WorldWideScience

Sample records for water treatment rules

  1. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ... Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental... review of the uncovered finished water reservoir requirement in the Long Term 2 Enhanced Surface Water... uncovered finished water reservoir requirement and the agency's Six Year Review process. EPA also plans to...

  2. Guidance on enforcement of the requirements of the surface water treatment rule

    International Nuclear Information System (INIS)

    1992-06-01

    The document provides guidance on several specific issues relating to the enforcement of the Surface Water Treatment Rule. The guidance deals with the provisions of the Rule relating to unfiltered systems. Enforcements of the requirements relating to the filtered systems will be dealt with in a later document

  3. 77 FR 57545 - Long Term 2 Enhanced Surface Water Treatment Rule: Public Meeting on Monitoring Data Analysis...

    Science.gov (United States)

    2012-09-18

    ... Water Treatment Rule: Public Meeting on Monitoring Data Analysis, Occurrence Forecasts, Binning, and the... solicit public input on data and information related to several topics. The first topic is the results of... Review process. EPA will consider the data and/or information discussed at this meeting during the agency...

  4. Treatment of radioactive contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1978-12-01

    This rule is to be applied to the design, construction, and operation of facilities for treatment of water contaminated with radioactive material in stationary nuclear power plants with LWRs and HTRs. According to the requirements of the rule these facilities are to be designed, constructed, and operated in such a way that a) uncontrolled discharge of water contaminated with radioactive material is avoided, b) the activity discharged with water is as low as possible, c) water contaminated with radioactive material will not reach the ground, d) the radiation exposure as a consequence of direct radiation, contamination, and inhalation of the persons occupied in the facilities is as low as possible and as a maximum corresponds to the values laid down in the radiation protection regulation or to the values of the operating license. This rule is not to be applied to facilities for coolant and storage pit clean-up as well as facilities for the treatment of concentrates produced during the contamination of the water. (orig./HP) [de

  5. 33 CFR 89.27 - Waters upon which Inland Rule 24(i) applies.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Waters upon which Inland Rule 24(i) applies. 89.27 Section 89.27 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES INLAND NAVIGATION RULES: IMPLEMENTING RULES Waters Upon Which Certain...

  6. ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING WATER TREATMENT

    Science.gov (United States)

    The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the new 10 ppb arsenic standard. One of the treatment options is co-precipitation of arsenic with iron. This tre...

  7. EQUITY EVALUATION OF PADDY IRRIGATION WATER DISTRIBUTION BY SOCIETY-JUSTICE-WATER DISTRIBUTION RULE HYPOTHESIS

    Science.gov (United States)

    Tanji, Hajime; Kiri, Hirohide; Kobayashi, Shintaro

    When total supply is smaller than total demand, it is difficult to apply the paddy irrigation water distribution rule. The gap must be narrowed by decreasing demand. Historically, the upstream served rule, rotation schedule, or central schedule weight to irrigated area was adopted. This paper proposes the hypothesis that these rules are dependent on social justice, a hypothesis called the "Society-Justice-Water Distribution Rule Hypothesis". Justice, which means a balance of efficiency and equity of distribution, is discussed under the political philosophy of utilitarianism, liberalism (Rawls), libertarianism, and communitarianism. The upstream served rule can be derived from libertarianism. The rotation schedule and central schedule can be derived from communitarianism. Liberalism can provide arranged schedule to adjust supply and demand based on "the Difference Principle". The authors conclude that to achieve efficiency and equity, liberalism may provide the best solution after modernization.

  8. AN INVESTIGATION OF ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING DRINKING WATER TREATMENT

    Science.gov (United States)

    The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the regulations. One of the treatment options is iron co-precipitation. This treatment is attractive because ars...

  9. Modeling of water treatment plant using timed continuous Petri nets

    Science.gov (United States)

    Nurul Fuady Adhalia, H.; Subiono, Adzkiya, Dieky

    2017-08-01

    Petri nets represent graphically certain conditions and rules. In this paper, we construct a model of the Water Treatment Plant (WTP) using timed continuous Petri nets. Specifically, we consider that (1) the water pump always active and (2) the water source is always available. After obtaining the model, the flow through the transitions and token conservation laws are calculated.

  10. Air Emissions Damages from Municipal Drinking Water Treatment Under Current and Proposed Regulatory Standards.

    Science.gov (United States)

    Gingerich, Daniel B; Mauter, Meagan S

    2017-09-19

    Water treatment processes present intersectoral and cross-media risk trade-offs that are not presently considered in Safe Drinking Water Act regulatory analyses. This paper develops a method for assessing the air emission implications of common municipal water treatment processes used to comply with recently promulgated and proposed regulatory standards, including concentration limits for, lead and copper, disinfection byproducts, chromium(VI), strontium, and PFOA/PFOS. Life-cycle models of electricity and chemical consumption for individual drinking water unit processes are used to estimate embedded NO x , SO 2 , PM 2.5 , and CO 2 emissions on a cubic meter basis. We estimate air emission damages from currently installed treatment processes at U.S. drinking water facilities to be on the order of $500 million USD annually. Fully complying with six promulgated and proposed rules would increase baseline air emission damages by approximately 50%, with three-quarters of these damages originating from chemical manufacturing. Despite the magnitude of these air emission damages, the net benefit of currently implemented rules remains positive. For some proposed rules, however, the promise of net benefits remains contingent on technology choice.

  11. Impact of Operating Rules on Planning Capacity Expansion of Urban Water Supply Systems

    Science.gov (United States)

    de Neufville, R.; Galelli, S.; Tian, X.

    2017-12-01

    This study addresses the impact of operating rules on capacity planning of urban water supply systems. The continuous growth of metropolitan areas represents a major challenge for water utilities, which often rely on industrial water supply (e.g., desalination, reclaimed water) to complement natural resources (e.g., reservoirs). These additional sources increase the reliability of supply, equipping operators with additional means to hedge against droughts. How do their rules for using industrial water supply impact the performance of water supply system? How might it affect long-term plans for capacity expansion? Possibly significantly, as demonstrated by the analysis of the operations and planning of a water supply system inspired by Singapore. Our analysis explores the system dynamics under multiple inflow and management scenarios to understand the extent to which alternative operating rules for the use of industrial water supply affect system performance. Results first show that these operating rules can have significant impact on the variability in system performance (e.g., reliability, energy use) comparable to that of hydro-climatological conditions. Further analyses of several capacity expansion exercises—based on our original hydrological and management scenarios—show that operating rules significantly affect the timing and magnitude of critical decisions, such as the construction of new desalination plants. These results have two implications: Capacity expansion analysis should consider the effect of a priori uncertainty about operating rules; and operators should consider how their flexibility in operating rules can affect their perceived need for capacity.

  12. Transformation rules and degradation of CAHs by Fentonlike oxidation in growth ring of water distribution network-A review

    Science.gov (United States)

    Zhong, D.; Ma, W. C.; Jiang, X. Q.; Yuan, Y. X.; Yuan, Y.; Wang, Z. Q.; Fang, T. T.; Huang, W. Y.

    2017-08-01

    Chlorinated hydrocarbons are widely used as organic solvent and chemical raw materials. After treatment, water polluted with trichloroethylene (TCE)/tetrachloroethylene (PCE) can reach the water quality requirements, while water with trace amounts of TCE/PCE is still harmful to humans, which will cause cancers. Water distribution network is an extremely complicated system, in which adsorption, desorption, flocculation, movement, transformation and reduction will occur, leading to changes of TCE/PCE concentrations and products. Therefore, it is important to investigate the transformation rules of TCE/PCE in water distribution network. What’s more, growth-ring, including drinking water pipes deposits, can act as catalysts in Fenton-like reagent (H2O2). This review summarizes the status of transformation rules of CAHs in water distribution network. It also evaluates the effectiveness and fruit of CAHs degradation by Fenton-like reagent based on growth-ring. This review is important in solving the potential safety problems caused by TCE/PCE in water distribution network.

  13. Potential Implications of Approaches to Climate Change on the Clean Water Rule Definition of "Waters of the United States".

    Science.gov (United States)

    Faust, Derek R; Moore, Matthew T; Emison, Gerald Andrews; Rush, Scott A

    2016-05-01

    The 1972 Clean Water Act was passed to protect chemical, physical, and biological integrity of United States' waters. The U.S. Environmental Protection Agency and U.S. Army Corps of Engineers codified a new "waters of the United States" rule on June 29, 2015, because several Supreme Court case decisions caused confusion with the existing rule. Climate change could affect this rule through connectivity between groundwater and surface waters; floodplain waters and the 100-year floodplain; changes in jurisdictional status; and sea level rise on coastal ecosystems. Four approaches are discussed for handling these implications: (1) "Wait and see"; (2) changes to the rule; (3) use guidance documents; (4) Congress statutorily defining "waters of the United States." The approach chosen should be legally defensible and achieved in a timely fashion to provide protection to "waters of the United States" in proactive consideration of scientifically documented effects of climate change on aquatic ecosystems.

  14. Hedging Rules for Water Supply Reservoir Based on the Model of Simulation and Optimization

    Directory of Open Access Journals (Sweden)

    Yi Ji

    2016-06-01

    Full Text Available This study proposes a hedging rule model which is composed of a two-period reservior operation model considering the damage depth and hedging rule parameter optimization model. The former solves hedging rules based on a given poriod’s water supply weighting factor and carryover storage target, while the latter optimization model is used to optimize the weighting factor and carryover storage target based on the hedging rules. The coupling model gives the optimal poriod’s water supply weighting factor and carryover storage target to guide release. The conclusions achieved from this study as follows: (1 the water supply weighting factor and carryover storage target have a direct impact on the three elements of the hedging rule; (2 parameters can guide reservoirs to supply water reasonably after optimization of the simulation and optimization model; and (3 in order to verify the utility of the hedging rule, the Heiquan reservoir is used as a case study and particle swarm optimization algorithm with a simulation model is adopted for optimizing the parameter. The results show that the proposed hedging rule can improve the operation performances of the water supply reservoir.

  15. 78 FR 10269 - National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule

    Science.gov (United States)

    2013-02-13

    ... Illness CWS--Community Water System DBP--Disinfection Byproduct DWC--Drinking Water Committee EA--Economic... 141 and 142 National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule; Final...-9684-8] RIN 2040-AD94 National Primary Drinking Water Regulations: Revisions to the Total Coliform Rule...

  16. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; communications rules. 162.132 Section 162.132 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.132 Connecting waters from Lake Huron to Lake Erie; communications rules. (a...

  17. 33 CFR 162.140 - Connecting waters from Lake Huron to Lake Erie; miscellaneous rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. 162.140 Section 162.140 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.140 Connecting waters from Lake Huron to Lake Erie; miscellaneous rules. (a...

  18. Simulation of operating rules and discretional decisions using a fuzzy rule-based system integrated into a water resources management model

    Science.gov (United States)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2013-04-01

    Water resources systems are operated, mostly, using a set of pre-defined rules not regarding, usually, to an optimal allocation in terms of water use or economic benefits, but to historical and institutional reasons. These operating policies are reproduced, commonly, as hedging rules, pack rules or zone-based operations, and simulation models can be used to test their performance under a wide range of hydrological and/or socio-economic hypothesis. Despite the high degree of acceptation and testing that these models have achieved, the actual operation of water resources systems hardly follows all the time the pre-defined rules with the consequent uncertainty on the system performance. Real-world reservoir operation is very complex, affected by input uncertainty (imprecision in forecast inflow, seepage and evaporation losses, etc.), filtered by the reservoir operator's experience and natural risk-aversion, while considering the different physical and legal/institutional constraints in order to meet the different demands and system requirements. The aim of this work is to expose a fuzzy logic approach to derive and assess the historical operation of a system. This framework uses a fuzzy rule-based system to reproduce pre-defined rules and also to match as close as possible the actual decisions made by managers. After built up, the fuzzy rule-based system can be integrated in a water resources management model, making possible to assess the system performance at the basin scale. The case study of the Mijares basin (eastern Spain) is used to illustrate the method. A reservoir operating curve regulates the two main reservoir releases (operated in a conjunctive way) with the purpose of guaranteeing a high realiability of supply to the traditional irrigation districts with higher priority (more senior demands that funded the reservoir construction). A fuzzy rule-based system has been created to reproduce the operating curve's performance, defining the system state (total

  19. 33 CFR 162.130 - Connecting waters from Lake Huron to Lake Erie; general rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; general rules. 162.130 Section 162.130 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.130 Connecting waters from Lake Huron to Lake Erie; general rules. (a) Purpose. The...

