [Inst. of Geophysics, Univ. of Warsaw (Poland); Balkanski, Yves [LSCE/IPSL, Lab. CEA-CNRS-UVSQ (France); Ponater, Michael [Deutsches Zentrum fuer Luft und Raumfahrt (DLR), Inst. fuer Physik der Atmosphaere, Oberpfaffenhofen (Germany); Forster, Piers; Rap, Alexandru [School of Earth and Environment, Univ. of Leeds (United Kingdom); Leon, Ruben Rodriguez de [Manchester Metropolitan Univ. (United Kingdom)

    2009-12-15

    Seven groups have participated in an intercomparison study of calculations of radiative forcing (RF) due to stratospheric water vapour (SWV) and contrails. a combination of detailed radiative transfer schemes and codes for global-scale calculations have been used, as well as a combination of idealized simulations and more realistic global-scale changes in stratospheric water vapour and contrails. Detailed line-by-line codes agree within about 15% for longwave (LW) and shortwave (SW) RF, except in one case where the difference is 30%. Since the LW and SW RF due to contrails and SWV changes are of opposite sign, the differences between the models seen in the individual LW and SW components can be either compensated or strengthened in the net RF. and thus in relative terms uncertainties are much larger for the net RF. Some of the models used for global-scale simulations of changes in SWV and contrails differ substantially in RF from the more detailed radiative transfer schemes. For the global-scale calculations we use a method of weighting the results to calculate a best estimate based on their performance compared to the more detailed radiative transfer schemes in the idealized simulations. (orig.)

  10. Analysis of the sorption properties of different soils using water vapour adsorption and potentiometric titration methods

    Science.gov (United States)

    Skic, Kamil; Boguta, Patrycja; Sokołowska, Zofia

    2016-07-01

    Parameters of specific surface area as well as surface charge were used to determine and compare sorption properties of soils with different physicochemical characteristics. The gravimetric method was used to obtain water vapour isotherms and then specific surface areas, whereas surface charge was estimated from potentiometric titration curves. The specific surface area varied from 12.55 to 132.69 m2 g-1 for Haplic Cambisol and Mollic Gleysol soil, respectively, and generally decreased with pH (R=0.835; α = 0.05) and when bulk density (R=-0.736; α = 0.05) as well as ash content (R=-0.751; α = 0.05) increased. In the case of surface charge, the values ranged from 63.00 to 844.67 μmol g-1 Haplic Fluvisol and Mollic Gleysol, respecively. Organic matter gave significant contributions to the specific surface area and cation exchange capacity due to the large surface area and numerous surface functional groups, containing adsorption sites for water vapour molecules and for ions. The values of cation exchange capacity and specific surface area correlated linearly at the level of R=0.985; α = 0.05.

  11. High mean water vapour pressure promotes the transmission of bacillary dysentery.

    Directory of Open Access Journals (Sweden)

    Guo-Zheng Li

    Full Text Available Bacillary dysentery is an infectious disease caused by Shigella dysenteriae, which has a seasonal distribution. External environmental factors, including climate, play a significant role in its transmission. This paper identifies climate-related risk factors and their role in bacillary dysentery transmission. Harbin, in northeast China, with a temperate climate, and Quzhou, in southern China, with a subtropical climate, are chosen as the study locations. The least absolute shrinkage and selectionator operator is applied to select relevant climate factors involved in the transmission of bacillary dysentery. Based on the selected relevant climate factors and incidence rates, an AutoRegressive Integrated Moving Average (ARIMA model is established successfully as a time series prediction model. The numerical results demonstrate that the mean water vapour pressure over the previous month results in a high relative risk for bacillary dysentery transmission in both cities, and the ARIMA model can successfully perform such a prediction. These results provide better explanations for the relationship between climate factors and bacillary dysentery transmission than those put forth in other studies that use only correlation coefficients or fitting models. The findings in this paper demonstrate that the mean water vapour pressure over the previous month is an important predictor for the transmission of bacillary dysentery.

  12. Water vapour source impacts on oxygen isotope variability in tropical precipitation during Heinrich events

    Directory of Open Access Journals (Sweden)

    S. C. Lewis

    2010-06-01

    Full Text Available Water isotope records such as speleothems provide extensive evidence of past tropical hydrological changes. During Heinrich events, isotopic changes in monsoon regions have been interpreted as implying a widespread drying through the Northern Hemisphere tropics and an anti-phased precipitation response in the south. Here, we examine the sources of this variability using a water isotope-enabled general circulation model, Goddard Institute for Space Studies ModelE. We incorporate a new suite of vapour source distribution tracers to help constrain the impact of precipitation source region changes on the isotopic composition of precipitation and to identify nonlocal amount effects. We simulate a collapse of the North Atlantic meridional overturning circulation with a large freshwater input to the region as an idealised analogue to iceberg discharge during Heinrich events. An increase in monsoon intensity, defined by vertical wind shear, is modelled over the South American domain, with small decreases simulated over Asia. Simulated isotopic anomalies agree well with proxy climate records, with lighter isotopic values simulated over South America and enriched values across East Asia. For this particular abrupt climate event, we identify which climatic change is most likely linked to water isotope change – changes in local precipitation amount, monsoon intensity, water vapour source distributions or precipitation seasonality. We categorise individual sites according to the climate variability that water isotope changes are most closely associated with, and find that the dominant isotopic controls are not consistent across the tropics – simple local explanations, in particular, fall short of explaining water isotope variability at all sites. Instead, the best interpretations appear to be site specific and often regional in scale.

  13. Vapour pressures, densities, and viscosities of the (water + lithium bromide + potassium acetate) system and (water + lithium bromide + sodium lactate) system

    International Nuclear Information System (INIS)

    Lucas, Antonio de; Donate, Marina; Rodriguez, Juan F.

    2006-01-01

    Measurements of thermophysical properties (vapour pressure, density, and viscosity) of the (water + lithium bromide + potassium acetate) system LiBr:CH 3 COOK = 2:1 by mass ratio and the (water + lithium bromide + sodium lactate) system LiBr:CH 3 CH(OH)COONa = 2:1 by mass ratio were measured. The system, a possible new working fluid for absorption heat pump, consists of absorbent (LiBr + CH 3 COOK) or (LiBr + CH 3 CH(OH)COONa) and refrigerant H 2 O. The vapour pressures were measured in the ranges of temperature and absorbent concentration from T = (293.15 to 333.15) K and from mass fraction 0.20 to 0.50, densities and viscosities were measured from T = (293.15 to 323.15) K and from mass fraction 0.20 to 0.40. The experimental data were correlated with an Antoine-type equation. Densities and viscosities were measured in the same range of temperature and absorbent concentration as that of the vapour pressure. Regression equations for densities and viscosities were obtained with a minimum mean square error criterion

  14. Strong low-pass filtering effects on water vapour flux measurements with closed-path eddy correlation systems

    DEFF Research Database (Denmark)

    Ibrom, Andreas; Dellwik, Ebba; Flyvbjerg, Henrik K.

    2007-01-01

    datasets for this substantial measurement error. In contrast to earlier studies, a large number of spectra and raw data have been used in the analysis to define the low-pass filtering characteristic of the EC system. This revealed that the cut-off frequency of the closed-path EC system for water vapour......Turbulent water vapour fluxes measured with closed-path eddy correlation (EC) systems are unintentionally low-pass filtered by the system in a manner that varies with environmental conditions. Why and how is described here. So is the practical method that systematically corrects long-term flux...... concentration measurements decreases exponentially with increasing relative humidity. After correction for this unintended filtering, the fluxes are consistent with CO2 and H2O fluxes that were measured with an open-path sensor at the same time. The correction of water vapour flux measurements over a Beech...

  15. Global distributions of water vapour isotopologues retrieved from IMG/ADEOS data

    Directory of Open Access Journals (Sweden)

    H. Herbin

    2007-07-01

    Full Text Available The isotopologic composition of water vapour in the atmosphere provides valuable information on many climate, chemical and dynamical processes. The accurate measurements of the water isotopologues by remote-sensing techniques remains a challenge, due to the large spatial and temporal variations. Simultaneous profile retrievals of the main water isotopologues (i.e. H216O, H218O and HDO and their ratios are presented here for the first time, along their retrieved global distributions. The results are obtained by exploiting the high resolution infrared spectra recorded by the Interferometric Monitor for Greenhouse gases (IMG instrument, which has operated in the nadir geometry onboard the ADEOS satellite between 1996 and 1997. The retrievals are performed on cloud-free radiances, measured during ten days of April 1997, considering two atmospheric windows (1205–1228 cm−1; 2004–2032 cm−1 and using a line-by-line radiative transfer model and an inversion procedure based on the Optimal Estimation Method (OEM. Characterizations in terms of vertical sensitivity and error budget are provided. We show that a relatively high vertical resolution is achieved for H216O (~4–5 km, and that the retrieved profiles are in fair agreement with local sonde measurements, at different latitudes. The retrieved global distributions of H216O, H218O, HDO and their ratios are presented and found to be consistent with previous experimental studies and models. The Ocean-Continent difference, the latitudinal and vertical dependence of the water vapour amount and the isotopologic depletion are notably well reproduced. Others trends, possibly related to small-scale variations in the vertical profiles are also discussed. Despite the difficulties encountered for computing accurately the isotopologic ratios, our results demonstrate the ability

  16. Evolution of stratospheric ozone and water vapour time series studied with satellite measurements

    Directory of Open Access Journals (Sweden)

    A. Jones

    2009-08-01

    Full Text Available The long term evolution of stratospheric ozone and water vapour has been investigated by extending satellite time series to April 2008. For ozone, we examine monthly average ozone values from various satellite data sets for nine latitude and altitude bins covering 60° S to 60° N and 20–45 km and covering the time period of 1979–2008. Data are from the Stratospheric Aerosol and Gas Experiment (SAGE I+II, the HALogen Occultation Experiment (HALOE, the Solar BackscatterUltraViolet-2 (SBUV/2 instrument, the Sub-Millimetre Radiometer (SMR, the Optical Spectrograph InfraRed Imager System (OSIRIS, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartograpY (SCIAMACHY. Monthly ozone anomalies are calculated by utilising a linear regression model, which also models the solar, quasi-biennial oscillation (QBO, and seasonal cycle contributions. Individual instrument ozone anomalies are combined producing an all instrument average. Assuming a turning point of 1997 and that the all instrument average is represented by good instrumental long term stability, the largest statistically significant ozone declines (at two sigma from 1979–1997 are seen at the mid-latitudes between 35 and 45 km, namely −7.2%±0.9%/decade in the Northern Hemisphere and −7.1%±0.9%/in the Southern Hemisphere. Furthermore, for the period 1997 to 2008 we find that the same locations show the largest ozone recovery (+1.4% and +0.8%/decade respectively compared to other global regions, although the estimated trend model errors indicate that the trend estimates are not significantly different from a zero trend at the 2 sigma level. An all instrument average is also constructed from water vapour anomalies during 1991–2008, using the SAGE II, HALOE, SMR, and the Microwave Limb Sounder (Aura/MLS measurements. We report that the decrease in water vapour values after 2001 slows down around 2004–2005 in the lower tropical stratosphere (20–25 km and has even

  17. Near-infrared water vapour self-continuum at close to room temperature

    International Nuclear Information System (INIS)

    Ptashnik, I.V.; Petrova, T.M.; Ponomarev, Yu.N.; Shine, K.P.; Solodov, A.A.; Solodov, A.M.

    2013-01-01

    The gaseous absorption of solar radiation within near-infrared atmospheric windows in the Earth's atmosphere is dominated by the water vapour continuum. Recent measurements by Baranov et al. (2011) [17] in 2500 cm −1 (4 μm) window and by Ptashnik et al. (2011) [18] in a few near-infrared windows revealed that the self-continuum absorption is typically an order of magnitude stronger than given by the MT C KD continuum model prior to version 2.5. Most of these measurements, however, were made at elevated temperatures, which makes their application to atmospheric conditions difficult. Here we report new laboratory measurements of the self-continuum absorption at 289 and 318 K in the near-infrared spectral region 1300–8000 cm −1 , using a multipass 30 m base cell with total optical path 612 m. Our results confirm the main conclusions of the previous measurements both within bands and in windows. Of particular note is that we present what we believe to be the first near-room temperature measurement using Fourier Transform Spectrometry of the self-continuum in the 6200 cm −1 (1.6 μm) window, which provides tentative evidence that, at such temperatures, the water vapour continuum absorption may be as strong as it is in 2.1 μm and 4 μm windows and up to 2 orders of magnitude stronger than the MT C KD-2.5 continuum. We note that alternative methods of measuring the continuum in this window have yielded widely differing assessment of its strength, which emphasises the need for further measurements. -- Highlights: ► New lab measurements of the near-infrared water vapour self-continuum absorption. ► First room-temperature data on the self-continuum in the 1.6 μm window. ► In the 1.6 μm window the new data exceed MT C KD-2.5 model by 2 orders of magnitude

  18. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour

    International Nuclear Information System (INIS)

    Scott, T.B.; Petherbridge, J.R.; Harker, N.J.; Ball, R.J.; Heard, P.J.; Glascott, J.; Allen, G.C.

    2011-01-01

    Highlights: → High resolution imagery (FIB, SEM and SIMS) of carbide inclusions in uranium metal. → Real time images following the reaction of the carbide inclusions with water vapour. → Shown preferential consumption of carbide over that of the bulk metal. → Quantity of impurities in the metal therefore seriously influence reaction rate. → Metal purity must be considered when storing uranium in air or moist conditions. - Abstract: The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO 3 .xH 2 O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets.

  19. Diffuse axonal injury: detection of changes in anisotropy of water diffusion by diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Chan, J.H.M.; Tsui, E.Y.K.; Yuen, M.K.; Peh, W.C.G.; Fong, D.; Fok, K.F.; Leung, K.M.; Fung, K.K.L.

    2003-01-01

    Myelinated axons of white matter demonstrate prominent directional differences in water diffusion. We performed diffusion-weighted imaging on ten patients with head injury to explore the feasibility of using water diffusion anisotropy for quantitating diffuse axonal injury. We showed significant decrease in diffusion anisotropy indices in areas with or without signal abnormality on T2 and T2*-weighted images. We conclude that the water diffusion anisotropy index a potentially useful, sensitive and quantitative way of diagnosing and assessing patients with diffuse axonal injury. (orig.)

  20. Validation for a new apparatus measuring water vapour enhancement factors up to 6 MPa

    International Nuclear Information System (INIS)

    Sairanen, H; Heinonen, M

    2014-01-01

    High accuracy dew-point measurements require a water vapour enhancement factor to correct the effects of pressure drop in a sampling line. The enhancement factor is also needed when a humidity quantity value is converted to another. In this paper a new apparatus for traceable measurements of the enhancement factor is presented along with the results of validation measurements with air and methane. The apparatus is designed for dew-point temperatures from −50 to +15 °C and the pressure range from atmospheric pressure up to 6 MPa. The performance of the apparatus was investigated by comparing measurement results to the literature data for air and the data calculated from published thermodynamic measurement results for methane. It is shown that the experimental results agree with the reference data within the estimated uncertainties. (paper)

  1. The drift velocity of electrons in water vapour at low values of E/N

    International Nuclear Information System (INIS)

    Cheung, B.; Elford, M.T.

    1990-01-01

    The drift velocity of electrons in water vapour at 294 K has been measured over the E/N range 1.4 to 40 Td with an error estimated to be 35 Td. The present data show that μN decreases monotonically with decreasing E/N at low E/N values as observed by Wilson et al. (1975) and does not become independent of E/N as indicated by Lowke and Rees (1963). The present values although lower than those of Lowke and Rees, lie within the combined error limits, except for values below 2 Td. The present data suggested that the momentum transfer cross section at low energies is approximately 10% larger than that obtained by Pack et al. (1962) from their drift velocity measurements. 13 refs., 2 tabs., 5 figs

  2. The assessment of water vapour and carbon dioxide fluxes above arable crops - a comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, S.; Daemmgen, U.; Burkart, S. [Federal Agricultural Research Centre, Inst. of Agroecology, Braunschweig (Germany); Gruenhage, L. [Justus-Liebig-Univ., Inst. for Plant Ecology, Giessen (Germany)

    2005-04-01

    Vertical fluxes of water vapour and carbon dioxide obtained from gradient, eddy covariance (closed and open path systems) and chamber measurements above arable crops were compared with the directly measured energy balance and the harvested net biomass carbon. The gradient and chamber measurements were in the correct order of magnitude, whereas the closed path eddy covariance system showed unacceptably small fluxes. Correction methods based on power spectra analysis yielded increased fluxes. However, the energy balance could not be closed satisfactorily. The application of the open path system proved to be successful. The SVAT model PLATIN which had been adapted to various arable crops was able to depict the components of the energy balance adequately. Net carbon fluxes determined with the corrected closed path data sets, chamber, and SVAT model equal those of the harvested carbon. (orig.)

  3. PFS/Mars Express first results: water vapour and carbon monoxide global distribution

    Science.gov (United States)

    Ignatiev, N. I.; Titov, D. V.; Formisano, V.; Moroz, V. I.; Lellouch, E.; Encrenaz, Th.; Fouchet, T.; Grassi, D.; Giuranna, M.; Atreya, S.; Pfs Team

    Planetary Fourier Spectrometer onboard Mars Express, with its wide spectral range (1.2--45 um) and high spectral resolution (1.4 cm-1), makes it possible to study in a self-consistent manner the Martian atmosphere by means of simultaneous analysis of spectral features in several spectral regions. As concerned small species, we observe 30--50, 6.3, 2.56, 1.87 and 1.38 μ m H2O bands, and 4.7 and 2.35 μ m CO bands. The most favourable, with respect to the instrument performance, 2.56 μ m H2O and 4.7 μ m CO bands, are used to study the variations of column abundance of water vapour and carbon monoxide on a global scale from pole to pole. All necessary atmospheric parameters, namely temperature profiles, surface pressure, and dust density are obtained from the same spectra, whenever possible.

  4. Enhanced MODIS Atmospheric Total Water Vapour Content Trends in Response to Arctic Amplification

    Directory of Open Access Journals (Sweden)

    Dunya Alraddawi

    2017-12-01

    Full Text Available In order to assess the strength of the water vapour feedback within Arctic climate change, 15 years of the total column-integrated density of water vapour (TCWV from the moderate resolution imaging spectrometer (MODIS are analysed. Arctic TCWV distribution, trends, and anomalies for the 2001–2015 period, broken down into seasons and months, are analysed. Enhanced local spring TCWV trends above the terrestrial Arctic regions are discussed in relation to land snow cover and vegetation changes. Upward TCWV trends above the oceanic areas are discussed in lien with sea ice extent and sea surface temperature changes. Increased winter TCWV (up to 40% south of the Svalbard archipelago are observed; these trends are probably driven by a local warming and sea ice extent decline. Similarly, the Barents/Kara regions underwent wet trends (up to 40%, also associated with winter/fall local sea ice loss. Positive late summer TCWV trends above the western Greenland and Beaufort seas (about 20% result from enhanced upper ocean warming and thereby a local coastal decline in ice extent. The Mackenzie and Siberia enhanced TCWV trends (about 25% during spring are found to be associated with coincident decreased snow cover and increased vegetation, as a result of the earlier melt onset. Results show drier summers in the Eurasia and western Alaska regions, thought to be affected by changes in albedo from changing vegetation. Other TCWV anomalies are also presented and discussed in relation to the dramatic decline in sea ice extent and the exceptional rise in sea surface temperature.

  5. Influence of water vapour and permanent gases on the atmospheric optical depths and transmittance

    Science.gov (United States)

    Badescu, V.

    1991-05-01

    The influence of the atmospheric state on the extinction of direct solar radiation has been studied by using a four layer atmospheric model. Simple analytical formulae are established for the spectral optical depths of permanent gases and water vapour. These formulae use the ground level values of air pressure, temperature and relative huniidity. An additional parameter, related to the vertical distribution of the hunmidity content, is used for a better estimation of the water vapour optical depth. Good agreement between theory and measurements is found. The paper shows the dependence of the atmospheric spectral transmittance on the above mentioned parameters. L'influence de l'état atmosphérique sur l'extinction de la radiation solaire directe a été étudiée à l'aide d'un modèle atmosphérique développé antérieurement par l'auteur. Des formules simples ont été établies pour l'épaisseur optique spectrale des gaz et de la vapeur d'eau. Ces formules utilisent les valeurs de la pression atmosphérique, de la température et de l'humidité relative, mesurées au niveau du sol. Un paramètre supplémentaire, lié à la distribution verticale du contenu d'humidité, est utilisé pour calculer l'épaisseur optique due à la vapeur d'eau. La théorie est en bon accord avec les résultats des mesures. Le travail montre la dépendance de la transmittance atmosphérique spectrale en fonction des paramètres spécifiés ci-dessus.

  6. Soil-water characteristics of Gaomiaozi bentonite by vapour equilibrium technique

    Directory of Open Access Journals (Sweden)

    Wenjing Sun

    2014-02-01

    Full Text Available Soil-water characteristics of Gaomiaozi (GMZ Ca-bentonite at high suctions (3–287 MPa are measured by vapour equilibrium technique. The soil-water retention curve (SWRC of samples with the same initial compaction states is obtained in drying and wetting process. At high suctions, the hysteresis behaviour is not obvious in relationship between water content and suction, while the opposite holds between degree of saturation and suction. The suction variation can change its water retention behaviour and void ratio. Moreover, changes of void ratio can bring about changes in degree of saturation. Therefore, the total change in degree of saturation includes changes caused by suction and that by void ratio. In the space of degree of saturation and suction, the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio. However, the relationship between water content and suction is less affected by changes of void ratio. The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction. Moreover, the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale. From this linear relationship, the variation of degree of saturation caused by the change in void ratio can be obtained. Correspondingly, SWRC at a constant void ratio can be determined from SWRC at different void ratios.

  7. Vapour explosions (fuel-coolant interactions) resulting from the sub-surface injection of water into molten metals: preliminary results

    International Nuclear Information System (INIS)

    Asher, R.C.; Bullen, D.; Davies, D.

    1976-03-01

    Preliminary experiments are reported on the relationship between the injection mode of contact and the occurrence and magnitude of vapour explosions. Water was injected beneath the surface of molten metals, chiefly tin at 250 to 900 0 C. Vapour explosions occurred in many, but not all, cases. The results are compared with Dullforce's observations (Culham Report (CLM-P424) on the dropping mode of contact and it appears that rather different behaviour is found; in particular, the present results suggest that the Temperature Interaction Zone is different for the two modes of contact. (author)

  8. Application of cylinder symmetry to iron and titanium oxidation by oxygen or hydrogen-water vapour mixes

    International Nuclear Information System (INIS)

    Raynaud, Pierre

    1980-01-01

    This research thesis addresses the study of the oxidation reaction in the case of corrosion of iron by oxygen, hydrogen sulphide or hydrogen-water vapour mixes, and in the case of oxidation of titanium and of titanium nitride by hydrogen-water vapour mixes. It first addresses the corrosion of iron by oxygen with an experiment performed in cylinder symmetry: description of operational conditions, discussion of kinetic curves, development of a law of generation of multiple layers in cylinder symmetry, analytical exploitation of experimental results. The second part addresses the oxidation of iron by hydrogen-water vapour mixes: experimental conditions, influence of temperature on kinetics, micrographic study (oxide morphology, coating morphology, interpretation of differences with the case of plane symmetry), discussion of the influence of cylinder symmetry on oxidation kinetics. The third part addresses the oxidation of titanium by hydrogen-water vapour mixes: global kinetic evolution, reaction products and micrographic examination, morphology and texture studies, discussion of the oxidation mechanism and of cylinder symmetry [fr

  9. Investigating the Interaction of Water Vapour with Aminopropyl Groups on the Surface of Mesoporous Silica Nanoparticles.

    Science.gov (United States)

    Paul, Geo; Musso, Giorgia Elena; Bottinelli, Emanuela; Cossi, Maurizio; Marchese, Leonardo; Berlier, Gloria

    2017-04-05

    The interaction of water molecules with the surface of hybrid silica-based mesoporous materials is studied by 29 Si, 1 H and 13 C solid-state NMR and IR spectroscopy, with the support of ab initio calculations. The surface of aminopropyl-grafted mesoporous silica nanoparticles is studied in the dehydrated state and upon interaction with controlled doses of water vapour. Former investigations described the interactions between aminopropyl and residual SiOH groups; the present study shows the presence of hydrogen-bonded species (SiOH to NH 2 ) and weakly interacting "free" aminopropyl chains with restricted mobility, together with a small amount of protonated NH 3 + groups. The concentration of the last-named species increased upon interaction with water, and this indicates reversible and fast proton exchange from water molecules to a fraction of the amino groups. Herein, this is discussed and explained for the first time, by a combination of experimental and theoretical approaches. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw

    2017-05-18

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  11. Experimental Investigation of a Mechanical Vapour Compression Chiller at Elevated Chilled Water Temperatures

    KAUST Repository

    Thu, Kyaw; Saththasivam, Jayaprakash; Saha, Bidyut Baran; Chua, Kian Jon; Srinivasa Murthy, S.; Ng, Kim Choon

    2017-01-01

    The performance of a Mechanical Vapour Compression (MVC) chiller is experimentally investigated under operating conditions suitable for sensible cooling. With the emergence of the energy efficient dehumidification systems, it is possible to decouple the latent load from the MVC chillers which can be operated at higher chilled water temperature for handling sensible cooling load. In this article, the performance of the chiller is evaluated at the elevated chilled water outlet temperatures (7 – 17° C) at various coolant temperatures (28 – 32° C) and flow rates (ΔT = 4 and 5° C) for both full- and part-load conditions. Keeping the performance at the AHRI standard as the baseline condition, the efficacy of the chiller in terms of compression ratio, cooling capacity and COP at aforementioned conditions is quantified experimentally. It is observed that for each one-degree Celsius increase in the chilled water temperature, the COP of the chiller improves by about 3.5% whilst the cooling capacity improvement is about 4%. For operation at 17° C chilled water outlet temperature, the improvements in COP and cooling capacity are between 37 – 40% and 40 – 45%, respectively, compared to the performance at the AHRI standards. The performance of the MVC chiller at the abovementioned operation conditions is mapped on the chiller performance characteristic chart.

  12. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China

    Science.gov (United States)

    Du, Chaoyang; Yu, Jingjie; Wang, Ping; Zhang, Yichi

    2018-03-01

    The transport of water and vapour in the desert vadose zone plays a critical role in the overall water and energy balances of near-surface environments in arid regions. However, field measurements in extremely dry environments face many difficulties and challenges, so few studies have examined water and vapour transport processes in the desert vadose zone. The main objective of this study is to analyse the mechanisms of soil water and vapour transport in the desert vadose zone (depth of ∼350 cm) by using measured and modelled data in an extremely arid environment. The field experiments are implemented in an area of the Gobi desert in northwestern China to measure the soil properties, daily soil moisture and temperature, daily water-table depth and temperature, and daily meteorological records from DOYs (Days of Year) 114-212 in 2014 (growing season). The Hydrus-1D model, which simulates the coupled transport of water, vapour and heat in the vadose zone, is employed to simulate the layered soil moisture and temperature regimes and analyse the transport processes of soil water and vapour. The measured results show that the soil water and temperatures near the land surface have visible daily fluctuations across the entire soil profile. Thermal vapour movement is the most important component of the total water flux and the soil temperature gradient is the major driving factor that affects vapour transport in the desert vadose zone. The most active water and heat exchange occurs in the upper soil layer (depths of 0-25 cm). The matric potential change from the precipitation mainly re-draws the spatio-temporal distribution of the isothermal liquid water in the soil near the land surface. The matric potential has little effect on the isothermal vapour and thermal liquid water flux. These findings offer new insights into the liquid water and vapour movement processes in the extremely arid environment.

  13. Prediction and validation of diffusion coefficients in a model drug delivery system using microsecond atomistic molecular dynamics simulation and vapour sorption analysis.

    Science.gov (United States)

    Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A

    2014-10-14

    Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.

  14. Daily variations of delta 18O and delta D in daily samplings of air water vapour and rain water in the Amazon Basin

    International Nuclear Information System (INIS)

    Matsui, E.; Salati, E.; Ribeiro, M.N.G.; Tancredi, A.C.F.N.S.; Reis, C.M. dos

    1984-01-01

    The movement of rain water in the soil from 0 to 120 cm depth using delta 18 O weekly variations is studied. A study of the delta D variability in water vapour and rain water samples during precipitation was also done, the samples being collected a 3 minute intervals from the beginning to the end of precipitation. (M.A.C.) [pt

  15. Response of water vapour D-excess to land-atmosphere interactions in a semi-arid environment

    KAUST Repository

    Parkes, Stephen

    2016-06-30

    The stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the Dexcess in water vapour (dv). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (dET) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime dv values. The low dET observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime dv and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime dv variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of dv values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate dET can generally be expected to show

  16. The vapour pressure of water as a function of solute concentration above aqueous solutions of fructose, sucrose, raffinose, erythritol, xylitol, and sorbitol

    DEFF Research Database (Denmark)

    Cooke, S.A.; Jonsdottir, Svava Osk; Westh, Peter

    2002-01-01

    The vapour pressure of water above an aqueous solution of sucrose at T = 298.06 K has been measured for 9 sucrose mole fractions up to 0.12. Vapour pressure measurements have also been made on aqueous solutions of meso-erythritol, xylitol, sorbitol, fructose, and raffinose at T = 317.99 K...

  17. Sodium removal from CSRDM lower part by water vapour - CO2 process

    International Nuclear Information System (INIS)

    Sundar Raj, S.I.; Sreedhar, B.K.; Gurumoorthy, K.; Rajan, K.K.; Kalyanasundaram, P.; Rajan, M.; Vaidyanathan, G.

    2006-01-01

    Sodium is the primary and secondary coolant in fast reactors. Primary and secondary circuits components like Control and Safety Rod Drive Mechanism (CSRDM), pumps, heat exchangers etc. handle liquid sodium. Sodium has good affinity to oxygen and reacts vigorously with water. Hence sodium cleaning is the first and important activity in the maintenance of the components. In reactor components this cleaning process also helps in removing a major part of radioactive contaminants after which they are subjected to chemical decontamination. There are several methods available for removing sodium from components. Out of these, the water vapour-CO 2 process is selected for large components such as pumps, heat exchangers etc. while steam cleaning is used for the core sub assemblies. The cleaning processes are to be closely monitored to ensure safety because the release of hydrogen is to be kept below 4 % during the process. This paper discusses the in house facility and the experience in the successful use of the process in the cleaning of CSRDM. (author)

  18. Liquid and vapour water transfer through whey protein/lipid emulsion films.

    Science.gov (United States)

    Kokoszka, Sabina; Debeaufort, Frederic; Lenart, Andrzej; Voilley, Andree

    2010-08-15

    Edible films and coatings based on protein/lipid combinations are among the new products being developed in order to reduce the use of plastic packaging polymers for food applications. This study was conducted to determine the effect of rapeseed oil on selected physicochemical properties of cast whey protein films. Films were cast from heated (80 degrees C for 30 min) aqueous solutions of whey protein isolate (WPI, 100 g kg(-1) of water) containing glycerol (50 g kg(-1) of WPI) as a plasticiser and different levels of added rapeseed oil (0, 1, 2, 3 and 4% w/w of WPI). Measurements of film microstructure, laser light-scattering granulometry, differential scanning calorimetry, wetting properties and water vapour permeability (WVP) were made. The emulsion structure in the film suspension changed significantly during drying, with oil creaming and coalescence occurring. Increasing oil concentration led to a 2.5-fold increase in surface hydrophobicity and decreases in WVP and denaturation temperature (T(max)). Film structure and surface properties explain the moisture absorption and film swelling as a function of moisture level and time and consequently the WVP behaviour. Small amounts of rapeseed oil favourably affect the WVP of WPI films, particularly at higher humidities. Copyright (c) 2010 Society of Chemical Industry.

  19. Comparison of total water vapour content in the Arctic derived from GNSS, AIRS, MODIS and SCIAMACHY

    Science.gov (United States)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Noël, Stefan; Bekki, Slimane; Irbah, Abdenour; Meftah, Mustapha; Claud, Chantal

    2018-05-01

    Atmospheric water vapour plays a key role in the Arctic radiation budget, hydrological cycle and hence climate, but its measurement with high accuracy remains an important challenge. Total column water vapour (TCWV) datasets derived from ground-based GNSS measurements are used to assess the quality of different existing satellite TCWV datasets, namely from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Atmospheric Infrared Sounder (AIRS) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The comparisons between GNSS and satellite data are carried out for three reference Arctic observation sites (Sodankylä, Ny-Ålesund and Thule) where long homogeneous GNSS time series of more than a decade (2001-2014) are available. We select hourly GNSS data that are coincident with overpasses of the different satellites over the three sites and then average them into monthly means that are compared with monthly mean satellite products for different seasons. The agreement between GNSS and satellite time series is generally within 5 % at all sites for most conditions. The weakest correlations are found during summer. Among all the satellite data, AIRS shows the best agreement with GNSS time series, though AIRS TCWV is often slightly too high in drier atmospheres (i.e. high-latitude stations during autumn and winter). SCIAMACHY TCWV data are generally drier than GNSS measurements at all the stations during the summer. This study suggests that these biases are associated with cloud cover, especially at Ny-Ålesund and Thule. The dry biases of MODIS and SCIAMACHY observations are most pronounced at Sodankylä during the snow season (from October to March). Regarding SCIAMACHY, this bias is possibly linked to the fact that the SCIAMACHY TCWV retrieval does not take accurately into account the variations in surface albedo, notably in the presence of snow with a nearby canopy as in Sodankylä. The MODIS bias at Sodankylä is found

  20. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G.C.; Tucker, P.M.; Lewis, R.A. (Central Electricity Generating Board, Berkeley (UK). Berkeley Nuclear Labs.)

    1984-08-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH/sup -/ is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface.

  1. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    International Nuclear Information System (INIS)

    Allen, G.C.; Tucker, P.M.; Lewis, R.A.

    1984-01-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH - is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface. (author)

  2. The oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour.

    Science.gov (United States)

    Scott, T B; Petherbridge, J R; Harker, N J; Ball, R J; Heard, P J; Glascott, J; Allen, G C

    2011-11-15

    The reaction between uranium and water vapour has been well investigated, however discrepancies exist between the described kinetic laws, pressure dependence of the reaction rate constant and activation energies. Here this problem is looked at by examining the influence of impurities in the form of carbide inclusions on the reaction. Samples of uranium containing 600 ppm carbon were analysed during and after exposure to water vapour at 19 mbar pressure, in an environmental scanning electron microscope (ESEM) system. After water exposure, samples were analysed using secondary ion mass spectrometry (SIMS), focused ion beam (FIB) imaging and sectioning and transmission electron microscopy (TEM) with X-ray diffraction (micro-XRD). The results of the current study indicate that carbide particles on the surface of uranium readily react with water vapour to form voluminous UO(3) · xH(2)O growths at rates significantly faster than that of the metal. The observation may also have implications for previous experimental studies of uranium-water interactions, where the presence of differing levels of undetected carbide may partly account for the discrepancies observed between datasets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  3. Validation of near infrared satellite based algorithms to relative atmospheric water vapour content over land

    International Nuclear Information System (INIS)

    Serpolla, A.; Bonafoni, S.; Basili, P.; Biondi, R.; Arino, O.

    2009-01-01

    This paper presents the validation results of ENVISAT MERIS and TERRA MODIS retrieval algorithms for atmospheric Water Vapour Content (WVC) estimation in clear sky condition on land. The MERIS algorithms exploits the radiance ratio of the absorbing channel at 900 nm with the almost absorption-free reference at 890 nm, while the MODIS one is based on the ratio of measurements centred at near 0.905, 0.936, and 0.94 μm with atmospheric window reflectance at 0.865 and 1.24 μm. The first test was performed in the Mediterranean area using WVC provided from both ECMWF and AERONET. As a second step, the performances of the algorithms were tested exploiting WVC computed from radio sounding (RAOBs)in the North East Australia. The different comparisons with respect to reference WVC values showed an overestimation of WVC by MODIS (root mean square error percentage greater than 20%) and an acceptable performance of MERIS algorithms (root mean square error percentage around 10%) [it

  4. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour.

    Science.gov (United States)

    Nagai, Masatsugu; Nakanishi, Kazuhiro; Takahashi, Hiraku; Kato, Hiromitsu; Makino, Toshiharu; Yamasaki, Satoshi; Matsumoto, Tsubasa; Inokuma, Takao; Tokuda, Norio

    2018-04-27

    Diamond possesses excellent physical and electronic properties, and thus various applications that use diamond are under development. Additionally, the control of diamond geometry by etching technique is essential for such applications. However, conventional wet processes used for etching other materials are ineffective for diamond. Moreover, plasma processes currently employed for diamond etching are not selective, and plasma-induced damage to diamond deteriorates the device-performances. Here, we report a non-plasma etching process for single crystal diamond using thermochemical reaction between Ni and diamond in high-temperature water vapour. Diamond under Ni films was selectively etched, with no etching at other locations. A diamond-etching rate of approximately 8.7 μm/min (1000 °C) was successfully achieved. To the best of our knowledge, this rate is considerably greater than those reported so far for other diamond-etching processes, including plasma processes. The anisotropy observed for this diamond etching was considerably similar to that observed for Si etching using KOH.

  5. Analysis of global water vapour trends from satellite measurements in the visible spectral range

    Directory of Open Access Journals (Sweden)

    S. Mieruch

    2008-02-01

    Full Text Available Global water vapour total column amounts have been retrieved from spectral data provided by the Global Ozone Monitoring Experiment (GOME flying on ERS-2, which was launched in April 1995, and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY onboard ENVISAT launched in March 2002. For this purpose the Air Mass Corrected Differential Optical Absorption Spectroscopy (AMC-DOAS approach has been used. The combination of the data from both instruments provides us with a long-term global data set spanning more than 11 years with the potential of extension up to 2020 by GOME-2 data on MetOp.

    Using linear and non-linear methods from time series analysis and standard statistics the trends of H2O columns and their errors have been calculated. In this study, factors affecting the trend such as the length of the time series, the magnitude of the variability of the noise, and the autocorrelation of the noise are investigated. Special emphasis has been placed on the calculation of the statistical significance of the observed trends, which reveal significant local changes from −5% per year to +5% per year. These significant trends are distributed over the whole globe. Increasing trends have been calculated for Greenland, East Europe, Siberia and Oceania, whereas decreasing trends have been observed for the northwest USA, Central America, Amazonia, Central Africa and the Arabian Peninsular.

  6. Water vapour tomography using GPS phase observations: Results from the ESCOMPTE experiment

    Science.gov (United States)

    Nilsson, T.; Gradinarsky, L.; Elgered, G.

    2007-10-01

    Global Positioning System (GPS) tomography is a technique for estimating the 3-D structure of the atmospheric water vapour using data from a dense local network of GPS receivers. Several current methods utilize estimates of slant wet delays between the GPS satellites and the receivers on the ground, which are difficult to obtain with millimetre accuracy from the GPS observations. We present results of applying a new tomographic method to GPS data from the Expériance sur site pour contraindre les modèles de pollution atmosphérique et de transport d'emissions (ESCOMPTE) experiment in southern France. This method does not rely on any slant wet delay estimates, instead it uses the GPS phase observations directly. We show that the estimated wet refractivity profiles estimated by this method is on the same accuracy level or better compared to other tomographic methods. The results are in agreement with earlier simulations, for example the profile information is limited above 4 km.

  7. Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours

    Directory of Open Access Journals (Sweden)

    T. Petäjä

    2005-01-01

    Full Text Available Hygroscopicity (i.e. water vapour affinity of atmospheric aerosol particles is one of the key factors in defining their impacts on climate. Condensation of sulphuric acid onto less hygroscopic particles is expected to increase their hygrocopicity and hence their cloud condensation nuclei formation potential. In this study, differences in the hygroscopic and ethanol uptake properties of ultrafine aerosol particles in the Arctic air masses with a different exposure to anthropogenic sulfur pollution were examined. The main discovery was that Aitken mode particles having been exposed to polluted air were more hygroscopic and less soluble to ethanol than after transport in clean air. This aging process was attributed to sulphur dioxide oxidation and subsequent condensation during the transport of these particle to our measurement site. The hygroscopicity of nucleation mode aerosol particles, on the other hand, was approximately the same in all the cases, being indicative of a relatively similar chemical composition despite the differences in air mass transport routes. These particles had also been produced closer to the observation site typically 3–8 h prior to sampling. Apparently, these particles did not have an opportunity to accumulate sulphuric acid on their way to the site, but instead their chemical composition (hygroscopicity and ethanol solubility resembled that of particles produced in the local or semi-regional ambient conditions.

  8. A lidar for water vapour measurements in daytime at Lampedusa, Italy

    Directory of Open Access Journals (Sweden)

    F. Marenco

    2003-06-01

    Full Text Available ENEA is planning to develop a lidar system for measurement of the vertical profi le of water vapour mixing ratio in daytime at a remote site, the Station for Climate Observations located in Lampedusa, Italy. The Raman lidar technique has been retained because of its experimental simplicity with respect to DIAL, and the UV spectral range has been chosen because Raman cross-sections and detector effi ciencies are larger. For a wavelength larger than ~ 300 nm the signal is limited in daytime by sky background, but extinction is acceptable, and the aims of the system can be reached with a strong laser source. The 355 nm wavelength of a frequency-tripled Nd:YAG laser has been retained as this laser source permits to reach a large pulse energy while keeping the system simple to operate. Geometrical form factor calculations need to be performed to evaluate the near-range overlap between the laser beam and the fi eld-of-view of the receiver. Among several options, a dual-receiver system has been retained to account for the several orders of magnitude expected in the backscattered signal intensity: a smaller receiver, with a primary mirror of 200 mm diameter for the 0.2-1 km range, and a larger 500 mm receiver for the 1-3 km range.

  9. RDF gasification with water vapour: influence of process temperature on yield and products composition

    International Nuclear Information System (INIS)

    Galvagno, S.; Casciaro, G.; Russo, A.; Casu, S.; Martino, M.; Portofino, S.

    2005-01-01

    The opportunity of using RDF (Refused Derived Fuel) to produce fuel gas seems to be promising and particular attention has been focused on alternative process technologies such as pyrolysis and gasification. Within this frame, present work relates to experimental tests and obtained results of a series of experimental surveys on RDF gasification with water vapour, carried out by means of a bench scale rotary kiln plant at different process temperature, using thermogravimetry (TG) and infrared spectrometry (FTIR), in order to characterize the incoming material, and online gas chromatography to qualify the gaseous stream. Experimental data show that gas yield rise with temperature and, with respect to the gas composition, hydrogen content grows up mainly at the expense of the other gaseous compound, pointing out the major extension of secondary cracking reactions into the gaseous fraction at higher temperature. Syngas obtained at process temperature of 950 o C or higher seems to be suitable for fuel cells applications; at lower process temperature, gas composition suggest a final utilisation for feedstock recycling. The low organic content of solid residue does not suggest any other exploitation of the char apart from the land filling [it

  10. Water Vapour Propulsion Powered by a High-Power Laser-Diode

    Science.gov (United States)

    Minami, Y.; Uchida, S.

    Most of the laser propulsion schemes now being proposed and developed assume neither power supplies nor on-board laser devices and therefore are bound to remote laser stations like a kite via a laser beam “string”. This is a fatal disadvantage for a space vehicle that flies freely though it is often said that no need of installing an energy source is an advantage of a laser propulsion scheme. The possibility of an independent laser propulsion space vehicle that carries a laser source and a power supply on board is discussed. This is mainly due to the latest development of high power laser diode (LD) technology. Both high specific impulse-low thrust mode and high thrust-low specific impulse mode can be selected by controlling the laser output by using vapour or water as a propellant. This mode change can be performed by switching between a high power continuous wave (cw), LD engine for high thrust with a low specific impulse mode and high power LD pumping Q-switched Nd:YAG laser engine for low thrust with the high specific impulse mode. This paper describes an Orbital Transfer Vehicle equipped with the above-mentioned laser engine system and fuel cell that flies to the Moon from a space platform or space hotel in Earth orbit, with cargo shipment from lunar orbit to the surface of the Moon, including the possibility of a sightseeing trip.

  11. Effect of alkanolammonium formates ionic liquids on vapour liquid equilibria of binary systems containing water, methanol, and ethanol

    International Nuclear Information System (INIS)

    Li Xuemei; Shen Chong; Li Chunxi

    2012-01-01

    Highlights ► Vapour pressures for six ternary systems containing an IL were measured. ► Components studied were water, ethanol, methanol, and alkanolammonium formates. ► The isobaric VLE were predicted using the fitted binary NRTL parameters. ► The ILs studied can generate a promising salt effect on VLE of azeotrope. ► [HMEA][HCOO] might be used as a potential entrainer in extractive distillation. - Abstract: Vapour pressures were measured using a quasi-static ebulliometer for the pseudo-binary mixtures of (water + ethanol), (water + methanol), and (methanol + ethanol) containing an alkanolammonium-based ionic liquid (IL), namely, mono-ethanolammonium formate ([HMEA][HCOO]) and di-ethanolammonium formate ([HDEA][HCOO]), respectively, with fixed IL mass fraction of 0.30 and over the temperature ranges of (292.12 to 371.13) K. The vapour pressures of the IL-containing ternary systems were favourably correlated using the NRTL model with an overall average absolute relative deviation (AARD) of 0.0082. Further, the salt effects of [HMEA][HCOO] and [HDEA][HCOO] on isobaric vapour liquid equilibria (VLE) of azeotrope and close boiling mixture, especially for the mixtures of (water + ethanol) and (methanol + ethanol), were investigated and compared with other ILs in terms of the x′–y phase diagrams predicted with the binary NRTL parameters. It is demonstrated that the relative volatilities of ethanol to water and ethanol to methanol are enhanced, and [HMEA][HCOO] might be used as a promising entrainer for the efficient separation of ethanol aqueous solution by special rectification.

  12. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2012-12-01

    Full Text Available Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change. We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere to 8 km (in the upper troposphere and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model. We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  13. Ground-based remote sensing of tropospheric water vapour isotopologues within the project MUSICA

    Science.gov (United States)

    Schneider, M.; Barthlott, S.; Hase, F.; González, Y.; Yoshimura, K.; García, O. E.; Sepúlveda, E.; Gomez-Pelaez, A.; Gisi, M.; Kohlhepp, R.; Dohe, S.; Blumenstock, T.; Wiegele, A.; Christner, E.; Strong, K.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Demoulin, P.; Jones, N.; Griffith, D. W. T.; Smale, D.; Robinson, J.

