WorldWideScience

Sample records for water vapor plume

  1. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    Science.gov (United States)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  2. Evolution of the Water Vapor Plume over Eastern Europe during Summer 2010 Atmospheric Blocking

    Directory of Open Access Journals (Sweden)

    Sergei A. Sitnov

    2014-01-01

    Full Text Available We present an analysis of water vapor (WV plume evolution over Eastern Europe (EE during atmospheric blocking in the summer of 2010, carried out on the basis of satellite (MODIS and MLS instruments, aerological, and NCEP/NCAR reanalysis data. The obtained results show that the development of blocking was accompanied by the development of a positive anomaly of total column water vapor (TCWV content over the northern part of EE. Local TCWV content from 28 July to 6 August 2010 reached 3.35 cm, a value that exceeded by 3.3 times its content before the block. The surplus of WV was mainly conditioned by the advection of WV due to transfer of moist air from the Atlantic Ocean and the Mediterranean Sea into northern EE and also due to increased evaporation from the surface enriched with water due to increased temperature and wind. We hypothesize that the influx of latent heat in the block area can contribute to the energy supply of the blocking anticyclone and prolong the existence of block. Strong humidification of the troposphere and some dehumidification of the lower stratosphere during the block were accompanied by warming of the troposphere and cooling of the lower stratosphere.

  3. Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity

    Science.gov (United States)

    Pang, Shengyong; Chen, Xin; Shao, Xinyu; Gong, Shuili; Xiao, Jianzhong

    2016-07-01

    In order to better understand the local evaporation phenomena of keyhole wall, vapor plume swing above the keyhole and ambient gas entrapment into the porosity defects, the 3D time-dependent dynamics of the metallic vapor plume in a transient keyhole during fiber laser welding is numerically investigated. The vapor dynamical parameters, including the velocity and pressure, are successfully predicted and obtain good agreements with the experimental and literature data. It is found that the vapor plume flow inside the keyhole has complex multiple directions, and this various directions characteristic of the vapor plume is resulted from the dynamic evaporation phenomena with variable locations and orientations on the keyhole wall. The results also demonstrate that because of this dynamic local evaporation, the ejected vapor plume from the keyhole opening is usually in high frequency swinging. The results further indicate that the oscillation frequency of the plume swing angle is around 2.0-8.0 kHz, which is of the same order of magnitude with that of the keyhole depth (2.0-5.0 kHz). This consistency clearly shows that the swing of the ejected vapor plume is closely associated with the keyhole instability during laser welding. Furthermore, it is learned that there is usually a negative pressure region (several hundred Pa lower than the atmospheric pressure) of the vapor flow around the keyhole opening. This pressure could lead to a strong vortex flow near the rear keyhole wall, especially when the velocity of the ejected metallic vapor from the keyhole opening is high. Under the effect of this flow, the ambient gas is involved into the keyhole, and could finally be entrapped into the bubbles within a very short time (keyhole.

  4. The difficulty of measuring the absorption of scattered sunlight by H2O and CO2 in volcanic plumes: A comment on Pering et al. “A novel and inexpensive method for measuring volcanic plume water fluxes at high temporal resolution,” Remote Sens. 2017, 9, 146

    Science.gov (United States)

    Kern, Christoph

    2017-01-01

    In their recent study, Pering et al. (2017) presented a novel method for measuring volcanic water vapor fluxes. Their method is based on imaging volcanic gas and aerosol plumes using a camera sensitive to the near-infrared (NIR) absorption of water vapor. The imaging data are empirically calibrated by comparison with in situ water measurements made within the plumes. Though the presented method may give reasonable results over short time scales, the authors fail to recognize the sensitivity of the technique to light scattering on aerosols within the plume. In fact, the signals measured by Pering et al. are not related to the absorption of NIR radiation by water vapor within the plume. Instead, the measured signals are most likely caused by a change in the effective light path of the detected radiation through the atmospheric background water vapor column. Therefore, their method is actually based on establishing an empirical relationship between in-plume scattering efficiency and plume water content. Since this relationship is sensitive to plume aerosol abundance and numerous environmental factors, the method will only yield accurate results if it is calibrated very frequently using other measurement techniques.

  5. The Use of Water Vapor for Detecting Environments that Lead to Convectively Produced Heavy Precipitation and Flash Floods

    Science.gov (United States)

    Scofield, Rod; Vicente, Gilberto; Hodges, Mike

    2000-01-01

    This Tech Report summarizes years of study and experiences on using GOES Water vapor (6.7 micron and precipitable water) and Special Sensor Microwave Imager (SSM/1) from the Defense Meteorological Satellite Program (DMSP) derived Precipitable Water (PNAI) for detecting environments favorable for convectively produced flash floods. An emphasis is on the moisture. upper air flow, and equivalent potential temperature (Theta(sub e)) patterns that lead to devastating flood events. The 15 minute 6.7 micron water vapor imagery is essential for tracking middle to upper tropospheric disturbances that produce upward vertical motion and initiate flash flood producing systems. Water vapor imagery at 6.7 micron is also used to detect surges of upper level moisture (called tropical water vapor plumes) that have been associated with extremely heavy rainfall. Since the water vapor readily depicts lifting mechanisms and upper level moisture, water vapor imagery is often an excellent source of data for recognizing patterns of heavy precipitation and flash floods. In order to analyze the depth of the moisture, the PW aspects of the troposphere must be measured. The collocation (or nearby location) of high values ofP\\V and instability are antecedent conditions prior to the flash flood or heavy rainfall events. Knowledge of PW magnitudes have been used as thresholds for impending flash flood events, PW trends are essential in flash flood prediction. Conceptual models and water vapor products are used to study some of the characteristics of convective systems that occurred over the United States of America (USA) during the summer of 1997 and the 1997-1998 El Nino. P\\V plumes were associated with most of the \\vest coast heavy precipitation events examined during the winter season of 1997 - 1998, In another study, conducted during the summer season of 1997. results showed that the collocation of water vapor (6.7 micron) and P\\N' plumes possessed higher correlations with predicted

  6. The Vapor Plume at Material Disposal Are C in Relation to Pajarito Corridor Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masse, William B. [Los Alamos National Laboratory

    2012-04-02

    A vapor plume made up of volatile organic compounds is present beneath Material Disposal Area C (MDA C) at Los Alamos National Laboratory (LANL). The location and concentrations within the vapor plume are discussed in relation to existing and planned facilities and construction activities along Pajarito Road (the 'Pajarito Corridor') and in terms of worker health and safety. This document provides information that indicates that the vapor plume does not pose a threat to the health of LANL workers nor will it pose a threat to workers during construction of proposed facilities along Pajarito Road. The Los Alamos National Laboratory (LANL or the Laboratory) monitors emissions, effluents, and environmental media to meet environmental compliance requirements, determine actions to protect the environment, and monitor the long-term health of the local environment. LANL also studies and characterizes 'legacy' waste from past Laboratory operations to make informed decisions regarding eventual corrective actions and the disposition of that waste. Starting in 1969, these activities have been annually reported in the LANL Environmental Report (formerly Environmental Surveillance Report), and are detailed in publicly accessible technical reports meeting environmental compliance requirements. Included among the legacy sites being investigated are several formerly used material disposal areas (MDAs) set aside by the Laboratory for the general on-site disposal of waste from mission-related activities. One such area is MDA C located in Technical Area 50 (TA-50), which was used for waste disposal between 1948 and 1974. The location of TA-50 is depicted in Figure 1. The present paper uses a series of maps and cross sections to address the public concerns raised about the vapor plume at MDA C. As illustrated here, extensive sampling and data interpretation indicate that the vapor plume at MDA C does not pose a threat to the health of LANL workers nor will it pose a

  7. Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations

    Science.gov (United States)

    Portyankina, Ganna; Esposito, Larry W.; Aye, Klaus-Michael; Hansen, Candice J.

    2015-11-01

    One of the most spectacular discoveries of the Cassini mission is jets emitting from the southern pole of Saturn’s moon Enceladus. The composition of the jets is water vapor and salty ice grains with traces of organic compounds. Jets, merging into a wide plume at a distance, are observed by multiple instruments on Cassini. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along “tiger stripes” [Porco et al. 2014]. There is a recent controversy on the question if some of these jets are “optical illusion” caused by geometrical overlap of continuous source eruptions along the “tiger stripes” in the field of view of ISS [Spitale et al. 2015]. The Cassini’s Ultraviolet Imaging Spectrograph (UVIS) observed occultations of several stars and the Sun by the water vapor plume of Enceladus. During the solar occultation separate collimated gas jets were detected inside the background plume [Hansen et al., 2006 and 2011]. These observations directly provide data about water vapor column densities along the line of sight of the UVIS instrument and could help distinguish between the presence of only localized or also continuous sources. We use Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) to model the plume of Enceladus with multiple (or continuous) jet sources. The models account for molecular collisions, gravitational and Coriolis forces. The models result in the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densities derived from UVIS observations provide constraints on the physical characteristics of the plume and jets. The specific geometry of the UVIS observations helps to estimate the production rates and velocity distribution of the water molecules emitted by the individual jets.Hansen, C. J. et al., Science 311:1422-1425 (2006); Hansen, C. J. et al, GRL 38:L11202 (2011

  8. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    Science.gov (United States)

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin; Platt, Ulrich

    2017-01-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  9. Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.

    Science.gov (United States)

    Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina

    2016-06-01

    Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    Science.gov (United States)

    Thorpe, Andrew K.; Frankenberg, Christian; Thompson, David R.; Duren, Riley M.; Aubrey, Andrew D.; Bue, Brian D.; Green, Robert O.; Gerilowski, Konstantin; Krings, Thomas; Borchardt, Jakob; Kort, Eric A.; Sweeney, Colm; Conley, Stephen; Roberts, Dar A.; Dennison, Philip E.

    2017-10-01

    At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  11. Airborne DOAS retrievals of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: application to AVIRIS-NG

    Directory of Open Access Journals (Sweden)

    A. K. Thorpe

    2017-10-01

    Full Text Available At local scales, emissions of methane and carbon dioxide are highly uncertain. Localized sources of both trace gases can create strong local gradients in its columnar abundance, which can be discerned using absorption spectroscopy at high spatial resolution. In a previous study, more than 250 methane plumes were observed in the San Juan Basin near Four Corners during April 2015 using the next-generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG and a linearized matched filter. For the first time, we apply the iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS method to AVIRIS-NG data and generate gas concentration maps for methane, carbon dioxide, and water vapor plumes. This demonstrates a comprehensive greenhouse gas monitoring capability that targets methane and carbon dioxide, the two dominant anthropogenic climate-forcing agents. Water vapor results indicate the ability of these retrievals to distinguish between methane and water vapor despite spectral interference in the shortwave infrared. We focus on selected cases from anthropogenic and natural sources, including emissions from mine ventilation shafts, a gas processing plant, tank, pipeline leak, and natural seep. In addition, carbon dioxide emissions were mapped from the flue-gas stacks of two coal-fired power plants and a water vapor plume was observed from the combined sources of cooling towers and cooling ponds. Observed plumes were consistent with known and suspected emission sources verified by the true color AVIRIS-NG scenes and higher-resolution Google Earth imagery. Real-time detection and geolocation of methane plumes by AVIRIS-NG provided unambiguous identification of individual emission source locations and communication to a ground team for rapid follow-up. This permitted verification of a number of methane emission sources using a thermal camera, including a tank and buried natural gas pipeline.

  12. A study of space shuttle plumes in the lower thermosphere

    Science.gov (United States)

    Meier, R. R.; Stevens, Michael H.; Plane, John M. C.; Emmert, J. T.; Crowley, G.; Azeem, I.; Paxton, L. J.; Christensen, A. B.

    2011-12-01

    During the space shuttle main engine burn, some 350 t of water vapor are deposited at between 100 and 115 km. Subsequent photodissociation of water produces large plumes of atomic hydrogen that can expand rapidly and extend for thousands of kilometers. From 2002 to 2007, the Global Ultraviolet Imager (GUVI) on NASA's Thermosphere Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) satellite imaged many of these hydrogen plumes at Lyman α (121.567 nm) while viewing in the nadir. The images reveal rapid plume expansion and occasional very fast transport to both north and south polar regions. Some plumes persist for up to 6 d. Near-simultaneous direct detections of water vapor were made with the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) instrument, also on TIMED. We compare the spreading of the hydrogen plume with a two-dimensional model that includes photodissociation as well as both vertical and horizontal diffusion. Molecular diffusion appears to be sufficient to account for the horizontal expansion, although wind shears and turbulent mixing may also contribute. We compare the bulk motion of the observed plumes with wind climatologies derived from satellite observations. The plumes can move much faster than predictions of wind climatologies. But dynamical processes not contained in wind climatologies, such as the quasi-two-day wave, can account for at least some of the high speed observations. The plume phenomena raise a number of important questions about lower thermospheric and mesospheric processes, ranging from dynamics and chemistry to polar mesospheric cloud formation and climatology.

  13. DeepBlow - a Lagrangian plume model for deep water blowouts

    International Nuclear Information System (INIS)

    Johansen, Oeistein

    2000-01-01

    This paper presents a sub-sea blowout model designed with special emphasis on deep-water conditions. The model is an integral plume model based on a Lagrangian concept. This concept is applied to multiphase discharges in the formation of water, oil and gas in a stratified water column with variable currents. The gas may be converted to hydrate in combination with seawater, dissolved into the plume water, or leaking out of the plume due to the slip between rising gas bubbles and the plume trajectory. Non-ideal behaviour of the gas is accounted for by the introduction of pressure- and temperature-dependent compressibility z-factor in the equation of state. A number of case studies are presented in the paper. One of the cases (blowout from 100 m depth) is compared with observations from a field experiment conducted in Norwegian waters in June 1996. The model results are found to compare favourably with the field observations when dissolution of gas into seawater is accounted in the model. For discharges at intermediate to shallow depths (100-250 m), the two major processes limiting plume rise will be: (a) dissolution of gas into ambient water, or (b) bubbles rising out of the inclined plume. These processes tend to be self-enforcing, i.e., when a gas is lost by either of these processes, plume rise tends to slow down and more time will be available for dissolution. For discharges in deep waters (700-1500 m depth), hydrate formation is found to be a dominating process in limiting plume rise. (Author)

  14. Buoyant plume calculations

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures

  15. Enceladus Plume Morphology and Variability from UVIS Measurements

    Science.gov (United States)

    Hansen, Candice; Esposito, Larry; Colwell, Josh; Hendrix, Amanda; Portyankina, Ganna

    2017-10-01

    The Ultraviolet Imaging Spectrograph (UVIS) on the Cassini spacecraft has been observing Enceladus’ plume and its effect on the Saturnian environment since 2004. One solar and 7 stellar occultations have been observed between 2005 and 2017. On 27 March 2017 epsilon Canis Majoris (CMa) passed behind the plume of water vapor spewing from Enceladus’ tiger stripe fissures. With this occultation we have 6 cuts through the plume at a variety of orientations over 12 years. Following our standard procedure the column density along the line of sight from Enceladus to the star was determined and the water flux calculated [1]. The mean anomaly was 131, well away from the dust flux peak associated with Enceladus at an orbital longitude near apoapsis [2]. We find that the water vapor flux was ~160 kg/sec (this number will be refined when the final reconstructed trajectory is available). That puts it “in family” with the other occultations, with values that cluster around 200 kg/sec. It is at the low end, which may be consistent with the drop in particle output observed over the last decade [3]. UVIS results show that the supersonic collimated gas jets imbedded in the plume are the likely source of the variability in dust output [4], rather than overall flux from the tiger stripes. An occultation of epsilon Orionis was observed on 11 March 2016 when Enceladus was at a mean anomaly of 208. Although the bulk flux changed little the amount of water vapor coming from the Baghdad I supersonic jet increased by 25% relative to 2011. The Baghdad I jet was observed again in the 2017 epsilon CMa occultation, and the column density is half that of 2016, further bolstering the conclusion that the gas jets change output as a function of orbital longitude. UVIS results describing gas flux, jets, and general structure of the plume, the observables above the surface, are key to testing hypotheses for what is driving Enceladus’ eruptive activity below the surface. [1] Hansen, C. J. et

  16. Can molecular diffusion explain Space Shuttle plume spreading?

    Science.gov (United States)

    Meier, R. R.; Plane, John M. C.; Stevens, Michael H.; Paxton, L. J.; Christensen, A. B.; Crowley, G.

    2010-04-01

    The satellite-borne Global Ultraviolet Imager (GUVI) has produced more than 20 images of NASA Space Shuttle main engine plumes in the lower thermosphere. These reveal atomic hydrogen and, by inference, water vapor transport over hemispherical-scale distances with speeds much faster than expected from models of thermospheric wind motions. Furthermore, the hydrogen plumes expand rapidly. We find rates that exceed the horizontal diffusion speed at nominal plume altitudes of 104-112 km. Kelley et al. (2009) have proposed a 2-D turbulence mechanism to explain the observed spreading rates (and rapid advection) of the plumes. But upon further investigation, we conclude that H atom diffusion can indeed account for the observed expansion rates by recognizing that vertical diffusion quickly conveys atoms to higher altitudes where horizontal diffusion is much more rapid. We also find evidence for H atom production directly during the Shuttle's main engine burn.

  17. Appearance and water quality of turbidity plumes produced by dredging in Tampa Bay, Florida

    Science.gov (United States)

    Goodwin, Carl R.; Michaelis, D.M.

    1984-01-01

    Turbidity plumes in Tampa Bay, Florida, produced during ship-channel dredging operations from February 1977 to August 1978, were monitored in order to document plume appearance and water quality, evaluate plume influence on the characteristics of Tampa Bay water, and provide a data base for comparison with other areas that have similar sediment, dredge, placement, containment, and tide conditions. The plumes investigated originated from the operation of one hopper dredge and three cutterhead-pipeline dredges. Composition of bottom sediment was found to vary from 85 percent sand and shell fragments to 60 percent silt and clay. Placement methods for dredged sediment included beach nourishment, stationary submerged discharge, oscillating surface discharge, and construction of emergent dikes. Tidal currents ranged from slack water to flow velocities of 0.60 meter per second. Plumes were monitored simultaneously by (1) oblique and vertical 35-millimeter aerial photography and (2) water-quality sampling to determine water clarity and concentrations of nutrients, metals, pesticides, and industrial compounds. Forty-nine photographs depict plumes ranging in length from a few tens of meters to several kilometers and ranging in turbidity level from hopper-dredge unloading operations also produced plumes of low visibility. Primary turbidity plumes were produced directly by dredging and placement operations; secondary plumes were produced indirectly by resuspension of previously deposited material. Secondary plumes were formed both by erosion, in areas of high-velocity tidal currents, and by turbulence from vessels passing over fine material deposited in shallow areas. Where turbidity barriers were not used, turbidity plumes visible at the surface were good indicators of the location of turbid water at depth. Where turbidity barriers were used, turbid bottom water was found at locations having no visible surface plumes. A region of rapidly accelerating then decelerating flow

  18. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  19. Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE) plumes in ground water at leaking underground fuel tank (LUFT) sites

    International Nuclear Information System (INIS)

    Happel, A.M.; Rice, D.; Beckenbach, E.; Savalin, L.; Temko, H.; Rempel, R.; Dooher, B.

    1996-11-01

    The 1990 Clean Air Act Amendments mandate the addition of oxygenates to gasoline products to abate air pollution. Currently, many areas of the country utilize oxygenated or reformulated fuel containing 15- percent and I I-percent MTBE by volume, respectively. This increased use of MTBE in gasoline products has resulted in accidental point source releases of MTBE containing gasoline products to ground water. Recent studies have shown MTBE to be frequently detected in samples of shallow ground water from urban areas throughout the United States (Squillace et al., 1995). Knowledge of the subsurface fate and transport of MTBE in ground water at leaking underground fuel tank (LUFT) sites and the spatial extent of MTBE plumes is needed to address these releases. The goal of this research is to utilize data from a large number of LUFT sites to gain insights into the fate, transport, and spatial extent of MTBE plumes. Specific goals include defining the spatial configuration of dissolved MTBE plumes, evaluating plume stability or degradation over time, evaluating the impact of point source releases of MTBE to ground water, and attempting to identify the controlling factors influencing the magnitude and extent of the MTBE plumes. We are examining the relationships between dissolved TPH, BTEX, and MTBE plumes at LUFT sites using parallel approaches of best professional judgment and a computer-aided plume model fitting procedure to determine plume parameters. Here we present our initial results comparing dissolved benzene and MTBE plumes lengths, the statistical significance of these results, and configuration of benzene and MTBE plumes at individual LUFT sites

  20. Discussion on numerical simulation techniques for patterns of water vapor rise and droplet deposition at NPP cooling tower

    International Nuclear Information System (INIS)

    Guo Dongpeng; Yao Rentai

    2010-01-01

    Based on the working principle of cooling tower, analysis and comparison are made of both advantages and disadvantages of the numerical simulation models, such as ORFAD, KUMULUS, ISCST:A, ANL/UI, CFD etc., which predict the rise and droplet deposition pattern of cooling tower water vapor. The results showed that, CFD model is currently a better model that is used of three-dimensional Renault fluid flow equations predicting the rise and droplet deposition pattern of cooling tower water vapor. The impact of the line trajectory deviation and the speed change inn plume rising is not considered in any other models, and they can not be used for prediction of particle rise and droplet deposition when a larger particle or large buildings in the direction of cooling tower. (authors)

  1. Water vapor profiling using microwave radiometry

    Science.gov (United States)

    Wang, J. R.; Wilheit, T. T.

    1988-01-01

    Water vapor is one of the most important constituents in the Earth's atmosphere. Its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. The passive microwave technique offers an excellent means for water vapor measurements. It can provide both day and night coverage under most cloud conditions. Two water vapor absorption features, at 22 and 183 GHz, were explored in the past years. The line strengths of these features differ by nearly two orders of magnitude. As a consequence, the techniques and the final products of water vapor measurements are also quite different. The research effort in the past few years was to improve and extend the retrieval algorithm to the measurements of water vapor profiles under cloudy conditions. In addition, the retrieval of total precipitable water using 183 GHz measurements, but in a manner analogous to the use of 22 GHz measurements, to increase measurement sensitivity for atmospheres of very low moisture content was also explored.

  2. Analyses on Water Vapor Resource in Chengdu City

    Science.gov (United States)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  3. Distribution of tropical tropospheric water vapor

    Science.gov (United States)

    Sun, De-Zheng; Lindzen, Richard S.

    1993-01-01

    Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence that constrains the turbulent downgradient mixing to within the convective boundary layer and effectively dries the troposphere through downward advection, it also pumps hydrometeors into the upper troposphere, whose subsequent evaporation appears to be the major source of moisture for the large-scale subsiding motion. The development of upper-level clouds and precipitation from these clouds may also act to dry the outflow, thus explaining the low relative humidity near the tropopause. A one-dimensional model is developed to simulate the mean vertical structure of water vapor in the tropical troposphere. It is also shown that the horizontal variation of water vapor in the tropical troposphere above the trade-wind boundary layer can be explained by the variation of a moisture source that is proportional to the amount of upper-level clouds. Implications for the nature of water vapor feedback in global warming are discussed.

  4. Moment analysis description of wetting and redistribution plumes in wettable and water-repellent soils

    Science.gov (United States)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2012-02-01

    SummaryWater repellency has a significant impact on water flow patterns in the soil profile. Transient 2D flow in wettable and natural water-repellent soils was monitored in a transparent flow chamber. The substantial differences in plume shape and spatial water content distribution during the wetting and subsequent redistribution stages were related to the variation of contact angle while in contact with water. The observed plumes shape, internal water content distribution in general and the saturation overshoot behind the wetting front in particular in the repellent soils were associated with unstable flow. Moment analysis was applied to characterize the measured plumes during the wetting and subsequent redistribution. The center of mass and spatial variances determined for the measured evolving plumes were fitted by a model that accounts for capillary and gravitational driving forces in a medium of temporally varying wettability. Ellipses defined around the stable and unstable plumes' centers of mass and whose semi-axes represented a particular number of spatial variances were used to characterize plume shape and internal moisture distribution. A single probability curve was able to characterize the corresponding fractions of the total added water in the different ellipses for all measured plumes, which testify the competence and advantage of the moment analysis method.

  5. Tritium plume dynamics in the shallow unsaturated zone in an arid environment

    Science.gov (United States)

    Maples, S.R.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Pohll, G.; Michel, R.L.

    2014-01-01

    The spatiotemporal variability of a tritium plume in the shallow unsaturated zone and the mechanisms controlling its transport were evaluated during a 10-yr study. Plume movement was minimal and its mass declined by 68%. Upward-directed diffusive-vapor tritium fluxes and radioactive decay accounted for most of the observed plume-mass declines.Effective isolation of tritium (3H) and other contaminants at waste-burial facilities requires improved understanding of transport processes and pathways. Previous studies documented an anomalously widespread (i.e., theoretically unexpected) distribution of 3H (>400 m from burial trenches) in a dry, sub-root-zone gravelly layer (1–2-m depth) adjacent to a low-level radioactive waste (LLRW) burial facility in the Amargosa Desert, Nevada, that closed in 1992. The objectives of this study were to: (i) characterize long-term, spatiotemporal variability of 3H plumes; and (ii) quantify the processes controlling 3H behavior in the sub-root-zone gravelly layer beneath native vegetation adjacent to the facility. Geostatistical methods, spatial moment analyses, and mass flux calculations were applied to a spatiotemporally comprehensive, 10-yr data set (2001–2011). Results showed minimal bulk-plume advancement during the study period and limited Fickian spreading of mass. Observed spreading rates were generally consistent with theoretical vapor-phase dispersion. The plume mass diminished more rapidly than would be expected from radioactive decay alone, indicating net efflux from the plume. Estimates of upward 3H efflux via diffusive-vapor movement were >10× greater than by dispersive-vapor or total-liquid movement. Total vertical fluxes were >20× greater than lateral diffusive-vapor fluxes, highlighting the importance of upward migration toward the land surface. Mass-balance calculations showed that radioactive decay and upward diffusive-vapor fluxes contributed the majority of plume loss. Results indicate that plume losses

  6. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  7. Modeling UTLS water vapor: Transport/Chemistry interactions

    International Nuclear Information System (INIS)

    Gulstad, Line

    2005-01-01

    This thesis was initially meant to be a study on the impact on chemistry and climate from UTLS water vapor. However, the complexity of the UTLS water vapor and its recent changes turned out to be a challenge by it self. In the light of this, the overall motivation for the thesis became to study the processes controlling UTLS water vapor and its changes. Water vapor is the most important greenhouse gas, involved in important climate feedback loops. Thus, a good understanding of the chemical and dynamical behavior of water vapor in the atmosphere is crucial for understanding the climate changes in the last century. Additionally, parts of the work was motivated by the development of a coupled climate chemistry model based on the CAM3 model coupled with the Chemical Transport Model Oslo CTM2. The future work will be concentrated on the UTLS water vapor impact on chemistry and climate. We are currently studying long term trends in UTLS water vapor, focusing on identification of the different processes involved in the determination of such trends. The study is based on natural as well as anthropogenic climate forcings. The ongoing work on the development of a coupled climate chemistry model will continue within our group, in collaboration with Prof. Wei-Chyung Wang at the State University of New York, Albany. Valuable contacts with observational groups are established during the work on this thesis. These collaborations will be continued focusing on continuous model validation, as well as identification of trends and new features in UTLS water vapor, and other tracers in this region. (Author)

  8. Exploring the Elevated Water Vapor Signal Associated with Biomass Burning Aerosol over the Southeast Atlantic Ocean

    Science.gov (United States)

    Pistone, Kristina; Redemann, Jens; Wood, Rob; Zuidema, Paquita; Flynn, Connor; LeBlanc, Samuel; Noone, David; Podolske, James; Segal Rozenhaimer, Michal; Shinozuka, Yohei; hide

    2017-01-01

    The quantification of radiative forcing due to the cumulative effects of aerosols, both directly and on cloud properties, remains the biggest source of uncertainty in our understanding of the physical climate. How the magnitude of these effects may be modified by meteorological conditions is an important aspect of this question. The Southeast Atlantic Ocean (SEA), with seasonal biomass burning (BB) smoke plumes overlying a persistent stratocumulus cloud deck, offers a perfect natural observatory in which to study the complexities of aerosol-cloud interactions. The NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign consists of three field deployments over three years (2016-2018) with the goal of gaining a better understanding of the complex processes (direct and indirect) by which BB aerosols affect clouds. We present results from the first ORACLES field deployment, which took place in September 2016 out of Walvis Bay, Namibia. Two NASA aircraft were flown with a suite of aerosol, cloud, radiation, and meteorological instruments for remote-sensing and in-situ observations. A strong correlation was observed between the aircraft-measured pollution indicators (carbon monoxide and aerosol properties) and atmospheric water vapor content, at all altitudes. Atmospheric reanalysis indicates that convective dynamics over the continent, near likely contribute to this elevated signal. Understanding the mechanisms by which water vapor covaries with plume strength is important to quantifying the magnitude of the aerosol direct and semi-direct effects in the region.

  9. Measurements at cooling tower plumes. Part 3. Three-dimensional measurements at cooling tower plumes

    International Nuclear Information System (INIS)

    Fortak, H.

    An extended field experiment is described in which cooling tower plumes were studied by means of three-dimensional in situ measurements. The goal was to obtain input data for numerical models of cooling tower plumes. Of special interest were data for testing or developing assumptions for sub-grid parametrizations. Utilizing modern systems for high-resolution aerology and small aircraft, four measuring campaigns were conducted: two campaigns (1974) at the cooling towers of the RWE power station Neurath and also two (1975) at the single cooling tower of the RWE power station Meppen. Because of the broad spectrum of weather situations it can be assumed that the results are representative with regard to the interrelationship between structure of cooling tower plume and large-scale meteorological situation. A large number of flights with a powered glider crossing the plumes on orthogonal tracks was performed. All flights showed that the plume could be identified up to large downwind distances by discontinuous jumps of temperature and vapor pressure. Therefore, a definite geometry of the plume could always be defined. In all cross sections a vertical circulation could be observed. At the boundary, which could be defined by the mentioned jumps of temperature and vapor pressure, a maximum of downward vertical motion could be observed in most cases. Entrainment along the boundary of a cross section seems to be very small, except at the lower part of the plume. There, the mass entrainment is maximum and is responsible for plume rise as well as for enlargement of the cross section. The visible part of the plume (cloud) was only a small fraction of the whole plume. High-resolution aerology is necessary in order to explain the structure and behavior of such plumes. This is especially the case in investigations regarding the dynamic break-through of temperature inversions. Such cases were observed frequently under various meteorological conditions and are described

  10. East Asian SO2 pollution plume over Europe – Part 2: Evolution and potential impact

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2009-07-01

    Full Text Available We report on the first observation-based case study of an aged East Asian anthropogenic SO2 pollution plume over Europe. Our airborne measurements in that plume detected highly elevated SO2 mole fractions (up to 900 pmol/mol between about 5000 and 7000 m altitude. Here, we focus on investigations of the origin, dispersion, evolution, conversion, and potential impact of the observed excess SO2. In particular, we investigate SO2 conversion to gas-phase sulfuric acid and sulfuric acid aerosols. Our FLEXPART and LAGRANTO model simulations, along with additional trace gas measurements, suggest that the plume originated from East Asian fossil fuel combustion sources and, 8–7 days prior to its arrival over Europe, ascended over the coast region of central East Asia to 9000 m altitude, probably in a cyclonic system with an associated warm conveyor belt. During this initial plume ascent a substantial fraction of the initially available SO2 must have escaped from removal by cloud processes. Hereafter, while mostly descending slowly, the plume experienced advection across the North Pacific, North America and the North Atlantic. During its upper troposphere travel, clouds were absent in and above the plume and OH-induced gas-phase conversion of SO2 to gas-phase sulfuric acid (GSA was operative, followed by GSA nucleation and condensation leading to sulfuric acid aerosol formation and growth. Our AEROFOR model simulations indicate that numerous large sulfuric acid aerosol particles were formed, which at least tempora-rily, caused substantial horizontal visibility degradation, and which have the potential to act as water vapor condensation nuclei in liquid water cloud formation, already at water vapor supersaturations as low as about 0.1%. Our AEROFOR model simulations also indicate that those fossil fuel combustion generated soot particles, which have survived cloud induced removal during the initial plume ascent, have experienced extensive H2SO4/H2O

  11. Vacuum distillation/vapor filtration water recovery

    Science.gov (United States)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  12. African biomass burning plumes over the Atlantic: aircraft based measurements and implications for H2SO4 and HNO3 mediated smoke particle activation

    Directory of Open Access Journals (Sweden)

    A. Dörnbrack

    2011-04-01

    Full Text Available Airborne measurements of trace gases and aerosol particles have been made in two aged biomass burning (BB plumes over the East Atlantic (Gulf of Guinea. The plumes originated from BB in the Southern-Hemisphere African savanna belt. On the day of our measurements (13 August 2006, the plumes had ages of about 10 days and were respectively located in the middle troposphere (MT at 3900–5500 m altitude and in the upper troposphere (UT at 10 800–11 200 m. Probably, the MT plume was lifted by dry convection and the UT plume was lifted by wet convection. In the more polluted MT-plume, numerous measured trace species had markedly elevated abundances, particularly SO2 (up to 1400 pmol mol−1, HNO3 (5000–8000 pmol mol−1 and smoke particles with diameters larger than 270 nm (up to 2000 cm−3. Our MT-plume measurements indicate that SO2 released by BB had not experienced significant loss by deposition and cloud processes but rather had experienced OH-induced conversion to gas-phase sulfuric acid. By contrast, a significant fraction of the released NOy had experienced loss, most likely as HNO3 by deposition. In the UT-plume, loss of NOy and SO2 was more pronounced compared to the MT-plume, probably due to cloud processes. Building on our measurements and accompanying model simulations, we have investigated trace gas transformations in the ageing and diluting plumes and their role in smoke particle processing and activation. Emphasis was placed upon the formation of sulfuric acid and ammonium nitrate, and their influence on the activation potential of smoke particles. Our model simulations reveal that, after 13 August, the lower plume traveled across the Atlantic and descended to 1300 m and hereafter ascended again. During the travel across the Atlantic, the soluble mass fraction of smoke particles and their mean diameter increased sufficiently to allow the processed smoke particles to act as water vapor condensation nuclei already at very low water

  13. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    Science.gov (United States)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  14. Experimental investigation of the hydrodynamics of confined bubble plumes in water and viscous media

    International Nuclear Information System (INIS)

    Brahma N Reddy Vanga; Martin A Lopez de Bertodano; Alexandr Zaruba; Eckhard Krepper; Horst-Michael Prasser

    2005-01-01

    Wire-mesh tomography measurements of void fraction and bubble size distribution in a rectangular bubble column 10 cm wide and 2 cm deep have been conducted. Experiments were performed in an air-water and ethylene glycol system with the column operating in the dispersed bubbly flow regime.Experiments were conducted for plumes with different aspect ratios between 2.2 to 13. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. The behaviour of the long plumes (larger aspect ratio) was found to be significantly different than that of the short plumes (aspect ratios 2 to 4). The oscillating nature of the bubble plume is preserved over the entire height of the water column for the short plumes. The longer plumes are characterized by two distinct regions, the near injector oscillating region and a further downstream region where the bubbles rise in a string like motion. The void fraction distribution in the oscillating region of the plume exhibits a center-peak profile. A 'wall peak' has been observed in the measured void fraction profiles (for higher gas flow rates) in the downstream string-like region. The effect of column height and superficial gas velocity on the void distribution has been investigated. This paper presents the measurement principle and the experimental results for short and long plumes in an air-water system and for short plumes rising in viscous media. The results of the visualization experiment characterizing the structure of the bubble plume and the oscillation frequency of the bubble plumes are reported. (authors)

  15. New insights on entrainment and condensation in volcanic plumes: Constraints from independent observations of explosive eruptions and implications for assessing their impacts

    Science.gov (United States)

    Aubry, Thomas J.; Jellinek, A. Mark

    2018-05-01

    The turbulent entrainment of atmosphere and the condensation of water vapor govern the heights of explosive volcanic plumes. These processes thus determine the delivery and the lifetime of volcanic ash and aerosols into the atmosphere. Predictions of plume heights using one-dimensional "integral" models of volcanic plumes, however, suffer from very large uncertainties, related to parameterizations for entrainment and condensation. In particular, the wind entrainment coefficient β, which governs the contribution of crosswinds to turbulent entrainment, is subject to uncertainties of one order of magnitude, leading to relative uncertainties of the order of 50% on plume height. In this study, we use a database of 94 eruptive phases with independent estimates of mass eruption rate and plume height to constrain and evaluate four popular 1D models. We employ re-sampling methods to account for observational uncertainties. We show that plume height predictions are significantly improved when: i) the contribution of water vapor condensation to the plume buoyancy flux is excluded; and ii) the wind entrainment coefficient β is held constant between 0.1 and 0.4. We explore implications of these results for predicting the climate impacts of explosive eruptions and the likelihood that eruptions will form stable umbrella clouds or devastating pyroclastic flows. Last, we discuss the sensitivity of our results to the definition of plume height in the model in light of a recent set of laboratory experiments and draw conclusions for improving future databases of eruption parameters.

  16. Monitoring tropospheric water vapor changes using radiosonde data

    International Nuclear Information System (INIS)

    Elliott, W.P.; Smith, M.E.; Angell, J.K.

    1990-01-01

    Significant increases in the water vapor content of the troposphere are expected to accompany temperature increases due to rising concentrations of the greenhouse gases. Thus it is important to follow changes in water vapor over time. There are a number of difficulties in developing a homogeneous data set, however, because of changes in radiosonde instrumentation and reporting practices. The authors report here on preliminary attempts to establish indices of water vapor which can be monitored. The precipitable water between the surface and 500 mb is the first candidate. They describe their method for calculating this quantity from radiosonde data for a network very similar to the network Angell uses for detecting temperature trends. Preliminary results suggest that the noise level is low enough to detect trends in water vapor at the individual stations. While a slight increase in global water vapor is hinted at in the data, and the data suggest there may have been a net transfer of water from the Southern Hemisphere to the Northern Hemisphere, these conclusions are tentative. The authors also discuss the future course of this investigation

  17. Tritium-gas/water-vapor monitor. Tests and evaluation

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1982-07-01

    A tritium gas/water-vapor monitor was designed and built by the Health Physics Group at the Los Alamos National Laboratory. In its prototype configuration, the monitor took the shape of two separate instruments: a (total) tritium monitor and a water-vapor monitor. Both instruments were tested and evaluated. The tests of the (total) tritium monitor, basically an improved version of the standard flow-through ion-chamber instrument, are briefly reported here and more completely elsewhere. The tests of the water-vapor monitor indicated that the novel approach used to condense water vapor for scintillation counting has a number of serious drawbacks and that further development of the instrument is unwarranted

  18. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  19. On moistening of ash particles in smoke plumes of industrial sources

    International Nuclear Information System (INIS)

    Geints, Yu.E.; Zemlyanov, A.A.

    1992-01-01

    Moistening of ash particles occurring in the humid atmosphere is one of the main factors decreasing the accuracy of the lidar measurements of thickness of smoke emissions. Theoretical investigation of the growth of water coating of smoke particles under different meteorological conditions within the zone of emission has been carried out based on the Gaussian model of smoke plume with slant axis and its parameters. Numerical calculations have shown that in the case of high initial moisture content of the emissions near the source in the smoke plume the zone appears in which water vapor is supersaturated and the effect of particle moistening is significant. Seasonal trends and diurnal variations in temperature and humidity in the surface layer of the atmosphere also substantially affect moistening. Length of the zone of moistening of ash particles is maximum at night in winter under conditions of light breeze. The possibility of retrieving the initial mass concentration of the dry aerosol in the smoke plume has been shown based on lidar measurements of the scattering coefficient within the zone of maximum degree of moistening of smoke plume. 10 refs., 5 figs

  20. Water vapor movement in freezing aggregate base materials.

    Science.gov (United States)

    2014-06-01

    The objectives of this research were to 1) measure the extent to which water vapor movement results in : water accumulation in freezing base materials; 2) evaluate the effect of soil stabilization on water vapor movement : in freezing base materials;...

  1. Physical and mathematical modeling of diesel fuel liquid and vapor movement in porous media

    International Nuclear Information System (INIS)

    Johnson, T.E.; Kreamer, D.K.

    1994-01-01

    Two-dimensional physical modeling of diesel fuel leaks was conducted in sand tanks to determine liquid and vapor migration characteristics. Mathematical modeling provided estimation of vapor concentrations at discrete times and distances from the vapor source and was compared to the physical experiment. The mathematical gaseous diffusion model was analogous to the Theis equation for ground-water flow, accounted for sorptive effects of the media, and was calibrated using measured concentrations from the sand tank. Mathematically different positions of the vapor source were tested to better relate observed liquid flow rates and media configuration to gaseous concentrations. The calculated diffusion parameters were then used to estimate theoretical, three-dimensional vapor transport from a hypothetical liquid leak of 2.0 1/hr for 30 days. The associated three-dimensional vapor plume, which would be reasonably detectable by commercially available vadose zone monitors, was estimated to have a diameter of 8 m with a vapor concentration of 50 ppm at the outside edge of the vapor plume. A careful application of the method and values can be used to give a first approximation to the number of vapor monitors required at a field site as well as the optimal locations for the monitors

  2. Eddy transport of water vapor in the Martian atmosphere

    Science.gov (United States)

    Murphy, J. R.; Haberle, Robert M.

    1993-01-01

    Viking orbiter measurements of the Martian atmosphere suggest that the residual north polar water-ice cap is the primary source of atmospheric water vapor, which appears at successively lower northern latitudes as the summer season progresses. Zonally symmetric studies of water vapor transport indicate that the zonal mean meridional circulation is incapable of transporting from north polar regions to low latitudes the quantity of water vapor observed. This result has been interpreted as implying the presence of nonpolar sources of water. Another possibility is the ability of atmospheric wave motions, which are not accounted for in a zonally symmetric framework, to efficiently accomplish the transport from a north polar source to the entirety of the Northern Hemisphere. The ability or inability of the full range of atmospheric motions to accomplish this transport has important implications regarding the questions of water sources and sinks on Mars: if the full spectrum of atmospheric motions proves to be incapable of accomplishing the transport, it strengthens arguments in favor of additional water sources. Preliminary results from a three dimensional atmospheric dynamical/water vapor transport numerical model are presented. The model accounts for the physics of a subliming water-ice cap, but does not yet incorporate recondensation of this sublimed water. Transport of vapor away from this water-ice cap in this three dimensional framework is compared with previously obtained zonally symmetric (two dimensional) results to quantify effects of water vapor transport by atmospheric eddies.

  3. Water vapor estimation using digital terrestrial broadcasting waves

    Science.gov (United States)

    Kawamura, S.; Ohta, H.; Hanado, H.; Yamamoto, M. K.; Shiga, N.; Kido, K.; Yasuda, S.; Goto, T.; Ichikawa, R.; Amagai, J.; Imamura, K.; Fujieda, M.; Iwai, H.; Sugitani, S.; Iguchi, T.

    2017-03-01

    A method of estimating water vapor (propagation delay due to water vapor) using digital terrestrial broadcasting waves is proposed. Our target is to improve the accuracy of numerical weather forecast for severe weather phenomena such as localized heavy rainstorms in urban areas through data assimilation. In this method, we estimate water vapor near a ground surface from the propagation delay of digital terrestrial broadcasting waves. A real-time delay measurement system with a software-defined radio technique is developed and tested. The data obtained using digital terrestrial broadcasting waves show good agreement with those obtained by ground-based meteorological observation. The main features of this observation are, no need for transmitters (receiving only), applicable wherever digital terrestrial broadcasting is available and its high time resolution. This study shows a possibility to estimate water vapor using digital terrestrial broadcasting waves. In the future, we will investigate the impact of these data toward numerical weather forecast through data assimilation. Developing a system that monitors water vapor near the ground surface with time and space resolutions of 30 s and several kilometers would improve the accuracy of the numerical weather forecast of localized severe weather phenomena.

  4. Dynamic estuarine plumes and fronts: importance to small fish and plankton in coastal waters of NSW, Australia

    Science.gov (United States)

    Kingsford, M. J.; Suthers, I. M.

    1994-05-01

    In 1990, low density estuarine plumes in the vicinity of Botany Bay, Australia, extended up to 11 km across a narrow continental shelf ( ca 25 km) on ebb tides. The shape and seaward extent of plumes varied according to a combination of state of the tide, freshwater input and the direction and intensity of coastal currents. Offshore plumes dissipated on the flood tide and fronts reformed at the entrance of Botany Bay. Major differences in the abundance and composition of ichthyoplankton and other zooplankton were found over a 400-800 m stretch of water encompassing waters of the plume, front and ocean on seven occasions. For example, highest abundances of the fishes Gobiidae, Sillaginidae, Gerreidae and Sparidae as well as barnacle larvae and fish eggs were found in plumes. Cross-shelf distribution patterns of zooplankton, therefore, are influenced by plumes. Distinct assemblages of plankters accumulated in fronts, e.g. fishes of the Mugilidae and Gonorynchidae and other zooplankters (e.g. Jaxea sp.). Accumulation in fronts was variable and may relate to variable convergence according to the tide. We argue that plumes provide a significant cue to larvae in coastal waters that an estuary is nearby. Moreover, although many larvae may be retained in the turbid waters of plumes associated with riverine input, larvae are potentially exported in surface waters on ebb tides.

  5. Numerical Modeling of Water Thermal Plumes Emitted by Thermal Power Plants

    Directory of Open Access Journals (Sweden)

    Azucena Durán-Colmenares

    2016-10-01

    Full Text Available This work focuses on the study of thermal dispersion of plumes emitted by power plants into the sea. Wastewater discharge from power stations causes impacts that require investigation or monitoring. A study to characterize the physical effects of thermal plumes into the sea is carried out here by numerical modeling and field measurements. The case study is the thermal discharges of the Presidente Adolfo López Mateos Power Plant, located in Veracruz, on the coast of the Gulf of Mexico. This plant is managed by the Federal Electricity Commission of Mexico. The physical effects of such plumes are related to the increase of seawater temperature caused by the hot water discharge of the plant. We focus on the implementation, calibration, and validation of the Delft3D-FLOW model, which solves the shallow-water equations. The numerical simulations consider a critical scenario where meteorological and oceanographic parameters are taken into account to reproduce the proper physical conditions of the environment. The results show a local physical effect of the thermal plumes within the study zone, given the predominant strong winds conditions of the scenario under study.

  6. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    Science.gov (United States)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  7. Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery

    Science.gov (United States)

    Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.

    2010-04-01

    Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.

  8. Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?

    Science.gov (United States)

    Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J

    2008-12-15

    Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.

  9. A FGGE water vapor wind data set

    Science.gov (United States)

    Stewart, Tod R.; Hayden, Christopher M.

    1985-01-01

    It has been recognized for some time that water vapor structure visible in infrared imagery offers a potential for obtaining motion vectors when several images are considered in sequence (Fischer et al., 1981). A study evaluating water vapor winds obtained from the VISSR atmospheric sounder (Stewart et al., 1985) has confirmed the viability of the approach. More recently, 20 data sets have been produced from METEOSAT water vapor imagery for the FGGE period of 10-25 November 1979. Where possible, two data sets were prepared for each day at 0000 and 1200 GMT and compared with rawinsondes over Europe, Africa, and aircraft observations over the oceans. Procedures for obtaining winds were, in general, similar to the earlier study. Motions were detected both by a single pixel tracking and a cross correlation method by using three images individually separated by one hour. A height assignment was determined by matching the measured brightness temperature to the temperature structure represented by the FGGE-IIIB analyses. Results show that the METEOSAT water vapor winds provide uniform horizontal coverage of mid-level flow over the globe with good accuracy.

  10. Uranium/water vapor reactions in gaseous atmospheres

    International Nuclear Information System (INIS)

    Jackson, R.L.; Condon, J.B.; Steckel, L.M.

    1977-07-01

    Experiments have been performed to determine the effect of varying humidities, gaseous atmospheres, and temperatures on the uranium/water vapor reaction. A balance, which allowed continuous in-system weighings, was used to determine the rates of the uranium/water vapor reactions at water vapor pressures of 383, 1586, and 2853 Pa and at temperatures of 80, 100, and 150 0 C in atmospheres of hydrogen, argon, or argon/oxygen mixtures. Based on rate data, the reactions were characterized as hydriding or nonhydriding. Hydriding reactions were found to be preferred in moist hydrogen systems at the higher temperatures and the lower humidities. The presence of hydrogen in hydriding systems was found to initially inhibit the reaction, but causes an acceleration of the rate in the final stages. In general, reaction rates of hydriding systems approached the hydriding rates calculated and observed in dry hydrogen. Hydriding and nonhydriding reaction rates showed a positive correlation to temperature and water vapor pressure. Final reaction rates in moist argon/oxygen mixtures of 1.93, 4.57, and 9.08 mole percent oxygen were greater than the rates observed in moist hydrogen or argon. Final reaction rates were negatively correlated to the oxygen concentration

  11. Detection of water vapor on Jupiter

    Science.gov (United States)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  12. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  13. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  14. Water-vapor pressure control in a volume

    Science.gov (United States)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  15. Resolving superimposed ground-water contaminant plumes characterized by chromium, nitrate, uranium, and technetium--99

    International Nuclear Information System (INIS)

    Hall, S.H.

    1990-02-01

    Leakage from a liquid waste storage and solar evaporation basin at the Hanford Site in southeastern Washington State has resulted in a ground-water contaminant plume characterized by nitrate, hexavalent chromium, uranium, and technetium-99. The plume is superimposed on a larger, pre-existing plume extending from upgradient sites and having the same suite of contaminants. However, the relative abundance of contaminant species is quite different for each plume source. Thus, characteristic concentration ratios, rather than concentrations of individual species, are used as geochemical tracers, with emphasis on graphical analysis. Accordingly, it has been possible to resolve the boundaries of the smaller plume and to estimate the contribution of each plume to the observed contamination downgradient from the storage basin. 11 refs., 7 figs

  16. Water vapor permeabilities through polymers: diffusivities from experiments and simulations

    International Nuclear Information System (INIS)

    Seethamraju, Sindhu; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar

    2014-01-01

    This study experimentally determines water vapor permeabilities, which are subsequently correlated with the diffusivities obtained from simulations. Molecular dynamics (MD) simulations were used for determining the diffusion of water vapor in various polymeric systems such as polyethylene, polypropylene, poly (vinyl alcohol), poly (vinyl acetate), poly (vinyl butyral), poly (vinylidene chloride), poly (vinyl chloride) and poly (methyl methacrylate). Cavity ring down spectroscopy (CRDS) based methodology has been used to determine the water vapor transmission rates. These values were then used to calculate the diffusion coefficients for water vapor through these polymers. A comparative analysis is provided for diffusivities calculated from CRDS and MD based results by correlating the free volumes. (paper)

  17. The vertical distribution of Mars water vapor

    Science.gov (United States)

    Davies, D. W.

    1979-01-01

    Analysis of observations made from the Viking 1 Orbiter indicates that the water vapor over the Viking 1 landing site is uniformly mixed with the atmosphere and not concentrated near the surface. The analysis incorporates the effects of atmospheric scattering and explains why previous earth-based observations showed a strong diurnal variation in water content. It also explains the lack of an early morning fog and removes the necessity of daily exchange of large amounts of water between the surface and the atmosphere. A water vapor volume mixing ratio of 1.5 x 10 to the -4th is inferred for the Viking 1 site in late summer.

  18. Precipitable water and vapor flux between Belem and Manaus

    International Nuclear Information System (INIS)

    Marques, J.

    1977-01-01

    The water vapor flux and precipitable water was computated over the natural Amazon forest in the stretch between Belem and Manaus for 1972. The atmospheric branch of hidrological cycle theory was applied and the most significant conclusions on an annual basis are: Atlantic Ocean water vapor contributes 52% to the regional precipitation and is significant the role played by local evapotranspiration in the precipitation in the area; there were signs of the phenomenon of water vapor recycling nearly throughout the year. Evapotranspiration contributes to 48% of the precipitations in the area studied. The real evapotranspiration estimated by this method was 1,000mm year - 1 [pt

  19. Importance Profiles for Water Vapor

    Science.gov (United States)

    Mapes, Brian; Chandra, Arunchandra S.; Kuang, Zhiming; Zuidema, Paquita

    2017-11-01

    Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or "kernel" depends on whether specific humidity S, relative humidity R, or ln( R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.

  20. Atmospheric water vapor: Distribution and Empirical estimation in the atmosphere of Thailand

    Science.gov (United States)

    Phokate, S.

    2017-09-01

    Atmospheric water vapor is a crucial component of the Earth’s atmosphere, which is shown by precipitable water vapor. It is calculated from the upper air data. In Thailand, the data were collected from four measuring stations located in Chiang Mai, Ubon Ratchathani, Bangkok, and Songkhla during the years 1998-2013. The precipitable water vapor obtained from this investigation were used to define an empirical model associated with the vapor pressure, which is a surface data at the same stations. The result shows that the relationship has a relatively high level of reliability. The precipitable water vapor obtained from the upper air data is nearly equal to the value from the model. The model was used to calculate the precipitable water vapor from the surface data 85 stations across the country. The result shows that seasonal change of the precipitable water vapor was low in the dry season (November-April) and high in the rainy season (May-October). In addition, precipitable water vapor varies along the latitudes of the stations. The high value obtains for low latitudes, but it is low for high latitudes.

  1. The importance of vertical resolution in the free troposphere for modeling intercontinental plumes

    Science.gov (United States)

    Zhuang, Jiawei; Jacob, Daniel J.; Eastham, Sebastian D.

    2018-05-01

    Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx) or vertical resolution (Δz). Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx / Δz)opt ˜ 1000 for simulating the plumes. This is considerably higher than current global models (Δx / Δz ˜ 20) and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3) over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz ≈ 80 m) preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.

  2. The annual cycle of stratospheric water vapor in a general circulation model

    Science.gov (United States)

    Mote, Philip W.

    1995-01-01

    The application of general circulation models (GCM's) to stratospheric chemistry and transport both permits and requires a thorough investigation of stratospheric water vapor. The National Center for Atmospheric Research has redesigned its GCM, the Community Climate Model (CCM2), to enable studies of the chemistry and transport of tracers including water vapor; the importance of water vapor to the climate and chemistry of the stratosphere requires that it be better understood in the atmosphere and well represented in the model. In this study, methane is carried as a tracer and converted to water; this simple chemistry provides an adequate representation of the upper stratospheric water vapor source. The cold temperature bias in the winter polar stratosphere, which the CCM2 shares with other GCM's, produces excessive dehydration in the southern hemisphere, but this dry bias can be ameliorated by setting a minimum vapor pressure. The CCM2's water vapor distribution and seasonality compare favorably with observations in many respects, though seasonal variations including the upper stratospheric semiannual oscillation are generally too small. Southern polar dehydration affects midlatitude water vapor mixing ratios by a few tenths of a part per million, mostly after the demise of the vortex. The annual cycle of water vapor in the tropical and northern midlatitude lower stratosphere is dominated by drying at the tropical tropopause. Water vapor has a longer adjustment time than methane and had not reached equilibrium at the end of the 9 years simulated here.

  3. Portable device for generation of ultra-pure water vapor feeds

    Science.gov (United States)

    Velin, P.; Stenman, U.; Skoglundh, M.; Carlsson, P.-A.