  20. 33 CFR 162.134 - Connecting waters from Lake Huron to Lake Erie; traffic rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; traffic rules. 162.134 Section 162.134 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.134 Connecting waters from Lake Huron to Lake Erie; traffic rules. (a) Detroit River. The...

  1. 33 CFR 162.138 - Connecting waters from Lake Huron to Lake Erie; speed rules.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Connecting waters from Lake Huron to Lake Erie; speed rules. 162.138 Section 162.138 Navigation and Navigable Waters COAST GUARD... REGULATIONS § 162.138 Connecting waters from Lake Huron to Lake Erie; speed rules. (a) Maximum speed limit for...

  2. 33 CFR 89.25 - Waters upon which Inland Rules 9(a)(ii), 14(d), and 15(b) apply.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Waters upon which Inland Rules 9(a)(ii), 14(d), and 15(b) apply. 89.25 Section 89.25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INLAND NAVIGATION RULES INLAND NAVIGATION RULES: IMPLEMENTING RULES Waters...

  3. 78 FR 58500 - Water Quality Standards Regulatory Clarifications Proposed Rule; Public Meeting and Public Webinars

    Science.gov (United States)

    2013-09-24

    ... the proposed rule ``Water Quality Standards Regulatory Clarifications,'' which was published... the federal water quality standards (WQS) regulation at 40 CFR Part 131 which helps implement the..., the proposed rule will lead to improved water quality standard development, implementation and...

  4. Hanford facilities tracer study report (315 Water Treatment Facility)

    International Nuclear Information System (INIS)

    Ambalam, T.

    1995-01-01

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations

  5. Evaluating changes to reservoir rule curves using historical water-level data

    Science.gov (United States)

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Flood control reservoirs are typically managed through rule curves (i.e. target water levels) which control the storage and release timing of flood waters. Changes to rule curves are often contemplated and requested by various user groups and management agencies with no information available about the actual flood risk of such requests. Methods of estimating flood risk in reservoirs are not easily available to those unfamiliar with hydrological models that track water movement through a river basin. We developed a quantile regression model that uses readily available daily water-level data to estimate risk of spilling. Our model provided a relatively simple process for estimating the maximum applicable water level under a specific flood risk for any day of the year. This water level represents an upper-limit umbrella under which water levels can be operated in a variety of ways. Our model allows the visualization of water-level management under a user-specified flood risk and provides a framework for incorporating the effect of a changing environment on water-level management in reservoirs, but is not designed to replace existing hydrological models. The model can improve communication and collaboration among agencies responsible for managing natural resources dependent on reservoir water levels.

  6. Developments regarding the Bragg rule for stopping power and critical examination of its application to water

    International Nuclear Information System (INIS)

    Kamaratos, E.

    1983-01-01

    A critical comparison is made of various experimental findings regarding the Bragg additivity rule for stopping power. It appears that deviations from the Bragg additivity rule reported a long time ago and ascribed to chemical binding effects and phase effects are real, despite even recent statements of the contrary. Nevertheless, when the Bragg rule is applied to water, critical examination of very recent experimental results for the stopping power in the gaseous state of water, hydrogen and oxygen in this work suggest that the reported deviations from the Bragg additivity rule for the stopping power of gaseous water may be the result of experimental error. (orig.)

  7. Extraction and Preference Ordering of Multireservoir Water Supply Rules in Dry Years

    Directory of Open Access Journals (Sweden)

    Ling Kang

    2016-01-01

    Full Text Available This paper presents a new methodology of combined use of the nondominated sorting genetic algorithm II (NSGA-II and the approach of successive elimination of alternatives based on order and degree of efficiency (SEABODE in identifying the most preferred multireservoir water supply rules in dry years. First, the suggested operation rules consists of a two-point type time-varying hedging policy for a single reservoir and a simple proportional allocation policy of common water demand between two parallel reservoirs. Then, the NSGA-II is employed to derive enough noninferior operation rules (design alternatives in terms of two conflicting objectives (1 minimizing the total deficit ratio (TDR of all demands of the entire system in operation horizon, and (2 minimizing the maximum deficit ratio (MDR of water supply in a single period. Next, the SEABODE, a multicriteria decision making (MCDM procedure, is applied to further eliminate alternatives based on the concept of efficiency of order k with degree p. In SEABODE, the reservoir performance indices and water shortage indices are selected as evaluation criteria for preference ordering among the design alternatives obtained by NSGA-II. The proposed methodology was tested on a regional water supply system with three reservoirs located in the Jialing River, China, where the results demonstrate its applicability and merits.

  8. 77 FR 74449 - Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Proposed Rule; Stay

    Science.gov (United States)

    2012-12-14

    ... Water Quality Standards for the State of Florida's Lakes and Flowing Waters; Proposed Rule; Stay AGENCY... Protection Agency (EPA) proposes to temporarily stay our regulation the ``Water Quality Standards for the... Information Does this action apply to me? Citizens concerned with water quality in Florida may be interested...

  9. Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system

    Science.gov (United States)

    Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wang, Chao; Lei, Xiao-hui; Xiong, Yi-song; Zhang, Wei

    2017-08-01

    The derivation of joint operating policy is a challenging task for a multi-purpose multi-reservoir system. This study proposed an aggregation-decomposition model to guide the joint operation of multi-purpose multi-reservoir system, including: (1) an aggregated model based on the improved hedging rule to ensure the long-term water-supply operating benefit; (2) a decomposed model to allocate the limited release to individual reservoirs for the purpose of maximizing the total profit of the facing period; and (3) a double-layer simulation-based optimization model to obtain the optimal time-varying hedging rules using the non-dominated sorting genetic algorithm II, whose objectives were to minimize maximum water deficit and maximize water supply reliability. The water-supply system of Li River in Guangxi Province, China, was selected for the case study. The results show that the operating policy proposed in this study is better than conventional operating rules and aggregated standard operating policy for both water supply and hydropower generation due to the use of hedging mechanism and effective coordination among multiple objectives.

  10. Catalogue and classification of technical safety rules for light-water reactors and reprocessing plants

    International Nuclear Information System (INIS)

    Bloser, M.; Fichtner, N.; Neider, R.

    1975-08-01

    This report on the cataloguing and classification of technical rules for land-based light-water reactors and reprocessing plants contains a list of classified rules. The reasons for the classification system used are given and discussed

  11. Drinking water regulations under the Safe Drinking Water Act. Fact sheet

    International Nuclear Information System (INIS)

    1990-12-01

    The fact sheet describes the requirements covered under the 1986 amendments to the Safe Drinking Water Act. Levels of various contaminants (including radio nuclides) are explained. Also discussed are the Surface Water Treatment Rule and the Total Coliforms Rule

  12. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  13. Water Treatment Group

    Data.gov (United States)

    Federal Laboratory Consortium — This team researches and designs desalination, water treatment, and wastewater treatment systems. These systems remediate water containing hazardous c hemicals and...

  14. Mine water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Komissarov, S V

    1980-10-01

    This article discusses composition of chemical compounds dissolved or suspended in mine waters in various coal basins of the USSR: Moscow basin, Kuzbass, Pechora, Kizelovsk, Karaganda, Donetsk and Chelyabinsk basins. Percentage of suspended materials in water depending on water source (water from water drainage system of dust suppression system) is evaluated. Pollution of mine waters with oils and coli bacteria is also described. Recommendations on construction, capacity of water settling tanks, and methods of mine water treatment are presented. In mines where coal seams 2 m or thicker are mined a system of two settling tanks should be used: in the upper one large grains are settled, in the lower one finer grains. The upper tank should be large enough to store mine water discharged during one month, and the lower one to store water discharged over two months. Salty waters from coal mines mining thin coal seams should be treated in a system of water reservoirs from which water evaporates (if climatic conditions permit). Mine waters from mines with thin coal seams but without high salt content can be treated in a system of long channels with water plants, which increase amount of oxygen in treated water. System of biological treatment of waste waters from mine wash-houses and baths is also described. Influence of temperature, sunshine and season of the year on efficiency of mine water treatment is also assessed. (In Russian)

  15. Water-Methanol Mixtures with non-Lorentz-Berthelot Combining Rules: A Feasibility Study

    Czech Academy of Sciences Publication Activity Database

    Moučka, F.; Nezbeda, Ivo

    2011-01-01

    Roč. 159, 1 Sp.I:Sl (2011), s. 47-51 ISSN 0167-7322 Institutional research plan: CEZ:AV0Z40720504 Keywords : water-alcohol mixtures * non-Lorentz-Berthelot rules * excess mixing properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.580, year: 2011

  16. Similarity rules of thermal stratification phenomena for water and sodium

    International Nuclear Information System (INIS)

    Ohtsuka, M.; Ikeda, T.; Yamakawa, M.; Shibata, Y.; Moriya, S.; Ushijima, S.; Fujimoto, K.

    1988-01-01

    Similarity rules for thermal stratification phenomena were studied using sodium and water experiments with scaled cylindrical vessels. The vessel dimensions were identical to focus on the effect of differences in fluid properties upon the phenomena. Comparisons of test results between sodium and water elucidated similar and dissimilar characteristics for thermal stratification phenomena which appeared in the scaled vessels. Results were as follows: (1) The dimensionless upward velocity of the thermal stratification interface was proportional to Ri -0.74 for water and sodium during the period when the buoyancy effect was dominant. (2) Dimensionless temperature transient rate at the outlet slit decreased with Ri for sodium and remained constant for water where Ri>0.2. The applicability of the scaled test results to an actual power plant was also studied by using multi-dimensional numerical analysis which was verified by the water and sodium experiments. Water experiments could simulate liquid metal fast breeder reactor flows more accurately than sodium experiments for dimensionless temperature gradient at the thermal stratification interface and dimensionless temperature transient rate at the intermediate heat exchanger inlet

  17. Scientific approach and practical experience for reconstruction of waste water treatment plants in Russia

    Directory of Open Access Journals (Sweden)

    Makisha Nikolay

    2017-01-01

    Full Text Available Protection of water bodies has a strict dependence on reliable operation of engineering systems and facilities for water supply and sewage. The majority of these plants and stations has been constructed in 1970-1980's in accordance with rules and regulations of that time. So now most of them require reconstruction due to serious physical or/and technological wear. The current condition of water supply and sewage systems and facilities frequently means a hidden source of serious danger for normal life support and ecological safety of cities and towns. The article reveals an obtained experience and modern approaches for reconstruction of waste water and sludge treatment plants that proved their efficiency even if applied in limited conditions such as area limits, investments limits. The main directions of reconstruction: overhaul repair and partial modernization of existing facilities on the basis of initial project; - restoration and modernization of existing systems on the basis on the current documents and their current condition; upgrade of waste water treatment plants (WWTPs performance on the basis of modern technologies and methods; reconstruction of sewage systems and facilities and treatment quality improvement.

  18. Scientific approach and practical experience for reconstruction of waste water treatment plants in Russia

    Science.gov (United States)

    Makisha, Nikolay; Gogina, Elena

    2017-11-01

    Protection of water bodies has a strict dependence on reliable operation of engineering systems and facilities for water supply and sewage. The majority of these plants and stations has been constructed in 1970-1980's in accordance with rules and regulations of that time. So now most of them require reconstruction due to serious physical or/and technological wear. The current condition of water supply and sewage systems and facilities frequently means a hidden source of serious danger for normal life support and ecological safety of cities and towns. The article reveals an obtained experience and modern approaches for reconstruction of waste water and sludge treatment plants that proved their efficiency even if applied in limited conditions such as area limits, investments limits. The main directions of reconstruction: overhaul repair and partial modernization of existing facilities on the basis of initial project; - restoration and modernization of existing systems on the basis on the current documents and their current condition; upgrade of waste water treatment plants (WWTPs) performance on the basis of modern technologies and methods; reconstruction of sewage systems and facilities and treatment quality improvement.

  19. Water purification by corona-above-water treatment

    NARCIS (Netherlands)

    Pemen, A.J.M.; Heesch, van E.J.M.; Hoeben, W.F.L.M.

    2012-01-01

    Advanced oxidation technologies (AOT), such as non-thermal plasmas, are considered to be very promising for the purpose of water treatment. The goal of this study is to test the feasibility of "Corona-above-water" technology for the treatment of drinking water. Experiments have been performed on the

  20. Biosorption treatment of brackish water

    International Nuclear Information System (INIS)

    Rizwan, M.; Ali, M.; Tariq, M.I.; Rehman, F.U.; Karim, A.; Makshoof, M.; Farooq, R.