    2012-12-01

    Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water), long-term tropospheric water vapour isotopologue data records are provided for ten globally distributed ground-based mid-infrared remote sensing stations of the NDACC (Network for the Detection of Atmospheric Composition Change). We present a new method allowing for an extensive and straightforward characterisation of the complex nature of such isotopologue remote sensing datasets. We demonstrate that the MUSICA humidity profiles are representative for most of the troposphere with a vertical resolution ranging from about 2 km (in the lower troposphere) to 8 km (in the upper troposphere) and with an estimated precision of better than 10%. We find that the sensitivity with respect to the isotopologue composition is limited to the lower and middle troposphere, whereby we estimate a precision of about 30‰ for the ratio between the two isotopologues HD16O and H216O. The measurement noise, the applied atmospheric temperature profiles, the uncertainty in the spectral baseline, and the cross-dependence on humidity are the leading error sources. We introduce an a posteriori correction method of the cross-dependence on humidity, and we recommend applying it to isotopologue ratio remote sensing datasets in general. In addition, we present mid-infrared CO2 retrievals and use them for demonstrating the MUSICA network-wide data consistency. In order to indicate the potential of long-term isotopologue remote sensing data if provided with a well-documented quality, we present a climatology and compare it to simulations of an isotope incorporated AGCM (Atmospheric General Circulation Model). We identify differences in the multi-year mean and seasonal cycles that significantly exceed the estimated errors, thereby indicating deficits in the modeled atmospheric water cycle.

  14. Diffusion of water into SU-8 microcantilevers

    DEFF Research Database (Denmark)

    Liu, C.J.; Liu, Y.; Sokuler, M.

    2010-01-01

    We present a method to monitor the diffusion of liquid molecules in polymers. A microdrop of water is deposited by a piezoelectric drop generator onto the upper surface of a cantilever made of SU-8 based photoresist. In response, the cantilever bends in the opposite direction. We find...... sophisticated finite element model the diffusion coefficient of water in the SU-8 polymer can be determined quantitatively from the dynamics of cantilever bending....... that this bending is mainly caused by the diffusion of water into the cantilever and the consequent swelling of SU-8. Using a one-dimensional diffusion model and assuming a simple swelling law, we qualitatively model the bending of the cantilever during in and out diffusion of water in SU-8. With a more...

  15. Near real-time estimation of water vapour in the troposphere using ground GNSS and the meteorological data

    Directory of Open Access Journals (Sweden)

    J. Bosy

    2012-09-01

    Full Text Available The near real-time (NRT high resolution water vapour distribution models can be constructed based on GNSS observations delivered from Ground Base Augmentation Systems (GBAS and ground meteorological data. Since 2008 in the territory of Poland, a GBAS system called ASG-EUPOS (Active Geodetic Network has been operating. This paper addresses the problems concerning construction of the NRT model of water vapour distribution in the troposphere near Poland. The first section presents all available GNSS and ground meteorological stations in the area of Poland and neighbouring countries. In this section, data feeding scheme is discussed, together with timeline and time resolution. The high consistency between measured and interpolated temperature value is shown, whereas some discrepancy in the pressure is observed. In the second section, the NRT GNSS data processing strategy of ASG-EUPOS network is discussed. Preliminary results show fine alignment of the obtained Zenith Troposphere Delays (ZTDs with reference data from European Permanent Network (EPN processing center. The validation of NRT troposphere products against daily solution shows 15 mm standard deviation of obtained ZTD differences. The last section presents the first results of 2-D water vapour distribution above the GNSS network and application of the tomographic model to 3-D distribution of water vapour in the atmosphere. The GNSS tomography model, working on the simulated data from numerical forecast model, shows high consistency with the reference data (by means of standard deviation 4 mm km−1 or 4 ppm, however, noise analysis shows high solution sensitivity to errors in observations. The discrepancy for real data preliminary solution (measured as a mean standard deviation between reference NWP data and tomography data was on the level of 9 mm km−1 (or 9 ppm in terms of wet refractivity.

  16. Long-term series of tropospheric water vapour amounts and HDO/H2O ratio profiles above Jungfraujoch.

    Science.gov (United States)

    Lejeune, B.; Mahieu, E.; Schneider, M.; Hase, F.; Servais, C.; Demoulin, P.

    2012-04-01

    Water vapour is a crucial climate variable involved in many processes which widely determine the energy budget of our planet. In particular, water vapour is the dominant greenhouse gas in the Earth's atmosphere and its radiative forcing is maximum in the middle and upper troposphere. Because of the extremely high variability of water vapour concentration in time and space, it is challenging for the available relevant measurement techniques to provide a consistent data set useful for trend analyses and climate studies. Schneider et al. (2006a) showed that ground-based Fourier Transform Infrared (FTIR) spectroscopy, performed from mountain observatories, allows for the detection of H2O variabilities up to the tropopause. Furthermore, the FTIR measurements allow the retrieval of HDO amounts and therefore the monitoring of HDO/H2O ratio profiles whose variations act as markers for the source and history of the atmospheric water vapour. In the framework of the MUSICA European project (Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water, http://www.imk-asf.kit.edu/english/musica.php), a new approach has been developed and optimized by M. Schneider and F. Hase, using the PROFFIT algorithm, to consistently retrieve tropospheric water vapour profiles from high-resolution ground-based infrared solar spectra and so taking benefit from available long-term data sets of ground-based observations. The retrieval of the water isotopologues is performed on a logarithmic scale from 14 micro-windows located in the 2600-3100 cm-1 region. Other important features of this new retrieval strategy are: a speed dependant Voigt line shape model, a joint temperature profile retrieval and an interspecies constraint for the HDO/H2O profiles. In this contribution, we will combine the quality of the MUSICA strategy and of our observations, which are recorded on a regular basis with FTIR spectrometers, under clear-sky conditions, at the NDACC site

  17. Vapour dynamics during magma-water interaction experiments: hydromagmatic origins of submarine volcaniclastic particles (limu o Pele)

    Science.gov (United States)

    Schipper, C. Ian; Sonder, Ingo; Schmid, Andrea; White, James D. L.; Dürig, Tobias; Zimanowski, Bernd; Büttner, Ralf

    2013-03-01

    Recent observations have shattered the long-held theory that deep-sea (>500 m) explosive eruptions are impossible; however, determining the dynamics of unobserved eruptions requires interpretation of the deposits they produce. For accurate interpretation to be possible, the relative abilities of explosive magmatic degassing and non-explosive magma-water interaction to produce characteristic submarine volcaniclastic particles such as `limu o Pele' (bubble wall shards of glass) must be established. We experimentally address this problem by pouring remelted basalt (1300 °C, anhydrous) into a transparent, water-filled reservoir, recording the interaction with a high-speed video camera and applying existing heat transfer models. We performed the experiments under moderate to high degrees of water subcooling (˜8 l of water at 58 and 3 °C), with ˜0.1 to 0.15 kg of melt poured at ˜10-2 kg s-1. Videos show the non-explosive, hydromagmatic blowing and bursting of isolated melt bubbles to form limu o Pele particles that are indistinguishable from those found in submarine volcaniclastic deposits. Pool boiling around growing melt bubbles progresses from metastable vapour film insulation, through vapour film retraction/collapse, to direct melt-water contact. These stages are linked to the evolution of melt-water heat transfer to verify the inverse relationship between vapour film stability and the degree of water subcooling. The direct contact stage in particular explains the extremely rapid quench rates determined from glass relaxation speedometry for natural limu. Since our experimentally produced limu is made entirely by the entrapping of ambient water in degassed basaltic melt, we argue that the presence of fast-quenched limu o Pele in natural deposits is not diagnostic of volatile-driven explosive eruptions. This must be taken into account if submarine eruption dynamics are to be accurately inferred from the deposits and particles they produce.

  18. Water diffusion in phosphate-containing hydrogels

    International Nuclear Information System (INIS)

    George, K.A.; Wentrup-Byrne, E.; Hill, D.J.T.; Whittaker, A.K.

    2003-01-01

    An understanding of the kinetics and diffusion of liquids through polymeric hydrogels is critical for the successful design and application of these materials in biomedical field, particularly as controlled drug delivery systems. In this study, the mechanisms of water transport and parameters that describe the diffusion process in crosslinked poly(2-hydroxyethylmethacrylate-co-methyloxyethylene phosphate), poly(HEMA-co-MOEP) polymers were investigated. The copolymerisation of HEMA with MOEP was initiated by γ radiolysis with full conversion of monomer to polymer. The sorption of water into the polymers with 0 - 30 mol% MOEP was monitored gravimetrically over a period of 2 - 3 weeks. This study provided an insight into the diffusion mechanism and showed that the PHEMA hydrogel displayed concentration-independent Fickian diffusion. As the concentration of MOEP in the network increased, the diffusion rate and the rigidity of the network also increased in a linear fashion. NMR imaging was used in conjunction with the gravimetric study to elucidate the transport mechanisms, diffusion coefficients and proportionality constants governing the water diffusion in the phosphate-containing polymers. The hydrogels with 3 - 20 mol% MOEP exhibited exponential concentration-dependent Fickian diffusion and the transport mechanism in the system with 30 mol% MOEP was shown to be anomalous. The systems with greater concentrations of MOEP displayed a high degree of fracturing during water sorption and resulted in the ultimate destruction of the cylindrical geometry

  19. Precipitable water vapour forecasting: a tool for optimizing IR observations at Roque de los Muchachos Observatory.

    Science.gov (United States)

    Pérez-Jordán, G.; Castro-Almazán, J. A.; Muñoz-Tuñón, C.

    2018-04-01

    We validate the Weather Research and Forecasting (WRF) model for precipitable water vapour (PWV) forecasting as a fully operational tool for optimizing astronomical infrared (IR) observations at Roque de los Muchachos Observatory (ORM). For the model validation we used GNSS-based (Global Navigation Satellite System) data from the PWV monitor located at the ORM. We have run WRF every 24 h for near two months, with a horizon of 48 hours (hourly forecasts), from 2016 January 11 to 2016 March 4. These runs represent 1296 hourly forecast points. The validation is carried out using different approaches: performance as a function of the forecast range, time horizon accuracy, performance as a function of the PWV value, and performance of the operational WRF time series with 24- and 48-hour horizons. Excellent agreement was found between the model forecasts and observations, with R =0.951 and R =0.904 for the 24- and 48-h forecast time series respectively. The 48-h forecast was further improved by correcting a time lag of 2 h found in the predictions. The final errors, taking into account all the uncertainties involved, are 1.75 mm for the 24-h forecasts and 1.99 mm for 48 h. We found linear trends in both the correlation and RMSE of the residuals (measurements - forecasts) as a function of the forecast range within the horizons analysed (up to 48 h). In summary, the WRF performance is excellent and accurate, thus allowing it to be implemented as an operational tool at the ORM.

  20. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2009-04-01

    We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for

  1. Novel method for water vapour monitoring using wireless communication networks measurements

    Science.gov (United States)

    David, N.; Alpert, P.; Messer, H.

    2010-09-01

    We propose a new technique for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition - many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from microwave links used in a backhaul cellular network that show very good correlation with surface station humidity measurements (comparisons were performed for several links, found at different locations, during different time periods, showing correlations in the range of 0.5-0.9).

  2. Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment

    KAUST Repository

    Parkes, Stephen; McCabe, Matthew; Griffiths, Alan D.; Wang, Lixin; Chambers, Scott; Ershadi, Ali; Williams, Alastair G.; Strauss, Josiah; Element, Adrian

    2017-01-01

    The stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour (d =δH-8× δO) can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the Dexcess in water vapour (d). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (d) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime d values. The low d observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime d and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime d variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of d values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate d can generally be expected to show large spatial and temporal variability and to depend on the soil moisture state. For long periods between rain events, common in semi-arid environments, ET would be expected to impose negative forcing on the surface d. Spatial and temporal variability of D-excess in ET fluxes therefore needs to be considered when using d to study

  3. Response of water vapour D-excess to land–atmosphere interactions in a semi-arid environment

    KAUST Repository

    Parkes, Stephen

    2017-01-27

    The stable isotopic composition of water vapour provides information about moisture sources and processes difficult to obtain with traditional measurement techniques. Recently, it has been proposed that the D-excess of water vapour (d =δH-8× δO) can provide a diagnostic tracer of continental moisture recycling. However, D-excess exhibits a diurnal cycle that has been observed across a variety of ecosystems and may be influenced by a range of processes beyond regional-scale moisture recycling, including local evaporation (ET) fluxes. There is a lack of measurements of D-excess in evaporation (ET) fluxes, which has made it difficult to assess how ET fluxes modify the Dexcess in water vapour (d). With this in mind, we employed a chamber-based approach to directly measure D-excess in ET (d) fluxes. We show that ET fluxes imposed a negative forcing on the ambient vapour and could not explain the higher daytime d values. The low d observed here was sourced from a soil water pool that had undergone an extended drying period, leading to low D-excess in the soil moisture pool. A strong correlation between daytime d and locally measured relative humidity was consistent with an oceanic moisture source, suggesting that remote hydrological processes were the major contributor to daytime d variability. During the early evening, ET fluxes into a shallow nocturnal inversion layer caused a lowering of d values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate d can generally be expected to show large spatial and temporal variability and to depend on the soil moisture state. For long periods between rain events, common in semi-arid environments, ET would be expected to impose negative forcing on the surface d. Spatial and temporal variability of D-excess in ET fluxes therefore needs to be considered when using d to study

  4. Influence of water vapour on the height distribution of positive ions, effective recombination coefficient and ionisation balance in the quiet lower ionosphere

    Directory of Open Access Journals (Sweden)

    V. Barabash

    2014-03-01

    Full Text Available Mesospheric water vapour concentration effects on the ion composition and electron density in the lower ionosphere under quiet geophysical conditions were examined. Water vapour is an important compound in the mesosphere and the lower thermosphere that affects ion composition due to hydrogen radical production and consequently modifies the electron number density. Recent lower-ionosphere investigations have primarily concentrated on the geomagnetic disturbance periods. Meanwhile, studies on the electron density under quiet conditions are quite rare. The goal of this study is to contribute to a better understanding of the ionospheric parameter responses to water vapour variability in the quiet lower ionosphere. By applying a numerical D region ion chemistry model, we evaluated efficiencies for the channels forming hydrated cluster ions from the NO+ and O2+ primary ions (i.e. NO+.H2O and O2+.H2O, respectively, and the channel forming H+(H2On proton hydrates from water clusters at different altitudes using profiles with low and high water vapour concentrations. Profiles for positive ions, effective recombination coefficients and electrons were modelled for three particular cases using electron density measurements obtained during rocket campaigns. It was found that the water vapour concentration variations in the mesosphere affect the position of both the Cl2+ proton hydrate layer upper border, comprising the NO+(H2On and O2+(H2On hydrated cluster ions, and the Cl1+ hydrate cluster layer lower border, comprising the H+(H2On pure proton hydrates, as well as the numerical cluster densities. The water variations caused large changes in the effective recombination coefficient and electron density between altitudes of 75 and 87 km. However, the effective recombination coefficient, αeff, and electron number density did not respond even to large water vapour concentration variations occurring at other altitudes in the mesosphere. We determined the water

  5. Partitioning understory evapotranspiration in semi-arid ecosystems in Namibia using the isotopic composition of water vapour

    Science.gov (United States)

    de Blécourt, Marleen; Gaj, Marcel; Holtorf, Kim-Kirsten; Gröngröft, Alexander; Brokate, Ralph; Himmelsbach, Thomas; Eschenbach, Annette

    2016-04-01

    In dry environments with a sparse vegetation cover, understory evapotranspiration is a major component of the ecosystem water balance. Consequently, knowledge on the size of evapotranspiration fluxes and the driving factors is important for our understanding of the hydrological cycle. Understory evapotranspiration is made up of soil evaporation and plant transpiration. Soil evaporation can be measured directly from patches free of vegetation. However, when understory vegetation is present distinguishing between soil evaporation and plant transpiration is challenging. In this study, we aim to partition understory evapotranspiration based on an approach that combines the measurements of water-vapour fluxes using the closed chamber method with measurements of the isotopic composition of water vapour. The measurements were done in the framework of SASSCAL (Southern African Science Service Centre for Climate Change and Adaptive Land Management). The study sites were located in three different semi-arid ecosystems in Namibia: thornbush savanna, Baikiaea woodland and shrubland. At each site measurements were done under tree canopies as well as at unshaded areas between the canopies. We measured evaporation from the bare soil and evapotranspiration from patches covered with herbaceous species and shrubs using a transparent chamber connected with an infrared gas analyser (LI-8100A, LICOR Inc.). The stable isotope composition of water vapour inside the chamber and depth profiles of soil water stable isotopes were determined in-situ using a tuneable off-axis integrated cavity output spectroscope (OA-ICOS, Los Gatos Research, DLT 100). Xylem samples were extracted using the cryogenic vacuum extraction method and the isotopic composition of the extracted water was measured subsequently with a cavity-ring-down spectrometer (CRDS L2120-i, Picarro Inc.). We will present the quantified fluxes of understory evapotranspiration measured in the three different ecosystems, show the

  6. Diffusion of tritiated water in coastal areas

    International Nuclear Information System (INIS)

    Fukuda, M.; Kasai, A.; Imai, T.; Amano, H.; Yanase, N.

    1980-01-01

    The diffusion of tritiated water discharged by Japan Atomic Energy Research Institute at shore line has been investigated. In continuous discharge, the concentration of tritiated water in samples taken at a point downstream fluctuates largely. To reveal the cause, dye diffusion experiments were made in the coastal area. The shapes of dye cloud were photographed by a remote-control camera suspended from a captive balloon as color pictures. The movement of dye is so complex that a three-dimensional model must be employed to assess the diffusion in coastal areas

  7. Water diffusion to assess meat microstructure.

    Science.gov (United States)

    Laghi, Luca; Venturi, Luca; Dellarosa, Nicolò; Petracci, Massimiliano

    2017-12-01

    In the quest for setting up rapid methods to evaluate water retention ability of meat microstructures, time domain nuclear magnetic resonance (TD-NMR) has gained a prominent role, due to the possibility to observe water located outside the myofibrils, easily lost upon storage or cooking. Diffusion weighted signals could be used to monitor the shape and dimension of the pores in which water is confined, thus boosting the information offered by TD-NMR. The work outlines a parsimonious model to describe relative abundance and diffusion coefficient of intra and extra myofibrillar water populations, exchange rate between them, diameter of the myofibrillar cells. To test our model, we registered diffusion and T 2 weighted NMR signals at 20MHz on fresh meat from pectoralis major muscle of 100days old female turkey. We then purposely altered water distribution and myofibrils shape by means of freezing. The model predicted nicely the consequences of the imposed modifications. Copyright © 2016. Published by Elsevier Ltd.

  8. Action of the chlorine trifluoride on water vapour. Analysis of reaction products. Technical report - 589

    International Nuclear Information System (INIS)

    Bougon, R.

    1961-06-01

    As the separation of uranium 235 from uranium 238 by gaseous diffusion under the form of uranium hexa-fluoride requires the use of materials which may contain some impurities retained by chemical or physical bounds, this report addresses the use of a reactant which would allow these impurities to be removed. Due to its properties (inert with respect to UF 6 ; transforms most of impurities into volatile compounds, and different UF compounds into UF 6 ; strongly reacts on water; all its degradation products are volatile), chlorine trifluoride (ClF 3 ) has been chosen. It is used for the preprocessing of materials for their passivation with respect to UF 6 , and for a post-processing for the regeneration of porous materials by transformation of UF 4 , UO 2 F 2 and UF x into UF 6 . The authors more particularly studied the reaction between ClF 3 and water

  9. Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements

    Directory of Open Access Journals (Sweden)

    N. David

    2009-04-01

    Full Text Available We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks.

    Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both may also interfere with the ability to conduct accurate measurements.

    We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements, the other in central Israel (29 measurements. The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences

  10. Assessment of small-scale integrated water vapour variability during HOPE

    Science.gov (United States)

    Steinke, S.; Eikenberg, S.; Löhnert, U.; Dick, G.; Klocke, D.; Di Girolamo, P.; Crewell, S.

    2015-03-01

    The spatio-temporal variability of integrated water vapour (IWV) on small scales of less than 10 km and hours is assessed with data from the 2 months of the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE). The statistical intercomparison of the unique set of observations during HOPE (microwave radiometer (MWR), Global Positioning System (GPS), sun photometer, radiosondes, Raman lidar, infrared and near-infrared Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellites Aqua and Terra) measuring close together reveals a good agreement in terms of random differences (standard deviation ≤1 kg m-2) and correlation coefficient (≥ 0.98). The exception is MODIS, which appears to suffer from insufficient cloud filtering. For a case study during HOPE featuring a typical boundary layer development, the IWV variability in time and space on scales of less than 10 km and less than 1 h is investigated in detail. For this purpose, the measurements are complemented by simulations with the novel ICOsahedral Nonhydrostatic modelling framework (ICON), which for this study has a horizontal resolution of 156 m. These runs show that differences in space of 3-4 km or time of 10-15 min induce IWV variabilities on the order of 0.4 kg m-2. This model finding is confirmed by observed time series from two MWRs approximately 3 km apart with a comparable temporal resolution of a few seconds. Standard deviations of IWV derived from MWR measurements reveal a high variability (> 1 kg m-2) even at very short time scales of a few minutes. These cannot be captured by the temporally lower-resolved instruments and by operational numerical weather prediction models such as COSMO-DE (an application of the Consortium for Small-scale Modelling covering Germany) of Deutscher Wetterdienst, which is included in the comparison. However, for time scales larger than 1 h, a sampling resolution of 15 min is

  11. Modeling of the Process of Three-Isotope (H, D, T) Exchange Between Hydrogen Gas and Water Vapour on Pt-SDBC Catalyst over a Wide Range of Deuterium Concentration

    International Nuclear Information System (INIS)

    Fedorchenko, O.A.; Alekseev, I.A.; Tchijov, A.S.; Uborsky, V.V.

    2005-01-01

    The large scale studies of Combined Electrolysis and Catalytic Exchange (CECE) process in Petersburg Nuclear Physics Institute showed a complicated influence of various factors on the process caused by the presence of two simultaneous isotope exchange sub processes: counter-current phase exchange (between liquid water and water vapour) and co-current catalytic exchange (between hydrogen gas and water vapour). A laboratory scale set-up of glass made apparatuses was established in such a way that it allows us to study phase and catalytic exchange apart. A computer model of the set-up has been developed.The catalytic isotope exchange model formulation is presented. A collection of reversible chemical reactions is accompanied by diffusion of the gaseous reactants and reaction products in the pores of catalyst carrier. This has some interesting features that are demonstrated. Thus it was noted that the flow rates ratio (gas to vapour - λ = G/V) as well as the concentrations of reactants exert influence on the process efficiency

  12. Evaluation of balloon and satellite water vapour measurements in the Southern tropical and subtropical UTLS during the HIBISCUS campaign

    Science.gov (United States)

    Montoux, N.; Hauchecorne, A.; Pommereau, J.-P.; Lefèvre, F.; Durry, G.; Jones, R. L.; Rozanov, A.; Dhomse, S.; Burrows, J. P.; Morel, B.; Bencherif, H.

    2009-07-01

    Balloon water vapour in situ and remote measurements in the tropical upper troposphere and lower stratosphere (UTLS) obtained during the HIBISCUS campaign around 20° S in Brazil in February-March 2004 using a tunable diode laser (μSDLA), a surface acoustic wave (SAW) and a Vis-NIR solar occultation spectrometer (SAOZ) on a long duration balloon, have been used for evaluating the performances of satellite borne remote water vapour instruments available at the same latitude and measurement period. In the stratosphere, HALOE displays the best precision (2.5%), followed by SAGE II (7%), MIPAS (10%), SAOZ (20-25%) and SCIAMACHY (35%), all of which show approximately constant H2O mixing ratios between 20-25 km. Compared to HALOE of ±10% accuracy between 0.1-100 hPa, SAGE II and SAOZ show insignificant biases, MIPAS is wetter by 10% and SCIAMACHY dryer by 20%. The currently available GOMOS profiles of 25% precision show a positive vertical gradient in error for identified reasons. Compared to these, the water vapour of the Reprobus Chemistry Transport Model, forced at pressures higher than 95 hPa by the ECMWF analyses, is dryer by about 1 ppmv (20%). In the lower stratosphere between 16-20 km, most notable features are the steep degradation of MIPAS precision below 18 km, and the appearance of biases between instruments far larger than their quoted total uncertainty. HALOE and SAGE II (after spectral adjustment for reducing the bias with HALOE at northern mid-latitudes) both show decreases of water vapour with a minimum at the tropopause not seen by other instruments or the model, possibly attributable to an increasing error in the HALOE altitude registration. Between 16-18 km where the water vapour concentration shows little horizontal variability, and where the μSDLA balloon measurements are not perturbed by outgassing, the average mixing ratios reported by the remote sensing instruments are substantially lower than the 4-5 ppmv observed by the μSDLA. Differences

  13. Automated calibration of laser spectrometer measurements of δ18 O and δ2 H values in water vapour using a Dew Point Generator.

    Science.gov (United States)

    Munksgaard, Niels C; Cheesman, Alexander W; Gray-Spence, Andrew; Cernusak, Lucas A; Bird, Michael I

    2018-06-30

    Continuous measurement of stable O and H isotope compositions in water vapour requires automated calibration for remote field deployments. We developed a new low-cost device for calibration of both water vapour mole fraction and isotope composition. We coupled a commercially available dew point generator (DPG) to a laser spectrometer and developed hardware for water and air handling along with software for automated operation and data processing. We characterised isotopic fractionation in the DPG, conducted a field test and assessed the influence of critical parameters on the performance of the device. An analysis time of 1 hour was sufficient to achieve memory-free analysis of two water vapour standards and the δ 18 O and δ 2 H values were found to be independent of water vapour concentration over a range of ≈20,000-33,000 ppm. The reproducibility of the standard vapours over a 10-day period was better than 0.14 ‰ and 0.75 ‰ for δ 18 O and δ 2 H values, respectively (1 σ, n = 11) prior to drift correction and calibration. The analytical accuracy was confirmed by the analysis of a third independent vapour standard. The DPG distillation process requires that isotope calibration takes account of DPG temperature, analysis time, injected water volume and air flow rate. The automated calibration system provides high accuracy and precision and is a robust, cost-effective option for long-term field measurements of water vapour isotopes. The necessary modifications to the DPG are minor and easily reversible. Copyright © 2018 John Wiley & Sons, Ltd.

  14. The water vapour continuum in near-infrared windows - Current understanding and prospects for its inclusion in spectroscopic databases

    Science.gov (United States)

    Shine, Keith P.; Campargue, Alain; Mondelain, Didier; McPheat, Robert A.; Ptashnik, Igor V.; Weidmann, Damien

    2016-09-01

    Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth's atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm-1) and include reference to the window centred on 2600 cm-1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback - cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum - as an example, we

  15. Bibliography of electron and photon cross sections with atoms and molecules published in the 20th century. Water vapour

    International Nuclear Information System (INIS)

    Hayashi, Makoto

    2003-12-01

    Bibliographies of original and review reports of experiments or theories of electron and photon cross sections and also electron swarm data are presented for atomic or molecular species with specified targets. These works covered 17 atoms and 51 molecules. The present bibliography is only for water vapour (H 2 O, D 2 O and HDO). About 1200 papers were compiled. A comprehensive author index is included. The bibliography covers the period 1915 through 2000 for H 2 O. Finally, author's comments for electron collision cross sections and photodissociation processes of H 2 O are given. (author)

  16. The role of water-vapour photodissociation on the formation of a deep minimum in mesopause ozone

    Directory of Open Access Journals (Sweden)

    I. M. Vardavas

    1998-02-01

    Full Text Available A one-dimensional atmospheric photochemical model with an altitude grid of about 1.5 km was used to examine the structure of the global mean vertical ozone profile and its night-time-to-daytime variation in the upper atmosphere. Two distinct ozone layers are predicted, separated by a sharp drop in the ozone concentration near the mesopause. This naturally occurring mesopause ozone deep minimum is primarily produced by the rapid increase in the destruction of water vapour, and hence increase in HOx, at altitudes between 80 and 85 km, a region where water-vapour photodissociation by ultraviolet radiation of the solar Lyman-alpha line is significant, and where the supply of water vapour is maintained by methane oxidation even for very dry conditions at the tropospheric-stratospheric exchange region. The model indicates that the depth of the mesopause ozone minimum is limited by the efficiency with which inactive molecular hydrogen is produced, either by the conversion of atomic hydrogen to molecular hydrogen via one of the reaction channels of H with HO2, or by Lyman-alpha photodissociation of water vapour via the channel that leads to the production of molecular hydrogen. The ozone concentration rapidly recovers above 85 km due to the rapid increase in O produced by the photodissociation of O2 by absorption of ultraviolet solar radiation in the Schumann-Runge bands and continuum. Above 90 km, there is a decrease in ozone due to photolysis as the production of ozone through the three-body recombination of O2 and O becomes slower with decreasing pressure. The model also predicts two peaks in the night-time/daytime ozone ratio, one near 75 km and the other near 110 km, plus a strong peak in the night-time/daytime ratio of OH near 110 km. Recent observational evidence supports the predictions of the model.Key words. Atmospheric composition and structure · Middle atmosphere · Thermosphere · Transmission and scattering of radiation

  17. Applicability of the Guggenheim–Anderson–Boer water vapour sorption model for estimation of soil specific surface area

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2018-01-01

    Soil specific surface area (SA) controls fundamental soil processes such as retention of water, ion exchange, and adsorption and release of plant nutrients and contaminants. Conventional methods for determining SA include adsorption of polar or non‐polar fluid molecules with associated advantages...... parameters varied depending on the water activity or relative humidity range of measured data (0.03–0.93 compared with 0.10–0.80), whereas the variation for desorption was minimal. For desorption isotherms, the average water activity value at which the GAB monolayer parameter was obtained was 0......‐based modelling approaches to determine SA. Measured water vapour adsorption and desorption isotherms for 321 soil samples were used to parameterize the GAB model, the Brunauer–Emmet–Teller (BET) equation and a film adsorption Tuller–Or (TO) model to estimate SA. For adsorption isotherms, the values of the GAB...

  18. Density and vapour pressure of mixed-solvent desiccant systems (propylene glycol or dipropylene glycol or tripropylene glycol + magnesium chloride + water)

    International Nuclear Information System (INIS)

    Chen, Shang-Yi; Soriano, Allan N.; Leron, Rhoda B.; Li, Meng-Hui

    2014-01-01

    In this present work, new experimental data for density and vapour pressure of the mixed-solvent desiccant systems containing {40 wt% glycol (propylene or dipropylene or tripropylene) + (4 or 9 or 16 wt%) magnesium chloride salt + water} were reported for temperatures up to 343.15 K at normal atmospheric condition. The density and vapour pressure data obtained are presented as a function of temperature and composition. An empirical equation was used to correlate the temperature and compositional dependence of the density values. A model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the vapour pressure as a function of temperature and composition. Satisfactory results were obtained for both density and vapour pressure calculations

  19. Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films.

    Science.gov (United States)

    Chinma, C E; Ariahu, C C; Alakali, J S

    2015-04-01

    The effect of temperature and relative humidity on the water vapour permeability (WVP) and mechanical properties of cassava starch and soy protein concentrate (SPC) based edible films containing 20 % glycerol level were studied. Tensile strength and elastic modulus of edible films increased with increase in temperature and decreased with increase in relative humidity, while elongation at break decreased. Water vapour permeability of the films increased (2.6-4.3 g.mm/m(2).day.kPa) with increase in temperature and relative humidity. The temperature dependence of water vapour permeation of cassava starch-soy protein concentrate films followed Arrhenius relationship. Activation energy (Ea) of water vapour permeation of cassava starch-soy protein concentrate edible films ranged from 1.9 to 5.3 kJ/mol (R (2)  ≥ 0.93) and increased with increase in SPC addition. The Ea values were lower for the bio-films than for polyvinylidene chloride, polypropylene and polyethylene which are an indication of low water vapour permeability of the developed biofilms compared to those synthetic films.

  20. A soluble one-dimensional problem for coupled heat conduction and mass diffusion with aerosol formation in a vapour-gas mixture

    International Nuclear Information System (INIS)

    Barrett, J.C.; Clement, C.F.

    1986-01-01

    The coupled equations for heat and mass transfer are reduced to ordinary differential equations applying to a semi-infinite region bounded by a wall. Solutions are obtained in the limits of no aerosol and of negligible supersaturations in which case the aerosol growth rate is calculated. In agreement with earlier general predictions, results for water vapour-air mixtures show very different behaviour between heating and cooling the mixtures, and that aerosol growth rates do not increase with temperature, but rather become a much smaller fraction of evaporation or condensation rates at the wall. A new feature is that, in the cooling case, an aerosol growth region is predicted to exist immediately adjacent to the wall, whereas further away any aerosol is predicted to evaporate. The general features of the results are expected to apply to many situations of steady or quasi-steady flow. For example, similar results to ours would be obtained for the laminar flow of a saturated water vapour-air mixture past a wall through which it is being cooled. General characteristics of such flows should include a widening mist-filled layer next to the wall and separation by a sharp spatial division from an unsaturated layer. (author)

  1. Trends and variability of midlatitude stratospheric water vapour deduced from the re-evaluated Boulder balloon series and HALOE

    Directory of Open Access Journals (Sweden)

    M. Scherer

    2008-03-01

    Full Text Available This paper presents an updated trend analysis of water vapour in the lower midlatitude stratosphere from the Boulder balloon-borne NOAA frostpoint hygrometer measurements and from the Halogen Occulation Experiment (HALOE. Two corrections for instrumental bias are applied to homogenise the frostpoint data series, and a quality assessment of all soundings after 1991 is presented. Linear trend estimates based on the corrected data for the period 1980–2000 are up to 40% lower than previously reported. Vertically resolved trends and variability are calculated with a multi regression analysis including the quasi-biennal oscillation and equivalent latitude as explanatory variables. In the range of 380 to 640 K potential temperature (≈14 to 25 km, the frostpoint data from 1981 to 2006 show positive linear trends between 0.3±0.3 and 0.7±0.1%/yr. The same dataset shows trends between −0.2±0.3 and 1.0±0.3%/yr for the period 1992 to 2005. HALOE data over the same time period suggest negative trends ranging from −1.1±0.2 to −0.1±0.1%/yr. In the lower stratosphere, a rapid drop of water vapour is observed in 2000/2001 with little change since. At higher altitudes, the transition is more gradual, with slowly decreasing concentrations between 2001 and 2007. This pattern is consistent with a change induced by a drop of water concentrations at entry into the stratosphere. Previously noted differences in trends and variability between frostpoint and HALOE remain for the homogenised data. Due to uncertainties in reanalysis temperatures and stratospheric transport combined with uncertainties in observations, no quantitative inference about changes of water entering the stratosphere in the tropics could be made with the mid latitude measurements analysed here.

  2. Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa

    International Nuclear Information System (INIS)

    Lladosa, Estela; Monton, Juan B.; Burguet, MaCruz; Torre, Javier de la

    2008-01-01

    Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa. The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask. The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems. The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model

  3. Tropospheric water vapour isotopologue data (H216O, H218O, and HD16O) as obtained from NDACC/FTIR solar absorption spectra

    Science.gov (United States)

    Barthlott, Sabine; Schneider, Matthias; Hase, Frank; Blumenstock, Thomas; Kiel, Matthäus; Dubravica, Darko; García, Omaira E.; Sepúlveda, Eliezer; Mengistu Tsidu, Gizaw; Takele Kenea, Samuel; Grutter, Michel; Plaza-Medina, Eddy F.; Stremme, Wolfgang; Strong, Kim; Weaver, Dan; Palm, Mathias; Warneke, Thorsten; Notholt, Justus; Mahieu, Emmanuel; Servais, Christian; Jones, Nicholas; Griffith, David W. T.; Smale, Dan; Robinson, John

    2017-01-01

    We report on the ground-based FTIR (Fourier transform infrared) tropospheric water vapour isotopologue remote sensing data that have been recently made available via the database of NDACC (Network for the Detection of Atmospheric Composition Change; MUSICA/" target="_blank">ftp://ftp.cpc.ncep.noaa.gov/ndacc/MUSICA/) and via doi:10.5281/zenodo.48902. Currently, data are available for 12 globally distributed stations. They have been centrally retrieved and quality-filtered in the framework of the MUSICA project (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water). We explain particularities of retrieving the water vapour isotopologue state (vertical distribution of H216O, H218O, and HD16O) and reveal the need for a new metadata template for archiving FTIR isotopologue data. We describe the format of different data components and give recommendations for correct data usage. Data are provided as two data types. The first type is best-suited for tropospheric water vapour distribution studies disregarding different isotopologues (comparison with radiosonde data, analyses of water vapour variability and trends, etc.). The second type is needed for analysing moisture pathways by means of H2O, δD-pair distributions.

  4. Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines

    DEFF Research Database (Denmark)

    Fratini, Gerardo; Ibrom, Andreas; Arriga, Nicola

    2012-01-01

    It has been formerly recognised that increasing relative humidity in the sampling line of closed-path eddy-covariance systems leads to increasing attenuation of water vapour turbulent fluctuations, resulting in strong latent heat flux losses. This occurrence has been analyzed for very long (50 m...... from eddy-covariance systems featuring short (4 m) and very short (1 m) sampling lines running at the same clover field and show that relative humidity effects persist also for these setups, and should not be neglected. Starting from the work of Ibrom and co-workers, we propose a mixed method...... and correction method proposed here is deemed applicable to closed-path systems featuring a broad range of sampling lines, and indeed applicable also to passive gases as a special case. The methods described in this paper are incorporated, as processing options, in the free and open-source eddy...

  5. New approach for sustaining energetic, efficient and scalable non-equilibrium plasma in water vapours at atmospheric pressure

    International Nuclear Information System (INIS)

    Malik, Muhammad Arif; Schoenbach, Karl H

    2012-01-01

    Energetic and scalable non-equilibrium plasma was formed in pure water vapour at atmospheric pressure between wire-to-strip electrodes on a dielectric surface with one of the electrodes extended forming a conductive plane on the back side of the dielectric surface. The energy deposition increased by an order of magnitude compared with the conventional pulsed corona discharges under the same conditions. The scalability was demonstrated by operating two electrode assemblies with a common conductive plane between two dielectric layers. The energy yields for hydrogen and hydrogen peroxide generation were measured as ∼1.2 g H 2 /kWh and ∼4 g H 2 O 2 /kWh. (fast track communication)

  6. A soluble, one-dimensional problem for coupled heat conduction and mass diffusion with aerosol formation in a vapour-gas mixture

    International Nuclear Information System (INIS)

    Barrett, J.C.; Clement, C.F.

    1986-01-01

    The coupled equations for heat and mass transfer are reduced to ordinary differential equations applying to semi-infinite region bounded by a wall. Solutions are obtained in the limits of no aerosol and of negligible supersaturations, in which case the aerosol growth rate is calculated. In agreement with earlier general predictions, results for water vapour-air mixtures show very different behaviour between heating and cooling the mixtures, and that aerosol growth rates do not increase with temperature, but rather become a much smaller fraction of evaporation or condensation rates at the wall. A new feature is that, in the cooling case, an aerosol growth region is predicted to exist immediately adjacent to the wall, whereas further away any aerosol is predicted to evaporate. (author)

  7. Sorption of water vapour by the Na+-exchanged clay-sized fractions of some tropical soil samples

    International Nuclear Information System (INIS)

    Yormah, T.B.R.; Hayes, M.H.B.

    1993-09-01

    Water vapour sorption isotherms at 299K for the Na + -exchanged clay-sized (≤ 2μm e.s.d.) fraction of two sets of samples taken at three different depths from a tropical soil profile have been studied. One set of samples was treated (with H 2 O 2 ) for the removal of much of the organic matter (OM); the other set (of the same samples) was not so treated. The isotherms obtained were all of type II and analyses by the BET method yielded values for the Specific Surface Areas (SSA) and for the average energy of adsorption of the first layer of adsorbate (E a ). OM content and SSA for the untreated samples were found to decrease with depth. Whereas removal of organic matter made negligible difference to the SSA of the top/surface soil, the same treatment produced a significant increase in the SSA of the samples taken from the middle and from the lower depths in the profile; the resulting increase was more pronounced for the subsoil. It has been deduced from these results that OM in the surface soil was less involved with the inorganic soil colloids than that in the subsoil. The increase in surface area which resulted from the removal of OM from the subsoil was most probably due to disaggregation. Values of E a obtained show that for all the samples the adsorption of water vapour became more energetic after the oxidative removal of organic matter; the resulting ΔE a also increased with depth. This suggests that in the dry state, the ''cleaned'' surface of the inorganic soil colloids was more energetic than the ''organic-matter-coater surface''. These data provide strong support for the deduction that OM in the subsoil was in a more ''combined'' state than that in the surface soil. (author). 21 refs, 4 figs, 2 tabs

  8. Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions

    DEFF Research Database (Denmark)

    Thomas, Sobi; Vang, Jakob Rabjerg; Araya, Samuel Simon

    2017-01-01

    The objective of this paper is to separate out the effects of methanol and water vapour on a high temperature polymer electrolyte membrane fuel cell under different temperatures (160°C and 180°C) and current densities (0.2Acm-2, 0.4Acm-2 and 0.6Acm-2). The degradation rates at the different curre...

  9. Continuous measurements of stable isotopes of carbon dioxide and water vapour in an urban atmosphere: isotopic variations associated with meteorological conditions.

    Science.gov (United States)

    Wada, Ryuichi; Matsumi, Yutaka; Nakayama, Tomoki; Hiyama, Tetsuya; Fujiyoshi, Yasushi; Kurita, Naoyuki; Muramoto, Kenichiro; Takanashi, Satoru; Kodama, Naomi; Takahashi, Yoshiyuki

    2017-12-01

    Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO 2 and water vapour were observed. The isotope ratios of both CO 2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ 13 C-CO 2 and δ 18 O-CO 2 increased, while δ 2 H-H 2 Ov and δ 18 O-H 2 Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO 2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO 2 and H 2 Ov could be used as a tracer of meteorological information.

  10. Lidar observations of low-level wind reversals over the Gulf of Lion and characterization of their impact on the water vapour variability

    Science.gov (United States)

    Di Girolamo, Paolo; Flamant, Cyrille; Cacciani, Marco; Summa, Donato; Stelitano, Dario; Richard, Evelyne; Ducrocq, Véronique; Fourrie, Nadia; Said, Frédérique

    2017-02-01

    Water vapour measurements from a ground-based Raman lidar and an airborne differential absorption lidar, complemented by high resolution numerical simulations from two mesoscale models (Arome-WMED and MESO-NH), are considered to investigate transition events from Mistral/Tramontane to southerly marine flow taking place over the Gulf of Lion in Southern France in the time frame September-October 2012, during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) Special Observation Period 1 (SOP1). Low-level wind reversals associated with these transitions are found to have a strong impact on water vapour transport, leading to a large variability of the water vapour vertical and horizontal distribution. The high spatial and temporal resolution of the lidar data allow to monitor the time evolution of the three-dimensional water vapour field during these transitions from predominantly northerly Mistral/Tramontane flow to a predominantly southerly flow, allowing to identify the quite sharp separation between these flows, which is also quite well captured by the mesoscale models.

  11. Properties of alumina films prepared by metal-organic chemical vapour deposition at atmospheric pressure in hte presence of small amounts of water

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Haanappel, V.A.C.; van Corbach, H.D.; Rem, J.B.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin alumina films were deposited on stainless steel, type AISI 304. The deposition process was carried out in nitrogen with low partial pressures of water (0–2.6 × 10−2 kPa (0−0.20 mmHg)) by metal-organic chemical vapour deposition (MOCVD) with aluminium-tri-sec-butoxide (ATSB) as the precursor.

  12. Relationships of solar radiation and vapour pressure deficit with photosynthesis and water relations in dry-land pigeon pea

    International Nuclear Information System (INIS)

    Subramanian, V.B.; Venkateswarlu, S.; Maheswari, M.; Sankar, G.R.M.

    1994-01-01

    A study was undertaken to compare the relationships of photosynthetically active radiation (PAR) and vapour pressure deficit (VPD) with carbon assimilation and water relations of dry-land pigeon pea at the vegetative and reproductive phases. Photosynthetic rate (Pn), transpiration rate (T), leaf water potential (wL), and stomatal conductance (gs) were measured at 7- to 10-day intervals from 1 month after seedling until a fortnight before harvest during two seasons. Generally, Pn, T, and gs were higher and wL was lower during the reproductive than during the vegetative phase. At high PAR and VPD, Pn, T, wL, and gs decreased. The decrease in the T at high PAR was smaller during the reproductive phase. Growth of dry-land pigeon pea was affected not only during periods of water stress which was associated with high PAR and high VPD but also under conditions of favourable plant water status which were associated with less than optimal levels of PAR. It also showed transpiration efficiency (TE) was lower during the pod-filling than during the vegetative phase, when PAR was optimum

  13. Airborne differential absorption lidar for water vapour measurements in the upper troposphere and lower stratosphere in the spectral region around 940 nm

    Energy Technology Data Exchange (ETDEWEB)

    Poberaj, G.

    2000-07-01

    Two all-solid-state laser systems were developed and studied in detail to optimise their performance for an airborne water vapour differential absorption lidar (DIAL). Their special features are high average output powers and excellent spectral properties in the 940-nm spectral region relevant for monitoring very low water vapour contents in the upper troposphere and lower stratosphere. One system is an injection-seeded pulsed Ti:sapphire ring laser with a spectral bandwidth of 105 MHz and an average power of 1.1 W. The other system is an injection-seeded optical parametric oscillator (OPO) in a ring configuration. Using KTP as nonlinear crystal, a signal output with a spectral bandwidth of 140 MHz and an average power of 1.2 W was achieved. Both systems, the Ti:sapphire ring laser and the KTP OPO, possess spectral purity values higher than 99%. The pump source for these systems is a frequency doubled diode-pumped Nd:YAG laser operating at a repetition rate of 100 Hz. The KTP OPO system has been used as a transmitter in a new airborne water vapour DIAL instrument. For the first time, measurements of two-dimensional water vapour distributions with a high vertical (500 m) and horizontal (20 km) resolution across several potential vorticity streamers were performed. Very low water vapour mixing ratios (10-50 ppmv) and strong gradients were observed in the tropopause region. The sensitivity of the DIAL instrument in the centre of a stratospheric intrusion ranges from 3% in the near field to 12% in the far field (4 km). The first comparison experiments with in situ measuring instruments show a good agreement. Considerable differences are found between DIAL measurements and data obtained from the ECMWF operational analyses and a mesoscale numerical model. (orig.)

  14. Radon diffusion studies in air, gravel, sand, soil and water

    International Nuclear Information System (INIS)

    Singh, B.; Singh, S.; Virk, H.S.

    1993-01-01

    Radon isotopes are practically inert and have properties of gases under conditions of geological interest. During their brief lives their atoms are capable of moving from sites of their generation. Radon diffusion studies were carried out in air, gravel, sand, soil and water using silicon diffused junction electronic detector, Alphameter-400. Diffusion constant and diffusion length is calculated for all these materials. (author)

  15. Water vapour in the middle atmosphere of Venus:. An improved treatment of the Venera 15 ir spectra

    Science.gov (United States)

    Ignatiev, N. i.; Moroz, V. i.; Zasova, L. V.; Khatuntsev, I. v.