    2017-11-01

    A portable device for the generation of co-feeds of water vapor has been designed, constructed, and evaluated for flexible use as an add-on component to laboratory chemical reactors. The vapor is formed by catalytic oxidation of hydrogen, which benefits the formation of well-controlled minute concentrations of ultra-pure water. Analysis of the effluent stream by on-line mass spectrometry and Fourier transform infrared spectroscopy confirms that water vapor can be, with high precision, generated both rapidly and steadily over extended periods in the range of 100 ppm to 3 vol. % (limited by safety considerations) using a total flow of 100 to 1500 ml/min at normal temperature and pressure. Further, the device has been used complementary to a commercial water evaporator and mixing system to span water concentrations up to 12 vol. %. Finally, an operando diffuse reflective infrared Fourier transform spectroscopic measurement of palladium catalysed methane oxidation in the absence and presence of up to 1.0 vol. % water has been carried out to demonstrate the applicability of the device for co-feeding well-controlled low concentrations of water vapor to a common type of spectroscopic experiment. The possibilities of creating isotopically labeled water vapor as well as using tracer gases for dynamic experiments are discussed.

  4. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  5. Water vapor differential absorption lidar development and evaluation

    Science.gov (United States)

    Browell, E. V.; Wilkerson, T. D.; Mcllrath, T. J.

    1979-01-01

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements

  6. A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites

    International Nuclear Information System (INIS)

    1995-01-01

    A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed

  7. Development of an Airborne Micropulse Water Vapor DIAL

    Science.gov (United States)

    Nehrir, A. R.; Ismail, S.

    2012-12-01

    Water vapor plays a key role in many atmospheric processes affecting both weather and climate. Airborne measurements of tropospheric water vapor profiles have been a longstanding observational need to not only the active remote sensing community but also to the meteorological, weather forecasting, and climate/radiation science communities. Microscale measurements of tropospheric water vapor are important for enhancing near term meteorological forecasting capabilities while mesoscale and synopticscale measurements can lead to an enhanced understanding of the complex coupled feedback mechanisms between water vapor, temperature, aerosols, and clouds. To realize tropospheric measurements of water vapor profiles over the microscale-synopticscale areas of meteorological interest, a compact and cost effective airborne micropulse differential absorption lidar (DIAL) is being investigated using newly emerging semiconductor based laser technology. Ground based micropulse DIAL (MPD) measurements of tropospheric water vapor and aerosol profiles up to 6 km and 15 km, respectively, have been previously demonstrated using an all semiconductor based laser transmitter. The DIAL transmitter utilizes a master oscillator power amplifier (MOPA) configuration where two semiconductor seed lasers are used to seed a single pass traveling wave tapered semiconductor optical amplifier (TSOA), producing up to 7μJ pulse energies over a 1 μs pulse duration at a 10 kHz pulse repetition frequency (PRF). Intercomparisons between the ground based instrument measurements and radiosonde profiles demonstrating the MPD performance under varying atmospheric conditions will be presented. Work is currently ongoing to expand upon the ground based MPD concept and to develop a compact and cost effective system capable of deployment on a mid-low altitude aircraft such as the NASA Langley B200 King Air. Initial lab experiments show that a two-three fold increase in the laser energy compared to the ground

  8. High Temperature Corrosion of Silicon Carbide and Silicon Nitride in Water Vapor

    Science.gov (United States)

    Opila, E. J.; Robinson, Raymond C.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide (SiC) and silicon nitride (Si3N4) are proposed for applications in high temperature combustion environments containing water vapor. Both SiC and Si3N4 react with water vapor to form a silica (SiO2) scale. It is therefore important to understand the durability of SiC, Si3N4 and SiO2 in water vapor. Thermogravimetric analyses, furnace exposures and burner rig results were obtained for these materials in water vapor at temperatures between 1100 and 1450 C and water vapor partial pressures ranging from 0.1 to 3.1 atm. First, the oxidation of SiC and Si3N4 in water vapor is considered. The parabolic kinetic rate law, rate dependence on water vapor partial pressure, and oxidation mechanism are discussed. Second, the volatilization of silica to form Si(OH)4(g) is examined. Mass spectrometric results, the linear kinetic rate law and a volatilization model based on diffusion through a gas boundary layer are discussed. Finally, the combined oxidation and volatilization reactions, which occur when SiC or Si3N4 are exposed in a water vapor-containing environment, are presented. Both experimental evidence and a model for the paralinear kinetic rate law are shown for these simultaneous oxidation and volatilization reactions.

  9. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  10. Visualization of Atmospheric Water Vapor Data for SAGE

    Science.gov (United States)

    Kung, Mou-Liang; Chu, W. P. (Technical Monitor)

    2000-01-01

    The goal of this project was to develop visualization tools to study the water vapor dynamics using the Stratospheric Aerosol and Gas Experiment 11 (SAGE 11) water vapor data. During the past years, we completed the development of a visualization tool called EZSAGE, and various Gridded Water Vapor plots, tools deployed on the web to provide users with new insight into the water vapor dynamics. Results and experiences from this project, including papers, tutorials and reviews were published on the main Web page. Additional publishing effort has been initiated to package EZSAGE software for CD production and distribution. There have been some major personnel changes since Fall, 1998. Dr. Mou-Liang Kung, a Professor of Computer Science assumed the PI position vacated by Dr. Waldo Rodriguez who was on leave. However, former PI, Dr. Rodriguez continued to serve as a research adviser to this project to assure smooth transition and project completion. Typically in each semester, five student research assistants were hired and trained. Weekly group meetings were held to discuss problems, progress, new research direction, and activity planning. Other small group meetings were also held regularly for different objectives of this project. All student research assistants were required to submit reports for conference submission.

  11. Adsorption of radon and water vapor on commercial activated carbons

    International Nuclear Information System (INIS)

    Hassan, N.M.; Ghosh, T.K.; Hines, A.L.; Loyalka, S.K.

    1995-01-01

    Equilibrium adsorption isotherms are reported for radon and water vapor on two commercial activated carbons: coconut shell Type PCB and hardwood Type BD. The isotherms of the water vapor were measured gravimetrically at 298 K. The isotherms of radon from dry nitrogen were obtained at 293, 298, and 308 K while the data for the mixture of radon and water vapor were measured at 298 K. The concentrations of radon in the gas and solid phases were measured simultaneously, once the adsorption equilibrium and the radioactive equilibrium between the radon and its daughter products were established. The shape of the isotherms was of Type III for the radon and Type V for the water vapor, according to Brunauer's classification. The adsorption mechanism was similar for both the radon and the water vapor, being physical adsorption on the macropore surface area in the low pressure region and micropore filling near saturation pressure. The uptake capacity of radon decreased both with increasing temperature and relative humidity. The heat of adsorption data indicated that the PCB- and the BD-activated carbons provided a heterogeneous surface for radon adsorption. The equilibrium data for radon were correlated with a modified Freundlich equation

  12. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  13. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Villalobos, Luis Francisco; Shevate, Rahul; Vovusha, Hakkim; Schwingenschlö gl, Udo; Peinemann, Klaus-Viktor

    2017-01-01

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  14. Water vapor absorption in the atmospheric window at 239 GHz

    Science.gov (United States)

    Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.

    1995-01-01

    Absolute absorption rates of pure water vapor and mixtures of water vapor and nitrogen have been measured in the atmospheric window at 239 GHz. The dependence on pressure as well as temperature has been obtained. The experimental data are compared with several theoretical or empirical models, and satisfactory agreement is obtained with the models involving a continuum; in the case of pure water vapor, the continuum contribution based upon recent theoretical developments gives good results. The temperature dependence is stronger than that proposed in a commonly used atmospheric transmission model.

  15. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products spanning the 1987/1988 El Nino Southern Oscillation (ENSO)...

  16. The importance of vertical resolution in the free troposphere for modeling intercontinental plumes

    Directory of Open Access Journals (Sweden)

    J. Zhuang

    2018-05-01

    Full Text Available Chemical plumes in the free troposphere can preserve their identity for more than a week as they are transported on intercontinental scales. Current global models cannot reproduce this transport. The plumes dilute far too rapidly due to numerical diffusion in sheared flow. We show how model accuracy can be limited by either horizontal resolution (Δx or vertical resolution (Δz. Balancing horizontal and vertical numerical diffusion, and weighing computational cost, implies an optimal grid resolution ratio (Δx ∕ Δzopt ∼ 1000 for simulating the plumes. This is considerably higher than current global models (Δx ∕ Δz ∼ 20 and explains the rapid plume dilution in the models as caused by insufficient vertical resolution. Plume simulations with the Geophysical Fluid Dynamics Laboratory Finite-Volume Cubed-Sphere Dynamical Core (GFDL-FV3 over a range of horizontal and vertical grid resolutions confirm this limiting behavior. Our highest-resolution simulation (Δx ≈ 25 km, Δz  ≈  80 m preserves the maximum mixing ratio in the plume to within 35 % after 8 days in strongly sheared flow, a drastic improvement over current models. Adding free tropospheric vertical levels in global models is computationally inexpensive and would also improve the simulation of water vapor.

  17. Far-reaching transport of Pearl River plume water by upwelling jet in the northeastern South China Sea

    Science.gov (United States)

    Chen, Zhaoyun; Pan, Jiayi; Jiang, Yuwu; Lin, Hui

    2017-09-01

    Satellite images from the Moderate Resolution Imaging Spectroradiometer (MODIS) show that there was a belt of turbid water appearing along an upwelling front near the Chinese coast of Guangdong, and indicate that the turbid water of the Pearl River plume water could be transported to a far-reaching area east of the Taiwan Bank. Numerical modeling results are consistent with the satellite observations, and reveal that a strong jet exists at the upwelling front with a speed as high as 0.8 m s- 1, which acts as a pathway for transporting the high-turbidity plume water. The dynamical analysis suggests that geostrophic equilibrium dominates in the upwelling front and plume areas, and the baroclinicity of the upwelling front resulting from the horizontal density gradient is responsible for the generation of the strong jet, which enhances the far-reaching transport of the terrigenous nutrient-rich water of the Pearl River plume. Model sensitivity analyses also confirm that this jet persists as long as the upwelling front exists, even when the wind subsides and becomes insignificant. Further idealized numerical model experiments indicate that the formation and persistence of the upwelling front jet depend on the forcing strength of the upwelling-favorable wind. The formation time of the jet varies from 15 to 158 h as the stress of the upwelling-favorable wind changes from 0.2 to 0.01 N m- 2. With the persistent transport of the nutrient-rich plume water, biophysical activities can be promoted significantly in the far-reaching destination area of the oligotrophic water.

  18. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products from the GOES-8 satellite spanning the 1987-1988 El Nino...

  19. Detection of plumes at Redoubt and Etna volcanoes using the GPS SNR method

    Science.gov (United States)

    Larson, Kristine M.; Palo, Scott; Roesler, Carolyn; Mattia, Mario; Bruno, Valentina; Coltelli, Mauro; Fee, David

    2017-09-01

    Detection and characterization of volcanic eruptions is important both for public health and aircraft safety. A variety of ground sensors are used to monitor volcanic eruptions. Data from these ground sensors are subsequently incorporated into models that predict the movement of ash. Here a method to detect volcanic plumes using GPS signals is described. Rather than carrier phase data used by geodesists, the method takes advantage of attenuations in signal to noise ratio (SNR) data. Two datasets are evaluated: the 2009 Redoubt Volcano eruptions and the 2013/2015 eruptions at Mt. Etna. SNR-based eruption durations are compared with previously published seismic, infrasonic, and radar studies at Redoubt Volcano. SNR-based plume detections from Mt. Etna are compared with L-band radar and tremor observations. To place these SNR observations from Redoubt and Etna in context, a model of the propagation of GPS signals through both water/water vapor and tephra is developed. Neither water nor fine ash particles will produce the observed attenuation of GPS signals, while scattering caused by particles > 1 cm in diameter potentially could.

  20. Tropical stratospheric water vapor measured by the microwave limb sounder (MLS)

    Science.gov (United States)

    Carr, E. S.; Harwood, R. S.; Mote, P. W.; Peckham, G. E.; Suttie, R. A.; Lahoz, W. A.; O'Neill, A.; Froidevaux, L.; Jarnot, R. F.; Read, W. G.

    1995-01-01

    The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.

  1. Vapor compression distiller and membrane technology for water revitalization

    Science.gov (United States)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  2. Water vapor-nitrogen absorption at CO2 laser frequencies

    Science.gov (United States)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  3. Water-Vapor Raman Lidar System Reaches Higher Altitude

    Science.gov (United States)

    Leblanc, Thierry; McDermid, I. Stewart

    2010-01-01

    A Raman lidar system for measuring the vertical distribution of water vapor in the atmosphere is located at the Table Mountain Facility (TMF) in California. Raman lidar systems for obtaining vertical water-vapor profiles in the troposphere have been in use for some time. The TMF system incorporates a number of improvements over prior such systems that enable extension of the altitude range of measurements through the tropopause into the lower stratosphere. One major obstacle to extension of the altitude range is the fact that the mixing ratio of water vapor in the tropopause and the lower stratosphere is so low that Raman lidar measurements in this region are limited by noise. Therefore, the design of the TMF system incorporates several features intended to maximize the signal-to-noise ratio. These features include (1) the use of 355-nm-wavelength laser pulses having an energy (0.9 J per pulse) that is high relative to the laser-pulse energy levels of prior such systems, (2) a telescope having a large aperture (91 cm in diameter) and a narrow field of view (angular width .0.6 mrad), and (3) narrow-bandpass (wavelength bandwidth 0.6 nm) filters for the water-vapor Raman spectral channels. In addition to the large-aperture telescope, three telescopes having apertures 7.5 cm in diameter are used to collect returns from low altitudes.

  4. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N.V.; Popovitcheva, O.B.; Rakhimova, T.V. [Moscow State Univ. (Russian Federation)

    1997-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  5. Hydrogen chloride heterogeneous chemistry on frozen water particles in subsonic aircraft plume. Laboratory studies and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Persiantseva, N V; Popovitcheva, O B; Rakhimova, T V [Moscow State Univ. (Russian Federation)

    1998-12-31

    Heterogeneous chemistry of HCl, as a main reservoir of chlorine content gases, has been considered after plume cooling and ice particle formation. The HCl, HNO{sub 3}, N{sub 2}O{sub 5} uptake efficiencies by frozen water were obtained in a Knudsen-cell flow reactor at the subsonic cruise conditions. The formation of ice particles in the plume of subsonic aircraft is simulated to describe the kinetics of gaseous HCl loss due to heterogeneous processes. It is shown that the HCl uptake by frozen water particles may play an important role in the gaseous HCl depletion in the aircraft plume. (author) 14 refs.

  6. Reaction rate constant for uranium in water and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    TRIMBLE, D.J.

    1998-11-09

    The literature on uranium oxidation in water and oxygen free water vapor was reviewed. Arrhenius rate equations were developed from the review data. These data and equations will be used as a baseline from which to compare reaction rates measured for K Basin fuel.

  7. Vaporization Rate Analysis of Primary Cooling Water from Reactor PUSPATI TRIGA (RTP) Tank

    International Nuclear Information System (INIS)

    Tonny Anak Lanyau; Mohd Fazli Zakaria; Yahya Ismail

    2011-01-01

    Primary cooling system consists of pumps, heat exchangers, probes, a nitrogen-16 diffuser and associated valves is connected to the reactor TRIGA PUSPATI (RTP) tank by aluminium pipes. Both the primary cooling system and the reactor tank is filled with demineralized light water (H 2 O), which serves as a coolant, moderator as well as shielding. During reactor operation, vaporization in the reactor tank will reduce the primary water and contribute to the formation of vapor in the reactor hall. The vaporization may influence the function of the water subsequently may affect the safety of the reactor operation. It is essential to know the vaporization rate of the primary water to ensure its functionality. This paper will present the vaporization rate of the primary cooling water from the reactor tank and the influence of temperature of the water in the reactor tank to the vaporization rate. (author)

  8. Water resources research program. Pollution of coastal waters off Chicago by sinking plumes from the Indiana Harbor Canal

    International Nuclear Information System (INIS)

    Harrison, W.; McCown, D.L.; Raphaelian, L.A.; Saunders, K.D.

    1977-12-01

    On March 2, 1977, during sinking-plume conditions, a portion of the water of the Indiana Harbor Canal (IHC) was injected with samarium and rhodamine-dye tags and a section of the IHC's surface was covered with simulated oily waste tagged with dysprosium. Water samples were taken downcurrent, over a 54-hr period, from a vessel and from the raw-water streams from the intakes at Chicago's South Water Filtration Plant (SWFP). Bottom currents and water temperatures were measured almost continuously at four Lake Michigan stations located between the IHC and the SWFP. Unequivocal evidence is presented for transport of the tagged IHC water and oily waste to the SWFP's intakes. Organic contaminants from the IHC were present in trace concentrations in the SWFP's raw water. A model for the transport and mixing of the entire IHC effluent, for the environmental conditions during the experiment, indicates a minimum dilution of 4 in the plume offshore of the SWFP and, for the assumed plume trajectory, values of 5 x 10 2 and 10 5 at the shore and crib intakes, respectively. A similar model applied to the experimental situation of tagged effluent showed reasonable agreement with measurements. Analysis of historical data indicates that the worst-case pollution event that might be experienced at the SWFP, assuming constant pollutant loading in the IHC, would be due to 24 hr of northwest wind followed by a 3.0-in. (7.6 cm), 24-hr rainfall that coincides with 3.0 x 10 6 m of total wind movement from the southerly quadrants

  9. The Planck-Benzinger thermal work function in the condensation of water vapor

    Science.gov (United States)

    Chun, Paul W.

    Based on the Planck-Benzinger thermal work function using Chun's method, the innate temperature-invariant enthalpy at 0 K, ?H0(T0), for the condensation of water vapor as well as the dimer, trimer, tetramer, and pentamer form in the vapor phase, was determined to be 0.447 kcal mol-1 for vapor, 1.127 for the dimer, 0.555 for the trimer, 0.236 for the tetramer, and 0.079 kcal mol-1 for the pentamer using ?G(T) data reported by Kell et al. in 1968 and Kell and McLaurin in 1969. These results suggest that the predominant dimeric form is the most stable of these n-mers. Using Nemethy and Scheraga's 1962 data for the Helmholtz free energy of liquid water, the value of ?H0(T0) was determined to be 1.21 kcal mol-1. This is very close to the value for the energy of the hydrogen bond EH of 1.32 kcal mol-1 reported by Nemethy and Scheraga, using statistical thermodynamics. It seems clear that very little energy is required for interconversion between the hypothetical supercooled water vapor and glassy water at 0 K. A hypothetical supercooled water vapor at 0 K is apparently almost as highly associated as glassy water at that temperature, suggesting a dynamic equilibrium between vapor and liquid. This water vapor condensation is highly similar in its thermodynamic behavior to that of sequence-specific pairwise (dipeptide) hydrophobic interaction, except that the negative Gibbs free energy change minimum at ?Ts?, the thermal setpoint for vapor condensation, where T?S = 0, occurs at a considerably lower temperature, 270 K (below 0°C) compared with ?350 K. The temperature of condensation ?Tcond? at which ?G(T) = 0, where water vapor begins to condense, was found to be 383 K. In the case of a sequence-specific pairwise hydrophobic interaction, the melting temperature, ?Tm?, where ?G(Tm) = 0 was found to be 460 K. Only between two temperature limits, ?Th? = 99 K and ?Tcond? = 383 K, where ?G(Tcond) = 0, is the net chemical driving force favorable for polymorphism of glassy water

  10. A differential absorption technique to estimate atmospheric total water vapor amounts

    Science.gov (United States)

    Frouin, Robert; Middleton, Elizabeth

    1990-01-01

    Vertically integrated water-vapor amounts can be remotely determined by measuring the solar radiance reflected by the earth's surface with satellites or aircraft-based instruments. The technique is based on the method by Fowle (1912, 1913) and utilizes the 0.940-micron water-vapor band to retrieve total-water-vapor data that is independent of surface reflectance properties and other atmospheric constituents. A channel combination is proposed to provide more accurate results, the SE-590 spectrometer is used to verify the data, and the effects of atmospheric photon backscattering is examined. The spectrometer and radiosonde data confirm the accuracy of using a narrow and a wide channel centered on the same wavelength to determine water vapor amounts. The technique is suitable for cloudless conditions and can contribute to atmospheric corrections of land-surface parameters.

  11. Upper limits for absorption by water vapor in the near-UV

    International Nuclear Information System (INIS)

    Wilson, Eoin M.; Wenger, John C.; Venables, Dean S.

    2016-01-01

    There are few experimental measurements of absorption by water vapor in the near-UV. Here we report the results of spectral measurements of water vapor absorption at ambient temperature and pressure from 325 nm to 420 nm, covering most tropospherically relevant short wavelengths. Spectra were recorded using a broadband optical cavity in the chemically controlled environment of an atmospheric simulation chamber. No absorption attributable to the water monomer (or the dimer) was observed at the 0.5 nm resolution of our system. Our results are consistent with calculated spectra and recent DOAS field observations, but contradict a report of significant water absorption in the near-UV. Based on the detection limit of our instrument, we report upper limits for the water absorption cross section of less than 5×10 −26 cm 2 molecule −1 at our instrument resolution. For a typical, indicative slant column density of 4×10 23 cm 2 , we calculate a maximum optical depth of 0.02 arising from absorption of water vapor in the atmosphere at wavelengths between 340 nm and 420 nm, with slightly higher maximum optical depths below 340 nm. The results of this work, together with recent atmospheric observations and computational results, suggest that water vapor absorption across most of the near-UV is small compared to visible and infrared wavelengths. - Highlights: • The absorption cross section of water vapor was studied from 325 to 420 nm. • The upper limit was 5×10 −26 cm 2 molecule −1 above 340 nm at 0.5 nm resolution. • Our result contradicts a recent report of appreciable absorption by water vapor.

  12. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration Environmental Technology Laboratoy, Boulder, CO (United States); Rye, B.J. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  13. Investigating the effects of water vaporization on the production of ...

    African Journals Online (AJOL)

    The simulations show that water vaporization increases productivity of well by increasing gas saturation and relative permeability near the well walls and improving the mobility of gas; and this effect is stronger in rich gas condensate reservoir than the lean ones. Keywords: Well, Gas, Pressure Drop, Vapor pressure of water ...

  14. Lyman Alpha Camera for Io's SO2 atmosphere and Europa's water plumes

    Science.gov (United States)

    McEwen, Alfred S.; Sandel, Bill; Schneider, Nick

    2014-05-01

    The Student Lyman-Alpha Mapper (SLAM) was conceived for the Io Volcano Observer (IVO) mission proposal (McEwen et al., 2014) to determine the spatial and temporal variations in Io's SO2 atmosphere by recording the H Ly-α reflection over the disk (Feldman et al., 2000; Feaga et al., 2009). SO2 absorbs at H Ly-α, thereby modulating the brightness of sunlight reflected by the surface, and measures the density of the SO2 atmosphere and its variability with volcanic activity and time of day. Recently, enhancements at the Ly-α wavelength (121.57 nm) were seen near the limb of Europa and interpreted as active water plumes ~200 km high (Roth et al., 2014). We have a preliminary design for a very simple camera to image in a single bandpass at Ly-α, analogous to a simplified version of IMAGE EUV (Sandel et al. 2000). Our goal is at least 50 resolution elements across Io and/or Europa (~75 km/pixel), ~3x better than HST STIS, to be acquired at a range where the radiation noise is below 1E-4 hits/pixel/s. This goal is achieved with a Cassegrain-like telescope with a 10-cm aperture. The wavelength selection is achieved using a simple self-filtering mirror in combination with a solar-blind photocathode. A photon-counting detector based on a sealed image intensifier preserves the poisson statistics of the incoming photon flux. The intensifier window is coated with a solar-blind photocathode material (CsI). The location of each photon event is recorded by a position-sensitive anode based on crossed delay-line or wedge-and-strip technology. The sensitivity is 0.01 counts/pixel/sec/R, sufficient to estimate SO2 column abundances ranging from 1E15 to 1E17 per cm2 in a 5 min (300 sec) exposure. Sensitivity requirements to search for and image Europa plumes may be similar. Io's Ly-α brightness of ~3 kR exceeds the 0.8 kR brightness of Europa's plume reported by Roth et al. (2014), but the plume brightness is a direct measurement rather than inferring column abundance from

  15. Water vapor absorption of carbon dioxide laser radiation

    Science.gov (United States)

    Shumate, M. S.; Menzies, R. T.; Margolis, J. S.; Rosengren, L.-G.

    1976-01-01

    An optoacoustic detector or spectrophone has been used to perform detailed measurements of the absorptivity of mixtures of water vapor in air. A (C-12) (O-16)2 laser was used as the source, and measurements were made at forty-nine different wavelengths from 9.2 to 10.7 microns. The details of the optoacoustic detector and its calibration are presented, along with a discussion of its performance characteristics. The results of the measurements of water vapor absorption show that the continuum absorption in the wavelength range covered is 5-10% lower than previous measurements.

  16. Investigation of tungsten mass transfer in rarefied air oxygen and water vapors

    International Nuclear Information System (INIS)

    Evsikov, A.S.; Makeev, A.A.; Lyubimova, L.L.; Sinyavskij, V.V.

    1989-01-01

    The results of experimental investigations of oxygen and water vapor effect on the rate of tungsten evaporation are presented. Methods for carrying out an experiment are presented. The experiments are carried out at the 2600 degC tungsten wire temperature and the pressure of oxygen and water vapors (2x10 -3 -5) Pa. Registration of final products of mass transfer is carried out by the DRON-2.0 diffractometer using a detachable substrate. Empirical dependence taking into account oxygen and water vapor effect on the rate of tungsten evaporation is suggested. It is marked that air oxygen and water vapor increase evaporation rate uniformly the difference is observed only in final products of interaction

  17. Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals

    CERN Document Server

    Kim, D H; Lee, J M; Yeon, K H; Choi, S C

    1998-01-01

    A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.

  18. A Plant-Based Proxy for the Oxygen Isotope Ratio of Atmospheric Water Vapor

    Science.gov (United States)

    Helliker, B.

    2007-12-01

    Atmospheric water vapor is a major component of the global hydrological cycle, but the isotopic balance of vapor is largely unknown. It is shown here that the oxygen isotope ratio of leaf water in the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides (Spanish Moss) is controlled by the oxygen isotope ratio of atmospheric water vapor in both field and lab studies. Assuming that the leaf-water isotopic signature (and hence the atmospheric water vapor signature) is recorded in plant organic material, the atmospheric water vapor oxygen isotope ratios for Miami, Florida (USA) were reconstructed for several years from 1878 to 2005 using contemporary and herbarium specimens. T. usneoides ranges from Virginia, USA southwards through the tropics to Argentina, and the CAM epiphytic lifeform is widespread in other species. Therefore, epiphytes may be used to reconstruct the isotope ratio of atmospheric water for spatial scales that span over 60° of latitude and temporal scales that cover the last century of global temperature increase.

  19. Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry

    Directory of Open Access Journals (Sweden)

    A. Stenke

    2005-01-01

    Full Text Available A transient model simulation of the 40-year time period 1960 to 1999 with the coupled climate-chemistry model (CCM ECHAM4.L39(DLR/CHEM shows a stratospheric water vapor increase over the last two decades of 0.7 ppmv and, additionally, a short-term increase after major volcanic eruptions. Furthermore, a long-term decrease in global total ozone as well as a short-term ozone decline in the tropics after volcanic eruptions are modeled. In order to understand the resulting effects of the water vapor changes on lower stratospheric ozone chemistry, different perturbation simulations were performed with the CCM ECHAM4.L39(DLR/CHEM feeding the water vapor perturbations only to the chemistry part. Two different long-term perturbations of lower stratospheric water vapor, +1 ppmv and +5 ppmv, and a short-term perturbation of +2 ppmv with an e-folding time of two months were applied. An additional stratospheric water vapor amount of 1 ppmv results in a 5–10% OH increase in the tropical lower stratosphere between 100 and 30 hPa. As a direct consequence of the OH increase the ozone destruction by the HOx cycle becomes 6.4% more effective. Coupling processes between the HOx-family and the NOx/ClOx-family also affect the ozone destruction by other catalytic reaction cycles. The NOx cycle becomes 1.6% less effective, whereas the effectiveness of the ClOx cycle is again slightly enhanced. A long-term water vapor increase does not only affect gas-phase chemistry, but also heterogeneous ozone chemistry in polar regions. The model results indicate an enhanced heterogeneous ozone depletion during antarctic spring due to a longer PSC existence period. In contrast, PSC formation in the northern hemisphere polar vortex and therefore heterogeneous ozone depletion during arctic spring are not affected by the water vapor increase, because of the less PSC activity. Finally, this study shows that 10% of the global total ozone decline in the transient model run

  20. Water quality, seasonality, and trajectory of an aquaculture-wastewater plume in the Red Sea

    KAUST Repository

    Hozumi, Aya; Hong, Pei-Ying; Kaartvedt, S; Rø stad, Anders; Jones, Burton

    2017-01-01

    As aquaculture activity increases globally, understanding water mass characteristics of the aquaculture-wastewater plume, its nutrients, and its organic matter load and spatial distribution in the coastal recipient, is critical to develop a more sustainable aquaculture operation and to improve coastal management. We examined wastewater (estimated 42-48 m3 s-1) discharged from the largest aquaculture facility in the Red Sea and surveyed the area around the aquaculture outfall to characterize the biogeochemical properties of the wastewater plume and its spatial distribution. In addition, we assessed its associated microbial community structure. The plume was characterized by elevated levels of salinity, density, and turbidity, and traveled along paths determined by the bathymetry to form a dense, 1-3 m thick layer above the seafloor. The effluent was observed at least 3.8 km from the outfall throughout the year, but up to 8 km in early autumn. The total nitrogen concentration in the plume was more than 4 times higher than in surface waters 1.4 km from the outfall. High-throughput sequencing data revealed that bacterial and cyanobacterial communities significantly differed, and flow cytometry results showed that total cell counts were significantly higher at the outfall. Arcobacter, a genus associated with opportunistic pathogenic species (e.g. A. butzleri), was more abundant, while Prochlorococcus sp. was significantly less abundant at the outfall. This dense, bottom-flowing plume may have a detrimental impact on benthic and demersal communities.

  1. Water quality, seasonality, and trajectory of an aquaculture-wastewater plume in the Red Sea

    KAUST Repository

    Hozumi, Aya

    2017-12-28

    As aquaculture activity increases globally, understanding water mass characteristics of the aquaculture-wastewater plume, its nutrients, and its organic matter load and spatial distribution in the coastal recipient, is critical to develop a more sustainable aquaculture operation and to improve coastal management. We examined wastewater (estimated 42-48 m3 s-1) discharged from the largest aquaculture facility in the Red Sea and surveyed the area around the aquaculture outfall to characterize the biogeochemical properties of the wastewater plume and its spatial distribution. In addition, we assessed its associated microbial community structure. The plume was characterized by elevated levels of salinity, density, and turbidity, and traveled along paths determined by the bathymetry to form a dense, 1-3 m thick layer above the seafloor. The effluent was observed at least 3.8 km from the outfall throughout the year, but up to 8 km in early autumn. The total nitrogen concentration in the plume was more than 4 times higher than in surface waters 1.4 km from the outfall. High-throughput sequencing data revealed that bacterial and cyanobacterial communities significantly differed, and flow cytometry results showed that total cell counts were significantly higher at the outfall. Arcobacter, a genus associated with opportunistic pathogenic species (e.g. A. butzleri), was more abundant, while Prochlorococcus sp. was significantly less abundant at the outfall. This dense, bottom-flowing plume may have a detrimental impact on benthic and demersal communities.

  2. Trends of total water vapor column above the Arctic from satellites observations

    Science.gov (United States)

    Alraddawi, Dunya; Sarkissian, Alain; Keckhut, Philippe; Bock, Olivier; Claud, Chantal; Irbah, Abdenour

    2016-04-01

    Atmospheric water vapor (H2O) is the most important natural (as opposed to man-made) greenhouse gas, accounting for about two-thirds of the natural greenhouse effect. Despite this importance, its role in climate and its reaction to climate change are still difficult to assess. Many details of the hydrological cycle are poorly understood, such as the process of cloud formation and the transport and release of latent heat contained in the water vapor. In contrast to other important greenhouse gases like carbon dioxide (CO2) and methane, water vapor has a much higher temporal and spatial variability. Total precipitable water (TPW) or the total column of water vapor (TCWV) is the amount of liquid water that would result if all the water vapor in the atmospheric column of unit area were condensed. TCWV distribution contains valuable information on the vigor of the hydrological processes and moisture transport in the atmosphere. Measurement of TPW can be obtained based on atmospheric water vapor absorption or emission of radiation in the spectral range from UV to MW. TRENDS were found over the terrestrial Arctic by means of TCWV retrievals (using Moderate Resolution Imaging Spectro-radiometer (MODIS) near-infrared (2001-2015) records). More detailed approach was made for comparisons with ground based instruments over Sodankyla - Finland (TCWV from: SCIAMACHY 2003-2011, GOME-2A 2007-2011, SAOZ 2003-2011, GPS 2003-2011, MODIS 2003-2011)

  3. Water vapor measurements in the 0.94 micron absorption band - Calibration, measurements and data applications

    Science.gov (United States)

    Reagan, J. A.; Thome, K.; Herman, B.; Gall, R.

    1987-01-01

    This paper describes methods and presents results for sensing the columnar content of atmospheric water vapor via differential solar transmission measurements in and adjacent to the 0.94-micron water-vapor absorption band. Calibration and measurement techniques are presented for obtaining the water vapor transmission from the radiometer measurements. Models are also presented for retrieving the columnar water vapor amount from the estimated transmission. Example retrievals are presented for radiometer measurements made during the 1986 Arizona Monsoon Season to track temporal variations in columnar water vapor amount.

  4. Material gap membrane distillation: A new design for water vapor flux enhancement

    KAUST Repository

    Francis, Lijo

    2013-08-19

    A new module design for membrane distillation, namely material gap membrane distillation (MGMD), for seawater desalination has been proposed and successfully tested. It has been observed that employing appropriate materials between the membrane and the condensation plate in an air gap membrane distillation (AGMD) module enhanced the water vapor flux significantly. An increase in the water vapor flux of about 200-800% was observed by filling the gap with sand and DI water at various feed water temperatures. However, insulating materials such as polypropylene and polyurethane have no effect on the water vapor flux. The influence of material thickness and characteristics has also been investigated in this study. An increase in the water gap width from 9. mm to 13. mm increases the water vapor flux. An investigation on an AGMD and MGMD performance comparison, carried out using two different commercial membranes provided by different manufacturers, is also reported in this paper. © 2013 Elsevier B.V.

  5. Millimeter-wave Radiometer for High Sensitivity Water Vapor Profiling in Arid Regions

    Energy Technology Data Exchange (ETDEWEB)

    Pazmany, Andrew

    2006-11-09

    Abstract - ProSensing Inc. has developed a G-band (183 GHz) water Vapor Radiometer (GVR) for long-term, unattended measurements of low concentrations of atmospheric water vapor and liquid water. Precipitable water vapor and liquid water path are estimated from zenith brightness temperatures measured from four double-sideband receiver channels, centered at 183.31 1, 3 and 7, and 14 GHz. A prototype ground-based version of the instrument was deployed at the DOE ARM program?s North Slope of Alaska site near Barrow AK in April 2005, where it collected data continuously for one year. A compact, airborne version of this instrument, packaged to operate from a standard 2-D PMS probe canister, has been tested on the ground and is scheduled for test flights in the summer of 2006. This paper presents design details, laboratory test results and examples of retrieved precipitable water vapor and liquid water path from measured brightness temperature data.

  6. Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ground-Based Global Positioning System (GPS) Meteorology Integrated Precipitable Water Vapor (IPW) data set measures atmospheric water vapor using ground-based...

  7. The physico-chemistry of SO2 in the smoke plumes of fossil-fueled power plants

    International Nuclear Information System (INIS)

    Sabroux, Jean-Christophe

    1974-01-01

    An experimental determination was made of the type and speed of chemical-physical transformations occurring in the stack effluents of fossil-fueled power-plants, from their emission into the atmosphere. The homogeneous chemical reactions were taken into consideration, as well as the heterogeneous reactions in the presence of a metal, oxide aerosol or water droplets owed to condensation. The results gave a general indication that the quantitatively important transformations of SO 2 , in a stack plume produced by fuel combustion, took place at the moment of water-vapor condensation; in these conditions the oxidising role of NO 2 became prevailing. (author) [fr

  8. A new method to monitor water vapor cycles in active volcanoes

    Science.gov (United States)

    Girona, T.; Costa Rodriguez, F.; Taisne, B.

    2014-12-01

    Simultaneous monitoring of different gas species of volcanic plumes is crucial to understand the mechanisms involved in persistent degassing, and to anticipate volcanic unrest episodes and magma ascent towards the surface. Progress in gas remote-sensing techniques during the last decades has led to the development of ultraviolet absorption spectrometers and UV cameras, which enable to monitor SO2 emission cycles in real time, at very high-frequency (~ 1Hz), and from several kilometers away from the volcanic plume. However, monitoring of the more abundant gases, i.e., H2O and CO2, is limited to volcanoes where infrared spectrometers and infrared lamps can be installed at both sides of the crater rims. In this study, we present a new and simple methodology to register H2O emission cycles from long distances (several kilometers), which is based on the light scattered by the micrometric water droplets of condensed plumes. The method only requires a commercial digital camera and a laptop for image processing, since, as we demonstrate, there is a linear correlation between the digital brightness of the plume and its volcanogenic water content. We have validated the method experimentally by generating controlled condensed plumes with an ultrasonic humidifier, and applied it to the plume of Erebus volcano using a 30 minutes-long movie [1]. The wavelet transforms of the plume brightness and SO2 time series (measured with DOAS [1]) show two common periodic components in the bands ~100­-250 s and ~500-­650 s. However, there is a third periodic component in the band ~300-­450 s in the SO2 time series that is absent in the brightness time series. We propose that the common periodic components are induced by magmatic foams collapsing intermittently beneath shallow geometrical barriers composed by bubbles with high content of both H2O and SO2, whereas the third periodic component could be induced by foams collapsing beneath a deeper geometrical barrier composed by bubbles with

  9. Characteristics of plasma plume in fiber laser welding of aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Ming; Chen, Cong; Hu, Ming; Guo, Lianbo; Wang, Zemin, E-mail: zmwang@mail.hust.edu.cn; Zeng, Xiaoyan

    2015-01-30

    Highlights: • Spectroscopic properties of fiber laser induced Al plasma plume are measured. • The plume is usually a metal vapor dominated weakly ionized plasma. • The plume is a strongly ionized plasma after laser power is higher than 5 kW. • Plasma shielding effect must be considered after laser power reaches 5 kW. • Plasma shielding effect is dominated by inverse bremsstrahlung absorption. - Abstract: To understand the laser–matter interaction in fiber laser welding of aluminum alloys, the effects of laser power on the characteristics of fiber laser induced plasma plume were studied by emission spectroscopic analysis firstly. The plasma characteristic parameters including electron temperature, electron density, ionization degree, and inverse bremsstrahlung linear absorption coefficient were computed according to the spectral data. It was found that the laser power of 5 kW is a turning point. After the laser power reaches 5 kW, the plume changes from a metal vapor dominated weakly ionized plasma to a strongly ionized plasma. The corresponding phenomena are the dramatic increase of the value of characteristic parameters and the appearance of strong plasma shielding effect. The calculation of effective laser power density demonstrated that the plasma shielding effect is dominated by inverse bremsstrahlung absorption. The finding suggested the plasma shielding effect must be considered in fiber laser welding of aluminum alloys, rather than is ignored as claimed in previous view.

  10. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    International Nuclear Information System (INIS)

    Dan, Ho Jin; Lee, Joon Sik

    2016-01-01

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation

  11. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  12. The Intrinsic Variability in the Water Vapor Saturation Ratio due to Turbulence

    Science.gov (United States)

    Anderson, J. C.; Cantrell, W. H.; Chandrakar, K. K.; Kostinski, A. B.; Niedermeier, D.; Shaw, R. A.

    2017-12-01

    In the atmosphere, the concentration of water vapor plays an important role in Earth's weather and climate. The mean concentration of water vapor is key to its efficiency as a greenhouse gas; the fluctuations about the mean are important for heat fluxes near the surface of earth. In boundary layer clouds, fluctuations in the water vapor concentration are linked to turbulence. Conditions representative of boundary layer clouds are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the ∏ chamber, where the boundary conditions are controlled and repeatable. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh-Bénard convection. As expected, the distributions for temperature and water vapor concentration broaden as the turbulence becomes more vigorous. From these two measurements the saturation ratio can be calculated. The fluctuations in the water vapor concentration are more important to the variability in the saturation ratio than fluctuations in temperature. In a cloud, these fluctuations in the saturation ratio can result in some cloud droplets experiencing much higher supersaturations. Those "lucky" droplets grow by condensation at a faster rate than other cloud droplets. The difference in the droplet growth rate could contribute to a broadened droplet distribution, which leads to the onset of collision-coalescence. With more intense turbulence these effect will become more pronounced as the fluctuations about the mean saturation ratio become more pronounced.

  13. Linkages Among Water Vapor Flows, Food Production, and Terrestrial Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Johan Rockström

    1999-12-01

    Full Text Available Global freshwater assessments have not addressed the linkages among water vapor flows, agricultural food production, and terrestrial ecosystem services. We perform the first bottom-up estimate of continental water vapor flows, subdivided into the major terrestrial biomes, and arrive at a total continental water vapor flow of 70,000 km3/yr (ranging from 56,000 to 84,000 km3/yr. Of this flow, 90% is attributed to forests, including woodlands (40,000 km3/yr, wetlands (1400 km3/yr, grasslands (15,100 km3/yr, and croplands (6800 km3/yr. These terrestrial biomes sustain society with essential welfare-supporting ecosystem services, including food production. By analyzing the freshwater requirements of an increasing demand for food in the year 2025, we discover a critical trade-off between flows of water vapor for food production and for other welfare-supporting ecosystem services. To reduce the risk of unintentional welfare losses, this trade-off must become embedded in intentional ecohydrological landscape management.

  14. Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data

    Directory of Open Access Journals (Sweden)

    S. Ye

    2016-09-01

    Full Text Available The near-real-time high spatial resolution of atmospheric water vapor distribution is vital in numerical weather prediction. GPS tomography technique has been proved effectively for three-dimensional water vapor reconstruction. In this study, the tomography processing is optimized in a few aspects by the aid of radiosonde and COSMIC historical data. Firstly, regional tropospheric zenith hydrostatic delay (ZHD models are improved and thus the zenith wet delay (ZWD can be obtained at a higher accuracy. Secondly, the regional conversion factor of converting the ZWD to the precipitable water vapor (PWV is refined. Next, we develop a new method for dividing the tomography grid with an uneven voxel height and a varied water vapor layer top. Finally, we propose a Gaussian exponential vertical interpolation method which can better reflect the vertical variation characteristic of water vapor. GPS datasets collected in Hong Kong in February 2014 are employed to evaluate the optimized tomographic method by contrast with the conventional method. The radiosonde-derived and COSMIC-derived water vapor densities are utilized as references to evaluate the tomographic results. Using radiosonde products as references, the test results obtained from our optimized method indicate that the water vapor density accuracy is improved by 15 and 12 % compared to those derived from the conventional method below the height of 3.75 km and above the height of 3.75 km, respectively. Using the COSMIC products as references, the results indicate that the water vapor density accuracy is improved by 15 and 19 % below 3.75 km and above 3.75 km, respectively.

  15. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    Science.gov (United States)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  16. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  17. Airborne differential absorption lidar system for water vapor investigations

    Science.gov (United States)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  18. Application of an automatic cloud tracking technique to Meteosat water vapor and infrared observations

    Science.gov (United States)

    Endlich, R. M.; Wolf, D. E.

    1980-01-01

    The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).

  19. Effects of a Simple Convective Organization Scheme in a Two-Plume GCM

    Science.gov (United States)

    Chen, Baohua; Mapes, Brian E.

    2018-03-01

    A set of experiments is described with the Community Atmosphere Model (CAM5) using a two-plume convection scheme. To represent the differences of organized convection from General Circulation Model (GCM) assumptions of isolated plumes in uniform environments, a dimensionless prognostic "organization" tracer Ω is invoked to lend the second plume a buoyancy advantage relative to the first, as described in Mapes and Neale (2016). When low-entrainment plumes are unconditionally available (Ω = 1 everywhere), deep convection occurs too easily, with consequences including premature (upstream) rainfall in inflows to the deep tropics, excessive convective versus large-scale rainfall, poor relationships to the vapor field, stable bias in the mean state, weak and poor tropical variability, and midday peak in diurnal rainfall over land. Some of these are shown to also be characteristic of CAM4 with its separated deep and shallow convection schemes. When low-entrainment plumes are forbidden by setting Ω = 0 everywhere, some opposite problems can be discerned. In between those extreme cases, an interactive Ω driven by the evaporation of precipitation acts as a local positive feedback loop, concentrating deep convection: In areas of little recent rain, only highly entraining plumes can occur, unfavorable for rain production. This tunable mechanism steadily increases precipitation variance in both space and time, as illustrated here with maps, time-longitude series, and spectra, while avoiding some mean state biases as illustrated with process-oriented diagnostics such as conserved variable profiles and vapor-binned precipitation curves.

  20. Tritiated water vapor in the surface air at Tokyo

    International Nuclear Information System (INIS)

    Inoue, Hisayuki; Katsuragi, Yukio; Shigehara, Koji

    1984-01-01

    Tritium concentration in water vapor in the air near the surface and in the precipitation at Tokyo was measured during the period from 9 August to 20 November in 1974. From August to the middle of October, tritium mixing ratios in the surface air had relatively higher values except those in air masses which were associated with a typhoon. The mixing ratios of tritium in the air decreased abruptly at the middle of October, which indicates the decrease of tritium influx from aloft. These data exhibit the salient feature that variations in tritium concentration in TR are linear to the reciprocal of the content of water vapor during each period. Tritium concentrations in vapor and rain water collected simultaneously show nearly equal values. One of the reasons for the good correlation of tritium concentration between falling drops and ambient air is considered to be the result of the rapid isotopic exchange. (author)

  1. Mars atmospheric water vapor abundance: 1996-1997

    Science.gov (United States)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  2. Dispersal of volcaniclastic material by buoyant water plumes in deep-ocean explosive basaltic eruptions

    Science.gov (United States)

    Barreyre, T.; Soule, S.; Reves-Sohn, R. A.

    2009-12-01

    The ability of mid-ocean ridge (MOR) volcanic systems to generate explosive eruptions is inhibited by the large hydrostatic pressures associated with their deep-sea location, which suppress volatile exsolution from the magma, and which preclude the generation of steam from lava-water interaction. Nevertheless, volcaniclastic material indicative of explosive activity has been found along many parts of the global MOR, raising important questions regarding the volatile systematics within mid-ocean ridge magmatic systems, and the processes by which volcaniclastic material may be dispersed during deep-sea eruptions. In this study we measured the settling velocities of volcaniclastic grains recovered from the Gakkel Ridge, Loihi Seamount, and Axial Volcano, and developed empirical settling velocity models as a function of particle size for three different particle shapes (angular, sheet, and rod). We then used the Morton, Turner, Taylor turbulent plume model to investigate how a plume of buoyant water may distribute this volcaniclastic material during a deep-sea eruption so that the physical characteristics of the deposits may be used to constrain the location and size (i.e., energy) of the eruptions that produced them. We ran the turbulent plume model for conditions ranging from a typical black smoker (~150 MW) to a megaplume (~30000 MW), and for water column density stratifications and currents corresponding to nominal conditions for the Arctic and Pacific Oceans. We found that maximum dispersal distances for the dominant size of volcaniclastic material within buoyant water plumes range from Pele). These distances are insufficient to explain the areal extent of the volcaniclastic deposits observed along the 85°E segment of the Gakkel Ridge and various portions of the Juan de Fuca Ridge, indicating that additional energy in the form of momentum from expanding gases is required to produce the observed deposits.

  3. Space-Time Variations in Water Vapor as Observed by the UARS Microwave Limb Sounder

    Science.gov (United States)

    Elson, Lee S.; Read, William G.; Waters, Joe W.; Mote, Philip W.; Kinnersley, Jonathan S.; Harwood, Robert S.

    1996-01-01

    Water vapor in the upper troposphere has a significant impact on the climate system. Difficulties in making accurate global measurements have led to uncertainty in understanding water vapor's coupling to the hydrologic cycle in the lower troposphere and its role in radiative energy balance. The Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite is able to retrieve water vapor concentration in the upper troposphere with good sensitivity and nearly global coverage. An analysis of these preliminary retrievals based on 3 years of observations shows the water vapor distribution to be similar to that measured by other techniques and to model results. The primary MLS water vapor measurements were made in the stratosphere, where this species acts as a conserved tracer under certain conditions. As is the case for the upper troposphere, most of the stratospheric discussion focuses on the time evolution of the zonal mean and zonally varying water vapor. Stratospheric results span a 19-month period and tropospheric results a 36-month period, both beginning in October of 1991. Comparisons with stratospheric model calculations show general agreement, with some differences in the amplitude and phase of long-term variations. At certain times and places, the evolution of water vapor distributions in the lower stratosphere suggests the presence of meridional transport.

  4. The measurement of water vapor permeability of glove materials using dilute tritiated water

    International Nuclear Information System (INIS)

    Doughty, D.H.

    1982-01-01

    As fusion technology progresses, there will be an increasing need to handle tritium and tritiated compounds. Protective clothing, especially drybox gloves, must be an effective barrier to minimize worker exposure. The water vapor permeability of glove materials and finished glove constructions is a crucial property of drybox gloves and is not sufficiently well characterized. We have built an apparatus that measures water vapor permeability of elastomers using dilute tritiated water. The technique is more sensitive than other methods currently available and allows us to make measurements on materials and under conditions previously inaccessible. In particular, we present results on laminated drybox gloves for which data is not currently available. (orig.)

  5. Quality and Control of Water Vapor Winds

    Science.gov (United States)

    Jedlovec, Gary J.; Atkinson, Robert J.

    1996-01-01

    Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor

  6. Water vapor retrieval from near-IR measurements of polarized scanning atmospheric corrector

    Science.gov (United States)

    Qie, Lili; Ning, Yuanming; Zhang, Yang; Chen, Xingfeng; Ma, Yan; Li, Zhengqiang; Cui, Wenyu

    2018-02-01

    Water vapor and aerosol are two key atmospheric factors effecting the remote sensing image quality. As water vapor is responsible for most of the solar radiation absorption occurring in the cloudless atmosphere, accurate measurement of water content is important to not only atmospheric correction of remote sensing images, but also many other applications such as the study of energy balance and global climate change, land surface temperature retrieval in thermal remote sensing. A multi-spectral, single-angular, polarized radiometer called Polarized Scanning Atmospheric Corrector (PSAC) were developed in China, which are designed to mount on the same satellite platform with the principle payload and provide essential parameters for principle payload image atmospheric correction. PSAC detect water vapor content via measuring atmosphere reflectance at water vapor absorbing channels (i.e. 0.91 μm) and nearby atmospheric window channel (i.e. 0.865μm). A near-IR channel ratio method was implemented to retrieve column water vapor (CWV) amount from PSAC measurements. Field experiments were performed at Yantai, in Shandong province of China, PSAC aircraft observations were acquired. The comparison between PSAC retrievals and ground-based Sun-sky radiometer measurements of CWV during the experimental flights illustrates that this method retrieves CWV with relative deviations ranging from 4% 13%. This method retrieve CWV more accurate over land than over ocean, as the water reflectance is low.

  7. The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer

    Science.gov (United States)

    Smith, Michael D.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999-March 2001). A maximum in water vapor abundance is observed at high latitudes during mid-summer in both hemispheres, reaching a maximum value of approximately 100 pr-micrometer in the north and approximately 50 pr-micrometer in the south. Low water vapor abundance (water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually-averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments shows some similar features, but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD and the large latitudinal gradient in annually-averaged water vapor observed by MAWD does not appear in the TES results.

  8. The self-similar turbulent flow of low-pressure water vapor

    Science.gov (United States)

    Konyukhov, V. K.; Stepanov, E. V.; Borisov, S. K.

    2018-05-01

    We studied turbulent flows of water vapor in a pipe connecting two closed vessels of equal volume. The vessel that served as a source of water vapor was filled with adsorbent in the form of corundum ceramic balls. These ceramic balls were used to obtain specific conditions to lower the vapor pressure in the source vessel that had been observed earlier. A second vessel, which served as a receiver, was empty of either air or vapor before each vapor sampling. The rate of the pressure increase in the receiver vessel was measured in a series of six samplings performed with high precision. The pressure reduction rate in the source vessel was found to be three times lower than the pressure growth rate in the receiver vessel. We found that the pressure growth rates in all of the adjacent pairs of samples could be arranged in a combination that appeared to be identical for all pairs, and this revealed the existence of a rather interesting and peculiar self-similarity law for the sampling processes under consideration.

  9. Advancements in oxygen generation and humidity control by water vapor electrolysis

    Science.gov (United States)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  10. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  11. Characterization of a Compact Water Vapor Radiometer

    Science.gov (United States)

    Gill, Ajay; Selina, Rob

    2018-01-01

    We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.

  12. Field campaign LINEX 96/1 - possibilities of water vapor observation in the free atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Steinhagen, H.; Dier, H.; Engelbart, D.; Goersdorf, U.; Lehmann, V.; Leiterer, U.; Neisser, J. [Deutscher Wetterdienst, Lindenberg (Germany). Meteorologisches Observatorium; Bakan, S. [Hamburg Univ. (Germany). Meteorologisches Inst.; Boesenberg, J.; Jansen, F.; Wulfmeyer, V. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Fischer, J. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften; Gendt, G. [GeoForschungsZentrum Potsdam (Germany); Gueldner, J. [Deutscher Wetterdienst, Potsdam (Germany). Meteorologisches Observatorium

    1998-12-01

    LINEX 96/1 was a field experiment to assess information content, accuracy, and availability for different remote sensing techniques measuring water vapor. An important goal of LINEX 96/1 was the test of a new differential absorption lidar (DIAL) developed by the MPI fuer meteorologie Hamburg. Comparisons of DIAL with rawinsonde and tethersonde measurements showed an excellent accuracy of the DIAL method in the determination of water vapor with high vertical and temporal resolution. The operation of the microwave radiometer WVR-1100 showed a high availability of water vapor and liquid water column content measurements except during rain. Microwave radiometers are reliable systems to measure the precipitable water vapor and liquid water content under unattended operational conditions with high accuracy and temporal resolution. Measurements of the water vapor column content by ground-based GPS receivers proved highly reliable. Comparisons with corresponding values of the microwave radiometer showed a bias less than 0.6 mm and a standard deviation less than 0.9 mm. The main problem of an operational use of this new information is that the evaluated data are not available in real-time because, at present, the data have to be postprocessed in a ground control center. During LINEX 96/1, possibilities for estimation of water vapor column content from sun and star photometer measurements were also demonstrated. The comparison of the precipitable water vapor content measurements of sun and star photometers, microwave radiometer, and rawinsondes RS 80 showed a good agreement. Unfortunately, the use of optical methods like sun and star photometers is restricted by cloudy conditions. 28 refs.