    2010-01-01

    Biosorptivity of different agricultural wastes have been evaluated for the treatment of brackish water and a new method, based on the principle of bio-sorption has been described. Wastes of the Saccharum officinarum, Moringa oleifera, Triticum aestivcum and Oryza sativa have been used in raw forms as well as after converting them into ash and activated carbon as biosorbents for treatment of brackish water in this study. Samples of brackish water have been analyzed before and after treatment for quality control parameters of water. A significant Improvement has been observed in quality control parameters of water after treatment. pH of the water samples slightly increased from 7.68 to 7.97 with different treatments. A substantial decrease in conductivity,. TDS, TH, concentrations of cations and anions was observed in the samples of brackish water after treatment with different biosorbents. (author)

  1. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  2. Closed recirculation-Water treatment

    International Nuclear Information System (INIS)

    Hamza, Hamza B.; Ben Ali, Salah; Saad, Mohamed A.; Traish, Massud R.

    2005-01-01

    This water treatment is a practical work applied in the center, for a closed recirculation-water system. The system had experienced a serious corrosion problem, due to the use of inadequate water. This work includes chemical preparation for the system. Water treatment, special additives, and follow-up, which resulted in the stability of the case. This work can be applied specially for closed recirculation warm, normal, and chilled water. (author)

  3. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  4. 40 CFR 141.403 - Treatment technique requirements for ground water systems.

    Science.gov (United States)

    2010-07-01

    ... ground water systems. 141.403 Section 141.403 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141... customer as follows: (i) Chemical disinfection—(A) Ground water systems serving greater than 3,300 people...

  5. Mine water treatment in Donbass

    Energy Technology Data Exchange (ETDEWEB)

    Azarenkov, P A; Anisimov, V M; Krol, V A

    1980-10-01

    About 2,000,000 m$SUP$3 of mine water are discharged by coal mines yearly to surface waters in the Donbass. Mine water in the region is rich in mineral salts and suspended matter (coal and rock particles). The DonUGI Institute developed a system of mine water treatment which permits the percentage of suspended matter to be reduced to 1.5 mg/l. The treated mine water can be used in fire fighting and in dust suppression systems in coal mines. A scheme of the water treatment system is shown. It consists of the following stages: reservoir of untreated mine water, chamber where mine water is mixed with reagents, primary sedimentation tanks, sand filters, and chlorination. Aluminium sulphate is used as a coagulation agent. To intensify coagulation polyacrylamide is added. Technical specifications of surface structures in which water treatment is carried out are discussed. Standardized mine water treatment systems with capacities of 600 m$SUP$3/h, with 900, 1200, 1500, 1800 and 2100 m$SUP$3/h capacities are used. (In Russian)

  6. 77 FR 12581 - Public Water System Supervision Program Revision for the State of Montana

    Science.gov (United States)

    2012-03-01

    ... accordance with the provisions of section 1413 of the Safe Drinking Water Act (SDWA), 42 U.S.C. 300g-2, and... Water Treatment Rule, Stage 2 Disinfectants and Disinfection Byproducts Rule and Ground Water Rule that correspond to the National Primary Drinking Water Regulations (NPDWR) in 40 CFR part 141 and 142. The EPA has...

  7. Treatment of waste water miscible cutting fluids in automobile manufacturing; Jidosha kogyo ni okeru suiyosei sessakuyuzai no haieki shori

    Energy Technology Data Exchange (ETDEWEB)

    Ono, H. [Yushiro Chemical Industry Co. Ltd., Tokyo (Japan)

    1995-09-01

    Water-soluble cutting fluids are able to be used for several months to several years if the proper periodical management is carried out. However, the used solution should be treated as waste water when the function-recovery thereof becomes remarkable difficult. On this occasion, the treated solution (drainage) ought to meet the environmental standards prescribed for the purpose of protecting globe environment. Many cases in Japan are that the strict rules are set by each urban and rural prefectures addition to the government ordinance. For carrying out the treatment of waste water efficiently, it is necessary to construct the treating system by mastering the characteristics of waste water and selecting the most suitable one from numerous treating methods. In this paper, after the description on the water-polluting substances and drainage standards, the general treating method of waste water miscible cutting fluids is described. Finally, the concrete cases with respect to the treatment of waste water treatment in automobile manufacturing factories are introduced. 5 refs., 5 figs., 5 tabs.

  8. Revisions to the Clean Water Act Regulatory Definition of Discharge of Dredged Material; Final Rule

    Science.gov (United States)

    The U.S. Army Corps of Engineers (Corps) and the Environmental Protection Agency (EPA) promulgated a final rule Amending a Clean Water Act (CWA) section 404 regulation that defines the term discharge of dredged material.

  9. Cost effective water treatment program in Heavy Water Plant (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Prasada Rao, G.

    2002-01-01

    Water treatment technology is in a state of continuous evolution. The increasing urgency to conserve water and reduce pollution has in recent years produced an enormous demand for new chemical treatment programs and technologies. Heavy water plant (Manuguru) uses water as raw material (about 3000 m 3 /hr) and its treatment and management has benefited the plant in a significant way. It is a fact that if the water treatment is not proper, it can result in deposit formation and corrosion of metals, which can finally leads to production losses. Therefore, before selecting treatment program, complying w.r.t. quality requirements, safety and pollution aspects cost effectiveness shall be examined. The areas where significant benefits are derived, are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and in-house development of cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments has helped the plant in achieving zero discharge and indirectly increased cost reduction of final product (heavy water); the dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15-20 lakhs in a year beside other advantages; the change over of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs.1.4 crore a year besides other advantages; the change over to proprietary formulation to in-house formulation in cooling water treatment has resulted in a saving about Rs.11 lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored. (author)

  10. Optimization of conventional rule curves coupled with hedging rules for reservoir operation

    DEFF Research Database (Denmark)

    Taghian, Mehrdad; Rosbjerg, Dan; Haghighi, Ali

    2014-01-01

    As a common approach to reservoir operating policies, water levels at the end of each time interval should be kept at or above the rule curve. In this study, the policy is captured using rationing of the target yield to reduce the intensity of severe water shortages. For this purpose, a hybrid...... to achieve the optimal water allocation and the target storage levels for reservoirs. As a case study, a multipurpose, multireservoir system in southern Iran is selected. The results show that the model has good performance in extracting the optimum policy for reservoir operation under both normal...... model is developed to optimize simultaneously both the conventional rule curve and the hedging rule. In the compound model, a simple genetic algorithm is coupled with a simulation program, including an inner linear programming algorithm. In this way, operational policies are imposed by priority concepts...

  11. 78 FR 42945 - Public Water Supply Supervision Program; Program Revision for the State of Oregon

    Science.gov (United States)

    2013-07-18

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9834-9] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Oregon has adopted regulations analogous to EPA's Stage 2 Disinfectants and Disinfection Byproducts Rule; Long Term 2 Enhanced Surface Water Treatment Rule; Ground Water...

  12. Industrial water pollution, water environment treatment, and health risks in China.

    Science.gov (United States)

    Wang, Qing; Yang, Zhiming

    2016-11-01

    The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Real-time Geographic Information System (GIS) for Monitoring the Area of Potential Water Level Using Rule Based System

    Science.gov (United States)

    Anugrah, Wirdah; Suryono; Suseno, Jatmiko Endro

    2018-02-01

    Management of water resources based on Geographic Information System can provide substantial benefits to water availability settings. Monitoring the potential water level is needed in the development sector, agriculture, energy and others. In this research is developed water resource information system using real-time Geographic Information System concept for monitoring the potential water level of web based area by applying rule based system method. GIS consists of hardware, software, and database. Based on the web-based GIS architecture, this study uses a set of computer that are connected to the network, run on the Apache web server and PHP programming language using MySQL database. The Ultrasound Wireless Sensor System is used as a water level data input. It also includes time and geographic location information. This GIS maps the five sensor locations. GIS is processed through a rule based system to determine the level of potential water level of the area. Water level monitoring information result can be displayed on thematic maps by overlaying more than one layer, and also generating information in the form of tables from the database, as well as graphs are based on the timing of events and the water level values.

  14. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  15. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  16. An Analysis of the Constitutional Court Ruling on the Annulment of the Provisions on Coastal Water Concessions (HP-3

    Directory of Open Access Journals (Sweden)

    M. Riza Damanik

    2013-05-01

    Full Text Available After the annulment of the Coastal Water Concessions (HP-3 in 16 June 2011, traditional fisher folk organization leaders found a great fighting spirit to further follow-up the Constitutional Court Ruling to support their daily lives. For those who are being “evicted” from their living space (the coastal waters, they want to reclaim their rights through constitutional ways. Likewise, those who (feel to have lost their existence as Indonesian traditional fisher folk are impatient to find out whether there is a breakthrough in the Constitutional Court Ruling that can restore the fisher folk’s family way of life. The ruling itself was complex and not easy to understand: 169 pages, with complex writing systematic and typical legal language. For this reason, the analysis of the Constitutional Court Ruling regarding the Judicial Review on Law No. 27 of 2007 on the Management of Coastal Areas and Small Islands was necessary in order to provide a simpler representation of the Constitutional Court Ruling, and one that is expected to trigger a constructive discussion to implement the favorable parts of the decree for the greatest welfare of the people.

  17. Proposed rule package on fracture toughness and thermal annealing requirements and guidance for light water reactor vessels

    International Nuclear Information System (INIS)

    Allen Hiser, J.R.

    1993-01-01

    In the framework of updating and clarification of the fracture toughness and thermal annealing requirements and guidance for light water reactor pressure vessels, proposed revisions concerning the pressurized thermal shock rule, fracture toughness requirements and reactor vessel material surveillance program requirements, are described. A new rule concerning thermal annealing requirements and a draft regulatory guide on 'Format and Content of Application for Approval for Thermal Annealing of RPV' are also proposed

  18. Proposed rule package on fracture toughness and thermal annealing requirements and guidance for light water reactor vessels

    Energy Technology Data Exchange (ETDEWEB)

    Allen Hiser, J R [UKAEA Harwell Lab. (United Kingdom). Engineering Div.

    1994-12-31

    In the framework of updating and clarification of the fracture toughness and thermal annealing requirements and guidance for light water reactor pressure vessels, proposed revisions concerning the pressurized thermal shock rule, fracture toughness requirements and reactor vessel material surveillance program requirements, are described. A new rule concerning thermal annealing requirements and a draft regulatory guide on `Format and Content of Application for Approval for Thermal Annealing of RPV` are also proposed.

  19. 18 CFR 39.10 - Changes to an Electric Reliability Organization Rule or Regional Entity Rule.

    Science.gov (United States)

    2010-04-01

    ... RULES CONCERNING CERTIFICATION OF THE ELECTRIC RELIABILITY ORGANIZATION; AND PROCEDURES FOR THE ESTABLISHMENT, APPROVAL, AND ENFORCEMENT OF ELECTRIC RELIABILITY STANDARDS § 39.10 Changes to an Electric... Reliability Organization Rule or Regional Entity Rule. 39.10 Section 39.10 Conservation of Power and Water...

  20. 78 FR 9047 - Public Water System Supervision Program Revision for the State of Texas

    Science.gov (United States)

    2013-02-07

    ... Water System Supervision Program. Texas has adopted three EPA drinking water rules, namely the: (1) Long Term 2 Enhanced Surface Water Treatment Rule (LT2), (2) the Stage 2 Disinfectants and Disinfection... Drinking Water Section (MC-155), Building F, 12100 Park 35 Circle, Austin, TX 78753; and United States...

  1. 18 CFR 358.7 - Transparency rule.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transparency rule. 358.7 Section 358.7 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Transparency rule. (a) Contemporaneous disclosure. (1) If a transmission provider discloses non-public...

  2. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  3. 1,4-Dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule.