    1999-08-01

    In 1983, spectra of Venus in the region of 6-40 μm were measured by means of the Fourier Spectrometer aboard the Venera 15 orbiter. It covered local solar times from 4 am to 10 am and from 4 pm to 10 pm in the latitude range from 65°S up to 87°N. The results of an extended processing and analysis of these data are presented. Time and spatial variations of the water vapour were found. Most of the measurements fall in the range of 5-15 ppm, which is close to earlier results. The effective altitude of sounding is approximately equal to the altitude where the optical depth τ = 1. In the northern hemisphere, which was mainly covered by the measurements, two latitude regions can be distinguished; (A) 20° 60°, which are characterised by different altitudes of the level of τ = 1, 62 and 55 km respectively. Mean mixing ratios near this level in the two regions are almost the same, but the partial pressures and mass densities in the region (B) are 2-4 times greater than those in region (A). In region (A) a weak maximum was detected near 10 am local solar time (17 ppm at φ = 35°) and a minimum-near 10 pm (2ppm at φ = 30°). Region (B) is of inhomogeneous structure, and the retrieved mixing ratio has greater uncertainty and may probably change from the low values up to 30 ppm. In region (A) the water vapour mass density at the level of τ = 1 is 2-4 times greater than the mean density of the water contained in aerosol particles, while in region (B) this ratio may vary in the limits 0.5-5. Although the retrieval of H2O mixing ratio altitude profile from the Venera 15 data appeared to be impossible, indirect indications were found that at least in region (A) the mixing ratio decreases with altitude.

  16. Water vapour solubility and conductivity study of the proton conductor BaCe(0.9 − x)ZrxY0.1O(3 − δ)

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos; Caboche, G:

    2009-01-01

    The perovskite BaCe(0.9 − x)ZrxY0.1O(3 − δ) has been prepared by solid state reaction at 1400 °C and conventional sintering at 1700 °C. Water uptake experiments performed between 400 and 600 °C, at a water vapour pressure of 0.02 atm, provide data on the concentration of protons incorporated in t...

  17. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    Science.gov (United States)

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Anomalous water diffusion in salt solutions

    Science.gov (United States)

    Ding, Yun; Hassanali, Ali A.; Parrinello, Michele

    2014-01-01

    The dynamics of water exhibits anomalous behavior in the presence of different electrolytes. Recent experiments [Kim JS, Wu Z, Morrow AR, Yethiraj A, Yethiraj A (2012) J Phys Chem B 116(39):12007–12013] have found that the self-diffusion of water can either be enhanced or suppressed around CsI and NaCl, respectively, relative to that of neat water. Here we show that unlike classical empirical potentials, ab initio molecular dynamics simulations successfully reproduce the qualitative trends observed experimentally. These types of phenomena have often been rationalized in terms of the “structure-making” or “structure-breaking” effects of different ions on the solvent, although the microscopic origins of these features have remained elusive. Rather than disrupting the network in a significant manner, the electrolytes studied here cause rather subtle changes in both structural and dynamical properties of water. In particular, we show that water in the ab initio molecular dynamics simulations is characterized by dynamic heterogeneity, which turns out to be critical in reproducing the experimental trends. PMID:24522111

  19. Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Di Biagio, C. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); University of Siena, Department of Earth Science, Siena (Italy); Di Sarra, A. [ENEA, Laboratory for Earth Observations and Analyses, Rome (Italy); Eriksen, P. [Danish Climate Centre, DMI, Danish Meteorological Institute, Copenhagen (Denmark); Ascanius, S.E. [DMI, Danish Meteorological Institute, Qaanaaq (Greenland); Muscari, G. [INGV, Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Holben, B. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2012-08-15

    This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth ({tau}) obtained at Thule Air Base (Greenland) in 2007-2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A ({Delta}SW{sub A}), wv ({Delta}SW{sub wv}), and aerosols ({Delta}SW{sub {tau}}) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm{sup -2} (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm{sup -2} (+4.5%). The annual mean radiative effect is estimated to be -(21-22) Wm{sup -2} for wv, and +(2-3) Wm{sup -2} for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in {Delta}SW{sub wv} by 0.93 Wm{sup -2} (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in {Delta}SW{sub A} by 0.41 Wm{sup -2} (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm{sup -2} (-6.7%). The instantaneous aerosol radiative forcing (RF{sub {tau}}) reaches values of -28 Wm{sup -2} and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FE{sub {tau}}) for solar zenith angles between 55 and 70 is estimated to be (-120.6 {+-} 4.3) for 0.1 < A < 0.2, and (-41.2 {+-} 1.6) Wm{sup -2} for 0.5 < A < 0.6. (orig.)

  20. Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP

    Directory of Open Access Journals (Sweden)

    O. Bock

    2013-10-01

    Full Text Available The Development of Methodologies for Water Vapour Measurement (DEMEVAP project aims at assessing and improving humidity sounding techniques and establishing a reference system based on the combination of Raman lidars, ground-based sensors and GPS. Such a system may be used for climate monitoring, radiosonde bias detection and correction, satellite measurement calibration/validation, and mm-level geodetic positioning with Global Navigation Satellite Systems. A field experiment was conducted in September–October 2011 at Observatoire de Haute-Provence (OHP. Two Raman lidars (IGN mobile lidar and OHP NDACC lidar, a stellar spectrometer (SOPHIE, a differential absorption spectrometer (SAOZ, a sun photometer (AERONET, 5 GPS receivers and 4 types of radiosondes (Vaisala RS92, MODEM M2K2-DC and M10, and Meteolabor Snow White participated in the campaign. A total of 26 balloons with multiple radiosondes were flown during 16 clear nights. This paper presents preliminary findings from the analysis of all these data sets. Several classical Raman lidar calibration methods are evaluated which use either Vaisala RS92 measurements, point capacitive humidity measurements, or GPS integrated water vapour (IWV measurements. A novel method proposed by Bosser et al. (2010 is also tested. It consists in calibrating the lidar measurements during the GPS data processing. The methods achieve a repeatability of 4–5%. Changes in the calibration factor of IGN Raman lidar are evidenced which are attributed to frequent optical re-alignments. When modelling and correcting the changes as a linear function of time, the precision of the calibration factors improves to 2–3%. However, the variations in the calibration factor, and hence the absolute accuracy, between methods and types of reference data remain at the level of 7%. The intercomparison of radiosonde measurements shows good agreement between RS92 and Snow White measurements up to 12 km. An overall dry bias is found

  1. Spatial Heterodyne Observations of Water (SHOW) vapour in the upper troposphere and lower stratosphere from a high altitude aircraft: Modelling and sensitivity analysis

    Science.gov (United States)

    Langille, J. A.; Letros, D.; Zawada, D.; Bourassa, A.; Degenstein, D.; Solheim, B.

    2018-04-01

    A spatial heterodyne spectrometer (SHS) has been developed to measure the vertical distribution of water vapour in the upper troposphere and the lower stratosphere with a high vertical resolution (∼500 m). The Spatial Heterodyne Observations of Water (SHOW) instrument combines an imaging system with a monolithic field-widened SHS to observe limb scattered sunlight in a vibrational band of water (1363 nm-1366 nm). The instrument has been optimized for observations from NASA's ER-2 aircraft as a proof-of-concept for a future low earth orbit satellite deployment. A robust model has been developed to simulate SHOW ER-2 limb measurements and retrievals. This paper presents the simulation of the SHOW ER-2 limb measurements along a hypothetical flight track and examines the sensitivity of the measurement and retrieval approach. Water vapour fields from an Environment and Climate Change Canada forecast model are used to represent realistic spatial variability along the flight path. High spectral resolution limb scattered radiances are simulated using the SASKTRAN radiative transfer model. It is shown that the SHOW instrument onboard the ER-2 is capable of resolving the water vapour variability in the UTLS from approximately 12 km - 18 km with ±1 ppm accuracy. Vertical resolutions between 500 m and 1 km are feasible. The along track sampling capability of the instrument is also discussed.

  2. Developing a western Siberia reference site for tropospheric water vapour isotopologue observations obtained by different techniques (in situ and remote sensing

    Directory of Open Access Journals (Sweden)

    K. Gribanov

    2014-06-01

    water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour δDv and δ18Ov. So far, very few intercomparisons of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high-resolution isotopically enabled general circulation models (GCMs provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with two types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, western Siberia: hourly ground-based FTIR total atmospheric columnar δDv amounts, and in situ hourly Picarro δDv measurements. There is an excellent correlation between observed and predicted δDv at surface while the comparison between water column values derived from the model compares well with FTIR estimates.

  3. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine

    Science.gov (United States)

    Granier, A.; Biron, P.; Köstner, B.; Gay, L. W.; Najjar, G.

    1996-03-01

    Simultaneous measurements of xylem sap flow and water vapour flux over a Scots pine ( Pinus sylvestris) forest (Hartheim, Germany), were carried out during the Hartheim Experiment (HartX), an intensive observation campaign of the international programme REKLIP. Sap flow was measured every 30 min using both radial constant heating (Granier, 1985) and two types of Cermak sap flowmeters installed on 24 trees selected to cover a wide range of the diameter classes of the stand (min 8 cm; max 17.5 cm). Available energy was high during the observation period (5.5 to 6.9 mm.day-1), and daily cumulated sap flow on a ground area basis varied between 2.0 and 2.7 mm day-1 depending on climate conditions. Maximum hourly values of sap flow reached 0.33 mm h-1, i.e., 230 W m-2. Comparisons of sap flow with water vapour flux as measured with two OPEC (One Propeller Eddy Correlation, University of Arizona) systems showed a time lag between the two methods, sap flow lagging about 90 min behind vapour flux. After taking into account this time lag in the sap flow data set, a good agreement was found between both methods: sap flow = 0.745* vapour flux, r 2 = 0.86. The difference between the two estimates was due to understory transpiration. Canopy conductance ( g c ) was calculated from sap flow measurements using the reverse form of Penman-Monteith equation and climatic data measured 4 m above the canopy. Variations of g c were well correlated ( r 2 = 0.85) with global radiation ( R) and vapour pressure deficit ( vpd). The quantitative expression for g c = f ( R, vpd) was very similar to that previously found with maritime pine ( Pinus pinaster) in the forest of Les Landes, South Western France.

  4. Development of a novel smoke-flavoured salmon product by sodium replacement using water vapour permeable bags.

    Science.gov (United States)

    Rizo, Arantxa; Fuentes, Ana; Barat, José M; Fernández-Segovia, Isabel

    2018-05-01

    Food manufacturers need to reduce sodium content to meet consumer and public health demands. In the present study, the use of sodium-free (SF) salt and KCl to develop a novel smoke-flavoured salmon product with reduced sodium content was evaluated. Fifty percent of NaCl was replaced with 50% of SF salt or 50% KCl in the salmon smoke-flavouring process, which was carried out using water vapour permeable bags. Triangle tests showed that samples with either SF salt or KCl were statistically similar to the control samples (100% NaCl). Because no sensorial advantage in using SF salt was found compared to KCl and given the lower price of KCl, the KCl-NaCl samples were selected for the next phase. The changes of physicochemical and microbial parameters in smoke-flavoured salmon during 42 days showed that partial replacement of NaCl with KCl did not significantly affect the quality and shelf-life of smoke-flavoured salmon, which was over 42 days. Smoke-flavoured salmon with 37% sodium reduction was developed without affecting the sensory features and shelf-life. This is an interesting option for reducing the sodium content in such products to help meet the needs set by both health authorities and consumers. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Comparison of Lyman-alpha and LI-COR infrared hygrometers for airborne measurement of turbulent fluctuations of water vapour

    Science.gov (United States)

    Lampert, Astrid; Hartmann, Jörg; Pätzold, Falk; Lobitz, Lennart; Hecker, Peter; Kohnert, Katrin; Larmanou, Eric; Serafimovich, Andrei; Sachs, Torsten

    2018-05-01

    To investigate if the LI-COR humidity sensor can be used as a replacement of the Lyman-alpha sensor for airborne applications, the measurement data of the Lyman-alpha and several LI-COR sensors are analysed in direct intercomparison flights on different airborne platforms. One vibration isolated closed-path and two non-isolated open-path LI-COR sensors were installed on a Dornier 128 twin engine turbo-prop aircraft. The closed-path sensor provided absolute values and fluctuations of the water vapour mixing ratio in good agreement with the Lyman-alpha. The signals of the two open-path sensors showed considerable high-frequency noise, and the absolute value of the mixing ratio was observed to drift with time in this vibrational environment. On the helicopter-towed sensor system Helipod, with very low vibration levels, the open-path LI-COR sensor agreed very well with the Lyman-alpha sensor over the entire frequency range up to 3 Hz. The results show that the LI-COR sensors are well suited for airborne measurements of humidity fluctuations, provided that a vibrationless environment is given, and this turns out to be more important than close sensor spacing.

  6. Water, vapour and heat transport in concrete cells for storing radioactive waste

    Science.gov (United States)

    Carme Chaparro, M.; W. Saaltink, Maarten

    2016-08-01

    Water is collected from a drain situated at the centre of a concrete cell that stores radioactive waste at 'El Cabril', which is the low and intermediate level radioactive waste disposal facility of Spain. This indicates flow of water within the cell. 2D numerical models have been made in order to reproduce and understand the processes that take place inside the cell. Temperature and relative humidity measured by sensors in the cells and thermo-hydraulic parameters from laboratory test have been used. Results show that this phenomenon is caused by capillary rise from the phreatic level, evaporation and condensation within the cell produced by temperature gradients caused by seasonal temperature fluctuations outside. At the centre of the cell, flow of gas and convection also play a role. Three remedial actions have been studied that may avoid the leakage of water from the drain.

  7. Thickness and structure of the water film deposited from vapour on calcite surfaces

    DEFF Research Database (Denmark)

    Bohr, Jakob; Wogelius, Roy A.; Morris, Peter M.

    2010-01-01

    Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from......Synchrotron X-ray reflectivity (SXR) was used to measure the thickness of the water film that adsorbs on a {10¯14} cleavage surface of calcite (CaCO3) in a sample chamber where relative humidity could be controlled within the range from...

  8. Online analytical investigations on solvent-, temperature- and water vapour-induced phase transformations of citric acid

    Energy Technology Data Exchange (ETDEWEB)

    Helmdach, L.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaft, Verfahrenstechnik/TVT, Halle (Saale) (Germany); Feth, M.P. [Sanofi-Aventis Deutschland GmbH, Chemical and Process Development Frankfurt Chemistry, Frankfurt (Germany)

    2012-09-15

    It was demonstrated exemplarily for the crystallization of citric acid that the usage of an ultrasound device as well as Raman spectroscopy enables the inline measurement and the control of phase transitions. The influence of different solvent compositions (water and ethanol-water) on the crystallization of citric acid was investigated. By increasing the ethanol content the transformation point was shifted towards higher temperatures. In addition, a strong impact on the nucleation point as well as on the crystal habit was detected in ethanol-water mixtures. The results lead to the assumption that a citric acid solvate exists, which is, however, highly unstable upon isolation from mother liquor and converts fast into the known anhydrate or monohydrate forms of citric acid. The presence of such a solvate, however, could not be proven during this study. Furthermore, factors such as temperature and humidity which might influence the phase transition of the solid product were analyzed by Hotstage-Raman Spectroscopy and Water Vapor Sorption Gravimetry-Dispersive Raman Spectroscopy. Both, temperature as well as humidity show a strong influence on the behaviour of CAM. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Oxidation of X20 in Water Vapour: The Effect of Temperature and Oxygen Partial Pressure

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Montgomery, Melanie; Somers, Marcel A. J.

    2009-01-01

    The oxidation behaviour of X20 in various mixtures of water, oxygen and hydrogen was investigated at temperatures between 500 C and 700 C (time: 336 h). The samples were characterised using reflected light microscopy and scanning electron microscopy equipped with energy dispersive spectroscopy...

  10. Carbon dioxide and water vapour exchange from understory species in boreal forest.

    NARCIS (Netherlands)

    Heijmans, M.M.P.D.; Arp, W.J.; Chapin, F.S.

    2004-01-01

    Although recent eddy covariance measurements in boreal forests provide CO2 and energy exchange data for the whole ecosystem, very little is known about the role of the understory vegetation. We conducted chamber flux measurements in an Alaskan black spruce forest in order to compare CO2 and water

  11. Detection of chemical substances in water using an oxide nanowire transistor covered with a hydrophobic nanoparticle thin film as a liquid-vapour separation filter

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2016-08-01

    Full Text Available We have developed a method to detect the presence of small amounts of chemical substances in water, using a Al2O3 nanoparticle thin film covered with phosphonic acid (HDF-PA self-assembled monolayer. The HDF-PA self-assembled Al2O3 nanoparticle thin film acts as a liquid-vapour separation filter, allowing the passage of chemical vapour while blocking liquids. Prevention of the liquid from contacting the SnO2 nanowire and source-drain electrodes is required in order to avoid abnormal operation. Using this characteristic, the concentration of chemical substances in water could be evaluated by measuring the current changes in the SnO2 nanowire transistor covered with the HDF-PA self-assembled Al2O3 nanoparticle thin film.

  12. Renovation and design of double casement windows with regard to the occurrence of water vapour condensation or mould on the interior surface of the window jamb

    Science.gov (United States)

    Kudrnacova, L.; Balik, L.

    2017-10-01

    The condensation of water vapour on the interior surface is an indicator of construction dysfunction or ignoring of the surroundings temperature and relative humidity. This paper deals with analysis of the occurrence of condensation on the jamb of double casement windows (windows with two window casements). More precisely, this is a surface in the interior where water vapour condensation or mould occur. For the renovation of existing double casement windows, there are different solutions based on window design: application of double insulating glazing on the interior window casement, application of double insulating glazing on the exterior casement, or installation of a simple window. We first describe measurement of an existing double casement window located in a mountain cottage. Second, the results and comparison of 2D thermal model of different types of double casement window construction. Also, the external insulation of the peripheral wall was included in the model.

  13. Influence of capillary forces on water injection into hot rock, saturated with superheated vapour

    Energy Technology Data Exchange (ETDEWEB)

    Tsypkin, G.G. [Institute for Problems in Mechanics, RAS, Vernadskogo Ave. 101, 119420 Moscow (Russian Federation); Calore, C. [Istituto di Geoscienze e Georisorse - CNR, Sezione di Firenze, via La Pira 4, 50121 Florence (Italy)

    2007-07-15

    The results of a theoretical study and numerical analysis of the role of capillary pressure of cold water injection into depleted geothermal reservoirs are presented. A simplified 1-D mathematical model is developed, that describes the motion of a sharp vaporization front. Some asymptotic estimates for a wide range of parameters are given and a similarity solution is derived. Analytical results are then compared with those obtained from the numerical reservoir simulator TOUGH2, showing a good agreement between the two. (author)

  14. Hydrogen production by high temperature electrolysis of water vapour and nuclear reactors

    International Nuclear Information System (INIS)

    Jean-Pierre Py; Alain Capitaine

    2006-01-01

    This paper presents hydrogen production by a nuclear reactor (High Temperature Reactor, HTR or Pressurized Water Reactor, PWR) coupled to a High Temperature Electrolyser (HTE) plant. With respect to the coupling of a HTR with a HTE plant, EDF and AREVA NP had previously selected a combined cycle HTR scheme to convert the reactor heat into electricity. In that case, the steam required for the electrolyser plant is provided either directly from the steam turbine cycle or from a heat exchanger connected with such cycle. Hydrogen efficiency production is valued using high temperature electrolysis. Electrolysis production of hydrogen can be performed with significantly higher thermal efficiencies by operating in the steam phase than in the water phase. The electrolysis performance is assessed with solid oxide and solid proton electrolysis cells. The efficiency from the three operating conditions (endo-thermal, auto-thermal and thermo-neutral) of a high temperature electrolysis process is evaluated. The technical difficulties to use the gases enthalpy to heat the water are analyzed, taking into account efficiency and technological challenges. EDF and AREVA NP have performed an analysis to select an optimized process giving consideration to plant efficiency, plant operation, investment and production costs. The paper provides pathways and identifies R and D actions to reach hydrogen production costs competitive with those of other hydrogen production processes. (authors)

  15. High-pressure (vapour + liquid) equilibria for ternary systems composed by {(E)-2-hexenal or hexanal + carbon dioxide + water}: Partition coefficient measurement

    International Nuclear Information System (INIS)

    Bejarano, Arturo; López, Pablo I.; Valle, José M. del; Fuente, Juan C. de la

    2015-01-01

    Highlights: • A new apparatus based on a static–analytic method was assembled in this work. • This work reports high-pressure VLE data of (E)-2-hexenal or hexanal + CO 2 + water. • Data includes (CO 2 + water) partition coefficients of (E)-2-hexenal and hexanal. • High separation factors from water (∼10 4 ) were found especially for (E)-2-hexenal. • The data were obtained at T = (313, 323, and 333) K and pressures from (8 to 19) MPa. - Abstract: A new apparatus based on a static–analytic method assembled in this work was utilised to perform high-pressure (vapour + liquid) equilibria measurements of aqueous ternary systems. This work includes values of isothermal partition coefficients between CO 2 and water of two apple aroma constituents, (E)-2-hexenal and hexanal. Additionally, this work reports new experimental (vapour + liquid) equilibria measurements for the ternary systems (CO 2 + (E)-2-hexenal + water) and (CO 2 + hexanal + water), at fixed liquid phase composition (600 mg · kg −1 ), at temperatures of (313, 323 and 333) K and at pressures from (8 to 19) MPa. Vapour liquid interphase was checked and monitored visually for all the systems studied in this work. No liquid immiscibility was observed at the composition, temperatures and pressures studied. In order to suggest reasonable operation conditions for fractionation of aromas with dense carbon dioxide, partition coefficients of the aroma compounds between CO 2 and water along with their separation factors from water were calculated. Partition coefficients of (E)-2-hexenal between CO 2 and water were in the range of (6 to 91) and where found to be near six times higher than those of hexanal (9 to 17). Very high separation factors from water were observed (∼10 4 ) especially for (E)-2-hexenal. The highest separation factor, for both compounds, was found at a temperature of 313 K and pressures from (12 to 14) MPa

  16. Study of transport of oxygen and water vapour between cells in valve regulated lead-acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Culpin, Barry [11 Bluebell Close, Whittle -le -Woods, Chorley PR6 7RH (United Kingdom); Peters, Ken [Battery Design and Manfg Systems, Glenbank, 77 Chatsworth Road, Worsley, Manchester M28 2GG (United Kingdom)

    2006-08-25

    Valve-regulated lead-acid batteries are maintenance free, safer, office compatible, and have higher volume efficiency than conventional designs. They are universally used in telecommunications and uninterruptible power supply systems. With the electrolyte immobilized in the separator or as a gel, it is feasible for a monobloc battery to have cells that are not fully sealed from one another, that is to have a common gas space, with certain attendant benefits. This study demonstrates that small differences in the saturation level, acid strength or operating temperature of the cells in such designs can initiate a cycle that may subsequently result in failure if the movement of oxygen and water vapour between cells is unrestricted. Cells that are initially out-of-balance will go further out-of-balance at an ever-increasing rate. This situation can also arise in monobloc designs with sealed cells if the intercell seal is inadequate or incomplete. Battery failure is associated with a re-distribution of water between the cells with some drying out and having high impedance. The preferential oxygen absorption in those cells produces heavily sulfated negative plates. Results on batteries tested under a range of overcharge conditions and temperatures are presented to illustrate these effects. The rate at which the cycle occurs depends on the initial relative density of the acid, the temperature or saturation imbalance between the cells, and the size of the interconnecting gas space. Batteries operating under a continuous cycling regime, particularly those with high overcharge currents and voltages that generate large volumes of oxygen, are more prone to this type of failure mode than batteries operating under low overcharge, intermittent cycling, or float conditions. (author)

  17. Water vapor permeabilities through polymers: diffusivities from experiments and simulations

    International Nuclear Information System (INIS)

    Seethamraju, Sindhu; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar

    2014-01-01

    This study experimentally determines water vapor permeabilities, which are subsequently correlated with the diffusivities obtained from simulations. Molecular dynamics (MD) simulations were used for determining the diffusion of water vapor in various polymeric systems such as polyethylene, polypropylene, poly (vinyl alcohol), poly (vinyl acetate), poly (vinyl butyral), poly (vinylidene chloride), poly (vinyl chloride) and poly (methyl methacrylate). Cavity ring down spectroscopy (CRDS) based methodology has been used to determine the water vapor transmission rates. These values were then used to calculate the diffusion coefficients for water vapor through these polymers. A comparative analysis is provided for diffusivities calculated from CRDS and MD based results by correlating the free volumes. (paper)

  18. An observational study of air and water vapour convergence over the Bernese Alps, Switzerland, during summertime and the development of isolated thunderstorms

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Edward [Bern Univ. (Switzerland). Inst. of Applied Physics; Lews Castle College, University of the Highlands and Islands, Stornoway, Scotland (United Kingdom); N' Dri Koffi, Ernest; Maetzler, Christian [Bern Univ. (Switzerland). Inst. of Applied Physics

    2012-12-15

    The daytime summer phenomenon of the mesoscale transport of air and water vapour from the Swiss lowlands into the nearby western Alps, leading to orographic convection, is investigated using a range of independent observations. These observations are: Global Positioning System (GPS) integrated water vapour (IWV) data, the TROWARA microwave radiometer, MeteoSwiss ANETZ surface weather station data, the Payerne radiosonde, synoptic analyses for Switzerland and Europe, EUMETSAT and NOAA visible and infrared satellite images, MeteoSwiss operational precipitation radar, photographs and webcam images including time-lapse cloud animations. The intention was to show, using GPS IWV data, that significant differences in IWV may occur between the Swiss plain and nearby Alps during small single-cell Alpine thunderstorm events, and that these may be attributable to regional airflow convergence. Two particular case studies are presented for closer examination: 20 June 2005 and 13 June 2006. On both days, fine and warm weather was followed by isolated orographic convection over the Alps in the afternoon and evening, producing thunderstorms. The thunderstorms investigated were generally small, local, discrete and short-lived phenomena. They were selected for study because of almost stationary position over orography, rendering easy observation because they remained contained within a particular mountain region before dissipating. The results show that large transfers of air and water vapour occur from the Swiss plain to the mountains on such days, with up to a 50% increase in GPS IWV values at individual Alpine stations, coincident with strong airflow convergence in the same locality. (orig.)

  19. Transport coefficients and cross sections for electrons in water vapour: Comparison of cross section sets using an improved Boltzmann equation solution

    Science.gov (United States)

    Ness, K. F.; Robson, R. E.; Brunger, M. J.; White, R. D.

    2012-01-01

    This paper revisits the issues surrounding computation of electron transport properties in water vapour as a function of E/n0 (the ratio of the applied electric field to the water vapour number density) up to 1200 Td. We solve the Boltzmann equation using an improved version of the code of Ness and Robson [Phys. Rev. A 38, 1446 (1988)], facilitating the calculation of transport coefficients to a considerably higher degree of accuracy. This allows a correspondingly more discriminating test of the various electron-water vapour cross section sets proposed by a number of authors, which has become an important issue as such sets are now being applied to study electron driven processes in atmospheric phenomena [P. Thorn, L. Campbell, and M. Brunger, PMC Physics B 2, 1 (2009)] and in modeling charged particle tracks in matter [A. Munoz, F. Blanco, G. Garcia, P. A. Thorn, M. J. Brunger, J. P. Sullivan, and S. J. Buckman, Int. J. Mass Spectrom. 277, 175 (2008)].

  20. Prediction of clay content from water vapour sorption isotherms considering hysteresis and soil organic matter content

    DEFF Research Database (Denmark)

    Arthur, E.; Tuller, M.; Møldrup, Per

    2015-01-01

    Soil texture, in particular the clay fraction, governs numerous environmental, agricultural and engineering soil processes. Traditional measurement methods for clay content are laborious and impractical for large-scale soil surveys. Consequently, clay prediction models that are based on water...... within a RH range from 3 to 93%. The clay contents, which ranged between 1 and 56%, were measured with a combination of sieving and sedimentation methods. Two regression models were developed for both adsorption and desorption at 10 RH levels (5, 10, 20, 30, 40, 50, 60, 70, 80 and 90%). While the first...

  1. Derivation of water vapour absorption cross-sections in the red region

    Science.gov (United States)

    Lal, M.; Chakrabarty, D. K.

    1994-01-01

    Absorption spectrum in 436 to 448 nm wavelength region gives NO2 and O3 column densities. This spectrum can also give H2O column density. The spectrum in the range of 655 to 667 nm contains absorption due to NO3 and H2O. Combining the absorption spectra in the wavelength ranges of 436 to 448 and 655 to 667 nm, water vapor absorption cross-sections in this range comes out to be of the order of 2.0 x 10(exp -24) cm(exp -2).

  2. Application of remote sensing techniques to study aerosol water vapour uptake in a real atmosphere

    Science.gov (United States)

    Fernández, A. J.; Molero, F.; Becerril-Valle, M.; Coz, E.; Salvador, P.; Artíñano, B.; Pujadas, M.

    2018-04-01

    In this work, a study of several observations of aerosol water uptake in a real (non-controlled) atmosphere, registered by remote sensing techniques, are presented. In particular, three events were identified within the Atmospheric Boundary Layer (ABL) and other two events were detected in the free troposphere (beyond the top of the ABL). Then, aerosol optical properties were measured at different relative humidity (RH) conditions by means of a multi-wavelength (MW) Raman lidar located at CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Research Centre for Energy, Environment and Technology) facilities in Madrid (Spain). Additionally, aerosol optical and microphysical properties provided by automatic sun and sky scanning spectral radiometers (CIMEL CE-318) and a meteorological analysis complement the study. However, a detailed analysis only could be carried out for the cases observed within the ABL since well-mixed atmospheric layers are required to properly characterize these processes. This characterization of aerosol water uptake is based on the curve described by the backscatter coefficient at 532 nm as a function of RH which allows deriving the enhancement factor. Thus, the Hänel parameterization is utilized, and the results obtained are in the range of values reported in previous studies, which shows the suitability of this approach to study such hygroscopic processes. Furthermore, the anti-correlated pattern observed on backscatter-related Ångström exponent (532/355 nm) and RH indicates plausible signs of aerosol hygroscopic growth. According to the meteorological analysis performed, we attribute such hygroscopic behaviour to marine aerosols which are advected from the Atlantic Ocean to the low troposphere in Madrid. We have also observed an interesting response of aerosols to RH at certain levels which it is suggested to be due to a hysteresis process. The events registered in the free troposphere, which deal with volcano

  3. Range-energy relations and stopping power of water, water vapour and tissue equivalent liquid for α particles over the energy range 0.5 to 8 MeV

    International Nuclear Information System (INIS)

    Palmer, R.B.J.; Akhavan-Rezayat, Ahmad

    1978-01-01

    Experimental range-energy relations are presented for alpha particles in water, water vapour and tissue equivalent liquid at energies up to 8 MeV. From these relations differential stopping powers are derived at 0.25 MeV energy intervals. Consideration is given to sources of error in the range-energy measurements and to the uncertainties that these will introduce into the stopping power values. The ratio of the differential stopping power of muscle equivalent liquid to that of water over the energy range 0.5 to 7.5 MeV is discussed in relation to the specific gravity and chemical composition of the muscle equivalent liquid. Theoretical molecular stopping power calculations based upon the Bethe formula are also presented for water. The effect of phase upon the stopping power of water is discussed. The molecular stopping power of water vapour is shown to be significantly higher than that of water for energies below 1.25 MeV and above 2.5 MeV, the ratio of the two stopping powers rising to 1.39 at 0.5 MeV and to 1.13 at 7.0 MeV. Stopping power measurements for other liquids and vapours are compared with the results for water and water vapour and some are observed to have stopping power ratios in the vapour and liquid phases which vary with energy in a similar way to water. It is suggested that there may be several factors contributing to the increased stopping power of liquids. The need for further experimental results on a wider range of liquids is stressed

  4. Kinetic isotopic fractionation during diffusion of ionic species in water

    Science.gov (United States)

    Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John N.; Hutcheon, Ian D.; Williams, Ross W.; Sturchio, Neil C.; Beloso, Abelardo D.

    2006-01-01

    Experiments specifically designed to measure the ratio of the diffusivities of ions dissolved in water were used to determine DLi/DK,D/D,D/D,D/D,andD/D. The measured ratio of the diffusion coefficients for Li and K in water (D Li/D K = 0.6) is in good agreement with published data, providing evidence that the experimental design being used resolves the relative mobility of ions with adequate precision to also be used for determining the fractionation of isotopes by diffusion in water. In the case of Li, we found measurable isotopic fractionation associated with the diffusion of dissolved LiCl (D/D=0.99772±0.00026). This difference in the diffusion coefficient of 7Li compared to 6Li is significantly less than that reported in an earlier study, a difference we attribute to the fact that in the earlier study Li diffused through a membrane separating the water reservoirs. Our experiments involving Mg diffusing in water found no measurable isotopic fractionation (D/D=1.00003±0.00006). Cl isotopes were fractionated during diffusion in water (D/D=0.99857±0.00080) whether or not the co-diffuser (Li or Mg) was isotopically fractionated. The isotopic fractionation associated with the diffusion of ions in water is much smaller than values we found previously for the isotopic fractionation of Li and Ca isotopes by diffusion in molten silicate liquids. A major distinction between water and silicate liquids is that water surrounds dissolved ions with hydration shells, which very likely play an important but still poorly understood role in limiting the isotopic fractionation associated with diffusion.

  5. Anisotropic diffusion of volatile pollutants at air-water interface

    Directory of Open Access Journals (Sweden)

    Li-ping Chen

    2013-04-01

    Full Text Available The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3 release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.

  6. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model

    KAUST Repository

    Li, Z. W.; Xu, Wenbin; Feng, G. C.; Hu, J.; Wang, C. C.; Ding, X. L.; Zhu, J. J.

    2012-01-01

    The propagation delay when radar signals travel from the troposphere has been one of the major limitations for the applications of high precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR). In this paper, we first present an elevation-dependent atmospheric correction model for Advanced Synthetic Aperture Radar (ASAR—the instrument aboard the ENVISAT satellite) interferograms with Medium Resolution Imaging Spectrometer (MERIS) integrated water vapour (IWV) data. Then, using four ASAR interferometric pairs over Southern California as examples, we conduct the atmospheric correction experiments with cloud-free MERIS IWV data. The results show that after the correction the rms differences between InSAR and GPS have reduced by 69.6 per cent, 29 per cent, 31.8 per cent and 23.3 per cent, respectively for the four selected interferograms, with an average improvement of 38.4 per cent. Most importantly, after the correction, six distinct deformation areas have been identified, that is, Long Beach–Santa Ana Basin, Pomona–Ontario, San Bernardino and Elsinore basin, with the deformation velocities along the radar line-of-sight (LOS) direction ranging from −20 mm yr−1 to −30 mm yr−1 and on average around −25 mm yr−1, and Santa Fe Springs and Wilmington, with a slightly low deformation rate of about −10 mm yr−1 along LOS. Finally, through the method of stacking, we generate a mean deformation velocity map of Los Angeles over a period of 5 yr. The deformation is quite consistent with the historical deformation of the area. Thus, using the cloud-free MERIS IWV data correcting synchronized ASAR interferograms can significantly reduce the atmospheric effects in the interferograms and further better capture the ground deformation and other geophysical signals.

  7. Correcting atmospheric effects on InSAR with MERIS water vapour data and elevation-dependent interpolation model

    KAUST Repository

    Li, Z. W.

    2012-05-01

    The propagation delay when radar signals travel from the troposphere has been one of the major limitations for the applications of high precision repeat-pass Interferometric Synthetic Aperture Radar (InSAR). In this paper, we first present an elevation-dependent atmospheric correction model for Advanced Synthetic Aperture Radar (ASAR—the instrument aboard the ENVISAT satellite) interferograms with Medium Resolution Imaging Spectrometer (MERIS) integrated water vapour (IWV) data. Then, using four ASAR interferometric pairs over Southern California as examples, we conduct the atmospheric correction experiments with cloud-free MERIS IWV data. The results show that after the correction the rms differences between InSAR and GPS have reduced by 69.6 per cent, 29 per cent, 31.8 per cent and 23.3 per cent, respectively for the four selected interferograms, with an average improvement of 38.4 per cent. Most importantly, after the correction, six distinct deformation areas have been identified, that is, Long Beach–Santa Ana Basin, Pomona–Ontario, San Bernardino and Elsinore basin, with the deformation velocities along the radar line-of-sight (LOS) direction ranging from −20 mm yr−1 to −30 mm yr−1 and on average around −25 mm yr−1, and Santa Fe Springs and Wilmington, with a slightly low deformation rate of about −10 mm yr−1 along LOS. Finally, through the method of stacking, we generate a mean deformation velocity map of Los Angeles over a period of 5 yr. The deformation is quite consistent with the historical deformation of the area. Thus, using the cloud-free MERIS IWV data correcting synchronized ASAR interferograms can significantly reduce the atmospheric effects in the interferograms and further better capture the ground deformation and other geophysical signals.

  8. Effect of paint on vapour resistivity in plaster

    Directory of Open Access Journals (Sweden)

    de Villanueva, L.

    2008-12-01

    Full Text Available The vapour resistivity of plaster coatings such as paint and their effectiveness as water repellents were studied in several types of plaster. To this end, painted, unpainted and pigmented specimens were tested. Experimental values were collected on diffusion and vapour permeability, or its inverse, water vapour resistivity.The data obtained were very useful for evaluating moisture exchange between plaster and the surrounding air, both during initial drying and throughout the life of the material. They likewise served as a basis for ensuring the proper evacuation of water vapour in walls, and use of the capacity of the porous network in plaster products to regulate moisture content or serve as a water vapour barrier to avoid condensation.Briefly, the research showed that pigments, water-based paints and silicon-based water repellents scantly raised vapour resistance. Plastic paints, enamels and lacquers, however, respectively induced five-, ten- and twenty-fold increases in vapour resistivity, on average.Se estudia el fenómeno de la resistividad al vapor de los de yeso y el efecto impermeabilizante que producen los recubrimientos de pintura sobre diversos tipos de yeso y escayola. Para ello, se ensayan probetas desnudas y recubiertas con distintos tipos de pintura, así como coloreados en masa. Se obtienen valores experimentales de la difusividad o permeabilidad al vapor o su inverso la resistividad al vapor de agua.Los datos obtenidos son muy útiles para valorar el fenómeno del intercambio de humedad entre el yeso y el ambiente, tanto durante el proceso de su secado inicial, como en el transcurso de su vida. Así como para disponer soluciones adecuadas para la evacuación del vapor de agua a través de los cerramientos, para utilizar la capacidad de regulación de la humedad, que proporciona el entramado poroso de los productos de yeso, o para impedir el paso del vapor de agua y evitar condensaciones.Como resumen de la investigación, se

  9. Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study

    Directory of Open Access Journals (Sweden)

    S. Pfahl

    2012-07-01

    Full Text Available Variations of stable water isotopes in water vapour have become measurable at a measurement frequency of about 1 Hz in recent years using novel laser spectroscopic techniques. This enables us to perform continuous measurements for process-based investigations of the atmospheric water cycle at the time scales relevant for synoptic and mesoscale meteorology. An important prerequisite for the interpretation of data from automated field measurements lasting for several weeks or months is a detailed knowledge about instrument properties and the sources of measurement uncertainty. We present here a comprehensive characterisation and comparison study of two commercial laser spectroscopic systems based on cavity ring-down spectroscopy (Picarro and off-axis integrated cavity output spectroscopy (Los Gatos Research. The uncertainty components of the measurements were first assessed in laboratory experiments, focussing on the effects of (i water vapour mixing ratio, (ii measurement stability, (iii uncertainties due to calibration and (iv response times of the isotope measurements due to adsorption-desorption processes on the tubing and measurement cavity walls. Based on the experience from our laboratory experiments, we set up a one-week field campaign for comparing measurements of the ambient isotope signals from the two laser spectroscopic systems. The optimal calibration strategy determined for both instruments was applied as well as the correction functions for water vapour mixing ratio effects. The root mean square difference between the isotope signals from the two instruments during the field deployment was 2.3‰ for δ2H, 0.5‰ for δ18O and 3.1‰ for deuterium excess. These uncertainty estimates from field measurements compare well to those found in the laboratory experiments. The present quality of measurements from laser spectroscopic instruments combined with a calibration system opens new possibilities for investigating the atmospheric

  10. Response of water vapour D-excess to land-atmosphere interactions in a semi-arid environment

    KAUST Repository

    Parkes, Stephen; McCabe, Matthew; Griffiths, Alan D.; Wang, Lixin; Chambers, Scott; Ershadi, Ali; Williams, Alastair G; Strauss, Josiah; Element, Adrian

    2016-01-01

    nocturnal inversion layer caused a lowering of dv values near the surface. In addition, transient mixing of vapour with a higher D-excess from above the nocturnal inversion modified these values, causing large variability during the night. These results indicate dET can generally be expected to show

  11. Diffusion in the pore water of compacted crushed salt

    Energy Technology Data Exchange (ETDEWEB)

    Fluegge, Judith; Herr, Sebastian; Lauke, Thomas; Meleshyn, Artur; Miehe, Ruediger; Ruebel, Andre

    2016-07-15

    Diffusion of dissolved radionuclides in the pore water of compacted crushed salt in the long-term is the most relevant process for the release of radionuclides from a dedicated repository for high-level waste in a salt formation as has been shown in latest safety assessments and research projects /BUH 16/. So far, diffusion coefficients for free water have been applied for the diffusion in pore water in models for long-term safety assessments. This conservative assumption was used, because data on the diffusion coefficient of dissolved substances in crushed salt have been missing. Furthermore, the diffusion coefficient in the pore water was assumed to be constant and independent from the degree of compaction of the crushed salt. The work presented in this report was intended to contribute to fill this gap of knowledge about how the diffusion of radionuclides takes place in the compacted backfill of a repository in salt. For the first time, the pore diffusion coefficient as well as its dependence on the porosity of the crushed salt was determined experimentally by means of through-diffusion experiments using caesium as tracer. The results achieved in this project suggest that the diffusion in compacted crushed salt is not fully comparable to that in a homogeneous, temporally stable porous medium like sand or clay. The results obtained from four diffusion experiments show a remarkably different behaviour and all yield unique concentration versus time plots which includes highly temporal variable tracer fluxes with even full interruptions of the flux for longer periods of time. This effect cannot be explained by assuming a tracer transport by diffusion in a temporarily invariant pore space and / or under temporally invariant experimental conditions. From our point of view, a restructuring of the pore space seems to lead to closed areas of pore water in the sample which may open up again after some time, leading to a variable pore space and hence variable diffusive

  12. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-07-01

    Full Text Available A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10 was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127 on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS. Details of the implementation in the TEOS-10 SIA library are given in a companion paper.

  13. Studies in uptake and turnover of tritiated water vapour (HTO) by vegetables. Untersuchungen zur Aufnahme und zum Umsatz von tritiiertem Wasserdampf (HTO) in Gemuesepflanzen

    Energy Technology Data Exchange (ETDEWEB)

    Roller, M.

    1989-02-01

    The aerial parts of vegetables were exposed to tritiated water vapour for up to three days in a plant growth chamber. The species used were Raphanus sativus L., Phaseolus vulgaris K. and Daucus carota L. (red radish, bean and carrot). The increase of specific activity of tissue free water as collected by freeze drying which was observed in the aerial parts of plants is explained by direct uptake of tritiated water vapour by the exposed part of the plant. It shows different characteristics for the several organs. No translocation of water from the laminae into other parts of the plant was observed. After combustion of dry matter tritium activity was detectable in the oxidation water for all parts of the plants. Kinetics of the specific activity of organically bound tritium in leaves can be described by a single curve. The lower - steep - part of the curve is increasing approximately with the uptake rate of HTO; this is explained by reversible binding of tritium by isotopic exchange reactions. The upper - flat - part of the curve represents tritium bound by light dependent reducing reactions of photosynthesis; it is increasing with a rate similar to the growth rate of leaves. (orig./KG).

  14. Validation of GOME-2/MetOp-A total water vapour column using reference radiosonde data from GRUAN network

    Science.gov (United States)

    Antón, M.; Loyola, D.; Román, R.; Vömel, H.

    2014-09-01

    The main goal of this article is to validate the total water vapour column (TWVC) measured by the Global Ozone Monitoring Experiment-2 (GOME-2) satellite sensor and generated using the GOME Data Processor (GDP) retrieval algorithm developed by the German Aerospace Center (DLR). For this purpose, spatially and temporally collocated TWVC data from highly accurate sounding measurements for the period January 2009-May 2014 at six sites are used. These balloon-borne data are provided by GCOS Reference Upper-Air Network (GRUAN). The correlation between GOME-2 and sounding TWVC data is reasonably good (determination coefficient (R2) of 0.89) when all available radiosondes (1400) are employed in the inter-comparison. When cloud-free cases (544) are selected by means of the satellite cloud fraction (CF), the correlation exhibits a remarkable improvement (R2 ~ 0.95). Nevertheless, analyzing the six datasets together, the relative differences between GOME-2 and GRUAN data shows mean values (in absolute term) of 19% for all-sky conditions and 14% for cloud-free cases, which evidences a notable bias in the satellite TWVC data against the reference balloon-borne measurements. The satellite-sounding TWVC differences show a strong solar zenith angle (SZA) dependence for values above 50° with a stable behaviour for values below this zenith angle. The smallest relative differences found in the inter-comparison (between -5 and +3%) are achieved for those cloud-free cases with SZA below 50°. Furthermore, the detailed analysis of the influence of cloud properties (CF, cloud top albedo (CTA) and cloud top pressure (CTP)) on the satellite-sounding differences reveals, as expected, a large effect of clouds in the GOME-2 TWVC data. For instance, the relative differences exhibit a large negative dependence on CTA, varying from +5 to -20% when CTA rises from 0.3 to 0.9. Finally, the satellite-sounding differences also show a negative dependence on the reference TWVC values, changing from

  15. Water vapour inter-comparison effort in the framework of the hydrological cycle in the mediterranean experiment - special observation period (hymex-sop1)

    Science.gov (United States)

    Summa, Donato; Di Girolamo, Paolo; Flamant, Cyrille; De Rosa, Benedetto; Cacciani, Marco; Stelitano, Dario

    2018-04-01

    Accurate measurements of the vertical profiles of water vapour are of paramount importance for most key areas of atmospheric sciences. A comprehensive inter-comparison between different remote sensing and in-situ sensors has been carried out in the frame work of the first Special Observing Period of the Hydrological cycle in the Mediterranean Experiment for the purpose of obtaining accurate error estimates for these sensors. The inter-comparison involves a ground-based Raman lidar (BASIL), an airborne DIAL (LEANDRE2), a microwave radiometer, radiosondes and aircraft in-situ sensors.