  13. Optimization of band-pass filtering parameters of a Raman lidar detecting atmospheric water vapor

    International Nuclear Information System (INIS)

    Cao, Kai-Fa; Hu, Shun-Xing; Wang, Ying-jian

    2012-01-01

    It is very important for daytime Raman lidar measurement of water vapor to determine the parameters of a band-pass filter, which are pertinent to the lidar signal to noise ratio (SNR). The simulated annealing (SA) algorithm method has an advantage in finding the extremum of a certain cost function. In this paper, the Raman spectrum of water vapor is simulated and then a first realization of a simulated annealing algorithm in the optimization of a band-pass filter of a Raman lidar system designed to detect daytime water vapor is presented. The simulated results indicate that the narrow band-pass filter has higher SNR than the wide filter does but there would be an increase in the temperature sensitivity of a narrowband Raman water vapor lidar in the upper troposphere. The numerical simulation indicates that the magnitude of the temperature dependent effect can reach 3.5% or more for narrow band-pass Raman water vapor measurements so it is necessary to consider a new water vapor Raman lidar equation that permits the temperature sensitivity of these equations to be confined to a single term. (paper)

  14. Improved waste water vapor compression distillation technology. [for Spacelab

    Science.gov (United States)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  15. Aircraft profile measurements of 18O/16O and D/H isotope ratios of cloud condensate and water vapor constrain precipitation efficiency and entrainment rates in tropical clouds

    Science.gov (United States)

    Noone, D. C.; Raudzens Bailey, A.; Toohey, D. W.; Twohy, C. H.; Heymsfield, A.; Rella, C.; Van Pelt, A. D.

    2011-12-01

    Convective clouds play a significant role in the moisture and heat balance of the tropics. The dynamics of organized and isolated convection are a function of the background thermodynamic profile and wind shear, buoyancy sources near the surface and the latent heating inside convective updrafts. The stable oxygen and hydrogen isotope ratios in water vapor and condensate can be used to identify dominant moisture exchanges and aspects of the cloud microphysics that are otherwise difficult to observe. Both the precipitation efficiency and the dilution of cloud updrafts by entrainment can be estimated since the isotopic composition outside the plume is distinct from inside. Measurements of the 18O/16O and D/H isotope ratios were made in July 2011 on 13 research flights of the NCAR C130 aircraft during the ICE-T (Ice in Clouds Experiment - Tropical) field campaign near St Croix. Measurements were made using an instrument based on the Picarro Wave-Length Scanning Cavity Ring Down platform that includes a number of optical, hardware and software modifications to allow measurements to be made at 5 Hz for deployment on aircraft. The measurement system was optimized to make precise measurements of the isotope ratio of liquid and ice cloud condensate by coupling the gas analyzer to the NCAR Counter flow Virtual Impactor inlet. The inlet system provides a particle enhancement while rejecting vapor. Sample air is vigorously heated before flowing into the gas phase analyzer. We present statistics that demonstrate the performance and calibration of the instrument. Measured profiles show that environmental air exhibits significant layering showing controls from boundary layer processes, large scale horizontal advection and regional subsidence. Condensate in clouds is consistent with generally low precipitation efficiency, although there is significant variability in the isotope ratios suggesting heterogeneity within plumes and the stochastic nature of detrainment processes

  16. Development and Validation of Water Vapor Tracers as Diagnostics for the Atmospheric Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. The formulation of the sources and sinks of tracer water is generally proportional to the prognostic water vapor variable. Because all water has been accounted for in tracers, the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The tracers have been implemented in a GEOS General Circulation Model (GCM) simulation consisting of several summer periods to determine the source regions of precipitation for the United States and India. The recycling of water and interannual variability of the sources of water will be examined. Potential uses in GCM sensitivity studies, predictability studies and data assimilation will be discussed.

  17. Water Vapor Tacers as Diagnostics of the Regional Atmospheric Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle, especially in North America where moisture transport and local evaporation are important sources of water for precipitation. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. All evaporative sources of water are accounted for by tracers, and the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The Geostationary Operational Environmental Satellites General Circulation Model (GEOS GCM) is used to simulate several summer periods to determine the source regions of precipitation for the United States and India. Using this methodology, a detailed analysis of the recycling of water, interannual variability of the sources of water and links to the Great Plains low-level jet and North American monsoon will be presented. Potential uses in GCM sensitivity studies, predictability studies and data assimilation especially regarding the North American monsoon and GEWEX America Prediction Project (GAPP) will be discussed.

  18. Site of water vapor absorption in the desert cockroach, Arenivaga investigata.

    Science.gov (United States)

    O'Donnell, M J

    1977-01-01

    The desert cockroach, Arenivaga investigata, can gain weight by absorption of water-vapor from unsaturated atmospheres above 82.5% relative humidity. Blocking the anus or the dorsal surface with wax does not prevent water vapor uptake, but interference with movements of the mouthparts or blocking the mouth with wax-prevents such uptake. Weight gains are associated with the protrusion from the mouth of two bladder-like extensions of the hypopharynx. During absorption these structures are warmer than the surrounding mouthparts, their surface temperature increasing with relative humidity. This suggests that the surfaces of the bladder-like structures function at least as sites for condensation of water vapor, but the precise location of its transfer into the hemolymph has not yet been identified. Images PMID:266217

  19. Processes Controlling Water Vapor in the Winter Arctic Tropopause Region

    Science.gov (United States)

    Pfister, Leonhard; Selkirk, Henry B.; Jensen, Eric J.; Padolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark R.; Mahoney, Michael J.; Richard, Erik

    2002-01-01

    This work describes transport and thermodynamic processes that control water vapor near the tropopause during the SAGE III-Ozone Loss and Validation Experiment (SOLVE), held during the Arctic 1999/2000 winter season. Aircraft-based water vapor, carbon monoxide, and ozone measurements were analyzed so as to establish how deeply tropospheric air mixes into the Arctic lowermost stratosphere and what the implications are for cloud formation and water vapor removal in this region of the atmosphere. There are three major findings. First, troposphere-to-stratosphere exchange extends into the Arctic stratosphere to about 13 km. Penetration is to similar levels throughout the winter, however, because ozone increases with altitude most rapidly in the early spring, tropospheric air mixes with the highest values of ozone in that season. The effect of this upward mixing is to elevate water vapor mixing ratios significantly above their prevailing stratospheric values of above 5ppmv. Second, the potential for cloud formation in the stratosphere is highest during early spring, with about 20% of the parcels which have ozone values of 300-350 ppbv experiencing ice saturation in a given 10 day period. Third, during early spring, temperatures at the troposphere are cold enough so that 5-10% of parcels experience relative humidities above 100%, even if the water content is as low as 5 ppmv. The implication is that during this period, dynamical processes near the Arctic tropopause can dehydrate air and keep the Arctic tropopause region very dry during early spring.

  20. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs.

    Science.gov (United States)

    Lesniewski, Ryan A; Jain, Sunit; Anantharaman, Karthik; Schloss, Patrick D; Dick, Gregory J

    2012-12-01

    Microorganisms mediate geochemical processes in deep-sea hydrothermal vent plumes, which are a conduit for transfer of elements and energy from the subsurface to the oceans. Despite this important microbial influence on marine geochemistry, the ecology and activity of microbial communities in hydrothermal plumes is largely unexplored. Here, we use a coordinated metagenomic and metatranscriptomic approach to compare microbial communities in Guaymas Basin hydrothermal plumes to background waters above the plume and in the adjacent Carmen Basin. Despite marked increases in plume total RNA concentrations (3-4 times) and microbially mediated manganese oxidation rates (15-125 times), plume and background metatranscriptomes were dominated by the same groups of methanotrophs and chemolithoautotrophs. Abundant community members of Guaymas Basin seafloor environments (hydrothermal sediments and chimneys) were not prevalent in the plume metatranscriptome. De novo metagenomic assembly was used to reconstruct genomes of abundant populations, including Marine Group I archaea, Methylococcaceae, SAR324 Deltaproteobacteria and SUP05 Gammaproteobacteria. Mapping transcripts to these genomes revealed abundant expression of genes involved in the chemolithotrophic oxidation of ammonia (amo), methane (pmo) and sulfur (sox). Whereas amo and pmo gene transcripts were abundant in both plume and background, transcripts of sox genes for sulfur oxidation from SUP05 groups displayed a 10-20-fold increase in plumes. We conclude that the biogeochemistry of Guaymas Basin hydrothermal plumes is mediated by microorganisms that are derived from seawater rather than from seafloor hydrothermal environments such as chimneys or sediments, and that hydrothermal inputs serve as important electron donors for primary production in the deep Gulf of California.

  1. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  2. Entrainment by turbulent plumes

    Science.gov (United States)

    Parker, David; Burridge, Henry; Partridge, Jamie; Linden, Paul

    2017-11-01

    Plumes are of relevance to nature and real consequence to industry. While the Morton, Taylor & Turner (1956) plume model is able to estimate the mean physical flux parameters, the process of entrainment is only parametrised in a time-averaged sense and a deeper understanding is key to understanding how they evolve. Various flow configurations, resulting in different entrainment values, are considered; we perform simultaneous PIV and plume-edge detection on saline plumes in water resulting from a point source, a line source and a line source where a vertical wall is placed immediately adjacent. Of particular interest is the effect the large scale eddies, forming at the edge of the plume and engulfing ambient fluid, have on the entrainment process. By using velocity statistics in a coordinate system based on the instantaneous scalar edge of the plume the significance of this large scale engulfment is quantified. It is found that significant mass is transported outside the plumes, in particular in regions where large scale structures are absent creating regions of relatively high-momentum ambient fluid. This suggests that the large scale processes, whereby ambient fluid is engulfed into the plume, contribute significantly to the entrainment.

  3. A Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio Spectrometer

    NARCIS (Netherlands)

    Iannone, Rosario Q.; Romanini, Daniele; Kassi, Samir; Meijer, Harro A. J.; Kerstel, Erik R. Th.

    A microdrop generator is described that produces water vapor with a known isotopic composition and volume mixing ratio for the calibration of a near-infrared diode laser water isotope ratio spectrometer. The spectrometer is designed to measure in situ the water vapor deuterium and oxygen ((17)O and

  4. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    Science.gov (United States)

    Yeung, E.S.; Chen, G.

    1990-05-01

    A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

  5. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    Science.gov (United States)

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  6. Beeswax–chitosan emulsion coated paper with enhanced water vapor barrier efficiency

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Xiao, Huining; Qian, Liying

    2014-01-01

    Graphical abstract: - Highlights: • The water vapor barrier efficiency of paper was enhanced via green-based emulsion coating. • Extremely high lipid content in the emulsion coating layer was firstly utilized to reduce WVTR in emulsion-based film. • A controlled WVTR of beeswax–chitosan emulsion coating could be obtained by dying at specific temperature. - Abstract: For lipid–hydrocolloid emulsion based film, the increase of lipid amount would improve its water vapor barrier property, but also reduce the mechanical strength of the film in the meantime thus leading to a compromised lipid content in the film. However, when the emulsion is coated on paper surface, more lipid could be used for emulsion preparation to enhance the moisture resistance without considering the weakened strength of the film induced by lipid, because the mechanical properties of emulsion coated paper is mainly governed by the strength of base paper instead of the coating layer. In this study, beeswax–chitosan emulsion was first prepared and then coated on paper surface to improve paper's water vapor barrier and water resistance properties. The range and variance analysis of orthogonal test design showed that the order of priorities of the factors accordingly was beeswax solid content, drying temperature and chitosan concentration. The effect of drying temperature on water vapor transmission rate (WVTR) and water contact angle of coated paper was further investigated using 1.2 wt% chitosan and 96% beeswax solid content in the coating layer. The results indicated that water vapor barrier property was in accordance with the density of the coating layer. Atomic force microscope (AFM) was also used to characterize the surface morphology and explain the hydrophobicity of beeswax–chitosan coated paper. It was found that surface beeswax particles melted to wrinkle at high drying temperatures, while roughness values maintained at micro-scale over the temperature range investigated

  7. Exchange reaction between tritiated hydrogen and water vapor

    International Nuclear Information System (INIS)

    Yamada, Koichi; Takano, Kenichi; Watanabe, Tamaki.

    1979-01-01

    Exchange reaction of tritiated hydrogen to water vapor under the condition of tritium gas concentration between 1 μCi/l and 1 mCi/l was studied. Tritium gas with hydrogen gas of 5 Torr and water of 20 mg were enclosed in a Pyrex glass ampule with volume of about 100 ml. The mixed gas with water vapor was heated with electric furnace. The heating time was between 2 and 100 hr, and the temperature was 776, 725, 675, 621, and 570.5 0 K. After heating, tritiated water was trapped with liquid nitrogen, and counted with a liquid scintillation counter. The radioactive concentration of initial tritiated hydrogen was measured with a calibrated ionization chamber. The main results obtained are as follows; 1) the concentration of produced tritiated water is well proportioned to that of initial tritiated hydrogen, 2) the activation energy of exchange reaction from tritiated hydrogen to tritiated water is 26.2 kcal/mol and that of inverse reaction is 27.4 kcal/mol, 3) the reaction rate at room temperature which calculated with activation energy is 1.04 x 10 -13 day -1 , and then exchange reaction at room temperature is negligible. (author)

  8. Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO

    Directory of Open Access Journals (Sweden)

    C. I. Garfinkel

    2018-04-01

    Full Text Available A series of simulations using the NASA Goddard Earth Observing System Chemistry–Climate Model are analyzed in order to aid in the interpretation of observed interannual and sub-decadal variability in the tropical lower stratosphere over the past 35 years. The impact of El Niño–Southern Oscillation on temperature and water vapor in this region is nonlinear in boreal spring. While moderate El Niño events lead to cooling in this region, strong El Niño events lead to warming, even as the response of the large-scale Brewer–Dobson circulation appears to scale nearly linearly with El Niño. This nonlinearity is shown to arise from the response in the Indo-West Pacific to El Niño: strong El Niño events lead to tropospheric warming extending into the tropical tropopause layer and up to the cold point in this region, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Niña and strong El Niño events lead to enhanced entry water vapor and stratospheric moistening in boreal spring and early summer. These results lead to the following interpretation of the contribution of sea surface temperatures to the decline in water vapor in the early 2000s: the very strong El Niño event in 1997/1998, followed by more than 2 consecutive years of La Niña, led to enhanced lower-stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. This effect accounts for approximately one-quarter of the observed drop.

  9. Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO

    Science.gov (United States)

    Garfinkel, Chaim I.; Gordon, Amit; Oman, Luke D.; Li, Feng; Davis, Sean; Pawson, Steven

    2018-04-01

    A series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model are analyzed in order to aid in the interpretation of observed interannual and sub-decadal variability in the tropical lower stratosphere over the past 35 years. The impact of El Niño-Southern Oscillation on temperature and water vapor in this region is nonlinear in boreal spring. While moderate El Niño events lead to cooling in this region, strong El Niño events lead to warming, even as the response of the large-scale Brewer-Dobson circulation appears to scale nearly linearly with El Niño. This nonlinearity is shown to arise from the response in the Indo-West Pacific to El Niño: strong El Niño events lead to tropospheric warming extending into the tropical tropopause layer and up to the cold point in this region, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Niña and strong El Niño events lead to enhanced entry water vapor and stratospheric moistening in boreal spring and early summer. These results lead to the following interpretation of the contribution of sea surface temperatures to the decline in water vapor in the early 2000s: the very strong El Niño event in 1997/1998, followed by more than 2 consecutive years of La Niña, led to enhanced lower-stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. This effect accounts for approximately one-quarter of the observed drop.

  10. An interim reference model for the variability of the middle atmosphere water vapor distribution

    Science.gov (United States)

    Remsberg, E. E.; Russell, J. M., III; Wu, C.-Y.

    1990-01-01

    A reference model for the middle atmosphere water vapor distribution for some latitudes and seasons was developed using two data sets. One is the seven months of Nimbus LIMS data obtained during November 1978 to May 1979 over the range 64 deg S - 84 deg N latitude and from about 100-mb to 1-mb altitude, and the other is represented by water vapor profiles from 0.2 mb to 0.01 mb in the mid-mesosphere, measured on ground at several fixed mid-latitude sites in the Northern Hemisphere, using microwave-emission techniques. This model provides an interim water vapor profile for the entire vertical range of the middle atmosphere, with accuracies of better than 25 percent. The daily variability of stratospheric water vapor profiles about the monthly mean is demonstrated, and information is provided on the longitudinal variability of LIMS water vapor profiles about the daily, weekly, and monthly zonal means.

  11. CFD modeling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Yang, Yan; Walther, Jens Honore; Yan, Yuying

    2017-01-01

    The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic flows using the nucleation and droplet growth...... theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are described in detail. The results show that the condensation process is a rapid variation of the vapor-liquid phase...... change both in the space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  12. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    Science.gov (United States)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  13. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of surface evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote geographic sources of surface evaporation for precipitation, based on the implementation of three-dimensional constituent tracers of regional water vapor sources (termed water vapor tracers, WVT) in a general circulation model. The major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In the WVT approach, each tracer is associated with an evaporative source region for a prognostic three-dimensional variable that represents a partial amount of the total atmospheric water vapor. The physical processes that act on a WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be predicted within the model simulation, and can be validated against the model's prognostic water vapor. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional sources, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In most North American continental regions, the local source of precipitation is

  14. Turbulent structure of thermal plume. Velocity field

    International Nuclear Information System (INIS)

    Guillou, B.; Brahimi, M.; Doan-kim-son

    1986-01-01

    An experimental investigation and a numerical study of the dynamics of a turbulent plume rising from a strongly heated source are described. This type of flow is met in thermal effluents (air, vapor) from, e.g., cooling towers of thermal power plants. The mean and fluctuating values of the vertical component of the velocity were determined using a Laser-Doppler anemometer. The measurements allow us to distinguish three regions in the plume-a developing region near the source, an intermediate region, and a self-preserving region. The characteristics of each zone have been determined. In the self-preserving zone, especially, the turbulence level on the axis and the entrainment coefficient are almost twice of the values observed in jets. The numerical model proposed takes into account an important phenomenon, the intermittency, observed in the plume. This model, established with the self-preserving hypothesis, brings out analytical laws. These laws and the predicted velocity profile are in agreement with the experimental evolutions [fr

  15. The Effect of Cirrus Clouds on Water Vapor Transport in the Upper Troposphere and Lower Stratosphere

    Science.gov (United States)

    Lei, L.; McCormick, M. P.; Anderson, J.

    2017-12-01

    Water vapor plays an important role in the Earth's radiation budget and stratospheric chemistry. It is widely accepted that a large percentage of water vapor entering the stratosphere travels through the tropical tropopause and is dehydrated by the cold tropopause temperature. The vertical transport of water vapor is also affected by the radiative effects of cirrus clouds in the tropical tropopause layer. This latter effect of cirrus clouds was investigated in this research. The work focuses on the tropical and mid-latitude region (50N-50S). Water vapor data from the Microwave Limb Sounder (MLS) and cirrus cloud data from the Cloud-Aerosol Lidar and Infrared pathfinder Satellite Observation (CALIPSO) instruments were used to investigate the relationship between the water vapor and the occurrence of cirrus cloud. A 10-degree in longitude by 10-degree in latitude resolution was chosen to bin the MLS and CALIPSO data. The result shows that the maximum water vapor in the upper troposphere (below 146 hPa) is matched very well with the highest frequency of cirrus cloud occurrences. Maximum water vapor in the lower stratosphere (100 hPa) is partly matched with the maximum cirrus cloud occurrence in the summer time. The National Oceanic and Atmospheric Administration Interpolated Outgoing Longwave Radiation data and NCEP-DOE Reanalysis 2 wind data were used also to investigate the relationship between the water vapor entering the stratosphere, deep convection, and wind. Results show that maximum water vapor at 100 hPa coincides with the northern hemisphere summer-time anticyclone. The effects from both single-layer cirrus clouds and cirrus clouds above the anvil top on the water vapor entering the stratosphere were also studied and will be presented.

  16. Monitoring middle-atmospheric water vapor over Seoul by using a 22 GHz ground-based radiometer SWARA

    Science.gov (United States)

    Ka, Soohyun; de Wachter, Evelyn; Kaempfer, Niklaus; Oh, Jung Jin

    2010-10-01

    Water vapor is the strongest natural greenhouse gas in the atmosphere. It is most abundant in the troposphere at low altitudes, due to evaporation at the ocean surface, with maximum values of around 6 g/kg. The amount of water vapor reaches a minimum at tropopause level and increases again in the middle atmosphere through oxidation of methane and vertical transport. Water vapor has both positive and negative effects on global warming, and we need to study how it works on climate change by monitoring water vapor concentration in the middle atmosphere. In this paper, we focus on the 22 GHz ground-based radiometer called SWARA (Seoul Water vapor Radiometer) which has been operated at Sookmyung women's university in Seoul, Korea since Oct. 2006. It is a joint project of the University of Bern, Switzerland, and the Sookmyung Women's University of Seoul, South Korea. The SWARA receives 22.235 GHz emitted from water vapor spontaneously and converts down to 1.5 GHz with +/- 0.5 GHz band width in 61 kHz resolution. To represent 22.235 GHz water vapor spectrum precisely, we need some calibration methods because the signal shows very weak intensity in ~0.1 K on the ground. For SWARA, we have used the balancing and the tipping curve methods for a calibration. To retrieve the water vapor profile, we have applied ARTS and Qpack software. In this paper, we will present the calibration methods and water vapor variation over Seoul for the last 4 years.

  17. Water vapor stable isotope observations from tropical Australia

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    The response of the tropical hydrological cycle to anthropogenically induced changes in radiative forcing is one of the largest discrepancies between climate models. Paleoclimate archives of the stable isotopic composition of precipitation in the tropics indicate a relationship with precipitation amount that could be exploited to study past hydroclimate and improve our knowledge of how this region responds to changes in climate forcing. Recently modelling studies of convective parameterizations fitted with water isotopes and remote sensing of water vapor isotopes in the tropics have illustrated uncertainty in the assumed relationship with rainfall amount. Therefore there is a need to collect water isotope data in the tropics that can be used to evaluate these models and help identify the relationships between the isotopic composition of meteoric waters and rainfall intensity. However, data in this region is almost non-existent. Here we present in-situ water vapor isotopic measurements and the HDO retrievals from the co-located Total Column Carbon Observing Network (TCCON) site at Darwin in Tropical Australia. The Darwin site is interestingly placed within the tropical western pacific region and is impacted upon by a clear monsoonal climate, and key climate cycles including ENSO and Madden Julian Oscillations. The analysis of the data illustrated relationships between water vapor isotopes and humidity which demonstrated the role of precipitation processes in the wet season and air mass mixing during the dry season. Further the wet season observations show complex relationships between humidity and isotopes. A simple Rayleigh distillation model was not obeyed, instead the importance of rainfall re-evaporation in generating the highly depleted signatures was demonstrated. These data potentially provide a useful tool for evaluating model parameterizations in monsoonal regions as they demonstrate relationships with precipitation processes that cannot be observed with

  18. Propelling a water drop with the vapor-mediated Marangoni effect

    Science.gov (United States)

    Kim, Seungho; Kim, Ho-Young

    2013-11-01

    We show that a water drop on solid surfaces can be propelled just by placing a volatile alcohol drop nearby. It is found to be because the water-air interface near the alcohol drop mixes with alcohol vapor, thereby locally lowering the surface tension. The surface-tension-gradient induces the motion of the water drop, enabling the trajectory control of water drops through the motion of remote alcohol drops. This vapor-mediated Marangoni effect also gives rise to other interesting interfacial flow phenomena, such as nucleation of holes on a water film and ballooning of a water drop hanging from a syringe needle with the approach of an alcohol drop. We visualize such interfacial dynamics with a high-speed camera and rationalize their salient features by scaling analysis. This work was supported by the National Research Foundation of Korea (grant no. 2012-008023).

  19. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  20. Effects of water vapor on flue gas conditioning in the electric fields with corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Liqiang, QI, E-mail: qi_liqiang@163.com; Yajuan, Zhang

    2013-07-15

    Highlights: • The influence mechanism of water vapor humidification on SO{sub 2} oxidation was analyzed. •The effects of water vapor on the specific resistance in fly ash in ESPs were reported. • The effects of water vapor on the size distribution and specific surface area of fly ash were discussed. • The adhesive characteristic of fly ash in different water vapor was experimented. -- Abstract: Sulfur dioxide (SO{sub 2}) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5 μm in diameter from flue gas. SO{sub 2} removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO{sub 3}{sup −} to SO{sub 4}{sup 2−}. Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased.

  1. Partitioning Water Vapor and Carbon Dioxide Fluxes using Correlation Analysis

    Science.gov (United States)

    Scanlon, T. M.

    2008-12-01

    A variety of methods are currently available to partition water vapor fluxes (into components of transpiration and direct evaporation) and carbon dioxide fluxes (into components of photosynthesis and respiration), using chambers, isotopes, and regression modeling approaches. Here, a methodology is presented that accounts for correlations between high-frequency measurements of water vapor (q) and carbon dioxide (c) concentrations being influenced by their non-identical source-sink distributions and the relative magnitude of their constituent fluxes. Flux-variance similarity assumptions are applied separately to the stomatal and the non-stomatal exchange, and the flux components are identified by considering the q-c correlation. Water use efficiency for the vegetation, and how it varies with respect to vapor pressure deficit, is the only input needed for this approach that uses standard eddy covariance measurements. The method is demonstrated using data collected over a corn field throughout a growing season. In particular, the research focuses on the partitioning of the water flux with the aim of improving how direct evaporation is handled in soil-vegetation- atmosphere transfer models over the course of wetting and dry-down cycles.

  2. Waste storage in the vadose zone affected by water vapor condensation and leaching

    International Nuclear Information System (INIS)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab

  3. NASA Experiment on Tropospheric-Stratospheric Water Vapor Transport in the Intertropical Convergence Zone

    Science.gov (United States)

    Page, William A.

    1982-01-01

    The following six papers report preliminary results obtained from a field experiment designed to study the role of tropical cumulo-nimbus clouds in the transfer of water vapor from the troposphere to the stratosphere over the region of Panama. The measurements were made utilizing special NOAA enhanced IR satellite images, radiosonde-ozonesondes and a NASA U-2 aircraft carrying. nine experiments. The experiments were provided by a group of NASA, NOAA, industry, and university scientists. Measurements included atmospheric humidity, air and cloud top temperatures, atmospheric tracer constituents, cloud particle characteristics and cloud morphology. The aircraft made a total of eleven flights from August 30 through September 18, 1980, from Howard Air Force Base, Panama; the pilots obtained horizontal and vertical profiles in and near convectively active regions and flew around and over cumulo-nimbus towers and through the extended anvils in the stratosphere. Cumulo-nimbus clouds in the tropics appear to play an important role in upward water vapor transport and may represent the principal source influencing the stratospheric water vapor budget. The clouds provide strong vertical circulation in the troposphere, mixing surface air and its trace materials (water vapor, CFM's sulfur compounds, etc.) quickly up to the tropopause. It is usually assumed that large scale mean motions or eddy scale motions transport the trace materials through the tropopause and into the stratosphere where they are further dispersed and react with other stratospheric constituents. The important step between the troposphere and stratosphere for water vapor appears to depend upon the processes occurring at or near the tropopause at the tops of the cumulo-nimbus towers. Several processes have been sugested: (1) The highest towers penetrate the tropopause and carry water in the form of small ice particles directly into the stratosphere. (2) Water vapor from the tops of the cumulonimbus clouds is

  4. Differential Absorption Radar: An Emerging Technology for Remote Sounding of Water Vapor Within Clouds

    Science.gov (United States)

    Lebsock, M. D.; Millan Valle, L. F.; Cooper, K. B.; Siles, J.; Monje, R.

    2017-12-01

    We present the results of our efforts to build and demonstrate the first Differential Absorption Radar (DAR), which will provide unique capabilities to remotely sound for water vapor within cloudy and precipitating atmospheres. The approach leverages multiple radar channels located near the 183 GHz water vapor absorption feature to simultaneously derive microphysical and water vapor profiles. The DAR technique has the potential to neatly complement existing water vapor sounding techniques such as infrared and microwave sounding and GPS radio occultation. These precisions rival those of existing water vapor remote sensing instruments. The approach works best from above clouds because the water vapor burden and line width increases towards the Earth surface allowing increased sampling from the top-down compared with bottom-up. From an airborne or satellite platform channels can be selected that target either upper-tropospheric or lower-tropospheric clouds. Our theoretical studies suggest that the water vapor concentration can be retrieved to within 1-3 gm-3 and the column integrated water vapor can be retrieved to within 1 kgm-2. The high-frequency radar is only recently enabled by technological advances that have allowed us to demonstrate 0.5 W of continuous power near 183 GHz. We are currently developing an airborne DAR using a Frequency Modulated Continuous Wave (FMCW) architecture with a quasi-optical duplexer providing 80 dB of transmit/receive isolation. A prototype of this instrument recently made the first ever range resolved DAR measurements of humidity out to several hundred meters during a light rain event at JPL. The spectral dependence of the attenuation was in excellent agreement with the predicted attenuation based on nearby weather stations, proving for the first time the feasibility of the concept. A major impediment to implementing DAR is the international regulation of radio-frequency transmissions below 300 GHz. The major roadblocks and potential

  5. Sensitive coating for water vapors detection based on thermally sputtered calcein thin films.

    Science.gov (United States)

    Kruglenko, I; Shirshov, Yu; Burlachenko, J; Savchenko, A; Kravchenko, S; Manera, M G; Rella, R

    2010-09-15

    In this paper the adsorption properties of thermally sputtered calcein thin films towards water and other polar molecules vapors are studied by different characterization techniques: quartz crystal microbalance, surface plasmon resonance and visible spectroscopy. Sensitivity of calcein thin films to water vapors resulted much higher as compared with those of a number of dyes whose structure was close to that of calcein. All types of sensors with calcein coatings have demonstrated linear concentration dependences in the wide range of water vapor pressure from low concentrations up to 27,000 ppm (close to saturation). At higher concentrations of water vapor all sensors demonstrate the abrupt increase of the response (up to two orders). A theoretical model is advanced explaining the adsorption properties of calcein thin films taking into account their chemical structure and peculiarities of molecular packing. The possibility of application of thermally sputtered calcein films in sensing technique is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Dual effects of water vapor on ceria-supported gold clusters.

    Science.gov (United States)

    Li, Zhimin; Li, Weili; Abroshan, Hadi; Ge, Qingjie; Li, Gao; Jin, Rongchao

    2018-04-05

    Atomically precise nanocatalysts are currently being intensely pursued in catalysis research. Such nanocatalysts can serve as model catalysts for gaining fundamental insights into catalytic processes. In this work we report a discovery that water vapor provokes the mild removal of surface long-chain ligands on 25-atom Au25(SC12H25)18 nanoclusters in a controlled manner. Using the resultant Au25(SC12H25)18-x/CeO2 catalyst and CO oxidation as a probe reaction, we found that the catalytic activity of cluster/CeO2 is enhanced from nearly zero conversion of CO (in the absence of water) to 96.2% (in the presence of 2.3 vol% H2O) at the same temperature (100 °C). The cluster catalysts exhibit high stability during the CO oxidation process under moisture conditions (up to 20 vol% water vapor). Water vapor plays a dual role in gold cluster-catalyzed CO oxidation. FT-IR and XPS analyses in combination with density functional theory (DFT) simulations suggest that the "-SC12H25" ligands are easier to be removed under a water vapor atmosphere, thus generating highly active sites. Moreover, the O22- peroxide species constitutes the active oxygen species in CO oxidation, evidenced by Raman spectroscopy analysis and isotope experiments on the CeO2 and cluster/CeO2. The results also indicate the perimeter sites of the interface of Au25(SC12H25)18-x/CeO2 to be active sites for catalytic CO oxidation. The controlled exposure of active sites under mild conditions is of critical importance for the utilization of clusters in catalysis.

  7. Chesapeake Bay plume dynamics from LANDSAT

    Science.gov (United States)

    Munday, J. C., Jr.; Fedosh, M. S.

    1981-01-01

    LANDSAT images with enhancement and density slicing show that the Chesapeake Bay plume usually frequents the Virginia coast south of the Bay mouth. Southwestern (compared to northern) winds spread the plume easterly over a large area. Ebb tide images (compared to flood tide images) show a more dispersed plume. Flooding waters produce high turbidity levels over the shallow northern portion of the Bay mouth.

  8. Relationship between changes in the upper and lower tropospheric water vapor: A revisit

    Science.gov (United States)

    Yang, M.; Sun, D. Z.; Zhang, G. J.

    2017-12-01

    Upper tropospheric water vapor response to enhanced greenhouse gas forcing is as important as the lower tropospheric water vapor response in determining climate sensitivity. Early studies using older versions of climate models have suggested that the upper- and lower-troposphere water vapor changes are more strongly coupled in the climate models than in the observations. Here we reexamine this issue using a state-of-the-art climate model—the NCAR community model CAM5. Specifically, we have calculated the correlations between interannual variations of specific humidity in all levels of the troposphere with that at the surface in CAM5 and in the observations (as represented by the updated ERA-Interim and NCEP reanalysis). It is found that the previously noted biases in how strongly upper tropospheric water vapor and lower troposphere water vapor are linked still exist in CAM5—the change in the tropical averaged upper tropospheric water vapor is more strongly correlated with the change in the surface. However, this bias disappears in the averaged correlation obtained by averaging the point-by-point correlations over the tropics. The spatial pattern of the point-by-point correlations reveals that the better agreement between the model and the observations is related to the opposite model biases in different regions: the correlation is weaker in the model in the western Pacific, but stronger in the central and eastern Pacific. Further analysis of precipitation fields suggests that the weaker (stronger) coupling between tropospheric water vapor and surface moisture over western (central-eastern) Pacific in model is related to weaker (stronger) simulated convective activities in these regions. More specifically, during El Nino, the model has excessive deep convection in the central Pacific, but too littler deep convection in western Pacific. Implications of the results are discussed in the context of climate change as well as in the context of how to improve the model

  9. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS).

    Science.gov (United States)

    DeMario, Anthony; Lopez, Pete; Plewka, Eli; Wix, Ryan; Xia, Hai; Zamora, Emily; Gessler, Dan; Yalin, Azer P

    2017-02-07

    We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS), for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR) camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  10. Combined ground- and satellite-based profiling of temperature and water vapor

    International Nuclear Information System (INIS)

    Stankov, B.B.; Westwater, E.R.; Snider, J.B.; Churnside, J.H.

    1994-01-01

    The fusion or integration of meteorological and radiative data from a range of instrumentation into a representative picture of temperature, water vapor, and clouds over a CART domain will be a challenging task for four-dimensional data assimilation models. In the work reported here, we have summarized work supported by DOE's algorithm development program including combined RASS and TIROS Operational Vertical Sounder (TOVS) temperature sensing, water vapor profiles from dual-channel radiometers, and neural network radiometric temperature retrievals

  11. Temperature/pressure and water vapor sounding with microwave spectroscopy

    Science.gov (United States)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  12. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data

    Science.gov (United States)

    Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert

    2018-05-01

    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar class="text">PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the class="text">PollyXT Raman lidar is 6.56 g kg-1 ± 0.72 g kg-1 (with a statistical uncertainty of 0.08 g kg-1 and an instrumental uncertainty of 0.72 g kg-1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman

  13. Relating tropical ocean clouds to moist processes using water vapor isotope measurements

    Directory of Open Access Journals (Sweden)

    J. Lee

    2011-01-01

    Full Text Available We examine the co-variations of tropospheric water vapor, its isotopic composition and cloud types and relate these distributions to tropospheric mixing and distillation models using satellite observations from the Aura Tropospheric Emission Spectrometer (TES over the summertime tropical ocean. Interpretation of these process distributions must take into account the sensitivity of the TES isotope and water vapor measurements to variations in cloud, water, and temperature amount. Consequently, comparisons are made between cloud-types based on the International Satellite Cloud Climatology Project (ISSCP classification; these are clear sky, non-precipitating (e.g., cumulus, boundary layer (e.g., stratocumulus, and precipitating clouds (e.g. regions of deep convection. In general, we find that the free tropospheric vapor over tropical oceans does not strictly follow a Rayleigh model in which air parcels become dry and isotopically depleted through condensation. Instead, mixing processes related to convection as well as subsidence, and re-evaporation of rainfall associated with organized deep convection all play significant roles in controlling the water vapor distribution. The relative role of these moisture processes are examined for different tropical oceanic regions.

  14. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  15. SPADE H2O measurements and the seasonal cycle of statospheric water vapor

    Science.gov (United States)

    Hintsa, Eric J.; Weinstock, Elliot M.; Dessler, Andrew E.; Anderson, James G.; Loewenstein, Max; Podolske, James R.

    1994-01-01

    We present measurements of lower statospheric water vapor obtained during the Stratospheric Phototchemistry, Aerosols and Dynamics Expedition (SPADE) mission with a new high precision, fast response, Lyman-alpha hygrometer. The H2O data show a distinct seasonal cycle. For air that recently entered the statosphere, data collected during the fall show much more water vapor than data from the spring. Fast quasi-horizontal mixing causes compact relationships between water and N2O to be established on relatively short time scales. The measurements are consistent with horizontal mixing times of a few months or less. Vertical mixing appears to cause the seasonal variations in water vapor to propagate up to levels corresponding to air that has been in the stratosphere approximately one year.

  16. Water vapor spectroscopy in the 815-nm wavelength region for Differential Absorption Lidar measurements

    Science.gov (United States)

    Ponsardin, Patrick; Browell, Edward V.

    1995-01-01

    The differential absorption lidar (DIAL) technique was first applied to the remote measurement of atmospheric water vapor profiles from airborne platforms in 1981. The successful interpretation of the lidar profiles relies strongly on an accurate knowledge of specific water vapor absorption line parameters: line strength, pressure broadening coefficient, pressure-induced shift coefficient and the respective temperature-dependence factors. NASA Langley Research Center has developed and is currently testing an autonomous airborne water vapor lidar system: LASE (Lidar Atmospheric Sensing Experiment). This DIAL system uses a Nd:YAG-pumped Ti:Sapphire laser seeded by a diode laser as a lidar transmitter. The tunable diode has been selected to operate in the 813-818 nm wavelength region. This 5-nm spectral interval offers a large distribution of strengths for temperature-insensitive water vapor absorption lines. In support of the LASE project, a series of spectroscopic measurements were conducted for the 16 absorption lines that have been identified for use in the LASE measurements. Prior to this work, the experimental data for this water vapor absorption band were limited - to our knowledge - to the line strengths and to the line positions.

  17. Assessment of water vapor content from MIVIS TIR data

    Directory of Open Access Journals (Sweden)

    V. Tramutoli

    2006-06-01

    Full Text Available The main objective of land remotely sensed images is to derive biological, chemical and physical parameters by inverting sample sets of spectral data. For the above aim hyperspectral scanners on airborne platform are a powerful remote sensing instrument for both research and environmental applications because of their spectral resolution and the high operability of the platform. Fine spectral information by MIVIS (airborne hyperspectral scanner operating in 102 channels ranging from VIS to TIR allows researchers to characterize atmospheric parameters and their effects on measured data which produce undesirable features on surface spectral signatures. These effects can be estimated (and remotely sensed radiances corrected if atmospheric spectral transmittance is known at each image pixel. Usually ground-based punctual observations (atmospheric sounding balloons, sun photometers, etc. are used to estimate the main physical parameters (like water vapor and temperature profiles which permit us to estimate atmospheric spectral transmittance by using suitable radiative transfer model and a specific (often too strong assumption which enable atmospheric properties measured only in very few points to be extended to the whole image. Several atmospheric gases produce observable absorption features, but only water vapor strongly varies in time and space. In this work the authors customize a self-sufficient «split-window technique» to derive (at each image pixel atmospheric total columnar water vapor content (TWVC using only MIVIS data collected by the fourth MIVIS spectrometer (Thermal Infrared band. MIVIS radiances have been simulated by means of MODTRAN4 radiative transfer code and the coefficients of linear regression to estimate TWVC from «split-windows» MIVIS radiances, based on 450 atmospheric water vapor profiles obtained by radiosonde data provided by NOAANESDIS. The method has been applied to produce maps describing the spatial variability of

  18. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Science.gov (United States)

    Periolatto, M.; Sangermano, M.; Spena, P. Russo

    2016-05-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  19. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Periolatto, M.; Spena, P. Russo [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, Bolzano (Italy); Sangermano, M. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino (Italy)

    2016-05-18

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  20. Photocured epoxy/graphene nanocomposites with enhanced water vapor barrier properties

    International Nuclear Information System (INIS)

    Periolatto, M.; Spena, P. Russo; Sangermano, M.

    2016-01-01

    A transparent, water vapor barrier film made of an epoxy resin and graphene oxide (GO) was synthesized by photopolymerization process. The epoxy/GO film with just 0.05 wt% GO gives a 93% WVTR reduction with respect to the pristine polymer, reaching barrier properties better than other polymer composites containing higher amounts of graphene. The excellent water vapor barrier is attributed to the good dispersion of GO in the polymer matrix. Moreover, GO significantly enhances the toughness and the damping capacity of the epoxy resins. The hybrid film can have potential applications in anticorrosive coatings, electronic devices, pharmaceuticals and food packaging.

  1. Volatilized tritiated water vapor in the vicinity of exposed tritium contaminated groundwater

    International Nuclear Information System (INIS)

    Dunn, D.L.; Carlton, B.; Hunter, C.; McAdams, T.

    1994-01-01

    Water vapor tritium concentrations in air above a known source of tritiated water can be estimated. Estimates should account for the mechanisms of evaporation and condensation at the water surface and water species exchange, and are typically applicable under a broad range of wind, temperature and humidity conditions. An estimate of volatilized tritium water vapor was made for a known outcropping of tritium contaminated groundwater at the Savannah River Site (SRS) old F-Area effluent stream. In order to validate this estimate and the associated dose calculation, sampling equipment was fabricated, tested, and installed at the effluent stream. The estimate and the dose calculation were confirmed using data from samples collected

  2. SEPARATION OF WATER VAPORS FROM AIR BY SORPTION ON SOME COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    OANA HAUTĂ

    2014-01-01

    Full Text Available This work presents an experimental investigation of the kinetics of water vapor sorption on two composites synthesized by impregnating activated carbon and activated alumina respectively with lithium bromide (named as MCA2 and MCC2 respectively. The obtained results showed an increase in water amount adsorbed on both composite materials. Due to different chemical natures of the host matrices, the water sorption kinetics on MCC2 is faster compared to that of MCA2. The presence of calcium chloride instead of lithium bromide in alumina pores will determine a shorter breakthrough time and a higher adsorption rate of water vapors.

  3. A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles

    Science.gov (United States)

    DeYoung, Russell J.; Mead, Patricia F.

    2004-01-01

    This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.

  4. PIV and LIF study of flow and thermal fields of twine plumes in water

    Directory of Open Access Journals (Sweden)

    Broučková Zuzana

    2017-01-01

    Full Text Available Flow and thermal fields of a pair of plane plumes in water are investigated by means of PIV and LIF experiments. The plumes are generated from thermal line sources, which are made out of electrically heated cylinders with a diameter of D = 1.21 mm. A cylinder-to-cylinder distance was 17.9 D. Either continuous or pulsating heating were used with the same heating input power. Because the cylinder-to-cylinder distance is moderately small, deflections of plumes from a vertical direction occur and the plumes are inclined together. This behavior is caused by a confined entrainment from a space between the both plumes. For a continuous heating, low frequency oscillations were identified and the natural frequency was evaluated as 0.5 Hz. Based on this finding, pulsating heating was used at the subharmonic frequency of 0.25 Hz. The maximum time-mean velocity magnitude at the continuous and pulsating heating were commensurable, approximately 0.007 m/s. On the other hand, pulsating heating achieves by 36 % higher velocity peaks. A very strong velocity oscillations were generated by pulsating heating at the distance approximately 8.3 D above the cylinders, where the velocity maxima oscillate along the time-mean value of 0.0057 m/s from −30% to +70 %. Temperature fields reasonably agree with this findings, despite a relatively fast equalization of the temperature field was concluded. The results demonstrate enhancement effects of pulsations in flow/thermal fields.

  5. PIV and LIF study of flow and thermal fields of twine plumes in water

    Science.gov (United States)

    Broučková, Zuzana; Trávníček, Zdeněk

    Flow and thermal fields of a pair of plane plumes in water are investigated by means of PIV and LIF experiments. The plumes are generated from thermal line sources, which are made out of electrically heated cylinders with a diameter of D = 1.21 mm. A cylinder-to-cylinder distance was 17.9 D. Either continuous or pulsating heating were used with the same heating input power. Because the cylinder-to-cylinder distance is moderately small, deflections of plumes from a vertical direction occur and the plumes are inclined together. This behavior is caused by a confined entrainment from a space between the both plumes. For a continuous heating, low frequency oscillations were identified and the natural frequency was evaluated as 0.5 Hz. Based on this finding, pulsating heating was used at the subharmonic frequency of 0.25 Hz. The maximum time-mean velocity magnitude at the continuous and pulsating heating were commensurable, approximately 0.007 m/s. On the other hand, pulsating heating achieves by 36 % higher velocity peaks. A very strong velocity oscillations were generated by pulsating heating at the distance approximately 8.3 D above the cylinders, where the velocity maxima oscillate along the time-mean value of 0.0057 m/s from -30% to +70 %. Temperature fields reasonably agree with this findings, despite a relatively fast equalization of the temperature field was concluded. The results demonstrate enhancement effects of pulsations in flow/thermal fields.

  6. Water on the Moon Confirmed

    Science.gov (United States)

    Showstack, Randy

    2009-11-01

    When NASA's Lunar Crater Observation and Sensing Satellite (LCROSS) and a companion rocket purposely slammed into a crater at the Moon's south pole on 9 October, some observers on Earth lamented as anticlimactic the raised plumes of material that were partially blocked by a crater ridge and were difficult to see with backyard telescopes. However, it turns out that the projectiles struck it big. “Indeed, yes, we found water. We didn’t find just a little bit; we found a significant amount,” said Anthony Colaprete, LCROSS principal investigator with the NASA Ames Research Center, Moffett Field, Calif. At a 13 November news briefing, Colaprete lifted a 2-gallon plastic bucket and said preliminary results indicate that instruments detected about a dozen buckets' worth of water in parts of the two plumes, the first generated by the spent Centaur upper stage of the Atlas V launch vehicle at 1131 UTC and the second generated by LCROSS about 4 minutes later. NASA described the two plumes as a high-angle plume of vapor and fine dust and a lower-angle ejecta curtain of heavier material. LCROSS and the Centaur upper stage hit the permanently shadowed Cabeus crater.

  7. Airborne Observations of Water Vapor Deuterium Excess in the Mid-Latitude Lower Troposphere

    Science.gov (United States)

    Salmon, O. E.; Welp, L.; Shepson, P. B.; Stirm, B. H.

    2017-12-01

    Water vapor is responsible for over half of the natural atmospheric greenhouse effect. As global temperatures increase due to fossil fuel combustion, atmospheric water vapor concentrations are also expected to increase in positive feedback. Additionally, studies have shown that urban areas can influence humidity levels, and the frequency and intensity of precipitation events. It is thus important to understand anthropogenic modification of the hydrological cycle, particularly around urban areas, where over half of the world's population resides. Airborne measurements of water vapor isotopologues containing 2H and 18O were conducted to better understand processes influencing atmospheric moisture levels around urban areas. Airborne measurements were conducted around the Indianapolis and Washington, D.C.-Baltimore areas during afternoon hours in February and March 2016, using a Los Gatos Research Water Vapor Isotope Analyzer installed in Purdue University's experimental aircraft, the Airborne Laboratory for Atmospheric Research. The measurements of 2H and 18O allow for the calculation of deuterium excess (= δ2H - 8*δ18O), which provides information about non-equilibrium processes, such as kinetic effects, air parcel mixing, and transpiration. There are few studies that have reported observations of deuterium excess above the surface level ( 100 m). During the measurement campaign, vertical profiles were frequently conducted from 300 m above the ground to an altitude of approximately 1.5 km, effectively characterizing water vapor isotope profiles spanning the boundary layer and lower free troposphere. Measurements probed the transition from planetary boundary layer air to free troposphere air to provide high resolution deuterium excess information across this interface. Processes such as Rayleigh distillation, atmospheric mixing, and surface fluxes potentially impacting water vapor deuterium excess through the boundary layer and free troposphere with be discussed.

  8. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairhumiditynucleation theory or molecular simulations (Pcav=-140 to -180 MPa). To determine the cause of the disparity between the observed and predicted stability limit, we examine experimentally the likelihood of several nonhomogeneous mechanisms of nucleation: (i) heterogeneous nucleation caused by hydrophobic patches on void walls, (ii) nucleation caused by the presence of dissolved solute, (iii) nucleation caused by the presence of pre-existing vapor nuclei, and (iv) invasion of air through the hydrogel membrane into the voids. We conclude that, of these possibilities, (i) and (ii) cannot be discounted, whereas (iii) and (iv) are unlikely to play a role in determining the stability limit.

  9. Predicted and observed cooling tower plume rise and visible plume length at the John E. Amos power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, S R

    1976-01-01

    A one-dimensional numerical cloud growth model and several empirical models for plume rise and cloud growth are compared with twenty-seven sets of observations of cooling tower plumes from the 2900 MW John E. Amos power plant in West Virginia. The three natural draft cooling towers are 200 m apart. In a cross wind, the plumes begin to merge at a distance of about 500 m downwind. In calm conditions, with reduced entrainment, the plumes often do not merge until heights of 1000 m. The average plume rise, 750 m, is predicted well by the models, but day-to-day variations are simulated with a correlation coefficient of about 0.5. Model predictions of visible plume length agree, on the average, with observations for visible plumes of short to moderate length (less than about 1 km). The prediction of longer plumes is hampered by our lack of knowledge of plume spreading after the plumes level off. Cloud water concentrations predicted by the numerical model agree with those measured in natural cumulus clouds (about 0.1 to 1 g kg/sup -1/).

  10. Climatic Analysis of Oceanic Water Vapor Transports Based on Satellite E-P Datasets

    Science.gov (United States)

    Smith, Eric A.; Sohn, Byung-Ju; Mehta, Vikram

    2004-01-01

    Understanding the climatically varying properties of water vapor transports from a robust observational perspective is an essential step in calibrating climate models. This is tantamount to measuring year-to-year changes of monthly- or seasonally-averaged, divergent water vapor transport distributions. This cannot be done effectively with conventional radiosonde data over ocean regions where sounding data are generally sparse. This talk describes how a methodology designed to derive atmospheric water vapor transports over the world oceans from satellite-retrieved precipitation (P) and evaporation (E) datasets circumvents the problem of inadequate sampling. Ultimately, the method is intended to take advantage of the relatively complete and consistent coverage, as well as continuity in sampling, associated with E and P datasets obtained from satellite measurements. Independent P and E retrievals from Special Sensor Microwave Imager (SSM/I) measurements, along with P retrievals from Tropical Rainfall Measuring Mission (TRMM) measurements, are used to obtain transports by solving a potential function for the divergence of water vapor transport as balanced by large scale E - P conditions.

  11. Effects of convective ice evaporation on interannual variability of tropical tropopause layer water vapor

    Science.gov (United States)

    Ye, Hao; Dessler, Andrew E.; Yu, Wandi

    2018-04-01

    Water vapor interannual variability in the tropical tropopause layer (TTL) is investigated using satellite observations and model simulations. We break down the influences of the Brewer-Dobson circulation (BDC), the quasi-biennial oscillation (QBO), and the tropospheric temperature (ΔT) on TTL water vapor as a function of latitude and longitude using a two-dimensional multivariate linear regression. This allows us to examine the spatial distribution of the impact of each process on TTL water vapor. In agreement with expectations, we find that the impacts from the BDC and QBO act on TTL water vapor by changing TTL temperature. For ΔT, we find that TTL temperatures alone cannot explain the influence. We hypothesize a moistening role for the evaporation of convective ice from increased deep convection as the troposphere warms. Tests using a chemistry-climate model, the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), support this hypothesis.

  12. Improved lifetime of chitosan film in converting water vapor to electrical power by adding carboxymethyl cellulose

    Science.gov (United States)

    Nasution, T. I.; Balyan, M.; Nainggolan, I.

    2018-02-01

    A Water vapor cell based on chitosan film has been successfully fabricated in film form to convert water vapor to electrical power. In order to improve the lifetime of water vapor cell, Carboxymethyl Cellulose (CMC) was added into 1% chitosan solution within concentration variations of 0.01, 0.05, 0.1 and 0.5%. The result showed that the lifetime of water vapor cell increased higher by adding the higher concentration of Carboxymethyl cellulose. The highest lifetime was evidenced by adding 0.5%CMC which maintained for 48 weeks. However, the average electrical power became lower to 4.621 µW. This electrical power lower than the addition of 0.1%CMC which maintained for 5.167 µW. While, the lifetime of chitosan-0.1%CMC film of 44 weeks is shorter compared to chitosan-0.5%CMC film. Based on FTIR characterization, it was founded that the chitosan structure did not change until the addition of 0.1%CMC. This caused the electrical power of water vapor cell degenerated. Therefore, chitosan-0.5%CMC film has excellent lifetime in converting water vapor to electrical power.

  13. Calculational model for condensation of water vapor during an underground nuclear detonation

    International Nuclear Information System (INIS)

    Knox, R.J.

    1975-01-01

    An empirally derived mathematical model was developed to calculate the pressure and temperature history during condensation of water vapor in an underground-nuclear-explosion cavity. The condensation process is non-isothermal. Use has been made of the Clapeyron-Clausius equation as a basis for development of the model. Analytic fits to the vapor pressure and the latent heat of vaporization for saturated-water vapor, together with an estimated value for the heat-transfer coefficient, have been used to describe the phenomena. The calculated pressure-history during condensation has been determined to be exponential, with a time constant somewhat less than that observed during the cooling of the superheated steam from the explosion. The behavior of the calculated condensation-pressure compares well with the observed-pressure record (until just prior to cavity collapse) for a particular nuclear-detonation event for which data is available

  14. Influence of absorption by environmental water vapor on radiation transfer in wildland fires

    Science.gov (United States)

    D. Frankman; B. W. Webb; B. W. Butler

    2008-01-01

    The attenuation of radiation transfer from wildland flames to fuel by environmental water vapor is investigated. Emission is tracked from points on an idealized flame to locations along the fuel bed while accounting for absorption by environmental water vapor in the intervening medium. The Spectral Line Weighted-sum-of-gray-gases approach was employed for treating the...

  15. Colorimetric Detection of Water Vapor Using Metal-Organic Framework Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Purpose: Water vapor trapped in encapsulation materials or enclosed volumes leads to corrosion issues for critical NW components. Sandia National Laboratories has created a new diagnostic to indicate the presence of water in weapon systems. Impact: Component exposure to water now can be determined instantly, without need for costly, time-consuming analytical methods.

  16. Measurement of Vapor Flow As an Important Source of Water in Dry Land Eco-Hydrology

    Science.gov (United States)

    Wang, Z.; He, Z.; Wang, Y.; Gao, Z.; Hishida, K.

    2014-12-01

    When the temperature of land surface is lower than that of air and deeper soils, water vapor gathers toward the ground surface where dew maybe formed depending on the prevailing dew point and wind speed. Some plants are able to absorb the dew and vapor flow while the soil can readily absorb both. Certain animals such as desert beetles and ants harvest the dew or fog for daily survival. Recently, it is also realized that the dew and vapor flow can be a life-saving amount of water for plant survival at the driest seasons of the year in arid and semi-arid regions. Researches are conducted to quantify the amount of near-surface vapor flow in arid and semi-arid regions in China and USA. Quantitative leaf water absorption and desorption functions were derived based on laboratory experiments. Results show that plant leaves absorb and release water at different speeds depending on species and varieties. The "ideal" native plants in the dry climates can quickly absorb water and slowly release it. This water-holding capacity of plant is characterized by the absorption and desorption functions derived for plant physiology and water balance studies. Field studies are conducted to measure the dynamic vapor flow movements from the atmosphere and the groundwater table to soil surface. Results show that dew is usually formed on soil and plant surfaces during the daily hours when the temperature gradients are inverted toward the soil surface. The amount of dew harvested using gravels on the soil surface was enough to support water melon agriculture on deserts. The vapor flow can be effectively intercepted by artificially seeded plants in semi-arid regions forming new forests. New studies are attempted to quantify the role of vapor flow for the survival of giant sequoias in the southern Sierra Nevada Mountains of California.