    Science.gov (United States)

    Adamson, David T; Piña, Elizabeth A; Cartwright, Abigail E; Rauch, Sharon R; Hunter Anderson, R; Mohr, Thomas; Connor, John A

    2017-10-15

    This study examined data collected from U.S. public drinking water supplies in support of the recently-completed third round of the Unregulated Contaminant Monitoring Rule (UCMR3) to better understand the nature and occurrence of 1,4-dioxane and the basis for establishing drinking water standards. The purpose was to evaluate whether the occurrence data for this emerging but federally-unregulated contaminant fit with common conceptual models, including its persistence and the importance of groundwater contamination for potential exposure. 1,4-Dioxane was detected in samples from 21% of 4864 PWSs, and was in exceedance of the health-based reference concentration (0.35μg/L) at 6.9% of these systems. In both measures, it ranked second among the 28 UCMR3 contaminants. Although much of the focus on 1,4-dioxane has been its role as a groundwater contaminant, the detection frequency for 1,4-dioxane in surface water was only marginally lower than in groundwater (by a factor of 1.25; pwater (pwater sources tend to be more dilute. Sampling from large systems increased the likelihood that 1,4-dioxane was detected by a factor of 2.18 times relative to small systems (pwater were highly associated with detections of other chlorinated compounds particularly 1,1-dichlorethane (odds ratio=47; pchlorinated solvent stabilizer. Based on aggregated nationwide data, 1,4-dioxane showed evidence of a decreasing trend in concentration and detection frequency over time. These data suggest that the loading to drinking water supplies may be decreasing. However, in the interim, some water supply systems may need to consider improving their treatment capabilities in response to further regulatory review of this compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    International Nuclear Information System (INIS)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-01-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  5. 76 FR 5157 - Public Water Supply Supervision Program; Program Revision for the State of Alaska

    Science.gov (United States)

    2011-01-28

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9259-6] Public Water Supply Supervision Program; Program... Water Supply Supervision Primacy Program. Alaska has adopted regulations analogous to EPA's Stage 2 Disinfectants and Disinfection Byproducts Rule; Long Term 2 Enhanced Surface Water Treatment Rule; and Lead and...

  6. Fuzzy rule-based modelling for human health risk from naturally occurring radioactive materials in produced water

    International Nuclear Information System (INIS)

    Shakhawat, Chowdhury; Tahir, Husain; Neil, Bose

    2006-01-01

    Produced water, discharged from offshore oil and gas operations, contains chemicals from formation water, condensed water, and any chemical added down hole or during the oil/water separation process. Although, most of the contaminants fall below the detection limits within a short distance from the discharge port, a few of the remaining contaminants including naturally occurring radioactive materials (NORM) are of concern due to their bioavailability in the media and bioaccumulation characteristics in finfish and shellfish species used for human consumption. In the past, several initiatives have been taken to model human health risk from NORM in produced water. The parameters of the available risk assessment models are imprecise and sparse in nature. In this study, a fuzzy possibilistic evaluation using fuzzy rule based modeling has been presented. Being conservative in nature, the possibilistic approach considers possible input parameter values; thus provides better environmental prediction than the Monte Carlo (MC) calculation. The uncertainties of the input parameters were captured with fuzzy triangular membership functions (TFNs). Fuzzy if-then rules were applied for input concentrations of two isotopes of radium, namely 226 Ra, and 228 Ra, available in produced water and bulk dilution to evaluate the radium concentration in fish tissue used for human consumption. The bulk dilution was predicted using four input parameters: produced water discharge rate, ambient seawater velocity, depth of discharge port and density gradient. The evaluated cancer risk shows compliance with the regulatory guidelines; thus minimum risk to human health is expected from NORM components in produced water

  7. [Analyze prescription rules of Professor Jiang Liangduo treatment for abdominal mass based on traditional Chinese medicine inheritance platform].

    Science.gov (United States)

    Lian, Xiao-Xiao; Guo, Xiao-Xia

    2018-01-01

    To investigate the herbal prescription rules of Professor Jiang Liangduo in the treatment of abdominal mass based on the traditional Chinese medicine inheritance support system software (TCMISS) of version 2.5, find out new herbal formulas for the treatment of abdominal mass, and then provide new reference to its traditional Chinese medicine therapy. By the method of retrospective study, one hundred and thirty-two outpatient prescriptions of Professor Jiang for the treatment of abdominal mass were collected to establish a typical database with TCMISS. Four properties, five tastes, channel tropism, frequency count, Chinese herbal prescriptions rules and the new prescriptions were analyzed so as to dig out the prescription rules. There were 57 herbs with a frequency>=15, and then 91 core combinations of 2-5 herbs were evolved and 9 new prescriptions were created. It was found out that these drugs mainly had the effects of liver nourishing and soothing, soft-moist and dredging-tonifying, supporting right and dispeling evil, cooperating with the method of calming the liver and resolving hard lump according to the actual situation. It reflected the thought of treatment based on syndrome differentiation in TCM, and provided a new reference for its clinical treatment and research. Copyright© by the Chinese Pharmaceutical Association.

  8. Nanotechnology-based water treatment strategies.

    Science.gov (United States)

    Kumar, Sandeep; Ahlawat, Wandit; Bhanjana, Gaurav; Heydarifard, Solmaz; Nazhad, Mousa M; Dilbaghi, Neeraj

    2014-02-01

    The most important component for living beings on the earth is access to clean and safe drinking water. Globally, water scarcity is pervasive even in water-rich areas as immense pressure has been created by the burgeoning human population, industrialization, civilization, environmental changes and agricultural activities. The problem of access to safe water is inevitable and requires tremendous research to devise new, cheaper technologies for purification of water, while taking into account energy requirements and environmental impact. This review highlights nanotechnology-based water treatment technologies being developed and used to improve desalination of sea and brackish water, safe reuse of wastewater, disinfection and decontamination of water, i.e., biosorption and nanoadsorption for contaminant removal, nanophotocatalysis for chemical degradation of contaminants, nanosensors for contaminant detection, different membrane technologies including reverse osmosis, nanofiltration, ultrafiltration, electro-dialysis etc. This review also deals with the fate and transport of engineered nanomaterials in water and wastewater treatment systems along with the risks associated with nanomaterials.

  9. Optimal operating rules definition in complex water resource systems combining fuzzy logic, expert criteria and stochastic programming

    Science.gov (United States)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2016-04-01

    This contribution presents a methodology for defining optimal seasonal operating rules in multireservoir systems coupling expert criteria and stochastic optimization. Both sources of information are combined using fuzzy logic. The structure of the operating rules is defined based on expert criteria, via a joint expert-technician framework consisting in a series of meetings, workshops and surveys carried out between reservoir managers and modelers. As a result, the decision-making process used by managers can be assessed and expressed using fuzzy logic: fuzzy rule-based systems are employed to represent the operating rules and fuzzy regression procedures are used for forecasting future inflows. Once done that, a stochastic optimization algorithm can be used to define optimal decisions and transform them into fuzzy rules. Finally, the optimal fuzzy rules and the inflow prediction scheme are combined into a Decision Support System for making seasonal forecasts and simulate the effect of different alternatives in response to the initial system state and the foreseen inflows. The approach presented has been applied to the Jucar River Basin (Spain). Reservoir managers explained how the system is operated, taking into account the reservoirs' states at the beginning of the irrigation season and the inflows previewed during that season. According to the information given by them, the Jucar River Basin operating policies were expressed via two fuzzy rule-based (FRB) systems that estimate the amount of water to be allocated to the users and how the reservoir storages should be balanced to guarantee those deliveries. A stochastic optimization model using Stochastic Dual Dynamic Programming (SDDP) was developed to define optimal decisions, which are transformed into optimal operating rules embedding them into the two FRBs previously created. As a benchmark, historical records are used to develop alternative operating rules. A fuzzy linear regression procedure was employed to

  10. 75 FR 27926 - Notice of Availability of Interpretive Rule on the Applicability of Current Water Conservation...

    Science.gov (United States)

    2010-05-19

    ... DEPARTMENT OF ENERGY 10 CFR Part 430 [Docket No. EERE-2010-BT-NOA-0016] Notice of Availability of Interpretive Rule on the Applicability of Current Water Conservation Standards for Showerheads; Request for Comments AGENCY: Department of Energy. ACTION: Notice of availability and request for comments. SUMMARY...

  11. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  12. A new approach for water treatment

    CERN Document Server

    Principe, R

    1999-01-01

    A quantity of up to 4000 m3/h of water is used at CERN for cooling purposes: experiments, magnets and radio frequency cavities are refrigerated by closed circuits filled with deionized water; other utilities, such as air-conditioning, use chilled/hot water, also in closed circuits. All these methods all employ a cold source, the primary supply of water, coming from the cooling towers. About 500 kCHF are spent every year on water treatment in order to keep the water within these networks in operational conditions. In the line of further rationalization of resources, the next generation of contracts with the water treatment industry will aim for improved performance and better monitoring of quality related parameters in this context. The author will provide a concise report based upon an examination of the state of the installations and of the philosophy followed up until now for water treatment. Furthermore, he/she will propose a new approach from both a technical and contractual point of view, in preparation ...

  13. EPA and the Army Corps’ Rule to Define Waters of the United States

    Science.gov (United States)

    2017-01-05

    ponds as defined in 40 C.F.R. 423.11(m) which also meet the criteria of this definition) are not waters of the United States.d (1) Waste ...treatment systems, including treatment ponds or lagoons, designed to meet the requirements of the Clean Water Act. (1) Waste treatment systems, including...4) Floodplain: The term floodplain means an area bordering inland or coastal waters that was formed by sediment deposition from such water under

  14. Reservoir Operating Rule Optimization for California's Sacramento Valley

    Directory of Open Access Journals (Sweden)

    Timothy Nelson

    2016-03-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss1art6Reservoir operating rules for water resource systems are typically developed by combining intuition, professional discussion, and simulation modeling. This paper describes a joint optimization–simulation approach to develop preliminary economically-based operating rules for major reservoirs in California’s Sacramento Valley, based on optimized results from CALVIN, a hydro-economic optimization model. We infer strategic operating rules from the optimization model results, including storage allocation rules to balance storage among multiple reservoirs, and reservoir release rules to determine monthly release for individual reservoirs. Results show the potential utility of considering previous year type on water availability and various system and sub-system storage conditions, in addition to normal consideration of local reservoir storage, season, and current inflows. We create a simple simulation to further refine and test the derived operating rules. Optimization model results show particular insights for balancing the allocation of water storage among Shasta, Trinity, and Oroville reservoirs over drawdown and refill seasons, as well as some insights for release rules at major reservoirs in the Sacramento Valley. We also discuss the applicability and limitations of developing reservoir operation rules from optimization model results.

  15. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    OpenAIRE

    Tervahauta, Taina; Bryant, Isaac; Leal, Lucía; Buisman, Cees; Zeeman, Grietje

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP), UASB reactor performance, chemical oxygen demand (COD) mass balance and methanization. Grey water sludge treatment with black water increased...

  16. Water Treatment Technology - Wells.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  17. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  18. Resource protection and resource management of drinking water-reservoirs in Thuringia--a prerequisite for high drinking-water quality.

    Science.gov (United States)

    Willmitzer, H

    2000-01-01

    In face of widespread pollution of surface waters, strategies must be developed for the use of surface waters which protect the high quality standards of drinking water, starting with the catchment area via the reservoir to the consumer. As a rule, priority is given to the avoidance of contaminants directly at their point of origin. Water protection is always cheaper than expensive water-body restoration and water treatment. Complementary to the generally practised technical methods of raw water treatment with all their associated problems of energy input requirements, costs, and waste products, there is an increasing number of environmentally sound treatment technologies which use ecological principles as a basis to support the self-cleaning properties of flowing and dammed waters.

  19. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    Science.gov (United States)

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121

  20. Evaluation of Water Treatment Problems: Case Study of Maiduguri Water Treatment Plant (MWTP and Maiduguri Environs

    Directory of Open Access Journals (Sweden)

    M. N. Idris

    2017-10-01

    Full Text Available Water remains the most useful universal solvent to human being and other animals, because of its derivative importance. However, effort to improve on raw water treatment would continue to be a subject of concern, because the process procedures are been violated or not properly upheld. This study was carried out in order to identify peculiar problems associate with water treatment at the Maiduguri Water Treatment Plant (MWTP. This research study was based on prompt time-schedules and plant site-visits, interviewed questions were made and accessing the technology adopted in the process stages. Analytical data were obtained through the use of sampling bottles, camera, record sheets and other necessary laboratory equipment. The analysis showed that treated water contained excess chlorine and aluminum with 1.10mg/l and 0.68mg/l respectively. From this study, the following are the root causes: poor facility lay out, poor organizational and functional structures, wear of pump impellers and surface deterioration in the transmission line, lack of calibration test, constant head system not operation properly, lack of jar test conduction, improper maintenance of filter system, and the use of chemical coagulant. Inferences were made at the end of the research to enhance process efficiency, healthier and more economical treatment MWTP.