  16. Water vapour inter-comparison effort in the framework of the hydrological cycle in the mediterranean experiment – special observation period (hymex-sop1

    Directory of Open Access Journals (Sweden)

    Summa Donato

    2018-01-01

    Full Text Available Accurate measurements of the vertical profiles of water vapour are of paramount importance for most key areas of atmospheric sciences. A comprehensive inter-comparison between different remote sensing and in-situ sensors has been carried out in the frame work of the first Special Observing Period of the Hydrological cycle in the Mediterranean Experiment for the purpose of obtaining accurate error estimates for these sensors. The inter-comparison involves a ground-based Raman lidar (BASIL, an airborne DIAL (LEANDRE2, a microwave radiometer, radiosondes and aircraft in-situ sensors.

  17. The effect of vapour pressure deficit on stomatal conductance, sap pH and leaf-specific hydraulic conductance in Eucalyptus globulus clones grown under two watering regimes.

    Science.gov (United States)

    Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar

    2016-05-01

    Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below -1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for improved productivity under water-limiting conditions

  18. Water diffusion in clays with added organic surfactants

    International Nuclear Information System (INIS)

    Pineda-Pinon, J; Mendoza-Lopez, M L; Manzano-RamIrez, A; Perez-Robles, J F; Vega-Duran, J T

    2007-01-01

    Tensoactive agents may decrease water absorption in clay products like adobes. They modify the characteristics of the surface of clay particles. Characterization of water diffusion through the pores of modified clays is important to apply appropriate surface modifiers and to improve their performance. We established a simple model for water diffusion in test samples of defined dimensions to estimate real physical parameters and their effect on water absorption. Adsorption mechanisms are examined based on experimental results. The fitting of the experimental data to the model provides a deep understanding of water adsorption in chemically modified clays. A better agreement between the model and the experimental data is achieved for complex molecules

  19. Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach

    KAUST Repository

    Collier, Nathan; Radwan, Hany; Dalcin, Lisandro; Calo, Victor M.

    2011-01-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity

  20. Wetting and Diffusion of Water on Pristine and Strained Phosphorene

    OpenAIRE

    Zhang, Wei; Ye, Chao; Bi, Lin; Yang, Zaixing; Zhou, Ruhong

    2015-01-01

    Phosphorene, a newly fabricated two-dimensional (2D) nanomaterial, have exhibited promising application prospect in biology. Nonetheless, the wetting and diffusive properties of bio-fluids on phosphorene are still elusive. In this study, using molecular dynamics (MD) simulations, we investigated the structural and dynamic properties of water on pristine and strained phosphorene. The MD simulations illustrated that the diffusion of water molecules on the phosphorene surface is anisotropic, whi...

  1. Diffusion of tritiated water (HTO) in dextran+water mixtures

    International Nuclear Information System (INIS)

    Comper, W.D.; Van Damme, M.P.I.; Preston, B.N.

    1982-01-01

    The diffusion of HTO has been measured in dextran solutions using an open-ended capillary technique and a newly developed Sundeloef diffusion cell. HTO diffusion has been examined as a function of dextran concentration and molecular weight. These results, together with our previous results on the intradiffusion and mutual-diffusion coefficients of dextrans, now provide a complete set of conventional translational diffusion coefficients for both components in this binary system. Various assumptions associated with the theoretical description of polymer translational motion can now be examined. (author)

  2. Heavy water handbook. Evaluation of available thermophysical properties of heavy water (D2O) liquid and vapour

    International Nuclear Information System (INIS)

    Bukovsky, J.; Haack, K.; Wiig, P.

    1993-01-01

    Numerous publications on the thermophysical data of heavy water (D 2 O) have been published since D 2 O became commercially available in the 1930's. Some of these data are in mutual disagreement. This has led to confusion among the scientifical and technical staffs who needed the information on the D 2 O thermophysical data. Correct thermophysical data must be consistent, i.e. their mutual relations must be in accordance to the fundamental thermophysical laws. The work behind this publication has been focussed at collecting all avalilable D 2 O data and checking the data mutually by means of these fundamental thermophysical criteria. Depending on the various production methods, the oxygen content of the D 2 O is enriched more or less in the heavier oxygen isotopes 17 O and 18 O. This, together with the amount of impurities and dissolved gases in the D 2 O samples of the various references, might - to some extent - explain the discrepancies between the data sources. Only a few references contain information on these subjects. The D 2 O data sets which were found to be the most reliable are presented in chapter 9, in tables as well as in diagrams, together with the corresponding H 2 O data for comparison. The diagrams are commented for reliability where it was found necessary. Furthermore, the publication contains short descriptions on the heavy water sources, availability, production processes, economy, material and energy demands for production. A comprehensive list of references is enclosed. (author)

  3. Heavy water handbook. Evaluation of presently available thermophysical properties of heavy water (D2O) liquid and vapour

    International Nuclear Information System (INIS)

    Bukovsky, J.; Haack, K.

    1994-08-01

    Many publication on the thermophysical properties of heavy water (D 2 O) have appeared since D 2 O became commercially available in the 1930's. Some for the data contradict one another and this has led to confusion when information is needed on D 2 O thermophysical data. Correct thermophysical data must be consistent, i.e. their mutual dependence must be consistent with fundamental thermophysical laws. The work behind this publication has focused on collecting all available D 2 O data and checking them against these fundamental thermophysical criteria. Depending on the various production methods for D 2 O, its oxygen content is enriched more or less by the heavier oxygen isotopes 17 O and 18 O. This, together with the amount of impurities and dissolved gases in the D 2 O samples of the various references, might - to some extent - explain the discrepancies found between the data. Only a few references contain information on these subjects. The D 2 O data sets found to be the most reliable are presented in Chapter 9, in tables as well as in diagrams, together with the corresponding H 2 O data for comparison. Comments on the reliability of the diagrams are given where necessary. Furthermore, short descriptions are given of heavy water sources, availability, production processes, economy, material and energy requirements for the production process. Finally a comprehensive list of references and an author index are included. (au)

  4. Characterization of simultaneous heat and mass transfer phenomena for water vapour condensation on a solid surface in an abiotic environment--application to bioprocesses.

    Science.gov (United States)

    Tiwari, Akhilesh; Kondjoyan, Alain; Fontaine, Jean-Pierre

    2012-07-01

    The phenomenon of heat and mass transfer by condensation of water vapour from humid air involves several key concepts in aerobic bioreactors. The high performance of bioreactors results from optimised interactions between biological processes and multiphase heat and mass transfer. Indeed in various processes such as submerged fermenters and solid-state fermenters, gas/liquid transfer need to be well controlled, as it is involved at the microorganism interface and for the control of the global process. For the theoretical prediction of such phenomena, mathematical models require heat and mass transfer coefficients. To date, very few data have been validated concerning mass transfer coefficients from humid air inflows relevant to those bioprocesses. Our study focussed on the condensation process of water vapour and developed an experimental set-up and protocol to study the velocity profiles and the mass flux on a small size horizontal flat plate in controlled environmental conditions. A closed circuit wind tunnel facility was used to control the temperature, hygrometry and hydrodynamics of the flow. The temperature of the active surface was controlled and kept isothermal below the dew point to induce condensation, by the use of thermoelectricity. The experiments were performed at ambient temperature for a relative humidity between 35-65% and for a velocity of 1.0 ms⁻¹. The obtained data are analysed and compared to available theoretical calculations on condensation mass flux.

  5. Impact of water vapour and carbon dioxide on surface composition of C{sub 3}A polymorphs studied by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dubina, E.; Plank, J. [Technische Universität München, Lehrstuhl für Bauchemie, Lichtenbergstr. 4, 85747 Garching bei München (Germany); Black, L., E-mail: l.black@leeds.ac.uk [Institute for Resilient Infrastructure, School of Civil Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-07-15

    The surface specific analytical method, X-ray photoelectron spectroscopy (XPS), has been used to study the effects of water vapour and CO{sub 2} on the cubic and orthorhombic polymorphs of C{sub 3}A. Significant differences between the two polymorphs were observed in the XPS spectra. Upon exposure to water vapour, both polymorphs produced C{sub 4}AH{sub 13} on their surfaces. Additionally, the sodium-doped o-C{sub 3}A developed NaOH and traces of C{sub 3}AH{sub 6} on its surface. Subsequent carbonation yielded mono carboaluminate on both polymorphs. Large amounts of Na{sub 2}CO{sub 3} also formed on the surface of o-C{sub 3}A as a result of carbonation of NaOH. Furthermore, the extent of carbonation was much more pronounced for o-C{sub 3}A{sub o} than for c-C{sub 3}A.

  6. The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm

    Directory of Open Access Journals (Sweden)

    L. Lechevallier

    2018-04-01

    Full Text Available The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long-standing issue in molecular spectroscopy with direct impact in atmospheric and planetary sciences. In recent years, we have determined the self-continuum absorption of water vapour at different spectral points of the atmospheric windows at 4.0, 2.1, 1.6, and 1.25 µm, by highly sensitive cavity-enhanced laser techniques. These accurate experimental constraints have been used to adjust the last version (3.2 of the semi-empirical MT_CKD model (Mlawer-Tobin_Clough-Kneizys-Davies, which is widely incorporated in atmospheric radiative-transfer codes. In the present work, the self-continuum cross-sections, CS, are newly determined at 3.3 µm (3007 cm−1 and 2.0 µm (5000 cm−1 by optical-feedback-cavity enhanced absorption spectroscopy (OFCEAS and cavity ring-down spectroscopy (CRDS, respectively. These new data allow extending the spectral coverage of the 4.0 and 2.1 µm windows, respectively, and testing the recently released 3.2 version of the MT_CKD continuum. By considering high temperature literature data together with our data, the temperature dependence of the self-continuum is also obtained.

  7. The water vapour self-continuum absorption in the infrared atmospheric windows: new laser measurements near 3.3 and 2.0 µm

    Science.gov (United States)

    Lechevallier, Loic; Vasilchenko, Semen; Grilli, Roberto; Mondelain, Didier; Romanini, Daniele; Campargue, Alain

    2018-04-01

    The amplitude, the temperature dependence, and the physical origin of the water vapour absorption continuum are a long-standing issue in molecular spectroscopy with direct impact in atmospheric and planetary sciences. In recent years, we have determined the self-continuum absorption of water vapour at different spectral points of the atmospheric windows at 4.0, 2.1, 1.6, and 1.25 µm, by highly sensitive cavity-enhanced laser techniques. These accurate experimental constraints have been used to adjust the last version (3.2) of the semi-empirical MT_CKD model (Mlawer-Tobin_Clough-Kneizys-Davies), which is widely incorporated in atmospheric radiative-transfer codes. In the present work, the self-continuum cross-sections, CS, are newly determined at 3.3 µm (3007 cm-1) and 2.0 µm (5000 cm-1) by optical-feedback-cavity enhanced absorption spectroscopy (OFCEAS) and cavity ring-down spectroscopy (CRDS), respectively. These new data allow extending the spectral coverage of the 4.0 and 2.1 µm windows, respectively, and testing the recently released 3.2 version of the MT_CKD continuum. By considering high temperature literature data together with our data, the temperature dependence of the self-continuum is also obtained.

  8. Effect of water film trickling down diffuser walls on the diffuser properties

    International Nuclear Information System (INIS)

    Hibs, M.

    1990-01-01

    The effect of the water film flowing along one of the horizontal walls of a 2D diffuser was studied, the system being regarded as a model of the annular diffuser at the outlet of a steam turbine flown through by wet steam. The aerodynamic properties of the channel examined were found dependent on whether the water film continues to adhere to the wall or loses stability and sprays into the channel space. The increase in losses in the channel so flown through is quite substantial - the losses can multiply exceed those on flown-by walls free from a water film. (author). 7 figs., 1 tab., 2 refs

  9. Water cooling thermal power measurement in a vacuum diffusion pump

    Directory of Open Access Journals (Sweden)

    Luís Henrique Cardozo Amorin

    2012-04-01

    Full Text Available Diffusion vacuum pumps are used both in industry and in laboratory science for high vacuum production. For its operation they must be refrigerated, and it is done by circulating water in open circuit. Considering that, vacuum systems stays operating by hours, the water consumption may be avoided if the diffusion vacuum pumps refrigeration were done in closed circuit. However, it is necessary to know the diffusion vacuum pump thermal power (the heat transferred to circulate water by time units to implement one of these and get in the refrigeration system dimension. In this paper the diffusion vacuum pump thermal power was obtained by measuring water flow and temperature variation and was calculated through the heat quantity variation equation time function. The thermal power value was 935,6 W, that is 397 W smaller and 35 W bigger than, respectively, the maximum and minimum diffusion pump thermal power suggested by its operation manual. This procedure have been shown useful to precisely determine the diffusion pump thermal power or of any other system that needs to be refrigerated in water closed circuit.

  10. Effect of Flood Water Diffuser on Flow Pattern of Water during Road Crossing

    Directory of Open Access Journals (Sweden)

    Abdul Ghani A.N.

    2014-03-01

    Full Text Available One of the methods to reduce the velocity of flood water flow across roads is to design obstacle objects as diffusers and place them alongside the road shoulder. The velocity reduction of water flow depends on the diffusion pattern of water. The pattern of diffused water depends on the design of the obstacle objects. The main purpose of this study is to investigate the design of obstacle objects and their water diffusing patterns and their capability to reduce the velocity of the flood water flow during road crossing. Variety of designs and orientation of the obstacle objects were tested in the environmental laboratory on a scale of 1:20. The results are classified into three distinguishable patterns of diffusion. Finally, two diffuser shapes and arrangements are recommended for further investigations in full scale or CFD model.

  11. The other GHG : steps taken to reduce CO2 emissions may contribute to increased levels of water vapour in the atmosphere

    International Nuclear Information System (INIS)

    Collison, M.

    2008-01-01

    As a result of the Intergovernmental Panel on Climate Change (IPCC), the Canadian oil and gas industry and government are now in the midst of a massive overhaul of hydrocarbon energy use and carbon dioxide (CO 2 ) management. However, human-enhanced water evaporation (HEWE) may also be a significant contributor to global climate warming. Human-caused distortions of the hydrological cycle can cause multiple localized weather disturbances. There is currently a thousand times more water vapor being emitted than CO 2 , and this is contributing to increased rainfall levels around the world. Expansion of the agriculture and growth of industry has caused significant diversions and redistributions of water. Most of the water used is evaporated in the northern hemisphere. Climate modellers are needed to analyze the impacts of human-enhanced water evaporation local climates and weather. The main sources of water emissions are government-controlled energy projects and subsidized irrigation projects. Current levels of water vapour emissions are between 10 and 100 times the value of warming per tonne as CO 2 . Details of various research projects to use salt water as a fuel for vehicles was provided, as well as methods of improving the water-gas shift reaction method of hydrogen production. 2 figs

  12. A Raman lidar at La Reunion (20.8° S, 55.5° E for monitoring water vapour and cirrus distributions in the subtropical upper troposphere: preliminary analyses and description of a future system

    Directory of Open Access Journals (Sweden)

    C. Hoareau

    2012-06-01

    Full Text Available A ground-based Rayleigh lidar has provided continuous observations of tropospheric water vapour profiles and cirrus cloud using a preliminary Raman channels setup on an existing Rayleigh lidar above La Reunion over the period 2002–2005. With this instrument, we performed a first measurement campaign of 350 independent water vapour profiles. A statistical study of the distribution of water vapour profiles is presented and some investigations concerning the calibration are discussed. Analysis regarding the cirrus clouds is presented and a classification has been performed showing 3 distinct classes. Based on these results, the characteristics and the design of a future lidar system, to be implemented at the new Reunion Island altitude observatory (2200 m for long-term monitoring, is presented and numerical simulations of system performance have been realised to compare both instruments.

  13. Thermodynamics of the ternary systems: (water + glycine, L-alanine and L-serine + di-ammonium hydrogen citrate) from volumetric, compressibility, and (vapour + liquid) equilibria measurements

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Gholamireza, Afsaneh

    2011-01-01

    The apparent molar volumes and isentropic compressibility of glycine, L-alanine and L-serine in water and in aqueous solutions of (0.500 and 1.00) mol . kg -1 di-ammonium hydrogen citrate {(NH 4 ) 2 HCit} and those of (NH 4 ) 2 HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH 4 ) 2 HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {glycine + (NH 4 ) 2 HCit}, {alanine + (NH 4 ) 2 HCit}, and {serine + (NH 4 ) 2 HCit} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.

  14. Thermodynamics of the ternary systems: (water + glycine, L-alanine and L-serine + di-ammonium hydrogen citrate) from volumetric, compressibility, and (vapour + liquid) equilibria measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rahsadeghi@yahoo.co [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Gholamireza, Afsaneh [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2011-02-15

    The apparent molar volumes and isentropic compressibility of glycine, L-alanine and L-serine in water and in aqueous solutions of (0.500 and 1.00) mol . kg{sup -1} di-ammonium hydrogen citrate {l_brace}(NH{sub 4}){sub 2}HCit{r_brace} and those of (NH{sub 4}){sub 2}HCit in water have been obtained over the (288.15 to 313.15) K temperature range at 5 K intervals at atmospheric pressure from measurements of density and ultrasonic velocity. The apparent molar volume and isentropic compressibility values at infinite dilution of the investigated amino acids have been obtained and their variations with temperature and their transfer properties from water to aqueous solutions of (NH{sub 4}){sub 2}HCit have also been obtained. The results have been interpreted in terms of the hydration of the amino acids. In the second part of this work, water activity measurements by the isopiestic method have been carried out on the aqueous solutions of {l_brace}glycine + (NH{sub 4}){sub 2}HCit{r_brace}, {l_brace}alanine + (NH{sub 4}){sub 2}HCit{r_brace}, and {l_brace}serine + (NH{sub 4}){sub 2}HCit{r_brace} at T = 298.15 K at atmospheric pressure. From these measurements, values of vapour pressure, osmotic coefficient, activity coefficient and Gibbs free energy were obtained. The effect of the type of amino acids on the (vapour + liquid) equilibrium of the systems investigated has been studied. The experimental water activities have been correlated successfully with the segment-based local composition Wilson model. Furthermore, the thermodynamic behaviour of the ternary solutions investigated has been studied by using the semi-ideal hydration model and the linear concentration relations have been tested by comparing with the isopiestic measurements for the studied systems at T = 298.15 K.

  15. Tracer diffusion in compacted, water-saturated bentonite

    International Nuclear Information System (INIS)

    Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.

    2005-01-01

    Compacted Na-bentonite clay barriers, widely used in the isolation of solid-waste landfills and other contaminated sites, have been proposed for a similar use in the disposal of high-level radioactive waste. Molecular diffusion through the pore space in these barriers plays a key role in their performance, thus motivating recent measurements of the apparent diffusion coefficient tensor of water tracers in compacted, water-saturated Na-bentonites. In the present study, we introduce a conceptual model in which the pore space of water-saturated bentonite is divided into 'macropore' and 'interlayer nanopore' compartments. With this model we determine quantitatively the relative contributions of pore-network geometry (expressed as a geometric factor) and of the diffusive behavior of water molecules near montmorillonite basal surfaces(expressed as a contrastivity factor) to the apparent diffusion coefficient tensor. Our model predicts, in agreement with experiment, that the mean principal value of the apparent diffusion coefficient tensor follows a single relationship when plotted against the partial montmorillonite dry density (mass of montmorillonite per combined volume of montmorillonite and pore space). Using a single fitted parameter, the mean principal geometric factor, our model successfully describes this relationship for a broad range of bentonite-water system, from dilute gel to highly-compacted bentonite with 80 percent of its pore water in interlayer nanopores

  16. Increased self-diffusion of brain water in normal aging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Henriksen, O

    1994-01-01

    With magnetic resonance (MR) imaging, brain water self-diffusion was measured in 17 healthy volunteers 22-76 (mean, 44.6) years old. The calculated values for the apparent diffusion coefficients (ADCs) ranged from 0.58 x 10(-9) to 1.23 x 10(-9) m2/sec in cerebral white matter. A significant...... by an increase in the extracellular volume due to age-dependent neuronal degeneration or to changes in myelination. These findings have implications for future clinical investigations with diffusion MR imaging techniques in patients with neurologic diseases, and stress the importance of having an age...

  17. The Liquid Vapour Interface

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    In this short review we are concerned with the density variation across the liquid-vapour interface, i.e. from the bulk density of the liquid to the essentially zero density of the vapour phase. This density variation can in principle be determined from the deviation of the reflectivity from...

  18. Water self-diffusion through narrow oxygenated carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Striolo, Alberto [School of Chemical Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2007-11-28

    The hydrophobic interior of carbon nanotubes, which is reminiscent of ion channels in cellular membranes, has inspired scientific research directed towards the production of, for example, membranes for water desalination, drug-delivery devices, and nanosyringes. To develop these technologies it is crucial to understand and predict the equilibrium and transport properties of confined water. We present here a series of molecular dynamics simulation results conducted to understand the extent to which the presence of a few oxygenated active sites, modeled as carbonyls, affects the transport properties of confined water. The model for the carbon nanotube is not intended to be realistic. Its only purpose is to allow us to understand the effect of a few oxygenated sites on the transport properties of water confined in a narrow cylindrical pore, which is otherwise hydrophobic. At low hydration levels we found little, if any, water diffusion. The diffusion, which appears to be of the Fickian type for sufficiently large hydration levels, becomes faster as the number of confined water molecules increases, reaches a maximum, and slows as water fills the carbon nanotubes. We explain our findings on the basis of two collective motion mechanisms observed from the analysis of sequences of simulation snapshots. We term the two mechanisms 'cluster-breakage' and 'cluster-libration' mechanisms. We observe that the cluster-breakage mechanism produces longer displacements for the confined water molecules than the cluster-libration one, but deactivates as water fills the carbon nanotube. From a practical point of view, our results are particularly important for two reasons: (1) at low hydration levels the presence of only eight carbonyl groups can prevent the diffusion of water through (8, 8) carbon nanotubes; and (2) the extremely fast self-diffusion coefficients observed for water within narrow carbon nanotubes are significantly decreased in the presence of only a

  19. Water self-diffusion through narrow oxygenated carbon nanotubes

    International Nuclear Information System (INIS)

    Striolo, Alberto

    2007-01-01

    The hydrophobic interior of carbon nanotubes, which is reminiscent of ion channels in cellular membranes, has inspired scientific research directed towards the production of, for example, membranes for water desalination, drug-delivery devices, and nanosyringes. To develop these technologies it is crucial to understand and predict the equilibrium and transport properties of confined water. We present here a series of molecular dynamics simulation results conducted to understand the extent to which the presence of a few oxygenated active sites, modeled as carbonyls, affects the transport properties of confined water. The model for the carbon nanotube is not intended to be realistic. Its only purpose is to allow us to understand the effect of a few oxygenated sites on the transport properties of water confined in a narrow cylindrical pore, which is otherwise hydrophobic. At low hydration levels we found little, if any, water diffusion. The diffusion, which appears to be of the Fickian type for sufficiently large hydration levels, becomes faster as the number of confined water molecules increases, reaches a maximum, and slows as water fills the carbon nanotubes. We explain our findings on the basis of two collective motion mechanisms observed from the analysis of sequences of simulation snapshots. We term the two mechanisms 'cluster-breakage' and 'cluster-libration' mechanisms. We observe that the cluster-breakage mechanism produces longer displacements for the confined water molecules than the cluster-libration one, but deactivates as water fills the carbon nanotube. From a practical point of view, our results are particularly important for two reasons: (1) at low hydration levels the presence of only eight carbonyl groups can prevent the diffusion of water through (8, 8) carbon nanotubes; and (2) the extremely fast self-diffusion coefficients observed for water within narrow carbon nanotubes are significantly decreased in the presence of only a few oxygenated active

  20. The CM SAF SSM/I-based total column water vapour climate data record: methods and evaluation against re-analyses and satellite

    Directory of Open Access Journals (Sweden)

    M. Schröder

    2013-03-01

    Full Text Available The European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF aims at the provision and sound validation of well documented Climate Data Records (CDRs in sustained and operational environments. In this study, a total column water vapour path (WVPA climatology from CM SAF is presented and inter-compared to water vapour data records from various data sources. Based on homogenised brightness temperatures from the Special Sensor Microwave Imager (SSM/I, a climatology of WVPA has been generated within the Hamburg Ocean–Atmosphere Fluxes and Parameters from Satellite (HOAPS framework. Within a research and operation transition activity the HOAPS data and operation capabilities have been successfully transferred to the CM SAF where the complete HOAPS data and processing schemes are hosted in an operational environment. An objective analysis for interpolation, namely kriging, has been applied to the swath-based WVPA retrievals from the HOAPS data set. The resulting climatology consists of daily and monthly mean fields of WVPA over the global ice-free ocean. The temporal coverage ranges from July 1987 to August 2006. After a comparison to the precursor product the CM SAF SSM/I-based climatology has been comprehensively compared to different types of meteorological analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF-ERA40, ERA INTERIM and operational analyses and from the Japan Meteorological Agency (JMA–JRA. This inter-comparison shows an overall good agreement between the climatology and the analyses, with daily absolute biases generally smaller than 2 kg m−2. The absolute value of the bias to JRA and ERA INTERIM is typically smaller than 0.5 kg m−2. For the period 1991–2006, the root mean square error (RMSE for both reanalyses is approximately 2 kg m−2. As SSM/I WVPA and radiances are assimilated into JMA and all ECMWF analyses and

  1. Analysis of Water Vapour Flux Between Alpine Wetlands Underlying the Surface and Atmosphere in the Source Region of the Yellow River

    Science.gov (United States)

    Xie, Y.; Wen, J.; Liu, R.; Wang, X.; JIA, D.

    2017-12-01

    Wetland underlying surface is sensitive to climate change. Analysis of the degree of coupling between wetlands and the atmosphere and a quantitative assessment of how environmental factors influence latent heat flux have considerable scientific significance. Previous studies, which focused on the forest, grassland and farmland ecosystems, lack research on the alpine wetlands. In addition, research on the environmental control mechanism of latent heat flux is still qualitative and lacks quantitative evaluations and calculations. Using data from the observational tests of the Maduo Observatory of Climate and Environment of the Northwest Institute of Eco-Environment and Resource, CAS, from June 1 to August 31, 2014, this study analysed the time-varying characteristics and causes of the degree of coupling between alpine wetlands underlying surface and the atmosphere and quantitatively calculated the influences of different environmental factors (solar radiation and vapour pressure deficit) on latent heat flux. The results were as follows: Due to the diurnal variations of solar radiation and wind speed, the diurnal variations of the Ω factor present a trend in which the Ω factor are small in the morning and large in the evening. Due to the vegetation growing cycle, the seasonal variations of the Ω factor present a reverse "U" trend . These trends are similar to the diurnal and seasonal variations of the absolute control exercised by solar radiation over the latent heat flux. This conforms to omega theory. The values for average absolute atmospheric factor (surface factor or total ) control exercised by solar radiation and water vapour pressure are 0.20 (0.02 or 0.22 ) and 0.005 (-0.07 or -0.06) W·m-2·Pa-1, respectively.. Generally speaking, solar radiation and water vapour pressure deficit exert opposite forces on the latent heat flux. The average Ω factor is high during the vegetation growing season, with a value of 0.38, and the degree of coupling between the

  2. An "island" in the stratosphere - on the enhanced annual variation of water vapour in the middle and upper stratosphere in the southern tropics and subtropics

    Science.gov (United States)

    Lossow, Stefan; Garny, Hella; Jöckel, Patrick

    2017-09-01

    The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (˜ 40.5 km) in altitude. This enhanced annual variation is primarily related to the Brewer-Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding) observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System) Atmospheric Chemistry (EMAC) simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.

  3. An “island” in the stratosphere – on the enhanced annual variation of water vapour in the middle and upper stratosphere in the southern tropics and subtropics

    Directory of Open Access Journals (Sweden)

    S. Lossow

    2017-09-01

    Full Text Available The amplitude of the annual variation in water vapour exhibits a distinct isolated maximum in the middle and upper stratosphere in the southern tropics and subtropics, peaking typically around 15° S in latitude and close to 3 hPa (∼  40.5 km in altitude. This enhanced annual variation is primarily related to the Brewer–Dobson circulation and hence also visible in other trace gases. So far this feature has not gained much attention in the literature and the present work aims to add more prominence. Using Envisat/MIPAS (Environmental Satellite/Michelson Interferometer for Passive Atmospheric Sounding observations and ECHAM/MESSy (European Centre for Medium-Range Weather Forecasts Hamburg/Modular Earth Submodel System Atmospheric Chemistry (EMAC simulations we provide a dedicated illustration and a full account of the reasons for this enhanced annual variation.

  4. Translational and Rotational Diffusion in Water in the Gigapascal Range

    Science.gov (United States)

    Bove, L. E.; Klotz, S.; Strässle, Th.; Koza, M.; Teixeira, J.; Saitta, A. M.

    2013-11-01

    First measurements of the self-dynamics of liquid water in the GPa range are reported. The GPa range has here become accessible through a new setup for the Paris-Edinburgh press specially conceived for quasielastic neutron scattering studies. A direct measurement of both the translational and rotational diffusion coefficients of water along the 400 K isotherm up to 3 GPa, corresponding to the melting point of ice VII, is provided and compared with molecular dynamics simulations. The translational diffusion is observed to strongly decrease with pressure, though its variation slows down for pressures higher than 1 GPa and decouples from that of the shear viscosity. The rotational diffusion turns out to be insensitive to pressure. Through comparison with structural data and molecular dynamics simulations, we show that this is a consequence of the rigidity of the first neighbors shell and of the invariance of the number of hydrogen bonds of a water molecule under high pressure. These results show the inadequacy of the Stokes-Einstein-Debye equations to predict the self-diffusive behavior of water at high temperature and high pressure, and challenge the usual description of hot dense water behaving as a simple liquid.

  5. Reduction of Altitude Diffuser Jet Noise Using Water Injection

    Science.gov (United States)

    Allgood, Daniel C.; Saunders, Grady P.; Langford, Lester A.

    2011-01-01

    A feasibility study on the effects of injecting water into the exhaust plume of an altitude rocket diffuser for the purpose of reducing the far-field acoustic noise has been performed. Water injection design parameters such as axial placement, angle of injection, diameter of injectors, and mass flow rate of water have been systematically varied during the operation of a subscale altitude test facility. The changes in acoustic far-field noise were measured with an array of free-field microphones in order to quantify the effects of the water injection on overall sound pressure level spectra and directivity. The results showed significant reductions in noise levels were possible with optimum conditions corresponding to water injection at or just upstream of the exit plane of the diffuser. Increasing the angle and mass flow rate of water injection also showed improvements in noise reduction. However, a limit on the maximum water flow rate existed as too large of flow rate could result in un-starting the supersonic diffuser.

  6. Cumulant expansions for measuring water exchange using diffusion MRI

    Science.gov (United States)

    Ning, Lipeng; Nilsson, Markus; Lasič, Samo; Westin, Carl-Fredrik; Rathi, Yogesh

    2018-02-01

    The rate of water exchange across cell membranes is a parameter of biological interest and can be measured by diffusion magnetic resonance imaging (dMRI). In this work, we investigate a stochastic model for the diffusion-and-exchange of water molecules. This model provides a general solution for the temporal evolution of dMRI signal using any type of gradient waveform, thereby generalizing the signal expressions for the Kärger model. Moreover, we also derive a general nth order cumulant expansion of the dMRI signal accounting for water exchange, which has not been explored in earlier studies. Based on this analytical expression, we compute the cumulant expansion for dMRI signals for the special case of single diffusion encoding (SDE) and double diffusion encoding (DDE) sequences. Our results provide a theoretical guideline on optimizing experimental parameters for SDE and DDE sequences, respectively. Moreover, we show that DDE signals are more sensitive to water exchange at short-time scale but provide less attenuation at long-time scale than SDE signals. Our theoretical analysis is also validated using Monte Carlo simulations on synthetic structures.

  7. Simultaneous retrieval of water vapour, temperature and cirrus clouds properties from measurements of far infrared spectral radiance over the Antarctic Plateau

    Science.gov (United States)

    Di Natale, Gianluca; Palchetti, Luca; Bianchini, Giovanni; Del Guasta, Massimo

    2017-03-01

    The possibility separating the contributions of the atmospheric state and ice clouds by using spectral infrared measurements is a fundamental step to quantifying the cloud effect in climate models. A simultaneous retrieval of cloud and atmospheric parameters from infrared wideband spectra will allow the disentanglement of the spectral interference between these variables. In this paper, we describe the development of a code for the simultaneous retrieval of atmospheric state and ice cloud parameters, and its application to the analysis of the spectral measurements acquired by the Radiation Explorer in the Far Infrared - Prototype for Applications and Development (REFIR-PAD) spectroradiometer, which has been in operation at Concordia Station on the Antarctic Plateau since 2012. The code performs the retrieval with a computational time that is comparable with the instrument acquisition time. Water vapour and temperature profiles and the cloud optical and microphysical properties, such as the generalised effective diameter and the ice water path, are retrieved by exploiting the 230-980 cm-1 spectral band. To simulate atmospheric radiative transfer, the Line-By-Line Radiative Transfer Model (LBLRTM) has been integrated with a specifically developed subroutine based on the δ-Eddington two-stream approximation, whereas the single-scattering properties of cirrus clouds have been derived from a database for hexagonal column habits. In order to detect ice clouds, a backscattering and depolarisation lidar, co-located with REFIR-PAD has been used, allowing us to infer the position and the cloud thickness to be used in the retrieval. A climatology of the vertical profiles of water vapour and temperature has been performed by using the daily radiosounding available at the station at 12:00 UTC. The climatology has been used to build an a priori profile correlation to constrain the fitting procedure. An optimal estimation method with the Levenberg-Marquardt approach has been

  8. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    Science.gov (United States)

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Soil water diffusivity as a function of water content and time

    International Nuclear Information System (INIS)

    Guerrini, I.A.

    1976-04-01

    The soil-water diffusivity has been studied as a function of water content and time. From the idea of studying the horizontal movement of water in swelling soils, a simple formulation has been achieved which allows for the diffusivity, water content dependency and time dependency, to be estimated, not only of this kind of soil, but for any other soil as well. It was observed that the internal rearrangement of soil particles is a more important phenomenon than swelling, being responsible for time dependency. The method 2γ is utilized, which makes it possible to simultaneously determine the water content and density, point by point, in a soil column. The diffusivity data thus obtained are compared to those obtained when time dependency is not considered. Finally, a new soil parameter, α, is introduced and the values obtained agrees with the internal rearrangment assumption and time dependency for diffusivity (Author) [pt

  10. Diffusion of water, cesium and neptunium in pores of rocks

    International Nuclear Information System (INIS)

    Puukko, E.; Heikkinen, T.; Hakanen, M.

    1993-10-01

    Teollisuuden Voima Oy (TVO) is investigating the feasibility to dispose of spent nuclear fuel within Finland. The present plan calls for the repository to be located in crystalline rock at a depth of several hundred meters. The safety assessment of the repository includes calculations of migration of waste nuclides. The flow of waste elements in groundwater will be retarded through sorption interaction with minerals and through diffusion into rock. Diffusion is the only mechanism retarding the migration of non-sorbing species and, it is expected to be the dominating retardation mechanism of many of the sorbing elements. In the investigation the simultaneous diffusion of tritiated water (HTO), cesium and neptunium in rocks of TVO investigation sites at Kivetty, Olkiluoto and Romuvaara were studied. (11 refs., 33 figs., 9 tabs.)

  11. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  12. Low cost fuel cell diffusion layer configured for optimized anode water management

    Science.gov (United States)

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  13. Validation of water vapour profiles (version 13 retrieved by the IMK/IAA scientific retrieval processor based on full resolution spectra measured by MIPAS on board Envisat

    Directory of Open Access Journals (Sweden)

    M. Milz

    2009-07-01

    Full Text Available Vertical profiles of stratospheric water vapour measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS with the full resolution mode between September 2002 and March 2004 and retrieved with the IMK/IAA scientific retrieval processor were compared to a number of independent measurements in order to estimate the bias and to validate the existing precision estimates of the MIPAS data. The estimated precision for MIPAS is 5 to 10% in the stratosphere, depending on altitude, latitude, and season. The independent instruments were: the Halogen Occultation Experiment (HALOE, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS, the Improved Limb Atmospheric Spectrometer-II (ILAS-II, the Polar Ozone and Aerosol Measurement (POAM III instrument, the Middle Atmospheric Water Vapour Radiometer (MIAWARA, the Michelson Interferometer for Passive Atmospheric Sounding, balloon-borne version (MIPAS-B, the Airborne Microwave Stratospheric Observing System (AMSOS, the Fluorescent Stratospheric Hygrometer for Balloon (FLASH-B, the NOAA frostpoint hygrometer, and the Fast In Situ Hygrometer (FISH. For the in-situ measurements and the ground based, air- and balloon borne remote sensing instruments, the measurements are restricted to central and northern Europe. The comparisons to satellite-borne instruments are predominantly at mid- to high latitudes on both hemispheres. In the stratosphere there is no clear indication of a bias in MIPAS data, because the independent measurements in some cases are drier and in some cases are moister than the MIPAS measurements. Compared to the infrared measurements of MIPAS, measurements in the ultraviolet and visible have a tendency to be high, whereas microwave measurements have a tendency to be low. The results of χ2-based precision validation are somewhat controversial among the comparison estimates. However, for comparison instruments whose error budget also includes

  14. Modelling (vapour + liquid) and (vapour + liquid + liquid) equilibria of {water (H2O) + methanol (MeOH) + dimethyl ether (DME) + carbon dioxide (CO2)} quaternary system using the Peng-Robinson EoS with Wong-Sandler mixing rule

    International Nuclear Information System (INIS)

    Ye Kongmeng; Freund, Hannsjoerg; Sundmacher, Kai

    2011-01-01

    Highlights: → Phase behaviour modelling of H 2 O-MeOH-DME under pressurized CO 2 (anti-solvent) using PRWS. → PRWS-UNIFAC-PSRK has better performance than PRWS-UNIFAC-Lby in general. → Reliable to extend the VLE and VLLE phase behaviour from binary to multicomponent systems. → Successful prediction of the VLE and VLLE of binary, ternary, and quaternary systems. → Potential to apply the model for designing new DME separation process. - Abstract: The (vapour + liquid) equilibria (VLE) and (vapour + liquid + liquid) equilibria (VLLE) binary data from literature were correlated using the Peng-Robinson (PR) equation of state (EoS) with the Wong-Sandler mixing rule (WS). Two group contribution activity models were used in the PRWS: UNIFAC-PSRK and UNIFAC-Lby. The systems were successfully extrapolated from the binary systems to ternary and quaternary systems. Results indicate that the PRWS-UNIFAC-PSRK generally displays a better performance than the PRWS-UNIFAC-Lby.

  15. Improved water vapour spectroscopy in the 4174–4300 cm−1 region and its impact on SCIAMACHY HDO/H2O measurements

    Directory of Open Access Journals (Sweden)

    R. A. Scheepmaker

    2013-04-01

    Full Text Available The relative abundance of the heavy water isotopologue HDO provides a deeper insight into the atmospheric hydrological cycle. The SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY allows for global retrievals of the ratio HDO/H2O in the 2.3 micron wavelength range. However, the spectroscopy of water lines in this region remains a large source of uncertainty for these retrievals. We therefore evaluate and improve the water spectroscopy in the range 4174–4300 cm−1 and test if this reduces systematic uncertainties in the SCIAMACHY retrievals of HDO/H2O. We use a laboratory spectrum of water vapour to fit line intensity, air broadening and wavelength shift parameters. The improved spectroscopy is tested on a series of ground-based high resolution FTS spectra as well as on SCIAMACHY retrievals of H2O and the ratio HDO/H2O. We find that the improved spectroscopy leads to lower residuals in the FTS spectra compared to HITRAN 2008 and Jenouvrier et al. (2007 spectroscopy, and the retrievals become more robust against changes in the retrieval window. For both the FTS and SCIAMACHY measurements, the retrieved total H2O columns decrease by 2–4% and we find a negative shift of the HDO/H2O ratio, which for SCIAMACHY is partly compensated by changes in the retrieval setup and calibration software. The updated SCIAMACHY HDO/H2O product shows somewhat steeper latitudinal and temporal gradients and a steeper Rayleigh distillation curve, strengthening previous conclusions that current isotope-enabled general circulation models underestimate the variability in the near-surface HDO/H2O ratio.

  16. An atlas of mean distribution of precipitable water vapour over the tropical Indian Ocean for the year 1979

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Sathe, P.V.; Muraleedharan, P.M.; Rao, L.V.G.

    The monthly mean maps of the precipitable water (PW) over the tropical Indian Ocean are prepared using the data derived from the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) sensor for the period January to December, 1979. The PW...

  17. Liquid water transport mechanism in the gas diffusion layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.; Wu, C.W. [State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2010-03-01

    We developed an equivalent capillary model of a microscale fiber-fence structure to study the microscale evolution and transport of liquid in a porous media and to reveal the basic principles of water transport in gas diffusion layer (GDL). Analytical solutions using the model show that a positive hydraulic pressure is needed to drive the liquid water to penetrate through the porous GDL even consisting of the hydrophilic fibers. Several possible contributions for the water configuration, such as capillary pressure, gravity, vapor condensation, wettability and microstructures of the GDL, are discussed using the lattice Boltzmann method (LBM). It is found that the distribution manners of the fibers and the spatial mixed-wettability in the GDL also play an important role in the transport of liquid water. (author)

  18. Intravoxel water diffusion heterogeneity MR imaging of nasopharyngeal carcinoma using stretched exponential diffusion model

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Vincent; Khong, Pek Lan [University of Hong Kong, Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, Pok Fu Lam (China); Lee, Victor Ho Fun; Lam, Ka On; Sze, Henry Chun Kin [University of Hong Kong, Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, Pok Fu Lam (China); Chan, Queenie [Philips Healthcare, Hong Kong, Shatin, New Territories (China)

    2015-06-01

    To determine the utility of stretched exponential diffusion model in characterisation of the water diffusion heterogeneity in different tumour stages of nasopharyngeal carcinoma (NPC). Fifty patients with newly diagnosed NPC were prospectively recruited. Diffusion-weighted MR imaging was performed using five b values (0-2,500 s/mm{sup 2}). Respective stretched exponential parameters (DDC, distributed diffusion coefficient; and alpha (α), water heterogeneity) were calculated. Patients were stratified into low and high tumour stage groups based on the American Joint Committee on Cancer (AJCC) staging for determination of the predictive powers of DDC and α using t test and ROC curve analyses. The mean ± standard deviation values were DDC = 0.692 ± 0.199 (x 10{sup -3} mm{sup 2}/s) for low stage group vs 0.794 ± 0.253 (x 10{sup -3} mm{sup 2}/s) for high stage group; α = 0.792 ± 0.145 for low stage group vs 0.698 ± 0.155 for high stage group. α was significantly lower in the high stage group while DDC was negatively correlated. DDC and α were both reliable independent predictors (p < 0.001), with α being more powerful. Optimal cut-off values were (sensitivity, specificity, positive likelihood ratio, negative likelihood ratio) DDC = 0.692 x 10{sup -3} mm{sup 2}/s (94.4 %, 64.3 %, 2.64, 0.09), α = 0.720 (72.2 %, 100 %, -, 0.28). The heterogeneity index α is robust and can potentially help in staging and grading prediction in NPC. (orig.)

  19. Intravoxel water diffusion heterogeneity MR imaging of nasopharyngeal carcinoma using stretched exponential diffusion model

    International Nuclear Information System (INIS)

    Lai, Vincent; Khong, Pek Lan; Lee, Victor Ho Fun; Lam, Ka On; Sze, Henry Chun Kin; Chan, Queenie

    2015-01-01

    To determine the utility of stretched exponential diffusion model in characterisation of the water diffusion heterogeneity in different tumour stages of nasopharyngeal carcinoma (NPC). Fifty patients with newly diagnosed NPC were prospectively recruited. Diffusion-weighted MR imaging was performed using five b values (0-2,500 s/mm 2 ). Respective stretched exponential parameters (DDC, distributed diffusion coefficient; and alpha (α), water heterogeneity) were calculated. Patients were stratified into low and high tumour stage groups based on the American Joint Committee on Cancer (AJCC) staging for determination of the predictive powers of DDC and α using t test and ROC curve analyses. The mean ± standard deviation values were DDC = 0.692 ± 0.199 (x 10 -3 mm 2 /s) for low stage group vs 0.794 ± 0.253 (x 10 -3 mm 2 /s) for high stage group; α = 0.792 ± 0.145 for low stage group vs 0.698 ± 0.155 for high stage group. α was significantly lower in the high stage group while DDC was negatively correlated. DDC and α were both reliable independent predictors (p < 0.001), with α being more powerful. Optimal cut-off values were (sensitivity, specificity, positive likelihood ratio, negative likelihood ratio) DDC = 0.692 x 10 -3 mm 2 /s (94.4 %, 64.3 %, 2.64, 0.09), α = 0.720 (72.2 %, 100 %, -, 0.28). The heterogeneity index α is robust and can potentially help in staging and grading prediction in NPC. (orig.)

  20. Modelling water fluxes for the analysis of diffuse pollution at the river basin scale

    NARCIS (Netherlands)

    Wit, de M.; Meinardi, C.R.; Wendland, F.; Kunkel, R.

    2000-01-01

    Diffuse pollution is a significant and sometimes even major component of surface water pollution. Diffuse inputs of pollutants to the surface water are related to runoff of precipitation. This means that the analysis of diffuse pollutant fluxes from the land surface to the surface water requires an

  1. Linking the Diffusion of Water in Compacted Clays at Two Different Time Scales: Tracer Through-Diffusion and QENS

    International Nuclear Information System (INIS)

    Juranyi, Fanni; Gonzalez Sanchez, Fatima; Gimmi, Thomas; Bestel, Martina; Van Loon, Luc; Diamond, Larryn W.

    2013-01-01

    Observable water diffusion processes in clays and their parameters depend on the spatial- and time-scale of the measurement. Comparing the diffusion coefficients of quasielastic neutron scattering and tracer through-diffusion, 'chemical' and 'geometrical' effects can be distinguished and quantified. Results for montmorillonite and illite in the Na- and Ca- form illustrate this very well. Swelling clays such as montmorillonite are especially interesting because of the interlayer water. This water is confined in form of few layers such that the diffusion occurs essentially in 2D. Furthermore the ratio of interlayer- and external- (macro-pore) water changes as a function of bulk dry density and degree of water saturation. Therefore it is of interest to describe the diffusion process using these parameters. Finally, the activation energy of the diffusion should be equal for both methods assuming that the geometrical factor does not depend on temperature. For the montmorillonites this was not the case, which might also indicate that the main processes on the two scales are different. We conclude that the geometrical factor and the electrostatic constraint can be determined from a comparison of the diffusion coefficients measured by the two different techniques: quasielastic neutron scattering and tracer through diffusion. Furthermore, activation energies obtained at the two scales are similar for clays having no interlayer water. For montmorillonite the activation energy values are different. Further investigations are required to clarify the reason. (authors)

  2. First Zenith Total Delay and Integrated Water Vapour Estimates from the Near Real-Time GNSS Data Processing Systems at the University of Luxembourg

    Science.gov (United States)

    Ahmed, F.; Teferle, F. N.; Bingley, R. M.