  17. Field experimental observations of highly graded sediment plumes.

    Science.gov (United States)

    Jensen, Jacob Hjelmager; Saremi, Sina; Jimenez, Carlos; Hadjioannou, Louis

    2015-06-15

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes, gravitating towards the seafloor, were filmed simultaneously by four divers situated at different depths in the water column, and facing the plume at different angles. The processes were captured using GoPro-Hero-series cameras. The high-quality underwater footage from near-surface, mid-depth and near-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Performance of horizontal versus vertical vapor extraction wells

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Roseberg, N.D.; Edlund, K.M.

    1994-06-01

    Vapor extraction wells used for site remediation of volatile organic chemicals in the vadose zone are typically vertical wells. Over the past few years, there has been an increased interest in horizontal wells for environmental remediation. Despite the interest and potential benefits of horizontal wells, there has been little study of the relative performance of horizontal and vertical vapor extraction wells. This study uses numerical simulations to investigate the relative performance of horizontal versus vertical vapor extraction wells under a variety of conditions. The most significant conclusion that can be drawn from this study is that in a homogeneous medium, a single, horizontal vapor extraction well outperforms a single, vertical vapor extraction well (with surface capping) only for long, linear plumes. Guidelines are presented regarding the use of horizontal wells

  19. Retrieval of water vapor mixing ratios from a laser-based sensor

    Science.gov (United States)

    Tucker, George F.

    1995-01-01

    Langley Research Center has developed a novel external path sensor which monitors water vapor along an optical path between an airplane window and reflective material on the plane's engine. An infrared tunable diode laser is wavelength modulated across a water vapor absorption line at a frequency f. The 2f and DC signals are measured by a detector mounted adjacent to the laser. The 2f/DC ratio depends on the amount of wavelength modulation, the water vapor absorption line being observed, and the temperature, pressure, and water vapor content of the atmosphere. The present work concerns efforts to quantify the contributions of these factors and to derive a method for extracting the water vapor mixing ratio from the measurements. A 3 m cell was fabricated in order to perform laboratory tests of the sensor. Measurements of 2f/DC were made for a series of pressures and modulation amplitudes. During my 1994 faculty fellowship, a computer program was created which allowed 2f/DC to be calculated for any combination of the variables which effect it. This code was used to generate 2f/DC values for the conditions measured in the laboratory. The experimental and theoretical values agreed to within a few percent. As a result, the laser modulation amplitude can now be set in the field by comparing the response of the instrument to the calculated response as a function of modulation amplitude. Once the validity of the computer code was established, it was used to investigate possible candidate absorption lines. 2f/DC values were calculated for pressures, temperatures, and water vapor mixing ratios expected to be encountered in future missions. The results have been incorporated into a database which will be used to select the best line for a particular mission. The database will also be used to select a retrieval technique. For examples under some circumstances there is little temperature dependence in 2f/DC so temperature can be neglected. In other cases, there is a dependence

  20. Significant Features of Warm Season Water Vapor Flux Related to Heavy Rainfall and Draught in Japan

    Science.gov (United States)

    Nishiyama, Koji; Iseri, Yoshihiko; Jinno, Kenji

    2009-11-01

    In this study, our objective is to reveal complicated relationships between spatial water vapor inflow patterns and heavy rainfall activities in Kyushu located in the western part of Japan, using the outcomes of pattern recognition of water vapor inflow, based on the Self-Organizing Map. Consequently, it could be confirmed that water vapor inflow patterns control the distribution and the frequency of heavy rainfall depending on the direction of their fluxes and the intensity of Precipitable water. Historically serious flood disasters in South Kyushu in 1993 were characterized by high frequency of the water vapor inflow patterns linking to heavy rainfall. On the other hand, severe draught in 1994 was characterized by inactive frontal activity that do not related to heavy rainfall.

  1. Ground-based observations of Mars and Venus water vapor during 1972 and 1973

    International Nuclear Information System (INIS)

    Barker, E.S.

    1974-01-01

    The Venus water vapor line at 8197.71 A has been monitored at several positions on the disk of Venus and at phase angles between 22 0 and 91 0 . Variations in the abundance have been found with both position and time. The total two-way transmission has varied from less than 5 to 77 μ of water vapor. Comparisons are made between water vapor abundance, presence of UV features and the CO 2 abundance determined from near simultaneous observations of CO 2 bands at the same position on the disk of Venus. The amount of Martian atmospheric water vapor has been monitored during the past two years at McDonald Observatory using the echelle coude scanner of the 272cm reflector. Two periods of the Martain year have been monitored. The first period was during and after the great 1971 dust storm (Lsub(s)=290 0 to 20 0 or summer in the southern hemisphere). The results obtained are compared to the Mariner 9 IRIS and Mars 3 observations made during the same period. During the second period (Lsub(s)=124 0 to 266 0 ) observations were made to follow the seasonal latitudinal and diurnal changes in the water abundance in the Martian atmosphere. Studies of the latitudinal and diurnal vapor distributions indicate the location of maximum and minimum abundances for this season are positively correlated with surface temperature variations. (Auth.)

  2. Field experimental observations of highly graded sediment plumes

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Saremi, Sina; Jimenez, Carlos

    2015-01-01

    A field experiment in the waters off the south-eastern coast of Cyprus was carried out to study near-field formation of sediment plumes from dumping. Different loads of sediment were poured into calm and limpid waters one at the time from just above the sea surface. The associated plumes......-bed positions gives unique insight into the dynamics of the descending plume and near-field dispersion processes, and enables good understanding of flow and sediment transport processes involved from-release-to-deposition of the load in a non-scaled environment. The high resolution images and footages...... are available through the link provided herein. Observations support the development of a detailed multi-fractional sediment plume model....

  3. Study and mitigation of calibration factor instabilities in a water vapor Raman lidar

    Directory of Open Access Journals (Sweden)

    L. David

    2017-07-01

    Full Text Available We have investigated calibration variations in the Rameau water vapor Raman lidar. This lidar system was developed by the Institut National de l'Information Géographique et Forestière (IGN together with the Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS. It aims at calibrating Global Navigation Satellite System (GNSS measurements for tropospheric wet delays and sounding the water vapor variability in the lower troposphere. The Rameau system demonstrated good capacity in retrieving water vapor mixing ratio (WVMR profiles accurately in several campaigns. However, systematic short-term and long-term variations in the lidar calibration factor pointed to persistent instabilities. A careful testing of each subsystem independently revealed that these instabilities are mainly induced by mode fluctuations in the optic fiber used to couple the telescope to the detection subsystem and by the spatial nonuniformity of the photomultiplier photocathodes. Laboratory tests that replicate and quantify these instability sources are presented. A redesign of the detection subsystem is presented, which, combined with careful alignment procedures, is shown to significantly reduce the instabilities. Outdoor measurements were performed over a period of 5 months to check the stability of the modified lidar system. The calibration changes in the detection subsystem were monitored with lidar profile measurements using a common nitrogen filter in both Raman channels. A short-term stability of 2–3 % and a long-term drift of 2–3 % per month are demonstrated. Compared to the earlier Development of Methodologies for Water Vapour Measurement (DEMEVAP campaign, this is a 3-fold improvement in the long-term stability of the detection subsystem. The overall water vapor calibration factors were determined and monitored with capacitive humidity sensor measurements and with GPS zenith wet delay (ZWD data. The changes in the water vapor calibration factors

  4. Contrasting Effects of Central Pacific and Eastern Pacific El Nino on Stratospheric Water Vapor

    Science.gov (United States)

    Garfinkel, Chaim I.; Hurwitz, Margaret M.; Oman, Luke D.; Waugh, Darryn W.

    2013-01-01

    Targeted experiments with a comprehensive chemistry-climate model are used to demonstrate that seasonality and the location of the peak warming of sea surface temperatures dictate the response of stratospheric water vapor to El Nino. In spring, El Nino events in which sea surface temperature anomalies peak in the eastern Pacific lead to a warming at the tropopause above the warm pool region, and subsequently to more stratospheric water vapor (consistent with previous work). However, in fall and in early winter, and also during El Nino events in which the sea surface temperature anomaly is found mainly in the central Pacific, the response is qualitatively different: temperature changes in the warm pool region are nonuniform and less water vapor enters the stratosphere. The difference in water vapor in the lower stratosphere between the two variants of El Nino approaches 0.3 ppmv, while the difference between the winter and spring responses exceeds 0.5 ppmv.

  5. Water Plume Temperature Measurements by an Unmanned Aerial System (UAS

    Directory of Open Access Journals (Sweden)

    Anthony DeMario

    2017-02-01

    Full Text Available We report on the development and testing of a proof of principle water temperature measurement system deployed on an unmanned aerial system (UAS, for field measurements of thermal discharges into water. The primary elements of the system include a quad-copter UAS to which has been integrated, for the first time, both a thermal imaging infrared (IR camera and an immersible probe that can be dipped below the water surface to obtain vertical water temperature profiles. The IR camera is used to take images of the overall water surface to geo-locate the plume, while the immersible probe provides quantitative temperature depth profiles at specific locations. The full system has been tested including the navigation of the UAS, its ability to safely carry the sensor payload, and the performance of both the IR camera and the temperature probe. Finally, the UAS sensor system was successfully deployed in a pilot field study at a coal burning power plant, and obtained images and temperature profiles of the thermal effluent.

  6. Water Quality and River Plume Monitoring in the Great Barrier Reef: An Overview of Methods Based on Ocean Colour Satellite Data

    Directory of Open Access Journals (Sweden)

    Michelle J. Devlin

    2015-09-01

    Full Text Available A strong driver of water quality change in the Great Barrier Reef (GBR is the pulsed or intermittent nature of terrestrial inputs into the GBR lagoon, including delivery of increased loads of sediments, nutrients, and toxicants via flood river plumes (hereafter river plumes during the wet season. Cumulative pressures from extreme weather with a high frequency of large scale flooding in recent years has been linked to the large scale reported decline in the health of inshore seagrass systems and coral reefs in the central areas of the GBR, with concerns for the recovery potential of these impacted ecosystems. Management authorities currently rely on remotely-sensed (RS and in situ data for water quality monitoring to guide their assessment of water quality conditions in the GBR. The use of remotely-sensed satellite products provides a quantitative and accessible tool for scientists and managers. These products, coupled with in situ data, and more recently modelled data, are valuable for quantifying the influence of river plumes on seagrass and coral reef habitat in the GBR. This article reviews recent remote sensing techniques developed to monitor river plumes and water quality in the GBR. We also discuss emerging research that integrates hydrodynamic models with remote sensing and in situ data, enabling us to explore impacts of different catchment management strategies on GBR water quality.

  7. Water vapor as a perspective coolant for fast reactors

    International Nuclear Information System (INIS)

    Kalafati, D.D.; Petrov, S.I.

    1978-01-01

    Based on analysis of foreign projects of nuclear power plants with steam-cooled fast reactors, it is shown that low breeding ratio and large doubling time were caused by using nickel alloys, high vapor pressure and small volume heat release. The possibility is shown of obtaining doubling time in the necessary limits of T 2 =10-12 years when the above reasons for steam-cooled reactors are eliminated. Favourable combination of thermophysical and thermodynamic properties of water vapor makes it perspective coolant for power fast reactors

  8. Water vapor changes under global warming and the linkage to present-day interannual variabilities in CMIP5 models

    Science.gov (United States)

    Takahashi, Hanii; Su, Hui; Jiang, Jonathan H.

    2016-12-01

    The fractional water vapor changes under global warming across 14 Coupled Model Intercomparison Project Phase 5 simulations are analyzed. We show that the mean fractional water vapor changes under global warming in the tropical upper troposphere between 300 and 100 hPa range from 12.4 to 28.0 %/K across all models while the fractional water vapor changes are about 5-8 %/K in other regions and at lower altitudes. The "upper-tropospheric amplification" of the water vapor change is primarily driven by a larger temperature increase in the upper troposphere than in the lower troposphere per degree of surface warming. The relative contributions of atmospheric temperature and relative humidity changes to the water vapor change in each model vary between 71.5 to 131.8 % and 24.8 to -20.1 %, respectively. The inter-model differences in the water vapor change is primarily caused by differences in temperature change, except over the inter-tropical convergence zone within 10°S-10°N where the model differences due to the relative humidity change are significant. Furthermore, we find that there is generally a positive correlation between the rates of water vapor change for long-tem surface warming and those on the interannual time scales. However, the rates of water vapor change under long-term warming have a systematic offset from those on the inter-annual time scales and the dominant contributor to the differences also differs for the two time scales, suggesting caution needs to be taken when inferring long-term water vapor changes from the observed interannual variations.

  9. Raman scattering temperature measurements for water vapor in nonequilibrium dispersed two-phase flow

    International Nuclear Information System (INIS)

    Anastasia, C.M.; Neti, S.; Smith, W.R.; Chen, J.C.

    1982-09-01

    The objective of this investigation was to determine the feasibility of using Raman scattering as a nonintrusive technique to measure vapor temperatures in dispersed two-phase flow. The Raman system developed for this investigation is described, including alignment of optics and optimization of the photodetector for photon pulse counting. Experimentally obtained Raman spectra are presented for the following single- and two-phase samples: liquid water, atmospheric nitrogen, superheated steam, nitrogen and water droplets in a high void fraction air/water mist, and superheated water vapor in nonequilibrium dispersed flow

  10. Turbulent forces within river plumes affect spread

    Science.gov (United States)

    Bhattacharya, Atreyee

    2012-08-01

    When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.

  11. Energetic particle induced desorption of water vapor cryo-condensate

    International Nuclear Information System (INIS)

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 x 10 10 cm -3 , electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of ∼10 16 cm 2 s -1 on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed

  12. Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations

    DEFF Research Database (Denmark)

    Steen-Larsen, Hans Christian; Risi, C.; Werner, M.

    2017-01-01

    The skills of isotope-enabled general circulation models are evaluated against atmospheric water vapor isotopes. We have combined in situ observations of surface water vapor isotopes spanning multiple field seasons (2010, 2011, and 2012) from the top of the Greenland Ice Sheet (NEEM site: 77.45°N......: 2014). This allows us to benchmark the ability to simulate the daily water vapor isotope variations from five different simulations using isotope-enabled general circulation models. Our model-data comparison documents clear isotope biases both on top of the Greenland Ice Sheet (1-11% for δ18O and 4...... boundary layer water vapor isotopes of the Baffin Bay region show strong influence on the water vapor isotopes at the NEEM deep ice core-drilling site in northwest Greenland. Our evaluation of the simulations using isotope-enabled general circulation models also documents wide intermodel spatial...

  13. Improved cell for water-vapor electrolysis

    Science.gov (United States)

    Aylward, J. R.

    1981-01-01

    Continuous-flow electrolytic cells decompose water vapor in steam and room air into hydrogen and oxygen. Sintered iridium oxide catalytic anode coating yields dissociation rates hundredfold greater than those obtained using platinum black. Cell consists of two mirror-image cells, with dual cathode sandwiched between two anodes. Gas traverses serpentine channels within cell and is dissociated at anode. Oxygen mingles with gas stream, while hydrogen migrates through porous matrix and is liberated as gas at cathode.

  14. Mobile Bay turbidity plume study

    Science.gov (United States)

    Crozier, G. F.

    1976-01-01

    Laboratory and field transmissometer studies on the effect of suspended particulate material upon the appearance of water are reported. Quantitative correlations were developed between remotely sensed image density, optical sea truth data, and actual sediment load. Evaluation of satellite image sea truth data for an offshore plume projects contours of transmissivity for two different tidal phases. Data clearly demonstrate the speed of change and movement of the optical plume for water patterns associated with the mouth of Mobile bay in which relatively clear Gulf of Mexico water enters the bay on the eastern side. Data show that wind stress in excess of 15 knots has a marked impact in producing suspended sediment loads.

  15. Pebax®1657/Graphene oxide composite membranes for improved water vapor separation

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Peinemann, Klaus-Viktor

    2016-01-01

    In this study composite mixed matrix membranes containing hydrophilic microphase-separated block copolymer (Pebax® 1657) and graphene oxide nanosheets were prepared using a dip coating method. Water vapor and N2 gas permeation were measured as a function of different parameters: (i) layer thickness, (ii) content of graphene oxide (GO), and (iii) content of reduced GO. Surprisingly, a concentration of only 2 wt% of GO nanosheets well dispersed in the Pebax layer boosted the selectivity 8 times by decreasing the water vapor permeance by only 12% whereas N2 gas permeance decreased by 70%. Using reduced GO instead, the water vapor permeance declined by up to 16% with no influence on the N2 gas permeance. We correlated the permeation properties of the mixed matrix membranes with different models and found, that both the modified Nielsen model and the Cussler model give good correlation with experimental findings.

  16. Pebax®1657/Graphene oxide composite membranes for improved water vapor separation

    KAUST Repository

    Akhtar, Faheem Hassan

    2016-11-02

    In this study composite mixed matrix membranes containing hydrophilic microphase-separated block copolymer (Pebax® 1657) and graphene oxide nanosheets were prepared using a dip coating method. Water vapor and N2 gas permeation were measured as a function of different parameters: (i) layer thickness, (ii) content of graphene oxide (GO), and (iii) content of reduced GO. Surprisingly, a concentration of only 2 wt% of GO nanosheets well dispersed in the Pebax layer boosted the selectivity 8 times by decreasing the water vapor permeance by only 12% whereas N2 gas permeance decreased by 70%. Using reduced GO instead, the water vapor permeance declined by up to 16% with no influence on the N2 gas permeance. We correlated the permeation properties of the mixed matrix membranes with different models and found, that both the modified Nielsen model and the Cussler model give good correlation with experimental findings.

  17. Observation of Mountain Lee Waves with MODIS NIR Column Water Vapor

    Science.gov (United States)

    Lyapustin, A.; Alexander, M. J.; Ott, L.; Molod, A.; Holben, B.; Susskind, J.; Wang, Y.

    2014-01-01

    Mountain lee waves have been previously observed in data from the Moderate Resolution Imaging Spectroradiometer (MODIS) "water vapor" 6.7 micrometers channel which has a typical peak sensitivity at 550 hPa in the free troposphere. This paper reports the first observation of mountain waves generated by the Appalachian Mountains in the MODIS total column water vapor (CWV) product derived from near-infrared (NIR) (0.94 micrometers) measurements, which indicate perturbations very close to the surface. The CWV waves are usually observed during spring and late fall or some summer days with low to moderate CWV (below is approx. 2 cm). The observed lee waves display wavelengths from3-4 to 15kmwith an amplitude of variation often comparable to is approx. 50-70% of the total CWV. Since the bulk of atmospheric water vapor is confined to the boundary layer, this indicates that the impact of thesewaves extends deep into the boundary layer, and these may be the lowest level signatures of mountain lee waves presently detected by remote sensing over the land.

  18. A numerical study of the Magellan Plume

    Science.gov (United States)

    Palma, Elbio D.; Matano, Ricardo P.

    2012-05-01

    In this modeling study we investigate the dynamical mechanisms controlling the spreading of the Magellan Plume, which is a low-salinity tongue that extends along the Patagonian Shelf. Our results indicate that the overall characteristics of the plume (width, depth, spreading rate, etc.) are primarily influenced by tidal forcing, which manifests through tidal mixing and tidal residual currents. Tidal forcing produces a homogenization of the plume's waters and an offshore displacement of its salinity front. The interaction between tidal and wind-forcing reinforces the downstream and upstream buoyancy transports of the plume. The influence of the Malvinas Current on the Magellan Plume is more dominant north of 50°S, where it increases the along-shelf velocities and generates intrusions of saltier waters from the outer shelf, thus causing a reduction of the downstream buoyancy transport. Our experiments also indicate that the northern limit of the Magellan Plume is set by a high salinity discharge from the San Matias Gulf. Sensitivity experiments show that increments of the wind stress cause a decrease of the downstream buoyancy transport and an increase of the upstream buoyancy transport. Variations of the magnitude of the discharge produce substantial modifications in the downstream penetration of the plume and buoyancy transport. The Magellan discharge generates a northeastward current in the middle shelf, a recirculation gyre south of the inlet and a region of weak currents father north.

  19. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  20. Partitioning the effects of Global Warming on the Hydrological Cycle with Stable Isotopes in Water Vapor

    Science.gov (United States)

    Dee, S. G.; Russell, J. M.; Nusbaumer, J. M.; Konecky, B. L.; Buenning, N. H.; Lee, J. E.; Noone, D.

    2016-12-01

    General circulation models (GCMs) suggest that much of the global hydrological cycle's response to anthropogenic warming will be caused by increased lower-tropospheric water vapor concentrations and associated feedbacks. However, fingerprinting changes in the global hydrological cycle due to anthropogenic warming remains challenging. Held and Soden (2006) predicted that as lower-tropospheric water vapor increases, atmospheric circulation will weaken as climate warms to maintain the surface energy budget. Unfortunately, the strength of this feedback and the fallout for other branches of the hydrological cycle is difficult to constrain in situ or with GCMs alone. We demonstrate the utility of stable hydrogen isotope ratios in atmospheric water vapor to quantitatively trace changes in atmospheric circulation and convective mass flux in a warming world. We compare water isotope-enabled GCM experiments for control (present-day) CO2 vs. high CO2(2x, 4x) atmospheres in two GCMs, IsoGSM and iCAM5. We evaluate changes in the distribution of water vapor, vertical velocity (omega), and the stream function between these experiments in order to identify spatial patterns of circulation change over the tropical Pacific (where vertical motion is strong) and map the δD of water vapor associated with atmospheric warming. We also probe the simulations to isolate isotopic signatures associated with water vapor residence time, precipitation efficiency, divergence, and cloud physics. We show that there are robust mechanisms that moisten the troposphere and weaken convective mass flux, and that these mechanisms can be tracked using the δD of water vapor. Further, we find that these responses are most pronounced in the upper troposphere. These findings provide a framework to develop new metrics for the detection of global warming impacts to the hydrological cycle. Further, currently available satellite missions measure δD in the atmospheric boundary layer, the free atmosphere, or the

  1. Computer simulation of the NASA water vapor electrolysis reactor

    Science.gov (United States)

    Bloom, A. M.

    1974-01-01

    The water vapor electrolysis (WVE) reactor is a spacecraft waste reclamation system for extended-mission manned spacecraft. The WVE reactor's raw material is water, its product oxygen. A computer simulation of the WVE operational processes provided the data required for an optimal design of the WVE unit. The simulation process was implemented with the aid of a FORTRAN IV routine.

  2. Water vapor measurements at ALOMAR over a solar cycle compared with model calculations by LIMA

    Science.gov (United States)

    Hartogh, P.; Sonnemann, G. R.; Grygalashvyly, M.; Song, Li; Berger, U.; Lübken, F.-J.

    2010-01-01

    Microwave water vapor measurements between 40 and 80 km altitude over a solar cycle (1996-2006) were carried out in high latitudes at Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) (69.29°N, 16.03°E), Norway. Some smaller gaps and three interruptions of monitoring in the winters 1996/1997 and 2005/2006 and from spring 2001 to spring 2002 occurred during this period. The observations show a distinct year-to-year variability not directly related to solar Lyman-α radiation. In winter the water vapor mixing ratios in the upper domain were anticorrelated to the solar activity, whereas in summer, minima occurred in the years after the solar maximum in 2000/2001. In winter, sudden stratospheric warmings (SSWs) modulated the water vapor mixing ratios. Within the stratopause region a middle atmospheric water vapor maximum was observed, which results from the methane oxidation and is a regular feature there. The altitude of the maximum increased by approximately 5 km as summer approached. The largest mixing ratios were monitored in autumn. During the summer season a secondary water vapor maximum also occurred above 65 km most pronounced in late summer. The solar Lyman-α radiation impacts the water vapor mixing ratio particularly in winter above 65 km. In summer the correlation is positive below 70 km. The correlation is also positive in the lower mesosphere/stratopause region in winter due to the action of sudden stratospheric warmings, which occur more frequently under the condition of high solar activity and the enhancing the humidity. A strong day-to-day variability connected with planetary wave activity was found throughout the entire year. Model calculations by means of Leibniz-Institute Middle Atmosphere model (LIMA) reflect the essential patterns of the water vapor variation, but the results also show differences from the observations, indicating that exchange processes between the troposphere and stratosphere not modeled by LIMA could have

  3. Adsorption characteristics of water vapor on ferroaluminophosphate for desalination cycle

    KAUST Repository

    Kim, Youngdeuk

    2014-07-01

    The adsorption characteristics of microporous ferroaluminophosphate adsorbent (FAM-Z01, Mitsubishi Plastics) are evaluated for possible application in adsorption desalination and cooling (AD) cycles. A particular interest is its water vapor uptake behavior at assorted adsorption temperatures and pressures whilst comparing them to the commercial silica gels of AD plants. The surface characteristics are first carried out using N2 gas adsorption followed by the water vapor uptake analysis for temperature ranging from 20°C to 80°C. We propose a hybrid isotherm model, composing of the Henry and the Sips isotherms, which can be integrated to satisfactorily fit the experimental data of water adsorption on the FAM-Z01. The hybrid model is selected to fit the unusual isotherm shapes, that is, a low adsorption in the initial section and followed by a rapid vapor uptake leading to a likely micropore volume filling by hydrogen bonding and cooperative interaction in micropores. It is shown that the equilibrium adsorption capacity of FAM-Z01 can be up to 5 folds higher than that of conventional silica gels. Owing to the quantum increase in the adsorbate uptake, the FAM-Z01 has the potential to significantly reduce the footprint of an existing AD plant for the same output capacity. © 2014 Elsevier B.V.

  4. Major Upgrades to the AIRS Version-6 Water Vapor Profile Methodology

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John; Iredell, Lena

    2015-01-01

    This research is a continuation of part of what was shown at the last AIRS Science Team Meeting and the AIRS 2015 NetMeeting. AIRS Version 6 was finalized in late 2012 and is now operational. Version 6 contained many significant improvements in retrieval methodology compared to Version 5. Version 6 retrieval methodology used for the water vapor profile q(p) and ozone profile O3(p) retrievals is basically unchanged from Version 5, or even from Version 4. Subsequent research has made significant improvements in both water vapor and O3 profiles compared to Version 6.

  5. The Effect of Water Vapor on the Thermal Decomposition of Pyrite in N2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Nesrin BOYABAT

    2009-03-01

    Full Text Available In this study, the effect of water vapor on the thermal decomposition of pyrite mineral in nitrogen atmosphere has been investigated in a horizontal tube furnace. Temperature, time and water vapor concentration were used as experimental parameters. According to the data obtained at nitrogen/ water vapor environment, it was observed that the water vapor on the decomposition of pyrite increased the decomposition rate. The decomposition reaction is well represented by the "shrinking core" model and can be divided into two regions with different rate controlling step. The rate controlling steps were determined from the heat transfer through the gas film for the low conversions, while it was determined from the mass transfer through product ash layer for the high conversions. The activation energies of this gas and ash film mechanisms were found to be 77 and 81 kJ/mol-1, respectively.

  6. DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER

    Science.gov (United States)

    EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...

  7. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    Science.gov (United States)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; Bender, Steve; Lemmon, Mark; Wiens, Roger C.; Maurice, Sylvestre; Gasnault, Olivier; Lasue, Jeremie; Meslin, Pierre-Yves; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Martínez, Germán M.; DeFlores, Lauren; Blaney, Diana; Johnson, Jeffrey R.; Bell, James F.

    2018-06-01

    We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 Ls = 291° (March 30, 2013) to Mars Year 33 Ls= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO2 absorptions and the known CO2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus

  8. A buoyant plume adjacent to a headland-Observations of the Elwha River plume

    Science.gov (United States)

    Warrick, J.A.; Stevens, A.W.

    2011-01-01

    Small rivers commonly discharge into coastal settings with topographic complexities - such as headlands and islands - but these settings are underrepresented in river plume studies compared to more simplified, straight coasts. The Elwha River provides a unique opportunity to study the effects of coastal topography on a buoyant plume, because it discharges into the Strait of Juan de Fuca on the western side of its deltaic headland. Here we show that this headland induces flow separation and transient eddies in the tidally dominated currents (O(100. cm/s)), consistent with other headlands in oscillatory flow. These flow conditions are observed to strongly influence the buoyant river plume, as predicted by the "small-scale" or "narrow" dynamical classification using Garvine's (1995) system. Because of the transient eddies and the location of the river mouth on the headland, flow immediately offshore of the river mouth is directed eastward twice as frequently as it is westward. This results in a buoyant plume that is much more frequently "bent over" toward the east than the west. During bent over plume conditions, the plume was attached to the eastern shoreline while having a distinct, cuspate front along its westernmost boundary. The location of the front was found to be related to the magnitude and direction of local flow during the preceding O(1. h), and increases in alongshore flow resulted in deeper freshwater mixing, stronger baroclinic anomalies, and stronger hugging of the coast. During bent over plume conditions, we observed significant convergence of river plume water toward the frontal boundary within 1. km of the river mouth. These results show how coastal topography can strongly influence buoyant plume behavior, and they should assist with understanding of initial coastal sediment dispersal pathways from the Elwha River during a pending dam removal project. ?? 2010.

  9. GPS Water Vapor Tomography Based on Accurate Estimations of the GPS Tropospheric Parameters

    Science.gov (United States)

    Champollion, C.; Masson, F.; Bock, O.; Bouin, M.; Walpersdorf, A.; Doerflinger, E.; van Baelen, J.; Brenot, H.

    2003-12-01

    The Global Positioning System (GPS) is now a common technique for the retrieval of zenithal integrated water vapor (IWV). Further applications in meteorology need also slant integrated water vapor (SIWV) which allow to precisely define the high variability of tropospheric water vapor at different temporal and spatial scales. Only precise estimations of IWV and horizontal gradients allow the estimation of accurate SIWV. We present studies developed to improve the estimation of tropospheric water vapor from GPS data. Results are obtained from several field experiments (MAP, ESCOMPTE, OHM-CV, IHOP, .). First IWV are estimated using different GPS processing strategies and results are compared to radiosondes. The role of the reference frame and the a priori constraints on the coordinates of the fiducial and local stations is generally underestimated. It seems to be of first order in the estimation of the IWV. Second we validate the estimated horizontal gradients comparing zenith delay gradients and single site gradients. IWV, gradients and post-fit residuals are used to construct slant integrated water delays. Validation of the SIWV is under progress comparing GPS SIWV, Lidar measurements and high resolution meteorological models (Meso-NH). A careful analysis of the post-fit residuals is needed to separate tropospheric signal from multipaths. The slant tropospheric delays are used to study the 3D heterogeneity of the troposphere. We develop a tomographic software to model the three-dimensional distribution of the tropospheric water vapor from GPS data. The software is applied to the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers operated in southern France. Three inversions have been successfully compared to three successive radiosonde launches. Good resolution is obtained up to heights of 3000 m.

  10. Controls on water vapor isotopes over Roorkee, India: Impact of convective activities and depression systems

    Science.gov (United States)

    Saranya, P.; Krishan, Gopal; Rao, M. S.; Kumar, Sudhir; Kumar, Bhishm

    2018-02-01

    The study evaluates the water vapor isotopic compositions and its controls with special reference to Indian Summer Monsoon (ISM) season at Roorkee, India. Precipitation is usually a discrete event spatially and temporally in this part of the country, therefore, the information provided is limited, while, the vapors have all time availability and have a significant contribution in the hydrological cycle locally or over a regional scale. Hence for understanding the processes altering the various sources, its isotopic signatures were studied. The Isotope Water Vapour Line (Iso Val) was drawn together with the Global Meteoric Water Line (GMWL) and the best fit line was δD = 5.42 * δ18O + 27.86. The precipitation samples were also collected during the study period and were best fitted with δD = 8.20(±0.18) * δ18O + 9.04(±1.16) in the Local Meteoric Water Line (LMWL). From the back trajectory analysis of respective vapor samples, it is unambiguous that three major sources viz; local vapor, western disturbance and monsoon vapor are controlling the fate of moisture over Roorkee. The d-excess in ground-level vapor (GLV) reveals the supply of recycled moisture from continental water bodies and evapo-transpiration as additional moisture sources to the study area. The intensive depletion in isotopic ratios was associated with the large-scale convective activity and low-pressure/cyclonic/depression systems formed over Bay of Bengal.

  11. Vapor-liquid equilibria for the acetone-ethanol-n-propanol-tert-butanol-water system

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Uchida, K.; Kojima, K.

    1981-12-01

    This study deals with the measurement of vapor-liquid equilibria for the five-component system acetone-ethanol-n-propanol-tert-butanol-water at 760 mmHg and prediction of vapor-liquid equilibria by the ASOG group contribution method. The five-component system in this work is composed of a part of the components obtained during ethanol production by vapor-phase hydration of ethylene. 6 refs.

  12. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  13. Small-scale experimental study of vaporization flux of liquid nitrogen released on water.

    Science.gov (United States)

    Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam

    2015-10-30

    A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Application to AVIRIS 91/95 data

    Energy Technology Data Exchange (ETDEWEB)

    Schlaepfer, D. [Univ. of Zuerich (Switzerland). Dept. of Geography; Borel, C.C. [Los Alamos National Lab., NM (United States); Keller, J. [Paul Scherrer Institut, Villigen (Switzerland)] [and others

    1996-03-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 run resolution. This data includes information on constituents of the earth`s surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various rationing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. This work testS the best performing differential absorption techniques for imaging spectrometry of tropospheric water vapor.

  15. Generation of real-time mode high-resolution water vapor fields from GPS observations

    Science.gov (United States)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  16. The Time Variability of Individual Geysers in the Plume of Enceladus

    Science.gov (United States)

    Trumbo, S. K.; Ewald, S. P.; Ingersoll, A. P.

    2016-12-01

    Porco et al. (2014) [1] published the locations of 100 jets along the so-called "tiger stripes" that feed the massive plume of Enceladus. Hedman et al. (2013) [2] observed fluctuations in integrated plume brightness in response to periodic tidal forcing on the orbital timescale of Enceladus, in which the plume is brightest near apocenter and dimmest near pericenter. The thin crack models of Hurford et al. (2007, 2012) [3, 4] suggest that individual jets should respond to the same forces on similar timescales. However, if the jets are produced via vapor and liquid propagation through thin subterranean cracks, then they may also be controlled thermodynamically and dependent on the timescale of ice buildup on the conduit walls. Ingersoll and Ewald (2016) [5] demonstrate that the plume also varies on decadal timescales, perhaps as a result of an eleven-year tide or long-term ice accumulation within source cracks. We examine Cassini ISS Narrow Angle Camera images spanning 2005 - 2012 in order to assess the temporal variability of individual geysers and regional emission in the plume. We observe both the appearance and disappearance of individual jets, as well as visible changes in regional emission. Our observations suggest localized variations on timescales of months to years that are not easily tied to mean anomaly, but that may be indicative of subsurface processes. Theoretical models of the geyser mechanisms and subsurface plumbing predict closure timescales of individual cracks that are dependent on model parameters, such as crack width, crack tortuosity, and water table depth [6, 7, 8]. Thus, we discuss possible implications of these observations for both the mechanism and anatomy of an Enceladus geyser. [1] Porco et al. (2014), AJ, 148, 3. [2] Hedman et al. (2013), Nature, 500, 182 - 184. [3] Hurford et al. (2007), Nature, 447, 292 - 294. [4] Hurford et al. (2012), Icarus, 220, 896 - 903. [5] Ingersoll and Ewald (2016), Icarus, in review. [6] Ingersoll and

  17. Evaluation of plume potential and plume abatement of evaporative cooling towers in a subtropical region

    International Nuclear Information System (INIS)

    Xu Xinhua; Wang Shengwei; Ma Zhenjun

    2008-01-01

    Hong Kong is a typical subtropical region with frequently high humidity in late spring and summer seasons. Plume from evaporative cooling towers, which service air-conditioning systems of civil buildings, has aroused public concerns since 2000 when the fresh water evaporative cooling towers were allowed to be used for high energy efficiency and environmental issues. This paper presents the evaluation of the plume potential and its effect on the sizing of the plume abatement system in a large commercial office building in Hong Kong for practical application. This evaluation was conducted based on a dynamic simulation platform using the typical meteorological year of Hong Kong since the occurrence of the plume heavily depends on the state conditions of the exhaust air from cooling towers and the ambient air, while the state condition of the exhaust air is determined by the total building cooling load and the control strategies of cooling towers employed mainly for improving energy efficiency. The results show that the control strategies have a significant effect on the plume potential and further affect the system design and sizing of the plume abatement system

  18. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques

    Science.gov (United States)

    Fahey, D. W.; Gao, R.-S.; Möhler, O.; Saathoff, H.; Schiller, C.; Ebert, V.; Krämer, M.; Peter, T.; Amarouche, N.; Avallone, L. M.; Bauer, R.; Bozóki, Z.; Christensen, L. E.; Davis, S. M.; Durry, G.; Dyroff, C.; Herman, R. L.; Hunsmann, S.; Khaykin, S. M.; Mackrodt, P.; Meyer, J.; Smith, J. B.; Spelten, N.; Troy, R. F.; Vömel, H.; Wagner, S.; Wienhold, F. G.

    2014-09-01

    The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques was conducted at the aerosol and cloud simulation chamber AIDA (Aerosol Interaction and Dynamics in the Atmosphere) at the Karlsruhe Institute of Technology, Germany, in October 2007. The overall objective was to intercompare state-of-the-art and prototype atmospheric hygrometers with each other and with independent humidity standards under controlled conditions. This activity was conducted as a blind intercomparison with coordination by selected referees. The effort was motivated by persistent discrepancies found in atmospheric measurements involving multiple instruments operating on research aircraft and balloon platforms, particularly in the upper troposphere and lower stratosphere, where water vapor reaches its lowest atmospheric values (less than 10 ppm). With the AIDA chamber volume of 84 m3, multiple instruments analyzed air with a common water vapor mixing ratio, by extracting air into instrument flow systems, by locating instruments inside the chamber, or by sampling the chamber volume optically. The intercomparison was successfully conducted over 10 days during which pressure, temperature, and mixing ratio were systematically varied (50 to 500 hPa, 185 to 243 K, and 0.3 to 152 ppm). In the absence of an accepted reference instrument, the absolute accuracy of the instruments was not established. To evaluate the intercomparison, the reference value was taken to be the ensemble mean of a core subset of the measurements. For these core instruments, the agreement between 10 and 150 ppm of water vapor is considered good with variation about the reference value of about ±10% (±1σ). In the region of most interest between 1 and 10 ppm, the core subset agreement is fair with variation about the reference value of ±20% (±1σ). The upper limit of precision was also derived for each instrument from the reported data. The implication for atmospheric measurements is that the

  19. Role of Water Vapor Content in the Effects of Aerosol on the Electrification of Thunderstorms: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Pengguo Zhao

    2016-10-01

    Full Text Available We explored the role of the water vapor content below the freezing level in the response of idealized supercell storm electrical processes to increased concentrations of cloud condensation nuclei (CCN. Using the Weather Research and Forecasting model coupled with parameterizations electrification and discharging, we performed 30 simulations by varying both the CCN concentration and water vapor content below the freezing level. The sensitivity simulations showed a distinct response to increased concentrations of CCN, depending on the water vapor content below the freezing level. Enhancing CCN concentrations increased electrification processes of thunderstorms and produced a new negative charge region above the main positive charge center when there were ample amounts of water vapor below the freezing level. Conversely, there were weak effects on electrification and the charge structure in numerical experiments initialized with lower water vapor content below the freezing level.

  20. GPS Water Vapor Tomography: First results from the ESCOMPTE Field Experiment

    Science.gov (United States)

    Masson, F.; Champollion, C.; Bouin, M.-N.; Walpersdorf, A.; van Baelen, J.; Doerflinger, E.; Bock, O.

    2003-04-01

    We develop a tomographic software to model the spatial distribution of the tropospheric water vapor from GPS data. First we present simulations based on a real GPS station distribution and simple tropospheric models, which prove the potentiality of the method. Second we apply the software to the ESCOMPTE data. During the ESCOMPTE field experiment, a dense network of 17 dual frequency GPS receivers has been operated for two weeks within a 20 km x 20 km area around Marseille (Southern France). The network extends from the sea level to the top of the Etoile chain (~700 m high). The input data are the slant delay values obtained by combining the estimated zenith delay values with the horizontal gradients. The effect of the initial tropospheric water vapor model, the number and thickness of the layers of the model, the a priori model and data covariance and some other parameters will be discussed. Simultaneously water vapor radiometer, solar spectrometer, Raman lidar and radiosondes have been deployed to get a data set usable for comparison with the tomographic inversion results and validation of the method. Comparison with meteorological models (MesoNH - Meteo-France) will be shown.

  1. Measurements of upper atmosphere water vapor made in situ with a new moisture sensor

    Science.gov (United States)

    Chleck, D.

    1979-01-01

    A new thin-film aluminum oxide sensor, Aquamax II, has been developed for the measurement of stratospheric and upper tropospheric water vapor levels. The sensor is briefly described with attention given to its calibration and performance. Data obtained from six balloon flights are presented; almost all the results show a constant water vapor mixing ratio, in agreement with other data from midlatitude regions.

  2. Differential absorption and Raman lidar for water vapor profile measurements - A review

    Science.gov (United States)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  3. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  4. Adsorption characteristics of water vapor on ferroaluminophosphate for desalination cycle

    KAUST Repository

    Kim, Youngdeuk; Thu, Kyaw; Ng, Kim Choon

    2014-01-01

    The adsorption characteristics of microporous ferroaluminophosphate adsorbent (FAM-Z01, Mitsubishi Plastics) are evaluated for possible application in adsorption desalination and cooling (AD) cycles. A particular interest is its water vapor uptake

  5. Innovative Use of Cr(VI) Plume Depictions and Pump-and-Treat Capture Analysis to Estimate Risks of Contaminant Discharge to Surface Water at Hanford Reactor Areas

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Chuck W.; Hanson, James P.; Ivarson, Kristine A.; Tonkin, M.

    2015-01-14

    The Hanford Site nuclear reactor operations required large quantities of high-quality cooling water, which was treated with chemicals including sodium dichromate dihydrate for corrosion control. Cooling water leakage, as well as intentional discharge of cooling water to ground during upset conditions, produced extensive groundwater recharge mounds consisting largely of contaminated cooling water and resulted in wide distribution of hexavalent chromium (Cr[VI]) contamination in the unconfined aquifer. The 2013 Cr(VI) groundwater plumes in the 100 Areas cover approximately 6 km2 (1500 acres), primarily in the 100-HR-3 and 100-KR-4 groundwater operable units (OUs). The Columbia River is a groundwater discharge boundary; where the plumes are adjacent to the Columbia River there remains a potential to discharge Cr(VI) to the river at concentrations above water quality criteria. The pump-and-treat systems along the River Corridor are operating with two main goals: 1) protection of the Columbia River, and 2) recovery of contaminant mass. An evaluation of the effectiveness of the pump-and-treat systems was needed to determine if the Columbia River was protected from contamination, and also to determine where additional system modifications may be needed. In response to this need, a technique for assessing the river protection was developed which takes into consideration seasonal migration of the plume and hydraulic performance of the operating well fields. Groundwater contaminant plume maps are generated across the Hanford Site on an annual basis. The assessment technique overlays the annual plume and the capture efficiency maps for the various pump and treat systems. The river protection analysis technique was prepared for use at the Hanford site and is described in detail in M.J. Tonkin, 2013. Interpolated capture frequency maps, based on mapping dynamic water level observed in observation wells and derived water levels in the vicinity of extraction and injection wells

  6. Water vapor radiative effects on short-wave radiation in Spain

    Science.gov (United States)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Román, Roberto; Cachorro, Victoria E.

    2018-06-01

    In this work, water vapor radiative effect (WVRE) is studied by means of the Santa Barbara's Disort Radiative Transfer (SBDART) model, fed with integrated water vapor (IWV) data from 20 ground-based GPS stations in Spain. Only IWV data recorded during cloud-free days (selected using daily insolation data) were used in this study. Typically, for SZA = 60.0 ± 0.5° WVRE values are around - 82 and - 66 Wm-2 (first and third quartile), although it can reach up - 100 Wm-2 or decrease to - 39 Wm-2. A power dependence of WVRE on IWV and cosine of solar zenith angle (SZA) was found by an empirical fit. This relation is used to determine the water vapor radiative efficiency (WVEFF = ∂WVRE/∂IWV). Obtained WVEFF values range from - 9 and 0 Wm-2 mm-1 (- 2.2 and 0% mm-1 in relative terms). It is observed that WVEFF decreases as IWV increases, but also as SZA increases. On the other hand, when relative WVEFF is calculated from normalized WVRE, an increase of SZA results in an increase of relative WVEFF. Heating rates were also calculated, ranging from 0.2 Kday-1 to 1.7 Kday-1. WVRE was also calculated at top of atmosphere, where values ranged from 4 Wm-2 to 37 Wm-2.

  7. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    Science.gov (United States)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; hide

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper

  8. Galactic water vapor emission: further observations of variability.

    Science.gov (United States)

    Knowles, S H; Mayer, C H; Sullivan, W T; Cheung, A C

    1969-10-10

    Recent observations of the 1.35-centimeter line emission of water vapor from galactic sources show short-term variability in the spectra of several sources. Two additional sources, Cygnus 1 and NGC 6334N, have been observed, and the spectra of W49 and VY Canis Majoris were measured over a wider range of radial velocity.

  9. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    Science.gov (United States)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  10. Water vapor pressure over molten KH2PO4 and demonstration of water electrolysis at ∼300ºC

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Nikiforov, Aleksey Valerievich; Petrushina, Irina

    2016-01-01

    A new potentially high-efficiency electrolyte for water electrolysis: molten monobasic potassium phosphate, KH2PO4 or KDP has been investigated at temperatures ∼275–325 °C. At these temperatures, KH2PO4 was found to dissociate into H2O gas in equilibrium with a melt mixture of KH2PO4—K2H2P2O7—KPO3...... of water and methane or hydrogen to be 0.40 ± 0.02 or 1.2 ± 0.03. At equilibrium the vapor pressure was much lower than the vapor pressure above liquid water at the same temperature. Electrolysis was realized by passing current through closed ampoules (vacuum sealed quartz glass electrolysis cells...... with platinum electrodes and the electrolyte melt). The formation of mixtures of hydrogen and oxygen gases as well as the water vapor was detected by Raman spectroscopy. In this way it was demonstrated that water is present in the new electrolyte: molten KH2PO4 can be split by electrolysis via the reaction 2H2O...

  11. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2011-05-01

    Full Text Available This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY aboard ENVISAT (Environmental Satellite are presented here. In previous publications, the retrieval of water vapor vertical distributions has been achieved exploiting either the emitted radiance leaving the atmosphere or the transmitted solar radiation. In this study, the scattered solar radiation is used as a new source of information on the water vapor content in the UTLS region. A recently developed retrieval algorithm utilizes the differential absorption structure of the water vapor in 1353–1410 nm spectral range and yields the water vapor content in the 11–25 km altitude range. In this study, the retrieval algorithm is successfully applied to SCIAMACHY limb measurements and the resulting water vapor profiles are compared to in situ balloon-borne observations. The results from both satellite and balloon-borne instruments are found to agree typically within 10 %.

  12. Water vapor mass balance method for determining air infiltration rates in houses

    Science.gov (United States)

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  13. An Accurate Method for Computing the Absorption of Solar Radiation by Water Vapor

    Science.gov (United States)

    Chou, M. D.

    1980-01-01

    The method is based upon molecular line parameters and makes use of a far wing scaling approximation and k distribution approach previously applied to the computation of the infrared cooling rate due to water vapor. Taking into account the wave number dependence of the incident solar flux, the solar heating rate is computed for the entire water vapor spectrum and for individual absorption bands. The accuracy of the method is tested against line by line calculations. The method introduces a maximum error of 0.06 C/day. The method has the additional advantage over previous methods in that it can be applied to any portion of the spectral region containing the water vapor bands. The integrated absorptances and line intensities computed from the molecular line parameters were compared with laboratory measurements. The comparison reveals that, among the three different sources, absorptance is the largest for the laboratory measurements.

  14. Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles

    Science.gov (United States)

    Nehrir, Amin R.; Kiemle, Christoph; Lebsock, Mathew D.; Kirchengast, Gottfried; Buehler, Stefan A.; Löhnert, Ulrich; Liu, Cong-Liang; Hargrave, Peter C.; Barrera-Verdejo, Maria; Winker, David M.

    2017-11-01

    A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.

  15. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    Science.gov (United States)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  16. Liquid-phase and vapor-phase dehydration of organic/water solutions

    Science.gov (United States)

    Huang, Yu [Palo Alto, CA; Ly, Jennifer [San Jose, CA; Aldajani, Tiem [San Jose, CA; Baker, Richard W [Palo Alto, CA

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  17. Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Westwater, Edgeworth

    2011-05-06

    The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement (ARM) Program. At the North Slope of Alaska (NSA), both microwave radiometers (MWR) and the MWRProfiler (MWRP), been used operationally by ARM for passive retrievals of the quantities: Precipitable Water Vapor (PWV) and Liquid Water Path (LWP). However, it has been convincingly shown that these instruments are inadequate to measure low amounts of PWV and LWP. In the case of water vapor, this is especially important during the Arctic winter, when PWV is frequently less than 2 mm. For low amounts of LWP (< 50 g/m{sup 2}), the MWR and MWRP retrievals have an accuracy that is also not acceptable. To address some of these needs, in March-April 2004, NOAA and ARM conducted the NSA Arctic Winter Radiometric Experiment - Water Vapor Intensive Operational Period at the ARM NSA/Adjacent Arctic Ocean (NSA/AAO) site. After this experiment, the radiometer group at NOAA moved to the Center for Environmental Technology (CET) of the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. During this 2004 experiment, a total of 220 radiosondes were launched, and radiometric data from 22.235 to 380 GHz were obtained. Primary instruments included the ARM MWR and MWRP, a Global Positioning System (GPS), as well as the CET Ground-based Scanning Radiometer (GSR). We have analyzed data from these instruments to answer several questions of importance to ARM, including: (a) techniques for improved water vapor measurements; (b) improved calibration techniques during cloudy conditions; (c) the spectral response of radiometers to a variety of conditions: clear, liquid, ice, and mixed phase clouds; and (d) forward modeling of microwave and millimeter wave brightness temperatures from 22 to 380 GHz. Many of these results have been published in the open literature. During the third year of

  18. Trajectory mapping of middle atmospheric water vapor by a mini network of NDACC instruments

    Directory of Open Access Journals (Sweden)

    M. Lainer

    2015-08-01

    Full Text Available The important task to observe the global coverage of middle atmospheric trace gases like water vapor or ozone usually is accomplished by satellites. Climate and atmospheric studies rely upon the knowledge of trace gas distributions throughout the stratosphere and mesosphere. Many of these gases are currently measured from satellites, but it is not clear whether this capability will be maintained in the future. This could lead to a significant knowledge gap of the state of the atmosphere. We explore the possibilities of mapping middle atmospheric water vapor in the Northern Hemisphere by using Lagrangian trajectory calculations and water vapor profile data from a small network of five ground-based microwave radiometers. Four of them are operated within the frame of NDACC (Network for the Detection of Atmospheric Composition Change. Keeping in mind that the instruments are based on different hardware and calibration setups, a height-dependent bias of the retrieved water vapor profiles has to be expected among the microwave radiometers. In order to correct and harmonize the different data sets, the Microwave Limb Sounder (MLS on the Aura satellite is used to serve as a kind of traveling standard. A domain-averaging TM (trajectory mapping method is applied which simplifies the subsequent validation of the quality of the trajectory-mapped water vapor distribution towards direct satellite observations. Trajectories are calculated forwards and backwards in time for up to 10 days using 6 hourly meteorological wind analysis fields. Overall, a total of four case studies of trajectory mapping in different meteorological regimes are discussed. One of the case studies takes place during a major sudden stratospheric warming (SSW accompanied by the polar vortex breakdown; a second takes place after the reformation of stable circulation system. TM cases close to the fall equinox and June solstice event from the year 2012 complete the study, showing the high

  19. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  20. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    Science.gov (United States)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  1. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    Science.gov (United States)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; hide

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  2. Numerical simulation of the impact of water-air fronts on radionuclides plumes in heterogeneous media

    International Nuclear Information System (INIS)

    Aquino, J.; Francisco, A.S.; Pereira, F.; Amaral Souto, H.P.

    2004-01-01

    The goal of this paper is to investigate the interaction of water-air fronts with radionuclide plumes in unsaturated heterogeneous porous media. This problem is modeled by a system of equations that describes both the water-air flow and the radionuclide transport. The water-air problem is solved numerically by a mixed finite element combined with a non-oscillatory central difference scheme. For the radionuclide transport equation we use the Modified Method of Characteristics (MMOC). We present the results of numerical simulations for heterogeneous permeability fields taking into account sorption effects. (author)

  3. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Application to AVIRIS 91/95 Data

    Science.gov (United States)

    Schlaepfer, Daniel; Borel, Christoph C.; Keller, Johannes; Itten, Klaus I.

    1996-01-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 nm resolution. This data includes the information on constituents of the earth's surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various ratioing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, the spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. The objective of this work is to test the best performing differential absorption techniques for imaging spectrometry of

  4. Water vapor pressure over molten KH_2PO_4 and demonstration of water electrolysis at ∼300 °C

    International Nuclear Information System (INIS)

    Berg, R.W.; Nikiforov, A.V.; Petrushina, I.M.; Bjerrum, N.J.

    2016-01-01

    Highlights: • The vapor pressure over molten KH_2PO_4 was measured by Raman spectroscopy to be about 8 bars at ∼300 °C. • Raman spectroscopy shows that molten KH_2PO_4 under its own vapor pressure contains much dissolved water. • It is demonstrated spectroscopically that water electrolysis is possible in KH_2PO_4 electrolyte forming H_2 and O_2 at 300 °C. • Molten KH_2PO_4 is a possible electrolyte for water electrolysis. - Abstract: A new potentially high-efficiency electrolyte for water electrolysis: molten monobasic potassium phosphate, KH_2PO_4 or KDP has been investigated at temperatures ∼275–325 °C. At these temperatures, KH_2PO_4 was found to dissociate into H_2O gas in equilibrium with a melt mixture of KH_2PO_4−K_2H_2P_2O_7−KPO_3−H_2O. The water vapor pressure above the melt, when contained in a closed ampoule, was determined quantitatively vs. temperature by use of Raman spectroscopy with methane or hydrogen gas as an internal calibration standard, using newly established relative ratios of Raman scattering cross sections of water and methane or hydrogen to be 0.40 ± 0.02 or 1.2 ± 0.03. At equilibrium the vapor pressure was much lower than the vapor pressure above liquid water at the same temperature. Electrolysis was realized by passing current through closed ampoules (vacuum sealed quartz glass electrolysis cells with platinum electrodes and the electrolyte melt). The formation of mixtures of hydrogen and oxygen gases as well as the water vapor was detected by Raman spectroscopy. In this way it was demonstrated that water is present in the new electrolyte: molten KH_2PO_4 can be split by electrolysis via the reaction 2H_2O → 2H_2 + O_2 at temperatures ∼275–325 °C. At these temperatures, before the start of the electrolysis, the KH_2PO_4 melt gives off H_2O gas that pressurizes the cell according to the following dissociations: 2KH_2PO_4 ↔ K_2H_2P_2O_7 + H_2O ↔ 2KPO_3 + 2H_2O. The spectra show however that the water by

  5. Atmospheric solar heating rate in the water vapor bands

    Science.gov (United States)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  6. Scanning Raman lidar for tropospheric water vapor profiling and GPS path delay correction

    Science.gov (United States)

    Tarniewicz, Jerome; Bock, Olivier; Pelon, Jacques R.; Thom, Christian

    2002-01-01

    The design of a ground based and transportable combined Raman elastic-backscatter lidar for the remote sensing of lower tropospheric water vapor and nitrogen concentration is described. This lidar is intended to be used for an external calibration of the wet path delay of GPS signals. A description of the method used to derive water vapor and nitrogen profiles in the lower troposphere is given. The instrument has been tested during the ESCOMPTE campaign in June 2001 and first measurements are presented.