  1. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In

  2. 18 CFR 385.1104 - Initial petition (Rule 1104).

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Initial petition (Rule... COMMISSION, DEPARTMENT OF ENERGY PROCEDURAL RULES RULES OF PRACTICE AND PROCEDURE Petitions for Adjustments Under the NGPA § 385.1104 Initial petition (Rule 1104). (a) Content. (1) The petition must contain: (i...

  3. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  4. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    Directory of Open Access Journals (Sweden)

    Taina Tervahauta

    2014-08-01

    Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.

  5. Peracids in water treatment:a critical review

    OpenAIRE

    Luukkonen, T. (Tero); Pehkonen, S. O. (Simo O.)

    2017-01-01

    Abstract Peracids have gained interest in the water treatment over the last few decades. Peracetic acid (CH₃CO₃H) has already become an accepted alternative disinfectant in wastewater disinfection whereas performic acid (CHO₃H) has been studied much less, although it is also already commercially available. Additionally, peracids have been studied for drinking water disinfection, oxidation of aqueous (micro)pollutants, sludge treatment, and ballast water treatment, to name just a few exampl...

  6. Waste Water Treatment Unit

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    A wastewater treatment plant to treat both the sanitary and industrial effluent originated from process, utilities and off site units of the refinery is described. The purpose is to obtain at the end of the treatment plant, a water quality that is in compliance with contractual requirements and relevant environmental regulations. first treatment (pretreatment). Primary de-oiling, Equalization, Neutralization, Secondary de-oiling. Second treatment (Biological), The mechanism of BOD removal, Biological flocculation, Nutrient requirements, Nitrification, De-nitrification, Effect of temperature, Effect of ph, Toxicity

  7. Developing Novel Reservoir Rule Curves Using Seasonal Inflow Projections

    Science.gov (United States)

    Tseng, Hsin-yi; Tung, Ching-pin

    2015-04-01

    Due to significant seasonal rainfall variations, reservoirs and their flexible operational rules are indispensable to Taiwan. Furthermore, with the intensifying impacts of climate change on extreme climate, the frequency of droughts in Taiwan has been increasing in recent years. Drought is a creeping phenomenon, the slow onset character of drought makes it difficult to detect at an early stage, and causes delays on making the best decision of allocating water. For these reasons, novel reservoir rule curves using projected seasonal streamflow are proposed in this study, which can potentially reduce the adverse effects of drought. This study dedicated establishing new rule curves which consider both current available storage and anticipated monthly inflows with leading time of two months to reduce the risk of water shortage. The monthly inflows are projected based on the seasonal climate forecasts from Central Weather Bureau (CWB), which a weather generation model is used to produce daily weather data for the hydrological component of the GWLF. To incorporate future monthly inflow projections into rule curves, this study designs a decision flow index which is a linear combination of current available storage and inflow projections with leading time of 2 months. By optimizing linear relationship coefficients of decision flow index, the shape of rule curves and the percent of water supply in each zone, the best rule curves to decrease water shortage risk and impacts can be developed. The Shimen Reservoir in the northern Taiwan is used as a case study to demonstrate the proposed method. Existing rule curves (M5 curves) of Shimen Reservoir are compared with two cases of new rule curves, including hindcast simulations and historic seasonal forecasts. The results show new rule curves can decrease the total water shortage ratio, and in addition, it can also allocate shortage amount to preceding months to avoid extreme shortage events. Even though some uncertainties in

  8. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  9. The effects of high-Ca hardness water treatment for secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Kang, T. J.; Park, Y. C.; Hwang, S. R.; Lim, I. C.; Choi, H. Y.

    2003-01-01

    Water-quality control of the second cooling system in HANARO has been altered from low Ca-hardness treatment to high Ca-hardness treatment since March, 2001. High Ca-hardness water treatment in HANARO is to maintain the calcium hardness around 12 by minimizing the blowdown of secondary cooling water. This paper describes the effect of cost reduction after change of water-quility treatment method. The result shows that the cost of the water could be reduced by 25% using the pond water in KAERI. The amount and cost for the chemical agent could be reduced by 40% and 10% respectively

  10. Approval of raxibacumab for the treatment of inhalation anthrax under the US Food and Drug Administration Animal rule

    Directory of Open Access Journals (Sweden)

    Chia-Wei eTsai

    2015-12-01

    Full Text Available On December 14, 2012, the FDA approved raxibacumab, the first product developed under Project BioShield to achieve this milestone, and the first biologic product to be approved through the FDA animal efficacy rule (or Animal Rule. Raxibacumab is approved for the treatment of adult and pediatric patients with inhalational anthrax due to Bacillus anthracis in combination with appropriate antibiotic drugs and for prophylaxis of inhalational anthrax when alternative therapies are not available or are not appropriate. The approval of Raxibacumab illustrates many of the challenges that product developers may encounter when pursuing approval under the Animal Rule and highlights a number of important regulatory and policy issues.

  11. 77 FR 23246 - Public Water System Supervision Program Revision for the Commonwealth of Kentucky

    Science.gov (United States)

    2012-04-18

    ...: Public Notification Rule, Arsenic Rule, Radionuclides Rule, Long-Term 2 Enhanced Surface Water Treatment... does not elect to hold a hearing on his own motion, this determination shall become final and effective... brief statement of the requesting person's interest in the Regional Administrator's determination and a...

  12. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  13. The water handbook. 7. ed.

    International Nuclear Information System (INIS)

    Bryknar, F.Z.

    1988-01-01

    This 7th edition of the water handbook brings up to date the last available, sixth edition of 1982. The arrangement is the same as before: explanation of symbols and units; basic principles of water chemistry; behaviour of water and additives in nuclear power plant operation; chemical engineering aspects of water treatment; standard values for operating water; operating analysis; chemicals for water treatment; corrosion and corrosion protection in steam generators; water in nuclear facilities; cleaning and acid cleaning of steam generators; conservation of steam generators; tables and diagrams; bibliography; keyword index. New terms and measuring units have been worked in, and the tables on ion exchangers have been revised. Amendments of regulatory provisions have been included where appropriate (VGB rules, Radiation Protection Ordinance). (RB) [de

  14. Electrocoagulation in Water Treatment

    Science.gov (United States)

    Liu, Huijuan; Zhao, Xu; Qu, Jiuhui

    Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.

  15. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1992-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigate water treatment process for nuclear reactor utilization. Analysis of output water chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerates to obtain the optimum quantity of pure water which reached to 15 cubic meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30 %. output water chemistry agree with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined.5 fig., 3 tab

  16. 77 FR 8865 - Public Water System Supervision Program Approval for the State of Illinois; Tentative Approval

    Science.gov (United States)

    2012-02-15

    ... Enhanced Surface Water Treatment Rule. Illinois is also applying its Stage 2 Disinfectants and Disinfection... for Long-Term 2 Enhanced Surface Water Treatment and Stage 2 Disinfectants and Disinfection By-product..., Ground Water and Drinking Water Branch (WG-15J), 77 West Jackson Boulevard, Chicago, Illinois 60604. FOR...

  17. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Lund, E.

    1975-01-01

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  18. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    King, V.

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  19. Water treatments of the future

    International Nuclear Information System (INIS)

    Poon, John; Moore Kenneth

    2011-01-01

    This article discusses and reviews nine water technologies. They are solar desalination, synthetic aquaporin membranes, microbial fuel cell and desalination, forward osmosis, resource recovery and brine managment, 'Smart' water grids, micropollutant treatment, the Cities of the Future program and high retention membrane bioreactors.

  20. The micro-electrolysis technique in waste water treatment

    International Nuclear Information System (INIS)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang

    1997-01-01

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs

  1. The micro-electrolysis technique in waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang [Dalian Univ. of Technology, Dalian (China)

    1997-12-31

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs.

  2. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  3. Stress influences decisions to break a safety rule in a complex simulation task in females.

    Science.gov (United States)

    Starcke, Katrin; Brand, Matthias; Kluge, Annette

    2016-07-01

    The current study examines the effects of acutely induced laboratory stress on a complex decision-making task, the Waste Water Treatment Simulation. Participants are instructed to follow a certain decision rule according to safety guidelines. Violations of this rule are associated with potential high rewards (working faster and earning more money) but also with the risk of a catastrophe (an explosion). Stress was induced with the Trier Social Stress Test while control participants underwent a non-stress condition. In the simulation task, stressed females broke the safety rule more often than unstressed females: χ(2) (1, N=24)=10.36, pbreak the safety rule because stressed female participants focused on the potential high gains while they neglected the risk of potential negative consequences. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Evaluating the U.S. Food Safety Modernization Act Produce Safety Rule Standard for Microbial Quality of Agricultural Water for Growing Produce

    NARCIS (Netherlands)

    Havelaar, Arie H; Vazquez, Kathleen M; Topalcengiz, Zeynal; Muñoz-Carpena, Rafael; Danyluk, Michelle D

    2017-01-01

    The U.S. Food and Drug Administration (FDA) has defined standards for the microbial quality of agricultural surface water used for irrigation. According to the FDA produce safety rule (PSR), a microbial water quality profile requires analysis of a minimum of 20 samples for Escherichia coli over 2 to

  5. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1993-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigates water treatment process for nuclear reactor utilization. Analysis of outwater chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerants to obtain the optimum quantity of pure water which reached to 15 cubic-meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30%. Output water chemistry agrees with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined

  6. Treatment of water closet flush water for recycle and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Parker, C.E.

    1985-01-01

    Results from the operation of a 37.8 m/sup 3//d extended aeration and sand filtration system in the closed-loop treatment of water closet flush water are presented. The system has operated for four and one-half years at 95 percent recycle. During this period over 30,000 m/sup 3/ of flush water was treated and reused. Water inputs into the recycle system resulted from liquid human wastes plus wastage form potable water uses. Wasted potable water inputs were from wash basins, water fountains and custodial services. Operation of both the biological treatment unit and the pressure sand filter followed acceptable conventional practice. Variations in nitrogen (ammonia, nitrite and nitrate), pH and alkalinity that were observed could be accounted for through fundamental biological, chemical and physical relationships. The pH throughout the entire recycle system varied between 5.5 and 8.4. Recycled water pH rose from a preflush pH of approximately 7.0 to a pH of 8.4 immediately after flushing. The biological unit lowered the pH and functioned between pH values of 5.5 and 7.0. A slight rise in pH between the biological unit (through storage and filtration) and water closets was observed. The predominate biomass in the biological unit was fungi. Biological solids were threadlike; however, they readily separated by gravity settling. Wastage of biological solids from the biological unit in the recycle-reuse system was the same experienced for a comparable biological unit used to treat water closet wastewater that was not recycled. Results from this study have conclusively demonstrated on a full-scale basis the acceptability of using biological oxidation and sand filtration as a treatment train in the reuse of water closet wastewater with a recycle ratio of 20.

  7. Discharge and Treatment of Waste Water in Denmark

    DEFF Research Database (Denmark)

    Larsen, Torben

    1990-01-01

    This paper describes the waste water treatment situation in the area of Esbjerg. This example was chosen because the situation in Esbjerg is typical of that of most towns in Denmark, and because Esbjerg is closest to the British situation with respect to the receiving water. Esbjerg has...... a population of 70.000 inhabitans, and waste water treatment takes place in two treatment plants. These plants are now being extended to perform tertiary treatment, to fulfil the new Danish requirements. From 1992, the maximum average concentrations allowed for municipal waste water discharges to receiving...... waters will be; 15 mg/1 for BOD5, 8 mg/1 for total nitrogen, and 1.5 mg/1 for total phosphorus. These general requirements cover all types of receiving waters, but regional authorities have, in a number of cases, fixed lower values for sensitive areas....

  8. 78 FR 47697 - Public Water System Supervision Program Revision for the State of Louisiana

    Science.gov (United States)

    2013-08-06

    ...: 1) Long Term 2 Enhanced Surface Water Treatment Rule (LT2), 2) the Stage 2 Disinfectants and Disinfection Byproducts Rule (DBP2), and 3) the Lead and Copper Rule Short-Term Revisions and Clarifications...: Louisiana Department of Health and Hospitals, Office of Public Health, Bienville Building, 628 4th Street...