    2012-04-01

    Since September 2011 the University of Luxembourg in collaboration with the University of Nottingham has been setting up two near real-time processing systems for ground-based GNSS data for the provision of zenith total delay (ZTD) and integrated water vapour (IWV) estimates. Both systems are based on Bernese v5.0, use the double-differenced network processing strategy and operate with a 1-hour (NRT1h) and 15-minutes (NRT15m) update cycle. Furthermore, the systems follow the approach of the E-GVAP METO and IES2 systems in that the normal equations for the latest data are combined with those from the previous four updates during the estimation of the ZTDs. NRT1h currently takes the hourly data from over 130 GNSS stations in Europe whereas NRT15m is primarily using the real-time streams of EUREF-IP. Both networks include additional GNSS stations in Luxembourg, Belgium and France. The a priori station coordinates for all of these stem from a moving average computed over the last 20 to 50 days and are based on the precise point positioning processing strategy. In this study we present the first ZTD and IWV estimates obtained from the NRT1h and NRT15m systems in development at the University of Luxembourg. In a preliminary evaluation we compare their performance to the IES2 system at the University of Nottingham and find the IWV estimates to agree at the sub-millimetre level.

  3. Influence of enhanced fluid intake on reduction of committed dose after acute intake of tritiated water vapour by occupational workers at Narora Atomic Power Station, India

    International Nuclear Information System (INIS)

    Pawar, S.K.; Mitra, S.R.; Chand, Lal

    2001-01-01

    The study of acute exposure cases of male radiation workers to tritiated water vapour (HTO) in Narora Atomic Power Station, using the bi-exponential function has provided direct practical evidence that the committed dose following an HTO exposure is directly proportional to effective half-life which in turn is inversely proportional to the fluid intake. Urine samples from these workers apparently in good health, were collected and measured for tritium concentration in urine up to maximum of 163 days after the exposure. They were advised to increase their fluid intakes to accelerate the elimination of tritium for dose mitigation. Their fluid intakes reverted to normal levels in the later stage of the post exposure period. The non-linear regression analysis of the data of tritium concentration in urine showed an effective half-life of 1.5 to 3.8 days during the period of enhanced fluid intake, 3.4 to 6.9 days during the period of normal and slightly above normal fluid intake and 23.6 to 52.3 days due to elimination of metabolized organically bound tritium. This increase in elimination rate due to enhanced fluid intake directly resulted in dose mitigation of 45.1 to 76.0 percent in different subjects. (author)

  4. Surface fluxes of water vapour, momentum and CO{sub 2} over a savanna in Niger. A contribution to HAPEX-SAHEL

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, A; De Bruin, H A.R.; Krikke, R [Dept. of Meteorology. Landbouwuniversiteit, Wageningen (Netherlands)

    1995-11-01

    For large scale models such as Global Circulation Models (GCM) the lower boundary condition is often provided by a SVAT model (Soil-Vegetation-Atmosphere Transfer). A wide range of SVATs is in use nowadays, varying from models based on the simple big-leaf concept to complicated multiple source models. Obviously, a SVAT intended to provide the lower boundary condition in GCM`s needs to be able to describe a wide range of surface types, varying from completely vegetated to sparsely vegetated or completely bare surfaces. Especially sparse canopy surface types exhibit rather demanding features with respect to the exchange of momentum, water vapour, CO{sub 2} and heat between the surface and the atmosphere. In this paper attention is focused on a sparse canopy. We will compare SVAT model simulations with data collected in 1992 at a Savannah site, in the framework of the HAPEX-SAHEL project (a large-scale study of land atmosphere interactions in the semi-arid tropics). Two existing SVAT models are considered (Choudhury-Monteith and Deardorff). In a separate study these models have been tested. A combined model has been constructed, consisting of the `best` parts of the original SVAT`s. Some preliminary results will be presented. 4 figs., 14 refs., 1 appendix

  5. Computation of diffusion coefficients for waters of Gauthami Godavari estuary using one-dimensional advection-diffusion model

    Digital Repository Service at National Institute of Oceanography (India)

    Jyothi, D.; Murty, T.V.R.; Sarma, V.V.; Rao, D.P.

    conditions. As the pollutant load on the estuary increases, the. water quality may deteriorate rapidly and therefore the scientific interests are centered on the analysis of water quality. The pollutants will be subjected to a number of physical, chemical... study we have applied one-dimensional advection-diffusion model for the waters of Gauthami Godavari estuary to determine the axial diffusion coefficients and thereby to predict the impact assessment. The study area (Fig. 1) is the lower most 32 km...

  6. Diffusion of helium and estimated diffusion coefficients of hydrogen dissolved in water-saturated, compacted Ca-montmorillonite

    International Nuclear Information System (INIS)

    Higashihara, Tomohiro; Sato, Seichi; Ohashi, Hiroshi; Otsuka, Teppei

    2001-01-01

    The diffusion coefficients of hydrogen gas dissolved in water-saturated, compacted montmorillonite are required to estimate the performance of bentonite buffer materials for geological disposal of nuclear waste. As part of the effort to determine the diffusion coefficients, the diffusion coefficients of helium in water-saturated, compacted calcium montmorillonite (Ca-montmorillonite) were determined as a function of dry density, 0.78 to 1.37x10 3 kg m -3 , by a transient diffusion method. The diffusion coefficients were from 8.3x10 -10 m 2 s -1 at 0.78x10 3 kgm -3 to 2.8x10 -10 m 2 s -1 at 1.37x10 3 kgm -3 . The data obtained by this diffusion experiment of helium were highly reproducible. The diffusion coefficients of helium in Ca-montmorillonite were somewhat larger than those previously obtained for helium in sodium montmorillonite (Na-montmorillonite). The diffusion coefficients of hydrogen gas in the montmorillonites were roughly estimated using the diffusion coefficients of helium. These estimates were based on assumptions that both helium and hydrogen molecules are non-adsorptive and that the geometric factors in the compacted montmorillonites are approximately the same for diffusion of helium and diffusion of hydrogen. (author)

  7. Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS)

    Science.gov (United States)

    To better understand the effects and relationship between precipitation, net ecosystem carbon dioxide (NEE) and water vapor exchange (ET), we report a study conducted in the tropical dry forest (TDF) in the northwest of Mexico. Ecosystem gas exchange was measured using the eddy correlation technique...

  8. Renal water molecular diffusion characteristics in healthy native kidneys: assessment with diffusion tensor MR imaging.

    Directory of Open Access Journals (Sweden)

    Zhenfeng Zheng

    Full Text Available BACKGROUND: To explore the characteristics of diffusion tensor imaging (DTI and magnetic resonance (MR imaging in healthy native kidneys. METHODS: Seventy-three patients without chronic kidney disease underwent DTI-MRI with spin echo-echo planar (SE-EPI sequences accompanied by an array spatial sensitivity encoding technique (ASSET. Cortical and medullary mean, axial and radial diffusivity (MD, AD and RD, fractional anisotropy (FA and primary, secondary and tertiary eigenvalues (λ1, λ2, λ3 were analysed in both kidneys and in different genders. RESULTS: Cortical MD, λ2, λ3, and RD values were higher than corresponding medullary values. The cortical FA value was lower than the medullary FA value. Medullary λ1 and RD values in the left kidney were lower than in the right kidney. Medullary λ2, and λ3 values in women were higher than those in men. Medullary FA values in women were lower than those in men. Medullary FA (r = 0.351, P = 0.002 and λ1 (r = 0.277, P = 0.018 positively correlated with eGFR. Medullary FA (r = -0.25, P = 0.033 negatively correlated with age. CONCLUSIONS: Renal water molecular diffusion differences exist in human kidneys and genders. Age and eGFR correlate with medullary FA and primary eigenvalue.

  9. Mean ozone and water vapour height profiles for Southern hemisphere region using radiosonde or ozonesonde and haloe satelite data

    CSIR Research Space (South Africa)

    Sivakumar, V

    2009-01-01

    Full Text Available obtained from HALOE datasets 6 3.3. SHADOZ mean Ozone The mean ozone obtained from SHADOZ ozonesonde insitu measurement; from Nairobi located at 1.27°S and 36.8°E, Malindi at 2.99°S and 40.2°E and Irene at 25.9°S and 28.22°E, stations are displayed... - 2090. 8 2. Lohmann, M.S., et al., Water vapor profile using LEO - LEO Intersatellite Links. Danish Metereological Institute. Atmospheric Ionosphere Research. 3. Jones, R.L. and Mitchell,J.F.B., (1991) Climate change - is water vapor...

  10. Influence of low water-vapour concentrations in air and carbon dioxide on the inflammability of magnesium in these media

    International Nuclear Information System (INIS)

    Darras, Raymond; Baque, Pierre; Leclercq, Daniel

    1960-01-01

    The temperatures at which live combustion starts in magnesium and certain of its alloys have been determined systematically in air and in carbon dioxide. In carbon dioxide, the ignition temperature is reduced by 130 to 140 deg. C for very low water-vapor concentrations. Reprint of a paper published in 'Comptes Rendus des Seances de l'Academie des Sciences', tome 240, p. 1647-1649, sitting of 28 October 1959 [fr

  11. Atomic layer deposition of Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}/TiO{sub 2} barrier coatings to reduce the water vapour permeability of polyetheretherketone

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadzada, Tamkin, E-mail: tahm4852@uni.sydney.edu.au [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); McKenzie, David R.; James, Natalie L.; Yin, Yongbai [School of Physics, University of Sydney, NSW 2006 (Australia); Li, Qing [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia)

    2015-09-30

    We demonstrate significantly enhanced barrier properties of polyetheretherketone (PEEK) against water vapour penetration by depositing Al{sub 2}O{sub 3} or Al{sub 2}O{sub 3}/TiO{sub 2} nanofilms grown by atomic layer deposition (ALD). Nanoindentation analysis revealed good adhesion strength of a bilayer Al{sub 2}O{sub 3}/TiO{sub 2} coating to PEEK, while the single layer Al{sub 2}O{sub 3} coating displayed flaking and delamination. We identified three critical design parameters for achieving the optimum barrier properties of ALD Al{sub 2}O{sub 3}/TiO{sub 2} coatings on PEEK. These are a minimum total thickness dependent on the required water vapour transmission rate, the use of an Al{sub 2}O{sub 3}/TiO{sub 2} bilayer coating and the application of the coating to both sides of the PEEK film. Using these design parameters, we achieved a reduction in moisture permeability of PEEK of over two orders of magnitude while maintaining good adhesion strength of the polymer–thin film system. - Highlights: • Atomic layer deposition of Al{sub 2}O{sub 3}/TiO{sub 2} coatings reduced water vapour permeability. • Bilayer coatings reduced the permeability more than single layer coatings. • Bilayer coatings displayed higher adhesion strength than the single layer coatings. • Double-sided coatings performed better than single-sided coatings. • Correlation was found between total thickness and reduced water vapour permeability.

  12. Diffusion

    International Nuclear Information System (INIS)

    Kubaschewski, O.

    1983-01-01

    The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes

  13. Emission, absorption and group delay of microwaves in the atmosphere in relation to water vapour content over the Indian subcontinent

    Science.gov (United States)

    Sen, A. K.; Gupta, A. K. D.; Karmakar, P. K.; Barman, S. D.; Bhattacharya, A. B.; Purkait, N.; Gupta, M. K. D.; Sehra, J. S.

    1985-01-01

    The advent of satellite communication for global coverage has apparently indicated a renewed interest in the studies of radio wave propagation through the atmosphere, in the VHF, UHF and microwave bands. The extensive measurements of atmosphere constituents, dynamics and radio meterological parameters during the Middle Atmosphere Program (MAP) have opened up further the possibilities of studying tropospheric radio wave propagation parameters, relevant to Earth/space link design. The three basic parameters of significance to radio propagation are thermal emission, absorption and group delay of the atmosphere, all of which are controlled largely by the water vapor content in the atmosphere, particular at microwave bands. As good emitters are also good absorbers, the atmospheric emission as well as the absorption attains a maximum at the frequency of 22.235 GHz, which is the peak of the water vapor line. The group delay is practically independent of frequency in the VHF, UHF and microwave bands. However, all three parameters exhibit a similar seasonal dependence originating presumably from the seasonal dependence of the water vapor content. Some of the interesting results obtained from analyses of radiosonde data over the Indian subcontinent collected by the India Meteorological Department is presented.

  14. Evaluation of a dimension-reduction-based statistical technique for Temperature, Water Vapour and Ozone retrievals from IASI radiances

    Science.gov (United States)

    Amato, Umberto; Antoniadis, Anestis; De Feis, Italia; Masiello, Guido; Matricardi, Marco; Serio, Carmine

    2009-03-01

    Remote sensing of atmosphere is changing rapidly thanks to the development of high spectral resolution infrared space-borne sensors. The aim is to provide more and more accurate information on the lower atmosphere, as requested by the World Meteorological Organization (WMO), to improve reliability and time span of weather forecasts plus Earth's monitoring. In this paper we show the results we have obtained on a set of Infrared Atmospheric Sounding Interferometer (IASI) observations using a new statistical strategy based on dimension reduction. Retrievals have been compared to time-space colocated ECMWF analysis for temperature, water vapor and ozone.

  15. Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach

    KAUST Repository

    Collier, Nathan

    2011-05-14

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, in the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation.

  16. The use of a heat transfer coefficient for describing the radiative exchange between water vapour and the bounding walls

    International Nuclear Information System (INIS)

    Eifler, W.; Shepherd, I.M.

    1983-01-01

    During the ''severe-fuel-damage'' experiments of the SUPER SARA test program radiation heat transfer will play an important part. For the analysis of these experiments it should be modelled therefore in a particularly appropriate manner. Based on the same engineering type principles which are used in the radiation model of the TRAC code version for boiling water reactors a new model has been developed. This model is less computer time consuming than the TRAC model and particularly appropriate for the use in the subchannel - type bundle computer code which is planned to be developed for the analysis of the ''severe-fuel-damage'' experiments. Sample calculations for the ''severe-fuel-damage'' test array show that the difference between the results obtained with the new model and those obtained with the TRAC model is in general not significant

  17. An unstructured finite volume solver for two phase water/vapour flows based on an elliptic oriented fractional step method

    International Nuclear Information System (INIS)

    Mechitoua, N.; Boucker, M.; Lavieville, J.; Pigny, S.; Serre, G.

    2003-01-01

    Based on experience gained at EDF and Cea, a more general and robust 3-dimensional (3D) multiphase flow solver has been being currently developed for over three years. This solver, based on an elliptic oriented fractional step approach, is able to simulate multicomponent/multiphase flows. Discretization follows a 3D full unstructured finite volume approach, with a collocated arrangement of all variables. The non linear behaviour between pressure and volume fractions and a symmetric treatment of all fields are taken into account in the iterative procedure, within the time step. It greatly enforces the realizability of volume fractions (i.e 0 < α < 1), without artificial numerical needs. Applications to widespread test cases as static sedimentation, water hammer and phase separation are shown to assess the accuracy and the robustness of the flow solver in different flow conditions, encountered in nuclear reactors pipes. (authors)

  18. Two dimensional finite element modelling for dynamic water diffusion through stratum corneum.

    Science.gov (United States)

    Xiao, Perry; Imhof, Robert E

    2012-10-01

    Solvents penetration through in vivo human stratum corneum (SC) has always been an interesting research area for trans-dermal drug delivery studies, and the importance of intercellular routes (diffuse in between corneocytes) and transcellular routes (diffuse through corneocytes) during diffusion is often debatable. In this paper, we have developed a two dimensional finite element model to simulate the dynamic water diffusion through the SC. It is based on the brick-and-mortar model, with brick represents corneocytes and mortar represents lipids, respectively. It simulates the dynamic water diffusion process through the SC from pre-defined initial conditions and boundary conditions. Although the simulation is based on water diffusions, the principles can also be applied to the diffusions of other topical applied substances. The simulation results show that both intercellular routes and transcellular routes are important for water diffusion. Although intercellular routes have higher flux rates, most of the water still diffuse through transcellular routes because of the high cross area ratio of corneocytes and lipids. The diffusion water flux, or trans-epidermal water loss (TEWL), is reversely proportional to corneocyte size, i.e. the larger the corneocyte size, the lower the TEWL, and vice versa. There is also an effect of the SC thickness, external air conditions and diffusion coefficients on the water diffusion through SC on the resulting TEWL. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Detection of polar vapours

    International Nuclear Information System (INIS)

    Blyth, D.A.

    1980-01-01

    Apparatus for monitoring for polar vapours in a gas consists of (i) a body member defining a passage through which a continuous stream of the gas passes; (ii) an ionising source associated with a region of the passage such that ionization of the gas stream takes place substantially only within the region and also any polar vapour molecules present therein will react with the gas formed to generate ion clusters; and (iii) an electrode for collecting ions carried by the gas stream, the electrode being positioned in the passage downstream of the region and separated from the region by a sufficient distance to ensure that no substantial number of the gas ions formed in said region remains in the gas stream at the collector electrode whilst ensuring that a substantial proportion of the ion clusters formed in the region does remain in the gas stream at the collector electrode. (author)

  20. Vapour pressure of trideuterioammonia

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Lopes, J.N.C.; Rebelo, L.P.N. (Instituto Superior Tecnico, Lisbon (Portugal). Centro de Quimica Estrutural)

    1992-09-01

    The H-to-D vapour-pressure isotope effect in liquid ammonia has been measured at 62 temperatures between 228 K and 260 K. The vapour pressures, corrected to 100 per cent nuclidic purity, have been fitted to the equation: T ln r = A+B/T+CT, where r is the vapour-pressure ratio p(NH[sub 3])/p(ND[sub 3]). The fit yielded the parameters: A = -8.22508 K, B = 12338.2 K[sup 2], and C = -0.05544. Comparisons with the results of other authors were made in order to clarify some discrepancies found in the literature. Our values are in accord with the previous results of King et al. and an extrapolation of the fitted equation down to the triple-point temperature gave good agreement with the published results. The fitted equation was used in conjunction with the Clapeyron equation to calculate the difference in the molar enthalpies of vaporization between NH[sub 3] and ND[sub 3]. At T = 230 K that difference is -846 J.mol[sup -1] decreasing to -747 J.mol[sup -1] at 260 K. (author).

  1. Diffusion of a multi-species component and its role in oxygen and water transport in silicates

    Science.gov (United States)

    Zhang, Youxue; Stolper, E. M.; Wasserburg, G. J.

    1991-01-01

    The diffusion of a multispecies component is complicated by the different diffusion coefficient of each species and the interconversion reactions among the species. A diffusion equation is derived that incorporates the diffusive fluxes of all species contributing to the component's concentration. The effect of speciation on diffusion is investigated experimentally by measuring concentration profiles of all species developed during diffusion experiments. Data on water diffusion in rhyolitic glasses indicate that H2O molecules predominate over OH groups as the diffusing species at very low to high water concentrations. A simple theoretical relationship is drawn between the effective total oxygen diffusion coefficient and the total water concentration of silicates at low water content.

  2. Modification of gas diffusion layers properties to improve water management

    Directory of Open Access Journals (Sweden)

    Martin Tomas

    2017-09-01

    Full Text Available Abstract In this paper we report an approach to improve water management of commercial GDLs by introducing hydrophobicity patterns. Specifically, line and grid patterns have been created in the MPL side by laser radiation. For an in-depth investigation of these modified GDLs the current density distribution was monitored during fuel cell operation. Additionally, the physical properties of these materials were investigated by a number of ex situ methods such as Fourier transform infrared microscopy, electrochemical impedance spectroscopy and water vapor sorption. Furthermore, a comparison of the physical properties of the patterned GDLs with chemically modified GDLs (treated in H2SO4 and H2O2 is provided. Our results show a clearly improved homogeneity of current density distribution of the patterned GDLs compared to untreated GDLs. This observation is likely due to a reduced local hydrophobicity which facilitates water diffusion along the flow field of the fuel cell. However, performance of the fuel cell was not affected by the MPL irradiation. Graphical Abstract

  3. QINS studies of water diffusion in Na-Montmorillonite

    International Nuclear Information System (INIS)

    Gay-Duchosal, M.

    1999-01-01

    Complete text of publication follows. The rotational and translational motion of interlayer water was investigated in Na-Montmorillonite as a function of the humidity (one-, two- and three-layers). Partially orientated samples produced by deposition onto a filter under pressure were used. Measurements were made at two different resolutions 120 μeV and 36 μeV. In order to observe the anisotropy, measurements with sample orientations of 135 and 45 degree were made with respect to the incident beam corresponding to Q-parallel and Q-perpendicular to the clay layers. The fitting procedure consists of an elastic term based on a fit to an analogous D 2 O hydrated sample and a quasielastic term containing both rotational and translational contributions (1). At low resolution with Q-parallel a rotational broadening was observed that increases, indicating increasing water mobility, as the water content and hence the layer spacing increases. For the three-layer hydrate with the two different orientations the broadening is the same showing no measurable anisotropy of the rotational motion. At high resolution an additional broadening was seen due to translational diffusion of a similar magnitude to that measured previously for Li-Montmorillonite (2). We are currently refining our data analysis in order to determine whether the anisotropy of the translational motion with respect to the orientation of the clay is measurable. (author)

  4. Heat diffusion in cylindrical fuel elements of water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Randles, J [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1961-09-15

    This report contains a theoretical study of heat diffusion in the cylindrical fuel elements of water reactors. After setting up appropriate boundary conditions on the temperature, the steady state Fourier equation is solved both for a flat and a tilted fission power source. It is shown that source tilting does not have an appreciable effect on the peak fuel temperature while the heat flux to the coolant suffers a circumferential variation of less than a half of that of the fission power. In the last section, the theory is extended to include the effect of a flat, time dependent fission power. The time dependent Fourier equation is solved by means of a Dini series of Bessel functions which is shown to be rapidly convergent. From this series is derived expressions for the fuel element transfer functions required in reactor servo-analysis. These have the form of a rapidly convergent series of time-lag terms. (author)

  5. Desalination using spray tower and vapour compression refrigeration system

    International Nuclear Information System (INIS)

    Sathish Kumar, S.; Mani, A.

    2006-01-01

    A desalination system using a spray tower and Vapour Compression Refrigeration (VCR) system is proposed for obtaining fresh water from brackish water. In the spray tower, simultaneous heat and mass transfer take place between the brackish water and air, which results in the evaporation of the brackish water and humidification of the air. Fresh water is obtained from the humidified air by condensing the water vapour using a VCR system. Parametric studies were carried out to study the effect of various operational parameters on the fresh water production rate. (author)

  6. Representing the root water uptake process in the Common Land Model for better simulating the energy and water vapour fluxes in a Central Asian desert ecosystem

    NARCIS (Netherlands)

    Li, Longhui; van der Tol, C.; Chen, Xuelong; Jing, C.; Su, Zhongbo; Luo, G.; Tian, Xin

    2013-01-01

    The ability of roots to take up water depends on both root distribution and root water uptake efficiency. The former can be experimentally measured, while the latter is extremely difficult to determine. Yet a correct representation of root water uptake process in land surface models (LSMs) is

  7. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques.

    Science.gov (United States)

    van Drooge, D J; Hinrichs, W L J; Visser, M R; Frijlink, H W

    2006-03-09

    The molecular distribution in fully amorphous solid dispersions consisting of poly(vinylpyrrolidone) (PVP)-diazepam and inulin-diazepam was studied. One glass transition temperature (T(g)), as determined by temperature modulated differential scanning calorimetry (TMDSC), was observed in PVP-diazepam solid dispersions prepared by fusion for all drug loads tested (10-80 wt.%). The T(g) of these solid dispersions gradually changed with composition and decreased from 177 degrees C for pure PVP to 46 degrees C for diazepam. These observations indicate that diazepam was dispersed in PVP on a molecular level. However, in PVP-diazepam solid dispersions prepared by freeze drying, two T(g)'s were observed for drug loads above 35 wt.% indicating phase separation. One T(g) indicated the presence of amorphous diazepam clusters, the other T(g) was attributed to a PVP-rich phase in which diazepam was dispersed on a molecular level. With both the value of the latter T(g) and the DeltaC(p) of the diazepam glass transition the concentrations of molecular dispersed diazepam could be calculated (27-35 wt.%). Both methods gave similar results. Water vapour sorption (DVS) experiments revealed that the PVP-matrix was hydrophobised by the incorporated diazepam. TMDSC and DVS results were used to estimate the size of diazepam clusters in freeze dried PVP-diazepam solid dispersions, which appeared to be in the nano-meter range. The inulin-diazepam solid dispersions prepared by spray freeze drying showed one T(g) for drug loads up to 35 wt.% indicating homogeneous distribution on a molecular level. However, this T(g) was independent of the drug load, which is unexpected because diazepam has a lower T(g) than inulin (46 and 155 degrees C, respectively). For higher drug loads, a T(g) of diazepam as well as a T(g) of the inulin-rich phase was observed, indicating the formation of amorphous diazepam clusters. From the DeltaC(p) of the diazepam glass transition the amount of molecularly dispersed

  8. Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode

    Directory of Open Access Journals (Sweden)

    R. Thalman

    2010-12-01

    Full Text Available The combination of Cavity Enhanced Absorption Spectroscopy (CEAS with broad-band light sources (e.g. Light-Emitting Diodes, LEDs lends itself to the application of cavity enhanced Differential Optical Absorption Spectroscopy (CE-DOAS to perform sensitive and selective point measurements of multiple trace gases and aerosol extinction with a single instrument. In contrast to other broad-band CEAS techniques, CE-DOAS relies only on the measurement of relative intensity changes, i.e. does not require knowledge of the light intensity in the absence of trace gases and aerosols (I0. We have built a prototype LED-CE-DOAS instrument in the blue spectral range (420–490 nm to measure nitrogen dioxide (NO2, glyoxal (CHOCHO, methyl glyoxal (CH3COCHO, iodine oxide (IO, water vapour (H2O and oxygen dimers (O4. We demonstrate the first direct detection of methyl glyoxal, and the first CE-DOAS detection of CHOCHO and IO. The instrument is further inherently calibrated for light extinction from the cavity by observing O4 or H2O (at 477 nm and 443 nm and measuring the pressure, relative humidity and temperature independently. This approach is demonstrated by experiments where laboratory aerosols of known size and refractive index were generated and their extinction measured. The measured extinctions were then compared to the theoretical extinctions calculated using Mie theory (3–7 × 10−7cm−1. Excellent agreement is found from both the O4 and H2O retrievals. This enables the first inherently calibrated CEAS measurement at blue wavelengths in open cavity mode, and eliminates the need for sampling lines to supply air to the cavity, i.e., keep the cavity enclosed and/or aerosol free. Measurements in open cavity mode are demonstrated for CHOCHO, CH3COCHO, NO2, H2O and aerosol extinction. Our prototype

  9. A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance.

    Science.gov (United States)

    Ayad, Mohamad M; El-Hefnawey, Gad; Torad, Nagy L

    2009-08-30

    Thin films of polyaniline base, emeraldine base (EB), coating on the quartz crystal microbalance (QCM) electrode were used as a sensitive layer for the detection of a number of primary aliphatic alcohols such as ethanol, methanol, 2-propanol and 1-propanol vapours. The frequency shifts (Deltaf) of the QCM were increased due to the vapour adsorption into the EB film. Deltaf were found to be linearly correlated with the concentrations of alcohols vapour in part per million (ppm). The sensitivity of the sensor was found to be governed by the chemical structure of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusions of different alcohols vapour were studied and the diffusion coefficients (D) were calculated. It is concluded that the diffusion of the vapours into the EB film follows Fickian kinetics.

  10. Estimation and calibration of the water isotope differential diffusion length in ice core records

    NARCIS (Netherlands)

    van der Wel, G.; Fischer, H.; Oerter, H.; Meyer, H.; Meijer, H. A. J.

    2015-01-01

    Palaeoclimatic information can be retrieved from the diffusion of the stable water isotope signal during firnification of snow. The diffusion length, a measure for the amount of diffusion a layer has experienced, depends on the firn temperature and the accumulation rate. We show that the estimation

  11. Subsidy programs on diffusion of solar water heaters: Taiwan's experience

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lin, Wei-Min; Lee, Tsong-Sheng; Chung, Kung-Ming

    2011-01-01

    Financial incentives are essentially one of the key factors influencing diffusion of solar water heaters in many countries. Two subsidy programs were initiated by the government of Taiwan in 1986 (1986-1991) and 2000 (2000-present), respectively. Those long-term national programs are considered to be the driving force on local market expansion. In 2008, the regional subsidy programs for solar water heaters were announced by Kaohsiung city and Kiemen county, which resulted in the growth in sales. A revised subsidy was also initiated by the government of Taiwan in 2009. The subsidy is 50% more. However, the tremendous enlargement of market size with a high-level ratio of subsidy over total installation cost might result in a negative impact on a sustainable SWH industry and long-term development of the local market, which is associated with system design and post-installation service. This paper aims to address the relative efficiency and pitfalls of those national and regional programs. - Research Highlights: → The direct subsidy has been the driving force on market expansion in Taiwan. → Higher subsidy would certainly increase the total number of systems installed. → A high-level subsidy results in a negative impact on users or a sustainable industry.

  12. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev

    2012-09-12

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  13. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces

    KAUST Repository

    Vakarelski, Ivan Uriev; Patankar, Neelesh A.; Marston, Jeremy; Chan, Derek Y C; Thoroddsen, Sigurdur T

    2012-01-01

    In 1756, Leidenfrost observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants. The presence of these vapour films can also reduce liquid-solid drag. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling-by heat transfer-the liquid-gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating. © 2012 Macmillan Publishers Limited. All rights reserved.

  14. Flux-gradient relationships and soil-water diffusivity from curves of water content versus time

    Energy Technology Data Exchange (ETDEWEB)

    Nofziger, D.L.; Ahuja, L.R.; Swartzendruber, D.

    Direct analysis of a family of curves of soil-water content vs. time at different fixed positions enables assessment of the flux-gradient relationship prior to the calculations of soil-water diffusivity. The method is evaluated on both smooth and random-error data generated from the solution of the horizontal soil-water intake problem with a known diffusivity function. Interpolation, differentiation, and intergration are carried out by least-squares curve fitting based on the 2 recently developed techniques of parabolic splines and sliding parabolas, with all computations performed by computer. Results are excellent for both smooth and random-error input data, whether in terms of recovering the original known diffusivity function, assessing the nature of the flux-gradient relationship, or in making the numerous checks and validations at various intermediate stages of computation. The method applies for any horizontal soil-wetting process independently of the specific boundary conditions, including water entry through a nonzero inlet resistance. It should be adaptable to horizontal dewatering, and extendable to vertical flow. (11 refs.)

  15. Tritium in the food chain. Intercomparison of model predictions of contamination in soil, crops, milk and beef after a short exposure to tritiated water vapour in air

    International Nuclear Information System (INIS)

    Barry, P.

    1996-09-01

    Future fusion reactors using tritium as fuel will contain large inventories of the gas. The possibility that a significant fraction of an inventory may accidentally escape into the atmosphere from this and other potential sources such as tritium handling facilities and some fission reactors e g, PWRs has to be recognized and its potential impact on local human populations and biota assessed. Tritium gas is relatively inert chemically and of low radiotoxicity but it is readily oxidized by soil organisms to the mixed oxide, HTO or tritiated water. In this form it is highly mobile, strongly reactive biologically and much more toxic. Models of how tritiated water vapour is transported through the biosphere to foodstuffs important to man are essential components of such an assessment and it is important to test the models for their suitability when used for this purpose. To evaluate such models, access to experimental measurements made after actual releases are needed. There have however, been very few accidental releases of tritiated water to the atmosphere and the experimental findings of those that have occurred have been used to develop the models under test. Models must nevertheless be evaluated before their predictions can be used to decide the acceptability or otherwise of designing and operating major nuclear facilities. To fulfil this need a model intercomparison study was carried out for a hypothetical release scenario. The study described in this report is a contribution to the development of model evaluation procedures in general as well as a description of the results of applying these procedures to the particular case of models of HTO transport in the biosphere which are currently in use or being developed. The study involved eight modelers using seven models in as many countries. In the scenario farmland was exposed to 1E10 Bq d/m 3 of HTO in air during 1 hour starting at midnight in one case and at 10.00 a.m. in the other, 30 days before harvest of crops

  16. Tritium in the food chain. Intercomparison of model predictions of contamination in soil, crops, milk and beef after a short exposure to tritiated water vapour in air

    Energy Technology Data Exchange (ETDEWEB)

    Barry, P. [PJS Barry (Canada)] [and others

    1996-09-01

    Future fusion reactors using tritium as fuel will contain large inventories of the gas. The possibility that a significant fraction of an inventory may accidentally escape into the atmosphere from this and other potential sources such as tritium handling facilities and some fission reactors e g, PWRs has to be recognized and its potential impact on local human populations and biota assessed. Tritium gas is relatively inert chemically and of low radiotoxicity but it is readily oxidized by soil organisms to the mixed oxide, HTO or tritiated water. In this form it is highly mobile, strongly reactive biologically and much more toxic. Models of how tritiated water vapour is transported through the biosphere to foodstuffs important to man are essential components of such an assessment and it is important to test the models for their suitability when used for this purpose. To evaluate such models, access to experimental measurements made after actual releases are needed. There have however, been very few accidental releases of tritiated water to the atmosphere and the experimental findings of those that have occurred have been used to develop the models under test. Models must nevertheless be evaluated before their predictions can be used to decide the acceptability or otherwise of designing and operating major nuclear facilities. To fulfil this need a model intercomparison study was carried out for a hypothetical release scenario. The study described in this report is a contribution to the development of model evaluation procedures in general as well as a description of the results of applying these procedures to the particular case of models of HTO transport in the biosphere which are currently in use or being developed. The study involved eight modelers using seven models in as many countries. In the scenario farmland was exposed to 1E10 Bq d/m{sup 3} of HTO in air during 1 hour starting at midnight in one case and at 10.00 a.m. in the other, 30 days before harvest of

  17. The stable isotopic composition of water vapour above Corsica during the HyMeX SOP1 campaign: insight into vertical mixing processes from lower-tropospheric survey flights

    Science.gov (United States)

    Sodemann, Harald; Aemisegger, Franziska; Pfahl, Stephan; Bitter, Mark; Corsmeier, Ulrich; Feuerle, Thomas; Graf, Pascal; Hankers, Rolf; Hsiao, Gregor; Schulz, Helmut; Wieser, Andreas; Wernli, Heini

    2017-05-01

    Stable isotopes of water vapour are powerful indicators of meteorological processes on a broad range of scales, reflecting evaporation, condensation, and air mass mixing processes. With the recent advent of fast laser-based spectroscopic methods, it has become possible to measure the stable isotopic composition of atmospheric water vapour in situ at a high temporal resolution. Here we present results from such comprehensive airborne spectroscopic isotope measurements in water vapour over the western Mediterranean at a high spatial and temporal resolution. Measurements have been acquired by a customized Picarro L2130-i cavity-ring down spectrometer deployed onboard the Dornier 128 D-IBUF aircraft together with a meteorological flux measurement package during the HyMeX SOP1 (Hydrological cycle in Mediterranean Experiment special observation period 1) field campaign in Corsica, France, during September and October 2012. Taking into account memory effects of the air inlet pipe, the typical time resolution of the measurements was about 15-30 s, resulting in an average horizontal resolution of about 1-2 km. Cross-calibration of the water vapour measurements from all humidity sensors showed good agreement under most flight conditions but the most turbulent ones. In total 21 successful stable isotope flights with 59 flight hours have been performed. Our data provide quasi-climatological autumn average conditions and vertical profiles of the stable isotope parameters δD, δ18O, and d-excess during the study period. A d-excess minimum in the overall average profile is reached in the region of the boundary-layer top, possibly caused by precipitation evaporation. This minimum is bracketed by higher d-excess values near the surface caused by non-equilibrium fractionation, and a maximum above the boundary layer related to the increasing d-excess in very depleted and dry high-altitude air masses. Repeated flights along the same pattern reveal pronounced day-to-day variability

  18. Optimized sampling of hydroperoxides and investigations of the water vapour dependence of hydroperoxide formation during ozonolysis of alkenes; Optimierung der Probenahme von Hydroperoxiden und Untersuchungen zur Wasserdampfabhaengigkeit der Bildung von Hydroperoxiden bei der Ozonolyse von Alkenen

    Energy Technology Data Exchange (ETDEWEB)

    Becker, K.H.; Plagens, H.

    1997-06-01

    There are several sampling methods for hydroperoxides none of which is particularly reliable. The authors therefore tested three new methods in order to optimize hydroperoxide sampling and, using the optimized sampling procedure, to investigate the water vapour dependence of hydroperoxide formation during ozonolysis of alkenes. (orig.) [Deutsch] Fuer die Probenahme von Hydroperoxiden existieren verschiedene Verfahren, von denen bisher keines als besonders zuverlaessig angesehen werden konnte. Daher wurden in dieser Arbeit drei Verfahren getestet, um die Probenahme von Hydroperoxiden zu optimieren und mit dem entsprechenden Verfahren die Wasserdampfabhaengigkeit der Bildung von Hydroperoxiden bei der Ozonolyse von Alkenen zu untersuchen. (orig.)

  19. An example of transition from a corrosion process in gaseous phase to corrosion in aqueous environment: the case of Z2CN18-10 stainless steel by iodine and water in vapour phase

    International Nuclear Information System (INIS)

    Mathieu, Bruno

    1990-01-01

    This research thesis addresses an example of transition of a corrosion process in gaseous phase towards corrosion in aqueous environment, specifically in the case of the corrosion of the Z2CN18-10 stainless steel by gaseous iodine in presence of water vapour (and possibly nitrogen dioxide). This transition occurs in two steps: initiation in gaseous phase and growth in aqueous environment. This transition is due to hygroscopic properties of mostly chromium iodides and, to a lesser extent, iron iodides. Morphological, electrochemical and thermogravimetry studies have been performed by varying different parameters governing corrosion processes: corrosion temperature, iodine concentration, relative humidity, and reaction time [fr

  20. Thermogravimetric studies of vapour-aerosol interactions

    International Nuclear Information System (INIS)

    Henshaw, J.; Newland, M.S.; Wood, S.J.

    1991-01-01

    Thermogravimetric analysis has been used to study the interaction of iodine vapour with cadmium, silver and manganese monoxide substrates. These studies have demonstrated the importance of time-dependence data on reaction rates. Iodine did not react with manganese monoxide (as expected from thermodynamic considerations); however, extensive reaction did occur with silver and cadmium. Two rate limiting mechanisms were observed: mass transfer of iodine molecules from the gas phase (leading to linear reaction rates) and parabolic kinetics (ie inversely proportional to the extent of reaction) when the rate was limited by a diffusion process through the reaction product. (author)

  1. Connecting diffusion and entropy of bulk water at the single particle ...

    Indian Academy of Sciences (India)

    The relation between the dynamic (e.g., diffusion) and thermodynamic (e.g., entropy) properties of water and water-like liquids has been an active area of research for a long time. Although several studies have investigated the diffusivity and entropy for different systems, these studies have probed either the configurational ...

  2. Considering the use of polyethylene vapour barriers in temperate climates

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, M.D. [Morrison Hershfield Ltd., Vancouver, BC (Canada); Brown, W.C. [Morrison Hershfield Ltd., Ottawa, ON (Canada)

    2003-07-01

    Most building envelope assemblies in Canada must include a vapour barrier in order to comply with Canadian building codes. The installation of sheet polyethylene between the studs and the interior sheathing has been the most common method because it provides more diffusion resistance than necessary to control condensation within a building envelope assembly. It has been suggested that the presence of a polyethylene vapour barrier on the warm-in-winter side of the insulation may actually cause moisture problems because a very low permeance material increases average moisture levels. This paper examined the theory that a vapour barrier at this location restricts drying of moisture that enters the building from outside. Pacific coastal regions of Canada and the United States were presented as examples. Other ways that a polyethylene vapour barrier affects wall performance were also presented. The advanced hygrothermal model HygIRC, developed by Canada's National Research Council, was used to simulate the performance of a wall assembly. Results indicate that eliminating the low permeance polyethylene vapour barrier does not necessarily reduce the risk of moisture problems. Removal of the vapour barrier may have some negative effects, such as increased risk of periodic moisture accumulation and mold growth on paper-faced gypsum board. 7 refs., 2 tabs., 7 figs.

  3. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  4. Summer to Winter Diurnal Variabilities of Temperature and Water Vapour in the Lowermost Troposphere as Observed by HAMSTRAD over Dome C, Antarctica

    Science.gov (United States)

    Ricaud, P.; Genthon, C.; Durand, P.; Attié, J.-L.; Carminati, F.; Canut, G.; Vanacker, J.-F.; Moggio, L.; Courcoux, Y.; Pellegrini, A.; Rose, T.

    2012-04-01

    The HAMSTRAD (H2O Antarctica Microwave Stratospheric and Tropospheric Radiometers) microwave radiometer operating at 60 GHz (oxygen line, thus temperature) and 183 GHz (water vapour line) has been permanently deployed at the Dome C station, Concordia, Antarctica [75°06'S, 123°21'E, 3,233 m above mean sea level] in January 2010 to study long-term trends in tropospheric absolute humidity and temperature. The great sensitivity of the instrument in the lowermost troposphere helped to characterize the diurnal cycle of temperature and H2O from the austral summer (January 2010) to the winter (June 2010) seasons from heights of 10 to 200 m in the planetary boundary layer (PBL). The study has characterized the vertical resolution of the HAMSTRAD measurements: 10-20 m for temperature and 25-50 m for H2O. A strong diurnal cycle in temperature and H2O (although noisier) has been measured in summertime at 10 m, decreasing in amplitude with height, and phase-shifted by about 4 h above 50 m with a strong H2O-temperature correlation (>0.8) throughout the entire PBL. In autumn, whilst the diurnal cycle in temperature and H2O is less intense, a 12-h phase shift is observed above 30 m. In wintertime, a weak diurnal signal measured between 10 to 200 m is attributed to the methodology employed, which consists of monthly averaged data, and that combines air masses from different origins (sampling effect) and not to the imprint of the null solar irradiation. In situ sensors scanning the entire 24-h period, radiosondes launched at 2000 local solar time (LST) and European Centre for Medium-Range Weather Forecasts (ECMWF) analyses at 0200, 0800, 1400 and 2000 LST agree very well with the HAMSTRAD diurnal cycles for temperature and relatively well for absolute humidity. For temperature, HAMSTRAD tends to be consistent with all the other datasets but shows a smoother vertical profile from 10 to 100 m compared to radiosondes and in-situ data, with ECMWF profiles even smoother than HAMSTRAD

  5. Diffuse radiation increases global ecosystem-level water-use efficiency

    Science.gov (United States)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  6. Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water

    Science.gov (United States)

    Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf

    2018-06-01

    Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.

  7. Utilization of Weibull equation to obtain soil-water diffusivity in horizontal infiltration

    International Nuclear Information System (INIS)

    Guerrini, I.A.

    1982-06-01

    Water movement was studied in horizontal infiltration experiments using laboratory columns of air-dry and homogeneous soil to obtain a simple and suitable equation for soil-water diffusivity. Many water content profiles for each one of the ten soil columns utilized were obtained through gamma-ray attenuation technique using a 137 Cs source. During the measurement of a particular water content profile, the soil column was held in the same position in order to measure changes in time and so to reduce the errors in water content determination. The Weibull equation utilized was excellent in fitting water content profiles experimental data. The use of an analytical function for ν, the Boltzmann variable, according to Weibull model, allowed to obtain a simple equation for soil water diffusivity. Comparisons among the equation here obtained for diffusivity and others solutions found in literature were made, and the unsuitability of a simple exponential variation of diffusivity with water content for the full range of the latter was shown. The necessity of admitting the time dependency for diffusivity was confirmed and also the possibility fixing that dependency on a well known value extended to generalized soil water infiltration studies was found. Finally, it was shown that the soil water diffusivity function given by the equation here proposed can be obtained just by the analysis of the wetting front advance as a function of time. (Author) [pt

  8. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Thomsen, C; Henriksen, O; Ring, P

    1987-01-01

    A new pulse sequence for in vivo diffusion measurements by magnetic resonance imaging (MRI) is introduced. The pulse sequence was tested on phantoms to evaluate the accuracy, reproducibility and inplane variations. The sensitivity of the sequence was tested by measuring the self diffusion...... coefficient of water with different temperatures. This phantom study showed that the water self diffusion could be measured accurately and that the inplane deviation was less than +/- 10 per cent. Seven healthy volunteers were studied with a 10 mm thick slice through the lateral ventricles, clear differences...... between grey and white matter as well as regional differences within the white matter were seen. In two patients with infarction, alternations in water self diffusion were seen in the region of the infarct. Likewise, pronounced changes in brain water self diffusion were observed in a patient with benign...

  9. Molecular dynamics study of water molecule diffusion in oil-paper insulation materials

    International Nuclear Information System (INIS)

    Liao Ruijin; Zhu Mengzhao; Yang Lijun; Zhou Xin; Gong Chunyan

    2011-01-01

    Moisture is an important factor that influences the safe operation of transformers. In this study, molecular dynamics was employed to investigate the diffusion behavior of water molecules in the oil-paper insulation materials of transformers. Two oil-cellulose models were built. In the first model, water molecules were initially distributed in oil, and in the second model, water molecules were distributed in cellulose. The non-bonding energies of interaction between water molecules and oil, and between water molecules and cellulose, were calculated by the Dreiding force field. The interaction energy was found to play a dominant role in influencing the equilibrium distribution of water molecules. The radial direction functions of water molecules toward oil and cellulose indicate that the hydrogen bonds between water molecules and cellulose are sufficiently strong to withstand the operating temperature of the transformer. Mean-square displacement analysis of water molecules diffusion suggests that water molecules initially distributed in oil showed anisotropic diffusion; they tended to diffuse toward cellulose. Water molecules initially distributed in cellulose diffused isotropically. This study provides a theoretical contribution for improvements in online monitoring of water in transformers, and for subsequent research on new insulation materials.