  7. Tidally induced lateral dispersion of the Storfjorden overflow plume

    Directory of Open Access Journals (Sweden)

    F. Wobus

    2013-10-01

    Full Text Available We investigate the flow of brine-enriched shelf water from Storfjorden (Svalbard into Fram Strait and onto the western Svalbard Shelf using a regional set-up of NEMO-SHELF, a 3-D numerical ocean circulation model. The model is set up with realistic bathymetry, atmospheric forcing, open boundary conditions and tides. The model has 3 km horizontal resolution and 50 vertical levels in the sh-coordinate system which is specially designed to resolve bottom boundary layer processes. In a series of modelling experiments we focus on the influence of tides on the propagation of the dense water plume by comparing results from tidal and non-tidal model runs. Comparisons of non-tidal to tidal simulations reveal a hotspot of tidally induced horizontal diffusion leading to the lateral dispersion of the plume at the southernmost headland of Spitsbergen which is in close proximity to the plume path. As a result the lighter fractions in the diluted upper layer of the plume are drawn into the shallow coastal current that carries Storfjorden water onto the western Svalbard Shelf, while the dense bottom layer continues to sink down the slope. This bifurcation of the plume into a diluted shelf branch and a dense downslope branch is enhanced by tidally induced shear dispersion at the headland. Tidal effects at the headland are shown to cause a net reduction in the downslope flux of Storfjorden water into the deep Fram Strait. This finding contrasts previous results from observations of a dense plume on a different shelf without abrupt topography.

  8. Impact of volcanic plume emissions on rain water chemistry during the January 2010 Nyamuragira eruptive event: implications for essential potable water resources.

    Science.gov (United States)

    Cuoco, Emilio; Tedesco, Dario; Poreda, Robert J; Williams, Jeremy C; De Francesco, Stefano; Balagizi, Charles; Darrah, Thomas H

    2013-01-15

    On January 2, 2010 the Nyamuragira volcano erupted lava fountains extending up to 300 m vertically along an ~1.5 km segment of its southern flank cascading ash and gas on nearby villages and cities along the western side of the rift valley. Because rain water is the only available potable water resource within this region, volcanic impacts on drinking water constitutes a major potential hazard to public health within the region. During the 2010 eruption, concerns were expressed by local inhabitants about water quality and feelings of physical discomfort (e.g. nausea, bloating, indigestion, etc.) after consuming rain water collected after the eruption began. We present the elemental and ionic chemistry of drinking water samples collected within the region on the third day of the eruption (January 5, 2010). We identify a significant impact on water quality associated with the eruption including lower pH (i.e. acidification) and increases in acidic halogens (e.g. F(-) and Cl(-)), major ions (e.g. SO(4)(2-), NH(4)(+), Na(+), Ca(2+)), potentially toxic metals (e.g. Al(3+), Mn(2+), Cd(2+), Pb(2+), Hf(4+)), and particulate load. In many cases, the water's composition significantly exceeds World Health Organization (WHO) drinking water standards. The degree of pollution depends upon: (1) ash plume direction and (2) ash plume density. The potential negative health impacts are a function of the water's pH, which regulates the elements and their chemical form that are released into drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A Two-Line Absorption Instrument for Scramjet Temperature and Water Vapor Concentration Measurement in HYPULSE

    Science.gov (United States)

    Tsai, C. Y.

    1998-01-01

    A three beam water vapor sensor system has been modified to provide for near simultaneous temperature measurement. The system employs a tunable diode laser to scan spectral line of water vapor. The application to measurements in a scramjet combustor environment of a shock tunnel facility is discussed. This report presents and discusses die initial calibration of the measurement system.

  10. Effects of thermal vapor diffusion on seasonal dynamics of water in the unsaturated zone

    Science.gov (United States)

    Milly, Paul C.D.

    1996-01-01

    The response of water in the unsaturated zone to seasonal changes of temperature (T) is determined analytically using the theory of nonisothermal water transport in porous media, and the solutions are tested against field observations of moisture potential and bomb fallout isotopic (36Cl and 3H) concentrations. Seasonally varying land surface temperatures and the resulting subsurface temperature gradients induce thermal vapor diffusion. The annual mean vertical temperature gradient is close to zero; however, the annual mean thermal vapor flux is downward, because the temperature‐dependent vapor diffusion coefficient is larger, on average, during downward diffusion (occurring at high T) than during upward diffusion (low T). The annual mean thermal vapor flux is shown to decay exponentially with depth; the depth (about 1 m) at which it decays to e−1of its surface value is one half of the corresponding decay depth for the amplitude of seasonal temperature changes. This depth‐dependent annual mean flux is effectively a source of water, which must be balanced by a flux divergence associated with other transport processes. In a relatively humid environment the liquid fluxes greatly exceed the thermal vapor fluxes, so such a balance is readily achieved without measurable effect on the dynamics of water in the unsaturated zone. However, if the mean vertical water flux through the unsaturated zone is very small (theoretical prediction is supported by long‐term field measurements in the Chihuahuan Desert. The analysis also makes predictions, confirmed by the field observations, regarding the seasonal variations of matric potential at a given depth. The conceptual model of unsaturated zone water transport developed here implies the possibility of near‐surface trapping of any aqueous constituent introduced at the surface.

  11. Using JPSS Retrievals to Implement a Multisensor, Synoptic, Layered Water Vapor Product for Forecasters

    Science.gov (United States)

    Forsythe, J. M.; Jones, A. S.; Kidder, S. Q.; Fuell, K.; LeRoy, A.; Bikos, D.; Szoke, E.

    2015-12-01

    Forecasters have been using the NOAA operational blended total precipitable water (TPW) product, developed by the Cooperative Institute for Research in the Atmosphere (CIRA), since 2009. Blended TPW has a wide variety of uses related to heavy precipitation and flooding, such as measuring the amount of moisture in an atmospheric river originating in the tropics. But blended TPW conveys no information on the vertical distribution of moisture, which is relevant to a variety of forecast concerns. Vertical profile information is particularly lacking over the oceans for landfalling storms. A blended six-satellite, four-layer, layered water vapor product demonstrated by CIRA and the NASA Short-term Prediction Research and Transition Center (SPoRT) in allows forecasters to see the vertical distribution of water vapor in near real-time. National Weather Service (NWS) forecaster feedback indicated that this new, vertically-resolved view of water vapor has a substantial impact on forecasts. This product uses NOAA investments in polar orbiting satellite sounding retrievals from passive microwave radiances, in particular, the Microwave Integrated Retrieval System (MIRS). The product currently utilizes data from the NOAA-18 and -19 spacecraft, Metop-A and -B, and the Defense Meteorological Program (DMSP) F18 spacecraft. The sounding instruments onboard the Suomi-NPP and JPSS spacecraft will be cornerstone instruments in the future evolution of this product. Applications of the product to heavy rain cases will be presented and compared to commonly used data such as radiosondes and Geostationary Operational Environmental Satellite (GOES) water vapor channel imagery. Research is currently beginning to implement advective blending, where model winds are used to move the water vapor profiles to a common time. Interactions with the NOAA Satellite Analysis Branch (SAB), National Center for Environmental Prediction (NCEP) centers including the Ocean Prediction Center (OPC) and Weather

  12. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan

    2015-10-09

    Thin and robust composite membranes comprising stainless steel scaffold, fine and porous TiO2 and polyvinyl alcohol/lithium chloride were fabricated and studied for air dehumidification application. Higher hydrophilicity, sorption and permeation were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor permeation process. It was specifically noted that lithium chloride significantly reduces water diffusion energy barrier, resulting in the change of permeation energy from positive to negative values. Higher water vapor permeance was observed for the membrane with higher LiCl content at lower temperature. The isothermal air dehumidification tests show that the membrane is suitable for dehumidifying air in high humid condition. Additionally, results also indicate a trade-off between the humidity ratio drop with the water vapor removal rate when varying air flowrate.

  13. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study

    Science.gov (United States)

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-01

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  14. Climate Change Intensification of Horizontal Water Vapor Transport in CMIP5

    Science.gov (United States)

    Lavers, D. A.; Ralph, F. M.; Waliser, D. E.; Gershunov, A.; Dettinger, M. D.

    2015-12-01

    The global water cycle is hypothesized to intensify with a warming Earth's atmosphere. To determine associated hydrological changes, most previous research has used precipitation scenarios without considering changes to the horizontal water vapor transport (IVT). As few studies have analyzed the IVT, and given that many extreme precipitation and flood events are driven by intense water vapor transport, it is the aim of this study to investigate projected changes to global IVT. Furthermore, this approach can identify climatological changes to the IVT between water source and sink regions. Using 22 global circulation models from the Climate Model Intercomparison Project Phase 5 (CMIP5) we evaluate, globally, the mean, standard deviation, and the 95th percentile of IVT from the historical simulations (1979-2005) and two emissions scenarios (2073-2099); representative concentration pathways (RCP4.5 and RCP8.5). This analysis is undertaken for December, January, and February (Boreal winter); and for June, July, and August (Austral winter). The CMIP5 historical multi-model mean has good agreement with the fields from the ECMWF ERA-Interim reanalysis, which provides confidence in the models' signal. In the future, under more extreme emissions (RCP8.5), multi-model mean IVT increases by 30-40% in the North Pacific and North Atlantic storm tracks and in the equatorial Pacific Ocean trade winds. The Arctic region has the largest relative IVT increase especially in Boreal winter. Analysis of low-altitude moisture and winds suggest that these projected changes are mainly due to higher atmospheric water vapor content.

  15. Interannual Variation in Offshore Advection of Amazon-Orinoco Plume Waters: Observations, Forcing Mechanisms, and Impacts

    Science.gov (United States)

    Fournier, S.; Vandemark, D. C.; Gaultier, L.; Lee, T.; Jonsson, B. F.; Gierach, M. M.

    2017-12-01

    Sea surface salinity (SSS) and sea surface temperature (SST) variations in the tropical Atlantic east of the Lesser Antilles, a region impacted by freshwater advection from the Amazon and Orinoco Rivers have potential implications to late-summer tropical cyclones (TCs). This study examines these variations during late summer and their forcing mechanisms using observations. During the period 2010-2014, the largest difference in plume-affected area, defined as the extent covered by SSS lower than 35.5 pss, is found between 2011 and 2014. Plume waters covered 92% (60%) of the study region in 2011 (2014) with the averaged SSS in the study region being 2-pss lower in 2011. Lagrangian particle tracking based on satellite-derived ocean currents is used to diagnose the impacts of the river plumes on SSS and SST during 2010-2014. Northward freshwater flux in the summer of 2014 is significantly weaker than those in 2010-2013. This is not due to interannual discharge variability, but significant changes in eddy-driven transport and cross-shore winds. In particular, the stronger cross-shore wind in May 2014 restricted offshore freshwater flow, leading to a smaller extent of the plume-affected area. Persistent SST gradients are often found near the plume edge, which may have implication to ocean-atmosphere coupling associated with TC-related convection. SST in the study region is 1°C higher in 2010 than in other years, and is related to basin-scale ocean-atmosphere processes. Interannual variation in Amazon advective pathways and the associated SSS changes are also influenced by changes in the ITCZ position between 2011 and 2014.

  16. Are splash plumes the origin of minor hotspots?

    Science.gov (United States)

    Davies, J. H.; Bunge, H.-P.

    2006-05-01

    It has been claimed that focused hot cylindrical upwelling plumes cause many of the surface volcanic hotspots on Earth. It has also been argued that they must originate from thermal boundary layers. In this paper, we present spherical simulations of mantle circulation at close to Earth-like vigor with significant internal heating. These show, in addition to thermal boundary layer plumes, a new class of plumes that are not rooted in thermal boundary layers. These plumes develop as instabilities from the edge of bowls of hot mantle, which are produced by cold downwelling material deforming hot sheets of mantle. The resulting bowl and plume structure can look a bit like the “splash” of a water droplet. These splash plumes might provide an explanation for some hotspots that are not underlain by thermal boundary layer sourced plumes and not initiated by large igneous provinces. We suggest that in Earth's mantle, lithospheric instabilities or small pieces of subducting slab could play the role of the model downwelling material in initiating splash plumes. Splash plumes would have implications for interpreting ocean-island basalt geochemistry, plume fixity, excess plume temperature, and estimating core heat flux. Improved seismic imaging will ultimately test this hypothesis.

  17. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  18. Experiment HFR-B1: A preliminary analysis of the water-vapor injection experiments in capsule 3

    International Nuclear Information System (INIS)

    Myers, B.F.

    1993-01-01

    A preliminary analysis of the response of uranium oxycarbide (UCO) fuel to water vapor addition in capsule 3 of experiment HFR-B1 (HFR-B1/3) has been conducted. The analysis provides an early indication of the behavior of fission gas release under a wider range of water-vapor pressures and of temperatures than heretofore studied. A preliminary analysis of selected aspects of the water-vapor injection tests in capsule 3 of experiment HFR-B1 is presented. The release of fission gas stored in bubbles and the diffusive release of fission-gas atoms are distinguished. The dependence of the release of stored fission gas ( 85m Kr) on water-vapor pressure, P(H 2 O), and temperature were established taking into account the contributing mechanisms of gaseous release, the effect of graphite hydrolysis, and the requirement of consistency with experiment HRB-17 in which similar water-vapor injection tests were conducted. The dependence on P(H 2 O) becomes weaker as temperatures increase above 770 degree C; the activation energy for release of stored-fission gas is 393 kJ/mol. Isorelease curves for the pressure-temperature plane were deduced from a derived functional relation. The stored-fission gas releases as a function of P(H 2 O) at a common temperature for experiments HFR-B1 and HRB-17 differ by a factor of 4; this discrepancy could be attributed to the differences in fission-rate density and neutron flux between the two experiments. Diffusive release of fission gas occurred during and after the release of stored gas. The ratio of diffusive release during water-vapor injection to that prior to injection varied in contrast to the results from HRB-17. The variation was attributed to the practice of injecting water vapor into HFR-B1 before sintering of the fuel, hydrolyzed in the previous test, was completed. The derived activation energy for diffusive release is 23.6 kJ/mol

  19. Experiment HFR-B1: A preliminary analysis of the water-vapor injection experiments in capsule 3

    Energy Technology Data Exchange (ETDEWEB)

    Myers, B.F.

    1993-08-01

    A preliminary analysis of the response of uranium oxycarbide (UCO) fuel to water vapor addition in capsule 3 of experiment HFR-B1 (HFR-B1/3) has been conducted. The analysis provides an early indication of the behavior of fission gas release under a wider range of water-vapor pressures and of temperatures than heretofore studied. A preliminary analysis of selected aspects of the water-vapor injection tests in capsule 3 of experiment HFR-B1 is presented. The release of fission gas stored in bubbles and the diffusive release of fission-gas atoms are distinguished. The dependence of the release of stored fission gas ({sup 85m}Kr) on water-vapor pressure, P(H{sub 2}O), and temperature were established taking into account the contributing mechanisms of gaseous release, the effect of graphite hydrolysis, and the requirement of consistency with experiment HRB-17 in which similar water-vapor injection tests were conducted. The dependence on P(H{sub 2}O) becomes weaker as temperatures increase above 770{degree}C; the activation energy for release of stored-fission gas is 393 kJ/mol. Isorelease curves for the pressure-temperature plane were deduced from a derived functional relation. The stored-fission gas releases as a function of P(H{sub 2}O) at a common temperature for experiments HFR-B1 and HRB-17 differ by a factor of 4; this discrepancy could be attributed to the differences in fission-rate density and neutron flux between the two experiments. Diffusive release of fission gas occurred during and after the release of stored gas. The ratio of diffusive release during water-vapor injection to that prior to injection varied in contrast to the results from HRB-17. The variation was attributed to the practice of injecting water vapor into HFR-B1 before sintering of the fuel, hydrolyzed in the previous test, was completed. The derived activation energy for diffusive release is 23.6 kJ/mol.

  20. Thermal radiation from large bolides and impact plumes

    Science.gov (United States)

    Svetsov, V.; Shuvalov, V.

    2017-09-01

    Numerical simulations of the impacts of asteroids and comets from 20 m to 3 km in diameter have been carried out and thermal radiation fluxes on the ground and luminous efficiencies of the impacts have been calculated. It was assumed that the cosmic objects have no strength, deform, fragment, and vaporize in the atmosphere. After the impact on the ground, formation of craters and plumes was simulated taking into account internal friction of destroyed rocks and a wake formed in the atmosphere. The equations of radiative transfer, added to the equations of gas dynamics, were used in the approximation of radiative heat diffusion or, if the Rosseland optical depth of a radiating volume of gas and vapor was less than unity, in the approximation of volume emission. Radiation fluxes on the Earth's surface were calculated by integrating the equation of radiative transfer along rays passing through a luminous area. Direct thermal radiation from fireballs and impact plumes produced by asteroids and comets larger than 50 m in diameter is dangerous for people, animals, plants, economic objects. Forest fires can be ignited on the ground within a radius of roughly 1000 times the body's diameter (for diameters of the order or smaller than 1 km), 50-m-diameter bodies can ignite forest fires within a radius of up to 40 km and 3-km asteroids - within 1700 km.

  1. Velocity profile of water vapor inside a cavity with two axial inlets and two outlets

    Science.gov (United States)

    Guadarrama-Cetina, José; Ruiz Chavarría, Gerardo

    2014-03-01

    To study the dynamics of Breath Figure phenomenon, a control of both the rate of flow and temperature of water vapor is required. The experimental setup widely used is a non hermetically closed chamber with cylindrical geometry and axial inlets and outlets. In this work we present measurements in a cylindrical chamber with diameter 10 cm and 1.5 cm height, keeping a constant temperature (10 °C). We are focused in the velocity field when a gradient of the temperatures is produced between the base plate and the vapor. With a flux of water vapor of 250 mil/min at room temperature (21 °C), the Reynolds number measured in one inlet is 755. Otherwise, the temperatures of water vapor varies from 21 to 40 °C. The velocity profile is obtained by hot wire anemometry. We identify the stagnations and the possibly instabilities regions for an empty plate and with a well defined shape obstacle as a fashion sample. Facultad de Ciencias, UNAM.

  2. Water vapor emission from H II regions and infrared stars

    International Nuclear Information System (INIS)

    Cato, B.T.; Ronnang, B.O.; Rydbeck, O.E.H.; Lewin, P.T.; Yngvesson, K.S.; Cardiasmenos, A.G.; Shanley, J.F.

    1976-01-01

    The spatial structure of water vapor microwave line emission has been investigated with moderate angular resolution in several well-known H II regions. New H 2 O sources have been with infrared (1R) sources. One of these sources, IRC: 20411, has been investigated at optical wavelengths. It is found to be of spectral class M3-M5 and by indirect evidence the luminosity class is preliminarily determined to Ib. The distance is estimated to be approx.2 kpc, and the star must be in front of the dust complex which obscures W28 A2. In NGC 7538 new high-velocity features have been discovered. Two new weak water vapor masers, G30.1: 0.7 and G32.8: 0.3, have been detected in a search among eight class II OH/IR sources. H 2 O emission coinciding with the low-velocity OH features of VY Canis Majoris has also been detected. A search for local thermodynamic equilibrium (LTE) water-vapor line emission in molecular clouds associated with H II regions is also reported. No line was detected with the utilized sensitivity. The physical implications of this are discussed and an upper limit of the H 2 O column density has been estimated. Gaussian analysis of the strong, narrow feature in the spectrum of ON 1 indicates a possible presence of two hyperfine components, viz., F→F'=7→6 and 6→5

  3. A Multitracer Approach to Detecting Wastewater Plumes from Municipal Injection Wells in Nearshore Marine Waters at Kihei and Lahaina, Maui, Hawaii

    Science.gov (United States)

    Hunt, Charles D.; Rosa, Sarah N.

    2009-01-01

    Municipal wastewater plumes discharging from aquifer to ocean were detected by nearshore wading surveys at Kihei and Lahaina, on the island of Maui in Hawaii. Developed in cooperation with the Hawaii State Department of Health, the survey methodology included instrument trolling to detect submarine groundwater discharge, followed by analysis of water and macroalgae for a suite of chemical and isotopic constituents that constitute a 'multitracer' approach. Surveys were conducted May 6-28, 2008, during fair-weather conditions and included: (1) wading and kayak trolling with a multiparameter water-quality sonde, (2) marine water-column sampling, and (3) collection of benthic algae samples. Instrument trolling helped guide the water sampling strategy by providing dense, continuous transects of water properties on which groundwater discharge zones could be identified. Water and algae samples for costly chemical and isotopic laboratory analyses were last to be collected but were highly diagnostic of wastewater presence and nutrient origin because of low detection levels and confirmation across multiple tracers. Laboratory results confirmed the presence of wastewater constituents in marine water-column samples at both locales and showed evidence of modifying processes such as denitrification and mixing of effluent with surrounding groundwater and seawater. Carbamazepine was the most diagnostic pharmaceutical, detected in several marine water-column samples and effluent at both Kihei and Lahaina. Heavy nitrogen-isotope compositions in water and algae were highly diagnostic of effluent, particularly where enriched to even heavier values than effluent source compositions by denitrification. Algae provided an added advantage of time-integrating their nitrogen source during growth. The measured Kihei plume coincided almost exactly with prior model predictions, but the Lahaina plume was detected well south of the expected direct path from injection wells to shore and may be

  4. Experimental investigation and modeling of adsorption of water and ethanol on cornmeal in an ethanol-water binary vapor system

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.; Yuan, X.G.; Tian, H.; Zeng, A.W. [State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072 (China)

    2006-04-15

    The adsorption capacity of water and ethanol on cornmeal in an ethanol-water binary vapor system was investigated in a fixed-bed apparatus for ethanol dehydration. Experiments were performed at temperatures of 82-100 C for different relative humidities of ethanol-water vapor. Adsorption equilibrium models, including those based on the adsorption potential theory of Polanyi and Sircar's model, have been used to fit the experimental data for water adsorption on cornmeal, and all gave good fits. For ethanol adsorption, pseudo-equilibrium was defined as the mass adsorbed on the cornmeal within the time needed for the equilibrium for water on the same adsorbent. Based on this limiting condition, adsorption behaviors and mechanisms were analyzed. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. NW Iberia Shelf Dynamics. Study of the Douro River Plume.

    Directory of Open Access Journals (Sweden)

    Isabel Iglesias

    2014-06-01

    Full Text Available River plumes are one of the most important mechanisms that transport the terrestrial materials to the coast and the ocean. Some examples of those materials are pollutants, essential nutrients, which enhance the phytoplankton productivity or sediments, which settle on the seabed producing modifications on the bathymetry affecting the navigation channels. The mixing between the riverine and the oceanic waters can induce instabilities, which might generate bulges, filaments, and buoyant currents over the continental shelf. Offshore, the buoyant riverine water could form a front with the oceanic waters often related with the occurrence of current-jets, eddies and strong mixing. The study and modelling of the river plumes is a key factor for the complete understanding of sediment transport mechanisms and patterns, and of coastal physics and dynamic processes. On this study the Douro River plume will be simulated. The Douro River is located on the north-west Iberian coast and its daily averaged freshwater discharge can range values from 0 to 13000 m3/s. This variability impacts the formation of the river plumes and its dispersion along the continental shelf. This study builds on the long-term objective of generate a Douro River plume forecasting system as part of the RAIA and RAIA.co projects. Satellite imagery was analyzed showing that the river Douro is one of the main sources of suspended particles, dissolved material and chlorophyll in the NW Iberian Shelf. The Regional Oceanic Modeling System (ROMS model was selected to reproduce scenarios of plume generation, retention and dispersion. Whit this model, three types of simulations were performed: (i schematic winds simulations with prescribed river flow, wind speed and direction; (ii multi-year climatological simulation, with river flow and temperature change for each month; (iii extreme case simulation, based on the Entre-os-Rios accident situation. The schematic wind case-studies suggest that the

  6. Extending water vapor trend observations over Boulder into the tropopause region: Trend uncertainties and resulting radiative forcing

    Science.gov (United States)

    Kunz, A.; Müller, R.; Homonnai, V.; Jánosi, I. M.; Hurst, D.; Rap, A.; Forster, P. M.; Rohrer, F.; Spelten, N.; Riese, M.

    2013-10-01

    Thirty years of balloon-borne measurements over Boulder (40°N,105°W) are used to investigate the water vapor trend in the tropopause region. This analysis extends previously published trends, usually focusing on altitudes greater than 16 km, to lower altitudes. Two new concepts are applied: (1) Trends are presented in a thermal tropopause (TP) relative coordinate system from -2 km below to 10 km above the TP, and (2) sonde profiles are selected according to TP height. Tropical (TPz>14km), extratropical (TPzconcepts reduces the dynamically induced water vapor variability at the TP and principally favors refined water vapor trend studies in the upper troposphere and lower stratosphere. Nonetheless, this study shows how uncertain trends are at altitudes -2 to +4 km around the TP. This uncertainty in turn has an influence on the uncertainty and interpretation of water vapor radiative effects at the TP, which are locally estimated for the 30 year period to be of uncertain sign. The much discussed decrease in water vapor at the beginning of 2001 is not detectable between -2 and 2 km around the TP. On lower stratospheric isentropes, the water vapor change at the beginning of 2001 is more intense for extratropical than for tropical air mass types. This suggests a possible link with changing dynamics above the jet stream such as changes in the shallow branch of the Brewer-Dobson circulation.

  7. In-situ water vaporization improves bitumen production during electrothermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Calgary Univ., AB (Canada); McGee, B. [E-T Energy, Calgary, AB (Canada); Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Electro-thermal processes are now being considered as an alternative or complementary process to steam injection processes. This study used an in situ vaporized water process to optimize electrothermal processes for steam injection enhanced oil recovery (EOR). A simulation tool was used to model electro-thermal processes in an Athabasca oil sands reservoir. Incremental oil recovery was estimated based on a 3-block conceptual model. A field scale model was then used to investigate the effects of electrode spacing, water injection rates, and electrical heating rates on bitumen recovery. Results of the simulation studies were then analyzed using a statistical tool in order to determine optimal conditions for maximizing bitumen production. Results of the study showed that incremental recovery using the water vaporization technique resulted in oil recovery rates of 25 per cent original oil in place (OOIP). Sensitivity analyses showed that medium electrical heating rates, low water injection rates, and small spacings between electrodes maximized bitumen production rates. It was concluded that the technique can be used alone or combined with other methods to economically produce bitumens. 2 refs., 7 tabs., 9 figs.

  8. Rigorous determination of stratospheric water vapor trends from MIPAS observations.

    Science.gov (United States)

    Ceccherini, Simone; Carli, Bruno; Raspollini, Piera; Ridolfi, Marco

    2011-05-09

    The trend of stratospheric water vapor as a function of latitude is estimated by the MIPAS measurements by means of a new method that uses the measurement space solution. The method uses all the information provided by the observations avoiding the artifacts introduced by the a priori information and by the interpolation to different vertical grids. The analysis provides very precise values of the trends that, however, are limited by a relatively large systematic error induced by the radiometric calibration error of the instrument. The results show in the five years from 2005 to 2009 a dependence on latitude of the stratospheric (from 37 to 53 km) water vapor trend with a positive value of (0.41 ± 0.16)%yr-1 in the northern hemisphere and less than 0.16%yr-1 in the southern hemisphere.

  9. The Water Vapor Source and Transport Characteristic of Rainy Seasons in Eastern China Base on Lagrangian Method

    Science.gov (United States)

    Shi, Y.; Jiang, Z.; Liu, Z.; Li, L.

    2017-12-01

    The Hybrid Single-Particle Lagrangian Integrated Trajectory platform is employed in this studyto simulate trajectories of air parcels in the different rainy seasons in East China from 1961 to 2010,with the purpose of investigating general and specific characteristics of moisture sources and the eventual relationship withprecipitation in each rainy season.The moisture transport andsource-sink characteristics of different rainy seasons have evident differences. The results show that the frontal pre-rainy season is mainly influenced bywinter monsoon system, and the precipitation is strongly affected by water vapor from Pacific Ocean (PO) and East China (EC). Afterthe onset of South China Sea Summer Monsoon (SCSMS), the moisture from Pacific Ocean decreases and from Indian Ocean monsoon area increases. Afterwards, with the northward of the rain belt, the parcels from Southwest region (South China Sea (SCS), Indian Ocean (IO) andIndo-China Peninsula and Indian Peninsula(IP)) decrease and from North region (EC, Eurasia (EA) and PO) increase. Besides, most of the land areas are water vapor sink region and most of sea areas are water vapor source region. Before the onset of SCSMS, EC and PO are two main water vapor source areas.After the onset of SCSMS, the source from PO decreasesand Indian monsoon area becomes the main vapor source region. IP is the main water vapor sink area for all four rainy seasons.As for moisture circulation characteristics, the results of vertical structure of water vapor transport indicate that the maximum water vapor transport in west and east boundaries is located in mid-troposphere and in south and north boundaries is at low-troposphere. The spatiotemporal analysis of moisture trajectory based onmultivariate empirical orthogonal function (MVEOF) indicates that the first mode has close relationship with the precipitation in North China and PDO pattern; the second mode is closely related with the precipitation in Yangtze-Huaihe river basin and

  10. Quaternary isobaric (vapor + liquid + liquid) equilibrium and (vapor + liquid) equilibrium for the system (water + ethanol + cyclohexane + heptane) at 101.3 kPa

    International Nuclear Information System (INIS)

    Pequenin, Ana; Asensi, Juan Carlos; Gomis, Vicente

    2011-01-01

    Highlights: → Water-ethanol-cyclohexane-heptane and water-cyclohexane-heptane isobaric VLLE. → Isobaric experimental data were determined at 101.3 kPa. → A dynamic recirculating still with an ultrasonic homogenizer was used. → The quaternary system does not present quaternary azeotropes. - Abstract: Experimental isobaric (vapor + liquid + liquid) and (vapor + liquid) equilibrium data for the ternary system {water (1) + cyclohexane (2) + heptane (3)} and the quaternary system {water (1) + ethanol (2) + cyclohexane (3) + heptane (4)} were measured at 101.3 kPa. An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer was used to determine the VLLE. The results obtained show that the system does not present quaternary azeotropes. The point-by-point method by Wisniak for testing the thermodynamic consistency of isobaric measurements was used to test the equilibrium data.

  11. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon

    Science.gov (United States)

    Philip, Brendan T.; Denny, Alden R.; Solomon, Evan A.; Kelley, Deborah S.

    2016-03-01

    An estimated 500-2500 gigatons of methane carbon is sequestered in gas hydrate at continental margins and some of these deposits are associated with overlying methane seeps. To constrain the impact that seeps have on methane concentrations in overlying ocean waters and to characterize the bubble plumes that transport methane vertically into the ocean, water samples and time-series acoustic images were collected above Southern Hydrate Ridge (SHR), a well-studied hydrate-bearing seep site ˜90 km west of Newport, Oregon. These data were coregistered with robotic vehicle observations to determine the origin of the seeps, the plume rise heights above the seafloor, and the temporal variability in bubble emissions. Results show that the locations of seep activity and bubble release remained unchanged over the 3 year time-series investigation, however, the magnitude of gas release was highly variable on hourly time scales. Bubble plumes were detected to depths of 320-620 m below sea level (mbsl), in several cases exceeding the upper limit of hydrate stability by ˜190 m. For the first time, sustained gas release was imaged at the Pinnacle site and in-between the Pinnacle and the Summit area of venting, indicating that the subseafloor transport of fluid and gas is not restricted to the Summit at SHR, requiring a revision of fluid-flow models. Dissolved methane concentrations above background levels from 100 to 300 mbsl are consistent with long-term seep gas transport into the upper water column, which may lead to the build-up of seep-derived carbon in regional subsurface waters and to increases in associated biological activity.

  12. Saharan dust plume charging observed over the UK

    Science.gov (United States)

    Harrison, R. Giles; Nicoll, Keri A.; Marlton, Graeme J.; Ryder, Claire L.; Bennett, Alec J.

    2018-05-01

    A plume of Saharan dust and Iberian smoke was carried across the southern UK on 16th October 2017, entrained into an Atlantic cyclone which had originated as Hurricane Ophelia. The dust plume aloft was widely noticed as it was sufficiently dense to redden the visual appearance of the sun. Time series of backscatter from ceilometers at Reading and Chilbolton show two plumes: one carried upwards to 2.5 km, and another below 800 m into the boundary layer, with a clear slot between. Steady descent of particles at about 50 cm s‑1 continued throughout the morning, and coarse mode particles reached the surface. Plumes containing dust are frequently observed to be strongly charged, often through frictional effects. This plume passed over atmospheric electric field sensors at Bristol, Chilbolton and Reading. Consistent measurements at these three sites indicated negative plume charge. The lower edge plume charge density was (‑8.0 ± 3.3) nC m‑2, which is several times greater than that typical for stratiform water clouds, implying an active in situ charge generation mechanism such as turbulent triboelectrification. A meteorological radiosonde measuring temperature and humidity was launched into the plume at 1412 UTC, specially instrumented with charge and turbulence sensors. This detected charge in the boundary layer and in the upper plume region, and strong turbulent mixing was observed throughout the atmosphere’s lowest 4 km. The clear slot region, through which particles sedimented, was anomalously dry compared with modelled values, with water clouds forming intermittently in the air beneath. Electrical aspects of dust should be included in numerical models, particularly the charge-related effects on cloud microphysical properties, to accurately represent particle behaviour and transport.

  13. Evaluation of a Fully Automated Analyzer for Rapid Measurement of Water Vapor Sorption Isotherms for Applications in Soil Science

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2014-01-01

    The characterization and description of important soil processes such as water vapor transport, volatilization of pesticides, and hysteresis require accurate means for measuring the soil water characteristic (SWC) at low water potentials. Until recently, measurement of the SWC at low water...... potentials was constrained by hydraulic decoupling and long equilibration times when pressure plates or single-point, chilled-mirror instruments were used. A new, fully automated Vapor Sorption Analyzer (VSA) helps to overcome these challenges and allows faster measurement of highly detailed water vapor...

  14. UO{sub 2} surface oxidation by mixtures of water vapor and hydrogen as a function of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Espriu-Gascon, A., E-mail: alexandra.espriu@upc.edu [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Llorca, J.; Domínguez, M. [Institut de Tècniques Energètiques (INTE), Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Giménez, J.; Casas, I. [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, E-08243 Manresa (Spain)

    2015-12-15

    In the present work, X-Ray Photoelectron Spectroscopy (XPS) was used to study the effect of water vapor on the UO{sub 2} surface as a function of temperature. The experiments were performed in situ inside a high pressure chamber attached to the XPS instrument. UO{sub 2} samples were put in contact with either hydrogen or argon streams, saturated with water at room temperature, and the sample surface evolution was analyzed by XPS. In the case of the water vapor/argon experiments, one experiment at 350 °C was performed and, in the case of the water vapor/hydrogen experiments, the temperatures used inside the reactor were 60, 120, 200 and 350 °C. On one hand, in presence of argon, the results obtained showed that the water vapor in the argon stream oxidized 93% of the U(IV) in the sample surface. On the other hand, the degree of UO{sub 2} surface oxidation showed a different dependence on the temperature in the experiments performed in the presence of hydrogen: the maximum surface oxidation occurred at 120 °C, where 65.4% of U(IV) in the sample surface was oxidized, while at higher temperatures, the surface oxidation decreased. This observation is attributed to the increase of hydrogen reducing effect when temperature increases which prevents part of the oxidation of the UO{sub 2} surface by the water vapor. - Highlights: • UO{sub 2} surface has been oxidized by water vapor in an argon stream at 350 °C. • H{sub 2} reduced more uranium oxidation produced by water at 350 °C when compared to Ar. • In H{sub 2} presence, the uranium oxidation produced by water depends on the temperature.

  15. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  16. Experimental investigation of bubble plume structure instability

    Energy Technology Data Exchange (ETDEWEB)

    Marco Simiano; Robert Zboray; Francois de Cachard [Thermal-Hydraulics Laboratory, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Djamel Lakehal; George Yadigaroglu [Institute of Energy Technology, Swiss Federal Institute of Technology, ETH-Zentrum/CLT, 8092 Zurich (Switzerland)

    2005-07-01

    Full text of publication follows: The hydrodynamic properties of a 3D bubble plume in a large water pool are investigated experimentally. Bubble plumes are present in various industrial processes, including chemical plants, stirred reactors, and nuclear power plants, e.g. in BWR suppression pools. In these applications, the main issue is to predict the currents induced by the bubbles in the liquid phase, and to determine the consequent mixing. Bubble plumes, especially large and unconfined ones, present strong 3D effects and a superposition of different characteristic length scales. Thus, they represent relevant test cases for assessment and verification of 3D models in thermal-hydraulic codes. Bubble plumes are often unsteady, with fluctuations in size and shape of the bubble swarm, and global movements of the plume. In this case, local time-averaged data are not sufficient to characterize the flow. Additional information regarding changes in plume shape and position is required. The effect of scale on the 3D flow structure and stability being complex, there was a need to conduct studies in a fairly large facility, closer to industrial applications. Air bubble plumes, up to 30 cm in base diameter and 2 m in height were extensively studied in a 2 m diameter water pool. Homogeneously sized bubbles were obtained using a particular injector. The main hydrodynamic parameters. i.e., gas and liquid velocities, void fraction, bubble shape and size, plume shape and position, were determined experimentally. Photographic and image processing techniques were used to characterize the bubble shape, and double-tip optical probes to measure bubble size and void fraction. Electromagnetic probes measured the recirculation velocity in the pool. Simultaneous two-phase flow particle image velocimetry (STPFPIV) in a vertical plane containing the vessel axis provided instantaneous velocity fields for both phases and therefore the relative velocity field. Video recording using two CCD

  17. Effect of hygroscopic materials on water vapor permeation and dehumidification performance of poly(vinyl alcohol) membranes

    KAUST Repository

    Bui, T. D.

    2017-01-16

    In this study, two hygroscopic materials, inorganic lithium chloride (LiCl) and organic triethylene glycol (TEG) were separately added to poly(vinyl alcohol) (PVA) to form blend membranes for air dehumidification. Water vapor permeation, dehumidification performance and long-term durability of the membranes were studied systematically. Membrane hydrophilicity and water vapor sorbability increased significantly with higher the hygroscopic material contents. Water vapor permeance of the membranes increased with both added hygroscopic material and absorbed water. Water permeation energy varied from positive to negative with higher hygroscopic content. This observation is attributed to a lower diffusion energy and a relatively constant sorption energy when hygroscopic content increases. Comparatively, PVA/TEG has less corrosive problems and is more environmentally friendly than PVA/LiCl. A membrane with PVA/TEG is observed to be highly durable and is suitable for dehumidification applications.

  18. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    Science.gov (United States)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  19. LASE measurements of water vapor and aerosol profiles during the Plains Elevated Convection at Night (PECAN) field experiment

    Science.gov (United States)

    Nehrir, A. R.; Ferrare, R. A.; Kooi, S. A.; Butler, C. F.; Notari, A.; Hair, J. W.; Collins, J. E., Jr.; Ismail, S.

    2015-12-01

    The Lidar Atmospheric Sensing Experiment (LASE) system was deployed on the NASA DC-8 aircraft during the Plains Elevated Convection At Night (PECAN) field experiment, which was conducted during June-July 2015 over the central and southern plains. LASE is an active remote sensor that employs the differential absorption lidar (DIAL) technique to measure range resolved profiles of water vapor and aerosols above and below the aircraft. The DC-8 conducted nine local science flights from June 30- July 14 where LASE sampled water vapor and aerosol fields in support of the PECAN primary science objectives relating to better understanding nocturnal Mesoscale Convective Systems (MCSs), Convective Initiation (CI), the Low Level Jet (LLJ), bores, and to compare different airborne and ground based measurements. LASE observed large spatial and temporal variability in water vapor and aerosol distributions in advance of nocturnal MCSs, across bores resulting from MCS outflow boundaries, and across the LLJ associated with the development of MCSs and CI. An overview of the LASE data collected during the PECAN field experiment will be presented where emphasis will be placed on variability of water vapor profiles in the vicinity of severe storms and intense convection in the central and southern plains. Preliminary comparisons show good agreement between coincident LASE and radiosonde water vapor profiles. In addition, an advanced water vapor DIAL system being developed at NASA Langley will be discussed.

  20. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    Science.gov (United States)

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  1. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation.

    Science.gov (United States)

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H; Morales, Ricardo; Moore, Richard H; Lathem, Terry L; Lance, Sara; Padró, Luz T; Lin, Jack J; Cerully, Kate M; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R; Chuang, Patrick Y; Anderson, Bruce E; Flagan, Richard C; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N

    2013-03-05

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.

  2. Unique Dispersal of the Changjiang-Diluted Water Plume in the East China Sea Revealed from Satellite Monitoring of Colored Dissolved Organic Matter (CDOM)

    OpenAIRE

    Hiroaki Sasaki; Yasushi Gomi; Takamasa Asai; Masashi Shibata; Yoko Kiyomoto; Kazumaro Okamura; Kou Nishiuchi; Toru Hasegawa; Haruya Yamada

    2014-01-01

    The optical properties of colored dissolved organic matter (CDOM) in the Changjiang (Yangtze River) plume water were investigated during the summer of 2009 and 2010. The absorption coefficient of CDOM at 325 nm (aCDOM) increased inversely with decreasing sea-surface salinity (SSS), implying that aCDOM can be used as a natural tracer of Changjiang-diluted water (CDW). This aCDOM vs. SSS relationship, however, differed between 2009 and 2010. For mapping the CDW plume, the aCDOM was retrieved fr...

  3. Constraining the 0-20 km Vertical Profile of Water Vapor in the Martian Atmosphere with MGS-TES Limb Sounding

    Science.gov (United States)

    McConnochie, T. H.; Smith, M. D.; McDonald, G. D.

    2016-12-01

    The vertical profile of water vapor in the lower atmosphere of Mars is a crucial but poorly-measured detail of the water cycle. Most of our existing water vapor data sets (e.g. Smith, 2002, JGR 107; Smith et al., 2009, JGR 114; Maltagliati et al., 2011, Icarus 213) rely on the traditional assumption of uniform mass mixing from the surface up to a saturation level, but GCM models (Richardson et al., 2002, JGR 107; Navarro et al., 2014, JGR 119) imply that this is not the case in at least some important seasons and locations. For example at the equator during northern summer the water vapor mixing ratio in aforementioned GCMs increases upwards by a factor of two to three in the bottom scale height. This might influence the accuracy of existing precipitable water column (PWC) data sets. Even if not, the correct vertical distribution is critical for determining the extent to which high-altitude cold trapping interferes with inter-hemispheric transport, and its details in the lowest scale heights will be a critical test of the accuracy of modeled water vapor transport. Meanwhile attempts to understand apparent interactions of water vapor with surface soils (e.g. Ojha et al. 2015, Nature Geoscience 8; Savijärvi et al., 2016, Icarus 265) need an estimate for the amount of water vapor in the boundary layer, and existing PWC data sets can't provide this unless the lower atmospheric vertical distribution is known or constrained. Maltagliati et al. (2013, Icarus 223) have obtained vertical profiles of water vapor at higher altitudes with SPICAM on Mars Express, but these are commonly limited to altitudes greater 20 km and they never extend below 10 km. We have previously used Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) limb-sounding to measure the vertical profile of water vapor (e.g. McConnochie and Smith, 2009, Fall AGU #P54B-06), but these preliminary results were clearly not quantitatively accurate in the lower atmosphere. We will present improved TES

  4. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    Science.gov (United States)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  5. Long-term stable water vapor permeation barrier properties of SiN/SiCN/SiN nanolaminated multilayers grown by plasma-enhanced chemical vapor deposition at extremely low pressures

    International Nuclear Information System (INIS)

    Choi, Bum Ho; Lee, Jong Ho

    2014-01-01

    We investigated the water vapor permeation barrier properties of 30-nm-thick SiN/SiCN/SiN nanolaminated multilayer structures grown by plasma enhanced chemical vapor deposition at 7 mTorr. The derived water vapor transmission rate was 1.12 × 10 −6 g/(m 2 day) at 85 °C and 85% relative humidity, and this value was maintained up to 15 000 h of aging time. The X-ray diffraction patterns revealed that the nanolaminated film was composed of an amorphous phase. A mixed phase was observed upon performing high resolution transmission electron microscope analysis, which indicated that a thermodynamically stable structure was formed. It was revealed amorphous SiN/SiCN/SiN multilayer structures that are free from intermixed interface defects effectively block water vapor permeation into active layer

  6. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    Science.gov (United States)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  7. Wildfire simulation using a chemically-reacting plume in a crossflow

    Science.gov (United States)

    Breidenthal, Robert; Alvarado, Travis; Potter, Brian

    2010-11-01

    Water tunnel experiments reveal the flame length of a chemically-reacting plume in a crossflow. Salt water containing a pH indicator and a base is slowly injected from above into the test section of a water tunnel containing an acidic solution. The flame length is measured optically as a function of the buoyancy flux, crossflow speed, and volume equivalence ratio of the chemical reaction. Based on earlier work of Broadwell with the transverse jet, a simple dilution model predicts the flame length of the transverse plume. The plume observations are in accord with the model. As with the jet, there is a minimum in the flame length of the plume at a transition between two self-similar regimes, corresponding to the formation of a pair of counter-rotating vortices at a certain crossflow speed. At the transition, there is a maximum in the entrainment and mixing rates. In an actual wildfire with variable winds, this transition may correspond to a dangerous condition for firefighters.

  8. Vapor-Liquid Equilibrium of Methane with Water and Methanol. Measurements and Modeling

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; Karakatsani, Eirini; von Solms, Nicolas

    2014-01-01

    that rely on phase equilibrium data for optimization. The objective of this work is to provide experimental data for hydrocarbon systems with polar chemicals such as alcohols, glycols, and water. New vapor-liquid equilibrium data are reported for methane + water, methane + methanol, and methane + methanol...

  9. Evidence of water vapor in excess of saturation in the atmosphere of Mars.

    Science.gov (United States)

    Maltagliati, L; Montmessin, F; Fedorova, A; Korablev, O; Forget, F; Bertaux, J-L

    2011-09-30

    The vertical distribution of water vapor is key to the study of Mars' hydrological cycle. To date, it has been explored mainly through global climate models because of a lack of direct measurements. However, these models assume the absence of supersaturation in the atmosphere of Mars. Here, we report observations made using the SPICAM (Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument onboard Mars Express that provide evidence of the frequent presence of water vapor in excess of saturation, by an amount far surpassing that encountered in Earth's atmosphere. This result contradicts the widespread assumption that atmospheric water on Mars cannot exist in a supersaturated state, directly affecting our long-term representation of water transport, accumulation, escape, and chemistry on a global scale.

  10. Study of kinetics of reaction of lithium deuteride powder with O2, CO2 and water vapor

    International Nuclear Information System (INIS)

    Li Gan; Lu Guangda; Jing Wenyong; Qin Cheng

    2004-01-01

    The kinetics of reaction of lithium deuteride powder with O 2 , CO 2 and water vapor is studied. The experimental results show that lithium deuteride reacts with O 2 and CO 2 at very small reaction rate but with water vapor at comparatively larger rate at room temperature (≅28 degree C). The reaction process with water vapor could be described using the unreacted shrinking core model. The second-order kinetics is appropriate for the chemical reaction on the surface of lithium deuteride and reaction rate constant is 0.281 kPa -1 ·min -1

  11. Interannual Variability in the Meridional Transport of Water Vapor

    Science.gov (United States)

    Cohen, Judah L.; Salstein, David A.; Rosen, Richard D.

    2000-01-01

    The zonal-mean meridional transport of water vapor across the globe is evaluated using the National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis for 1948-97. The shape of the meridional profile of the climatological mean transport closely resembles that of previous mean climate descriptions, but values tend to be notably larger than in climatologies derived from radiosonde-only-based analyses. The unprecedented length of the NCEP-NCAR dataset invites a focus on interannual variations in the zonal-mean moisture transport, and these results for northern winter are highlighted here. Although interannual variability in the transport is typically small at most latitudes, a significant ENSO signal is present, marked by a strengthening of water vapor transports over much of the winter hemisphere during warm events. Because of an increase in tropical sea surface temperatures and in the frequency of warm events relative to cold events in the latter half of the 50-yr record, this interannual signal projects onto an overall trend toward enhanced meridional moisture transports in the global hydrological cycle.

  12. River plume patterns and dynamics within the Southern California Bight

    Science.gov (United States)

    Warrick, J.A.; DiGiacomo, P.M.; Weisberg, S.B.; Nezlin, N.P.; Mengel, M.; Jones, B.H.; Ohlmann, J.C.; Washburn, L.; Terrill, E.J.; Farnsworth, K.L.

    2007-01-01

    Stormwater river plumes are important vectors of marine contaminants and pathogens in the Southern California Bight. Here we report the results of a multi-institution investigation of the river plumes across eight major river systems of southern California. We use in situ water samples from multi-day cruises in combination with MODIS satellite remote sensing, buoy meteorological observations, drifters, and HF radar current measurements to evaluate the dispersal patterns and dynamics of the freshwater plumes. River discharge was exceptionally episodic, and the majority of storm discharge occurred in a few hours. The combined plume observing techniques revealed that plumes commonly detach from the coast and turn to the left, which is the opposite direction of Coriolis influence. Although initial offshore velocity of the buoyant plumes was ∼50 cm/s and was influenced by river discharge inertia (i.e., the direct momentum of the river flux) and buoyancy, subsequent advection of the plumes was largely observed in an alongshore direction and dominated by local winds. Due to the multiple day upwelling wind conditions that commonly follow discharge events, plumes were observed to flow from their respective river mouths to down-coast waters at rates of 20–40 km/d. Lastly, we note that suspended-sediment concentration and beam-attenuation were poorly correlated with plume salinity across and within the sampled plumes (mean r2=0.12 and 0.25, respectively), while colored dissolved organic matter (CDOM) fluorescence was well correlated (mean r2=0.56), suggesting that CDOM may serve as a good tracer of the discharged freshwater in subsequent remote sensing and monitoring efforts of plumes.

  13. Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow

    Directory of Open Access Journals (Sweden)

    W. J. Massman

    2008-10-01

    Full Text Available Recent studies with closed-path eddy covariance (EC systems have indicated that the attenuation of fluctuations of water vapor concentration is dependent upon ambient relative humidity, presumably due to sorption/desorption of water molecules at the interior surface of the tube. Previous studies of EC-related tube attenuation effects have either not considered this issue at all or have only examined it superficially. Nonetheless, the attenuation of water vapor fluctuations is clearly much greater than might be expected from a passive tracer in turbulent tube flow. This study reexamines the turbulent tube flow issue for both passive and sorbing tracers with the intent of developing a physically-based semi-empirical model that describes the attenuation associated with water vapor fluctuations. Toward this end, we develop a new model of tube flow dynamics (radial profiles of the turbulent diffusivity and tube airstream velocity. We compare our new passive-tracer formulation with previous formulations in a systematic and unified way in order to assess how sensitive the passive-tracer results depend on fundamental modeling assumptions. We extend the passive tracer model to the vapor sorption/desorption case by formulating the model's wall boundary condition in terms of a physically-based semi-empirical model of the sorption/desorption vapor fluxes. Finally we synthesize all modeling and observational results into a single analytical expression that captures the effects of the mean ambient humidity and tube flow (Reynolds number on tube attenuation.

  14. Rapid increases in permeability and porosity of bentonite-sand mixtures due to alteration by water vapor

    International Nuclear Information System (INIS)

    Couture, R.A.

    1984-01-01

    Packed columns of canister packing material containing 25% bentonite and 75% quartz or basalt sand, were exposed to water vapor at temperatures up t 260 0 C. The permeabilities of the columns were subsequently measured after complete saturation with liquid water in a pressurized system. Exposure to water vapor caused irreversible increases in permeability by factors of up to 10 5 . After saturation with liquid water, the permeability was nearly independent of temperature. The increases in permeability were due to a large decrease in the ability of the bentonite to swell in water. Calculations suggest that swelling of bentonite altered at 250 0 C was not sufficient to fill the pore spaces. If the pore spaces are filled, the mixture will form an effective barrier against flow, diffusion, and transport of colloids. The results suggest that if bentonite-based canister packing material is exposed even briefly to water vapor at high temperatures in a high-level nuclear waste repository, its performance will be seriously impaired. The problem is less severe if the proportion of bentonite is high and the material is highly compacted. Previous results show significant degradation of bentonite by water vapor at temperatures as low as 150 0 C. This suggests that in some repositories, backfill in tunnels and drifts may also be affected. 9 references, 5 figures, 1 table

  15. Growth behavior of LiMn2O4 particles formed by solid-state reactions in air and water vapor

    International Nuclear Information System (INIS)

    Kozawa, Takahiro; Yanagisawa, Kazumichi; Murakami, Takeshi; Naito, Makio

    2016-01-01

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn 2 O 4 particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn 2 O 4 particles in air and water vapor atmospheres as model reactions; LiMn 2 O 4 is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO 3 precursor impregnated with LiOH, LiMn 2 O 4 spheres with a hollow structure were obtained in air, while angulated particles with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn 2 O 4 particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn 2 O 4 particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.

  16. Identification and assessment of water pollution as a consequence of a leachate plume migration from a municipal landfill site (Tucumán, Argentina).

    Science.gov (United States)

    Fernández, Diego S; Puchulu, María E; Georgieff, Sergio M

    2014-06-01

    Landfills constitute potential sources of different pollutants that could generate human health and environmental problems. While some landfills currently work under the protection of a bottom liner with leachate collection, it was demonstrated that migration could take place even yet with these cautions. The purpose of this paper is to assess the pollution caused by a leachate plume from a municipal landfill that is affecting both groundwater and surface waters. The research was carried out at Pacará Pintado landfill in northwestern Argentina. Analysis of water samples indicates that leachate is affecting groundwater under the landfill area and an abandoned river channel hydraulically connected. In the center of the landfill area, the plume is anoxic and sulfate, nitrate, iron and manganese reduction zones were identified. Leachate plume presented high concentration of organic matter, Fe, Mn, NH(4)(+), Cl(-) and Cr reaching an extension of 900 m. The presence of a leachate plume in a landfill site with a single liner system implies that the use of this groundwater pollution control method alone is not enough especially if permeable sediments are present below.

  17. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    Energy Technology Data Exchange (ETDEWEB)

    Mun, S Y; Lee, H

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  18. Follow the plume: the habitability of Enceladus.