  9. Nanotechnology for water treatment and purification

    CERN Document Server

    Apblett, Allen

    2014-01-01

    This book describes the latest progress in the application of nanotechnology for water treatment and purification. Leaders in the field present both the fundamental science and a comprehensive overview of the diverse range of tools and technologies that have been developed in this critical area. Expert chapters present the unique physicochemical and surface properties of nanoparticles and the advantages that these provide for engineering applications that ensure a supply of safe drinking water for our growing population. Application areas include generating fresh water from seawater, preventing contamination of the environment, and creating effective and efficient methods for remediation of polluted waters. The chapter authors are leading world-wide experts in the field with either academic or industrial experience, ensuring that this comprehensive volume presents the state-of-the-art in the integration of nanotechnology with water treatment and purification. Covers both wastewater and drinking water treatmen...

  10. Waste Water Treatment And Data Book Of Method Of Water Quality Analysis

    International Nuclear Information System (INIS)

    1999-03-01

    This book indicates the method of water quality analysis and waste water treatment with collecting water quality data of advanced country and WHO, which introduces poisonous substance in industrial waste water such as heavy metal, ammonia, chlorine ion, PCB, chloroform, residual chlorine and manganese, reports about influence of those materials on human health, lists on method of analysis the poisonous substance, research way like working order and precautions on treatment and method of chemical process and use.

  11. Modification of water treatment plant at Heavy Water Plant (Kota)

    International Nuclear Information System (INIS)

    Gajpati, C.R.; Shrivastava, C.S.; Shrivastava, D.C.; Shrivastava, J.; Vithal, G.K.; Bhowmick, A.

    2008-01-01

    Heavy Water Production by GS process viz. H 2 S - H 2 O bi-thermal exchange process requires a huge quantity of demineralized (DM) water as a source of deuterium. Since the deuterium recovery of GS process is only 18-19%, the water treatment plant (WTP) was designed and commissioned at Heavy Water Plant (Kota) to produce demineralized water at the rate of 680 m 3 /hr. The WTP was commissioned in 1980 and till 2005; the plant was producing DM water of required quality. It was having three streams of strong cation resin, atmospheric degasser and strong anion exchange resin with co-current regeneration. In 2001 a new concept of layered bed resin was developed and engineered for water treatment plant. The concept was attractive in terms of saving of chemicals and thus preservation of environment. Being an ISO 9000 and ISO 14000 plant, the modification of WTP was executed in 2005 during major turn around. After modification, a substantial amount of acid and alkali is saved

  12. Progress of Nanocomposite Membranes for Water Treatment

    Directory of Open Access Journals (Sweden)

    Claudia Ursino

    2018-04-01

    Full Text Available The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  13. Progress of Nanocomposite Membranes for Water Treatment.

    Science.gov (United States)

    Ursino, Claudia; Castro-Muñoz, Roberto; Drioli, Enrico; Gzara, Lassaad; Albeirutty, Mohammad H; Figoli, Alberto

    2018-04-03

    The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  14. Effect of magnetic treatment of water on chemical properties of water ...

    African Journals Online (AJOL)

    This study assessed effect of magnetic treatment of water on chemical properties of water, sodium adsorption ratio, electrical conductivity (EC) of the water and the lifespan of the magnetic effect on water. Magnetic flux densities used for treating the water were 124, 319, 443 and 719 gauss. All the cations (Calcium, Sodium, ...

  15. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  16. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  17. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates

    Directory of Open Access Journals (Sweden)

    Manoj A. Lazar

    2012-12-01

    Full Text Available Photocatalytic water treatment using nanocrystalline titanium dioxide (NTO is a well-known advanced oxidation process (AOP for environmental remediation. With the in situ generation of electron-hole pairs upon irradiation with light, NTO can mineralize a wide range of organic compounds into harmless end products such as carbon dioxide, water, and inorganic ions. Photocatalytic degradation kinetics of pollutants by NTO is a topic of debate and the mostly reporting Langmuir-Hinshelwood kinetics must accompanied with proper experimental evidences. Different NTO morphologies or surface treatments on NTO can increase the photocatalytic efficiency in degradation reactions. Wisely designed photocatalytic reactors can decrease energy consumption or can avoid post-separation stages in photocatalytic water treatment processes. Doping NTO with metals or non-metals can reduce the band gap of the doped catalyst, enabling light absorption in the visible region. Coupling NTO photocatalysis with other water-treatment technologies can be more beneficial, especially in large-scale treatments. This review describes recent developments in the field of photocatalytic water treatment using NTO.

  18. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  19. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a

  20. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i...

  1. Design of operating rules in complex water resources systems using historical records, expert criteria and fuzzy logic

    Science.gov (United States)

    Pulido-Velazquez, Manuel; Macian-Sorribes, Hector; María Benlliure-Moreno, Jose; Fullana-Montoro, Juan

    2015-04-01

    Water resources systems in areas with a strong tradition in water use are complex to manage by the high amount of constraints that overlap in time and space, creating a complicated framework in which past, present and future collide between them. In addition, it is usual to find "hidden constraints" in system operations, which condition operation decisions being unnoticed by anyone but the river managers and users. Being aware of those hidden constraints requires usually years of experience and a degree of involvement in that system's management operations normally beyond the possibilities of technicians. However, their impact in the management decisions is strongly imprinted in the historical data records available. The purpose of this contribution is to present a methodology capable of assessing operating rules in complex water resources systems combining historical records and expert criteria. Both sources are coupled using fuzzy logic. The procedure stages are: 1) organize expert-technicians preliminary meetings to let the first explain how they manage the system; 2) set up a fuzzy rule-based system (FRB) structure according to the way the system is managed; 3) use the historical records available to estimate the inputs' fuzzy numbers, to assign preliminary output values to the FRB rules and to train and validate these rules; 4) organize expert-technician meetings to discuss the rule structure and the input's quantification, returning if required to the second stage; 5) once the FRB structure is accepted, its output values must be refined and completed with the aid of the experts by using meetings, workshops or surveys; 6) combine the FRB with a Decision Support System (DSS) to simulate the effect of those management decisions; 7) compare its results with the ones offered by the historical records and/or simulation or optimization models; and 8) discuss with the stakeholders the model performance returning, if it's required, to the fifth or the second stage

  2. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    DEFF Research Database (Denmark)

    Battilani, Adriano; Steiner, Michele; Andersen, Martin

    2010-01-01

    The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse...... of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies...... which allow using the lowest irrigation water quality without harming food safety or yield and fruit or derivatives quality. This study presents the results of prototype testing of a small-scale compact pressurized membrane bioreactor and of a modular field treatment system including commercial gravel...

  3. 14 CFR 91.113 - Right-of-way rules: Except water operations.

    Science.gov (United States)

    2010-01-01

    ... not take advantage of this rule to cut in front of another which is on final approach to land or to... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight... pass well clear. (g) Landing. Aircraft, while on final approach to land or while landing, have the...

  4. Applications of nanotechnology in water and wastewater treatment.

    Science.gov (United States)

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-08-01

    Providing clean and affordable water to meet human needs is a grand challenge of the 21st century. Worldwide, water supply struggles to keep up with the fast growing demand, which is exacerbated by population growth, global climate change, and water quality deterioration. The need for technological innovation to enable integrated water management cannot be overstated. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency as well as to augment water supply through safe use of unconventional water sources. Here we review recent development in nanotechnology for water and wastewater treatment. The discussion covers candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines the opportunities and limitations to further capitalize on these unique properties for sustainable water management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. 18 CFR 385.801 - Waiver of hearing (Rule 801).

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Waiver of hearing (Rule 801). 385.801 Section 385.801 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY....801 Waiver of hearing (Rule 801). In any proceeding in which the Commission is authorized to act after...

  6. Medicine Of Water Treatment

    International Nuclear Information System (INIS)

    Shin, Jeong Rae

    1987-02-01

    This book deals with the medicine of water handling, which includes medicine for dispersion and cohesion, zeta-potential, congelation with Shalze Hardy's law, inorganic coagulants, inorganic high molecule coagulants, aid coagulant such as fly ash and sodium hydroxide, and effect of aluminum and iron on cohesion of clay suspension, organic coagulants like history of organic coagulants, a polyelectrolyte, coagulants for cation, and organic polymer coagulant, heavy metal and cyan exfoliants, application of drugs of water treatment.

  7. 33 CFR 83.24 - Towing and pushing (Rule 24).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Towing and pushing (Rule 24). 83... NAVIGATION RULES RULES Lights and Shapes § 83.24 Towing and pushing (Rule 24). (a) A power-driven vessel when... it can best be seen. (b) Pushing vessel and pushed vessel rigidly connected in composite unit. When a...

  8. Present municipal water treatment and potential removal methods

    International Nuclear Information System (INIS)

    Lee, S.Y.; White, S.K.; Bondietti, E.A.

    1982-01-01

    Uranium analyses of raw water, intermediate stage, and treated water samples from 20 municipal water treatment plants indicated that the present treatment practices were not effective in removing uranium from raw waters when the influent concentration was in the range of 0.1 to 16 μg/L uranium. Laboratory batch tests revealed that the water softening and coagulant chemicals commonly used were able to remove more than 90% of the dissolved uranium ( < 100 μg/L) in waters if an optimum pH and dosage were provided. Absorbents, titanium oxide and activated charcoal, were also effective in uranium removal under specific conditions. Strong base anion exchange resin was the most efficient uranium adsorbent, and an anion exchange column is a recommended option for the treatment of private well waters containing uranium at higher than desirable levels

  9. MWH's water treatment: principles and design

    National Research Council Canada - National Science Library

    Crittenden, John C

    2012-01-01

    ... with additional worked problems and new treatment approaches. It covers both the principles and theory of water treatment as well as the practical considerations of plant design and distribution...

  10. Waste water treatment today and tomorrow

    International Nuclear Information System (INIS)

    1992-01-01

    The papers discuss waste water treatment in the legislation of the EC, the German state, the Laender and communities, as well as water protection by preventing waste production and pollutant emissions. (EF) [de

  11. Water treatment in the EBR-II steam system

    International Nuclear Information System (INIS)

    Klein, M.A.; Hurst, H.

    1975-01-01

    Boiler-water treatment in the EBR-II steam system consists of demineralizing makeup water and using hydrazine to remove traces of oxygen and morpholine to adjust pH to 8.8-9.2. This treatment is called a ''zero-solids'' method, because the chemical agents and reaction products are either volatile or form water and do not contribute solids to the boiler water. A continuous blowdown is cooled, filtered, and deionized to remove impurities and maintain high purity of the water. If a cooling-water leak occurs, phosphate is added to control scaling, and the ''zero-solids'' eatment is suspended until the leak is repaired. Water streams are sampled at six points to control water purity. Examination of the steam drum and an evaporator show the metal surfaces to be in excellent condition with minimal corrosion. The EBR-II steam-generating plant has accumulated over 85,000 hours of in-service operation and has operated successfully for over ten years with the ''zero-solids'' treatment. (auth)

  12. Innovations in nanotechnology for water treatment

    Directory of Open Access Journals (Sweden)

    Gehrke I

    2015-01-01

    Full Text Available Ilka Gehrke, Andreas Geiser, Annette Somborn-SchulzFraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, GermanyAbstract: Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA.Keywords: nanotechnology, water technology, nanoadsorbents, nanometals, nanomembranes, photocatalysis

  13. Discussing simply waste water treatment in building green mine

    International Nuclear Information System (INIS)

    Zhou Yousheng

    2010-01-01

    Analysis simplfy it is important and necessary that uran ore enterprise build the green mine .According to focusing on waste water treatment in building green mine of some uran ore enterprise,analysis the problem in treating mine water, technics waste water, tailings water before remoulding the system of waster water treatment, evaluate the advanced technics, satisfy ability, steady effect, reach the mark of discharge. According to the experimental unit of building the green mine,some uran ore enterprise make the waster water reaching the mark of discharge after remoulding the system of waster water treatment.It provides valuable experienceto uran ore enterprise in building green mine. (authors)

  14. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    NARCIS (Netherlands)

    Tervahauta, T.H.; Bryant, I.M.; Hernandez Leal, L.; Buisman, C.J.N.; Zeeman, G.