  10. Molecular dynamics study of water molecule diffusion in oil-paper insulation materials

    Energy Technology Data Exchange (ETDEWEB)

    Liao Ruijin [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Zhu Mengzhao, E-mail: xiaozhupost@163.co [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Yang Lijun; Zhou Xin; Gong Chunyan [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China)

    2011-03-01

    Moisture is an important factor that influences the safe operation of transformers. In this study, molecular dynamics was employed to investigate the diffusion behavior of water molecules in the oil-paper insulation materials of transformers. Two oil-cellulose models were built. In the first model, water molecules were initially distributed in oil, and in the second model, water molecules were distributed in cellulose. The non-bonding energies of interaction between water molecules and oil, and between water molecules and cellulose, were calculated by the Dreiding force field. The interaction energy was found to play a dominant role in influencing the equilibrium distribution of water molecules. The radial direction functions of water molecules toward oil and cellulose indicate that the hydrogen bonds between water molecules and cellulose are sufficiently strong to withstand the operating temperature of the transformer. Mean-square displacement analysis of water molecules diffusion suggests that water molecules initially distributed in oil showed anisotropic diffusion; they tended to diffuse toward cellulose. Water molecules initially distributed in cellulose diffused isotropically. This study provides a theoretical contribution for improvements in online monitoring of water in transformers, and for subsequent research on new insulation materials.

  11. Rate Constants for the Reactions of OH with CO, NO and NO2, and of HO2 with NO2 in the Presence of Water Vapour at Lower-Tropospheric Conditions

    Science.gov (United States)

    Rolletter, Michael; Fuchs, Hendrik; Novelli, Anna; Ehlers, Christian; Hofzumahaus, Andreas

    2016-04-01

    Recent studies have shown that the chemistry of gaseous nitrous acid (HONO) in the lower troposphere is not fully understood. Aside from heterogenous reactions, the daytime HONO formation in the gas-phase is not well understood (Li et al., Science, 2014). For a better understanding of HONO in the gas-phase, we have reinvestigated the reaction rate constants of important tropospheric reactions of the HOx radical family (OH and HO2) with nitrogen oxides at realistic conditions of the lower troposphere (at ambient temperature/pressure and in humid air). In this study we apply a direct pump and probe technique with high accuracy, using small radical concentrations to avoid secondary chemistry. Pulsed laser photolysis/laser-induced fluorescence (LP/LIF) was used to investigate the reaction rate constants of OH with CO, NO, NO2, and HO2 with NO2 in synthetic air at different water vapor concentrations (up to 5 x 1017 molecules cm-3). Photolysis of ozone in the presence of gaseous water was the source of OH. The reactions took place in a flow-tube at room temperature and atmospheric pressure. The chemical decay of the radicals was monitored by laser-induced fluorescence detection in a low-pressure cell, which sampled air continuously from the end of the flow-tube. Knowing the reactant concentrations subsequently allowed to calculate the bimolecular reaction rate constants at 1 atm from the pseudo-first-order decays. In order to observe HO2 reactions, OH was converted into HO2 with an excess of CO in the flow-tube. The newly measured rate constants for OH with CO, NO and NO2 agree very well with current recommendations by NASA/JPL and IUPAC and have an improved accuracy (uncertainty < 5%). These rate coefficients are independent of the presence of water vapour. The measured rate constant of HO2 with NO2 was found to depend significantly on the water-vapour concentration (probably due to formation of HO2*H2O complexes) and to exceed current recommendations by NASA/JPL and

  12. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    Science.gov (United States)

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  13. Simulation of gas hydrogen diffusion through partially water saturated mono-modal materials

    International Nuclear Information System (INIS)

    Boher, C.; Lorente, S.; Frizon, F.; Bart, F.

    2012-01-01

    Concerning the disposal of nuclear wastes, it is important to design concrete envelopes with pore networks that allow the diffusion of hydrogen towards the outside. This work documents the relationship between geo-polymers, which are materials with a quasi mono-modal pore network, and their gaseous diffusivity capacities. Using a mono-modal material allows studying a specific pore size contribution to gaseous diffusion. The pore network is characterized by mercury porosimetry. These experimental results are used as data in a model named MOHYCAN. The modeling work consists of creating a virtual pore network. Then, water layers are deposited in this network to simulate variable water saturation levels. Finally hydrogen is transported through the virtual network using a combination of ordinary diffusion and Knudsen diffusion. MOHYCAN calculates the hydrogen diffusion coefficient for water saturation degree from 0% to 100%. The impacts of the pore network arrangement or the pore network discretization have been studied. The results are, for a quasi mono-modal material: -) the diffusion coefficient is not sensitive to different virtual pore network arrangement; -) the diffusion coefficient values have a sharp drop at specific water saturation (this is due to the water saturation of the main and unique pore family); -) a 2 pores family based model is sufficient to represent the pore network. Theses observations will not be valid if we consider a material with a large pore size distribution, like cementitious materials

  14. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 2: The library routines

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2010-07-01

    Full Text Available The SCOR/IAPSO1 Working Group 127 on Thermodynamics and Equation of State of Seawater has prepared recommendations for new methods and algorithms for numerical estimation of the the thermophysical properties of seawater. As an outcome of this work, a new International Thermodynamic Equation of Seawater (TEOS–10 was endorsed by IOC/UNESCO2 in June 2009 as the official replacement and extension of the 1980 International Equation of State, EOS-80. As part of this new standard a source code package has been prepared that is now made freely available to users via the World Wide Web. This package includes two libraries referred to as the SIA (Sea-Ice-Air library and the GSW (Gibbs SeaWater library. Information on the GSW library may be found on the TEOS-10 web site (http://www.TEOS-10.org. This publication provides an introduction to the SIA library which contains routines to calculate various thermodynamic properties as discussed in the companion paper. The SIA library is very comprehensive, including routines to deal with fluid water, ice, seawater and humid air as well as equilibrium states involving various combinations of these, with equivalent code developed in different languages. The code is hierachically structured in modules that support (i almost unlimited extension with respect to additional properties or relations, (ii an extraction of self-contained sub-libraries, (iii separate updating of the empirical thermodynamic potentials, and (iv code verification on different platforms and between different languages. Error trapping is implemented to identify when one or more of the primary routines are accessed significantly beyond their established range of validity. The initial version of the SIA library is available in Visual Basic and FORTRAN as a supplement to this publication and updates will be maintained on the TEOS-10 web site.

    1

  15. Water diffusion reveals networks that modulate multiregional morphological plasticity after repetitive brain stimulation.

    Science.gov (United States)

    Abe, Mitsunari; Fukuyama, Hidenao; Mima, Tatsuya

    2014-03-25

    Repetitive brain stimulation protocols induce plasticity in the stimulated site in brain slice models. Recent evidence from network models has indicated that additional plasticity-related changes occur in nonstimulated remote regions. Despite increasing use of brain stimulation protocols in experimental and clinical settings, the neural substrates underlying the additional effects in remote regions are unknown. Diffusion-weighted MRI (DWI) probes water diffusion and can be used to estimate morphological changes in cortical tissue that occur with the induction of plasticity. Using DWI techniques, we estimated morphological changes induced by application of repetitive transcranial magnetic stimulation (rTMS) over the left primary motor cortex (M1). We found that rTMS altered water diffusion in multiple regions including the left M1. Notably, the change in water diffusion was retained longest in the left M1 and remote regions that had a correlation of baseline fluctuations in water diffusion before rTMS. We conclude that synchronization of water diffusion at rest between stimulated and remote regions ensures retention of rTMS-induced changes in water diffusion in remote regions. Synchronized fluctuations in the morphology of cortical microstructures between stimulated and remote regions might identify networks that allow retention of plasticity-related morphological changes in multiple regions after brain stimulation protocols. These results increase our understanding of the effects of brain stimulation-induced plasticity on multiregional brain networks. DWI techniques could provide a tool to evaluate treatment effects of brain stimulation protocols in patients with brain disorders.

  16. Electron collision cross section sets of TMS and TEOS vapours

    Science.gov (United States)

    Kawaguchi, S.; Takahashi, K.; Satoh, K.; Itoh, H.

    2017-05-01

    Reliable and detailed sets of electron collision cross sections for tetramethylsilane [TMS, Si(CH3)4] and tetraethoxysilane [TEOS, Si(OC2H5)4] vapours are proposed. The cross section sets of TMS and TEOS vapours include 16 and 20 kinds of partial ionization cross sections, respectively. Electron transport coefficients, such as electron drift velocity, ionization coefficient, and longitudinal diffusion coefficient, in those vapours are calculated by Monte Carlo simulations using the proposed cross section sets, and the validity of the sets is confirmed by comparing the calculated values of those transport coefficients with measured data. Furthermore, the calculated values of the ionization coefficient in TEOS/O2 mixtures are compared with measured data to confirm the validity of the proposed cross section set.

  17. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  18. Interactions of fission product vapours with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C G; Newland, M S [AEA Technology, Winfrith (United Kingdom)

    1996-12-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350{sup o}C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs.

  19. Interactions of fission product vapours with aerosols

    International Nuclear Information System (INIS)

    Benson, C.G.; Newland, M.S.

    1996-01-01

    Reactions between structural and reactor materials aerosols and fission product vapours released during a severe accident in a light water reactor (LWR) will influence the magnitude of the radiological source term ultimately released to the environment. The interaction of cadmium aerosol with iodine vapour at different temperatures has been examined in a programme of experiments designed to characterise the kinetics of the system. Laser induced fluorescence (LIF) is a technique that is particularly amenable to the study of systems involving elemental iodine because of the high intensity of the fluorescence lines. Therefore this technique was used in the experiments to measure the decrease in the concentration of iodine vapour as the reaction with cadmium proceeded. Experiments were conducted over the range of temperatures (20-350 o C), using calibrated iodine vapour and cadmium aerosol generators that gave well-quantified sources. The LIF results provided information on the kinetics of the process, whilst examination of filter samples gave data on the composition and morphology of the aerosol particles that were formed. The results showed that the reaction of cadmium with iodine was relatively fast, giving reaction half-lives of approximately 0.3 s. This suggests that the assumption used by primary circuit codes such as VICTORIA that reaction rates are mass-transfer limited, is justified for the cadmium-iodine reaction. The reaction was first order with respect to both cadmium and iodine, and was assigned as pseudo second order overall. However, there appeared to be a dependence of aerosol surface area on the overall rate constant, making the precise order of the reaction difficult to assign. The relatively high volatility of the cadmium iodide formed in the reaction played an important role in determining the composition of the particles. (author) 23 figs., 7 tabs., 22 refs

  20. Magnetic orientation of nontronite clay in aqueous dispersions and its effect on water diffusion.

    Science.gov (United States)

    Abrahamsson, Christoffer; Nordstierna, Lars; Nordin, Matias; Dvinskikh, Sergey V; Nydén, Magnus

    2015-01-01

    The diffusion rate of water in dilute clay dispersions depends on particle concentration, size, shape, aggregation and water-particle interactions. As nontronite clay particles magnetically align parallel to the magnetic field, directional self-diffusion anisotropy can be created within such dispersion. Here we study water diffusion in exfoliated nontronite clay dispersions by diffusion NMR and time-dependant 1H-NMR-imaging profiles. The dispersion clay concentration was varied between 0.3 and 0.7 vol%. After magnetic alignment of the clay particles in these dispersions a maximum difference of 20% was measured between the parallel and perpendicular self-diffusion coefficients in the dispersion with 0.7 vol% clay. A method was developed to measure water diffusion within the dispersion in the absence of a magnetic field (random clay orientation) as this is not possible with standard diffusion NMR. However, no significant difference in self-diffusion coefficient between random and aligned dispersions could be observed. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Preparation of hydrosol suspensions of elemental and core–shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions

    International Nuclear Information System (INIS)

    Binns, Chris; Prieto, Pilar; Baker, Stephen; Howes, Paul; Dondi, Ruggero; Burley, Glenn; Lari, Leonardo; Kröger, Roland; Pratt, Andrew; Aktas, Sitki; Mellon, John K.

    2012-01-01

    We report a new method to produce liquid suspensions of nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum (UHV) conditions. The water is injected from outside the vacuum as a molecular beam onto a substrate maintained at 77 K and forms an ice layer with a UHV vapour pressure. Molecular dynamics simulations confirm that the nanoparticles are soft-landed close to the surface of the growing ice layer. We show that the un-agglomerated size distribution within the liquid is similar to the gas-phase size distribution and demonstrate that the inclusion of surfactants in the injected water prevents agglomeration. The method allows the flexibility and tight size control available with gas-phase production methods to be applied to making nanoparticle suspensions with any desired properties. This is important for practical applications, especially in medicine. We have extended the method to include core–shell nanoparticles, in which there is flexible control over the core size and shell thickness and free choice of the material in either. Here, we report the production of suspensions of Cu, Ag and Au elemental nanoparticles and Fe-Au and Fe-Fe-oxide core–shell nanoparticles with diameters in the range 5–15 nm. We demonstrate the power of the method in practical applications in the case of Fe-Fe-oxide nanoparticles, which have a specific absorption rate of an applied oscillating magnetic field that is significantly higher than available Fe-oxide nanoparticle suspensions and the highest yet reported. These will thus have a very high-performance in the treatment of tumours by magnetic nanoparticle hyperthermia.

  2. Corrigendum to “Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines” [Agric. Forest Meteorol. 165 (2012) 53–63

    DEFF Research Database (Denmark)

    Fratini, Gerardo; Ibrom, Andreas; Arriga, Nicola

    2012-01-01

    It has been formerly recognised that increasing relative humidity in the sampling line of closed-path eddy-covariance systems leads to increasing attenuation of water vapour turbulent fluctuations, resulting in strong latent heat flux losses. This occurrence has been analyzed for very long (50 m...... from eddy-covariance systems featuring short (4 m) and very short (1 m) sampling lines running at the same clover field and show that relative humidity effects persist also for these setups, and should not be neglected. Starting from the work of Ibrom and co-workers, we propose a mixed method...... and correction method proposed here is deemed applicable to closed-path systems featuring a broad range of sampling lines, and indeed applicable also to passive gases as a special case. The methods described in this paper are incorporated, as processing options, in the free and open-source eddy...

  3. The mechanical vapour compression process applied to seawater desalination

    International Nuclear Information System (INIS)

    Murat, F.; Tabourier, B.

    1984-01-01

    The authors present the mechanical vapour compression process applied to sea water desalination. As an example, the paper presents the largest unit so far constructed by SIDEM using this process : a 1,500 m3/day unit installed in the Nuclear Power Plant of Flamanville in France which supplies a high quality process water to that plant. The authors outline the advantages of this process and present also the serie of mechanical vapour compression unit that SIDEM has developed in a size range in between 25 m3/day and 2,500 m3/day

  4. Diffusion of water adsorbed in hydrotalcite: neutron scattering Study

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, S [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Pramanik, A [Unilever Research India, Bangalore 500 066 (India); Chakrabarty, D [Godrej Sara Lee Limited, Research and Development Centre, Mumbai 400 079 (India); Juranyi, F [Laboratory for Neutron Scattering, ETHZ and PSI, CH-5232 Villigen PSI (Switzerland); Gautam, S [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Mukhopadhyay, R [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2007-12-15

    Layered double hydroxides (LDH) are a class of ionic lamellar solids with positively charged layers of two kinds of metallic cations and exchangeable hydrated anions. Quasi-elastic neutron scattering (QENS) measurements are performed in this type of LDH structured hydrated hydrotalcite sample to study the dynamical behaviour of the water in geometric confinement within the layers. Dynamical parameters correspond to the confined water molecules revealed that depending on the amount of excess water present, behaves differently and approaches bulk values at high concentration. Both translational and rotational dynamical parameters showed that at very low concentration of excess water, water molecules are attached to the surfaces and show the confinement effect.

  5. Molecular Dynamic Simulation of Water Vapor and Determination of Diffusion Characteristics in the Pore

    Science.gov (United States)

    Nikonov, Eduard G.; Pavluš, Miron; Popovičová, Mária

    2018-02-01

    One of the varieties of pores, often found in natural or artificial building materials, are the so-called blind pores of dead-end or saccate type. Three-dimensional model of such kind of pore has been developed in this work. This model has been used for simulation of water vapor interaction with individual pore by molecular dynamics in combination with the diffusion equation method. Special investigations have been done to find dependencies between thermostats implementations and conservation of thermodynamic and statistical values of water vapor - pore system. The two types of evolution of water - pore system have been investigated: drying and wetting of the pore. Full research of diffusion coefficient, diffusion velocity and other diffusion parameters has been made.

  6. Diffusion under water-saturated conditions in PFA/OPC-based structural concrete

    International Nuclear Information System (INIS)

    Harris, A.W.; Nickerson, A.K.

    1990-05-01

    A substantial proportion of the volume of the UK radioactive waste repository is likely to be composed of materials based on hydraulic cements. This includes the structural components, which are likely to be manufactured from concrete. The mass transport characteristics of dissolved species for a typical structural concrete, based on a mixture of pulverised fuel ash and ordinary Portland cement, have been measured in a water-saturated condition. Both the water permeability and the diffusion parameters (for caesium, strontium and iodide ion and tritiated water diffusion) are low compared to values obtained for other structural concretes. The intrinsic diffusion coefficients for iodide and caesium ions are in the range 2-5x10 -14 m 2 s -1 . There is no evidence of significant sorption of any of the diffusants studied. (author)

  7. Bioheat model evaluations of laser effects on tissues: role of water evaporation and diffusion

    Science.gov (United States)

    Nagulapally, Deepthi; Joshi, Ravi P.; Thomas, Robert J.

    2011-03-01

    A two-dimensional, time-dependent bioheat model is applied to evaluate changes in temperature and water content in tissues subjected to laser irradiation. Our approach takes account of liquid-to-vapor phase changes and a simple diffusive flow of water within the biotissue. An energy balance equation considers blood perfusion, metabolic heat generation, laser absorption, and water evaporation. The model also accounts for the water dependence of tissue properties (both thermal and optical), and variations in blood perfusion rates based on local tissue injury. Our calculations show that water diffusion would reduce the local temperature increases and hot spots in comparison to simple models that ignore the role of water in the overall thermal and mass transport. Also, the reduced suppression of perfusion rates due to tissue heating and damage with water diffusion affect the necrotic depth. Two-dimensional results for the dynamic temperature, water content, and damage distributions will be presented for skin simulations. It is argued that reduction in temperature gradients due to water diffusion would mitigate local refractive index variations, and hence influence the phenomenon of thermal lensing. Finally, simple quantitative evaluations of pressure increases within the tissue due to laser absorption are presented.

  8. The diffusion permeability to water of the rat blood-brain barrier

    DEFF Research Database (Denmark)

    Bolwig, T G; Lassen, N A

    1975-01-01

    The diffusion permeability to water of the rat blood-brain-barrier (BBB) was studied. Preliminary data obtained with the Oldendorf tissue uptake method (Oldendorf 1970) in seizure experiments suggested that the transfer from blood to brain of labelled water is diffusion-limited. More definite...... passage increased from 0.26 to 0.67 when the arterial carbon dioxide tension was changed from 15 to 85 mm Hg, a change increasing the cerebral blood flow about sixfold. This finding suggests that water does not pass the blood-brain barrier as freely as lipophilic gases....

  9. Study of water diffusion on single-supported bilayer lipid membranes by quasielastic neutron scattering

    DEFF Research Database (Denmark)

    Bai, M.; Miskowiec, A.; Hansen, F. Y.

    2012-01-01

    High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types...... of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules. Copyright (C) EPLA, 2012...

  10. Tomographic Imaging of Water Injection and Withdrawal in PEMFC Gas Diffusion Layers

    Energy Technology Data Exchange (ETDEWEB)

    McGill U; Gostick, J. T.; Gunterman, H. P.; Weber, A. Z.; Newman, J. S.; Kienitz, B. L.; MacDowell, A. A.

    2010-06-25

    X-ray computed tomography was used to visualize the water configurations inside gas diffusion layers for various applied capillary pressures, corresponding to both water invasion and withdrawal. A specialized sample holder was developed to allow capillary pressure control on the small-scale samples required. Tests were performed on GDL specimens with and without hydrophobic treatments.

  11. Investigating the Intrinsic Ethanol/Water Separation Capability of ZIF-8: An Adsorption and Diffusion Study

    KAUST Repository

    Zhang, Ke; Lively, Ryan P.; Zhang, Chen; Koros, William J.; Chance, Ronald R.

    2013-01-01

    Intrinsic ethanol/water separation capability of ZIF-8 is characterized by a detailed study of adsorption and diffusion of ethanol and water vapor in dodecahedral crystals with principle axis dimension of 324, 15.8, and 0.4 μm. ZIF-8 exhibits

  12. Estimation of diffuse attenuation of ultraviolet light in optically shallow Florida Keys waters from MODIS measurements

    Science.gov (United States)

    Diffuse attenuation of solar light (Kd, m−1) determines the percentage of light penetrating the water column and available for benthic organisms. Therefore, Kd can be used as an index of water quality for coastal ecosystems that are dependent on photosynthesis, such as the coral ...

  13. Hydroxide diffuses slower than hydronium in water because its solvated structure inhibits correlated proton transfer

    Science.gov (United States)

    Chen, Mohan; Zheng, Lixin; Santra, Biswajit; Ko, Hsin-Yu; DiStasio, Robert A., Jr.; Klein, Michael L.; Car, Roberto; Wu, Xifan

    2018-03-01

    Proton transfer via hydronium and hydroxide ions in water is ubiquitous. It underlies acid-base chemistry, certain enzyme reactions, and even infection by the flu. Despite two centuries of investigation, the mechanism underlying why hydroxide diffuses slower than hydronium in water is still not well understood. Herein, we employ state-of-the-art density-functional-theory-based molecular dynamics—with corrections for non-local van der Waals interactions, and self-interaction in the electronic ground state—to model water and hydrated water ions. At this level of theory, we show that structural diffusion of hydronium preserves the previously recognized concerted behaviour. However, by contrast, proton transfer via hydroxide is less temporally correlated, due to a stabilized hypercoordination solvation structure that discourages proton transfer. Specifically, the latter exhibits non-planar geometry, which agrees with neutron-scattering results. Asymmetry in the temporal correlation of proton transfer leads to hydroxide diffusing slower than hydronium.

  14. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Gjerris, F

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 age-matched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients...... white matter, and in one patient reexamined one year after surgery, ADCs were unchanged in nearly all brain regions. The increased ADC values in hydrocephalus patients may be caused by factors such as changes in myelin-associated bound water, increased Virchow-Robin spaces, and increased extracellular...... brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable....

  15. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    Science.gov (United States)

    Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-04-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.

  16. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    International Nuclear Information System (INIS)

    Anisa, Nor Ilia; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-01-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10 −11 m 2 /s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10 −11 m 2 /s.

  17. Vapour Pressure of Diethyl Phthalate

    Czech Academy of Sciences Publication Activity Database

    Roháč, V.; Růžička, K.; Růžička, V.; Zaitsau, D. H.; Kabo, G. J.; Diky, V.; Aim, Karel

    2004-01-01

    Roč. 36, č. 11 (2004), s. 929-937 ISSN 0021-9614 Institutional research plan: CEZ:AV0Z4072921 Keywords : vapour pressure * diethyl phthalate * correlation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.144, year: 2004

  18. Alcohol vapours sensor based on thin polyaniline salt film and quartz crystal microbalance.

    Science.gov (United States)

    Ayad, Mohamad M; Torad, Nagy L

    2009-06-15

    A sensor based on the quartz crystal microbalance (QCM) technique was developed for detection of a number of primary aliphatic alcohols such as ethanol, methanol, 1-propanol, and 2-propanol vapours. Detection was based on a sensitive and a thin film of polyaniline, emeraldine salt (ES), coated the QCM electrode. The frequency shifts (Delta f) of the QCM were increased due to the vapour absorption into the ES film. The values of Delta f were found to be linearly correlated with the concentrations of alcohols vapour in mg L(-1). The changes in frequency are due to the hydrophilic character of the ES and the electrostatic interaction as well as the type of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusion and diffusion coefficient (D) of different alcohols vapour were determined. It was found that the sensor follows Fickian kinetics.

  19. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratories, 9700 S. Cass Avenue Argonne, Lemont, Illinois 60439 (United States)

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  20. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  1. Determination of diffusion coefficients of various livestock antibiotics in water at infinite dilution

    Directory of Open Access Journals (Sweden)

    Soriano Allan N.

    2017-01-01

    Full Text Available The fate of antibiotics entering the environment raised concerns on the possible effect of antimicrobial resistance bacteria. Prediction of the fate and transport of these particles are needed to be determined, significantly the diffusion coefficient of antibiotic in water at infinite dilution. A systematic determination of diffusion coefficient of antibiotic in water at infinite dilution of five different kinds of livestock antibiotics namely: Amtyl, Ciprotyl, Doxylak Forte, Trisullak, and Vetracin Gold in the 293.15 to 313.15 K temperature range are reported through the use of the method involving the electrolytic conductivity measurements. A continuous stirred tank reactor is utilized to measure the electrolytic conductivities of the considered systems. These conductivities are correlated by using the Nernst-Haskell equation to determine the infinite dilution diffusion coefficient. Determined diffusion coefficients are based on the assumption that in dilute solution, these antibiotics behave as strong electrolyte from which H+ cation dissociate from the antibiotic’s anion.

  2. Determination of diffusion coefficients of various livestock antibiotics in water at infinite dilution

    Science.gov (United States)

    Soriano, Allan N.; Adamos, Kristoni G.; Bonifacio, Pauline B.; Adornado, Adonis P.; Bungay, Vergel C.; Vairavan, Rajendaran

    2017-11-01

    The fate of antibiotics entering the environment raised concerns on the possible effect of antimicrobial resistance bacteria. Prediction of the fate and transport of these particles are needed to be determined, significantly the diffusion coefficient of antibiotic in water at infinite dilution. A systematic determination of diffusion coefficient of antibiotic in water at infinite dilution of five different kinds of livestock antibiotics namely: Amtyl, Ciprotyl, Doxylak Forte, Trisullak, and Vetracin Gold in the 293.15 to 313.15 K temperature range are reported through the use of the method involving the electrolytic conductivity measurements. A continuous stirred tank reactor is utilized to measure the electrolytic conductivities of the considered systems. These conductivities are correlated by using the Nernst-Haskell equation to determine the infinite dilution diffusion coefficient. Determined diffusion coefficients are based on the assumption that in dilute solution, these antibiotics behave as strong electrolyte from which H+ cation dissociate from the antibiotic's anion.

  3. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinglong [ORNL; Baudry, Jerome Y [ORNL

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  4. Expanding the calculation of activation volumes: Self-diffusion in liquid water

    Science.gov (United States)

    Piskulich, Zeke A.; Mesele, Oluwaseun O.; Thompson, Ward H.

    2018-04-01

    A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.

  5. Molecular Structure and Dynamics of Water on Pristine and Strained Phosphorene: Wetting and Diffusion at Nanoscale.

    Science.gov (United States)

    Zhang, Wei; Ye, Chao; Hong, Linbi; Yang, Zaixing; Zhou, Ruhong

    2016-12-06

    Phosphorene, a newly fabricated two-dimensional (2D) nanomaterial, has emerged as a promising material for biomedical applications with great potential. Nonetheless, understanding the wetting and diffusive properties of bio-fluids on phosphorene which are of fundamental importance to these applications remains elusive. In this work, using molecular dynamics (MD) simulations, we investigated the structural and dynamic properties of water on both pristine and strained phosphorene. Our simulations indicate that the diffusion of water molecules on the phosphorene surface is anisotropic, with strain-enhanced diffusion clearly present, which arises from strain-induced smoothing of the energy landscape. The contact angle of water droplet on phosphorene exhibits a non-monotonic variation with the transverse strain. The structure of water on transverse stretched phosphorene is demonstrated to be different from that on longitudinal stretched phosphorene. Moreover, the contact angle of water on strained phosphorene is proportional to the quotient of the longitudinal and transverse diffusion coefficients of the interfacial water. These findings thereby offer helpful insights into the mechanism of the wetting and transport of water at nanoscale, and provide a better foundation for future biomedical applications of phosphorene.

  6. Determination of thermal-diffusive properties of lyophilized food products

    International Nuclear Information System (INIS)

    Kaplon, J.; Kramkowski, R.; Berdzik, M.

    1998-01-01

    Experimental results of vacuum freeze drying were presented. Water solutions of skim milk were dried under various pressures and distribution of temperature and moisture as a function of drying time were determined. Unilateral radiant heating of the material was applied. On the basis of experiment results and URIF model of vacuum freeze drying the thermal conductivity and vapour diffusion coefficients in dry layer were determined

  7. Stress corrosion cracking of Alloy 600 in primary water of PWR: study of chromium diffusion

    International Nuclear Information System (INIS)

    Chetroiu, Bogdan-Adrian

    2015-01-01

    Alloy 600 (Ni-15%Cr-10%Fe) is known to be susceptible to Stress Corrosion Cracking (SCC) in primary water of Pressurized Water Reactors (PWR). Recent studies have shown that chromium diffusion is a controlling rate step in the comprehension of SCC mechanism. In order to improve the understanding and the modelling of SCC of Alloy 600 in PWR primary medium the aim of this study was to collect data on kinetics diffusion of chromium. Volume and grain boundary diffusion of chromium in pure nickel and Alloy 600 (mono and poly-crystals) has been measured in the temperature range 678 K to 1060 K by using Secondary Ions Mass Spectroscopy (SIMS) and Glow Discharge-Optical Spectrometry (GD-OES) techniques. A particular emphasis has been dedicated to the influence of plastic deformation on chromium diffusion in nickel single crystals (orientated <101>) for different metallurgical states. The experimental tests were carried out in order to compare the chromium diffusion coefficients in free lattice (not deformed), in pre-hardening specimens (4% and 20%) and in dynamic deformed tensile specimens at 773 K. It has been found that chromium diffusivity measured in dynamic plastic deformed creep specimens were six orders of magnitude greater than those obtained in not deformed or pre-hardening specimens. The enhancement of chromium diffusivity can be attributed to the presence of moving dislocations generated during plastic deformation. (author)

  8. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2007-01-01

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems

  9. The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)

    2007-07-15

    Vapour pressures of water over saturated solutions of cadmium salts (chloride, bromide, iodide, nitrate, and sulphate) were determined over the temperature range 280 K to 322 K and compared with the literature data. The vapour pressures determined were used to obtain the water activities, osmotic coefficients and the molar enthalpies of vaporization in the (cadmium salt + water) systems.

  10. Increased brain water self-diffusion in patients with idiopathic intracranial hypertension

    DEFF Research Database (Denmark)

    Gideon, P; Sørensen, P S; Thomsen, C

    1995-01-01

    PURPOSE: To investigate changes in brain water diffusion in patients with idiopathic intracranial hypertension. METHODS: A motion-compensated MR pulse sequence was used to create diffusion maps of the apparent diffusion coefficient (ADC) in 12 patients fulfilling conventional diagnostic criteria...... for idiopathic intracranial hypertension and in 12 healthy volunteers. RESULTS: A significantly larger ADC was found within subcortical white matter in the patient group (mean, 1.16 x 10(-9) m2/s) than in the control group (mean, 0.75 x 10(-9) m2/s), whereas no significant differences were found within cortical...

  11. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    Science.gov (United States)

    Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.

    2018-03-01

    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor

  12. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    Directory of Open Access Journals (Sweden)

    D. M. Lienhard

    2015-12-01

    secondary organic aerosol (SOA material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA, levoglucosan, levoglucosan/NH4HSO4, raffinose are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  13. Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules

    International Nuclear Information System (INIS)

    Kwon, Oh In; Jeong, Woo Chul; Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je

    2014-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is an emerging method to visualize electrical conductivity and/or current density images at low frequencies (below 1 KHz). Injecting currents into an imaging object, one component of the induced magnetic flux density is acquired using an MRI scanner for isotropic conductivity image reconstructions. Diffusion tensor MRI (DT-MRI) measures the intrinsic three-dimensional diffusion property of water molecules within a tissue. It characterizes the anisotropic water transport by the effective diffusion tensor. Combining the DT-MRI and MREIT techniques, we propose a novel direct method for absolute conductivity tensor image reconstructions based on a linear relationship between the water diffusion tensor and the electrical conductivity tensor. We first recover the projected current density, which is the best approximation of the internal current density one can obtain from the measured single component of the induced magnetic flux density. This enables us to estimate a scale factor between the diffusion tensor and the conductivity tensor. Combining these values at all pixels with the acquired diffusion tensor map, we can quantitatively recover the anisotropic conductivity tensor map. From numerical simulations and experimental verifications using a biological tissue phantom, we found that the new method overcomes the limitations of each method and successfully reconstructs both the direction and magnitude of the conductivity tensor for both the anisotropic and isotropic regions. (paper)

  14. Calculation of vapour bubble growth on the lower generatrix of horizontal tubes

    International Nuclear Information System (INIS)

    Chajka, V.D.

    1987-01-01

    The known models of vapour bubble growth are compared with experimental data. Cinematographic study of vapour formation during water boiling was carried out with elements of horizontal tubes of copper 10, 16, 24, 34 and 70 mm in diameter under the pressure of 100 kPa and specific thermal loadings of 20 and 40 kW/m 2 . According to the experimental data the main volume of vapour phase is occupied by vapour bubbles from the lower part of the horizontal tube. Five stages of vapour bubble growth on the lower generatrix of the horizontal tube: nucleation, growth to the point of breaking off from nucleate centre, the breaking off from the nucleate centre, the tube surface flowing around during floating up, the breaking off from the tube surface, were singled out. The shape of vapour volume varied during the whole period of the bubble growth and it was mainly determined by the horizontal tube diameter. The change of vapour bubble radius in time is the function of the horizontal tube diameter. Comparison of the experimental data with the known models of vapour bubble growth has shown, that every stage of vapour bubble growth on the lower generatrix of the tube is determined by the complex of thermal and hydrodynamic conditions, the effect of which depends on the horizontal tube diameter

  15. Diffusion of water and ethanol in silicalite crystals synthesized in fluoride media

    KAUST Repository

    Zhang, Ke

    2013-04-01

    Diffusion of water and ethanol in silicalite has been studied in large crystals (70 μm × 30 μm × 15 μm) synthesized via a fluoride mediated route. The near-perfect hydrophobic silicalite (F-) crystals have very few internal silanol defects and, as a result, display water and ethanol transport behavior that is uncontaminated by these defects. The transport diffusivity (Dt) of ethanol is higher than that of water at the same sorbate activity. However, this difference is due to the difference in the shape of the isotherms. The thermodynamically corrected diffusivity (D o) of water is almost an order of magnitude higher than that of ethanol reflecting the difference in molecular size. Estimates of the permeability/permselectivity/separation factors for ethanol/water separation based on the present kinetic and equilibrium data for the fluoride synthesized crystals are compared with the values observed for traditional silicalite membranes. The present diffusivity values for fluoride synthesized silicalite are similar to the values for regular silicalite (OH-) derived from uptake rate measurements but much smaller (by more than four orders of magnitude) than the self-diffusivities derived from PFG-NMR measurements. This result is consistent with the results of other measurements of the diffusion of small molecules in silicalite which suggest that, in macroscopic measurements, the rate of intra-crystalline transport is controlled by the sub-structure (extensive twinning), rather than by diffusion in the ideal MFI micropores. In this situation microscale measurements such as PFG-NMR will lead to erroneously high estimates of transport rates and therefore of permeability and permselectivity. © 2012 Elsevier Inc. All rights reserved.

  16. Diffusion of water and ethanol in silicalite crystals synthesized in fluoride media

    KAUST Repository

    Zhang, Ke; Lively, Ryan P.; Dose, Michelle E.; Li, Liwei; Koros, William J.; Ruthven, Douglas M.; McCool, Benjamin A.; Chance, Ronald R.

    2013-01-01

    Diffusion of water and ethanol in silicalite has been studied in large crystals (70 μm × 30 μm × 15 μm) synthesized via a fluoride mediated route. The near-perfect hydrophobic silicalite (F-) crystals have very few internal silanol defects and, as a result, display water and ethanol transport behavior that is uncontaminated by these defects. The transport diffusivity (Dt) of ethanol is higher than that of water at the same sorbate activity. However, this difference is due to the difference in the shape of the isotherms. The thermodynamically corrected diffusivity (D o) of water is almost an order of magnitude higher than that of ethanol reflecting the difference in molecular size. Estimates of the permeability/permselectivity/separation factors for ethanol/water separation based on the present kinetic and equilibrium data for the fluoride synthesized crystals are compared with the values observed for traditional silicalite membranes. The present diffusivity values for fluoride synthesized silicalite are similar to the values for regular silicalite (OH-) derived from uptake rate measurements but much smaller (by more than four orders of magnitude) than the self-diffusivities derived from PFG-NMR measurements. This result is consistent with the results of other measurements of the diffusion of small molecules in silicalite which suggest that, in macroscopic measurements, the rate of intra-crystalline transport is controlled by the sub-structure (extensive twinning), rather than by diffusion in the ideal MFI micropores. In this situation microscale measurements such as PFG-NMR will lead to erroneously high estimates of transport rates and therefore of permeability and permselectivity. © 2012 Elsevier Inc. All rights reserved.

  17. Probing the hydration water diffusion of macromolecular surfaces and interfaces

    International Nuclear Information System (INIS)

    Ortony, Julia H; Cheng, Chi-Yuan; Franck, John M; Pavlova, Anna; Hunt, Jasmine; Han, Songi; Kausik, Ravinath

    2011-01-01

    We probe the translational dynamics of the hydration water surrounding the macromolecular surfaces of selected polyelectrolytes, lipid vesicles and intrinsically disordered proteins with site specificity in aqueous solutions. These measurements are made possible by the recent development of a new instrumental and methodological approach based on Overhauser dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy. This technique selectively amplifies 1 H NMR signals of hydration water around a spin label that is attached to a molecular site of interest. The selective 1 H NMR amplification within molecular length scales of a spin label is achieved by utilizing short-distance range (∼r -3 ) magnetic dipolar interactions between the 1 H spin of water and the electron spin of a nitroxide radical-based label. Key features include the fact that only minute quantities (<10 μl) and dilute (≥100 μM) sample concentrations are needed. There is no size limit on the macromolecule or molecular assembly to be analyzed. Hydration water with translational correlation times between 10 and 800 ps is measured within ∼10 A distance of the spin label, encompassing the typical thickness of a hydration layer with three water molecules across. The hydration water moving within this time scale has significant implications, as this is what is modulated whenever macromolecules or molecular assemblies undergo interactions, binding or conformational changes. We demonstrate, with the examples of polymer complexation, protein aggregation and lipid-polymer interaction, that the measurements of interfacial hydration dynamics can sensitively and site specifically probe macromolecular interactions.

  18. Proposal of computation chart for general use for diffusion prediction of discharged warm water

    International Nuclear Information System (INIS)

    Wada, Akira; Kadoyu, Masatake

    1976-01-01

    The authors have developed the unique simulation analysis method using the numerical models for the prediction of discharged warm water diffusion. At the present stage, the method is adopted for the precise analysis computation in order to make the prediction of the diffusion of discharged warm water at each survey point, but instead of this method, it is strongly requested that some simple and easy prediction methods should be established. For the purpose of meeting this demand, in this report, the computation chart for general use is given to predict simply the diffusion range of discharged warm water, after classifying the semi-infinite sea region into several flow patterns according to the sea conditions and conducting the systematic simulation analysis with the numerical model of each pattern, respectively. (1) Establishment of the computation conditions: The special sea region was picked up as the area to be investigated, which is semi-infinite facing the outer sea and along the rectilineal coast line from many sea regions surrounding Japan, and from the viewpoint of the flow and the diffusion characteristics, the sea region was classified into three patterns. 51 cases in total various parameters were obtained, and finally the simulation analysis was performed. (2) Drawing up the general use chart: 28 sheets of the computation chart for general use were drawn, which are available for computing the approximate temperature rise caused by the discharged warm water diffusion. The example of Anegasaki Thermal Power Station is given. (Kako, I.)

  19. Nuclear Quantum Effects in H(+) and OH(-) Diffusion along Confined Water Wires.

    Science.gov (United States)

    Rossi, Mariana; Ceriotti, Michele; Manolopoulos, David E

    2016-08-04

    The diffusion of protons and hydroxide ions along water wires provides an efficient mechanism for charge transport that is exploited by biological membrane channels and shows promise for technological applications such as fuel cells. However, what is lacking for a better control and design of these systems is a thorough theoretical understanding of the diffusion process at the atomic scale. Here we focus on two aspects of this process that are often disregarded because of their high computational cost: the use of first-principles potential energy surfaces and the treatment of the nuclei as quantum particles. We consider proton and hydroxide ions in finite water wires using density functional theory augmented with an apolar cylindrical confining potential. We employ machine learning techniques to identify the charged species, thus obtaining an agnostic definition that takes explicitly into account the delocalization of the charge in the Grotthus-like mechanism. We include nuclear quantum effects (NQEs) through the thermostated ring polymer molecular dynamics method and model finite system size effects by considering Langevin dynamics on the potential of mean force of the charged species, allowing us to extract the same "universal" diffusion coefficient from simulations with different wire sizes. In the classical case, diffusion coefficients depend significantly on the potential energy surface, in particular on how dispersion forces modulate water-water distances. NQEs, however, make the diffusion less sensitive to the underlying potential and geometry of the wire.

  20. Characteristics and applications of diffuse discharge of water electrode in air

    Science.gov (United States)

    Wenzheng, LIU; Tahan, WANG; Xiaozhong, CHEN; Chuanlong, MA

    2018-01-01

    Plasma water treatment technology, which aims to produce strong oxidizing reactive particles that act on the gas-liquid interface by way of discharging, is used to treat the organic pollutants that do not degrade easily in water. This paper presents a diffuse-discharge plasma water treatment method, which is realized by constructing a conical air gap through an uneven medium layer. The proposed method uses water as one electrode, and a dielectric barrier discharge electrode is constructed by using an uneven dielectric. The electric field distribution in the discharge space will be uneven, wherein the long gap electric field will have a smaller intensity, while the short one will have a larger intensity. A diffuse glow discharge is formed in the cavity. With this type of plasma water treatment equipment, a methyl orange solution with a concentration of 10 mg l-1 was treated, and the removal rate was found to reach 88.96%.

  1. Diffusive and quantum effects of water properties in different states of matter

    International Nuclear Information System (INIS)

    Yeh, Kuan-Yu; Huang, Shao-Nung; Chen, Li-Jen; Lin, Shiang-Tai

    2014-01-01

    The enthalpy, entropy, and free energy of water are important physical quantities for understanding many interesting phenomena in biological systems. However, conventional approaches require different treatments to incorporate quantum and diffusive effects of water in different states of matter. In this work, we demonstrate the use of the two-phase thermodynamic (2PT) model as a unified approach to obtain the properties of water over the whole phase region of water from short (∼20 ps) classical molecular dynamics trajectories. The 2PT model provides an effective way to separate the diffusive modes (gas-like component) from the harmonic vibrational modes (solid-like component) in the vibrational density of states (DoS). Therefore, both diffusive and quantum effect can be properly accounted for water by applying suitable statistical mechanical weighting functions to the DoS components. We applied the 2PT model to systematically examine the enthalpy, entropy, and their temperature dependence of five commonly used rigid water models. The 2PT results are found to be consistent with those obtained from more sophisticated calculations. While the thermodynamic properties determined from different water models are largely similar, the phase boundary determined from the equality of free energy is very sensitive to the small inaccuracy in the values of enthalpy and absolute entropy. The enthalpy, entropy, and diffusivity of water are strongly interrelated, which challenge further improvement of rigid water model via parameter fitting. Our results show that the 2PT is an efficient method for studying the properties of water under various chemical and biological environments

  2. Solvent purification using a current of water vapour. A continuous process applicable to chemical plants treating irradiated fuels; Purification des solvants par entrainement a la vapeur d'eau. Procede continu applicable aux usines chimiques de traitement des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Auchapt, P R; Sautray, R R; Girard, B R [Commissariat a l' Energie Atomique, Centre de Production de Plutonium, Marcoule (France). Centre d' Etudes Nucleaires

    1964-07-01

    The pilot plant described in this report is intended for the continuous purification of the solvent used in the plutonium extraction plant at Marcoule, by separating the impurities (fission products). This physical separation is operated by carrying over in a water vapour stream. The contaminating products, only slightly volatile, remain in the form of the droplets and are separated; the vaporised solvent and the water vapour used are condensed and then separated. The originality of the installation resides in the system for pulverising the liquid and in the operating conditions: low working pressure and temperature. The systematic analysis of the various parameters (percentage of residue; flow, pressure and temperature ratios etc...) has shown their influence on the decontamination. The activity due to the zirconium-niobium is undetectable after treatment, and it is easy to obtain decontamination factors of 300 for the ruthenium. The, presence of uranium is favorable for the decontamination. As a conclusion, some extra-technical considerations are given concerning in particular the approximate cost price of the treated solvent per litre. (authors) [French] L'installation pilote decrite dans ce rapport est destinee a purifier, en continu, le solvant utilise a l'usine d'extraction du plutonium de Marcoule, en separant les impuretes (produits de fission). Cette separation physique est realisee par entrainement a la vapeur d'eau. Les produits contaminants, peu volatils, restant sous forme de gouttelettes, sont separes; le solvant vaporise ainsi que la vapeur d'entrainement sont condenses puis separes. L'originalite de l'installation reside dans le systeme de pulverisation du liquide et dans les conditions operatoires: faible pression et basse temperature de fonctionnement. L'analyse systematique des differents parametres (pourcentage de residus, rapport de debits, pression et temperature, etc...) a mis en evidence leur influence sur la decontamination. L'activite en

  3. Water Sorption and Hindered Diffusion with Different Chain Stiffness of Superabsorbent Polymer

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Myung-Suk; Lee, Dae-Young [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-01-15

    Water sorption and diffusion are essential physicochemical properties of a high-performance superabsorbent polymer (SAP). We combine the Park model with the obstruction-scaling model and the water clustering in confined spaces of the polymer hydrogel. Special attention is focused on elucidating the effect of chain stiffness by considering the conformation of the polymer chain. Theoretical model parameters are determined from the best fits by simultaneous nonlinear regressions for both sorption and corrected diffusion data based on previous experiments with poly(acrylamide-co-sodium acrylate) hydrogel. Predictions show that the hindered water diffusivity leads to a sigmoid curve with relative humidity a{sub w}, where it increases monotonically up to aw{sub ≅} 0.6 due to the swelling but decreases at higher a{sub w} caused by water clustering. Water diffusion decreases with increasing chain stiffness, and the larger persistence length provides a smaller opening radius in void spaces regarding the weak elastic deformation of hydrogel under the applied stress.

  4. Diffusive parameters of tritiated water (HTO) and U in chalk

    International Nuclear Information System (INIS)

    Descostes, M.; Gandois, O.; Frasca, B.; Radwan, J.; Juery, A.; Descostes, M.; Pili, E.