    Science.gov (United States)

    McKay, Christopher P; Anbar, Ariel D; Porco, Carolyn; Tsou, Peter

    2014-04-01

    The astrobiological exploration of other worlds in our Solar System is moving from initial exploration to more focused astrobiology missions. In this context, we present the case that the plume of Enceladus currently represents the best astrobiology target in the Solar System. Analysis of the plume by the Cassini mission indicates that the steady plume derives from a subsurface liquid water reservoir that contains organic carbon, biologically available nitrogen, redox energy sources, and inorganic salts. Furthermore, samples from the plume jetting out into space are accessible to a low-cost flyby mission. No other world has such well-studied indications of habitable conditions. Thus, the science goals that would motivate an Enceladus mission are more advanced than for any other Solar System body. The goals of such a mission must go beyond further geophysical characterization, extending to the search for biomolecular evidence of life in the organic-rich plume. This will require improved in situ investigations and a sample return.

  19. The influence of water vapor on atmospheric exchange measurements with an ICOS* based Laser absorption analyzer

    Science.gov (United States)

    Bunk, Rüdiger; Quan, Zhi; Wandel, Matthias; Yi, Zhigang; Bozem, Heiko; Kesselmeier, Jürgen

    2014-05-01

    Carbonyl sulfide and carbon monoxide are both atmospheric trace gases of high interest. Recent advances in the field of spectroscopy have enabled instruments that measure the concentration of the above and other trace gases very fast and with good precision. Increasing the effective path length by reflecting the light between two mirrors in a cavity, these instruments reach impressive sensitivities. Often it is possible to measure the concentration of more than one trace gas at the same time. The OCS/CO2 Analyzer by LGR (Los Gatos Research, Inc.) measures the concentration of water vapor [H2O], carbonyl sulfide [COS], carbon dioxide [CO2] and carbon monoxide [CO] simultaneously. For that the cavity is saturated with light, than the attenuation of light is measured as in standard absorption spectroscopy. The instrument proved to be very fast with good precision and to be able to detect even very low concentrations, especially for COS (as low as 30ppt in the case of COS). However, we observed a rather strong cross sensitivity to water vapor. Altering the water vapor content of the sampled air with two different methods led to a change in the perceived concentration of COS, CO and CO2. This proved especially problematic for enclosure (cuvette) measurements, where the concentrations of one of the above species in an empty cuvette are compared to the concentration of another cuvette containing a plant whose exchange of trace gases with the atmosphere is of interest. There, the plants transpiration leads to a large difference in water vapor content between the cuvettes and that in turn produces artifacts in the concentration differences between the cuvettes for the other above mentioned trace gases. For CO, simultaneous measurement with a UV-Emission Analyzer (AL 5002, Aerolaser) and the COS/CO Analyzer showed good agreement of perceived concentrations as long as the sample gas was dry and an increasing difference in perceived concentration when the sample gas was

  20. The simulation of stratospheric water vapor in the NH summer monsoon regions in a suite of WACCM models

    Science.gov (United States)

    Wang, X.; Wu, Y.; Huang, Y.; Tilmes, S.

    2016-12-01

    Water vapor maxima are found in the upper troposphere lower stratosphere (UTLS) over Asian and North America monsoon regions during Northern Hemisphere (NH) summer months. High concentrations of stratospheric water vapor are associated with the upper-level anticyclonic circulation and they play an important role in the radiative forcing for the climate system. However, discrepancies in the simulation of stratospheric water vapor are found among different models. In this study, we use both observational data: Aura Microwave Limb Sounder satellite observations (MLS), the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) and chemistry climate model outputs: different configurations of the Whole Atmosphere Community Climate Model (WACCM), including standard configuration of WACCM, WACCM L110, specified chemistry (SC) WACCM and specified dynamics (SD) WACCM. We find that WACCM L110 with finer vertical resolution better simulates the stratospheric water vapor maxima over the summer monsoon regions. To better understand the mechanism, we examine the simulated temperature at around 100 hPa since 100 hPa is known to act as a dehydration mechanism, i.e. the warmer the temperature, the wetter the stratospheric water vapor. We find that both WACCM L110 and SD-WACCM better simulate the temperature at 100 hPa as compared to that of MERRA2. This suggests that improving model vertical resolution and dynamical processes in the UTLS is crucial in simulating the stratospheric water vapor concentrations.

  1. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    Science.gov (United States)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  2. Observing Tropospheric Water Vapor by Radio Occultation using the Global Positioning System

    Science.gov (United States)

    Kursinski, E. R.; Hajj, G. A.; Hardy, K. R.; Romans, L. J.; Schofield, J. T.

    1995-01-01

    Given the importance of water vapor to weather, climate and hydrology, global humidity observations from satellites are critical. At low latitudes, radio occultation observations of Earth's atmosphere using the Global Positioning System (GPS) satellites allow water vapor profiles to be retrieved with accuracies of 10 to 20% below 6 to 7 km altitude and approx. 5% or better within the boundary layer. GPS observations provide a unique combination of accuracy, vertical resolution (less than or equal to 1 km) and insensitivity to cloud and aerosol particles that is well suited to observations of the lower troposphere. These characteristics combined with the inherent stability of radio occultation observations make it an excellent candidate for the measurement of long term trends.

  3. Development of Raman-Mie lidar system for aerosol and water vapor profiling

    Science.gov (United States)

    Deng, Qian; Wang, Zhenzhu; Xu, Jiwei; Tan, Min; Wu, Decheng; Xie, Chenbo; Liu, Dong; Wang, Yingjian

    2018-03-01

    Aerosol and water vapor are two important atmospheric parameters. The accurate quantification of diurnal variation of these parameters are very useful for environment assessment and climate change studies. A moveable, compact and unattended lidar system based on modular design is developed for aerosol extinction coefficients and water vapor mixing ratios measurements. In the southern suburbs of Beijing, the continuous observation was carried out by this lidar since the middle of the year of 2017. The lidar equipment is presented and the case study is also described in this paper. The observational results show that the lidar kept a very good status from the long-time continuous measurements which is suitable for networking especially in meteorological research field.

  4. Validation of MODIS integrated water vapor product against reference GPS data at the Iberian Peninsula

    Science.gov (United States)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Cachorro, Victoria E.; Costa, Maria João; Román, Roberto; Bennouna, Yasmine S.

    2017-12-01

    In this work, the water vapor product from MODIS (MODerate-resolution Imaging Spectroradiometer) instrument, on-board Aqua and Terra satellites, is compared against GPS water vapor data from 21 stations in the Iberian Peninsula as reference. GPS water vapor data is obtained from ground-based receiver stations which measure the delay caused by water vapor in the GPS microwave signals. The study period extends from 2007 until 2012. Regression analysis in every GPS station show that MODIS overestimates low integrated water vapor (IWV) data and tends to underestimate high IWV data. R2 shows a fair agreement, between 0.38 and 0.71. Inter-quartile range (IQR) in every station is around 30-45%. The dependence on several parameters was also analyzed. IWV dependence showed that low IWV are highly overestimated by MODIS, with high IQR (low precision), sharply decreasing as IWV increases. Regarding dependence on solar zenith angle (SZA), performance of MODIS IWV data decreases between 50° and 90°, while night-time MODIS data (infrared) are quite stable. The seasonal cycles of IWV and SZA cause a seasonal dependence on MODIS performance. In summer and winter, MODIS IWV tends to overestimate the reference IWV value, while in spring and autumn the tendency is to underestimate. Low IWV from coastal stations is highly overestimated (∼60%) and quite imprecise (IQR around 60%). On the contrary, high IWV data show very little dependence along seasons. Cloud-fraction (CF) dependence was also studied, showing that clouds display a negligible impact on IWV over/underestimation. However, IQR increases with CF, except in night-time satellite values, which are quite stable.

  5. The seasonal variation of water vapor and ozone in the upper mesosphere - Implications for vertical transport and ozone photochemistry

    Science.gov (United States)

    Bevilacqua, Richard M.; Summers, Michael E.; Strobel, Darrell F.; Olivero, John J.; Allen, Mark

    1990-01-01

    This paper reviews the data base supplied by ground-based microwave measurements of water vapor in the mesosphere obtained in three separate experiments over an eight-year period. These measurements indicate that the seasonal variation of water vapor in the mesosphere is dominated by an annual component with low values in winter and high values in summer, suggesting that the seasonal variation of water vapor in the mesosphere (below 80 km) is controlled by advective rather than diffusive processes. Both the seasonal variation and the absolute magnitude of the water vapor mixing ratios obtained in microwave measurements were corroborated by measurements obtained in the Spacelab GRILLE and ATMOS experiments, and were found to be consistent with several recent mesospheric dynamics studies.

  6. Helping Students make the transition from novice learner of ground-water concepts to expert using the Plume Busters software

    Science.gov (United States)

    Macfarlane, P.A.; Bohling, G.; Thompson, K.W.; Townsend, M.

    2006-01-01

    Environmental and earth science students are novice learners and lack the experience needed to rise to the level of expert. To address this problem we have developed the prototype Plume Busters?? software as a capstone educational experience, in which students take on the role of an environmental consultant. Following a pipeline spill, the environmental consultant is hired by the pipeline owner to locate the resulting plume created by spill and remediate the contaminated aquifer at minimum monetary and time cost. The contamination must be removed from the aquifer before it reaches the river and eventually a downstream public water supply. The software consists of an interactive Java application and accompanying HTML linked pages. The application simulates movement of a plume from a pipeline break throug h a shallow alluvial aquifer towards the river. The accompanying web pages establish the simulated contamination scenario and provide students with background material on ground-water flow and transport principles. To make the role-play more realistic, the student must consider cost and time when making decisions about siting observation wells and wells for the pump-and-treat remediation system.

  7. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen; McCabe, Matthew; Griffiths, Alan; Wang, Lixin

    2015-01-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining

  8. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.

    Science.gov (United States)

    Horn, Hans W; Swope, William C; Pitera, Jed W

    2005-11-15

    The liquid-vapor-phase equilibrium properties of the previously developed TIP4P-Ew water model have been studied using thermodynamic integration free-energy simulation techniques in the temperature range of 274-400 K. We stress that free-energy results from simulations need to be corrected in order to be compared to the experiment. This is due to the fact that the thermodynamic end states accessible through simulations correspond to fictitious substances (classical rigid liquids and classical rigid ideal gases) while experiments operate on real substances (liquids and real gases, with quantum effects). After applying analytical corrections the vapor pressure curve obtained from simulated free-energy changes is in excellent agreement with the experimental vapor pressure curve. The boiling point of TIP4P-Ew water under ambient pressure is found to be at 370.3+/-1.9 K, about 7 K higher than the boiling point of TIP4P water (363.7+/-5.1 K; from simulations that employ finite range treatment of electrostatic and Lennard-Jones interactions). This is in contrast to the approximately +15 K by which the temperature of the density maximum and the melting temperature of TIP4P-Ew are shifted relative to TIP4P, indicating that the temperature range over which the liquid phase of TIP4P-Ew is stable is narrower than that of TIP4P and resembles more that of real water. The quality of the vapor pressure results highlights the success of TIP4P-Ew in describing the energetic and entropic aspects of intermolecular interactions in liquid water.

  9. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    Science.gov (United States)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  10. Distribution of zooplankton populations within and adjacent to a thermal plume

    International Nuclear Information System (INIS)

    Evans, M.S.

    1981-01-01

    Zooplankton distributions in the 1-m stratum differed between ambient waters and the thermal plume of the Donald C. Cook Nuclear Power Plant. Zooplankton were most abundant in the warmest waters of the plume with the region of high densities extending over an approximate area of 0.2 to 0.3 km 2 . Water temperature was not a reliable indicator of alterations in zooplankton populations. Alterations were primarily due to upward vertical displacment of deep-living zooplankton. Large horizontal variability in zooplankton densities and use of conventional sampling procedures (vertically hauled nets, widely spaced stations) prevent traditionally designed monitoring programs from detecting such alterations. Zooplankton may experience indirect mortality losses in the plume if transfer of deep-living zooplankton to the surface layers makes them more visible to visual-feeding fish predators, and turbulences in the plume reduce zooplankters' ability to detect and avoid such predators. (auth)

  11. Fractionation of families of major, minor, and trace metals across the melt-vapor interface in volcanic exhalations

    Science.gov (United States)

    Hinkley, T.K.; Le Cloarec, M.-F.; Lambert, G.

    1994-01-01

    Chemical families of metals fractionate systematically as they pass from a silicate melt across the interface with the vapor phase and on into a cooled volcanic plume. We measured three groups of metals in a small suite of samples collected on filters from the plumes of Kilauea (Hawaii, USA), Etna (Sicily), and Merapi (Java) volcanoes. These were the major, minor, and trace metals of the alkali and alkaline earth families (K, Rb, Cs, Ca, Sr, Ba), a group of ordinarily rare metals (Cd, Cu, In, Pb, Tl) that are related by their chalcophile affinities, and the radon daughter nuclides 210Po, 210Bi, and 210Pb. The measurements show the range and some details of systematic melt-vapor fractionation within and between these groups of metals. In the plumes of all three volcanoes, the alkali metals are much more abundant than the alkaline earth metals. In the Kilauea plume, the alkali metals are at least six times more abundant than the alkaline earth metals, relative to abundances in the melt; at Etna, the factor is at least 300. Fractionations within each family are, commonly, also distinctive; in the Kilauea plume, in addition to the whole alkaline earth family being depleted, the heaviest metals of the family (Sr, Ba) are progressively more depleted than the light metal Ca. In plumes of fumaroles at Merapi, K/Cs ratios were approximately three orders of magnitude smaller than found in other earth materials. This may represent the largest observed enrichment of the "light ion lithophile" (LIL) metals. Changes in metal ratios were seen through the time of eruption in the plumes of Kilauea and Etna. This may reflect degree of degassing of volatiles, with which metals complex, from the magma bodies. At Kilauea, the changes in fractionation were seen over about three years; fractionation within the alkaline earth family increased, and that between the two families decreased, over that time. All of the ordinarily rare chalcophile metals measured are extremely abundant in

  12. Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Nielsen, Heidi Venstrup

    2012-01-01

    This paper investigates the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC). A H3PO4-doped polybenzimidazole (PBI) membrane electrode assembly (MEA), Celtec P2100 of 45 cm2 of active surface area from BASF was employed....... A long-term durability test of around 1250 h was performed, in which the concentrations of methanol-water vapor mixture in the anode feed gas were varied. The fuel cell showed a continuous performance decay in the presence of vapor mixtures of methanol and water of 5% and 8% by volume in anode feed...

  13. Water Vapor Diffusion and Adsorption of Sandstones: Influence of Rock Texture and Composition

    Directory of Open Access Journals (Sweden)

    Martin Keppert

    2016-01-01

    Full Text Available The term sandstone is used for wide range of rocks containing quartz clasts which can be cemented by secondary precipitated quartz or calcite; moreover the space between clasts can be filled by matrix. These facts result in existence of numerous rocks having highly various properties. Sandstones have been used as construction materials due to their good accessibility and workability. Since most of sandstones are porous, water vapor can penetrate through sandstone constructions. The rate of water vapor diffusion, as well as the vapor sorption isotherm, was determined for range of sandstone types. The diffusion resistance factor was found to be dependent on the total porosity of sandstone but the sorption behavior was strongly influenced by nature of the particular sandstone; the specific surface area of stone and presence of clay matrix are determining its sorption isotherm. The published data enable estimating (i diffusion resistance factor of a sandstone via knowledge of its total porosity and (ii the sorption isotherm via knowledge of the stone’s nature and specific surface area. This approach can significantly reduce the time necessary to acquire vapor-related properties of a sandstone.

  14. Bioventing - a new twist on soil vapor remediation of the vadose zone and shallow ground water

    International Nuclear Information System (INIS)

    Yancheski, T.B.; McFarland, M.A.

    1992-01-01

    Bioventing, which is a combination of soil vapor remediation and bioremediation techniques, may be an innovative, cost-effective, and efficient remedial technology for addressing petroleum contamination in the vadose zone and shallow ground water. The objective of bioventing is to mobilize petroleum compounds from the soil and ground water into soil vapor using soil vapor extraction and injection technology, and to promote the migration of the soil vapor upward to the turf root zone for degradation by active near-surface microbiological activity. Promoting and maintaining optimum microbiological activity in the turf root rhizosphere is a key component to the bioventing technique. Preliminary ongoing USEPA bioventing pilot studies (Kampbell, 1991) have indicated that this technique is a promising remediation technology, although feasibility studies are not yet complete. However, based on the preliminary data, it appears that proper bioventing design and implementation will result in substantial reductions of petroleum compounds in the capillary zone and shallow ground water, complete degradation of petroleum compounds in the turf root zone, and no surface emissions. A bioventing system was installed at a site in southern Delaware with multiple leaking underground storage tanks in early 1992 to remediate vadose zone and shallow ground-water contaminated by petroleum compounds. The system consists of a series of soil vapor extraction and soil vapor/atmospheric air injection points placed in various contamination areas and a central core remediation area (a large grassy plot). This system was chosen for this site because it was least costly to implement and operate as compared to other remedial alternatives (soil vapor extraction with carbon or catalytic oxidation of off-gas treatment, insitu bioremediation, etc.), and results in the generation of no additional wastes

  15. Multiphase CFD modeling of nearfield fate of sediment plumes

    DEFF Research Database (Denmark)

    Saremi, Sina; Hjelmager Jensen, Jacob

    2014-01-01

    Disposal of dredged material and the overflow discharge during the dredging activities is a matter of concern due to the potential risks imposed by the plumes on surrounding marine environment. This gives rise to accurately prediction of the fate of the sediment plumes released in ambient waters...

  16. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid

    DEFF Research Database (Denmark)

    Rodier, Marion; Li, Qingfeng; Berg, Rolf W.

    2016-01-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed...... with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available...... in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case...

  17. Using Satellites to Investigate the Sensitivity of Longwave Downward Radiation to Water Vapor at High Elevations

    Science.gov (United States)

    Naud, Catherine M.; Miller, James R.; Landry, Chris

    2012-01-01

    Many studies suggest that high-elevation regions may be among the most sensitive to future climate change. However, in situ observations in these often remote locations are too sparse to determine the feedbacks responsible for enhanced warming rates. One of these feedbacks is associated with the sensitivity of longwave downward radiation (LDR) to changes in water vapor, with the sensitivity being particularly large in many high-elevation regions where the average water vapor is often low. We show that satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) can be used to expand the current ground-based observational database and that the monthly averaged clear-sky satellite estimates of humidity and LDR are in good agreement with the well-instrumented Center for Snow and Avalanche Studies ground-based site in the southwestern Colorado Rocky Mountains. The relationship between MODIS-retrieved precipitable water vapor and surface specific humidity across the contiguous United States was found to be similar to that previously found for the Alps. More important, we show that satellites capture the nonlinear relationship between LDR and water vapor and confirm that LDR is especially sensitive to changes in water vapor at high elevations in several midlatitude mountain ranges. Because the global population depends on adequate fresh water, much of which has its source in high mountains, it is critically important to understand how climate will change there. We demonstrate that satellites can be used to investigate these feedbacks in high-elevation regions where the coverage of surface-based observations is insufficient to do so.

  18. Gas scavenging of insoluble vapors: Condensation of methyl salicylate vapor onto evaporating drops of water

    Science.gov (United States)

    Seaver, Mark; Peele, J. R.; Rubel, Glenn O.

    We have observed the evaporation of acoustically levitated water drops at 0 and 32% relative humidity in a moving gas stream which is nearly saturated with methyl salicylate vapor. The initial evaporation rate is characteristic of a pure water drop and gradually slows until the evaporation rate becomes that of pure methyl salicylate. The quantity of condensed methyl salicylate exceeds its Henry's law solubility in water by factors of more than 30-50. This apparent violation of Henry's law agrees with the concentration enhancements in the liquid phase found by glotfelty et al. (1987, Nature235, 602-605) during their field measurements of organophorus pesticides in fog water. Under our conditions, visual evidence demonstrates the presence of two liquid phases, thus invalidating the use of Henry's law. A continuum evaporation-condensation model for an immiscible two-component system which accounts for evaporative self-cooling of the drop correctly predicts the amount of methyl salicylate condensed onto the water drops.

  19. Diode-laser-based water vapor differential absorption lidar (DIAL) profiler evaluation

    Science.gov (United States)

    Spuler, S.; Weckwerth, T.; Repasky, K. S.; Nehrir, A. R.; Carbone, R.

    2012-12-01

    We are in the process of evaluating the performance of an eye-safe, low-cost, diode-laser-based, water vapor differential absorption lidar (DIAL) profiler. This class of instrument may be capable of providing continuous water vapor and aerosol backscatter profiles at high vertical resolution in the atmospheric boundary layer (ABL) for periods of months to years. The technology potentially fills a national long term observing facility gap and could greatly benefit micro- and meso-meteorology, water cycle, carbon cycle and, more generally, biosphere-hydrosphere-atmosphere interaction research at both weather and climate variability time scales. For the evaluation, the Montana State University 3rd generation water vapor DIAL was modified to enable unattended operation for a period of several weeks. The performance of this V3.5 version DIAL was tested at MSU and NCAR in June and July of 2012. Further tests are currently in progress with Howard University at Beltsville, Maryland; and with the National Weather Service and Oklahoma University at Dallas/Fort Worth, Texas. The presentation will include a comparison of DIAL profiles against meteorological "truth" at the aforementioned locations including: radiosondes, Raman lidars, microwave and IR radiometers, AERONET and SUOMINET systems. Instrument reliability, uncertainty, systematic biases, detection height statistics, and environmental complications will be evaluated. Performance will be judged in the context of diverse scientific applications that range from operational weather prediction and seasonal climate variability, to more demanding climate system process studies at the land-canopy-ABL interface. Estimating the extent to which such research and operational applications can be satisfied with a low cost autonomous network of similar instruments is our principal objective.

  20. Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode

    Science.gov (United States)

    Shangguan, M.; Heise, S.; Bender, M.; Dick, G.; Ramatschi, M.; Wickert, J.

    2015-01-01

    Slant-integrated water vapor (SIWV) data derived from GPS STDs (slant total delays), which provide the spatial information on tropospheric water vapor, have a high potential for assimilation to weather models or for nowcasting or reconstruction of the 3-D humidity field with tomographic techniques. Therefore, the accuracy of GPS STD is important, and independent observations are needed to estimate the quality of GPS STD. In 2012 the GFZ (German Research Centre for Geosciences) started to operate a microwave radiometer in the vicinity of the Potsdam GPS station. The water vapor content along the line of sight between a ground station and a GPS satellite can be derived from GPS data and directly measured by a water vapor radiometer (WVR) at the same time. In this study we present the validation results of SIWV observed by a ground-based GPS receiver and a WVR. The validation covers 184 days of data with dry and wet humidity conditions. SIWV data from GPS and WVR generally show good agreement with a mean bias of -0.4 kg m-2 and an rms (root mean square) of 3.15 kg m-2. The differences in SIWV show an elevation dependent on an rms of 7.13 kg m-2 below 15° but of 1.76 kg m-2 above 15°. Nevertheless, this elevation dependence is not observed regarding relative deviations. The relation between the differences and possible influencing factors (elevation angles, pressure, temperature and relative humidity) are analyzed in this study. Besides the elevation, dependencies between the atmospheric humidity conditions, temperature and the differences in SIWV are found.

  1. Field studies of submerged-diffuser thermal plumes with comparisons to predictive model results

    International Nuclear Information System (INIS)

    Frigo, A.A.; Paddock, R.A.; Ditmars, J.D.

    1976-01-01

    Thermal plumes from submerged discharges of cooling water from two power plants on Lake Michigan were studied. The system for the acquisition of water temperatures and ambient conditions permitted the three-dimensional structure of the plumes to be determined. The Zion Nuclear Power Station has two submerged discharge structures separated by only 94 m. Under conditions of flow from both structures, interaction between the two plumes resulted in larger thermal fields than would be predicted by the superposition of single non-interacting plumes. Maximum temperatures in the near-field region of the plume compared favorably with mathematical model predictions. A comparison of physical-model predictions for the plume at the D. C. Cook Nuclear Plant with prototype measurements indicated good agreement in the near-field region, but differences in the far-field occurred as similitude was not preserved there

  2. Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors

    Science.gov (United States)

    Turner, D. D.; Feltz, W. F.; Ferrare, R. A.

    2000-01-01

    The Atmospheric Radiation Measurement program's Southern Great Plains Cloud and Radiation Testbed site central facility near Lamont, Oklahoma, offers unique operational water vapor profiling capabilities, including active and passive remote sensors as well as traditional in situ radiosonde measurements. Remote sensing technologies include an automated Raman lidar and an automated Atmospheric Emitted Radiance Interferometer (AERI), which are able to retrieve water vapor profiles operationally through the lower troposphere throughout the diurnal cycle. Comparisons of these two water vapor remote sensing methods to each other and to radiosondes over an 8-month period are presented and discussed, highlighting the accuracy and limitations of each method. Additionally, the AERI is able to retrieve profiles of temperature while the Raman lidar is able to retrieve aerosol extinction profiles operationally. These data, coupled with hourly wind profiles from a 915-MHz wind profiler, provide complete specification of the state of the atmosphere in noncloudy skies. Several case studies illustrate the utility of these high temporal resolution measurements in the characterization of mesoscale features within a 3-day time period in which passage of a dryline, warm air advection, and cold front occurred.

  3. Stable isotope tracers of water vapor sources in the Atacama Desert, Northern Chile: a pilot study on the Chajnantor Plateau

    Science.gov (United States)

    Samuels, K. E.; Galewsky, J.; Sharp, Z. D.; Rella, C.; Ward, D.

    2010-12-01

    Subtropical deserts form in response to the interaction of large-scale processes, including atmospheric circulation and oceanic currents, with local features like topography. The degree to which each of these factors controls desert formation and the anticipated impacts of variations in each as climate changes, however, are poorly understood. Stable isotope compositions of water vapor in desert air can help to distinguish between moisture sources and processes that control aridity. The Atacama Desert, located in northern Chile between latitudes 23S and 27S, provides a natural laboratory in which to test the degree to which water vapor isotopologues enable the distinction between processes that control humidity, including the Hadley Circulation, the cold Humboldt Current off the coast of Chile, and the orographic effect of the Andes, in this subtropical desert. Water vapor isotopologues and concentrations were measured in real time using a cavity-ringdown spectrometer deployed on the Chajnantor Plateau over a three-week period from mid-July early August 2010. The elevation of the Plateau, 5000 m amsl (~550 hPa), places it above the boundary layer, allowing the evaluation of the Rayleigh fractionation model from the coast inland. Values reported by the instrument were verified with air samples taken at the coast and the Plateau, which were analyzed on an MAT-252 mass spectrometer. Water vapor concentrations and δD values varied spatially and temporally. Water vapor concentrations on the Plateau ranged from 200 to 3664 ppmv with a mean value of 536 ppmv. In contrast, water vapor concentrations at the coast were approximately 10000 ppmv, and at Yungay, 60 km inland, water vapor concentrations ranged from 1300 to 2000 ppmv from morning to evening. δD values on the Plateau ranged from -526‰ to -100‰ with a mean value of 290‰ with enriched values correlated to periods with higher water vapor concentrations. There are no strong diurnal variations in water vapor

  4. Effect of Water Vapor on High-Temperature Corrosion under Conditions Mimicking Biomass Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    The variable flue gas composition in biomass-fired plants, among other parameters, contributes to the complexityof high-temperature corrosion of materials. Systematic parameter studies are thus necessary to understand the underlyingcorrosion mechanisms. This paper investigates the effect of water...... (H2O) vapor content in the flue gas on the high-temperaturecorrosion of austenitic stainless steel (TP 347H FG) under laboratory conditions, to improve the understanding of corrosionmechanisms. Deposit-coated and deposit-free samples were isothermally exposed for 72 h in a synthetic flue gas...... previouslyreported findings suggest that an increase in the water vapor content will cause competitive adsorption on active sites....

  5. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    International Nuclear Information System (INIS)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed

  6. Solid State Transmitters for Water Vapor and Ozone DIAL Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a common architecture for laser transmitters that address requirements for water vapor as well as ground and airborne ozone lidar systems. Our...

  7. Molecular Dynamic Simulation of Water Vapor and Determination of Diffusion Characteristics in the Pore

    Science.gov (United States)

    Nikonov, Eduard G.; Pavluš, Miron; Popovičová, Mária

    2018-02-01

    One of the varieties of pores, often found in natural or artificial building materials, are the so-called blind pores of dead-end or saccate type. Three-dimensional model of such kind of pore has been developed in this work. This model has been used for simulation of water vapor interaction with individual pore by molecular dynamics in combination with the diffusion equation method. Special investigations have been done to find dependencies between thermostats implementations and conservation of thermodynamic and statistical values of water vapor - pore system. The two types of evolution of water - pore system have been investigated: drying and wetting of the pore. Full research of diffusion coefficient, diffusion velocity and other diffusion parameters has been made.

  8. Cassini/CIRS Observations of Water Vapor in Titan's Stratosphere

    Science.gov (United States)

    Bjoraker, Gordon L.; Achterberg, R. K.; Anderson, C. M.; Samuelson, R. E.; Carlson, R. C.; Jennings, D. E.

    2008-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft has obtained spectra of Titan during most of the 44 flybys of the Cassini prime mission. Water vapor on Titan was first detected using whole-disk observations from the Infrared Space Observatory (Coustenis et al 1998, Astron. Astrophys. 336, L85-L89). CIRS data permlt the retrieval of the latitudinal variation of water on Titan and some limited information on its vertical profile. Emission lines of H2O on Titan are very weak in the CIRS data. Thus, large spectral averages as well as improvements in calibration are necessary to detect water vapor. Water abundances were retrieved in nadir spectra at 55 South, the Equator, and at 19 North. Limb spectra of the Equator were also modeled to constrain the vertical distribution of water. Stratospheric temperatures in the 0.5 - 4.0 mbar range were obtained by inverting spectra of CH4 in the v4 band centered at 1304/cm. The temperature in the lower stratosphere (4 - 20 mbar) was derived from fitting pure rotation lines of CH4 between 80 and 160/cm. The origin of H2O and CO2 is believed to be from the ablation of micrometeorites containing water ice, followed by photochemistry. This external source of water originates either within the Saturn system or from the interplanetary medium. Recently, Horst et al (J. Geophys. Res. 2008, in press) developed a photochemical model of Titan in which there are two external sources of oxygen. Oxygen ions (probably from Enceladus) precipitate into Titan's atmosphere to form CO at very high altitudes (1100 km). Water ice ablation at lower altitudes (700 km) forms H2O and subsequent chemistry produces CO2. CIRS measurements of CO, CO2, and now of H2O will provide valuable constraints to these photochemical models and - improve our understanding of oxygen chemistry on Titan.

  9. Effects of water vapor on flue gas conditioning in the electric fields with corona discharge.

    Science.gov (United States)

    Liqiang, Qi; Yajuan, Zhang

    2013-07-15

    Sulfur dioxide (SO2) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5μm in diameter from flue gas. SO2 removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO3(-) to SO4(2-). Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. In Situ Water Vapor Measurements Using Coupled UV Fragment Fluorescence/Absorption Spectroscopy in Support of CRYSTAL-FACE

    Science.gov (United States)

    Anderson, James G.

    2004-01-01

    Understanding the coupling of dynamics, chemistry, and radiation within the context of the NASA Earth Science Enterprise (ESE) and the national Climate Change Science Program (CCSP) requires, as a first-order priority, high spatial resolution, high-accuracy observations of water in its various phases. Given the powerful diagnostic importance of the condensed phases of water for dynamics and the impact of phase changes in water on the radiation field, the accurate, in situ observation of water vapor is of central importance to CRYSTAL FACE (CF). This is clear both from the defined scientific objectives of the NRA and from developments in the coupled fields of stratosphere/troposphere exchange, cirrus cloud formation/removal and mechanisms for the distribution of water vapor in the middle/upper troposphere. Accordingly, we were funded under NASA Grant NAG5-11548 to perform the following tasks for the CF mission: 1. Prepare the water vapor instrument for integration into the WB57F and test flights scheduled for Spring 2002. 2. Calibrate and prepare the water vapor instrument for the Summer 2002 CF science flights based in Jacksonville, Florida. 3. Provide both science and engineering support for the above-mentioned efforts. 4. Analyze and interpret the CF data in collaboration with other mission scientists. 5. Attend the science workshop in Spring 2003. 6. Publish the data and analysis in peer-reviewed journals.

  11. Solid State Transmitters for Water Vapor and Ozone DIAL Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of this Select Phase II program is to build and deliver laser components both for airborne water vapor and ozone DIAL systems. Specifically, Fibertek...

  12. High-Accuracy Measurements of Total Column Water Vapor From the Orbiting Carbon Observatory-2

    Science.gov (United States)

    Nelson, Robert R.; Crisp, David; Ott, Lesley E.; O'Dell, Christopher W.

    2016-01-01

    Accurate knowledge of the distribution of water vapor in Earth's atmosphere is of critical importance to both weather and climate studies. Here we report on measurements of total column water vapor (TCWV) from hyperspectral observations of near-infrared reflected sunlight over land and ocean surfaces from the Orbiting Carbon Observatory-2 (OCO-2). These measurements are an ancillary product of the retrieval algorithm used to measure atmospheric carbon dioxide concentrations, with information coming from three highly resolved spectral bands. Comparisons to high-accuracy validation data, including ground-based GPS and microwave radiometer data, demonstrate that OCO-2 TCWV measurements have maximum root-mean-square deviations of 0.9-1.3mm. Our results indicate that OCO-2 is the first space-based sensor to accurately and precisely measure the two most important greenhouse gases, water vapor and carbon dioxide, at high spatial resolution [1.3 x 2.3 km(exp. 2)] and that OCO-2 TCWV measurements may be useful in improving numerical weather predictions and reanalysis products.

  13. Surface measurements of upper tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile

    Science.gov (United States)

    Galewsky, Joseph; Rella, Christopher; Sharp, Zachary; Samuels, Kimberly; Ward, Dylan

    2011-09-01

    Simultaneous, real-time measurements of atmospheric water vapor mixing ratio and isotopic composition (δD and δ18O) were obtained using cavity ringdown spectroscopy on the arid Chajnantor Plateau in the subtropical Chilean Andes (elevation 5080 m or 550 hPa; latitude 23°S) during July and August 2010. The measurements show surface water vapor mixing ratio as low as 215 ppmv, δD values as low as -540‰, and δ18O values as low as -68‰, which are the lowest atmospheric water vapor δ values reported from Earth's surface. The results are consistent with previous measurements from the base of the tropical tropopause layer (TTL) and suggest large-scale subsidence of air masses from the upper troposphere to the Earth's surface. The range of measurements is consistent with condensation under conditions of ice supersaturation and mixing with moister air from the lower troposphere that has been processed through shallow convection. Diagnostics using reanalysis data show that the extreme aridity of the Chajnantor Plateau is controlled by condensation in the upper tropical troposphere.

  14. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    Science.gov (United States)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their

  15. Water Vapor Transport Over the Tropical Oceans During ENSO as Diagnosed from TRMM and SSM/I Data

    Science.gov (United States)

    Robertson, Franklin R.; Smith, Eric A.; Sohn, Byung-Ju

    2000-01-01

    Traditionally, large-scale water vapor transport [div Q] has been derived directly from circulation statistics in which transport processes are often depicted by mean and eddy motions. Thus detailed and accurate calculations of moisture transport terms over the globe are required. Notably, the lack of systematically spaced conventional measurements of meteorological variables over oceans has hindered understanding of the distribution and transport of water vapor. This motivates the use of indirect calculation methods in which horizontal divergence of water vapor is balanced by the evaporation minus precipitation, assuming the rate of changes of precipitable water and condensates is small over a sufficiently long time period. In order to obtain the water vapor transport, we need evaporation rate minus precipitation (E-P). Focussing on the differences in water vapor transport between El Nino and La Nina periods and their influences on atmospheric circulations, we study January, February, and March of 1998 and 1999 periods which represent El Nino and La Nina respectively. SSM/I-derived precipitation and evaporation rate from SSM/I wind and total precipitable water, in conjunction with NCEP SST and surface air temperature, are used for the calculation of the transport potential function. For the retrieval of evaporation we use a stability-dependent aerodynamic bulk scheme developed by Chou (1993). It was tested against aircraft covariance fluxes measured during cold air outbreaks over the North Atlantic Ocean. Chou et al. (1997) reported that the SSM/I retrieved latent heat flux over the western Pacific warm pool area were found to be comparable with daily mean fluxes of a ship measurements during TOGA/COARE.

  16. Venera-15: water vapor at altitudes of 55 - 65 km.

    Science.gov (United States)

    Zasova, L. V.; Ignat'ev, N. I.; Moroz, V. I.; Khatuntsev, I. V.

    1999-02-01

    Spectra of Venus outgoing thermal radiation were measured in 1983 onboard the Venera-15 spacecraft (Venus' artificial satellite) in the 6 - 40 μm range at different latitudes and longitudes. Results of a new analysis of these spectra are presented, which have been elaborated in order to revise the water vapor content estimates.

  17. Synthesis of Hydrophobic Mesoporous Material MFS and Its Adsorption Properties of Water Vapor

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available Fluorine-containing hydrophobic mesoporous material (MFS with high surface area is successfully synthesized with hydrothermal synthesis method by using a perfluorinated surfactant SURFLON S-386 template. The adsorption properties of water vapor on the synthesized MFS are also investigated by using gravimetric method. Results show that SEM image of the MFS depicted roundish morphology with the average crystal size of 1-2 μm. The BET surface area and total pore volume of the MFS are 865.4 m2 g−1 and 0.74 cm3 g−1 with a narrow pore size distribution at 4.9 nm. The amount of water vapor on the MFS is about 0.41 mmol g−1 at 303 K, which is only 52.6% and 55.4% of MCM-41 and SBA-15 under the similar conditions, separately. The isosteric adsorption heat of water on the MFS is gradually about 27.0–19.8 kJ mol−1, which decreases as the absorbed water vapor amount increases. The value is much smaller than that on MCM-41 and SBA-15. Therefore, the MFS shows more hydrophobic surface properties than the MCM-41 and SBA-15. It may be a kind of good candidate for adsorption of large molecule and catalyst carrier with high moisture resistance.

  18. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Jackson, G.A.

    2001-01-01

    Leaking organic solutes form an elongated plume in the wake of a sinking aggregate. These solutes may both be assimilated by suspended bacteria and guide bacteria with chemokinetic swimming behavior toward the aggregate. We used modifications of previously published models of the flow and concent......Leaking organic solutes form an elongated plume in the wake of a sinking aggregate. These solutes may both be assimilated by suspended bacteria and guide bacteria with chemokinetic swimming behavior toward the aggregate. We used modifications of previously published models of the flow...... behavior was used to examine the potential contribution of aggregate-generated solute plumes for water column bacteria] production. Despite occupying only a small volume fraction, the plumes may provide important growth habitats for free bacteria and account for a significant proportion of water column...

  19. Vaporization order and burning efficiency of crude oils during in-situ burning on water

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, Linus M.V.; Jomaas, Grunde

    2017-01-01

    furthermore showed that the vaporization was diffusion-limited. Analysis of the heat transfer balance for the crude oils indicated that the energy available for evaporation decreased over time due to increasing heat losses, which were caused by the volatility controlled vaporization order. Presumably, larger......In order to improve the understanding of the burning efficiency and its observed size dependency of in-situ burning of crude oil on water, the vaporization order of the components in crude oils was studied. The vaporization order of such multicomponent fuels was assessed by studying the surface...... these results. The crude oils did not show any steady state behavior, but instead had an increasing surface temperature and decreasing burning rate and flame height, indicating a volatility controlled vaporization order. An increasing concentration gradient from the medium to heavy fraction in the burn residues...

  20. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Theory and Simulations

    Science.gov (United States)

    Borel, Christoph C.; Schlaepfer, Daniel

    1996-01-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels; (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels. (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an "Atmospheric Pre-corrected Differential Absorption" (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than +5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  1. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Schlaepfer, D.

    1996-03-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  2. On the Color of the Orinoco River Plume

    Science.gov (United States)

    Odriozola, A.; Muller-Karger, F.; Carder, K.; Hu, C.; Varela, R.

    2005-05-01

    In situ measurements were used to study the bio-optical properties of marine waters within the Gulf of Paria (GOP, Venezuela) and in the Southeastern Caribbean Sea (SEC) as they are affected by the seasonal discharge of the Orinoco River plume. The main purpose of this study was to determine the impact of colored dissolved organic matter (CDOM) (also known as Gelbstoff), phytoplankton, and total suspended matter (TSM) in the color of the Orinoco River plume. This information is essential for regional ocean color algorithms development. Salinity and silica values indicate that the GOP and SEC waters were under the influence of the Orinoco River plume during both seasons. This riverine influence resulted in high values of Gelbstoff absorption, ag(λ), which contributed to up to 90% of the total absorption at 440 nm in both the GOP and SEC regardless of the season. Phytoplankton absorption contributions were normally around 5%, but during the dry season these values reached 20% in the SEC. Ratios of ag(440) to ph(440) were extremely large, with most of the values ranging from 10 to 50. Due to the strong absorption by Gelbstoff, light at the blue wavelengths (412 nm, 440 nm and 490 nm) was attenuated to 1% of the subsurface irradiance in the first 5 m of the water column within the GOP, and in the first 10 m of the water column in the SEC. Furthermore, the absorption by Gelbstoff significantly decreased the water leaving radiance (Lw(λ)) in the blue wavelengths along the Orinoco River plume. As ag(λ) relatively decreased from the GOP to the SEC (mean ~1.6 m-1 and mean ~0.9 m-1, respectively), a shift in the maximum peak of Rrs(λ) spectra (Rrsmax(λ)), towards shorter wavelengths (from ~ 580 nm to ~500 nm) was observed. Similar to Gelbstoff, concentrations of TSM normally decreased from the stations near the Delta to the stations in the SEC. The impact of TSM on the color of the Orinoco plume was represented by a reduction in the magnitude of Rrsmax(λ) of ~50% going

  3. Satellite infrared imagery for thermal plume contamination monitoring in coastal ecosystem of Cernavoda NPP

    Science.gov (United States)

    Zoran, M. A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2017-10-01

    Satellite remote sensing is an important tool for spatio-temporal analysis and surveillance of NPP environment, thermal heat waste of waters being a major concern in many coastal ecosystems involving nuclear power plants. As a test case the adopted methodology was applied for 700x2 MW Cernavoda nuclear power plant (NPP) located in the South-Eastern part of Romania, which discharges warm water affecting coastal ecology. The thermal plume signatures in the NPP hydrological system have been investigated based on TIR (Thermal Infrared) spectral bands of NOAA AVHRR, Landsat TM/ETM+/OLI, and MODIS Terra/Aqua time series satellite data during 1990-2016 period. If NOAA AVHRR data proved the general pattern and extension of the thermal plume signature in Danube river and Black Sea coastal areas, Landsat TM/ETM and MODIS data used for WST (Water Surface Temperature) change detection, mapping and monitoring provided enhanced information about the plume shape, dimension and direction of dispersion in these waters. Thermal discharge from two nuclear reactors cooling is dissipated as waste heat in Danube-Black -Sea Channel and Danube River. From time-series analysis of satellite data during period 1990-2016 was found that during the winter season thermal plume was localized to an area of a few km of NPP, and the mean temperature difference between the plume and non-plume areas was about 1.7 oC. During summer and fall, derived mean temperature difference between the plume and non-plume areas was of about 1.3°C and thermal plume area was extended up to 5- 10 km far along Danube Black Sea Channel.

  4. Water Vapor Permeation in Plastics

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-01-01

    Polyvinyl toluene (PVT) and polystyrene (PS) (referred to as “plastic scintillator”) are used for gamma ray detectors. A significant decrease in radiation detection performance has been observed in some PVT-based gamma-ray detectors in systems in outdoor environments as they age. Recent studies have revealed that plastic scintillator can undergo an environmentally related material degradation that adversely affects gamma ray detection performance under certain conditions and histories. A significant decrease in sensitivity has been seen in some gamma-ray detectors in some systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. The objective of this report is to document the phenomenon of permeability of plastic scintillator to water vapor and to derive the relationship between time, temperature, humidity and degree of water penetration in plastic. Several conclusions are documented about the properties of water permeability of plastic scintillator.

  5. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    Science.gov (United States)

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  6. Groundwater contaminant plume ranking

    International Nuclear Information System (INIS)

    1988-08-01

    Containment plumes at Uranium Mill Tailings Remedial Action (UMTRA) Project sites were ranked to assist in Subpart B (i.e., restoration requirements of 40 CFR Part 192) compliance strategies for each site, to prioritize aquifer restoration, and to budget future requests and allocations. The rankings roughly estimate hazards to the environment and human health, and thus assist in determining for which sites cleanup, if appropriate, will provide the greatest benefits for funds available. The rankings are based on the scores that were obtained using the US Department of Energy's (DOE) Modified Hazard Ranking System (MHRS). The MHRS and HRS consider and score three hazard modes for a site: migration, fire and explosion, and direct contact. The migration hazard mode score reflects the potential for harm to humans or the environment from migration of a hazardous substance off a site by groundwater, surface water, and air; it is a composite of separate scores for each of these routes. For ranking the containment plumes at UMTRA Project sites, it was assumed that each site had been remediated in compliance with the EPA standards and that relict contaminant plumes were present. Therefore, only the groundwater route was scored, and the surface water and air routes were not considered. Section 2.0 of this document describes the assumptions and procedures used to score the groundwater route, and Section 3.0 provides the resulting scores for each site. 40 tabs

  7. Numerical model simulation of atmospheric coolant plumes

    International Nuclear Information System (INIS)

    Gaillard, P.

    1980-01-01

    The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr

  8. Theoretical study of adsorption of water vapor on surface of metallic uranium

    CERN Document Server

    Xiong Bi Tao; Xue Wei Dong; Zhu Zheng He; Jiang Gang; Wang Hong Yan; Gao Tao

    2002-01-01

    According to the experimental data, there is an intermediate substance that formed in the initial stage of oxidation reaction when water vapor is absorbed onto the metallic uranium. The minimum energy of UOH sub 2 witch C sub 2 subupsilon configuration is obtained in the state of sup 5 A sub 1 by B3LYP method of the density function theory (DFT), which is consistent with that by statics of atoms and molecules reaction (AMRS) and group theory. The results from calculations indicate that the adsorption of water vapor on the metallic uranium is an exothermic reaction and that the adsorbed amount decreases with the elevated temperatures. The adsorptive heat at 1 atm is -205.4747 kJ centre dot mol sup - sup 1 , which indicates a typical chemical adsorption

  9. Initial site characterisation of a dissolved hydrocarbon groundwater plume discharging to a surface water environment

    International Nuclear Information System (INIS)

    Westbrook, S.J.; Commonwealth Scientific and Industrial Research Organisation Land and Water, Wembley, WA; Davis, G.B.; Rayner, J.L.; Fisher, S.J.; Clement, T.P.

    2000-01-01

    Preliminary characterisation of a dissolved hydrocarbon groundwater plume flowing towards a tidally- and seasonally-forced estuarine system has been completed at a site in Perth, Western Australia. Installation and sampling of multiport boreholes enabled fine scale (0.5-m) vertical definition of hydrocarbon concentrations. Vertical electrical conductivity profiles from multiport and spear probe sampling into the river sediments indicated that two groundwater/river water interfaces or dispersion zones are present: (a) an upper dispersion zone between brackish river water and groundwater, and (b) a lower interface between groundwater and deeper saline water. On-line water level loggers show that near-shore groundwater levels are also strongly influence by tidal oscillation. Results from the initial site characterisation will be used to plan further investigations of contaminated groundwater/surface water interactions and the biodegradation processes occurring at the site

  10. An efficient method for computing the absorption of solar radiation by water vapor

    Science.gov (United States)

    Chou, M.-D.; Arking, A.

    1981-01-01

    Chou and Arking (1980) have developed a fast but accurate method for computing the IR cooling rate due to water vapor. Using a similar approach, the considered investigation develops a method for computing the heating rates due to the absorption of solar radiation by water vapor in the wavelength range from 4 to 8.3 micrometers. The validity of the method is verified by comparison with line-by-line calculations. An outline is provided of an efficient method for transmittance and flux computations based upon actual line parameters. High speed is achieved by employing a one-parameter scaling approximation to convert an inhomogeneous path into an equivalent homogeneous path at suitably chosen reference conditions.

  11. Study on the interaction of lithium orthosilicate with water vapor and hydrogen

    International Nuclear Information System (INIS)

    Huber, S.

    1994-09-01

    The present work discusses the adsorption of H 2 O(g) as well as the reactions of D 2 O(g) and D 2 (g) with lithium orthosilicate (Li 4 SiO 4 ), a potential tritium breeding ceramic for future fusion reactors. An apparatus was constructed which permits H 2 O partial pressures as low as 1 μbar to be generated and subsequently measured with high accuracy and precision. Using the frontal analysis of gas chromatography, adsorption isotherms were determined at temperatures and water vapor pressures ranging from 653 to 1093 K and 1 to 10 μbar, respectively. Based upon the data, the tritium inventory at the surface of Li 4 SiO 4 (cr) can be estimated as function of temperature and water vapor concentration in the purge gas of a solid breeder blanket. The reactions of lithium orthosilicate with deuterium oxide and deuterium were studied at high temperature (1160 - 1420K) by means of Knudsen effusion mass spectrometry. In both cases the production of lithium hydroxide and the establishment of an equilibrium between LiOD(g) and D 2 O(g) were observed; D 2 O is derived from oxidation of deuterium, presumably under formation of a reduced surface layer. Equilibrium constants and reaction enthalpies were computed for the reaction of Li 4 SiO 4 (cr) with D 2 O(g). In addition, the vapor pressure of LiOD(g) above Li 4 SiO 4 (cr) was determined as function of temperature and deuterium oxide pressure. Further experiments with lithium orthosilicate were carried out under flowing hydrogen in order to analyze the effects of temperature, H 2 -concentration, gas flow, sample size and sample pretreatment on the formation of water vapor. The results confirm the mass spectrometric findings mentioned above. (orig.) [de

  12. Study of the effect of water vapor on a resistive plate chamber with glass electrodes

    CERN Document Server

    Sakai, H H; Teramoto, Y; Nakano, E E; Takahashi, T T

    2002-01-01

    We studied the effects of water vapor on the efficiencies of resistive plate chambers with glass electrodes, operated in the streamer mode. With moisture in the chamber gas that has freon as a component (water vapor approx 1000 ppm), a decrease in the efficiency (approx 20%) has been observed after operating for a period of several weeks to a few months. From our study, the cause of the efficiency decrease was identified as a change on the cathode surface. In addition, a recovery method was found: flushing for 1 day with argon bubbled through water containing >=3% ammonia, followed by a few weeks of training with dry gas.

  13. Geostationary Satellite Observation of Precipitable Water Vapor Using an Empirical Orthogonal Function (EOF based Reconstruction Technique over Eastern China

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2015-05-01

    Full Text Available Water vapor, as one of the most important greenhouse gases, is crucial for both climate and atmospheric studies. Considering the high spatial and temporal variations of water vapor, a timely and accurate retrieval of precipitable water vapor (PWV is urgently needed, but has long been constrained by data availability. Our study derived the vertically integrated precipitable water vapor over eastern China using Multi-functional Transport Satellite (MTSAT data, which is in geostationary orbit with high temporal resolution. The missing pixels caused by cloud contamination were reconstructed using an Empirical Orthogonal Function (EOF decomposition method over both spatial and temporal dimensions. GPS meteorology data were used to validate the retrieval and the reconstructed results. The diurnal variation of PWV over eastern China was analyzed using harmonic analysis, which indicates that the reconstructed PWV data can depict the diurnal cycle of PWV caused by evapotranspiration and local thermal circulation.

  14. Ticosonde CFH at Costa Rica: A Seasonal Climatology of Tropical UT-LS Water Vapor and Inter-Comparisons with MLS and CALIPSO

    Science.gov (United States)

    Selkirk, Henry B.; Voemel, Holger; Avery, Melody; Rosenlof, Karen; Davis, Sean; Hurst, Dale; Schoeberl, Mark; Diaz, Jorge Andres; Morris, Gary

    2014-01-01

    Balloon sonde measurements of tropical water vapor using the Cryogenic Frostpoint Hygrometer were initiated in Costa Rica in July 2005 and have continued to the present day. Over the nine years through July 2014, the Ticosonde program has launched 174 CFH payloads, representing the longest-running and most extensive single-site balloon dataset for tropical water vapor. In this presentation we present a seasonal climatology for water vapor and ozone at Costa Rica and examine the frequency of upper tropospheric supersaturation with comparisons to cloud fraction and cloud ice water content observations from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) on the CALIPSO mission. We then make a critical comparison of these data to water vapor measurements from the MLS instrument on board Aura in light of recently published work for other sites. Finally, we examine time series of 2-km altitude averages in the upper troposphere-lower stratosphere at Costa Rica in light of anomalies and trends seen in various large-scale indices of tropical water vapor.

  15. Effects of water vapor introduction during Cu(In1-xGax)Se2 deposition on thin film properties and solar cell performance

    International Nuclear Information System (INIS)

    Ishizuka, S.; Sakurai, K.; Yamada, A.; Matsubara, K.; Shibata, H.; Kojima, T.; Niki, S.; Yonemura, M.; Nakamura, S.; Nakanishi, H.

    2006-01-01

    The effects of water vapor introduction during the growth of Cu(In 1-x Ga x )Se 2 , specifically CuInSe 2 (CISe), Cu(In,Ga)Se 2 (CIGSe), and CuGaSe 2 (CGSe) thin films were studied. We have developed thus far a novel technique to improve CIGSe (x∝0.5) cell performance by means of water vapor introduction during CIGSe deposition. In this study, we have examined the effectiveness of water vapor introduction for other x-compositions (CISe and CGSe). Variations in the electrical properties observed in CIGSe (x∝0.5), that is, increasing hole density and conductivity with water vapor introduction, were also observed in CISe and CGSe. Water vapor introduction affected solar cell performance as well; open circuit voltages, short circuit current densities, and efficiencies were improved. The improvements in cell performance are thought to be related to annihilation of donor defects arising from Se-vacancies by incorporation of oxygen from the water vapor. In addition to this, the sodium content in the CIGSe layers was found to depend on the partial pressure of water vapor during deposition. This result suggests that the improvement mechanism is also related with the so-called 'Na-effects'. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  16. Processes Influencing Ozone Levels in Alaskan Forest Fires Plumes during Long-Range Transport over the North Atlantic

    Science.gov (United States)

    Real, E.; Law, K. S.; Wienzierl, B.; Fiebig, M.; Petzold, A.; Wild, O.; Methven, J.; Arnold, S.; Stohl, A.; Huntrieser, H.; hide

    2006-01-01

    A case of long-range transport of a biomass burning plume from Alaska to Europe is analyzed using a Lagrangian approach. This plume was sampled several times in the free troposphere over North America, the North Atlantic and Europe by 3 different aircraft during the IGAC Lagrangian 2K4 experiment which was part of the ICARTT/ITOP measurement intensive in summer 2004. Measurements in the plume showed enhanced values of CO, VOCs and NOy, mainly in form of PAN. Observed O3 levels increased by 17 ppbv over 5 days. A photochemical trajectory model, CiTTyCAT, is used to examine processes responsible for the chemical evolution of the plume. The model was initialized with upwind data, and compared with downwind measurements. The influence of high aerosol loading on photolysis rates in the plume is investigated using in-situ aerosol measurements in the plume and lidar retrievals of optical depth as input into a photolysis code (Fast-J), run in the model. Significant impacts on photochemistry are found with a decrease of 18 percent in O3 production and 24 percent in O3 destruction over 5 days when including aerosols. The plume is found to be chemically active with large O3 increases attributed primarily to PAN decomposition during descent of the plume towards Europe. The predicted O3 changes are very dependent on temperature changes during transport, and also, on water vapor levels in the lower troposphere which can lead to O3 destruction. Simulation of mixing/dilution was necessary to reproduce observed pollutants level in the plume. Mixing was simulated using background concentrations from measurements in air masses in close proximity to the plume, and mixing timescales (averaging 6.25 days) were derived from CO changes. Observed and simulated O3/CO correlations in the plume are also compared in order to evaluate the photochemistry in the model. Observed slopes changed from negative to positive over 5 days. This change, which can be attributed largely to photochemistry, is

  17. Interaction of water vapor with erbium and erbium dideuteride films

    International Nuclear Information System (INIS)

    Holloway, D.M.; Swartz, W.E. Jr.