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were

  15. Application of Self Cleaning Rapid Sand Filter in Water Treatment

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2005-08-01

    Full Text Available Rapid sand filter is one of the most important units in the water treatment plants. It has some difficulties in operation such as backwashing. For the solving of this problem a rapid sand filter has designed and built with the self-cleaning backwashing system. This system consist of 3 main constituents; one galvanized siphon and two galvanized steel tanks. One of them is used for filtration and the other used for the storage of filtrated water in elevation for backwashing the system. Water enter from upside of the filter through the inlet pipe, and collected from the under drainage pipe. Then filter water conduct to the storage tank and exit from outlet pipe. In the beginning, the head loss was low, but because of bed clogging by suspended solids, it increases gradually to the designed head loss (1.2m. Then the system is outed of the service automatically and the backwash is began. The main data for the design of system selected from the hydraulic rules of siphons and rapid sand filter criteria. After essential calculations it was constructed and was started operation. For the hydraulic studies a known volume of storage tank was selected and the time needed for the fill (in filtration stage and empty (in backwash stage of water volume with volumetric method were measured. In hydraulic studies the filter surface rate (SOR was selected about 5-7.5m3/m2/hr (1.39-2.08 lit/sec and the flow of water in siphon, during the backwashing was measured 8.7 lit/sec. It can be seen that the siphon passes 4-6 times the inlet raw water thus a negative pressure will created in the siphon which causes the water above the sand bed to be discharged automatically and rinse water from elevated tank flow under the sand bed and back wash it. So according to this study self cleaning rapid sand filter is very useful for water filtration, especially in small population community. The construction of system is rapid, simple and economic.

  16. Membrane technology water treatment facility

    International Nuclear Information System (INIS)

    Gruzdev, E. N.; Starikov, E.N.

    2009-01-01

    The suggested technical solution, in contrast with the traditional treatment methods using pressure filtration and sorption cleaning, can be applied with minimal used for equipment, stable production and the use of reagents, prevention of the formation of waste water with high mineral content and avoid the need for neutralization of the main stream of waste water

  17. Waste water treatment by flotation

    Directory of Open Access Journals (Sweden)

    Camelia Badulescu

    2005-11-01

    Full Text Available The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues, food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, which is in the atmospheric equilibrum, is introduced in a closed space where the depression is 0,3 – 0,5 bar. Our paper presents the hypobaric flotation cell and the technological flow of cleaning of domestic waste waters

  18. Household Water Treatments in Developing Countries

    Science.gov (United States)

    Smieja, Joanne A.

    2011-01-01

    Household water treatments (HWT) can help provide clean water to millions of people worldwide who do not have access to safe water. This article describes four common HWT used in developing countries and the pertinent chemistry involved. The intent of this article is to inform both high school and college chemical educators and chemistry students…

  19. Application of hydrodynamic cavitation in ballast water treatment.

    Science.gov (United States)

    Cvetković, Martina; Kompare, Boris; Klemenčič, Aleksandra Krivograd

    2015-05-01

    Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment.

  20. Chemistry of cost effective water treatment programme in HWP (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Laxmana Prasad, K.

    2008-01-01

    In order to develop a water treatment programme following points must be kept in mind: Effectiveness to achieve desired water quality objectives; Compliance with regulatory requirements; Cost minimization; Safety; Easy operation and protection to equipments. Heavy Water Plant (Manuguru) laboratory has developed treatment programs to treat raw water and cooling water which satisfy the above requirements and has been in use for last several years successfully without any problem. These treatment programs have been given to other plants in Heavy Water Board for implementation. This paper describes the chemistry of the treatment program and cost minimization achieved. Further these treatments have helped the plant in achieving ΦZero Discharge and indirectly reduced the production cost. The chemistry parameters are monitored regularly to ascertain the effectiveness of these treatments. The areas where significant benefits derived are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and development of in-house cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments helped the plant in achieving Zero discharge and indirectly reduced production cost of heavy water. The dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15 - 20 Lakhs in a year besides other advantages. The changeover of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs. 1.4 Crore a year along with other advantages. The change over of proprietary formulation to in-house formulation in cooling water treatment has resulted a saving about Rs. 11 Lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored (author)

  1. Microbial Communities Shaped by Treatment Processes in a Drinking Water Treatment Plant and Their Contribution and Threat to Drinking Water Safety

    Science.gov (United States)

    Li, Qi; Yu, Shuili; Li, Lei; Liu, Guicai; Gu, Zhengyang; Liu, Minmin; Liu, Zhiyuan; Ye, Yubing; Xia, Qing; Ren, Liumo

    2017-01-01

    Bacteria play an important role in water purification in drinking water treatment systems. On one hand, bacteria present in the untreated water may help in its purification through biodegradation of the contaminants. On the other hand, some bacteria may be human pathogens and pose a threat to consumers. The present study investigated bacterial communities using Illumina MiSeq sequencing of 16S rRNA genes and their functions were predicted using PICRUSt in a treatment system, including the biofilms on sand filters and biological activated carbon (BAC) filters, in 4 months. In addition, quantitative analyses of specific bacterial populations were performed by real-time quantitative polymerase chain reaction (qPCR). The bacterial community composition of post-ozonation effluent, BAC effluent and disinfected water varied with sampling time. However, the bacterial community structures at other treatment steps were relatively stable, despite great variations of source water quality, resulting in stable treatment performance. Illumina MiSeq sequencing illustrated that Proteobacteria was dominant bacterial phylum. Chlorine disinfection significantly influenced the microbial community structure, while other treatment processes were synergetic. Bacterial communities in water and biofilms were distinct, and distinctions of bacterial communities also existed between different biofilms. By contrast, the functional composition of biofilms on different filters were similar. Some functional genes related to pollutant degradation were found widely distributed throughout the treatment processes. The distributions of Mycobacterium spp. and Legionella spp. in water and biofilms were revealed by real-time quantitative polymerase chain reaction (qPCR). Most bacteria, including potential pathogens, could be effectively removed by chlorine disinfection. However, some bacteria presented great resistance to chlorine. qPCRs showed that Mycobacterium spp. could not be effectively removed by

  2. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  3. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  4. Evaluation of two methods in controlling dental treatment water contamination.

    Science.gov (United States)

    Bansal, Ritu; Puttaiah, Raghunath; Harris, Robert; Reddy, Anil

    2011-03-01

    Dental unit water systems are contaminated with biofilms that amplify bacterial counts in dental treatment water in excess of a million colony forming units per milliliter (cfu/ml). The Centers for Disease Control and Prevention and the American Dental Association have agreed that the maximum allowable contamination of dental treatment water not exceed 500 cfu/ml. This study was conducted to evaluate two protocols in controlling contamination of dental unit water systems and dental treatment water. Both methods used an antimicrobial self-dissolving chlorine dioxide (ClO₂) tablet at a high concentration (50 ppm) to shock the dental unit water system biofilms initially followed by periodic exposure. To treat dental treatment source water for patient care, 3 parts per million (ppm) ClO₂ in municipal/tap water was compared to use of a citrus botanical extract dissolved in municipal water. Heterotrophic microbial counts of effluent water and laser scanning confocal microscopy were performed to evaluate effects of the two treatments. Results from this study indicated that both treatments were effective in controlling biofilm contamination and reducing heterotrophic plate counts Contemp Dent Pract 2011;12(2):73-83. Source of support: Nil Conflict of interest: None declared.

  5. Water treatment technologies for a mixed waste remedial action

    International Nuclear Information System (INIS)

    Reith, C.; Freeman, G.; Ballew, B.

    1992-01-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  6. Water treatment technologies for a mixed waste remedial action

    Energy Technology Data Exchange (ETDEWEB)

    Reith, C; Freeman, G [Weldon Spring Site Remedial Action Project, Jacobs Engineering Group, Inc., St. Charles, MO (United States); Ballew, B [Weldon Spring Site Remedial Action Project, Dames and Moore, St. Charles, MO (United States)

    1992-07-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  7. Isolation of viruses from drinking water at the Point-Viau water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Payment, P.

    1981-04-01

    Viruses were isolated from every sample of raw (100 L) and treated (1000 L) water collected at a water treatment plant drawing sewage-contaminated river water. Few plaque-forming isolates were formed but cytopathogenic viruses were isolated as frequently in drinking water as in raw water. In drinking water some samples contained more than 1 cytopathogenic unit per litre, but most contained 1-10/100 L. These viruses had not been inactivated or removed by prechlorination, flocculation, filtration, ozonation, and postchlorination. There were no coliforms present and a residual chlorine level had been maintained. Poliovirus type 1 was a frequent isolate but many isolates were nonpoliovirus. The presence of these viruses in drinking water raises questions about the efficacy of some water treatment processes to remove viruses from polluted water.

  8. 26 CFR 1.1251-1 - General rule for treatment of gain from disposition of property used in farming where farm losses...

    Science.gov (United States)

    2010-04-01

    ... depreciable property). Generally, such ordinary income treatment applies even though in the absence of section... method of accounting, as described in paragraph (e)(2) of § 1.167(a)-8 (relating to accounting treatment... 26 Internal Revenue 11 2010-04-01 2010-04-01 true General rule for treatment of gain from...

  9. Choosing the Best Training Programme: Is there a Case for Statistical Treatment Rules?

    DEFF Research Database (Denmark)

    Staghøj, Jonas; Svarer, Michael; Rosholm, Michael

    2010-01-01

    When treatment effects of active labour market programmes (ALMPs) are heterogeneous in an observable way across the population, the allocation of the unemployed into different programmes becomes particularly important. In this article, we present a statistical model that can be used to allocate...... unemployed into different ALMPs. The model presented is a duration model that uses the timing-of-events framework to identify causal effects. We compare different assignment rules, and the results suggest that a significant reduction in the average duration of unemployment may result if a statistical...

  10. Residual water treatment for gamma radiation

    International Nuclear Information System (INIS)

    Mendez, L.

    1990-01-01

    The treatment of residual water by means of gamma radiation for its use in agricultural irrigation is evaluated. Measurements of physical, chemical, biological and microbiological contamination indicators were performed. For that, samples from the treatment center of residual water of San Juan de Miraflores were irradiated up to a 52.5 kGy dose. The study concludes that gamma radiation is effective to remove parasites and bacteria, but not for removal of the organic and inorganic matter. (author). 15 refs., 3 tabs., 4 figs

  11. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-01-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly

  12. Process for the treatment of salt water

    Energy Technology Data Exchange (ETDEWEB)

    Hull, R J

    1966-06-12

    A procedure is described for the treatment of salty or brackish water for the production of steam, which is directly utilized afterward, either in a condensed form as sweet water or deoxidized for injection into oil formations for raising the temperature thereof and other uses. The water-purification treatment is continuous, and is of the type in which the salty or brackish water is passed in direct heat exchange relationship with the steam produced for preheating the water up to a temperature where some of the dissolved ions of calcium and magnesium are precipitated in the form of insoluble salts. In the passage of the preheated water being purified, a zone is created for the completion of the reaction. A part of the water is retained in this reaction zone while the other part is being passed in indirect heat exchange relationship with a heating means, for converting this part of the water into steam. All of the steam obtained in the latter described heat exchange is utilized in the water purification, and/or added to the produced steam, as first noted.

  13. Effluent and water treatment at AERE Harwell

    International Nuclear Information System (INIS)

    Lewis, J.B.

    1977-01-01

    The treatment of liquid wastes at Harwell is based on two main principles: separation of surface water, domestic sewage, trade wastes and radioactive effluents at source, and a system of holding tanks which are sampled so that the appropriate treatment can be given to any batch. All discharges are subject to independent monitoring by the authorising departments and the Thames Water Inspectors. (author)

  14. The treatment of river water by reverse osmosis

    International Nuclear Information System (INIS)

    Ray, N.J.; Jenkins, M.A.; Coates, A.