    2009-01-01

    Complete text of publication follows: The feasibility of aquifer storage and recovery systems (ASR) to counteract short and long term imbalances between freshwater supply and demand is currently investigated for the metropolitan area of Perth, Western Australia. During the planned injection of oxic excess water into a deep anoxic aquifer the water quality evolution will depend on the extent and structure of the physical and geochemical heterogeneity and reactivity of the aquifer. A detailed geochemical characterisation was undertaken to determine amount and type of sedimentary reductants within different lithological facies. The incubation of sediment samples from the target aquifer for ∼ 52 days enabled quantification of their oxygen (O 2 ) consumption and CO 2 production [1]. Data analysis, in particular the identification of key redox and acid buffering processes, was under-pinned by hydrogeochemical modelling. Results showed that the average measured reductive capacities (MRC) towards O 2 consumption increased from the sand facies, followed by the siltstone facies, and the mud-stone/shale facies. This approach identified pyrite (20 - 100%), sedimentary organic matter (SOM; 3 - 56%), siderite (3 - 28%) and Fe(II)- aluminosilicates (8 - 55%) as the main O 2 reductants. Minute amounts of carbonate acted as buffering minerals, while a bounding pH of 3 indicated acid buffering by K-feldspar dissolution. The supernatants showed elevated aqueous concentrations of Ni, Cd and Pb to be a potential risk for the quality of the recovered water. [1] Hartog, Griffioen and Van der Weijden (2002) Environmental Science and Technology 36(11), 2338-2344

  5. Numerical assessment of pulsating water jet in the conical diffusers

    Science.gov (United States)

    Tanasa, Constantin; Ciocan, Tiberiu; Muntean, Sebastian

    2017-11-01

    The hydraulic fluctuations associated with partial load operating conditions of Francis turbines are often periodic and characterized by the presence of a vortex rope. Two types of pressure fluctuations associated with the draft tube surge are identified in the literature. The first is an asynchronous (rotating) pressure fluctuation due to the precession of the helical vortex around the axis of the draft tube. The second type of fluctuation is a synchronous (plunging) fluctuation. The plunging fluctuations correspond to the flow field oscillations in the whole hydraulic passage, and are generally propagated overall in the hydraulic system. The paper introduced a new control method, which consists in injecting a pulsating axial water jet along to the draft tube axis. Nevertheless, the great calling of this control method is to mitigate the vortex rope effects targeting the vortex sheet and corresponding plunging component. In this paper, is presented our 3D numerical investigations with and without pulsating axial water jet control method in order to evaluate the concept.

  6. The speed of sound in a gas–vapour bubbly liquid

    Science.gov (United States)

    Prosperetti, Andrea

    2015-01-01

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model. PMID:26442146

  7. The speed of sound in a gas-vapour bubbly liquid.

    Science.gov (United States)

    Prosperetti, Andrea

    2015-10-06

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model.

  8. Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic ocean waters

    Science.gov (United States)

    Gnanadesikan, Anand; Bianchi, Daniele; Pradal, Marie-Aude

    2013-10-01

    of the oceanic lateral eddy diffusion coefficient Aredi vary by more than an order of magnitude, ranging from less than a few hundred m2/s to thousands of m2/s. This uncertainty has first-order implications for the intensity of oceanic hypoxia, which is poorly simulated by the current generation of Earth System Models. Using satellite-based estimate of oxygen consumption in hypoxic waters to estimate the required diffusion coefficient for these waters gives a value of order 1000 m2/s. Varying Aredi across a suite of Earth System Models yields a broadly consistent result given a thermocline diapycnal diffusion coefficient of 1 × 10-5 m2/s.

  9. A Comparison of Water Diffusion in Polymer Based Fuel Cell and Reverse Osmosis Membrane Materials

    Science.gov (United States)

    Soles, Christopher; Frieberg, Bradley; Tarver, Jacob; Tyagi, Madhusudan; Jeong, Cheol; Chan, Edwin; Stafford, Christopher

    Hydrated polymer membranes are critical in both fuel cells and water filtration and desalination. In both of these applications the membrane function (selectively transporting or separating ions) is coupled with the transport of water through the membrane. There is a significant need to understand the nature by which the water and ions distribute and move through these membranes. This presentation compares the transport mechanisms in in an ion containing block copolymer alkaline fuel cell membrane with that of a polyamide membrane that is used as the active layer in a reverse osmosis water desalination membrane. Small angle neutron scattering measurements are used to locally probe how water swells the different materials and quantitatively describe the distribution of water within the membrane microstructures. Quasielastic neutron scattering measurements are then used to separate the polymer dynamics of the host membranes from the dynamics of the water inside the membranes. This reveals that water moves at least an order of magnitude slower through the ion containing fuel cell membrane materials, consistent with a solution-diffusion model, while the water in the polyamide membranes moves faster, consistent with a pore-flow diffusion mechanism. These insights will be discussed in terms of a coupling of the water and polymer dynamics and design cues for high performance membrane materials.

  10. Steam stripping of the unsaturated zone of contaminated sub-soils: the effect of diffusion/dispersion in the start-up phase

    NARCIS (Netherlands)

    Brouwers, Jos; Gilding, B.H.

    2006-01-01

    The unsteady process of steam stripping of the unsaturated zone of soils contaminated with volatile organic compounds (VOCs) is addressed. A model is presented. It accounts for the effects of water and contaminants remaining in vapour phase, as well as diffusion and dispersion of contaminants in

  11. Catalytic membrane in denitrification of water: a means to facilitate intraporous diffusion of reactants

    NARCIS (Netherlands)

    Ilinich, O.M.; Cuperus, F.P.; Gemert, van R.W.; Gribov, E.N.; Nosova, L.V.

    2000-01-01

    The series of mono- and bi-metallic catalysts with Pd and/or Cu supported over γ-Al 2O 3 was investigated with respect to reduction of nitrate and nitrite ions in water by hydrogen. Pronounced limitations of catalytic performance due to intraporous diffusion of the reactants were observed in the

  12. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions.

    Science.gov (United States)

    Zhang, Changzhe; Bu, Yuxiang

    2016-09-14

    Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.

  13. Vapour pressure of D2O - Ice at temperatures below 237 K

    International Nuclear Information System (INIS)

    Heras, J.M.; Asensio, M.C.; Estiu, G.; Viscido, L.

    1984-01-01

    Accurate measurements of heavy water ice vapour pressures between 193 and 253 K have been carried out and an equation based on thermodynamic data has been derived in order to calculate the D 2 O-ice vapour pressures between 173 and 273 K. The agreement between our calculated vapour pressures and the available experimental data including those in this paper, is very good. The comparison between the theoretical calculations of H 2 O-ice and D 2 O-ice vapour pressures confirms the experimental evidence that H 2 O-ice is more volatile than D 2 O-ice at all temperatures in agreement with the vapour isotopic effect theory (VPIE).(author)

  14. Reconstructing the δ(18) O of atmospheric water vapour via the CAM epiphyte Tillandsia usneoides: seasonal controls on δ(18) O in the field and large-scale reconstruction of δ(18) Oa.

    Science.gov (United States)

    Helliker, Brent R

    2014-03-01

    Using both oxygen isotope ratios of leaf water (δ(18) OL ) and cellulose (δ(18) OC ) of Tillandsia usneoides in situ, this paper examined how short- and long-term responses to environmental variation and model parameterization affected the reconstruction of the atmospheric water vapour (δ(18) Oa ). During sample-intensive field campaigns, predictions of δ(18) OL matched observations well using a non-steady-state model, but the model required data-rich parameterization. Predictions from the more easily parameterized maximum enrichment model (δ(18) OL-M ) matched observed δ(18) OL and observed δ(18) Oa when leaf water turnover was less than 3.5 d. Using the δ(18) OL-M model and weekly samples of δ(18) OL across two growing seasons in Florida, USA, reconstructed δ(18) Oa was -12.6 ± 0.3‰. This is compared with δ(18) Oa of -12.4 ± 0.2‰ resolved from the growing-season-weighted δ(18) OC . Both of these values were similar to δ(18) Oa in equilibrium with precipitation, -12.9‰. δ(18) Oa was also reconstructed through a large-scale transect with δ(18) OL and the growing-season-integrated δ(18) OC across the southeastern United States. There was considerable large-scale variation, but there was regional, weather-induced coherence in δ(18) Oa when using δ(18) OL . The reconstruction of δ(18) Oa with δ(18) OC generally supported the assumption of δ(18) Oa being in equilibrium with precipitation δ(18) O (δ(18) Oppt ), but the pool of δ(18) Oppt with which δ(18) Oa was in equilibrium - growing season versus annual δ(18) Oppt - changed with latitude. © 2013 John Wiley & Sons Ltd.

  15. Past surface temperatures at the NorthGRIP drill site from the difference in firn diffusion of water isotopes

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard; Johnsen, S. J.; Popp, T. J.

    2011-01-01

    A new ice core paleothermometer is introduced based on the temperature dependent diffusion of the stable water isotopes in the firn. A new parameter called differential diffusion length is defined as the difference between the diffusion length of the two stable water isotopologues 2H1H16O and 1H218......O. A model treatment of the diffusion process of the firn and the ice is presented along with a method of retrieving the diffusion signal from the ice core record of water isotopes using spectral methods. The model shows how the diffusion process is highly dependent on the inter-annual variations...... warmer than observed in other ice core based temperature reconstructions. The mechanisms behind this behaviour are not fully understood. The method shows the need of an expansion of high resolution stable water isotope datasets from ice cores. However, the new ice core paleothermometer presented here...

  16. Mass transfer of SCWO processes: Molecular diffusion and mass transfer coefficients of inorganic nitrate species in sub- and supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Goemans, M.G.E.; Gloyna, E.F. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering; Buelow, S.J. [Los Alamos National Lab., NM (United States)

    1996-04-01

    Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.

  17. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.

    Science.gov (United States)

    Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Simulating the Vapour Phase Air/Water Exchange of p,p′-DDE, p,p′-DDT, Lindane, and 2,3,7,8-Tetrachlorodibenzodioxin

    Science.gov (United States)

    Uncertainties in our understanding of gaseous air/water exchange have emerged as major sources of concern in efforts to construct global and regional mass balances of both the green house gas carbon dioxide and semi-volatile persistent, bioaccumulative and toxic chemicals. Hoff e...

  19. Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO2 Capture from Flue Gas in Metal-Organic Frameworks.

    Science.gov (United States)

    Chanut, Nicolas; Bourrelly, Sandrine; Kuchta, Bogdan; Serre, Christian; Chang, Jong-San; Wright, Paul A; Llewellyn, Philip L

    2017-04-10

    A simple laboratory-scale protocol that enables the evaluation of the effect of adsorbed water on CO 2 uptake is proposed. 45 metal-organic frameworks (MOFs) were compared against reference zeolites and active carbons. It is possible to classify materials with different trends in CO 2 uptake with varying amounts of pre-adsorbed water, including cases in which an increase in CO 2 uptake is observed for samples with a given amount of pre-adsorbed water. Comparing loss in CO 2 uptake between "wet" and "dry" samples with the Henry constant calculated from the water adsorption isotherm results in a semi-logarithmic trend for the majority of samples allowing predictions to be made. Outliers from this trend may be of particular interest and an explanation for the behaviour for each of the outliers is proposed. This thus leads to propositions for designing or choosing MOFs for CO 2 capture in applications where humidity is present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Radionuclide behavior in water saturated porous media: Diffusion and infiltration coupling of thermodynamically and kinetically controlled radionuclide water - mineral interactions

    International Nuclear Information System (INIS)

    Spasennykh, M.Yu.; Apps, J.A.

    1995-05-01

    A model is developed describing one dimensional radionuclide transport in porous media coupled with locally reversible radionuclide water-mineral exchange reactions and radioactive decay. Problems are considered in which radionuclide transport by diffusion and infiltration processes occur in cases where radionuclide water-solid interaction are kinetically and thermodynamically controlled. The limits of Sr-90 and Cs-137 migration are calculated over a wide range of the problem variables (infiltration velocity, distribution coefficients, and rate constants of water-mineral radionuclide exchange reactions)

  1. The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Manzurola, Emanuel [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2007-08-15

    Vapour pressures of water over saturated solutions of sodium acetate, potassium acetate, sodium perchlorate, and potassium perchlorate were determined over the (278 to 318) K temperature range and compared with available in the literature data. The cases of saturated solutions of sodium chlorate and potassium chlorate are also considered. The determined vapour pressures were used to obtain the water activities, the osmotic coefficients, and the molar enthalpies of vaporization in considered systems.

  2. A Novel Approach for Analyzing Water Diffusion in Mineral and Vegetable Oil-Paper Insulation

    Directory of Open Access Journals (Sweden)

    Bin Du

    2014-04-01

    Full Text Available Water diffusion characteristics of mineral and vegetable oil-paper insulation systems are important for insulation condition evaluation of oil-filled transformers. In this paper, we describe a novel application method of in situ attenuated total reflection Fourier transform infrared (ATR-FTIR approach for analyzing the diffusion process of water molecules in oil-immersed insulating paper. Two-dimensional correlation was used to analyze the 3700 cm-1 to 3000 cm- 1 hydroxyl peak. The observed results indicated that water molecules form two types of hydroxyl (OH with oil-impregnated paper in the diffusion process are weak and strong hydrogen bonds, respectively. 2D infrared correlation analysis revealed that three OH stretching vibration spectra absorption peaks was existed in hygroscopic vegetable oil-immersed insulating paper. And there are four OH stretching vibration spectra absorption peaks in mineral oil-immersed insulation paper. Furthermore, mineral oil-impregnated paper and vegetable oil-impregnated paper diffusion coefficients were obtained by nonlinear fitting.

  3. Study of the diffusion movements of water by quasi-elastic scattering of slow neutrons

    International Nuclear Information System (INIS)

    Yamazaki, Ione Makiko

    1980-01-01

    The diffusion movements of water at three different temperatures in the liquid state have been studied by slow neutron quasi-elastic scattering. The measurements have been performed using the IPEN Triple Axis Spectrometer. Broadening and integrated intensity of the quasi-elastic line have been determined for several momentum transfer (K) in the range 0,7627 ≤ K ≤ 2,993 A -1 . The broadening of the quasi-elastic peaks as function of momentum transfer (K) observed at various temperatures has been interpreted in terms of globular diffusion models. The results obtained at 30 deg C have been explained in a consistent way considering the translational and rotational globular diffusion movements. To describe the results obtained at 55 deg and 70 deg C only the translational globular diffusion model was sufficient. This analysis indicates the existence in water of globules with distance of the farest proton position to the center of gravity of the globule 4,5 A, corroborating the idea of quasi-crystalline structure for water. The Debye-Waller factor has been obtained through the analysis of the integrated intensity of quasi-elastic scattering peaks over the K 2 measured range. From this analysis an estimative of the mean square displacement was obtained. (author)

  4. Diffusion of Water through Olivine and Clinopyroxene: Implications for Melt Inclusion Fidelity

    Science.gov (United States)

    Plank, T. A.; Lloyd, A. S.; Ferriss, E.

    2016-12-01

    The maximum H2O concentrations measured in olivine-hosted melt inclusions (MIs) from arc tephra fall within a narrow range of 3-5 wt%. A major question is whether this reflects parental water concentrations or diffusive exchange through the host crystal during storage and ascent. Laboratory experiments have shown that water can diffuse through 500 micron olivine in minutes to days at 1100°C. We have tested these predictions with a natural experiment using volatile (H2O, CO2, S) diffusion along melt embayments to constrain ascent rates during the 1974 eruption of Volcan Fuego to 5-8 minutes from 7 km depth [1]. Thus, olivine-hosted MIs may move from their storage region to the surface during some eruptions rapidly enough to retain almost all of their original water. Only the smallest MIs (500 microns) and large melt inclusions (>50 microns), and 4) rapid post-eruptive cooling (< 1min, clast sizes < 1 cm). The rapid diffusion of H through olivine and cpx presents a challenge to MI fidelity, but not necessarily if the above conditions are met. [1] Lloyd et al., 2014, JVGR. [2] Ferriss et al., 2016, AmMin.

  5. Estimation of water diffusion coefficient into polycarbonate at different temperatures using numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark)

    2016-06-08

    Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Mass transport properties of electronic packaging materials are needed in order to investigate the influence of moisture and temperature on reliability of electronic devices. Polycarbonate (PC) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, it is shown how the estimated value can be different depending on the choice of dimensionality in the model.

  6. The Water-Induced Linear Reduction Gas Diffusivity Model Extended to Three Pore Regions

    DEFF Research Database (Denmark)

    Chamindu, T. K. K. Deepagoda; de Jonge, Lis Wollesen; Kawamoto, Ken

    2015-01-01

    . Characterization of soil functional pore structure is an essential prerequisite to understand key gas transport processes in variably saturated soils in relation to soil ecosystems, climate, and environmental services. In this study, the water-induced linear reduction (WLR) soil gas diffusivity model originally...... gas diffusivity from moist to dry conditions across differently structured porous media, including narrow soil size fractions, perforated plastic blocks, fractured limestone, peaty soils, aggregated volcanic ash soils, and particulate substrates for Earth- or space-based applications. The new Cip...

  7. Estimation of Water Diffusion Coefficient into Polycarbonate at Different Temperatures Using Numerical Simulation

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    ) is widely used in the electronics industry. Thus, in this work the water diffusion coefficient into PC is investigated. Furthermore, numerical methods used for estimation of the diffusion coefficient and their assumptions are discussed. 1D and 3D numerical solutions are compared and based on this, itis......Nowadays, many electronic systems are exposed to harsh conditions of relative humidity and temperature. Masstransport properties of electronic packaging materials are needed in order to investigate the influence of moisture andtemperature on reliability of electronic devices. Polycarbonate (PC...... shown how the estimated value can be different depending on the choice of dimensionality in the model....

  8. Quantitative characterization of water transport and flooding in the diffusion layers of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Colombo, L.; Galbiati, S.; Marchesi, R. [Department of Energy, Politecnico di Milano, via Lambruschini 4, 20156 Milano (Italy)

    2010-07-01

    Optimization of water management in polymer electrolyte membrane fuel cells (PEMFC) and in direct methanol fuel cells (DMFC) is a very important factor for the achievement of high performances and long lifetime. A good hydration of the electrolyte membrane is essential for high proton conductivity; on the contrary water in excess may lead to electrode flooding and severe reduction in performances. Many studies on water transport across the gas diffusion layer (GDL) have been carried out to improve these components; anyway efforts in this field are affected by lack of effective experimental methods. The present work reports an experimental investigation with the purpose to determine the global coefficient of water transport across different diffusion layers under real operating conditions. An appropriate and accurate experimental apparatus has been designed and built to test the single GDL under a wide range of operating conditions. Data analysis has allowed quantification of both the water vapor transport across different diffusion layers, and the effects of micro-porous layers; furthermore flooding onset and its consequences on the mass transport coefficient have been characterized by means of suitably defined parameters. (author)

  9. Increased self-diffusion of brain water in hydrocephalus measured by MR imaging

    International Nuclear Information System (INIS)

    Gideon, P.; Thomsen, C.; Gjerris, F.; Soerensen, P.S.; Henriksen, O.

    1994-01-01

    We used MR imaging to measure the apparent brain water self-diffusion in 5 patients with normal pressure hydrocephalus (NPH), in 2 patients with high pressure hydrocephalus (HPH), and in 8 agematched controls. In all patients with NPH significant elevations of the apparent diffusion coefficients (ADC) of brain water were found within periventricular white matter, in the corpus callosum, in the internal capsule, within cortical gray matter, and in cerebrospinal fluid, whereas normal ADCs were found within the basal ganglia. In 2 patients with HPH elevated ADCs were found most prominently within white matter and in one patient reexamined one year after surgery. ADCs were unchanged in nearly all brain regions. The increased ADC values in hydrocephalus patients may be caused by factors such as changes in myelin-associated bound water, increased Virchow-Robin spaces, and increased extracellular brain water fraction. For further studies of brain water diffusion in hydrocephalus patients, echo-planar imaging techniques with imaging times of a few seconds may be valuable. (orig.)

  10. Water and sucrose diffusion coefficients during osmotic dehydration of sapodilla (Achras zapota L.

    Directory of Open Access Journals (Sweden)

    Lívia Muritiba Pereira de Lima Coimbra

    Full Text Available ABSTRACT: Sapodilla is an original fruit from Central America that is well adapted in all regions of the Brazilian territory. Despite its wide adaptation and acceptance in fruit markets, it is rare to find it outside tropical regions, partially because of its high perishability. The development of alternative, simple, and inexpensive methods to extend the conservation and marketing of these fruits is important, and osmotic dehydration is one of these methods. The main objective of this study was to determine the water and sucrose diffusion coefficients during the osmotic dehydration of sapodilla. This process was performed in short duration (up to 6h to evaluate detailed information on water loss and solids gain kinetics at the beginning of the process and in long duration (up to 60h to determine the equilibrium concentrations in sapodilla. The immersion time had greater influence on the water and sucrose diffusion coefficients (P<0.05; the maximum water loss (WL and solute gain (SG occurred in the osmotic solution at the highest concentration. Water and sucrose diffusion coefficients ranged from 0.00 x 10-10 m2/s to 1.858 x 10-10 m2/s, and from 0.00 x 10-10to 2.304 x 10-10 m2/s, respectively. Thus, understanding the WL and SG kinetics during the process of sapodilla osmotic dehydration could significantly contribute to new alternatives of preservation and commercialization of this fruit.

  11. Steady-State Diffusion of Water through Soft-Contact LensMaterials

    Energy Technology Data Exchange (ETDEWEB)

    Fornasiero, Francesco; Krull, Florian; Radke, Clayton J.; Prausnitz, JohnM.

    2005-01-31

    Water transport through soft contact lenses (SCL) is important for acceptable performance on the human eye. Chemical-potential gradient-driven diffusion rates of water through soft-contact-lens materials are measured with an evaporation-cell technique. Water is evaporated from the bottom surface of a lens membrane by impinging air at controlled flow rate and humidity. The resulting weight loss of a water reservoir covering the top surface of the contact-lens material is recorded as a function of time. New results are reported for a conventional hydrogel material (SofLens{trademark} One Day, hilafilcon A, water content at saturation W{sub 10} = 70 weight %) and a silicone hydrogel material (PureVision{trademark}, balafilcon A, W{sub 10} = 36 %), with and without surface oxygen plasma treatment. Also, previously reported data for a conventional HEMA-SCL (W{sub 10} = 38 %) hydrogel are reexamined and compared with those for SofLens{trademark} One Day and PureVision{trademark} hydrogels. Measured steady-state water fluxes are largest for SofLens{trademark} One Day, followed by PureVision{trademark} and HEMA. In some cases, the measured steady-state water fluxes increase with rising relative air humidity. This increase, due to an apparent mass-transfer resistance at the surface (trapping skinning), is associated with formation of a glassy skin at the air/membrane interface when the relative humidity is below 55-75%. Steady-state water-fluxes are interpreted through an extended Maxwell-Stefan diffusion model for a mixture of species starkly different in size. Thermodynamic nonideality is considered through Flory-Rehner polymer-solution theory. Shrinking/swelling is self-consistently modeled by conservation of the total polymer mass. Fitted Maxwell-Stefan diffusivities increase significantly with water concentration in the contact lens.

  12. Water diffusion through compacted clays analyzed by neutron scattering and tracer experiments

    International Nuclear Information System (INIS)

    Gonzalez Sanchez, F.

    2007-11-01

    Clay minerals are aluminium phyllosilicates, mostly products of the chemical alteration and mechanical breakdown of igneous and metamorphic rocks. Their physical and chemical properties can be directly related to their layered, fine-grained (large surface area) structure. These properties such as large water retention, low hydraulic conductivity, heat resistance and ionic exchange capacities, make clays ideal for many different applications, e.g. as sealing material for the underground disposal of radioactive waste. The long-term disposal of radioactive waste in an underground geological repository is based on a multibarrier concept. In the barrier of highly compacted clay, water is intercalated and confined between the clay layers. The narrow pores are responsible that under natural hydraulic gradients, molecular diffusion through water is the dominant transport mechanism for released radionuclides. The properties of water at the water-clay interface differ from that of bulk water. Therefore, a good and deep understanding of the water structure and dynamics in compacted clay systems is fundamental. This knowledge is the base for the progressing research about transport of pollutants through the compacted clays and argillaceous rock of radioactive waste barriers. This study focusses on four different types of pure clays, two of them charged, namely montmorillonite and illite (both in a Na and Ca form), and two uncharged, namely kaolinite and pyrophyllite. Their structural differences result in a significantly different behaviour in contact with water. In case of montmorillonite, water is located in between particles and in the interlayer space. In illite, water is found only in between particles, because the interlayer surfaces are tightly linked by potassium cations. The layers of kaolinite and pyrophyllite are uncharged and, consequently, water is located only in between particles. The clay powders were compacted to reach a high bulk dry density of about 1.9 g

  13. Water diffusion through compacted clays analyzed by neutron scattering and tracer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Sanchez, F

    2007-11-15

    Clay minerals are aluminium phyllosilicates, mostly products of the chemical alteration and mechanical breakdown of igneous and metamorphic rocks. Their physical and chemical properties can be directly related to their layered, fine-grained (large surface area) structure. These properties such as large water retention, low hydraulic conductivity, heat resistance and ionic exchange capacities, make clays ideal for many different applications, e.g. as sealing material for the underground disposal of radioactive waste. The long-term disposal of radioactive waste in an underground geological repository is based on a multibarrier concept. In the barrier of highly compacted clay, water is intercalated and confined between the clay layers. The narrow pores are responsible that under natural hydraulic gradients, molecular diffusion through water is the dominant transport mechanism for released radionuclides. The properties of water at the water-clay interface differ from that of bulk water. Therefore, a good and deep understanding of the water structure and dynamics in compacted clay systems is fundamental. This knowledge is the base for the progressing research about transport of pollutants through the compacted clays and argillaceous rock of radioactive waste barriers. This study focusses on four different types of pure clays, two of them charged, namely montmorillonite and illite (both in a Na and Ca form), and two uncharged, namely kaolinite and pyrophyllite. Their structural differences result in a significantly different behaviour in contact with water. In case of montmorillonite, water is located in between particles and in the interlayer space. In illite, water is found only in between particles, because the interlayer surfaces are tightly linked by potassium cations. The layers of kaolinite and pyrophyllite are uncharged and, consequently, water is located only in between particles. The clay powders were compacted to reach a high bulk dry density of about 1.9 g

  14. Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone

    Science.gov (United States)

    Milly, Paul C.D.

    1996-01-01

    The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions, confirmed by the field observations, regarding the seasonal variations of matric potential at a given depth. The conceptual model of unsaturated zone water transport developed here implies the possibility of near‐surface trapping of any aqueous constituent introduced at the surface.

  15. Lamp system with conditioned water coolant and diffuse reflector of polytetrafluorethylene(PTFE)

    Science.gov (United States)

    Zapata, Luis E.; Hackel, Lloyd

    1999-01-01

    A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.

  16. Applications of fractional calculus to diffusion transport in clay-water system

    International Nuclear Information System (INIS)

    Korosak, D.; Cvikl, B.; Kramer, J.; Jecl, R.; Praprotnik, A.; Veselic, M.

    2005-01-01

    The analysis of the low-frequency conductivity spectra of the clay-water mixtures is presented. The conductivity spectra for samples at different water content values are shown to collapse to a single master curve when appropriately rescaled. The frequency dependence of the conductivity is shown to follow the power-law with the exponent η=0,67 before reaching the frequency-independent part. It is argued that the observed conductivity dispersion is a consequence of the anomalously diffusing ions in the clay-water system. The fractional Langevin equation is then used to describe the stochastic dynamics of the single ion. (author)

  17. Measurement of Diffusion Coefficients of Parabens and Steroids in Water and 1-Octanol

    OpenAIRE

    関, 俊暢; 持田, 純子; 岡本, 麻衣子; 細谷, 治; 從二, 和彦; Morimoto, Kazuhiro

    2003-01-01

    Diffusion coefficients (D) of parabens and steroids in water and 1-octanol were determined by using the chromatographic broadening method at 37 °C, and the relationships between the D values and the physicochemical properties of the drugs were discussed. The D values in 1-octanol were lower than those in water because of the higher viscosity of 1-octanol. The D values depend on not only the molecular weight (MW), but also the lipophilicity of the drugs in water and on the ability for hydrogen...

  18. Diffusion and spectroscopy of water and lipids in fully hydrated dimyristoylphosphatidylcholine bilayer membranes

    International Nuclear Information System (INIS)

    Yang, J.; Martí, J.; Calero, C.

    2014-01-01

    Microscopic structure and dynamics of water and lipids in a fully hydrated dimyristoylphosphatidylcholine phospholipid lipid bilayer membrane in the liquid-crystalline phase have been analyzed with all-atom molecular dynamics simulations based on the recently parameterized CHARMM36 force field. The diffusive dynamics of the membrane lipids and of its hydration water, their reorientational motions as well as their corresponding spectral densities, related to the absorption of radiation, have been considered for the first time using the present force field. In addition, structural properties such as density and pressure profiles, a deuterium-order parameter, surface tension, and the extent of water penetration in the membrane have been analyzed. Molecular self-diffusion, reorientational motions, and spectral densities of atomic species reveal a variety of time scales playing a role in membrane dynamics. The mechanisms of lipid motion strongly depend on the time scale considered, from fast ballistic translation at the scale of picoseconds (effective diffusion coefficients of the order of 10 −5 cm 2 /s) to diffusive flow of a few lipids forming nanodomains at the scale of hundreds of nanoseconds (diffusion coefficients of the order of 10 −8 cm 2 /s). In the intermediate regime of sub-diffusion, collisions with nearest neighbors prevent the lipids to achieve full diffusion. Lipid reorientations along selected directions agree well with reported nuclear magnetic resonance data and indicate two different time scales, one about 1 ns and a second one in the range of 2–8 ns. We associated the two time scales of reorientational motions with angular distributions of selected vectors. Calculated spectral densities corresponding to lipid and water reveal an overall good qualitative agreement with Fourier transform infrared spectroscopy experiments. Our simulations indicate a blue-shift of the low frequency spectral bands of hydration water as a result of its interaction

  19. Diffusion and spectroscopy of water and lipids in fully hydrated dimyristoylphosphatidylcholine bilayer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Martí, J., E-mail: jordi.marti@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia (Spain); Calero, C. [Department of Physics and Nuclear Engineering, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Jordi Girona 1-3, 08034 Barcelona, Catalonia (Spain); Center for Polymer Studies, Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States)

    2014-03-14

    Microscopic structure and dynamics of water and lipids in a fully hydrated dimyristoylphosphatidylcholine phospholipid lipid bilayer membrane in the liquid-crystalline phase have been analyzed with all-atom molecular dynamics simulations based on the recently parameterized CHARMM36 force field. The diffusive dynamics of the membrane lipids and of its hydration water, their reorientational motions as well as their corresponding spectral densities, related to the absorption of radiation, have been considered for the first time using the present force field. In addition, structural properties such as density and pressure profiles, a deuterium-order parameter, surface tension, and the extent of water penetration in the membrane have been analyzed. Molecular self-diffusion, reorientational motions, and spectral densities of atomic species reveal a variety of time scales playing a role in membrane dynamics. The mechanisms of lipid motion strongly depend on the time scale considered, from fast ballistic translation at the scale of picoseconds (effective diffusion coefficients of the order of 10{sup −5} cm{sup 2}/s) to diffusive flow of a few lipids forming nanodomains at the scale of hundreds of nanoseconds (diffusion coefficients of the order of 10{sup −8} cm{sup 2}/s). In the intermediate regime of sub-diffusion, collisions with nearest neighbors prevent the lipids to achieve full diffusion. Lipid reorientations along selected directions agree well with reported nuclear magnetic resonance data and indicate two different time scales, one about 1 ns and a second one in the range of 2–8 ns. We associated the two time scales of reorientational motions with angular distributions of selected vectors. Calculated spectral densities corresponding to lipid and water reveal an overall good qualitative agreement with Fourier transform infrared spectroscopy experiments. Our simulations indicate a blue-shift of the low frequency spectral bands of hydration water as a result of

  20. Environmental and Physiographic Controls on Inter-Growing Season Variability of Carbon Dioxide and Water Vapour Fluxes in a Minerotrophic Fen

    Science.gov (United States)

    van der Kamp, G.; Sonnentag, O.; Chen, J. M.; Barr, A.; Hedstrom, N.; Granger, R.

    2008-12-01

    The interaction of fens with groundwater is spatially and temporally highly variable in response to meteorological conditions, resulting in frequent changes of groundwater fluxes in both vertical and lateral directions (flow reversals) across the mineral soil-peat boundary. However, despite the importance of the topographic and hydrogeological setting of fens, no study has been reported in the literature that explores a fen's atmospheric CO2 and energy flux densities under contrasting meteorological conditions in response to its physiographic setting. In our contribution we report four years of growing season eddy covariance and supporting measurements from the Canada Fluxnet-BERMS fen (formerly BOREAS southern peatland) in Saskatchewan, Canada. We first analyze hydrological data along two piezometer transects across the mineral soil-peat boundary with the objective of assessing changes in water table configuration and thus hydraulic gradients, indicating flow reversals, in response to dry and wet meteorological conditions. Next we quantify and compare growing season totals and diurnal and daily variations in evapotranspiration (ET) and net ecosystem exchange (NEE) and its component fluxes gross ecosystem productivity (GPP) and terrestrial ecosystem respiration (TER) to identify their controls with a major focus on water table depth. While ET growing season totals were similar (~ 310 mm) under dry and wet meteorological conditions, the CO2 sink- source strength of Sandhill fen varied substantially from carbon neutral (NEE = -2 [+-7] g C m-2 per growing season) under dry meteorological condition (2003) to a moderate CO2- sink with NEE ranging between 157 [+- 10] and 190 [+- 11] g C m-2 per growing season under wet meteorological conditions (2004, 2005, and 2006). Using a process-oriented ecosystem model, BEPS-TerrainLab, we investigate how different canopy components at Sandhill contribute to total ET and GPP, and thus water use efficiency, under dry and wet

  1. Numerical study of water diffusion in biological tissues using an improved finite difference method

    International Nuclear Information System (INIS)

    Xu Junzhong; Does, Mark D; Gore, John C

    2007-01-01

    An improved finite difference (FD) method has been developed in order to calculate the behaviour of the nuclear magnetic resonance signal variations caused by water diffusion in biological tissues more accurately and efficiently. The algorithm converts the conventional image-based finite difference method into a convenient matrix-based approach and includes a revised periodic boundary condition which eliminates the edge effects caused by artificial boundaries in conventional FD methods. Simulated results for some modelled tissues are consistent with analytical solutions for commonly used diffusion-weighted pulse sequences, whereas the improved FD method shows improved efficiency and accuracy. A tightly coupled parallel computing approach was also developed to implement the FD methods to enable large-scale simulations of realistic biological tissues. The potential applications of the improved FD method for understanding diffusion in tissues are also discussed. (note)

  2. No sodium in the vapour plumes of Enceladus.

    Science.gov (United States)

    Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A

    2009-06-25

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.

  3. Lagrangian process attribution of isotopic variations in near-surface water vapour in a 30-year regional climate simulation over Europe

    Science.gov (United States)

    Dütsch, Marina; Pfahl, Stephan; Meyer, Miro; Wernli, Heini

    2018-02-01

    Stable water isotopes are naturally available tracers of moisture in the atmosphere. Due to isotopic fractionation, they record information about condensation and evaporation processes during the transport of air parcels, and therefore present a valuable means for studying the global water cycle. However, the meteorological processes driving isotopic variations are complex and not very well understood so far, in particular on short (hourly to daily) timescales. This study presents a Lagrangian method for attributing the isotopic composition of air parcels to meteorological processes, which provides new insight into the isotopic history of air parcels. It is based on the temporal evolution of the isotope ratios, the humidity, the temperature, and the location of the air parcels. Here these values are extracted along 7-day backward trajectories started every 6 hours from near the surface in a 30-year regional climate simulation over Europe with the isotope-enabled version of the model of the Consortium for Small-Scale Modelling (COSMOiso). The COSMOiso simulation has a horizontal resolution of 0.25° and is driven at the lateral boundaries by a T106 global climate simulation with the isotope-enabled version of the European Centre Hamburg model (ECHAMwiso). Both simulations are validated against measurements from the Global Network of Isotopes in Precipitation (GNIP), which shows that nesting COSMOiso within ECHAMwiso improves the representation of δ2H and deuterium excess in monthly accumulated precipitation. The method considers all isotopic changes that occur inside the COSMOiso model domain, which, on average, correspond to more than half of the mean and variability in both δ2H and deuterium excess at the air parcels' arrival points. Along every trajectory, the variations in the isotope values are quantitatively decomposed into eight process categories (evaporation from the ocean, evapotranspiration from land, mixing with moister air, mixing with drier air

  4. Lagrangian process attribution of isotopic variations in near-surface water vapour in a 30-year regional climate simulation over Europe

    Directory of Open Access Journals (Sweden)

    M. Dütsch

    2018-02-01

    Full Text Available Stable water isotopes are naturally available tracers of moisture in the atmosphere. Due to isotopic fractionation, they record information about condensation and evaporation processes during the transport of air parcels, and therefore present a valuable means for studying the global water cycle. However, the meteorological processes driving isotopic variations are complex and not very well understood so far, in particular on short (hourly to daily timescales. This study presents a Lagrangian method for attributing the isotopic composition of air parcels to meteorological processes, which provides new insight into the isotopic history of air parcels. It is based on the temporal evolution of the isotope ratios, the humidity, the temperature, and the location of the air parcels. Here these values are extracted along 7-day backward trajectories started every 6 hours from near the surface in a 30-year regional climate simulation over Europe with the isotope-enabled version of the model of the Consortium for Small-Scale Modelling (COSMOiso. The COSMOiso simulation has a horizontal resolution of 0.25° and is driven at the lateral boundaries by a T106 global climate simulation with the isotope-enabled version of the European Centre Hamburg model (ECHAMwiso. Both simulations are validated against measurements from the Global Network of Isotopes in Precipitation (GNIP, which shows that nesting COSMOiso within ECHAMwiso improves the representation of δ2H and deuterium excess in monthly accumulated precipitation. The method considers all isotopic changes that occur inside the COSMOiso model domain, which, on average, correspond to more than half of the mean and variability in both δ2H and deuterium excess at the air parcels' arrival points. Along every trajectory, the variations in the isotope values are quantitatively decomposed into eight process categories (evaporation from the ocean, evapotranspiration from land, mixing with moister air, mixing

  5. Numerical simulation of dynamic flow characteristics in a centrifugal water pump with three-vaned diffuser

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Shuai

    2015-08-01

    Full Text Available The complex three-dimensional turbulent flow field in a centrifugal water pump with three asymmetrical diffusers was numerically simulated. The characteristics of pressure and force fluctuations inside the model pump were investigated. Fast Fourier transformation was performed to obtain the spectra of pressure and force fluctuations. It indicates that the dominant frequency of pressure fluctuations is the blade passing frequency in all the sub-domains inside the pump and the first blade passing frequency energy (first order of blade passing frequency is the most significant. The dominant frequency of pressure fluctuations at the location of diffuser outlet is featured by low frequency (less than 1 Hz, which may be due to the locally generated eddy structures. Besides, the dominant frequency force fluctuations on the impeller blades are also the blade passing frequency. The existence of the three asymmetrical diffusers has damping effect on the pressure fluctuation amplitude and energy amplitude of pressure fluctuations in the diffuser domain dramatically, which indicates that the diffusers can effectively control the hydraulically excited vibration in the pump. Besides, the prediction of the dominant frequency of pressure fluctuations inside the pump can help to utilize the pump effectively and to extend the pump life. The main findings of this work can provide prediction of the pump performance and information for further optimal design of centrifugal pumps as well.

  6. Investigating the Intrinsic Ethanol/Water Separation Capability of ZIF-8: An Adsorption and Diffusion Study

    KAUST Repository

    Zhang, Ke

    2013-04-11

    Intrinsic ethanol/water separation capability of ZIF-8 is characterized by a detailed study of adsorption and diffusion of ethanol and water vapor in dodecahedral crystals with principle axis dimension of 324, 15.8, and 0.4 μm. ZIF-8 exhibits extremely low water uptakes. At 35 C and a relative pressure (P/Po) of 0.95, the water uptakes for 324, 15.8, and 0.4 μm ZIF-8 are 0.184, 0.197, and 0.503 mmol/g, respectively, all of which are less than 1 wt % increase relative to original sorbent mass (0.33, 0.35, 0.91 wt %). For ethanol adsorption, ZIF-8 exhibits an S-shape isotherm with low ethanol uptakes at P/Po up to 0.08 and the cage filling phenomenon occurs at P/P o higher than 0.08. The ethanol saturation uptake in ZIF-8 is as high as 30% of the sorbent weight. Because of the existence of the hydrophilic -N-H functionality introduced by the terminating imidazolate (Im) linker and the overall hydrophobicity of the inner network, the effect of outer surface area of ZIF-8 crystals is proved to be non-negligible as ZIF-8 crystals becomes smaller despite the extremely large inner surface area and pore volume, especially for water sorption. The variation of isosteric heats of adsorption for water reveals the existence of structural defect of ZIF-8 framework. Transport diffusivity and corrected diffusivity for water and ethanol in ZIF-8 are determined within the entire P/Po range. The ethanol/water separation performance in ZIF-8 is evaluated in terms of vapor-phase sorption selectivity and permselectivity. While ZIF-8 exhibits ample ethanol/water sorption selectivity, it is not effective for ethanol extraction as a membrane material from dilute ethanol aqueous solutions due to the unfavorable diffusion selectivity and the competitive water uptakes in the adsorbed ethanol phase. © 2013 American Chemical Society.

  7. Quantitative measurement of water diffusion lifetimes at a protein/DNA interface by NMR

    International Nuclear Information System (INIS)

    Gruschus, James M.; Ferretti, James A.

    2001-01-01

    Hydration site lifetimes of slowly diffusing water molecules at the protein/DNA interface of the vnd/NK-2 homeodomain DNA complex were determined using novel three-dimensional NMR techniques. The lifetimes were calculated using the ratios of ROE and NOE cross-relaxation rates between the water and the protein backbone and side chain amides. This calculation of the lifetimes is based on a model of the spectral density function of the water-protein interaction consisting of three timescales of motion: fast vibrational/rotational motion, diffusion into/out of the hydration site, and overall macromolecular tumbling. The lifetimes measured ranged from approximately 400 ps to more than 5 ns, and nearly all the slowly diffusing water molecules detected lie at the protein/DNA interface. A quantitative analysis of relayed water cross-relaxation indicated that even at very short mixing times, 5 ms for ROESY and 12 ms for NOESY, relay of magnetization can make a small but detectable contribution to the measured rates. The temperature dependences of the NOE rates were measured to help discriminate direct dipolar cross-relaxation from chemical exchange. Comparison with several X-ray structures of homeodomain/DNA complexes reveals a strong correspondence between water molecules in conserved locations and the slowly diffusing water molecules detected by NMR. A homology model based on the X-ray structures was created to visualize the conserved water molecules detected at the vnd/NK-2 homeodomain DNA interface. Two chains of water molecules are seen at the right and left sides of the major groove, adjacent to the third helix of the homeodomain. Two water-mediated hydrogen bond bridges spanning the protein/DNA interface are present in the model, one between the backbone of Phe8 and a DNA phosphate, and one between the side chain of Asn51 and a DNA phosphate. The hydrogen bond bridge between Asn51 and the DNA might be especially important since the DNA contact made by the invariant

  8. Increase in hippocampal water diffusion and volume during experimental pneumococcal meningitis is aggravated by bacteremia

    DEFF Research Database (Denmark)

    Holler, Jon G; Brandt, Christian T; Leib, Stephen L

    2014-01-01

    BACKGROUND: The hippocampus undergoes apoptosis in experimental pneumococcal meningitis leading to neurofunctional deficits in learning and memory function. The aim of the present study was 1) to investigate hippocampal apparent diffusion coefficient (ADC) and volume with MRI during the course...... and the volume and size of brain ventricles were positively correlated (Spearman Rank, p volume and the extent of apoptosis (p > 0.05). CONCLUSIONS: In experimental meningitis increase in volume and water diffusion of the hippocampus are significantly...... of experimental pneumococcal meningitis, 2) to explore the influence of accompanying bacteremia on hippocampal water distribution and volume, 3) and to correlate these findings to the extent of apoptosis in the hippocampus. METHODS: Experimental meningitis in rats was induced by intracisternal injection of live...

  9. Moisture diffusion coefficients determination of furan bonded sands and water based foundry coatings

    DEFF Research Database (Denmark)

    Di Muoio, Giovanni Luca; Tiedje, Niels Skat

    2016-01-01

    Moisture content in furan bonded sand and water based coatings can be one of the main causes for gas related defects in large cast iron parts. Moisture diffusion coefficients for these materials are needed to precisely predict the possible moisture levels in foundry moulds. In this study, we first...... provide an example on how it is possible to apply this knowledge to estimate moisture variation in a sand mould during production....

  10. Fast Rotational Diffusion of Water Molecules in a 2D Hydrogen Bond Network at Cryogenic Temperatures

    Science.gov (United States)

    Prisk, T. R.; Hoffmann, C.; Kolesnikov, A. I.; Mamontov, E.; Podlesnyak, A. A.; Wang, X.; Kent, P. R. C.; Anovitz, L. M.

    2018-05-01

    Individual water molecules or small clusters of water molecules contained within microporous minerals present an extreme case of confinement where the local structure of hydrogen bond networks are dramatically altered from bulk water. In the zinc silicate hemimorphite, the water molecules form a two-dimensional hydrogen bond network with hydroxyl groups in the crystal framework. Here, we present a combined experimental and theoretical study of the structure and dynamics of water molecules within this network. The water molecules undergo a continuous phase transition in their orientational configuration analogous to a two-dimensional Ising model. The incoherent dynamic structure factor reveals two thermally activated relaxation processes, one on a subpicosecond timescale and another on a 10-100 ps timescale, between 70 and 130 K. The slow process is an in-plane reorientation of the water molecule involving the breaking of hydrogen bonds with a framework that, despite the low temperatures involved, is analogous to rotational diffusion of water molecules in the bulk liquid. The fast process is a localized motion of the water molecule with no apparent analogs among known bulk or confined phases of water.

  11. Surface polish of PLA parts in FDM using dichloromethane vapour

    Directory of Open Access Journals (Sweden)

    Jin Yifan

    2017-01-01

    Full Text Available Fused deposition modelling has become one of the most diffused rapid prototyping techniques, which is widely used to fabricate prototypes. However, further application of this technology is severely limited by poor surface roughness. Thus it is necessary to adopt some operations to improve surface quality. Chemical finishing is typically employed to finish parts in fused deposition modelling (FDM. The purpose of this paper is to decrease the surface roughness for polylactic acid (PLA parts in FDM. The chemical reaction mechanism during the treating process is analysed. Then NaOH solution and dichloromethane vapour are used to treat FDM specimens respectively. A 3D laser microscope has been applied to assess the effects in terms of surface topography and roughness. The experimental results show that treatment using dichloromethane vapour performs much better than NaOH solution. Compared with the untreated group, surface roughness obtained through vapour treatment decreases by 88 per cent. This research has been conducted to provide a better method to treat PLA parts using chemical reagents.