    1976-01-01

    The reaction of water vapor with erbium and erbium dideuteride thin films was studied by x-ray diffraction, mass spectrometry and Auger electron spectroscopy. The data indicate that significant reactions take place above 573 K forming both the hydride and the oxide. The data also indicate that isotopic displacement occurs. These are important considerations in hydrogen storage applications

  18. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  19. Behavior of hydroxide at the water/vapor interface

    Science.gov (United States)

    Winter, Bernd; Faubel, Manfred; Vácha, Robert; Jungwirth, Pavel

    2009-06-01

    Hydroxide and hydronium, which represent the ionic products of water autolysis, exhibit a peculiar surface behavior. While consensus has been established that the concentration of hydronium cations is enhanced at the surface with respect to the bulk, the affinity of hydroxide anions for the water/vapor interface has been a subject of an ongoing controversy. On the one hand, electrophoretic and titration measurements of air bubbles or oil droplets in water have been interpreted in terms of a dramatic interfacial accumulation of OH -. On the other hand, surface-selective non-linear spectroscopies, surface tension measurements, and molecular simulations show no or at most a weak surface affinity of hydroxide ions. Here, we summarize the current situation and provide new evidence for the lack of appreciable surface enhancement of OH -, based on photoelectron spectroscopy from a liquid jet and on molecular dynamics simulations with polarizable potentials at varying hydroxide concentrations.

  20. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia

    2016-06-17

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field\\'s metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field\\'s metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  1. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia; Li, Erqiang; Thoroddsen, Sigurdur T

    2016-01-01

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field's metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field's metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  2. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jie [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); Kang, Shichang, E-mail: shichang.kang@lzb.ac.cn [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Tian, Lide [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Junming [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Qianggong; Cong, Zhiyuan [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101 (China); Sillanpää, Mika [Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, Mikkeli FI 50130 (Finland); and others

    2016-10-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH{sub 4}{sup +} in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L{sup −1}, with an average of 12.5 ng L{sup −1}. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH{sub 4}{sup +}. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH{sub 4}{sup +} was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  3. Influence of long-range transboundary transport on atmospheric water vapor mercury collected at the largest city of Tibet

    International Nuclear Information System (INIS)

    Huang, Jie; Kang, Shichang; Tian, Lide; Guo, Junming; Zhang, Qianggong; Cong, Zhiyuan; Sillanpää, Mika

    2016-01-01

    Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH_4"+ in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7 ng L"−"1, with an average of 12.5 ng L"−"1. The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH_4"+. The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. - Highlights: • The low pH/high electronic conductivity was found in atmospheric water vapor. • Anthropogenic NH_4"+ was higher than that determined in precipitation of Lhasa. • Elevated Hg and major ions levels were usually associated with weak acidic samples. • Hg in atmospheric water vapor was largely influenced by transboundary transport. • Below-cloud scavenging accounted for most Hg in precipitation.

  4. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    Science.gov (United States)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  5. An equation state of h=h(s,p) type for water vapor

    International Nuclear Information System (INIS)

    Miyabe, Kiyoji; Fujii, Tetsu.

    1975-01-01

    Equations of specific enthalpy, temperature and the ratio of temperature to specific heat for water vapor as each respective function of specific entropy and pressure are presented in the region of entropy larger than its critical value

  6. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy.

    Science.gov (United States)

    Duan, Jialong; Hu, Tianyu; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-05-14

    Moisture is the worst enemy for state-of-the-art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all-inorganic cesium lead bromide (CsPbBr 3 ) solar cells tailored with carbon electrodes to simultaneously harvest solar and water-vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 μW with voltage of 0.35 V and current of 0.45 μA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof-of-concept multi-energy integrated solar cells provides new opportunities of maximizing overall power output. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Investigation of the adsorption of water vapor and carbon dioxide by KA zeolite

    International Nuclear Information System (INIS)

    Khanitonov, V.P.; Shtein, A.S.

    1984-01-01

    According to the present data, KA zeolite, which can adsorb only water vapor, helium, and hydrogen, has the greatest selectivity in drying. The feasibility of using this zeolite in devices for selective drying of gases used in gas-analysis systems was studied. The results of the experiments were approximated by the thermal equation of the theory of bulk filling of micropores. The limiting value of the adsorption depends on the temperature, and it can be calculated according to the density of the adsorbed phase and the adsorption volume. The critical diameters of the water and carbon dioxide molecules are close to the dimensions of the KA-zeolite pores, something that determines the activated nature of the adsorption of these substances. Experiments on coadsorption of water vapor and carbon dioxide by a fixed bed of KA-zeolite under dynamic conditions showed that the adsorption of these substances has a frontal nature. The time of the protective action of the layer of zeolite during adsorption af water vapor exceeded by more than an order the time of the protective action during adsorption of carbon dioxide. The results showed that this adsorbent can be used for selective drying of gas mixtures containing carbon dioxide in batch-operation devices. Beforehand, the adsorbent should be regenerated with respect to moisture, and then it should be saturated with carbon dioxide by blowing the adsorbent with a gas mixture of the working composition until the equilibrium state is reached

  8. Modeling and Prediction of Soil Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Soil water vapor sorption isotherms describe the relationship between water activity (aw) and moisture content along adsorption and desorption paths. The isotherms are important for modeling numerous soil processes and are also used to estimate several soil (specific surface area, clay content.......93) for a wide range of soils; and (ii) develop and test regression models for estimating the isotherms from clay content. Preliminary results show reasonable fits of the majority of the investigated empirical and theoretical models to the measured data although some models were not capable to fit both sorption...... directions accurately. Evaluation of the developed prediction equations showed good estimation of the sorption/desorption isotherms for tested soils....

  9. Parameterization of water vapor using high-resolution GPS data and empirical models

    Science.gov (United States)

    Ningombam, Shantikumar S.; Jade, Sridevi; Shrungeshwara, T. S.

    2018-03-01

    The present work evaluates eleven existing empirical models to estimate Precipitable Water Vapor (PWV) over a high-altitude (4500 m amsl), cold-desert environment. These models are tested extensively and used globally to estimate PWV for low altitude sites (below 1000 m amsl). The moist parameters used in the model are: water vapor scale height (Hc), dew point temperature (Td) and water vapor pressure (Es 0). These moist parameters are derived from surface air temperature and relative humidity measured at high temporal resolution from automated weather station. The performance of these models are examined statistically with observed high-resolution GPS (GPSPWV) data over the region (2005-2012). The correlation coefficient (R) between the observed GPSPWV and Model PWV is 0.98 at daily data and varies diurnally from 0.93 to 0.97. Parameterization of moisture parameters were studied in-depth (i.e., 2 h to monthly time scales) using GPSPWV , Td , and Es 0 . The slope of the linear relationships between GPSPWV and Td varies from 0.073°C-1 to 0.106°C-1 (R: 0.83 to 0.97) while GPSPWV and Es 0 varied from 1.688 to 2.209 (R: 0.95 to 0.99) at daily, monthly and diurnal time scales. In addition, the moist parameters for the cold desert, high-altitude environment are examined in-depth at various time scales during 2005-2012.

  10. Hydrocarbon Plume Dynamics in the Worldś Most Spectacular Hydrocarbon Seeps, Santa Barbara Channel, California

    Science.gov (United States)

    Mau, S.; Reed, J.; Clark, J.; Valentine, D.

    2006-12-01

    Large quantities of natural gas are emitted from the seafloor into the coastal ocean near Coal Oil Point, Santa Barbara Channel (SBC), California. Methane, ethane, and propane were quantified in the surface water at 79 stations in a 270 km2 area in order to map the surficial hydrocarbon plume and to quantify air-sea exchange of these gases. A time series was initiated for 14 stations to identify the variability of the mapped plume, and biologically-mediated oxidation rates of methane were measured to quantify the loss of methane in surface water. The hydrocarbon plume was found to comprise ~70 km2 and extended beyond study area. The plume width narrowed from 3 km near the source to 0.7 km further from the source, and then expanded to 6.7 km at the edge of the study area. This pattern matches the cyclonic gyre which is the normal current flow in this part of the Santa Barbara Channel - pushing water to the shore near the seep field and then broadening the plume while the water turns offshore further from the source. Concentrations of gaseous hydrocarbons decrease as the plume migrates. Time series sampling shows similar plume width and hydrocarbon concentrations when normal current conditions prevail. In contrast, smaller plume width and low hydrocarbon concentrations were observed when an additional anticyclonic eddy reversed the normal current flow, and a much broader plume with higher hydrocarbon concentrations was observed during a time of diminished speed within the current gyre. These results demonstrate that surface currents control hydrocarbon plume dynamics in the SBC, though hydrocarbon flux to the atmosphere is likely less dependent on currents. Estimates of air- sea hydrocarbon flux and biological oxidation rates will also be presented.

  11. Bio-Physical Coupling of Seabirds and Prey with a Dynamic River Plume

    Science.gov (United States)

    Phillips, E. M.; Horne, J. K.; Zamon, J. E.; Adams, J.

    2016-02-01

    Freshwater plumes and plume density fronts are important regions of bio-physical coupling. On the west coast of North America, discharge from the Columbia River into the northern California Current creates a large, dynamic plume and multiple plume fronts. These nutrient-rich, productive waters fuel primary and secondary production, supporting a wide variety of small pelagic prey fish, large populations of Pacific salmon, seabirds, and marine mammals. To determine the influence of the Columbia River plume on marine predators, we analyzed at-sea seabird counts, in situ environmental data, surface trawl densities of prey fish, and acoustic backscatter measurements collected from research vessels in May and June 2010-2012. Concurrent distribution patterns of satellite-tagged sooty shearwaters (Puffinus griseus) and common murres (Uria aalge) were compared with seabird counts from ship surveys. To evaluate plume use by satellite-tagged birds, daily surface salinity values from SELFE hindcast models were extracted at each tag location. Both seabird species occurred in plume waters disproportionate to the total surveyed area, concentrating in the river plume when river flow and plume volume decreased. Murres were consistently within 20 km of the geographic mean center of the river plume. In contrast, shearwaters consistently occurred 100 km to the north of the plume center, where high densities of prey fish occur. Although acoustically detected prey also occurred in greater densities within the plume when volume decreased, surface catches of prey in the plume did not vary with changing plume conditions. Geographic indices of colocation (GIC) were low between murres and prey species caught in surface trawls, whereas GICs were >0.5 between shearwaters and prey species including squid (Loligo opalescens), juvenile Chinook salmon (Oncorhynchus tshawytscha), and coho (O. kisutch) salmon. We conclude that the river plume and associated fronts are identifiable, predictable, and

  12. Pursuing atmospheric water vapor retrieval through NDSA measurements between two LEO satellites: evaluation of estimation errors in spectral sensitivity measurements

    Science.gov (United States)

    Facheris, L.; Cuccoli, F.; Argenti, F.

    2008-10-01

    NDSA (Normalized Differential Spectral Absorption) is a novel differential measurement method to estimate the total content of water vapor (IWV, Integrated Water Vapor) along a tropospheric propagation path between two Low Earth Orbit (LEO) satellites. A transmitter onboard the first LEO satellite and a receiver onboard the second one are required. The NDSA approach is based on the simultaneous estimate of the total attenuations at two relatively close frequencies in the Ku/K bands and of a "spectral sensitivity parameter" that can be directly converted into IWV. The spectral sensitivity has the potential to emphasize the water vapor contribution, to cancel out all spectrally flat unwanted contributions and to limit the impairments due to tropospheric scintillation. Based on a previous Monte Carlo simulation approach, through which we analyzed the measurement accuracy of the spectral sensitivity parameter at three different and complementary frequencies, in this work we examine such accuracy for a particularly critical atmospheric status as simulated through the pressure, temperature and water vapor profiles measured by a high resolution radiosonde. We confirm the validity of an approximate expression of the accuracy and discuss the problems that may arise when tropospheric water vapor concentration is lower than expected.

  13. Raman lidar water vapor profiling over Warsaw, Poland

    Science.gov (United States)

    Stachlewska, Iwona S.; Costa-Surós, Montserrat; Althausen, Dietrich

    2017-09-01

    Water vapor mixing ratio and relative humidity profiles were derived from the multi-wavelength Raman PollyXT lidar at the EARLINET site in Warsaw, using the Rayleigh molecular extinction calculation based on atmospheric temperature and pressure from three different sources: i) the standard atmosphere US 62, ii) the Global Data Assimilation System (GDAS) model output, and iii) the WMO 12374 radiosoundings launched at Legionowo. With each method, 136 midnight relative humidity profiles were obtained for lidar observations from July 2013 to August 2015. Comparisons of these profiles showed in favor of the latter method (iii), but it also indicated that the other two data sources could replace it, if necessary. Such use was demonstrated for an automated retrieval of water vapor mixing ratio from dusk until dawn on 19/20 March 2015; a case study related to an advection of biomass burning aerosol from forest fires over Ukraine. Additionally, an algorithm that applies thresholds to the radiosounding relative humidity profiles to estimate macro-physical cloud vertical structure was used for the first time on the Raman lidar relative humidity profiles. The results, based on a subset of 66 profiles, indicate that below 6 km cloud bases/tops can be successfully obtained in 53% and 76% cases from lidar and radiosounding profiles, respectively. Finally, a contribution of the lidar derived mean relative humidity to cloudy conditions within the range of 0.8 to 6.2 km, in comparison to clear-sky conditions, was estimated.

  14. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining

  15. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Science.gov (United States)

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  16. Differential Absorption Lidar (DIAL) Measurements of Atmospheric Water Vapor Utilizing Robotic Aircraft

    Science.gov (United States)

    Hoang, Ngoc; DeYoung, Russell J.; Prasad, Coorg R.; Laufer, Gabriel

    1998-01-01

    A new unpiloted air vehicle (UAV) based water vapor DIAL system will be described. This system is expected to offer lower operating costs, longer test duration and severe weather capabilities. A new high-efficiency, compact, light weight, diode-pumped, tunable Cr:LiSAF laser will be developed to meet the UAV payload weight and size limitations and its constraints in cooling capacity, physical size and payload. Similarly, a new receiver system using a single mirror telescope and an avalanche photo diode (APD) will be developed. Projected UAV parameters are expected to allow operation at altitudes up to 20 km, endurance of 24 hrs and speed of 400 km/hr. At these conditions measurements of water vapor at an uncertainty of 2-10% with a vertical resolution of 200 m and horizontal resolution of 10 km will be possible.

  17. On the use of GPS tomography to investigate water vapor variability during a Mistral/sea breeze event in southeastern France

    Science.gov (United States)

    Bastin, Sophie; Champollion, Cédric; Bock, Olivier; Drobinski, Philippe; Masson, Frédéric

    2005-03-01

    Global Positioning System (GPS) tomography analyses of water vapor, complemented by high-resolution numerical simulations are used to investigate a Mistral/sea breeze event in the region of Marseille, France, during the ESCOMPTE experiment. This is the first time GPS tomography has been used to validate the three-dimensional water vapor concentration from numerical simulation, and to analyze a small-scale meteorological event. The high spatial and temporal resolution of GPS analyses provides a unique insight into the evolution of the vertical and horizontal distribution of water vapor during the Mistral/sea-breeze transition.

  18. Understanding the Compositional Variability of the Major Components of Hydrothermal Plumes in the Okinawa Trough

    Directory of Open Access Journals (Sweden)

    Zhigang Zeng

    2018-01-01

    Full Text Available Studies of the major components of hydrothermal plumes in seafloor hydrothermal fields are critical for an improved understanding of biogeochemical cycles and the large-scale distribution of elements in the submarine environment. The composition of major components in hydrothermal plume water column samples from 25 stations has been investigated in the middle and southern Okinawa Trough. The physical and chemical properties of hydrothermal plume water in the Okinawa Trough have been affected by input of the Kuroshio current, and its influence on hydrothermal plume water from the southern Okinawa Trough to the middle Okinawa Trough is reduced. The anomalous layers of seawater in the hydrothermal plume water columns have higher K+, Ca2+, Mn2+, B3+, Ca2+/SO42-, and Mn2+/Mg2+ ratios and higher optical anomalies than other layers. The Mg2+, SO42-, Mg2+/Ca2+, and SO42-/Mn2+ ratios of the anomalous layers are lower than other layers in the hydrothermal plume water columns and are consistent with concentrations in hydrothermal vent fluids in the Okinawa Trough. This suggests that the chemical variations of hydrothermal plumes in the Tangyin hydrothermal field, like other hydrothermal fields, result in the discharge of high K+, Ca2+, and B3+ and low Mg2+ and SO42- fluid. Furthermore, element ratios (e.g., Sr2+/Ca2+, Ca2+/Cl− in hydrothermal plume water columns were found to be similar to those in average seawater, indicating that Sr2+/Ca2+ and Ca2+/Cl− ratios of hydrothermal plumes might be useful proxies for chemical properties of seawater. The hydrothermal K+, Ca2+, Mn2+, and B3+ flux to seawater in the Okinawa Trough is about 2.62–873, 1.04–326, 1.30–76.4, and 0.293–34.7 × 106 kg per year, respectively. The heat flux is about 0.159–1,973 × 105 W, which means that roughly 0.0006% of ocean heat is supplied by seafloor hydrothermal plumes in the Okinawa Trough.

  19. River Plumes in Sunglint, Sarawak, Borneo

    Science.gov (United States)

    1991-01-01

    The sunglint pattern along the coast of Sarawak (3.0N, 111.5E) delineates the boundry of fresh water river plumes as they flow into the South China Sea. The fresh water lens (boundry between fresh and sea water) overides the saline and more dense sea water and oils, both natural and man made, collect along the convergence zones and dampen wave action. As a result, the smoother sea surface appears bright in the sunglint pattern.

  20. Sorption of water vapor in partially hydrolyzed poly(vinyl acetate)

    International Nuclear Information System (INIS)

    Spencer, H.G.; Honeycutt, S.C.

    1973-01-01

    The sorption kinetics of H 2 O and D 2 O in copolymers of partially hydrolyzed poly(vinyl acetate) were studied and compared with the sorption kinetics of vinyl acetate--vinyl alcohol copolymers, and poly(vinyl alcohol). The special measurement problems presented by transient-state sorption studies in water vapor--polymer systems and their effects on the results are discussed

  1. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de

    2006-01-01

    Measurements of bubble plumes from paddle-amplified, wind stress breaking waves were made in a large wind-wave channel during the LUMINY experiment in fresh (but not clean) water. Bubble plumes exhibited considerable variability with respect to dynamics, bubble size distribution, and physical

  2. Carbon dioxide and water vapor high temperature electrolysis

    Science.gov (United States)

    Isenberg, Arnold O.; Verostko, Charles E.

    1989-01-01

    The design, fabrication, breadboard testing, and the data base obtained for solid oxide electrolysis systems that have applications for planetary manned missions and habitats are reviewed. The breadboard tested contains sixteen tubular cells in a closely packed bundle for the electrolysis of carbon dioxide and water vapor. The discussion covers energy requirements, volume, weight, and operational characteristics related to the measurement of the reactant and product gas compositions, temperature distribution along the electrolyzer tubular cells and through the bundle, and thermal energy losses. The reliability of individual cell performance in the bundle configuration is assessed.

  3. The Role of Overshooting Convection in Elevated Stratospheric Water Vapor over the Summertime Continental United States

    Science.gov (United States)

    Herman, R. L.; Ray, E. A.; Rosenlof, K. H.; Bedka, K. M.; Schwartz, M. J.; Read, W. G.; Troy, R. F.

    2016-12-01

    The NASA ER-2 aircraft sampled the UTLS region over North America during the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission. On four flights targeting convectively-influenced air parcels, in situ measurements of enhanced water vapor in the lower stratosphere over the summertime continental United States were made using the JPL Laser Hygrometer (JLH Mark2). Water vapor mixing ratios greater than 10 ppmv, twice the stratospheric background levels, were measured at pressure levels between 80 and 160 hPa. Through satellite observations and analysis, we make the connection between these in situ water measurements and overshooting cloud tops. The overshooting tops (OT) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Back-trajectory analysis ties enhanced water to OT one to seven days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American Monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. Regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  4. Growth behavior of LiMn{sub 2}O{sub 4} particles formed by solid-state reactions in air and water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11–1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Yanagisawa, Kazumichi [Research Laboratory of Hydrothermal Chemistry, Faculty of Science, Kochi University, 2–5-1 Akebono-cho, Kochi 780-8520 (Japan); Murakami, Takeshi; Naito, Makio [Joining and Welding Research Institute, Osaka University, 11–1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2016-11-15

    Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particles with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.

  5. Raman Lidar Calibration for the DMSP SSM/T-2 Microwave Water Vapor Sensor

    National Research Council Canada - National Science Library

    Wessel, J

    2000-01-01

    Campaigns were conducted at the Pacific Missile Range Facility, Barking Sands, Kauai, investigating Raman lidar as a method to improve calibration of the DMSP SSM/T-2 microwave water vapor profiling instrument...

  6. The reaction kinetics of lithium salt with water vapor

    International Nuclear Information System (INIS)

    Balooch, M.; Dinh, L.N.; Calef, D.F.

    2002-01-01

    The interaction of lithium salt (LiH and/or LiD) with water vapor in the partial pressure range of 10 -5 -2657 Pa has been investigated. The reaction probability of water with LiH cleaved in an ultra high vacuum environment was obtained using the modulated molecular beam technique. This probability was 0.11 and independent of LiH surface temperature, suggesting a negligible activation energy for the reaction in agreement with quantum chemical calculations. The value gradually reduced, however, to 0.007 as the surface concentration of oxygen containing product approached full coverage. As the film grew beyond a monolayer, the phase lag of hydrogen product increased from 0 deg. C to 20 deg. C and the reaction probability reduced further until it approached our detection limit (∼10 -4 ). This phase lag was attributed to a diffusion-limited process in this regime. For micrometer thick hydroxide films grown in high moisture concentration environment on LiD and LiH, the reaction probability reduced to ∼4x10 -7 and was independent of exposure time. In this regime of thick hydroxide films (LiOH and/or LiOD), microcracks generated in the films to release stress provided easier pathways for moisture to reach the interface. A modified microscope, capable of both atomic force microscopy and nanoindentation, was also employed to investigate the surface morphology of hydroxide monohydrate (LiOH · H 2 O and/or LiOD · H 2 O) grown on hydroxide at high water vapor partial pressures and the kinetics of this growth

  7. Kinetic Requirements for the Measurement of Mesospheric Water Vapor at 6.8 (microns) under Non-LTE Conditions

    Science.gov (United States)

    Zhou, Daniel K.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Russell, James M., III

    1999-01-01

    We present accuracy requirements for specific kinetic parameters used to calculate the populations and vibrational temperatures of the H2O(010) and H2O(020) states in the terrestrial mesosphere. The requirements are based on rigorous simulations of the retrieval of mesospheric water vapor profiles from measurements of water vapor infrared emission made by limb scanning instruments on orbiting satellites. Major improvements in the rate constants that describe vibration-to- vibration exchange between the H2O(010) and 02(1) states are required in addition to improved specification of the rate of quenching Of O2(1) by atomic oxygen (0). It is also necessary to more accurately determine the yield of vibrationally excited O2(l) resulting from ozone photolysis. A contemporary measurement of the rate of quenching of H2O(010) by N2 and O2 is also desirable. These rates are either highly uncertain or have never before been measured at atmospheric temperatures. The suggested improvements are necessary for the interpretation of water vapor emission measurements at 6.8 microns to be made from a new spaceflight experiment in less than 2 years. The approach to retrieving water vapor under non-LTE conditions is also presented.

  8. Bubbles generated from wind-steepened breaking waves: 2. Bubble plumes, bubbles, and wave characteristics

    NARCIS (Netherlands)

    Leifer, I.; Caulliez, G.; Leeuw, G.de

    2006-01-01

    Measurements of breaking-wave-generated bubble plumes were made in fresh (but not clean) water in a large wind-wave tunnel. To preserve diversity, a classification scheme was developed on the basis of plume dimensions and "optical density," or the plume's ability to obscure the background. Optically

  9. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); D' Alessio, P.; Calvet, N. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Furlan, E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Green, J. [Department of Astronomy, University of Texas, 1 University Station, Austin, TX 78712 (United States); Pontoppidan, K., E-mail: baspci@rit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  10. Timing of water plume eruptions on Enceladus explained by interior viscosity structure

    Science.gov (United States)

    Běhounková, Marie; Tobie, Gabriel; Čadek, Ondřej; Choblet, Gaël; Porco, Carolyn; Nimmo, Francis

    2015-08-01

    At the south pole of Saturn's icy moon Enceladus, eruptions of water vapour and ice emanate from warm tectonic ridges. Observations in the infrared and visible spectra have shown an orbital modulation of the plume brightness, which suggests that the eruption activity is influenced by tidal forces. However, the observed activity seems to be delayed by several hours with respect to predictions based on simple tidal models. Here we simulate the viscoelastic tidal response of Enceladus with a full three-dimensional numerical model and show that the delay in eruption activity may be a natural consequence of the viscosity structure in the south-polar region and the size of the putative subsurface ocean. By systematically comparing simulations of variations in normal stress along faults with plume brightness data, we show that the observed activity is reproduced for two classes of interior models with contrasting thermal histories: a low-viscosity convective region above a polar sea extending about 45°-60° from the south pole at a depth below the surface as small as 30 km, or a convecting ice shell of 60-70 km in thickness above a global ocean. Our analysis further shows that the eruption activity is controlled by the average normal stress applied across the cracks, thus providing a constraint on the eruption mechanism.

  11. Cone penetrometer tests and HydroPunch sampling: A screening technique for plume definition

    International Nuclear Information System (INIS)

    Smolley, M.; Kappmeyer, J.C.

    1991-01-01

    Cone penetrometer tests and HydroPunch sampling were used to define the extent of volatile organic compounds in ground water. The investigation indicated that the combination of the these techniques is effective for obtaining ground water samples for preliminary plume definition. HydroPunch samples can be collected in unconsolidated sediments and the analytical results obtained from these samples are comparable to those obtained from adjacent monitoring wells. This sampling method is a rapid and cost-effective screening technique for characterizing the extent of contaminant plumes in soft sediment environments. Use of this screening technique allowed monitoring wells to be located at the plume boundary, thereby reducing the number of wells installed and the overall cost of the plume definition program

  12. Water vapor increase in the northern hemispheric lower stratosphere by the Asian monsoon anticyclone observed during TACTS campaign in 2012

    Science.gov (United States)

    Rolf, Christian; Vogel, Bärbel; Hoor, Peter; Günther, Gebhard; Krämer, Martina; Müller, Rolf; Müller, Stephan; Riese, Martin

    2017-04-01

    Water vapor plays a key role in determining the radiative balance in the upper troposphere and lower stratosphere (UTLS) and thus the climate of the Earth (Forster and Shine, 2002; Riese et al., 2012). Therefore a detailed knowledge about transport pathways and exchange processes between troposphere and stratosphere is required to understand the variability of water vapor in this region. The Asian monsoon anticyclone caused by deep convection over and India and east Asia is able to transport air masses from the troposphere into the nothern extra-tropical stratosphere (Müller et al. 2016, Vogel et al. 2016). These air masses contain pollution but also higher amounts of water vapor. An increase in water vapor of about 0.5 ppmv in the extra-tropical stratosphere above a potential temperature of 380 K was detected between August and September 2012 by in-situ instrumentation above the European northern hemisphere during the HALO aircraft mission TACTS. Here, we investigated the origin of this water vapor increase with the help of the 3D Lagrangian chemistry transport model CLaMS (McKenna et al., 2002). We can assign an origin of the moist air masses in the Asian region (North and South India and East China) with the help of model origin tracers. Additionally, back trajectories of these air masses with enriched water vapor are used to differentiate between transport from the Asia monsoon anticyclone and the upwelling of moister air in the tropics particularly from the Pacific and Southeast Asia.

  13. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    Science.gov (United States)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  14. Disappearance of a detached vapor mass in subcooled water

    International Nuclear Information System (INIS)

    Inada, Shigeaki; Miyasaka, Yoshiki; Izumi, Ryotaro.

    1986-01-01

    Experiments on pool transition boiling of water under atmospheric pressure on a heated surface 10 mm in diameter were conducted for subcooling 15 - 50 K. The mass flux of condensation of a detached coalescent vapor bubble was experimentally estimated by a mathematical model based on the mass transfer mechanism of condensation. As a result, it is clarified that the mass flux of condensation of the detached bubble was influenced by the initial growing velocity of a vapor bubble immediately following the detached bubble. The disappearance velocity of the detached bubble defined as a ratio of the bubble diameter at the departure to the time required until the disappearance, is in the range 0.2 to 2.0 m/sec. The disappearance velocity is proportional to the initial growing velocity of the bubble, to the square of the heat flux of the heated surface and to the cube of the wall superheat, separately. (author)

  15. Fluxpart: Open source software for partitioning carbon dioxide and water vapor fluxes

    Science.gov (United States)

    The eddy covariance method is regularly used for measuring gas fluxes over agricultural fields and natural ecosystems. For many applications, it is desirable to partition the measured fluxes into constitutive components: the water vapor flux into transpiration and direct evaporation components, and ...

  16. The water vapor nitrogen process for removing sodium from LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    Crippen, M D; Funk, C W; Lutton, J M [Hanford Engineering Development Laboratory, Richland (United States)

    1978-08-01

    Application and operation of the Water Vapor-Nitrogen Process for removing sodium from LMFBR components is reviewed. Emphasis is placed on recent efforts to verify the technological bases of the process, to refine the values of process parameters and to ensure the utility of the process for cleaning and requalifying components. (author)

  17. Trimodal distribution of ozone and water vapor in the UT/LS during boreal summer

    Science.gov (United States)

    Dunkerton, T. J.

    2004-12-01

    The relation of ozone and water vapor in the upper troposphere and lower stratosphere (UT/LS) is strongly influenced by the off-equatorial Asian and North American monsoons in boreal summer. Both regions experience hydration, presumably as a result of deep convection. This behavior contrasts sharply with the apparent dehydrating influence of near-equatorial deep convection in boreal winter. There is also a striking difference in ozone between Asia and North America in boreal summer. Over Asia, ozone concentrations are low, evidently a result of ubiquitous deep convection and the vertical transport of ozone-poor air, while over North America, ozone concentrations are much higher. Since deep convection also occurs in the North American monsoon, it appears that the difference in ozone concentration between Asia and North America in boreal summer reflects a differing influence of the large-scale circulation in the two regions: specifically, (i) isolation of the Tibetan anticyclone versus (ii) the intrusion of filaments of ozone-rich air from the stratosphere over North America. During boreal summer, as in winter, near-equatorial concentrations of ozone and water vapor are low near the equator. The result of these geographical variations is a trimodal distribution of ozone and water-vapor correlation. Our talk reviews the observational evidence of this trimodal distribution and possible dynamical and microphysical causes, focusing primarily on the quality and possible sampling bias of satellite and aircraft measurements. A key issue is the ability of HALOE to sample areas of ubiquitous deep convection. Other issues include the vertical structure of tracer anomalies, isentropic stirring in the UT/LS, horizontal transport of biomass burning products lofted by deep convection, and connections to the moist phase of the tropical `tape recorder' signal in water vapor.

  18. Modeling of plasma plume induced during laser welding

    International Nuclear Information System (INIS)

    Moscicki, T.; Hoffman, J.; Szymanski, Z.

    2005-01-01

    During laser welding, the interaction of intense laser radiation with a work-piece leads to the formation of a long, thin, cylindrical cavity in a metal, called a keyhole. Generation of a keyhole enables the laser beam to penetrate into the work-piece and is essential for deep welding. The keyhole contains ionized metal vapour and is surrounded by molten material called the weld pool. The metal vapour, which flows from the keyhole mixes with the shielding gas flowing from the opposite direction and forms a plasma plume over the keyhole mouth. The plasma plume has considerable influence on the processing conditions. Plasma strongly absorbs laser radiation and significantly changes energy transfer from the laser beam to a material. In this paper the results of theoretical modelling of plasma plume induced during welding with CO 2 laser are presented. The set of equations consists of equation of conservation of mass, energy, momentum and the diffusion equation: ∂ρ/∂t + ∇·(ρ ρ ν =0; ∂(ρE)/∂t + ∇·( ρ ν (ρE + p)) = ∇ (k eff ∇T - Σ j h j ρ J j + (τ eff · ρ ν )) + Σ i κ i I i - R; ∂/∂t(ρ ρ ν ) + ∇· (ρ ρ ν ρ ν ) = - ∇p + ∇(τ) + ρ ρ g + ρ F, where τ is viscous tensor τ = μ[(∇ ρ ν + ∇ ρT ν )-2/3∇· ρ ν I]; ∂/∂t(ρY i ) + ∇·(ρ ρ ν Y i ) = ∇·ρD i,m ∇T i ; where μ ν denotes velocity vector, E - energy, ρ mass density; k - thermal conductivity, T- temperature, κ - absorption coefficient, I i local laser intensity, R - radiation loss function, p - pressure, h j enthalpy, J j - diffusion flux of j component, ν g - gravity, μ F - external force, μ - dynamic viscosity, I - unit tensor, Y i - mass fraction of iron vapor in the gas mixture, D i,m - mass diffusion coefficient. The terms k eff and τ eff contain the turbulent component of the thermal conductivity and the viscosity, respectively. All the material functions are functions of the temperature and mass fraction only. The equations

  19. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    Science.gov (United States)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  20. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1 m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in

  1. Mobility of plume-derived volcanogenic elements in meteoric water at Nyiragongo volcano (Congo) inferred from the chemical composition of single rainfall events

    Science.gov (United States)

    Liotta, Marcello; Shamavu, Patient; Scaglione, Sarah; D'Alessandro, Walter; Bobrowski, Nicole; Bruno Giuffrida, Giovanni; Tedesco, Dario; Calabrese, Sergio

    2017-11-01

    The chemical composition of single rainfall events was investigated at Nyiragongo volcano (Democratic Republic of Congo) with the aim of determining the relative contributions of plume-derived elements. The different locations of the sampling sites allowed both plume-affected samples (hereafter referred to as ;fumigated samples;) and samples representative of the local background to be collected. The chemical composition of the local background reflects the peculiar geographic features of the area, being influenced by biomass burning, geogenic dust, and biological activity. Conversely, fumigated samples contain large amounts of volcanogenic elements that can be clearly distinguished from the local background. These elements are released into the atmosphere from the persistently boiling lava lake of the Nyiragongo crater and from the neonate lava lake of Nyamulagira. These emissions result in a volcanic plume that includes solid particles, acidic droplets, and gaseous species. The chemical signature of the volcanic emissions appears in falling raindrops as they interact with the plume. HCl and HBr readily dissolve in water, and so their ratio in rain samples reflects that of the volcanic plume. The transport of HF is mediated by the large amount of silicate particles generated at the magma-air interface. SO2 is partially converted into SO42- that dissolves in water. The refractory elements dissolved in rain samples derive from the dissolution of silicate particles, and most of them (Al, Mg, Ca, and Sr) are present at exactly the same molar ratios as in the rocks. In contrast, elements such as Na, K, Rb, Cu, and Pb are enriched relative to the whole-rock composition, suggesting that they are volatilized during magma degassing. After correcting for the dissolution of silicate particles, we can define that the volatility of the elements decreases in the following order: Pb ≫ Rb > K > Na. This finding, which is the first for a volcanic plume, is consistent with

  2. Dilution in Transition Zone between Rising Plumes and Surface Plumes

    DEFF Research Database (Denmark)

    Larsen, Torben

    2004-01-01

    The papers presents some physical experiments with the dilution of sea outfall plumes with emphasize on the transition zone where the relative fast flowing vertical plume turns to a horizontal surface plume following the slow sea surface currents. The experiments show that a considerable dilution...

  3. Stochastic Plume Simulations for the Fukushima Accident and the Deep Water Horizon Oil Spill

    Science.gov (United States)

    Coelho, E.; Peggion, G.; Rowley, C.; Hogan, P.

    2012-04-01

    The Fukushima Dai-ichi power plant suffered damage leading to radioactive contamination of coastal waters. Major issues in characterizing the extent of the affected waters were a poor knowledge of the radiation released to the coastal waters and the rather complex coastal dynamics of the region, not deterministically captured by the available prediction systems. Equivalently, during the Gulf of Mexico Deep Water Horizon oil platform accident in April 2010, significant amounts of oil and gas were released from the ocean floor. For this case, issues in mapping and predicting the extent of the affected waters in real-time were a poor knowledge of the actual amounts of oil reaching the surface and the fact that coastal dynamics over the region were not deterministically captured by the available prediction systems. To assess the ocean regions and times that were most likely affected by these accidents while capturing the above sources of uncertainty, ensembles of the Navy Coastal Ocean Model (NCOM) were configured over the two regions (NE Japan and Northern Gulf of Mexico). For the Fukushima case tracers were released on each ensemble member; their locations at each instant provided reference positions of water volumes where the signature of water released from the plant could be found. For the Deep Water Horizon oil spill case each ensemble member was coupled with a diffusion-advection solution to estimate possible scenarios of oil concentrations using perturbed estimates of the released amounts as the source terms at the surface. Stochastic plumes were then defined using a Risk Assessment Code (RAC) analysis that associates a number from 1 to 5 to each grid point, determined by the likelihood of having tracer particle within short ranges (for the Fukushima case), hence defining the high risk areas and those recommended for monitoring. For the Oil Spill case the RAC codes were determined by the likelihood of reaching oil concentrations as defined in the Bonn Agreement

  4. Evaluation of water vapor distribution in general circulation models using satellite observations

    Science.gov (United States)

    Soden, Brian J.; Bretherton, Francis P.

    1994-01-01

    This paper presents a comparison of the water vapor distribution obtained from two general circulation models, the European Centre for Medium-Range Weather Forecasts (ECMWF) model and the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM), with satellite observations of total precipitable water (TPW) from Special Sensor Microwave/Imager (SSM/I) and upper tropospheric relative humidity (UTH) from GOES. Overall, both models are successful in capturing the primary features of the observed water vapor distribution and its seasonal variation. For the ECMWF model, however, a systematic moist bias in TPW is noted over well-known stratocumulus regions in the eastern subtropical oceans. Comparison with radiosonde profiles suggests that this problem is attributable to difficulties in modeling the shallowness of the boundary layer and large vertical water vapor gradients which characterize these regions. In comparison, the CCM is more successful in capturing the low values of TPW in the stratocumulus regions, although it tends to exhibit a dry bias over the eastern half of the subtropical oceans and a corresponding moist bias in the western half. The CCM also significantly overestimates the daily variability of the moisture fields in convective regions, suggesting a problem in simulating the temporal nature of moisture transport by deep convection. Comparison of the monthly mean UTH distribution indicates generally larger discrepancies than were noted for TPW owing to the greater influence of large-scale dynamical processes in determining the distribution of UTH. In particular, the ECMWF model exhibits a distinct dry bias along the Intertropical Convergence Zone (ITCZ) and a moist bias over the subtropical descending branches of the Hadley cell, suggesting an underprediction in the strength of the Hadley circulation. The CCM, on the other hand, demonstrates greater discrepancies in UTH than are observed for the ECMWF model, but none that are as

  5. Retrieval of water vapor vertical distributions in the upper troposphere and the lower stratosphere from SCIAMACHY limb measurements

    OpenAIRE

    Rozanov, A.; Weigel, K.; Bovensmann, H.; Dhomse, S.; Eichmann, K.-U.; Kivi, R.; Rozanov, V.; Vömel, H.; Weber, M.; Burrows, J. P.

    2011-01-01

    This study describes the retrieval of water vapor vertical distributions in the upper troposphere and lower stratosphere (UTLS) altitude range from space-borne observations of the scattered solar light made in limb viewing geometry. First results using measurements from SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY) aboard ENVISAT (Environmental Satellite) are presented here. In previous publications, the retrieval of water vapor vertical ...

  6. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.

    Science.gov (United States)

    Bauer, Brad A; Patel, Sandeep

    2009-08-28

    We present an extension of the TIP4P-QDP model, TIP4P-QDP-LJ, that is designed to couple changes in repulsive and dispersive nonbond interactions to changes in polarizability. Polarizability is intimately related to the dispersion component of classical force field models of interactions, and we explore the effect of incorporating this connection explicitly on properties along the liquid-vapor coexistence curve of pure water. Parametrized to reproduce condensed-phase liquid water properties at 298 K, the TIP4P-QDP-LJ model predicts density, enthalpy of vaporization, self-diffusion constant, and the dielectric constant at ambient conditions to about the same accuracy as TIP4P-QDP but shows remarkable improvement in reproducing the liquid-vapor coexistence curve. TIP4P-QDP-LJ predicts critical constants of T(c)=623 K, rho(c)=0.351 g/cm(3), and P(c)=250.9 atm, which are in good agreement with experimental values of T(c)=647.1 K, rho(c)=0.322 g/cm(3), and P(c)=218 atm, respectively. Applying a scaling factor correction (obtained by fitting the experimental vapor-liquid equilibrium data to the law of rectilinear diameters using a three-term Wegner expansion) the model predicts critical constants (T(c)=631 K and rho(c)=0.308 g/cm(3)). Dependence of enthalpy of vaporization, self-diffusion constant, surface tension, and dielectric constant on temperature are shown to reproduce experimental trends. We also explore the interfacial potential drop across the liquid-vapor interface for the temperatures studied. The interfacial potential demonstrates little temperature dependence at lower temperatures (300-450 K) and significantly enhanced (exponential) dependence at elevated temperatures. Terms arising from the decomposition of the interfacial potential into dipole and quadrupole contributions are shown to monotonically approach zero as the temperature approaches the critical temperature. Results of this study suggest that self-consistently treating the coupling of phase

  7. Argonne National Laboratory's thermal plume measurements: instruments and techniques

    International Nuclear Information System (INIS)

    Van Loon, L.S.; Frigo, A.A.; Paddock, R.A.

    1977-12-01

    Instrumentation and techniques were developed at Argonne National Laboratory for measuring the three-dimensional temperature structure of thermal plumes from power plants, along with the limnological, meteorological, and plant operating conditions affecting their behavior. The equipment and procedures were designed to provide field data for use in evaluating predictive models that describe thermal plume behavior, and over 100 sets of these data have been collected. The instrument systems and techniques employed in a typical thermal discharge survey are highly integrated. Continuous monitoring of ambient and plant conditions is coupled with plume mapping from a moving survey boat. The instantaneous location of the boat together with subsurface temperature measurements from a towed thermistor chain provide a quasisynoptic view of the plume structure. Real-time, onboard display of the boat path and vertical temperatures supply feedback to investigators for determining the extent and spatial resolution of measurements required. The unique design, reliability, accuracy, calibration, and historical development of the components of these integrated systems are described. Survey system interfaces with data handling and processing techniques are also explained. Special supportive studies to investigate plume dynamics, values of eddy diffusivities, time-temperature histories of water parcels in thermal plumes, and rapid changes in plume shape are also described along with instrumentation used

  8. HERSCHEL /HIFI OBSERVATIONS OF IRC+10216: WATER VAPOR IN THE INNER ENVELOPE OF A CARBON-RICH ASYMPTOTIC GIANT BRANCH STAR

    International Nuclear Information System (INIS)

    Neufeld, David A.; Gonzalez-Alfonso, Eduardo; Melnick, Gary J.; Szczerba, Ryszard; Schmidt, Miroslaw; Decin, Leen; De Koter, Alex; Schoeier, Fredrik; Cernicharo, Jose

    2011-01-01

    We report the results of observations of 10 rotational transitions of water vapor toward the carbon-rich asymptotic giant branch (AGB) star IRC+10216 (CW Leonis), carried out with Herschel's HIFI instrument. Each transition was securely detected by means of observations using the dual beam switch mode of HIFI. The measured line ratios imply that water vapor is present in the inner outflow at small distances (≤few x 10 14 cm) from the star, confirming recent results reported by Decin et al. from observations with Herschel's PACS and SPIRE instruments. This finding definitively rules out the hypothesis that the observed water results from the vaporization of small icy objects in circular orbits. The origin of water within the dense C-rich envelope of IRC+10216 remains poorly understood. We derive upper limits on the H 17 2 O/H 16 2 O and H 18 2 O/H 16 2 O isotopic abundance ratios of ∼5 x 10 -3 (3σ), providing additional constraints on models for the origin of the water vapor in IRC+10216.

  9. Effects of the Phoenix Lander descent thruster plume on the Martian surface

    Science.gov (United States)

    Plemmons, D. H.; Mehta, M.; Clark, B. C.; Kounaves, S. P.; Peach, L. L.; Renno, N. O.; Tamppari, L.; Young, S. M. M.

    2008-08-01

    The exhaust plume of Phoenix's hydrazine monopropellant pulsed descent thrusters will impact the surface of Mars during its descent and landing phase in the northern polar region. Experimental and computational studies have been performed to characterize the chemical compounds in the thruster exhausts. No undecomposed hydrazine is observed above the instrument detection limit of 0.2%. Forty-five percent ammonia is measured in the exhaust at steady state. Water vapor is observed at a level of 0.25%, consistent with fuel purity analysis results. Moreover, the dynamic interactions of the thruster plumes with the ground have been studied. Large pressure overshoots are produced at the ground during the ramp-up and ramp-down phases of the duty cycle of Phoenix's pulsed engines. These pressure overshoots are superimposed on the 10 Hz quasi-steady ground pressure perturbations with amplitude of about 5 kPa (at touchdown altitude) and have a maximum amplitude of about 20-40 kPa. A theoretical explanation for the physics that causes these pressure perturbations is briefly described in this article. The potential for soil erosion and uplifting at the landing site is also discussed. The objectives of the research described in this article are to provide empirical and theoretical data for the Phoenix Science Team to mitigate any potential problem. The data will also be used to ensure proper interpretation of the results from on-board scientific instrumentation when Martian soil samples are analyzed.

  10. Standoff detection of turbulent chemical mixture plumes using a swept external cavity quantum cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C. [Pacific Northwest National Laboratory, Richland, Washington; Brumfield, Brian E. [Pacific Northwest National Laboratory, Richland, Washington

    2017-08-21

    We demonstrate standoff detection of turbulent mixed-chemical plumes using a broadly-tunable external cavity quantum cascade laser (ECQCL). The ECQCL was directed through plumes of mixed methanol/ethanol vapor to a partially-reflective surface located 10 m away. The reflected power was measured as the ECQCL was swept over its tuning range of 930-1065 cm-1 (9.4-10.8 µm) at rates up to 200 Hz. Analysis of the transmission spectra though the plume was performed to determine chemical concentrations with time resolution of 0.005 s. Comparison of multiple spectral sweep rates of 2 Hz, 20 Hz, and 200 Hz shows that higher sweep rates reduce effects of atmospheric and source turbulence, resulting in lower detection noise and more accurate measurement of the rapidly-changing chemical concentrations. Detection sensitivities of 0.13 ppm*m for MeOH and 1.2 ppm*m for EtOH are demonstrated for a 200 Hz spectral sweep rate, normalized to 1 s detection time.

  11. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  12. Cold Water Vapor in the Barnard 5 Molecular Cloud

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Persson, C. M.; Buckle, J. V.; Cordiner, M. A.; Takakuwa, S.

    2014-01-01

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  13. COLD WATER VAPOR IN THE BARNARD 5 MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Wirström, E. S.; Persson, C. M. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Charnley, S. B.; Cordiner, M. A. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); Buckle, J. V. [Astrophysics Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Takakuwa, S., E-mail: eva.wirstrom@chalmers.se [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China)

    2014-06-20

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold (∼10 K) water vapor has been detected—L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work—likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H{sub 2}O (J = 1{sub 10}-1{sub 01}) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  14. Satellite- and ground-based observations of atmospheric water vapor absorption in the 940 nm region

    International Nuclear Information System (INIS)

    Albert, P.; Smith, K.M.; Bennartz, R.; Newnham, D.A.; Fischer, J.

    2004-01-01

    Ground-based measurements of direct absorption of solar radiation between 9000 and 13,000 cm -1 (770-1100 nm) with a spectral resolution of 0.05 cm -1 are compared with line-by-line simulations of atmospheric absorption based on different molecular databases (HITRAN 2000, HITRAN 99, HITRAN 96 and ESA-WVR). Differences between measurements and simulations can be reduced to a great amount by scaling the individual line intensities with spectral and database dependent scaling factors. Scaling factors are calculated for the selected databases using a Marquardt non-linear least-squares fit together with a forward model for 100 cm -1 wide intervals between 10,150 and 11,250 cm -1 as well as for the water vapor absorption channels of the Medium Resolution Imaging Spectrometer (MERIS) onboard the European Space Agency's (ESA) ENVISAT platform and the Modular Optoelectronic Scanner (MOS) on the Indian IRSP-3 platform, developed by the German Aerospace Centre (DLR). For the latter, the scaling coefficients are converted into correction factors for retrieved total columnar water vapor content and used for a comparison of MOS-based retrievals of total columnar atmospheric water vapor above cloud-free land surfaces with radio soundings. The scaling factors determined for 100 cm -1 wide intervals range from 0.85 for the ESA-WVR molecular database to 1.15 for HITRAN 96. The best agreement between measurements and simulations is achieved with HITRAN 99 and HITRAN 2000, respectively, using scaling factors between 0.9 and 1. The effects on the satellite-based retrievals of columnar atmospheric water vapor range from 2% (HITRAN 2000) to 12% (ESA-WVR)

  15. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation

    DEFF Research Database (Denmark)

    Law, B.E.; Falge, E.; Gu, L.

    2002-01-01

    The objective of this research was to compare seasonal and annual estimates of CO2 and water vapor exchange across sites in forests, grasslands, crops, and tundra that are part of an international network called FLUXNET, and to investigating the responses of vegetation to environmental variables....

  16. In-Situ and Remote-Sensing Data Fusion Using Machine Learning Techniques to Infer Urban and Fire Related Pollution Plumes

    Science.gov (United States)

    Russell, P. B.; Segal-Rozenhaimer, M.; Schmid, B.; Redemann, J.; Livingston, J. M.; Flynn, C.J.; Johnson, R. R.; Dunagan, S. E.; Shinozuka, Y.; Kacenelenbogen, M.; hide

    2014-01-01

    Airmass type characterization is key in understanding the relative contribution of various emission sources to atmospheric composition and air quality and can be useful in bottom-up model validation and emission inventories. However, classification of pollution plumes from space is often not trivial. Sub-orbital campaigns, such as SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) give us a unique opportunity to study atmospheric composition in detail, by using a vast suite of in-situ instruments for the detection of trace gases and aerosols. These measurements allow identification of spatial and temporal atmospheric composition changes due to various pollution plumes resulting from urban, biogenic and smoke emissions. Nevertheless, to transfer the knowledge gathered from such campaigns into a global spatial and temporal context, there is a need to develop workflow that can be applicable to measurements from space. In this work we rely on sub-orbital in-situ and total column remote sensing measurements of various pollution plumes taken aboard the NASA DC-8 during 2013 SEAC4RS campaign, linking them through a neural-network (NN) algorithm to allow inference of pollution plume types by input of columnar aerosol and trace-gas measurements. In particular, we use the 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) airborne measurements of wavelength dependent aerosol optical depth (AOD), particle size proxies, O3, NO2 and water vapor to classify different pollution plumes. Our method relies on assigning a-priori ground-truth labeling to the various plumes, which include urban pollution, different fire types (i.e. forest and agriculture) and fire stage (i.e. fresh and aged) using cluster analysis of aerosol and trace-gases in-situ and auxiliary (e.g. trajectory) data and the training of a NN scheme to fit the best prediction parameters using 4STAR measurements as input. We explore our

  17. The effect of global-scale divergent circulation on the atmospheric water vapor transport and maintenance

    Science.gov (United States)

    Chen, Tsing-Chang

    1988-01-01

    The detection, distribution, and dynamics of atmospheric water on Earth was examined. How the high levels of water vapor and precipitation that occur over the tropics during the monsoon season result from the development of a strong divergent atmospheric circulation is discussed.

  18. Hybrid cooling tower Neckarwestheim 2 cooling function, emission, plume dispersion

    International Nuclear Information System (INIS)

    Braeuning, G.; Ernst, G.; Maeule, R.; Necker, P.

    1990-01-01

    The fan-assisted hybrid cooling tower of the 1300 MW power plant Gemeinschafts-Kernkraftwerk Neckarwestheim 2 was designed and constructed based on results from theoretical and experimental studies and experiences from a smaller prototype. The wet part acts in counterflow. The dry part is arranged above the wet part. Each part contains 44 fans. Special attention was payed to the ducts which mix the dry into the wet plume. The cooling function and state, mass flow and contents of the emission were measured. The dispersion of the plume in the atmosphere was observed. The central results are presented in this paper. The cooling function corresponds to the predictions. The content of drifted cooling water in the plume is extremely low. The high velocity of the plume in the exit causes an undisturbed flow into the atmosphere. The hybrid operation reduces visible plumes strongly, especially in warmer and drier ambient air

  19. Wet plume atop of the flattening slab: Insight into intraplate volcanism in East Asia

    Science.gov (United States)

    He, Lijuan

    2017-08-01

    Geophysical observations imply the intraplate volcanism in East Asia is related to dehydration of slab stagnating in the transition zone. To better understand the dynamics of such process, a thermochemical mantle convection model is constructed to simulate numerically the thermal evolution of slab and the transportation of water in the process of slab downgoing, flattening and stagnation. Equation of water transfer is included, and water effects on density and viscosity are considered. Model results indicate the warming of slab by surrounding mantle is rather slow. Water could be successfully dragged into the transition zone if the reference viscosity of the hydrous layer (with initial water of 2 wt%) is higher than 1017 Pa s and that of mantle is 1021 Pa s. Wet plumes could then originate in the flat-lying part of the slab, relatively far from the trench. Generally, the viscosity of the hydrous layer governs the initiation of wet plume, whereas the viscosity of the overlying mantle wedge controls the activity of the ascending wet plumes - they are more active in the weaker wedge. The complex fluid flow superposed by corner flow and free thermal convection influences greatly the water transport pattern in the upper mantle. Modeling results together with previous modeling infer three stages of water circulation in the big mantle wedge: 1) water is brought into the mantle transition zone by downward subducting slab under some specific thermo-rheological conditions, otherwise water is released at shallow depth near wedge tip; 2) wet plume generates from surface of the flattening slab warmed by surrounding mantle, and 3) water spreads over the big mantle wedge. Wet plume from the flattening Pacific Plate arrives at the lithospheric base and induces melting, which can explain the intraplate Cenozoic volcanoes in East Asia.

  20. Model Intercomparison Study to Investigate a Dense Contaminant Plume in a Complex Hydrogeologic System

    International Nuclear Information System (INIS)

    Williams, Mark D.; Cole, Charles R.; Foley, Michael G.; Zinina, Galina A.; Zinin, Alexander I.; Vasil'Kova, Nelly A.; Samsonova, Lilia M.