  12. Bio-predictive tablet disintegration: effect of water diffusivity, fluid flow, food composition and test conditions.

    Science.gov (United States)

    Radwan, Asma; Wagner, Manfred; Amidon, Gordon L; Langguth, Peter

    2014-06-16

    Food intake may delay tablet disintegration. Current in vitro methods have little predictive potential to account for such effects. The effect of a variety of factors on the disintegration of immediate release tablets in the gastrointestinal tract has been identified. They include viscosity of the media, precipitation of food constituents on the surface of the tablet and reduction of water diffusivity in the media as well as changes in the hydrodynamics in the surrounding media of the solid dosage form. In order to improve the predictability of food affecting the disintegration of a dosage form, tablet disintegration in various types of a liquefied meal has been studied under static vs. dynamic (agitative) conditions. Viscosity, water diffusivity, osmolality and Reynolds numbers for the different media were characterized. A quantitative model is introduced which predicts the influence of the Reynolds number in the tablet disintegration apparatus on the disintegration time. Viscosity, water diffusivity and media flow velocity are shown to be important factors affecting dosage form disintegration. The results suggest the necessity of considering these parameters when designing a predictive model for simulating the in vivo conditions. Based on these experiments and knowledge on in vivo hydrodynamics in the GI tract, it is concluded that the disintegration tester under current pharmacopoeial conditions is operated in an unphysiological mode and no bioprediction may be derived. Recommendations regarding alternative mode of operation are made. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. An axisymmetric non-hydrostatic model for double-diffusive water systems

    Science.gov (United States)

    Hilgersom, Koen; Zijlema, Marcel; van de Giesen, Nick

    2018-02-01

    The three-dimensional (3-D) modelling of water systems involving double-diffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In 3-D systems that approach axisymmetry around a central location, computation times can be reduced by applying a 2-D axisymmetric model set-up. This article applies the Reynolds-averaged Navier-Stokes equations described in cylindrical coordinates and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finite-volume model can be easily extended to the developed framework, which is demonstrated by the implementation into a non-hydrostatic free-surface flow model. This model employs temperature- and salinity-dependent densities, molecular diffusivities, and kinematic viscosity. One quantitative case study, based on an analytical solution derived for the radial expansion of a dense water layer, and two qualitative case studies demonstrate a good behaviour of the model for seepage inflows with contrasting salinities and temperatures. Four case studies with respect to double-diffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly modelled near the interfaces and that an advanced turbulence model is required.

  14. Communication: Diffusion constant in supercooled water as the Widom line is crossed in no man's land

    Science.gov (United States)

    Ni, Yicun; Hestand, Nicholas J.; Skinner, J. L.

    2018-05-01

    According to the liquid-liquid critical point (LLCP) hypothesis, there are two distinct phases of supercooled liquid water, namely, high-density liquid and low-density liquid, separated by a coexistence line that terminates in an LLCP. If the LLCP is real, it is located within No Man's Land (NML), the region of the metastable phase diagram that is difficult to access using conventional experimental techniques due to rapid homogeneous nucleation to the crystal. However, a recent ingenious experiment has enabled measurement of the diffusion constant deep inside NML. In the current communication, these recent measurements are compared, with good agreement, to the diffusion constant of E3B3 water, a classical water model that explicitly includes three-body interactions. The behavior of the diffusion constant as the system crosses the Widom line (the extension of the liquid-liquid coexistence line into the one-phase region) is analyzed to derive information about the presence and location of the LLCP. Calculations over a wide range of temperatures and pressures show that the new experimental measurements are consistent with an LLCP having a critical pressure of over 0.6 kbar.

  15. Enrichment of heavy water in thermal-diffusion columns connected in series

    International Nuclear Information System (INIS)

    Yeh, Ho-Ming; Chen, Liu Yi

    2009-01-01

    The separation equations for enrichment of heavy water from water isotope mixture by thermal diffusion in multiple columns connected in series, have been derived based on one column design developed in previous work. The improvement in separation is achievable by operating in a double-column device, instead of in a single-column device, with the same total column length. It is also found that further improvement in separation is obtainable if a triple-column device is employed, except for operating under small total column length and low flow rate.

  16. The mass transfers of water by diffusion and permeation through a covering of wastes disposal

    International Nuclear Information System (INIS)

    Beaudoing, G.; Duding, B.; Margrita, R.; Launay, M.

    1991-01-01

    The purpose of the experiments described in this article is to measure the transfer conditions similarly to the reality 'in situ', for a barrier constituted of sodic bentonite. For that purpose, these experiments were realized with a possibility of distension into the material receiving the membrane. The studied samples are constituted by a film of heavy, strong, durable and supple propylene coated with a bed of particles of sodic mineral bentonite. This clay is covered with a thin film of polyester for the mechanical protection (transport, placing). The characterisation of water transfer was realized with non mineral tritiated water HTO, nH 2 0 with a specific activity of 37 GBq.m -3 (1 Ci.m -3 ) and placed in the upward cavity of the permeameter. Diffusion, permeation and permeability coefficients are determined under pressure of 0.15.10 5 Pa (1.50 meter of water) and 10 5 Pa (10 meters of water)

  17. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    Science.gov (United States)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  18. Water transport in gas diffusion media for PEM fuel cells. Experimental and numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Joerg

    2010-08-20

    The water flux in partially saturated hydrophobic carbon fibre paper for polymer electrolyte membrane fuel cell applications is investigated and compared with the frequently used constitutive two-phase flow model based on Darcy's law. Further, the first steps towards a math-based material design for gas diffusion media are explored in this thesis. Two self-developed ex-situ experiments to investigate the liquid water transport are introduced. The first is a newly developed buoyancy-based measurement of the pressuresaturation relationship on thin porous material with an accuracy of 0.5 kPa for the pressure and {+-} 5% for the saturation. The second experiment measures the pressure drop in dependence of flow rates down to magnitudes of {mu}L/s across the partially saturated thin porous material. This flow rate is relevant for the fuel cell application. The liquid water transport through Toray 060 carbon fibre paper, impregnated with 7% and 10% PTFE is investigated at wet and dry boundary conditions. The experiments are also accompanied by analytical and numerical free surface modelling with the consideration of the material morphology and liquid-solid interaction. The imbibing and draining cases of an arrangement of six fibres at varying solid-liquid interaction and boundary conditions are studied with 'Surface Evolver'. In order to evaluate the findings of ex-situ and modelling work for applicability to water transport in fuel cell operation, the technique of nuclear magnetic resonance (NMR) imaging is assessed. The focus is on the visualisation of 2D and 3D water distribution in the operating fuel cell. The compatibility of the NMR experiment with fuel cell operation in relation to material selection, operating temperature, and current density is addressed. NMR imaging is employed for different current densities, stoichiometries, and fuel cell arrangements. The fuel cell arrangements differ by the cathode diffusion medium. Plain, hydrophobic, and

  19. Predicting liquid water saturation through differently structured cathode gas diffusion media of a proton exchange Membrane Fuel Cell

    NARCIS (Netherlands)

    Akhtar, N.; Kerkhof, P.J.A.M.

    2012-01-01

    The role of gas diffusion media with differently structured properties have been examined with emphasis on the liquid water saturation within the cathode of a proton exchange membrane fuel cell (PEMFC). The cathode electrode consists of a gas diffusion layer (GDL), a micro-porous layer and a

  20. Modeling diffuse sources of surface water contamination with plant protection products

    Science.gov (United States)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  1. Diffusion-weighted magnetic resonance imaging reveals the effects of different cooling temperatures on the diffusion of water molecules and perfusion within human skeletal muscle

    International Nuclear Information System (INIS)

    Yanagisawa, O.; Fukubayashi, T.

    2010-01-01

    Aim: To evaluate the effect of local cooling on the diffusion of water molecules and perfusion within muscle at different cooling temperatures. Materials and methods: Magnetic resonance diffusion-weighted (DW) images of the leg (seven males) were obtained before and after 30 min cooling (0, 10, and 20 o C), and after a 30 min recovery period. Two types of apparent diffusion coefficient (ADC; ADC1, reflecting both water diffusion and perfusion within muscle, and ADC2, approximating the true water diffusion coefficient) of the ankle dorsiflexors were calculated from DW images. T2-weighted images were also obtained to calculate T2 values of the ankle dorsiflexors. The skin temperature was measured before, during, and after cooling. Results: Both ADC values significantly decreased after cooling under all cooling conditions; the rate of decrease depended on the cooling temperature used (ADC1: -36% at 0 o C, -27.8% at 10 o C, and -22.6% at 20 o C; ADC2: -26% at 0 o C, -21.1% at 10 o C, and -14.6% at 20 o C). These significant decreases were maintained during the recovery period. Conversely, the T2 value showed no significant changes. Under all cooling conditions, skin temperature significantly decreased during cooling; the rate of decrease depended on the cooling temperature used (-74.8% at 0 o C, -51.1% at 10 o C, and -26.8% at 20 o C). Decreased skin temperatures were not restored to pre-cooling values during the recovery period under any cooling conditions. Conclusion: Local cooling decreased the water diffusion and perfusion within muscle with decreased skin temperature; the rates of decrease depended on the cooling temperature used. These decreases were maintained for 30 min after cooling.

  2. Simulation of the solar hot water systems diffusion: the case of Greece

    International Nuclear Information System (INIS)

    Sidiras, D.; Koukios, E.

    2004-01-01

    The main object of this paper is the documentation and study of the main factors behind the spectacular diffusion of solar energy use for domestic hot water production in Greece. The time pattern of the diffusion of flat-plate solar collectors since its 'out of the blue' first appearance in 1974, shows that the diffusion rate grew exponentially at first, with the annual sales figure reaching 91,000 m 2 by 1980. A rate slow down in the early 1980s was followed by a brief period of explosive growth, with the annual sales figure reaching its peak value of more than 185,000 m 2 in mid-1980s. A rapid decline of the growth rate down to the present annual sales level followed. The installed solar collectors pattern has the characteristic form of an S-shape curve, representing the overall penetration of the flat-plate solar collector use for domestic hot water production in the Greek economy and society. This evolution has gone through an inflection point around 1987, i.e. at a time when about 1,000,000 m 2 of collectors had already been installed. By the year 2000, about 2,070,000 m 2 of collectors had been installed, with a tendency to level off by 2010, unless some the present conditions determining this phenomenon change. (author)

  3. Water Vapor Diffusion and Adsorption of Sandstones: Influence of Rock Texture and Composition

    Directory of Open Access Journals (Sweden)

    Martin Keppert

    2016-01-01

    Full Text Available The term sandstone is used for wide range of rocks containing quartz clasts which can be cemented by secondary precipitated quartz or calcite; moreover the space between clasts can be filled by matrix. These facts result in existence of numerous rocks having highly various properties. Sandstones have been used as construction materials due to their good accessibility and workability. Since most of sandstones are porous, water vapor can penetrate through sandstone constructions. The rate of water vapor diffusion, as well as the vapor sorption isotherm, was determined for range of sandstone types. The diffusion resistance factor was found to be dependent on the total porosity of sandstone but the sorption behavior was strongly influenced by nature of the particular sandstone; the specific surface area of stone and presence of clay matrix are determining its sorption isotherm. The published data enable estimating (i diffusion resistance factor of a sandstone via knowledge of its total porosity and (ii the sorption isotherm via knowledge of the stone’s nature and specific surface area. This approach can significantly reduce the time necessary to acquire vapor-related properties of a sandstone.

  4. Estimating Past Temperature Change in Antarctica Based on Ice Core Stable Water Isotope Diffusion

    Science.gov (United States)

    Kahle, E. C.; Markle, B. R.; Holme, C.; Jones, T. R.; Steig, E. J.

    2017-12-01

    The magnitude of the last glacial-interglacial transition is a key target for constraining climate sensitivity on long timescales. Ice core proxy records and general circulation models (GCMs) both provide insight on the magnitude of climate change through the last glacial-interglacial transition, but appear to provide different answers. In particular, the magnitude of the glacial-interglacial temperature change reconstructed from East Antarctic ice-core water-isotope records is greater ( 9 degrees C) than that from most GCM simulations ( 6 degrees C). A possible source of this difference is error in the linear-scaling of water isotopes to temperature. We employ a novel, nonlinear temperature-reconstruction technique using the physics of water-isotope diffusion to infer past temperature. Based on new, ice-core data from the South Pole, this diffusion technique suggests East Antarctic temperature change was smaller than previously thought. We are able to confirm this result using a simple, water-isotope fractionation model to nonlinearly reconstruct temperature change at ice core locations across Antarctica based on combined oxygen and hydrogen isotope ratios. Both methods produce a temperature change of 6 degrees C for South Pole, agreeing with GCM results for East Antarctica. Furthermore, both produce much larger changes in West Antarctica, also in agreement with GCM results and independent borehole thermometry. These results support the fidelity of GCMs in simulating last glacial maximum climate, and contradict the idea, based on previous work, that the climate sensitivity of current GCMs is too low.

  5. Intensive management in grasslands causes diffuse water pollution at the farm scale.

    Science.gov (United States)

    Peukert, Sabine; Griffith, Bruce A; Murray, Phillip J; Macleod, Christopher J A; Brazier, Richard E

    2014-11-01

    Arable land use is generally assumed to be the largest contributor to agricultural diffuse pollution. This study adds to the growing evidence that conventional temperate intensively managed lowland grasslands contribute significantly to soil erosion and diffuse pollution rates. This is the first grassland study to monitor hydrological characteristics and multiple pollutant fluxes (suspended sediment [SS] and the macronutrients: total oxidized nitrogen-N [TON], total phosphorus [TP], and total carbon [TC]) at high temporal resolution (monitoring up to every 15 min) over 1 yr. Monitoring was conducted across three fields (6.5-7.5 ha) on the North Wyke Farm Platform, UK. The estimated annual erosion rates (up to 527.4 kg ha), TP losses (up to 0.9 kg ha), and TC losses (up to 179 kg ha) were similar to or exceeded the losses reported for other grassland, mixed land-use, and arable sites. Annual yields of TON (up to 3 kg ha) were less than arable land-use fluxes and earlier grassland N studies, an important result as the study site is situated within a Nitrate Vulnerable Zone. The high-resolution monitoring allowed detailed "system's functioning" understanding of hydrological processes, mobilization- transport pathways of individual pollutants, and the changes of the relative importance of diffuse pollutants through flow conditions and time. Suspended sediment and TP concentrations frequently exceeded water quality guidelines recommended by the European Freshwater Fisheries Directive (25 mg L) and the European Water Framework Directive (0.04 mg soluble reactive P L), suggesting that intensively managed grasslands pose a significant threat to receiving surface waters. Such sediment and nutrient losses from intensively managed grasslands should be acknowledged in land management guidelines and advice for future compliance with surface water quality standards. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of

  6. Precipitation scavenging of tritiated water vapour (HTO)

    International Nuclear Information System (INIS)

    Ogram, G.L.

    1985-10-01

    Precipitation scavenging (or washout) is an important mechanism for the removal of HTO from the atmosphere. Methods of parameterizing the depletion of a plume of HTO released to the atmosphere are examined. Simple approaches, commonly used for atmospheric transport modelling purposes, such as the use of a constant washout coefficient or washout ratio, or the use of parameters based on equilibrium assumptions, are often not justified. It is shown that these parameters depend strongly on ambient temperature and plume dimensions, as well as rainfall rate. An approximate expression for washout ratio, as a function of these variables, is developed, and it is shown that near equilibrium washout conditions are only expected to hold at long plume travel distances. A possible method of treating scavenging by snow is also suggested

  7. Sustainable Zero-Valent Metal (ZVM Water Treatment Associated with Diffusion, Infiltration, Abstraction, and Recirculation

    Directory of Open Access Journals (Sweden)

    David D.J. Antia

    2010-09-01

    Full Text Available Socio-economic, climate and agricultural stress on water resources have resulted in increased global demand for water while at the same time the proportion of potential water resources which are adversely affected by sodification/salinisation, metals, nitrates, and organic chemicals has increased. Nano-zero-valent metal (n-ZVM injection or placement in aquifers offers a potential partial solution. However, n-ZVM application results in a substantial reduction in aquifer permeability, which in turn can reduce the amount of water that can be abstracted from the aquifer. This study using static diffusion and continuous flow reactors containing n-ZVM and m-ZVM (ZVM filaments, filings and punchings has established that the use of m-ZVM does not result in a reduction in aquifer permeability. The experimental results are used to design and model m-ZVM treatment programs for an aquifer (using recirculation or static diffusion. They also provide a predictive model for water quality associated with specific abstraction rates and infiltration/injection into an aquifer. The study demonstrates that m-ZVM treatment requires 1% of the weight required for n-ZVM treatment for a specific flow rate. It is observed that 1 t Fe0 will process 23,500 m3 of abstracted or infiltrating water. m-ZVM is able to remove >80% of nitrates from flowing water and adjust the water composition (by reduction in an aquifer to optimize removal of nitrates, metals and organic compounds. The experiments demonstrate that ZVM treatment of an aquifer can be used to reduce groundwater salinity by 20 –> 45% and that an aquifer remediation program can be designed to desalinate an aquifer. Modeling indicates that widespread application of m-ZVM water treatment may reduce global socio-economic, climate and agricultural stress on water resources. The rate of oxygen formation during water reduction [by ZVM (Fe0, Al0 and Cu0] controls aquifer permeability, the associated aquifer pH, aquifer Eh

  8. Long-term solute diffusion in a granite block immersed in sea water

    International Nuclear Information System (INIS)

    Jefferies, N.L.

    1988-01-01

    Solute diffusion profiles for Cl - , Br - , F - and SO 4 -- have been measured in a granite block which was immersed in the sea at Falmouth, Cornwall, for 30 years. Leachable concentrations of Cl - and Br - were found to be higher in the block than in quarry samples of granite, which demonstrates that solutes from the sea water have diffused into the block. The Cl - and Br - profiles within the block were flat, implying that equilibrium has been reached between the seawater and granite porewater. The apparent diffusion coefficient and the solute accessible porosity have been estimated from these profiles, and these were used to calculate the intrinsic diffusion coefficient which was then compared with previously obtained laboratory data. Concentration profiles for F - and S0 4 -- indicate that these elements have high concentrations at the margins of the block (to depths of up to 15 cm) and are in the process of diffusing outwards into the surrounding seawater. The initially high porewater concentrations of F - and SO 4 -- in the block are believed to result from weathering of the granite prior to its immersion in the sea, due to the breakdown of primary minerals such as pyrite and the micas. F - and SO 4 -- sorptivity has been estimated from an analysis of the porewater concentration profiles. This preliminary experiment has demonstrated the potential for the measurement of solute migration in granite, as a result of the rock having been immersed in seawater. This work is part of the CEC project MIRAGE (radionuclide migration in the geosphere)- Second phase (1985-89) Research area 'Natural analogues'

  9. Numerical analysis of coupled water transport in wood with a focus on the coupling parameter sorption

    DEFF Research Database (Denmark)

    Hozjan, T.; Turk, G.; Rodman, U.

    2011-01-01

    This paper presents a study of sorption rate function in a so-called multi-Fickian or multi-phase model. This model describes the complex moisture transport system in wood, which consists of separate water-vapour and bound-water diffusion interacting through sorption. In the numerical example inf...... influence of the sorption rate function on water transport is presented. It can be seen that the sorption rate function has a noticeable influence on coupled water transport in wood....

  10. Relationship between diffusivity of water molecules inside hydrating tablets and their drug release behavior elucidated by magnetic resonance imaging.

    Science.gov (United States)

    Kikuchi, Shingo; Onuki, Yoshinori; Kuribayashi, Hideto; Takayama, Kozo

    2012-01-01

    We reported previously that sustained release matrix tablets showed zero-order drug release without being affected by pH change. To understand drug release mechanisms more fully, we monitored the swelling and erosion of hydrating tablets using magnetic resonance imaging (MRI). Three different types of tablets comprised of polyion complex-forming materials and a hydroxypropyl methylcellulose (HPMC) were used. Proton density- and diffusion-weighted images of the hydrating tablets were acquired at intervals. Furthermore, apparent self-diffusion coefficient maps were generated from diffusion-weighted imaging to evaluate the state of hydrating tablets. Our findings indicated that water penetration into polyion complex tablets was faster than that into HPMC matrix tablets. In polyion complex tablets, water molecules were dispersed homogeneously and their diffusivity was relatively high, whereas in HPMC matrix tablets, water molecule movement was tightly restricted within the gel. An optimal tablet formulation determined in a previous study had water molecule penetration and diffusivity properties that appeared intermediate to those of polyion complex and HPMC matrix tablets; water molecules were capable of penetrating throughout the tablets and relatively high diffusivity was similar to that in the polyion complex tablet, whereas like the HPMC matrix tablet, it was well swollen. This study succeeded in characterizing the tablet hydration process. MRI provides profound insight into the state of water molecules in hydrating tablets; thus, it is a useful tool for understanding drug release mechanisms at a molecular level.

  11. RDF gasification with water vapour: influence of process temperature on yield and products composition; Gassificazione con vapore del CDR: influenza della temperatura di processo su rese e composizione dei prodotti

    Energy Technology Data Exchange (ETDEWEB)

    Galvagno, S.; Casciaro, G.; Russo, A.; Casu, S.; Martino, M.; Portofino, S. [C. R. ENEA Trisaglia, Rotondella (Italy). PROT-STP

    2005-08-01

    The opportunity of using RDF (Refused Derived Fuel) to produce fuel gas seems to be promising and particular attention has been focused on alternative process technologies such as pyrolysis and gasification. Within this frame, present work relates to experimental tests and obtained results of a series of experimental surveys on RDF gasification with water vapour, carried out by means of a bench scale rotary kiln plant at different process temperature, using thermogravimetry (TG) and infrared spectrometry (FTIR), in order to characterize the incoming material, and online gas chromatography to qualify the gaseous stream. Experimental data show that gas yield rise with temperature and, with respect to the gas composition, hydrogen content grows up mainly at the expense of the other gaseous compound, pointing out the major extension of secondary cracking reactions into the gaseous fraction at higher temperature. Syngas obtained at process temperature of 950{sup o}C or higher seems to be suitable for fuel cells applications; at lower process temperature, gas composition suggest a final utilisation for feedstock recycling. The low organic content of solid residue does not suggest any other exploitation of the char apart from the land filling. [Italian] La possibilita' di usare il CDR (combustibile derivato dai rifiuti) per produrre gas combustibile, sembra particolarmente promettente e particolare attenzione si sta rivolgendo a tecnologie alternative di trattamento termico, quali la pirolisi e la gassificazione. In questo ambito, il presente lavoro riporta le prove sperimentali e i risultati ottenuti in una campagna di prove di gassificazione di CDR con vapor d'acqua, effettuate su scala banco in un forno a tamburo rotante a temperatura di processo variabile, utilizzando tecniche di analisi termogravimetrica (TG) e di spettrometria infrarossa in trasformata di Fourier (FTIR), per la caratterizzazione del materiale di ingresso, e analisi gascromatografiche on

  12. A Portable FTIR Analyser for Field Measurements of Trace Gases and their Isotopologues: CO2, CH4, N2O, CO, del13C in CO2 and delD in water vapour

    Science.gov (United States)

    Griffith, D. W.; Bryant, G. R.; Deutscher, N. M.; Wilson, S. R.; Kettlewell, G.; Riggenbach, M.

    2007-12-01

    We describe a portable Fourier Transform InfraRed (FTIR) analyser capable of simultaneous high precision analysis of CO2, CH4, N2O and CO in air, as well as δ13C in CO2 and δD in water vapour. The instrument is based on a commercial 1 cm-1 resolution FTIR spectrometer fitted with a mid-IR globar source, 26 m multipass White cell and thermoelectrically-cooled MCT detector operating between 2000 and 7500 cm-1. Air is passed through the cell and analysed in real time without any pre-treatment except for (optional) drying. An inlet selection manifold allows automated sequential analysis of samples from one or more inlet lines, with typical measurement times of 1-10 minutes per sample. The spectrometer, inlet sampling sequence, real-time quantitative spectrum analysis, data logging and display are all under the control of a single program running on a laptop PC, and can be left unattended for continuous measurements over periods of weeks to months. Selected spectral regions of typically 100-200 cm-1 width are analysed by a least squares fitting technique to retrieve concentrations of trace gases, 13CO2 and HDO. Typical precision is better than 0.1% without the need for calibration gases. Accuracy is similar if measurements are referenced to calibration standard gases. δ13C precision is typically around 0.1‰, and for δD it is 1‰. Applications of the analyser include clean and polluted air monitoring, tower-based flux measurements such as flux gradient or integrated horizontal flux measurements, automated soil chambers, and field-based measurements of isotopic fractionation in soil-plant-atmosphere systems. The simultaneous multi-component advantages can be exploited in tracer-type emission measurements, for example of CH4 from livestock using a co-released tracer gas and downwind measurement. We have also developed an open path variant especially suited to tracer release studies and measurements of NH3 emissions from agricultural sources. An illustrative

  13. Vapour pressures and enthalpies of vapourization of a series of the linear aliphatic nitriles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Koutek, Bohumir; Doubsky, Jan

    2005-01-01

    Vapour pressures and the molar enthalpies of vapourization ΔlgHm-bar of the linear aliphatic nitriles C 7 -C 17 have been determined by the transpiration method. Kovat's indices of these compounds were measured by capillary gas-chromatography. A linear correlation of enthalpies of vapourization ΔlgHm-bar at T=298.15 K of the nitriles studied with the Kovats indices has been found

  14. Time adaptivity in the diffusive wave approximation to the shallow water equations

    KAUST Repository

    Collier, Nathan; Radwan, Hany; Dalcí n, Lisandro D.; Calo, Victor M.

    2013-01-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.

  15. Water as a complex system: its role in ligand diffusion, general anesthesia, and sleep.

    Science.gov (United States)

    Kier, Lemont B

    2007-10-01

    The work and inspiration of Robert Rosen is stated and expressed in personal tones. The concept of passages through water (H2O) near protein surfaces is reviewed in terms of its influence on ligand diffusion to an effector. This is offered as a target for interference by a non-specific general anesthetic agent. In view of the similarities between this anesthetic state and sleep, this mechanism is proposed to be operative for the sleep/wake states. Based on this mechanism and other factors, nitrogen (N2) is proposed as an exogenous sleep factor.

  16. Eddy diffusion coefficients in the coastal waters of north Andhra Pradesh and Orissa

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Murty, T.V.R.; Rao, B.P.; Sarma, V.V.

    diffusion coefficients in coastal waters The unknown variables v and \\v can be f ound by solving the matrix. In the present work, the method of generalized inverse is used to solve the matrix to avoid any indeterminacy. Results and discussion Temperature... was constant (~24.3?C) and salinity fluctuates around 27.5 psu. Off Gopalpur (IV) strong inversion of 1.87? C was observed during the observational period. Temperature profiles at areas V and VI indicate 125 Mathematical Formulations: The two...

  17. Time adaptivity in the diffusive wave approximation to the shallow water equations

    KAUST Repository

    Collier, Nathan

    2013-05-01

    We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.

  18. Nuclear Tracer Measurements of Low Temperature Water Diffusion in Silicon Dioxide (Si02) Thin Films.

    Science.gov (United States)

    1982-06-01

    network, in w!:.h L ’I mo 1 ecul arlv (1 so lvel water -:Les to form two OH units with thc, additional 0 ion being provided bv * , etwork (46, 45...sci diffusion theor, rovided theI -us tr e medium are correctly perceived and the apropri.-te ounary a , r d ,upion I ed. A full mathematical ...counting statistics. ,mplpe (#632) was maintained at 815 C for 579600 s at a pressure of (l0)- 6 torr; 1. W. Mendenhall and R. L Scheaffer, Mathematical

  19. Vapour trap development and operational experience

    International Nuclear Information System (INIS)

    Jansing, W.; Kirchner, G.; Menck, J.

    1977-01-01

    Sodium aerosols have the unpleasant characteristic that they deposit at places with low temperature level. This effect can be utilized when sodium aerosols are to be trapped at places which are determined beforehand. Thus vapour traps were developed which can filter sodium vapour from the cover gas. By this means the necessity was eliminated to heat all gas lines and gas systems with trace heaters just as all sodium lines are heated. It was of special interest for the INTERATOM to develop vapour traps which must not be changed or cleaned after a certain limited operating period. The vapour traps were supposed to enable maintenance free operation, i.e. they were to operate 'self cleaning'

  20. Autonomous Chemical Vapour Detection by Micro UAV

    Directory of Open Access Journals (Sweden)

    Kent Rosser

    2015-12-01

    Full Text Available The ability to remotely detect and map chemical vapour clouds in open air environments is a topic of significant interest to both defence and civilian communities. In this study, we integrate a prototype miniature colorimetric chemical sensor developed for methyl salicylate (MeS, as a model chemical vapour, into a micro unmanned aerial vehicle (UAV, and perform flights through a raised MeS vapour cloud. Our results show that that the system is capable of detecting MeS vapours at low ppm concentration in real-time flight and rapidly sending this information to users by on-board telemetry. Further, the results also indicate that the sensor is capable of distinguishing “clean” air from “dirty”, multiple times per flight, allowing us to look towards autonomous cloud mapping and source localization applications. Further development will focus on a broader range of integrated sensors, increased autonomy of detection and improved engineering of the system.

  1. Investigating the role of water in the Diffusion of Cholera using Agent-Based simulation

    Science.gov (United States)

    Augustijn, Ellen-Wien; Doldersum, Tom; Augustijn, Denie

    2014-05-01

    Traditionally, cholera was considered to be a waterborne disease. Currently we know that many other factors can contribute to the spread of this disease including human mobility and human behavior. However, the hydrological component in cholera diffusion is significant. The interplay between cholera and water includes bacteria (V. cholera) that survive in the aquatic environment, the possibility that run-off water from dumpsites carries the bacteria to surface water (rivers and lakes), and when the bacteria reach streams they can be carried downstream to infect new locations. Modelling is a very important tool to build theory on the interplay between different types of transmission mechanisms that together are responsible for the spread of Cholera. Agent-based simulation models are very suitable to incorporate behavior at individual level and to reproduce emergence. However, it is more difficult to incorporate the hydrological components in this type of model. In this research we present the hydrological component of an Agent-Based Cholera model developed to study a Cholera epidemic in Kumasi (Ghana) in 2005. The model was calibrated on the relative contribution of each community to the distributed pattern of cholera rather than the absolute number of incidences. Analysis of the results shows that water plays an important role in the diffusion of cholera: 75% of the cholera cases were infected via river water that was contaminated by runoff from the dumpsites. To initiate infections upstream, the probability of environment-to-human transmission seemed to be overestimated compared to what may be expected from literature. Scenario analyses show that there is a strong relation between the epidemic curve and the rainfall. Removing dumpsites that are situated close to the river resulted in a strong decrease in the number of cholera cases. Results are sensitive to the scheduling of the daily activities and the survival time of the cholera bacteria.

  2. The effect of payback time on solar hot water systems diffusion: the case of Greece

    International Nuclear Information System (INIS)

    Sidiras, Dimitrios K.; Koukios, Emmanuel G.

    2005-01-01

    The effect of the payback time on the spectacular diffusion of solar hot water systems (SHWS) in Greece was investigated in this work. The time pattern of the diffusion of flat plate solar collectors since its first appearance in 1974 shows that the diffusion rate grew exponentially at first, with the annual sales figure reaching 185,000 m 2 in the mid-80s. A rapid decline of the growth rate, down to the present annual sales level followed. By the year 2000, more than 2,000,000 m 2 of collectors had been installed. The economic behaviour of the main type of users (households and hotels) was found to have undergone two stages: in one of them, 1978-2002, the change of sales is in agreement with a change in economic feasibility, measured by payback time, while in the other, the early growth stage, 1974-1977, the demand grew despite a negative economic trend, obviously because of non-economic factors. The role of tax deduction, which is the most influential incentive, has been rather instrumental in the growth period 1978-1989, but lost its significance thereafter. This incentive has been withdrawn since the beginning of 1993

  3. The effect of payback time on solar hot water systems diffusion: the case of Greece

    International Nuclear Information System (INIS)

    Sidiras, D.K.; Koukios, E.G.

    2005-01-01

    The effect of the payback time on the spectacular diffusion of solar hot water systems (SHWS) in Greece was investigated in this work. The time pattern of the diffusion of flat plate solar collectors since its first appearance in 1974 shows that the diffusion rate grew exponentially at first, with the annual sales figure reaching 185,000 m 2 in the mid-80s. A rapid decline of the growth rate, down to the present annual sales level followed. By the year 2000, more than 2,000,000 m 2 of collectors had been installed. The economic behaviour of the main type of users (households and hotels) was found to have undergone two stages: in one of them, 1978-2002, the change of sales is in agreement with a change in economic feasibility, measured by payback time, while in the other, the early growth stage, 1974-1977, the demand grew despite a negative economic trend, obviously because of non-economic factors. The role of tax deduction, which is the most influential incentive, has been rather instrumental in the growth period 1978-1989, but lost its significance thereafter. This incentive has been withdrawn since the beginning of 1993. [Author

  4. Diffusion and Clustering of Carbon Dioxide on Non-porous Amorphous Solid Water

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiao; Emtiaz, Shahnewaj M.; Vidali, Gianfranco, E-mail: jhe08@syr.edu, E-mail: gvidali@syr.edu [Physics Department, Syracuse University, Syracuse, NY 13244 (United States)

    2017-03-01

    Observations by ISO and Spitzer toward young stellar objects showed that CO{sub 2} segregates in the icy mantles covering dust grains. Thermal processing of the ice mixture was proposed as being responsible for the segregation. Although several laboratories studied thermally induced segregation, a satisfying quantification is still missing. We propose that the diffusion of CO{sub 2} along pores inside water ice is the key to quantify segregation. We combined Temperature Programmed Desorption and Reflection Absorption InfraRed Spectroscopy to study how CO{sub 2} molecules interact on a non-porous amorphous solid water (np-ASW) surface. We found that CO{sub 2} diffuses significantly on an np-ASW surface above 65 K and clusters are formed at well below one monolayer. A simple rate equation simulation finds that the diffusion energy barrier of CO{sub 2} on np-ASW is 2150 ± 50 K, assuming a diffusion pre-exponential factor of 10{sup 12} s{sup −1}. This energy should also apply to the diffusion of CO{sub 2} on the wall of pores. The binding energy of CO{sub 2} from CO{sub 2} clusters and CO{sub 2} from H{sub 2}O ice has been found to be 2415 ± 20 K and 2250 ± 20 K, respectively, assuming the same prefactor for desorption. CO{sub 2}–CO{sub 2} interaction is stronger than CO{sub 2}–H{sub 2}O interaction, in agreement with the experimental finding that CO{sub 2} does not wet the np-ASW surface. For comparison, we carried out similar experiments with CO on np-ASW, and found that the CO–CO interaction is always weaker than CO–H{sub 2}O. As a result, CO wets the np-ASW surface. This study should be of help to uncover the thermal history of CO{sub 2} on the icy mantles of dust grains.

  5. Evaluation of policy measures and methods to reduce diffuse water pollution

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Ute; Doehler, Helmut; Eurich-Menden, Brigitte; Goemann, Horst; Jaeger, Peter; Kreins, Peter; Moeller, Christine; Prigge, Achim; Ristenpart, Erik; Schultheiss, Ute

    2006-11-15

    After considerable improvements of wastewater treatment, the loads of nutrients and plant protection agents, deriving from agriculture and heavy metals from urban drainages effluents as well as from erosion of agricultural soils are the main sources of nutrients and harmful substances in the loads of water bodies. The targets of the project were on the one hand the analysis of the political and legislative framework of both policy fields and on the other hand the evaluation of several, selected water protection measures with regard to their contribution to reduce water pollution, their economical effects as well as their political enforceability. The focus was laid on diffuse water pollution caused by agriculture. As main reasons for the diffuse water pollution stagnating at high level, the analysis of the political framework identified a lack of implementation discipline of water law, followed by the fragmented and insufficient water protection legislation itself and the previous design of the common agricultural policy slanted towards increasing productivity. For the future co-operation of agricultural and water authorities in implementation of their reforms and better definition of 'Good Farming Practice' are recommended. The second investigation level focuses on the analysis and assessment of selected measures to reduce the input of nutrients and plant protection agents. This part was done with help of calculation models focussing on the specific cost/benefit ratios for water protection. In detail the following measures have been analysed: decoupling of direct payments, coupling of livestock farming to areas, tax on mineral nitrogen, pesticide levy, buffer stripes alongside of watercourses, all season crop cover on arable land, soil cultivation procedures, changing the use of arable land, optimisation of animal nutrition, optimisation of manure storage and application, co-operative agreements, education and training. Co-operations and water protection

  6. A kinetic study of the reaction of water vapor and carbon dioxide on uranium

    International Nuclear Information System (INIS)

    Santon, J.P.

    1964-09-01

    The kinetic study of the reaction of water vapour and carbon dioxide with uranium has been performed by thermogravimetric methods at temperatures between 160 and 410 deg G in the first case, 350 and 1050 deg C in the second: Three sorts of uranium specimens were used: uranium powder, thin evaporated films, and small spheres obtained from a plasma furnace. The experimental results led in the case of water vapour, to a linear rate of reaction controlled by diffusion at the lower temperatures, and by a surface reaction at the upper ones. In the case of carbon dioxide, a parabolic law has been found, controlled by diffusional processes. (author) [fr

  7. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Korin, Eli

    2008-01-01

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate

  8. The vapour pressures over saturated aqueous solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il; Korin, Eli [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2008-05-15

    Vapour pressures of water over saturated solutions of DL-2-aminobutyric acid, 4-aminobutyric acid, sodium-D-gluconate, sodium hippurate, and potassium magnesium-L-aspartate were determined over the (278 to 322) K temperature range. The determined vapour pressures were used to obtain the water activities, the molar enthalpies of vaporization, and the osmotic coefficients of sodium-D-gluconate.

  9. The regulation of diffuse pollution in the European Union: science, governance and water resource management

    Directory of Open Access Journals (Sweden)

    Sarah Hendry

    2012-11-01

    Full Text Available Reducing diffuse pollution is a perpetuating problem for environmental regulators. This paper will consider novel ways to regulate its impacts on the aquatic environment, with particular reference to rural landuse. It will look at the relationship between science, policy and law, and the contributions of integrated water resources management and governance at regional, national and river basin scales. Regulatory frameworks for water in the European Union will be explored, along with their implementation nationally in Scotland and at catchment scale in the Tweed river basin. It will conclude that regulation has a role to play, but that it is necessary to take a visionary holistic and integrated approach, nesting regulation within a governance framework that involves all stakeholders and takes full account of developing science and socio-economic drivers to meet environmental objectives.

  10. Modelling of vapour explosion in a stratified geometry

    International Nuclear Information System (INIS)

    Brayer, Claude

    1994-01-01

    A vapour explosion is the explosive vaporisation of a volatile liquid in contact with another hotter liquid. Such a violent vaporisation requires an intimate mixing and a fine fragmentation of both liquids. Based on a synthesis of published experimental results, the author of this research thesis reports the development of a new physical model which describes the explosion. In this model, the explosion propagation is due to the propagation of the pressure wave associated with this this explosion, all along the vapour film which initially separates both liquids. The author takes the presence of water in the liquid initially located over the film into account. This presence of vapour explains experimental propagation rates. Another consequence, when the pressure wave passes, is an acceleration of liquids at different rates below and above the film. The author considers that a mixture layer then forms from the point of disappearance of the film, between both liquids, and that fragmentation is due to the turbulence in this mixture layer. This fragmentation model is then introduced into an Euler thermodynamic, three-dimensional and multi-constituents code of calculation, MC3D, to study the influence of fragmentation on thermal exchanges between the various constituents on the volatile liquid vaporisation [fr

  11. Prediction of photovoltaic and solar water heater diffusion and evaluation of promotion policies on the basis of consumers’ choices

    International Nuclear Information System (INIS)

    Yamaguchi, Yohei; Akai, Kenju; Shen, Junyi; Fujimura, Naoki; Shimoda, Yoshiyuki; Saijo, Tatsuyoshi

    2013-01-01

    Highlights: ► Consumers’ preference on PV and solar water heater were investigated. ► Diffusion of the technologies in Japan was modeled by using Bass diffusion model. ► Policy measures to diffuse the technologies were evaluated by using the framework. ► Subsidy is more cost effective than FIT to diffuse PV. ► Public perception is the bottleneck of diffusion of solar water heater. -- Abstract: This paper proposes an integrated analytical framework consisting of the following three steps: (1) investigation of consumers’ preferences, (2) prediction of technology diffusion by taking into account consumers’ preferences, and (3) estimation of CO 2 emission reduction caused by the diffusion of the examined technology. By using this framework, this paper evaluates the policy measures implemented for disseminating photovoltaics and solar water heaters in terms of the contribution to reducing CO 2 emissions from the residential sector. We investigated consumer preferences for these technologies as well as the effects of attributes such as installation cost, energy price, energy efficiency, and perception on consumers’ choices. Considering these effects, we developed a model that estimates the diffusion of these technologies into the residential sector of Japan through 2025 and the resulting CO 2 emission reduction. We found that the policy measures for the diffusion of photovoltaics that reduce initial cost (e.g., subsidy programs) are more cost effective for reducing CO 2 emission than those reducing users’ operating expenditure (e.g., feed-in tariff programs). For solar water heater to be able to reduce the CO 2 emissions considerably, the public perception must be improved.

  12. Social Diffusion of Water Conservation: A Study of Residential Turf Rebate Programs in Orange County, California

    Science.gov (United States)

    Duong, K.; Grant, S. B.; Rippy, M.; Feldman, D.

    2017-12-01

    From 2011 to 2017, the combination of record low precipitation and extreme warm temperatures resulted in the most severe drought in California's written history. In April 2015, Governor Jerry Brown issued an executive order mandating a statewide 25% reduction in potable urban water usage. Under such circumstances, outdoor watering is an obvious target for restriction, because it can account for a large fraction of total domestic water usage, up to 50% in the arid southwest [Syme et. al 2004, Cameron et. al 2012]. In this study we analyzed one such effort, in which the Irvine Ranch Water District (IRWD) in Orange County (California) offered a financial incentive through a turf rebate program to encourage Irvine residents to replace turf grass with drought tolerant landscaping. We focused specifically on the number of residents who applied to the turf rebate program. Our hypothesis was that the observed application rate (number of applicants per month) is influenced by a combination of (a) financial incentives issued by IRWD, (b) drought awareness, and (c) the fraction of neighbors that have already applied to the program (a phenomenon that can be described quantitatively through models of social contagion or social diffusion [Karsai et. al 2014]). Our preliminary results indicate that applications to the program occurred in geographic "hot spots", consistent with the idea that early adopters may have influenced neighbors to retrofit their lawns. We are currently evaluating the geographic, demographic, and temporal drivers that influence the rate of spontaneous adoption, the rate of adoption under influence, and the total size of the susceptible population. Overall, our goal is to identify the key factors that contribute to early rapid uptake of conservation behavior, and the rapid diffusion of that behavior through the community.

  13. Study of sorption and diffusion of 137Cs in compacted bentonite saturated with saline water at 60degC

    International Nuclear Information System (INIS)

    Suzuki, Satoru; Haginuma, Masashi; Suzuki, Kazunori

    2007-01-01

    The effect of compaction of bentonite on the sorption behavior of 137 Cs was studied for the safety assessment of the high level radioactive waste. The diffusion coefficients (effective D e and apparent D a ) and the distribution coefficient for sorption K d for 137 Cs in compacted and dispersed bentonite saturated with saline water were investigated at 60degC by four different sorption and diffusion experiments: the in-diffusion, through-diffusion, reservoir-depletion and batch sorption experiments. The system of the through-diffusion experiment was carefully designed to maintain the boundary conditions of constant concentration at each end of the specimen. D e and D a were found to be reproducible and showed good consistency among three of the diffusion experiments (through-diffusion, in-diffusion and reservoir depletion). K d of 137 Cs in compacted bentonite determined from the three types of diffusion experiments was in good accordance with that determined by the batch sorption experiment for dispersed bentonite. (author)

  14. Water Diffusion Mechanism in Carbon Nanotube and Polyamide Nanocomposite Reverse Osmosis Membranes: A Possible Percolation-Hopping Mechanism

    Science.gov (United States)

    Araki, Takumi; Cruz-Silva, Rodolfo; Tejima, Syogo; Ortiz-Medina, Josue; Morelos-Gomez, Aaron; Takeuchi, Kenji; Hayashi, Takuya; Terrones, Mauricio; Endo, Morinobu

    2018-02-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. The mechanism of water diffusion across reverse osmosis nanocomposite membranes made of carbon nanotubes (CNTs) and aromatic polyamide is not completely understood despite its high potential for desalination applications. While most of the groups have proposed that superflow inside the CNT might positively impact the water flow across membranes, here we show theoretical evidence that this is not likely the case in composite membranes because CNTs are usually oriented parallel to the membrane surface, not to mention that sometimes the nanotube cores are occluded. Instead, we propose an oriented diffusion mechanism that explains the high water permeation by decreasing the diffusion path of water molecules across the membranes, even in the presence of CNTs that behave as impermeable objects. Finally, we provide a comprehensive description of the molecular dynamics occurring in water desalination membranes by considering the bond polarizability caused by dynamic charge transfer and explore the use of molecular-dynamics-derived stochastic diffusion simulations. The proposed water diffusion mechanism offers an alternative and most likely explanation for the high permeation phenomena observed in CNTs and PA nanocomposite membranes, and its understanding can be helpful to design the next generation of reverse osmosis desalination membranes.

  15. Measurement of the Diffusion Coefficient of Water in RP-3 and RP-5 Jet Fuels Using Digital Holography Interferometry

    Science.gov (United States)

    Li, Chaoyue; Feng, Shiyu; Shao, Lei; Pan, Jun; Liu, Weihua

    2018-04-01

    The diffusion coefficient of water in jet fuel was measured employing double-exposure digital holographic interferometry to clarify the diffusion process and make the aircraft fuel system safe. The experimental method and apparatus are introduced in detail, and the digital image processing program is coded in MATLAB according to the theory of the Fourier transform. At temperatures ranging from 278.15 K to 333.15 K in intervals of 5 K, the diffusion coefficient of water in RP-3 and RP-5 jet fuels ranges from 2.6967 × 10 -10 m2·s-1 to 8.7332 × 10 -10 m2·s-1 and from 2.3517 × 10 -10 m2·s-1 to 8.0099 × 10-10 m2·s-1, respectively. The relationship between the measured diffusion coefficient and temperature can be well fitted by the Arrhenius law. The diffusion coefficient of water in RP-3 jet fuel is higher than that of water in RP-5 jet fuel at the same temperature. Furthermore, the viscosities of the two jet fuels were measured and found to be expressible in the form of the Arrhenius equation. The relationship among the diffusion coefficient, viscosity and temperature is analyzed according to the classic prediction model, namely the Stokes-Einstein correlation, and this correlation is further revised vi