    2001-01-01

    A joint Russian and U.S. model intercomparison study was undertaken for developing more realistic contaminant transport models of the Mayak Site, Southern Urals. The test problems were developed by the Russian Team based on their experience modeling contaminant migration near Lake Karachai. The intercomparison problems were designed to address lake and contaminant plume interactions, as well as river interactions and plume density effects. Different numerical codes were used. Overall there is good agreement between the results of both models. Features shown by both models include (1) the sinking of the plume below the lake, (2) the raising of the water table in the fresh water adjacent to the lake in response to the increased pressure from the dense plume, and (3) the formation of a second sinking plume in an area where evapotranspiration exceeded infiltration, thus increasing the solute concentrations above the source (i.e., lake) values

  1. Structural and thermodynamic characterization of modified cellulose fiber-based materials and related interactions with water vapor

    Energy Technology Data Exchange (ETDEWEB)

    Bedane, Alemayehu H., E-mail: Alemayehu.Bedane@unb.ca; Xiao, Huining, E-mail: hxiao@unb.ca; Eić, Mladen, E-mail: meic@unb.ca; Farmahini-Farahani, Madjid, E-mail: Madjid.Farahani@unb.ca

    2015-10-01

    Highlights: • Coating on paper increases the specific surface area but decreases the pore diameter. • Pore size reduction and decrease of hydrophilic property caused reduction in WVTRs. • The low monolayer moisture content of the sample is generally related to the low WVTR. • The net isosteric heats of adsorption decreased with increased sample moisture content. • FT-IR results reveal the formation of water clusters at higher relative humidities. - Abstract: In this study, the surface characteristics, water vapor interactions, and state of water adsorbed on unmodified and coated paper samples were investigated in an attempt to obtain a better understanding of the fundamental principles related to thermodynamics of this process, as well as to provide essential insight that could be used for further improvement of the papers’ barrier properties. Based on the BET measurement, the coated paper samples showed higher specific surface areas than unmodified paper; however, their mean pore diameters are smaller. The BJH method was used for pore size distribution analysis. Hydrophobic properties of the paper samples were determined from experimental isotherms, e.g., monolayer moisture content, and these results have been related to the water vapor transfer rates (WVTRs) showing a complex nature of these relations. The highest peak corresponding to the modified samples with smaller pore sizes was found to be in the range of 1–30 nm, while it was in the 30–100 nm pore size range for unmodified paper. The net isosteric heats of sorption for different unmodified and modified paper samples were determined from water vapor adsorption isotherms measured at 15, 25, and 35 °C. The net isosteric heats of sorption decreased with an increase of moisture content after reaching the maximum values at 12.53, 15.25, 14.71, 23.2, and 22.77 kJ/mol for unmodified, zein grafted, calendered coated, PLA, and PHBV coated papers, respectively. The state of adsorbed water and water-vapor

  2. Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice.

    Science.gov (United States)

    Murdachaew, Garold; Mundy, Christopher J; Schenter, Gregory K; Laino, Teodoro; Hutter, Jürg

    2011-06-16

    We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements. © 2011 American Chemical Society

  3. Atmospheric ice nuclei: No detectable effects from a coal-fired powerplant plume

    International Nuclear Information System (INIS)

    Schnell, R.C.; Van Valin, C.C.; Pueschel, R.F.

    1976-01-01

    Atmospheric ice nuclei were measured upwind and within the effluent plume of a coalfired powerplant during February 1976. Aerosol particles were captured on two types of membrane filters (Nuclepore and Millipore) and processed in two different thermal diffusion chambers, one calibrated to produce a 100% saturation relative to water and the other to produce a slight supersaturation relative to water. Consequently, the ice nuclei measured were active in the modes that are dominant in diffusion chambers, viz., deposition nucleation and condensation-followed-by-freezing nucleation. Results indicate that plume particles do not act as ice nuclei between the temperatures of -10 and -20degreeC, nor do combustion gases in the plume deactivate natural ice nuclei

  4. Isotopic equilibrium between precipitation and water vapor: evidence from continental rains in central Kenya

    Science.gov (United States)

    Soderberg, K.; Gerlein, C.; Kemeny, P. C.; Caylor, K. K.

    2013-12-01

    An accurate understanding of the relationships between the isotopic composition of liquid water and that of water vapor in the environment can help describe hydrologic processes across many scales. One such relationship is the isotopic equilibrium between falling raindrops and the surrounding vapor. The degree of equilibration is used to model the isotopic composition of precipitation in isotope-enable general circulation models and land-atmosphere exchange models. Although this equilibrium has been a topic of isotope hydrology research for more than four decades, few studies have included vapor measurements to validate modeling efforts. Recent advances in laser technology have allowed for in situ vapor measurements at high temporal resolution (e.g., >1 Hz). Here we present concomitant rain and vapor measurements for a series of 17 rain events during the 'Continental' rainy season (June through August) at Mpala Research Center in central Kenya. Rain samples (n=218) were collected at intervals of 2 to 35 minutes (median of 3 minutes) depending on the rain rate (0.4 to 10.5 mm/hr). The volume-weighted mean rain values for δ18O, δ2H and D-excess (δ2H - 8* δ18O) were 0.1 ‰, 10.7 ‰, and 10.1 ‰. These values are more enriched than the annual weighted means reported for the area (-2.2 ‰, -7.6 ‰, and 11.0 ‰, respectively). Vapor was measured continuously at ~2Hz (DLT-100, Los Gatos Research), with an inverted funnel intake 4m above the ground surface. The mean vapor isotopic composition during the rain events was -10.0 +/- 1.2 ‰ (1 σ) for δ18O and -73.9 +/- 7.0 ‰ for δ2H. The difference between the rain sample isotopic composition and that of liquid in isotopic equilibrium with the corresponding vapor at the ambient temperature was 0.8 +/- 2.2 ‰ for δ18O and 6.2 +/- 7.0 ‰ for δ2H. This disequilibrium was found to correlate with the natural log of rain rate (R2 of 0.26 for δ18O and 0.46 for δ2H), with lower rain rates having larger

  5. The influence of water vapor and sulfur dioxide on the catalytic decomposition of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Yalamas, C.; Heinisch, R.; Barz, M. [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik; Cournil, M. [Ecole Nationale Superieure des Mines, 42 - Saint-Etienne (France)

    2001-03-01

    For the nitrous oxide decomposition three groups of catalysts such as metals on support, hydrotalcites, and perovskites were studied relating to their activity in the presence of vapor or sulfur dioxide, in the temperature range from 200 to 500 C. It was found that the water vapor strongly inhibates the nitrous oxide decomposition at T=200-400 C. The sulfur dioxide poisons the catalysts, in particular the perovskites. (orig.)

  6. Effects of biochar and manure amendments on water vapor sorption in a sandy loam soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per

    2015-01-01

    Over the last few years, the application of biochar (BC) as a soil amendment to sequester carbon and mitigate global climate change has received considerable attention. While positive effects of biochar on plant nutrition are well documented, little is known about potential impacts on the physical....... Hysteresis of the water vapor sorption isotherms increased with increasing BC application rates. Biochar age did not significantly affect vapor sorption and SSA....

  7. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  8. Analysis of combined heat and mass transfer of water- Vapor in a ...

    African Journals Online (AJOL)

    In this paper, the combined heat and mass transfer of water-vapor into a cylindrical zeolite adsorber has been numerically simulated The twodimensional heat and mass transfer equations are numerically solved using gPROMS program - a general Process Modeling System {lJ program, inserting the proper initial and ...

  9. Analysis of combined heat and mass transfer of water-vapor in a ...

    African Journals Online (AJOL)

    Jn this paper, the combined heat and mass transfer of water-vapor into a cylindrical zeolite adsorber has been numerically simulated The twodimensional heat and mass transfer equations are numerically solved using gPROMS program - a general Process Modeling System [J] program, inserting the proper initial and ...

  10. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    Science.gov (United States)

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  11. Loire and Gironde turbid plumes: Characterization and influence on thermohaline properties

    Science.gov (United States)

    Costoya, X.; Fernández-Nóvoa, D.; deCastro, M.; Gómez-Gesteira, M.

    2017-12-01

    Knowledge and predictability of turbid river plumes is of great importance because they modulate the properties of the seawater adjacent to river mouths. The Loire and Gironde Rivers form the most important plumes in the Bay of Biscay, as they provide > 75% of total runoff. The development of the turbid plume under the influence of its main drivers was analyzed using Moderate Resolution Imaging Spectroradiometer satellite data from the period 2003-2015. River discharge was found to be the main driver, followed by wind, which also had an important effect in modulating the turbid plume during periods of high river discharge. Seaward and upwelling favorable winds enhanced the dispersion of plumes on seawater, whereas landward and downwelling favorable winds limited mixing with the adjacent ocean water. The maximum extension of the turbid plume was reached under landward winds. In addition, the spatio-temporal evolution of the East Atlantic pattern and the North Atlantic Oscillation was observed to affect the dynamics of plumes: positive values of both indices favored a greater extension of the plume. Thermohaline properties differed inside and outside the area affected by both rivers. In particular, these rivers maintain winter stratification inside the turbid plume, which results in a different warming ratio when compared with the adjacent ocean.

  12. X-ray studies of the liquid/vapor interface: Water and polymer and fatty acid monolayers on water

    International Nuclear Information System (INIS)

    Schlossman, M.L.; Schwartz, D.K.; Kawamoto, E.H.; Kellogg, G.J.; Pershan, P.S.; Ocko, B.M.; Kim, M.W.; Chung, T.C.

    1989-01-01

    X-ray specular reflectivity is used to study the liquid-vapor interface of pure water and of fatty acid and polymer monolayers at that interface. For the pure water surface the reflectivity was measured for three different spectrometer resolutions and simultaneous fits with only one free parameter to all of the data are in excellent agreement with the prediction of capillary wave theory for the RMS surface roughness. Diffuse scattering away from the specular condition, at wavevectors corresponding to those of the capillary waves, yields intensities and line shapes in agreement with theory with no significant adjustable parameters. Reflectivity from separate monolayers of co-poly 1, 2-butadiene/butyl alcohol (50% random substitution) and lignoceric acid (CH 3 (CH 2 ) 22 COOH) at the water/vapor interface are interpreted to obtain profiles of the average electron density ρ(z) as a function of distance z along the surface normal. For the polymer monolayer we find the following: (1) a local maximum in the electron density approximately 10% larger than that of the bulk polymer and (2) the RMS roughness of the vapor/polymer interface agrees with capillary wave theory predictions for the lower surface pressures. For the highest surface pressure the RMS roughness exceeds the value predicted by the capillary wave model. Measurements of reflectivity from a lignoceric acid monolayer, as a function of surface pressure throughout an isotherm (near room temperature), reveal the following behavior: (1) the overall thickness of the monolayer increases with increasing pressure and (2) the head groups occupy a progressively larger region along the surface normal as the pressure increases, indicating that they rearrange normal to the interface. 15 refs., 5 figs., 2 tabs

  13. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  14. Acoustical Survey of Methane Plumes on North Hydrate Ridge: Constraining Temporal and Spatial Characteristics.

    Science.gov (United States)

    Kannberg, P. K.; Trehu, A. M.

    2008-12-01

    While methane plumes associated with hydrate formations have been acoustically imaged before, little is known about their temporal characteristics. Previous acoustic surveys have focused on determining plume location, but as far as we know, multiple, repeated surveys of the same plume have not been done prior to the survey presented here. In July 2008, we acquired sixteen identical surveys within 19 hours over the northern summit of Hydrate Ridge in the Cascadia accretionary complex using the onboard 3.5 and 12 kHz echosounders. As in previous studies, the plumes were invisible to the 3.5 kHz echosounder and clearly imaged with 12 kHz. Seafloor depth in this region is ~600 m. Three distinct plumes were detected close to where plumes were located by Heeschen et al. (2003) a decade ago. Two of the plumes disappeared at ~520 m water depth, which is the depth of the top of the gas hydrate stability as determined from CTD casts obtained during the cruise. This supports the conclusion of Heeschen et al. (2003) that the bubbles are armored by gas hydrate and that they dissolve in the water column when they leave the hydrate stability zone. One of the plumes near the northern summit, however, extended through this boundary to at least 400 m (the shallowest depth recorded). A similar phenomenon was observed in methane plumes in the Gulf of Mexico, where the methane was found to be armored by an oil skin. In addition to the steady plumes, two discrete "burps" were observed. One "burp" occurred approximately 600 m to the SSW of the northern summit. This was followed by a second strong event 300m to the north an hour later. To evaluate temporal and spatial patterns, we summed the power of the backscattered signal in different depth windows for each survey. We present the results as a movie in which the backscatter power is shown in map view as a function of time. The surveys encompassed two complete tidal cycles, but no correlation between plume location or intensity and tides

  15. Dissolution kinetics of volatile organic compound vapors in water : An integrated experimental and computational study

    NARCIS (Netherlands)

    G. Mahmoodlu, Mojtaba; Pontedeiro, Elizabeth M.; Pérez Guerrero, Jesús S.; Raoof, Amir; Hassanizadeh, S. Majid; van Genuchten, Martinus Th

    In this study we performed batch experiments to investigate the dissolution kinetics of trichloroethylene (TCE) and toluene vapors in water at room temperature and atmospheric pressure. The batch systems consisted of a water reservoir and a connected headspace, the latter containing a small glass

  16. Atmospheric water vapor transport: Estimation of continental precipitation recycling and parameterization of a simple climate model. M.S. Thesis

    Science.gov (United States)

    Brubaker, Kaye L.; Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    The advective transport of atmospheric water vapor and its role in global hydrology and the water balance of continental regions are discussed and explored. The data set consists of ten years of global wind and humidity observations interpolated onto a regular grid by objective analysis. Atmospheric water vapor fluxes across the boundaries of selected continental regions are displayed graphically. The water vapor flux data are used to investigate the sources of continental precipitation. The total amount of water that precipitates on large continental regions is supplied by two mechanisms: (1) advection from surrounding areas external to the region; and (2) evaporation and transpiration from the land surface recycling of precipitation over the continental area. The degree to which regional precipitation is supplied by recycled moisture is a potentially significant climate feedback mechanism and land surface-atmosphere interaction, which may contribute to the persistence and intensification of droughts. A simplified model of the atmospheric moisture over continents and simultaneous estimates of regional precipitation are employed to estimate, for several large continental regions, the fraction of precipitation that is locally derived. In a separate, but related, study estimates of ocean to land water vapor transport are used to parameterize an existing simple climate model, containing both land and ocean surfaces, that is intended to mimic the dynamics of continental climates.

  17. Equilibrium water vapor pressures over polyvanadates M2V12O30.7·nH2O

    International Nuclear Information System (INIS)

    Volkov, V.L.; Zakharova, G.S.; Ivakin, A.A.

    1986-01-01

    Equilibrium pressures of water vapors over polyvanadates M 2 V 12 O 30.7 xnH 2 O where M=Li, Na, K are determined in the 293-343 K temperature range. Changes in Gibbs free energy and enthalpy of compound dehydration depending on water content in the final product are calculated on the basis of these data. Molar enthalpy of water is shown to reduce from lithium to potassium, while equilibrium pressure of water vapors over the compounds grows from lithium to potassium. Good correlation of thermodynamic properties of crystallization water of polyvanadates with energy characteristics of hydrated M + ions of the solutions confirms the conclusion that they cannot be attributed to ordinary crystallohydrates

  18. What is the role of laminar cirrus cloud on regulating the cross-tropopause water vapor transport?

    Science.gov (United States)

    Wu, D. L.; Gong, J.; Tsai, V.

    2016-12-01

    Laminar cirrus is an extremely thin ice cloud found persistently inhabit in the tropical and subtropical tropopause. Due to its sub-visible optical depth and high formation altitude, knowledge about the characteristics of this special type of cloud is very limited, and debates are ongoing about its role on regulating the cross-tropopause transport of water vapor. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite has been continuously providing us with unprecedented details of the laminar cirrus since its launch in 2006. In this research, we adapted Winker and Trepte (1998)'s eyeball detection method. A JAVA-based applet and graphical user interface (GUI) is developed to manually select the laminar, which then automatically record the cloud properties, such as spatial location, shape, thickness, tilt angle, and whether its isolated or directly above a deep convective cloud. Monthly statistics of the laminar cirrus are then separately analyzed according to the orbit node, isolated/convective, banded/non-banded, etc. Monthly statistics support a diurnal difference in the occurring frequency and formation height of the laminar cirrus. Also, isolated and convective laminars show diverse behaviors (height, location, distribution, etc.), which strongly implies that their formation mechanisms and their roles on depleting the upper troposphere water vapor are distinct. We further study the relationship between laminar characteristics and collocated and coincident water vapor gradient measurements from Aura Microwave Limb Sounder (MLS) observations below and above the laminars. The identified relationship provides a quantitative answer to the role laminar cirrus plays on regulating the water vapor entering the stratosphere.

  19. Multi-scale organization of water vapor over low and mid-tropical Africa

    CSIR Research Space (South Africa)

    Botai, OJ

    2009-01-01

    Full Text Available stream_source_info Botai_2009.pdf.txt stream_content_type text/plain stream_size 23192 Content-Encoding UTF-8 stream_name Botai_2009.pdf.txt Content-Type text/plain; charset=UTF-8 1 MULTI-SCALE ORGANIZATION OF WATER.... Integrated water vapor field and multiscale variations over China from GPS measurements. J. appl., Meteo., Climatol., 47, pp. 3008-3015 8. Johnsen K. P., 2003. GPS atmosphere sounding project- An innovative approach for the recovery of atmospheric...

  20. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  1. Direct gas-solid carbonation of serpentinite residues in the absence and presence of water vapor: a feasibility study for carbon dioxide sequestration.

    Science.gov (United States)

    Veetil, Sanoopkumar Puthiya; Pasquier, Louis-César; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra; Mercier, Guy

    2015-09-01

    Mineral carbonation of serpentinite mining residue offers an environmentally secure and permanent storage of carbon dioxide. The strategy of using readily available mining residue for the direct treatment of flue gas could improve the energy demand and economics of CO2 sequestration by avoiding the mineral extraction and separate CO2 capture steps. The present is a laboratory scale study to assess the possibility of CO2 fixation in serpentinite mining residues via direct gas-solid reaction. The degree of carbonation is measured both in the absence and presence of water vapor in a batch reactor. The gas used is a simulated gas mixture reproducing an average cement flue gas CO2 composition of 18 vol.% CO2. The reaction parameters considered are temperature, total gas pressure, time, and concentration of water vapor. In the absence of water vapor, the gas-solid carbonation of serpentinite mining residues is negligible, but the residues removed CO2 from the feed gas possibly due to reversible adsorption. The presence of small amount of water vapor enhances the gas-solid carbonation, but the measured rates are too low for practical application. The maximum CO2 fixation obtained is 0.07 g CO2 when reacting 1 g of residue at 200 °C and 25 barg (pCO2 ≈ 4.7) in a gas mixture containing 18 vol.% CO2 and 10 vol.% water vapor in 1 h. The fixation is likely surface limited and restricted due to poor gas-solid interaction. It was identified that both the relative humidity and carbon dioxide-water vapor ratio have a role in CO2 fixation regardless of the percentage of water vapor.

  2. Determination of the solid-liquid-vapor triple point pressure of carbon

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1976-01-01

    A detailed experimental study of the triple point pressure of carbon using laser heating techniques has been completed. Uncertainties and conflict in previous investigations have been addressed and substantial data presented which places the solid-liquid-vapor carbon triple point at 107 +- 2 atmospheres. This is in agreement with most investigations which have located the triple point pressure between 100 and 120 atmospheres, but is in disagreement with recent low pressure carbon experiments. The absence of any significant polymorphs of carbon other than graphite suggests that the graphite-liquid-vapor triple point has been measured. Graphite samples were melted in a pressure vessel using a 400 W Nd:YAG continuous-wave laser focused to a maximum power density of approximately 80 kW/cm 2 . Melt was confirmed by detailed microstructure analysis and x-ray diffraction of the recrystallized graphite. Experiments to determine the minimum melt pressure of carbon were completed as a function of sample size, type of inert gas, and laser power density to asure that laser power densities were sufficient to produce melt at the triple point pressure of carbon, and the pressure of carbon at the surface of the sample was identical to the measured pressure of the inert gas in the pressure vessel. High-speed color cinematography of the carbon heating revealed the presence of a laser-generated vapor or particle plume in front of the sample. The existence of this bright plume pevented the measurement of the carbon triple point temperature

  3. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  4. The functional dependence of canopy conductance on water vapor pressure deficit revisited

    NARCIS (Netherlands)

    Fuchs, Marcel; Stanghellini, Cecilia

    2018-01-01

    Current research seeking to relate between ambient water vapor deficit (D) and foliage conductance (gF) derives a canopy conductance (gW) from measured transpiration by inverting the coupled transpiration model to yield gW = m − n ln(D) where m and n are fitting parameters. In contrast, this paper

  5. Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection

    Science.gov (United States)

    Herman, Robert L.; Ray, Eric A.; Rosenlof, Karen H.; Bedka, Kristopher M.; Schwartz, Michael J.; Read, William G.; Troy, Robert F.; Chin, Keith; Christensen, Lance E.; Fu, Dejian; Stachnik, Robert A.; Bui, T. Paul; Dean-Day, Jonathan M.

    2017-05-01

    The NASA ER-2 aircraft sampled the lower stratosphere over North America during the field mission for the NASA Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS). This study reports observations of convectively influenced air parcels with enhanced water vapor in the overworld stratosphere over the summertime continental United States and investigates three case studies in detail. Water vapor mixing ratios greater than 10 ppmv, which is much higher than the background 4 to 6 ppmv of the overworld stratosphere, were measured by the JPL Laser Hygrometer (JLH Mark2) at altitudes between 16.0 and 17.5 km (potential temperatures of approximately 380 to 410 K). Overshooting cloud tops (OTs) are identified from a SEAC4RS OT detection product based on satellite infrared window channel brightness temperature gradients. Through trajectory analysis, we make the connection between these in situ water measurements and OT. Back trajectory analysis ties enhanced water to OT 1 to 7 days prior to the intercept by the aircraft. The trajectory paths are dominated by the North American monsoon (NAM) anticyclonic circulation. This connection suggests that ice is convectively transported to the overworld stratosphere in OT events and subsequently sublimated; such events may irreversibly enhance stratospheric water vapor in the summer over Mexico and the United States. A regional context is provided by water observations from the Aura Microwave Limb Sounder (MLS).

  6. Chemical and morphological modifications of single layer graphene submitted to annealing in water vapor

    Science.gov (United States)

    Rolim, Guilherme Koszeniewski; Corrêa, Silma Alberton; Galves, Lauren Aranha; Lopes, João Marcelo J.; Soares, Gabriel Vieira; Radtke, Cláudio

    2018-01-01

    Modifications of single layer graphene transferred to SiO2/Si substrates resulting from annealing in water vapor were investigated. Near edge X-ray absorption fine structure spectroscopy evidenced graphene puckering between 400 and 500 °C. Synchrotron radiation based X-ray photoelectron spectroscopy showed variation of sp2 and sp3C bonding configurations specially in this same temperature range. Moreover, oxygen related functionalities are formed as a result of water vapor annealing. Based on these results and complementary Raman and nuclear reaction analysis, one distinguishes three different regimes of water interaction with graphene concerning modifications of the graphene layer. In the low temperature range (200-400 °C), no prominent modification of graphene itself is observed. At higher temperatures (400-500 °C), to accommodate newly formed oxygen functionalities, the flat and continuous sp2 bonding network of graphene is disrupted, giving rise to a puckered layer. For 600 °C and above, shrinking of graphene domains and a higher doping level take place.

  7. Multispectral atmospheric mapping sensor of mesoscale water vapor features

    Science.gov (United States)

    Menzel, P.; Jedlovec, G.; Wilson, G.; Atkinson, R.; Smith, W.

    1985-01-01

    The Multispectral atmospheric mapping sensor was checked out for specified spectral response and detector noise performance in the eight visible and three infrared (6.7, 11.2, 12.7 micron) spectral bands. A calibration algorithm was implemented for the infrared detectors. Engineering checkout flights on board the ER-2 produced imagery at 50 m resolution in which water vapor features in the 6.7 micron spectral band are most striking. These images were analyzed on the Man computer Interactive Data Access System (McIDAS). Ground truth and ancillary data was accessed to verify the calibration.

  8. ISO observations of far-infrared rotational emission lines of water vapor toward the supergiant star VY Canis Majoris

    OpenAIRE

    Neufeld, David A.; Feuchtgruber, Helmut; Harwit, Martin; Melnick, Gary J.

    1999-01-01

    We report the detection of numerous far-infrared emission lines of water vapor toward the supergiant star VY Canis Majoris. A 29.5 - 45 micron grating scan of VY CMa, obtained using the Short Wavelength Spectrometer (SWS) of the Infrared Space Observatory (ISO) at a spectral resolving power of approximately 2000, reveals at least 41 spectral features due to water vapor that together radiate a total luminosity ~ 25 solar luminosities. In addition to pure rotational transitions within the groun...

  9. NW Iberia shelf dynamics and the behaviour of the Douro River plume

    Science.gov (United States)

    Iglesias, Isabel; Couvelard, Xavier; Avilez-Valente, Paulo; Caldeira, Rui M. A.

    2015-04-01

    The study and modelling of the river plumes is a key factor to complete understand the coastal physics and dynamic processes and sediment transport mechanisms. Some the terrestrial materials that they transport to the ocean are pollutants, essential nutrients, which enhance the phytoplankton productivity or sediments, which settle on the seabed producing bathymetric modifications. When the riverine water join the ocean several instabilities can be induced, generating bulges, filaments, and buoyant currents over the continental shelf. Offshore, the riverine water could form fronts that could be related with the occurrence of current-jets, eddies and strong mixing. This study focused on the Douro River plume simulation. This river is located on the north-west Iberian coast. Its daily averaged freshwater discharge can range values from 0 to 13000 m3/s, which impacts on the formation of the river plumes and its dispersion along the continental shelf. The Regional Oceanic Modeling System (ROMS) model was used to reproduce scenarios of plume generation, retention and dispersion (Shchepetkin and McWilliams, 2005). Three types of simulations were performed: schematic winds simulations with prescribed river flow, wind speed and direction; multi-year climatological simulation, with river flow and temperature change for each month; extreme case simulation. The schematic wind case-studies suggest that the plume is wind-driven. Important differences appear in its structure and dispersion pathways depending on the wind direction and strength. Northerly winds induce plumes with a narrow coastal current meanwhile southerly winds push the river water to the north finding water associated with the Douro River in the Galician Rías. The high surface salinity on the plume regions during strong wind events suggests that the wind enhances the vertical mixing. Extreme river discharges, associated with southerly winds, can transport debris to the Galician coast in about 60 h, helping to

  10. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    Science.gov (United States)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  11. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study.

    Science.gov (United States)

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-12-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  12. Water-Vapor Sorption Processes in Nanoporous MgO-Al2O3 Ceramics: the PAL Spectroscopy Study

    Science.gov (United States)

    Klym, Halyna; Ingram, Adam; Shpotyuk, Oleh; Hadzaman, Ivan; Solntsev, Viacheslav

    2016-03-01

    The water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics are studied with positron annihilation lifetime (PAL) spectroscopy employing positron trapping and positronium (Ps)-decaying modes. It is demonstrated that the longest-lived components in the four-term reconstructed PAL spectra with characteristic lifetimes near 2 and 60-70 ns can be, respectively, attributed to ortho-positronium (o-Ps) traps in nanopores with 0.3- and 1.5-1.8-nm radii. The first o-Ps decaying process includes "pick-off" annihilation in the "bubbles" of liquid water, while the second is based on o-Ps interaction with physisorbed water molecules at the walls of the pores. In addition, the water vapor modifies structural defects located at the grain boundaries in a vicinity of pores, this process being accompanied by void fragmentation during water adsorption and agglomeration during water desorption after drying.

  13. Temporal Variations of Water Vapor in the Coma of 67P/Churyumov-Gerasimenko as Observed by Rosetta’s Alice FUV Spectrograph

    Science.gov (United States)

    Steffl, Andrew J.; Feaga, Lori M.; A'Hearn, Michael; Bertaux, Jean-Loup; Feldman, Paul D.; Keeney, Brian A.; Knight, Matthew M.; Medina, Richard; Noonan, John; Parker, Joel Wm.; Pineau, Jon; Schindhelm, Eric; Stern, S. Alan; Versteeg, Maarten H.; Vervack, Ronald J.; Weaver, Harold A.

    2017-10-01

    During the Rosetta mission, the Alice far-ultraviolet (FUV) imaging spectrograph obtained spatially-resolved spectra of the coma and nucleus of comet 67P/Churyumov-Gerasimenko over the wavelength range of 700-2050Å. Typically, Alice detected emissions from the neutral atomic daughter and granddaughter products (H, O, C, and S) of the primary molecular species in the coma: H2O, CO2, CO, and O2. However, during a six-month period centered near perihelion, Alice directly detected water vapor in absorption of sunlight reflected from the nucleus. We present here analyses of the water vapor column density as measured by the Alice FUV spectrograph. Alice is sensitive to water vapor at column densities greater than ~1016 cm-2 along the sum of the Sun-nucleus and nucleus-spacecraft lines of sight. Due to the excellent temporal coverage provided by the Alice instrument (exposures were typically obtained every 5-10 minutes), we are able to show variations of water vapor in the coma caused by the changing heliocentric distance of the comet, the comet’s ~12-hour rotation period, and short-term outbursts. We compare our water vapor column densities to those derived from other instruments aboard the Rosetta spacecraft and use models to estimate the water production rate.Rosetta is an ESA mission with contributions from its member states and NASA. The Alice team acknowledges continuing support from NASA’s Jet Propulsion Laboratory through contract 1336850 to the Southwest Research Institute.

  14. Application of water vapor sorption measurements for porosity characterization of hardened cement pastes

    DEFF Research Database (Denmark)

    Wu, Min; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    data were reviewed. Water vapor sorption measurements were then applied to two hardened cement pastes and one model porous material MCM-41. The specific surface area was calculated based on different equations accounting for multilayer adsorption and the PSD was analyzed from both the absorption...

  15. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Brooks, J Renee [U.S. Environmental Protection Agency, Corvallis, OR; Dragila, Maria [Oregon State University, Corvallis; Meinzer, Rick [USDA Forest Service

    2011-01-01

    Nocturnal increases in water potential ( ) and water content (WC) in the upper soil profile are often attributed to root water efflux into the soil, a process termed hydraulic lift or hydraulic redistribution (HR). We have previously reported HR values up to ~0.29 mm day-1 in the upper soil for a seasonally dry old-growth ponderosa pine site. However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the diurnal patterns in WC, confounding efforts to determine the actual magnitude of HR. In this study, we estimated liquid (Jl) and vapor (Jv) soil water fluxes and their impacts on quantifying HR in situ by applying existing data sets of , WC, temperature (T) and soil physical properties to soil water transport equations. Under moist conditions, Jl between layers was estimated to be larger than necessary to account for measured nocturnal increases in WC of upper soil layers. However, as soil drying progressed unsaturated hydraulic conductivity declined rapidly such that Jl was irrelevant (< 2E-06 cm hr-1 at 0-60 cm depths) to total water flux by early August. In surface soil at depths above 15 cm, large T fluctuations can impact Jv leading to uncertainty concerning the role, if any, of HR in nocturnal WC dynamics. Vapor flux was estimated to be the highest at the shallowest depths measured (20 - 30 cm) where it could contribute up to 40% of hourly increases in nocturnal soil moisture depending on thermal conditions. While both HR and net soil water flux between adjacent layers contribute to WC in the 15-65 cm soil layer, HR was the dominant process and accounted for at least 80% of the diurnal increases in WC. While the absolute magnitude of HR is not easily quantified, total diurnal fluctuations in upper soil water content can be quantified and modeled, and remain highly applicable for establishing the magnitude and temporal dynamics of total ecosystem water flux.

  16. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-02-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofísica de Andalucía (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution

  17. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    Science.gov (United States)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  18. VESPA-22: a ground-based microwave spectrometer for long-term measurements of polar stratospheric water vapor

    Science.gov (United States)

    Mevi, Gabriele; Muscari, Giovanni; Bertagnolio, Pietro Paolo; Fiorucci, Irene; Pace, Giandomenico

    2018-02-01

    The new ground-based 22 GHz spectrometer, VESPA-22 (water Vapor Emission Spectrometer for Polar Atmosphere at 22 GHz) measures the 22.23 GHz water vapor emission line with a bandwidth of 500 MHz and a frequency resolution of 31 kHz. The integration time for a measurement ranges from 6 to 24 h, depending on season and weather conditions. Water vapor spectra are collected using the beam-switching technique. VESPA-22 is designed to operate automatically with little maintenance; it employs an uncooled front-end characterized by a receiver temperature of about 180 K and its quasi-optical system presents a full width at half maximum of 3.5°. Every 30 min VESPA-22 measures also the sky opacity using the tipping curve technique. The instrument calibration is performed automatically by a noise diode; the emission temperature of this element is estimated twice an hour by observing alternatively a black body at ambient temperature and the sky at an elevation of 60°. The retrieved profiles obtained inverting 24 h integration spectra present a sensitivity larger than 0.8 from about 25 to 75 km of altitude during winter and from about 30 to 65 km during summer, a vertical resolution from about 12 to 23 km (depending on altitude), and an overall 1σ uncertainty lower than 7 % up to 60 km altitude and rapidly increasing to 20 % at 75 km. In July 2016, VESPA-22 was installed at the Thule High Arctic Atmospheric Observatory located at Thule Air Base (76.5° N, 68.8° W), Greenland, and it has been operating almost continuously since then. The VESPA-22 water vapor mixing ratio vertical profiles discussed in this work are obtained from 24 h averaged spectra and are compared with version 4.2 of concurrent Aura/Microwave Limb Sounder (MLS) water vapor vertical profiles. In the sensitivity range of VESPA-22 retrievals, the intercomparison from July 2016 to July 2017 between VESPA-22 dataset and Aura/MLS dataset convolved with VESPA-22 averaging kernels shows an average difference

  19. Satellite remote sensing of a low-salinity water plume in the East China Sea

    Directory of Open Access Journals (Sweden)

    Y. H. Ahn

    2008-07-01

    Full Text Available With the aim to map and monitor a low-salinity water (LSW plume in the East China Sea (ECS, we developed more robust and proper regional algorithms from large in-situ measurements of apparent and inherent optical properties (i.e. remote sensing reflectance, Rrs, and absorption coefficient of coloured dissolved organic matter, aCDOM determined in ECS and neighboring waters. Using the above data sets, we derived the following relationships between visible Rrs and absorption by CDOM, i.e. Rrs (412/Rrs (555 vs. aCDOM (400 (m−1 and aCDOM (412 (m−1 with a correlation coefficient R2 0.67 greater than those noted for Rrs (443/Rrs (555 and Rrs (490/Rrs (555 vs. aCDOM (400 (m−1 and aCDOM (412 (m−1. Determination of aCDOM (m−1 at 400 nm and 412 nm is particularly necessary to describe its absorption as a function of wavelength λ using a single exponential model in which the spectral slope S as a proxy for CDOM composition is estimated by the ratio of aCDOM at 412 nm and 400 nm and the reference is explained simply by aCDOM at 412 nm. In order to derive salinity from the absorption coefficient of CDOM, in-situ measurements of salinity made in a wide range of water types from dense oceanic to light estuarine/coastal systems were used along with in-situ measurements of aCDOM at 400 nm, 412 nm, 443 nm and 490 nm. The CDOM absorption at 400 nm was better inversely correlated (R2=0.86 with salinity than at 412 nm, 443 nm and 490 nm (R2=0.85–0.66, and this correlation corresponded best with an exponential (R2=0.98 rather than a linear function of salinity measured in a variety of water types from this and other regions. Validation against a discrete in-situ data set showed that empirical algorithms derived from the above relationships could be successfully applied to satellite data over the range of water types for which they have been developed. Thus, we applied these algorithms to a series of SeaWiFS images for the derivation of CDOM and salinity

  20. Dispersal of the Pearl River plume over continental shelf in summer

    Science.gov (United States)

    Chen, Zhaoyun; Gong, Wenping; Cai, Huayang; Chen, Yunzhen; Zhang, Heng

    2017-07-01

    Satellite images of turbidity were used to study the climatological, monthly, and typical snapshot distributions of the Pearl River plume over the shelf in summer from 2003 to 2016. These images show that the plume spreads offshore over the eastern shelf and is trapped near the coast over the western shelf. Eastward extension of the plume retreats from June to August. Monthly spatial variations of the plume are characterized by eastward spreading, westward spreading, or both. Time series of monthly plume area was quantified by applying the K-mean clustering method to identify the turbid plume water. Decomposition of the 14-year monthly turbidity data by the empirical orthogonal function (EOF) analysis isolated the 1st mode in both the eastward and westward spreading pattern as the time series closely related to the Pearl River discharge, and the 2nd mode with out-of-phase turbidity anomalies over the eastern and western shelves that is associated with the prevailing wind direction. Eight typical plume types were detected from the satellite snapshots. They are characterized by coastal jet, eastward offshore spreading, westward spreading, bidirectional spreading, bulge, isolated patch, offshore branch, and offshore filaments, respectively. Their possible mechanisms are discussed.

  1. Utilization of a hydraulic barrier to control migration of a uranium plume

    International Nuclear Information System (INIS)

    Brettschneider, D.J.; Simmons, R.A. Jr.; Kappa, J.D.; Stover, J.A.

    1995-01-01

    A uranium plume emanating from the U.S. Department of Energy's Fernald Environmental Management Project (FEMP) in Fernald, Ohio had migrated off site and the leading edge of the plume had already mixed with an organic and inorganic plume emanating from two industries south of the FEMP. A method was needed to prevent the further southern migration of the plume, minimize any impacts to the geometry, concentrations, distribution or flow patterns of the organic and inorganic plumes emanating from the off-site industries, while meeting the ultimate cleanup goals for the FEMP. This paper discusses the use of a hydraulic barrier created to meet these goals by pumping a five well recovery system and the problems associated with the disposition of over 2 million gallons per day of water with low concentrations of uranium

  2. Water vapor permeation and dehumidification performance of poly(vinyl alcohol)/lithium chloride composite membranes

    KAUST Repository

    Bui, Duc Thuan; Nida, Aqdas; Ng, Kim  Choon; Chua, Kian  Jon

    2015-01-01

    were observed for membranes with increased lithium chloride content up to 50%. The permeation and sorption properties of the membranes were investigated under different temperatures. The results provided a deeper insight into the membrane water vapor

  3. Estimation of perceptible water vapor of atmosphere using artificial neural network, support vector machine and multiple linear regression algorithm and their comparative study

    Science.gov (United States)

    Shastri, Niket; Pathak, Kamlesh

    2018-05-01

    The water vapor content in atmosphere plays very important role in climate. In this paper the application of GPS signal in meteorology is discussed, which is useful technique that is used to estimate the perceptible water vapor of atmosphere. In this paper various algorithms like artificial neural network, support vector machine and multiple linear regression are use to predict perceptible water vapor. The comparative studies in terms of root mean square error and mean absolute errors are also carried out for all the algorithms.

  4. Vacuum distillation/vapor filtration water recovery, phases 1 and 2

    Science.gov (United States)

    Honegger, R. J.; Remus, G. A.; Krug, E. K.

    1973-01-01

    The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.

  5. Evaluation of theoretical and empirical water vapor sorption isotherm models for soils

    Science.gov (United States)

    Arthur, Emmanuel; Tuller, Markus; Moldrup, Per; de Jonge, Lis W.

    2016-01-01

    The mathematical characterization of water vapor sorption isotherms of soils is crucial for modeling processes such as volatilization of pesticides and diffusive and convective water vapor transport. Although numerous physically based and empirical models were previously proposed to describe sorption isotherms of building materials, food, and other industrial products, knowledge about the applicability of these functions for soils is noticeably lacking. We present an evaluation of nine models for characterizing adsorption/desorption isotherms for a water activity range from 0.03 to 0.93 based on measured data of 207 soils with widely varying textures, organic carbon contents, and clay mineralogy. In addition, the potential applicability of the models for prediction of sorption isotherms from known clay content was investigated. While in general, all investigated models described measured adsorption and desorption isotherms reasonably well, distinct differences were observed between physical and empirical models and due to the different degrees of freedom of the model equations. There were also considerable differences in model performance for adsorption and desorption data. While regression analysis relating model parameters and clay content and subsequent model application for prediction of measured isotherms showed promise for the majority of investigated soils, for soils with distinct kaolinitic and smectitic clay mineralogy predicted isotherms did not closely match the measurements.

  6. Remote sensing of tropospheric total column water vapor: Intercomparison of POLDER, AMSR-E and MODIS retrievals

    Science.gov (United States)

    Riedi, J.; Mcharek, L.; Dubuisson, P.; Parol, F.; Thieuleux, F.

    2013-05-01

    Since December 2004, the CNES Parasol (Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar) mission has been flying in the A-train with Aqua (NASA) providing more than 5 years of temporally and spatially coincident observations from POLDER, MODIS and AMSRE which enable total column water vapor amount retrievals. We are providing here a temporal and statistical analysis of water vapor near-infrared retrievals from POLDER against MODIS and AMSR-E products derived from nearinfrared, thermal infrared and microwave observations over ocean. A temporal analysis of POLDER official product is conducted in view of AMSR-E and MODIS coincident retrievals over ocean. In a second step, an alternative approach based on the use of simple multilayer perceptron (MLP) neural network (NN) is developed to improve the mathematical parameterization used to retrieve water vapor amount from near-infrared observation. The retrievals are further improved when an estimate of the 910 nm surface reflectance is obtained through interpolation between PARASOL 865 nm and 1020 nm channels. This last improvement now allows for a unified land/ocean retrieval algorithm for PARASOL/POLDER.

  7. Investigating the Water Vapor Component of the Greenhouse Effect from the Atmospheric InfraRed Sounder (AIRS)

    Science.gov (United States)

    Gambacorta, A.; Barnet, C.; Sun, F.; Goldberg, M.

    2009-12-01

    We investigate the water vapor component of the greenhouse effect in the tropical region using data from the Atmospheric InfraRed Sounder (AIRS). Differently from previous studies who have relayed on the assumption of constant lapse rate and performed coarse layer or total column sensitivity analysis, we resort to AIRS high vertical resolution to measure the greenhouse effect sensitivity to water vapor along the vertical column. We employ a "partial radiative perturbation" methodology and discriminate between two different dynamic regimes, convective and non-convective. This analysis provides useful insights on the occurrence and strength of the water vapor greenhouse effect and its sensitivity to spatial variations of surface temperature. By comparison with the clear-sky computation conducted in previous works, we attempt to confine an estimate for the cloud contribution to the greenhouse effect. Our results compare well with the current literature, falling in the upper range of the existing global circulation model estimates. We value the results of this analysis as a useful reference to help discriminate among model simulations and improve our capability to make predictions about the future of our climate.

  8. Measurements of mesospheric water vapor in 1984 and 1985 - Results and implications for middle atmospheric transport

    Science.gov (United States)

    Bevilacqua, Richard M.; Schwartz, Philip R.; Wilson, William J.

    1987-01-01

    The detailed results of ground-based mesospheric water vapor measurements obtained by microwave spectroscopy at the Jet Propulsion Laboratory (JPL) from December 1984 to April 1985 (JPL 1984/85), and an overview of results obtained the previous year from April to June 1984 are presented. The JPL 1984/85 spectral data appeared to contain an instrumental baseline curvature which was bracketed and removed. In general, the JPL 1984/85 results are in good agreement with those of previous measurements. They indicate water vapor mixing ratios between 6 and 8 ppmv at 60 or 65 km and falling off steeply with height above this point to values of less than 2 ppmv at 80 km. In addition, there is a large amount of day-to-day variability indicated in the data. A major result of the study is that it is found that both the observed vertical gradient of water vapor mixing ratio and its seasonal variation are consistent with the hypothesis that vertical transport time scales are smaller, perhaps by an order of magnitude, than values currently used in both one- and two-dimensional photochemical/dynamical models.

  9. Water Vapor on Titan: The Stratospheric Vertical Profile from Cassini/CIRS Infrared Spectra

    Science.gov (United States)

    Cottini, V.; Jennings, D. E.; Nixon, C. A.; Anderson, C. M.; Gorius, N.; Bjoraker, G. L.; Coustenis, A.; Achterberg, R. K.; Teanby, N. A.; deKok, R.; hide

    2012-01-01

    Water vapor in Titan's middle atmosphere has previously been detected only by disk-average observations from the Infrared Space Observatory (Coustenis et al., 1998). We report here the successful detection of stratospheric water vapor using the Cassini Composite Infrared Spectrometer (CIRS, Flasar et al., 2004) following an earlier null result (de Kok et al., 2007a). CIRS senses water emissions in the far-infrared spectral region near 50 microns, which we have modeled using two independent radiative transfer and inversion codes (NEMESIS, Irwin et al 2008 and ART, Coustenis et al., 2010). From the analysis of nadir spectra we have derived a mixing ratio of (0.14 plus or minus 0.05) ppb at 100 km, corresponding to a column abundance of approximately (3.7 plus or minus 1.3) x 10(exp 14) moles per square centimeter. Using limb observations, we obtained mixing ratios of (0.13 plus or minus 0.04) ppb at 125 km and (0.45 plus or minus 0.15) ppb at 225 km of altitude, confirming that the water abundance has a positive vertical gradient as predicted by photochemical models. In the latitude range (80 deg. S - 30 deg. N) we see no evidence for latitudinal variations in these abundances within the error bars.

  10. Solar Coronal Plumes

    Directory of Open Access Journals (Sweden)

    Giannina Poletto

    2015-12-01

    Full Text Available Polar plumes are thin long ray-like structures that project beyond the limb of the Sun polar regions, maintaining their identity over distances of several solar radii. Plumes have been first observed in white-light (WL images of the Sun, but, with the advent of the space era, they have been identified also in X-ray and UV wavelengths (XUV and, possibly, even in in situ data. This review traces the history of plumes, from the time they have been first imaged, to the complex means by which nowadays we attempt to reconstruct their 3-D structure. Spectroscopic techniques allowed us also to infer the physical parameters of plumes and estimate their electron and kinetic temperatures and their densities. However, perhaps the most interesting problem we need to solve is the role they cover in the solar wind origin and acceleration: Does the solar wind emanate from plumes or from the ambient coronal hole wherein they are embedded? Do plumes have a role in solar wind acceleration and mass loading? Answers to these questions are still somewhat ambiguous and theoretical modeling does not provide definite answers either. Recent data, with an unprecedented high spatial and temporal resolution, provide new information on the fine structure of plumes, their temporal evolution and relationship with other transient phenomena that may shed further light on these elusive features.

  11. Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR

    Science.gov (United States)

    Imaki, Masaharu; Kojima, Ryota; Kameyama, Shumpei

    2018-04-01

    We have studied a ground based coherent differential absorption LIDAR (DIAL) for vertical profiling of water vapor density using a 1.5μm laser wavelength. A coherent LIDAR has an advantage in daytime measurement compared with incoherent LIDAR because the influence of background light is greatly suppressed. In addition, the LIDAR can simultaneously measure wind speed and water vapor density. We had developed a wavelength locking circuit using the phase modulation technique and offset locking technique, and wavelength stabilities of 0.123 pm which corresponds to 16 MHz are realized. In this paper, we report the wavelength locking circuits for the 1.5 um wavelength.

  12. Cavitating flow during water hammer using a generalized interface vaporous cavitation model

    Science.gov (United States)

    Sadafi, Mohamadhosein; Riasi, Alireza; Nourbakhsh, Seyed Ahmad

    2012-10-01

    In a transient flow simulation, column separation may occur when the calculated pressure head decreases to the saturated vapor pressure head in a computational grid. Abrupt valve closure or pump failure can result in a fast transient flow with column separation, potentially causing problems such as pipe failure, hydraulic equipment damage, cavitation or corrosion. This paper reports a numerical study of water hammer with column separation in a simple reservoir-pipeline-valve system and pumping station. The governing equations for two-phase transient flow in pipes are solved based on the method of characteristics (MOC) using a generalized interface vaporous cavitating model (GIVCM). The numerical results were compared with the experimental data for validation purposes, and the comparison indicated that the GIVCM describes the experimental results more accurately than the discrete vapor cavity model (DVCM). In particular, the GIVCM correlated better with the experimental data than the DVCM in terms of timing and pressure magnitude. The effects of geometric and hydraulic parameters on flow behavior in a pumping station with column separation were also investigated in this study.

  13. Analyses of thermal plume of Cernavoda nuclear power plant by satellite remote sensing data

    Science.gov (United States)

    Zoran, M. A.; Nicolae, D. N.; Talianu, C. L.; Ciobanu, M.; Ciuciu, J. G.

    2005-10-01

    The synergistic use of multi-temporal and multi-spectral remote sensing data offers the possibility of monitoring of environment quality in the vicinity of nuclear power plants (NPP). Advanced digital processing techniques applied to several LANDSAT, MODIS and ASTER data are used to assess the extent and magnitude of radiation and non-radiation effects on the water, near field soil, vegetation and air for NPP Cernavoda , Romania . Cernavoda Unit 1 power plant, using CANDU technology, having 706.5 MW power, is successfully in operation since 1996. Cernavoda Unit 2 which is currently under construction will be operational in 2007. Thermal discharge from nuclear reactor cooling is dissipated as waste heat in Danube-Black -Sea Canal and Danube river. Water temperature distributions captured in thermal IR imagery are correlated with meteorological parameters. Additional information regarding flooding events and earthquake risks is considered . During the winter, the thermal plume is localized to an area within a few km of the power plant, and the temperature difference between the plume and non-plume areas is about 1.5 oC. During the summer and fall, there is a larger thermal plume extending 5-6 km far along Danube Black Sea Canal, and the temperature change is about 1.0 oC. Variation of surface water temperature in the thermal plume is analyzed. The strong seasonal difference in the thermal plume is related to vertical mixing of the water column in winter and to stratification in summer. Hydrodynamic simulation leads to better understanding of the mechanisms by which waste heat from NPP Cernavoda is dissipated in the environment.

  14. Availability of MCNP and MATLAB for reconstructing the water-vapor two-phase flow pattern in neutron radiography

    International Nuclear Information System (INIS)

    Feng Qixi; Feng Quanke; Takeshi, K.

    2008-01-01

    The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008. In this paper, we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficiently. The 2-D relative neutron intensity profiles for the water-vapor two-phase flow inside the tube were obtained using the MCNP code without influence of γ-ray and electronic-noise. The MCNP simulation of the 2-D neutron intensity profile for the water-vapor two-phase flow was demonstrated. The simulated 2-D neutron intensity profiles could be used as the benchmark data base by calibrating part of the data measured by the CARR-NRI. The 3-D objective images allow us to understand the flow pattern more clearly and it is reconstructed using the MATLAB through the threshold transformation techniques. And thus it is concluded that the MCNP code and the MATLAB are very useful for constructing the benchmark data base for the investigation of the water-vapor two-phase flow using the CARR-NRI. (authors)

  15. Electron Density Dropout Near Enceladus in the Context of Water-Vapor and Water-Ice

    Science.gov (United States)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Johnson, R. E.; Kaiser, M. L.; Wahlund, J.-E.; Waite, J. H., Jr.

    2009-01-01

    On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from approximately 90 el/cubic cm to below 20 el/cubic cm that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process.

  16. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    Science.gov (United States)

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  17. [A novel vapor dynamic headspace enrichment equipment for nontarget screening of volatile organic compounds in drinking water].

    Science.gov (United States)

    Ma, Huilian; Zhang, Haijun; Tian, Yuzeng; Wang, Longxing; Chen, Jiping

    2011-09-01

    A novel vapor dynamic headspace enrichment device was set up for nontarget screening of volatile organic compounds (VOCs) in drinking water. The main operating parameters of this device, such as length of distillation tube, volume of collected condensate, and choice of absorbent, were optimized. In this device, vapor was utilized as a purge gas and water was utilized as a absorbent. With the help of the device, one liter of water sample could be concentrated to 5 mL and the sensitivity of traditional purge and trap-gas chromatography-mass spectrometry (P&T-GC-MS) could be improved 1-2 orders of magnitude. Source and disinfected water samples from a water treatment plant were analyzed with this method. Compared with the traditional P&T-GC-MS analysis without pre-enrichment, the numbers of identified VOCs were improved from 0 to 16 for source water and 5 to 35 for disinfected water samples. It is also shown that there are many halide compounds in VOCs in disinfected water which do not exist in source water.

  18. Water Resources Research Program. Surface thermal plumes: evaluation of mathematical models for the near and complete field

    International Nuclear Information System (INIS)

    Dunn, W.E.; Policastro, A.J.; Paddock, R.A.

    1975-05-01

    This report evaluates mathematical models that may be used to predict the flow and temperature distributions resulting from heated surface discharges from power-plant outfalls. Part One discusses the basic physics of surface-plume dispersion and provides a critical review of 11 of the most popular and promising plume models developed to predict the near- and complete-field plume. The principal conclusion of the report is that the available models, in their present stage of development, may be used to give only general estimates of plume characteristics; precise predictions are not currently possible. The Shirazi-Davis and Pritchard (No. 1) models appear superior to the others tested and are capable of correctly predicting general plume characteristics. (The predictions show roughly factor-of-two accuracy in centerline distance to a given isotherm, factor-of-two accuracy in plume width, and factor-of-five accuracy in isotherm areas.) The state of the art can best be improved by pursuing basic laboratory studies of plume dispersion along with further development of numerical-modeling techniques

  19. Simulation of plume rise: Study the effect of stably stratified turbulence layer on the rise of a buoyant plume from a continuous source by observing the plume centroid

    Science.gov (United States)

    Bhimireddy, Sudheer Reddy; Bhaganagar, Kiran

    2016-11-01

    Buoyant plumes are common in atmosphere when there exists a difference in temperature or density between the source and its ambience. In a stratified environment, plume rise happens until the buoyancy variation exists between the plume and ambience. In a calm no wind ambience, this plume rise is purely vertical and the entrainment happens because of the relative motion of the plume with ambience and also ambient turbulence. In this study, a plume centroid is defined as the plume mass center and is calculated from the kinematic equation which relates the rate of change of centroids position to the plume rise velocity. Parameters needed to describe the plume are considered as the plume radius, plumes vertical velocity and local buoyancy of the plume. The plume rise velocity is calculated by the mass, momentum and heat conservation equations in their differential form. Our study focuses on the entrainment velocity, as it depicts the extent of plume growth. This entrainment velocity is made up as sum of fractions of plume's relative velocity and ambient turbulence. From the results, we studied the effect of turbulence on the plume growth by observing the variation in the plume radius at different heights and the centroid height reached before loosing its buoyancy.

  20. Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission

    International Nuclear Information System (INIS)

    Sakka, Tetsuo; Saito, Kotaro; Ogata, Yukio H.

    2005-01-01

    The (0,0) Swan band of the C 2 molecules in a laser ablation plume produced on the surface of graphite target submerged in water was used as a probe to estimate the density of C 2 molecules in the plume. Observed emission spectra were reproduced excellently by introducing a self-absorption parameter to the theoretical spectral profile expected by a rotational population distribution at a certain temperature. The optical density of the ablation plume as a function of time was determined as a best-fit parameter by the quantitative fitting of the whole spectral profile. The results show high optical densities for the laser ablation plume in water compared with that in air. It is related to the plume confinement or the expansion, which are the important phenomena influencing the characteristics of laser ablation plumes in liquids