    1977-01-01

    The suitability of rod, spirally would and hollow fibre reverse osmosis systems has been assessed for the treatment of River Trent water to produce water of boiler feed quality. Particular attention has been paid to the effects of the suspended solids level of the influent water supply on operating and cleaning regimes. The best performance was given by the rod-type membranes which could be used with relatively dirty water if suitable chemical and/or physical cleaning techniques were applied. However, even this system, requires some form of clarification of the raw supply, and this affects capital and overall running costs. The hollow fibre membrane, which cannot be readily cleaned required an excessively clean water supply to avoid rapid and irreversible loss of output and is unlikely to have full-scale application on this, or similar, water. The spirally wound membranes, whilst not so susceptible to suspended solids as the hollow fibre system, did not tolerate dirty water, and required the raw water to be clarified to a level that is unlikely to be continuously guaranteed. In its current stage of development reverse osmosis is unlikely to give a cost advantage over the main cation/anion exchange stage of present water treatment plant, even for the treatment of waters relatively high in dissolved salts (500 mg kg -1 ). Moreover, conventional pretreatment and final mixed ion-exchange beds would still be required to produce water of boiler feed quality. Reverse osmosis does, however, remove organic species and non reactive silicon; its selection is likely to be dictated by such requirements or where space is at a premium e.g. extensions to existing water treatment plants. (orig.) [de

  15. Amendment of the administrative skeleton provision for minimum requirements to be met by waste water discharged into bodies of water. Administrative skeleton provision on waste water of 25 November, 1992

    International Nuclear Information System (INIS)

    1994-01-01

    This provision applies to waste water to be discharged into bodies of water and whose pollution load stems mainly from the sectors indicated in appendices. Without prejudice to stricter requirements governing the execution of the Water Resources Act, the requirements to be met by the discharge of waste water, as indicated in appendices, are defined in accordance with section 7a, subsection 1, number 3 of the Water Resources Act. - The maximum concentrations indicated in appendices, for instance for waste water from brown coal briquetting plant, black coal treatment plant, petroleum refineries and flue gas scrubbers at combustion plant, relate to waste water in the discharge pipe of the waste water treatment plant. Contrary to technical rules that may apply in each instance, these concentrations must not be attained by dilution or mixing. (orig.) [de

  16. Physical water treatment against calcification and rust

    International Nuclear Information System (INIS)

    Burger, A.

    1995-01-01

    In contrast to Germany, where the installation of small-sized, decentralised plants is still prefered, water supply companies in countries such as Denmark have already for some time successfully been using physical water treatment systems. Although the health and environmental benefits of this non-chemical method of water treatment are undisputed and its proper application is also economically beneficial, there is still a widerspread lack of information as to where such plants can be used. Consequently, older methods are often resorted to combatting calcification and rust. (orig.) [de

  17. Cooling water treatment for heavy water project (Paper No. 6.9)

    International Nuclear Information System (INIS)

    Valsangkar, H.N.

    1992-01-01

    With minor exceptions, water is the preferred industrial medium for the removal of unwanted heat from process systems. The application of various chemical treatments is required to protect the system from water related and process related problems of corrosion, scale and deposition and biofouling. The paper discusses the cooling water problems for heavy water industries along with the impact caused by associated fertilizer units. (author). 6 figs

  18. WATER MICROPOLLUTANTS: CLASSIFICATION AND TREATMENT TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Yolanda Patiño

    2014-06-01

    Full Text Available This article reviews the different kinds of emerging contaminants, their origin and use, and their presence in the Spanish waters, both in surface and groundwater. Micropollutants are compounds of different origin and chemical nature which had been unnoticed (due to their low concentration and don’t have specific regulation. They are divided into six major groups, and many of them behave as endocrine disruptors causing large negative effects on human health and environment. They are in waters because the waste water treatment plants are not designed for their removal, so they are being discharged. Different alternatives for their removal are discussed - physico- chemical, biological and hybrid treatment technologies -. Among the physicochemical process, the advance oxidation processes (AOPs are very promising.

  19. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  20. Design Rules for Life Support Systems

    Science.gov (United States)

    Jones, Harry

    2002-01-01

    This paper considers some of the common assumptions and engineering rules of thumb used in life support system design. One general design rule is that the longer the mission, the more the life support system should use recycling and regenerable technologies. A more specific rule is that, if the system grows more than half the food, the food plants will supply all the oxygen needed for the crew life support. There are many such design rules that help in planning the analysis of life support systems and in checking results. These rules are typically if-then statements describing the results of steady-state, "back of the envelope," mass flow calculations. They are useful in identifying plausible candidate life support system designs and in rough allocations between resupply and resource recovery. Life support system designers should always review the design rules and make quick steady state calculations before doing detailed design and dynamic simulation. This paper develops the basis for the different assumptions and design rules and discusses how they should be used. We start top-down, with the highest level requirement to sustain human beings in a closed environment off Earth. We consider the crew needs for air, water, and food. We then discuss atmosphere leakage and recycling losses. The needs to support the crew and to make up losses define the fundamental life support system requirements. We consider the trade-offs between resupplying and recycling oxygen, water, and food. The specific choices between resupply and recycling are determined by mission duration, presence of in-situ resources, etc., and are defining parameters of life support system design.

  1. Waste water treatment plant city of Kraljevo

    Directory of Open Access Journals (Sweden)

    Marinović Dragan D.

    2016-01-01

    Full Text Available In all countries, in the fight for the preservation of environmental protection, water pollution, waste water is one of the very serious and complex environmental problems. Waste waters pollute rivers, lakes, sea and ground water and promote the development of micro-organisms that consume oxygen, which leads to the death of fish and the occurrence of pathogenic microbes. Water pollution and determination of its numerous microbiological contamination, physical agents and various chemical substances, is becoming an increasing health and general social problem. Purification of industrial and municipal waste water before discharge into waterways is of great importance for the contamination of the water ecosystems and the protection of human health. To present the results of purification of industrial and municipal wastewater in the city center Kraljevo system for wastewater treatment. The investigated physical and chemical parameters were performed before and after the city's system for wastewater treatment. The results indicate that the effect of purification present the physical and chemical parameters in waste water ranges from 0 - 19%.

  2. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    Science.gov (United States)

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  3. Produced water treatment methods for SAGD

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, K. [Veolia Water Solutions and Technologies, Mississauga, ON (Canada)

    2008-07-01

    Produced water treatment methods for steam assisted gravity drainage (SAGD) processes were presented. Lime softening is used to remove sludge before weak acid cation processes. However, the process is not reliable in cold climates, and disposal of the sludge is now posing environmental problems in Alberta. High pH MVC evaporation processes use sodium hydroxide (NaOH) additions to prevent silica scaling. However the process produces silica wastes that are difficult to dispose of. The sorption slurry process was designed to reduce the use of caustic soda and develop a cost-effective method of disposing evaporator concentrates. The method produces 98 per cent steam quality for SAGD injection. Silica is sorbed onto crystals in order to prevent silica scaling. The evaporator concentrate from the process is suitable for on- and off-site deep well disposal. The ceramic membrane process was designed to reduce the consumption of chemicals and improve the reliability of water treatment processes. The ion exchange desilication process uses 80 per cent less power and produces 80 per cent fewer CO{sub 2} emissions than MVC evaporators. A comparative operating cost evaluation of various electric supply configurations and produced water treatment processes was also included, as well as an analysis of produced water chemistry. tabs., figs.

  4. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment

    Science.gov (United States)

    Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle L.; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.

    2017-01-01

    Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.

  5. 18 CFR 385.906 - Pleadings (Rule 906).

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Pleadings (Rule 906... § 385.906 Pleadings (Rule 906). (a) By the Secretary. (1) Within 20 days after the commencement of a... the Commissions action in the proceeding; or (ii) Any other interest of such nature that participation...

  6. Assessing Performance of Multipurpose Reservoir System Using Two-Point Linear Hedging Rule

    Science.gov (United States)

    Sasireka, K.; Neelakantan, T. R.

    2017-07-01

    Reservoir operation is the one of the important filed of water resource management. Innovative techniques in water resource management are focussed at optimizing the available water and in decreasing the environmental impact of water utilization on the natural environment. In the operation of multi reservoir system, efficient regulation of the release to satisfy the demand for various purpose like domestic, irrigation and hydropower can lead to increase the benefit from the reservoir as well as significantly reduces the damage due to floods. Hedging rule is one of the emerging techniques in reservoir operation, which reduce the severity of drought by accepting number of smaller shortages. The key objective of this paper is to maximize the minimum power production and improve the reliability of water supply for municipal and irrigation purpose by using hedging rule. In this paper, Type II two-point linear hedging rule is attempted to improve the operation of Bargi reservoir in the Narmada basin in India. The results obtained from simulation of hedging rule is compared with results from Standard Operating Policy, the result shows that the application of hedging rule significantly improved the reliability of water supply and reliability of irrigation release and firm power production.

  7. Green Walls as an Approach in Grey Water Treatment

    Science.gov (United States)

    Rysulova, Martina; Kaposztasova, Daniela; Vranayova, Zuzana

    2017-10-01

    Grey water contributes significantly to waste water parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total phosphorus (Ptotal), total nitrogen (Ntotal), ammonium, boron, metals, salts, surfactants, synthetic chemicals, oils and greases, xenobiotic substances and microorganisms. Concentration of these pollutants and the water quality highlights the importance of treatment process in grey water systems. Treatment technologies operating under low energy and maintenance are usually preferred, since they are more cost effective for users. Treatment technologies based on natural processes represent an example of such technology including vegetated wall. Main aim of this paper is to introduce the proposal of vegetated wall managing grey water and brief characteristic of proposed system. Is expected that prepared experiment will establish the purifying ability and the potential of green wall application as an efficient treatment technology.

  8. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  9. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water.

    Science.gov (United States)

    Su, Hao-Chang; Liu, You-Sheng; Pan, Chang-Gui; Chen, Jun; He, Liang-Ying; Ying, Guang-Guo

    2018-03-01

    As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  11. SISTEM PENGOLAHAN AIR MINUM SEDERHANA (PORTABLE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Isna Syauqiah

    2017-04-01

    Full Text Available Water is the most important thing for living. Lately it is difficult to get clean water and suitable for consumption. Many water sources are commonly used not as good as it used to be. It needs to research about making a simple water treatment system with variable time and suitable volume for Martapura river conditions by knowing the quality of drinking water that produced. The technology used includes water treatment conducted physically (filtration and aeration, chemical processing (adsorption and desinfection using UV. This research was conducted in several stages. First is the design of portable water treatment itself is by making the columns of aeration, filtration column, adsorption column, and columns where the desinfection equipment are separated. Second, the optimizing tools that aim to determine the optimum time and volume of each instrument. So it will be obtained the optimum time and volume for whole instrument. Third, the analysis results of Martapura river. Based on research results obtained that the design of this tool is less effective with the quality of Martapura river water conditions to be processed into drinking water that is usually consumed by people around because the quality of drinking water that produced has not reached the standard of specified drinking water quality standard. Optimum time for this tool is 135 s with a desinfection time for 2 minutes and the optimum volume of entering water amounts to 2 L

  12. BTEX compounds in water - future trends and directions for water treatment

    OpenAIRE

    Fayemiwo, OM; Daramola, MO; Moothi, K

    2017-01-01

    BTEX (benzene, toluene, ethylbenzene, and xylene) compounds are common water resource and potable water pollutants that are often left undetected and untreated by municipal treatment systems in spite of the negative repercussions associated with their ingestion. The US EPA has classified these pollutants as priority pollutant, yet they are persistently present in a variety of water resources. In this review paper, we highlight the sources and reported concentrations of BTEX compounds in water...

  13. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand

  14. Water Supply and Treatment Equipment. Change Notice 1

    Science.gov (United States)

    2014-08-05

    Coagulation Filtration Total Dissolved Solids Water Quality Conductivity Potable water Turbidity Water Treatment/Purification Disinfection ...microorganisms (pathogenic) found in the raw water . The preferred Army field method of water disinfection is chlorination. Filtration Filtration...senses. It looks, tastes, and smells good and is neither too hot nor too cold. Potable water Water that is safe for drinking . Reverse osmosis

  15. Magnetic Field Water Treatment Section - Overview

    International Nuclear Information System (INIS)

    Kopec, M.

    1999-01-01

    Full text: In the last year the activity of the team was focused on industrial implementing of methods developed, as well as on designing and implementing devices for magnetohydrodynamic water treatment and water filtration in the magnetic field. - Phase 1 of research for Ostrowiec Steelworks in Ostrowiec Swietokrzyski (IFJ N-3454 Research) on the possibilities of implementation of the methods of magnetohydrodynamic water treatment in water and sewage circuits, as well as of the method of filtration in the magnetic field were completed. In this part of research, phase analyses of deposits from water and sewage circuits were carried out. In the rolling mill circuit of Ostrowiec Steelworks, a magnetic filter with a capacity of 200 m 3 /h, designed in the Institute of Nuclear Physics was installed and tested. Implementation of this filter is predicted for the year 1999. - Research for the Kozienice Power Station in Swierze Gorne (IFJ N-3450 Research) on determination of the phase composition of total suspended solids in water-steam circuits was completed. - A preliminary evaluation was completed on economic effects of implementation of the prototype magnetic filter FM-500 which has been operational since 1993 in the circuit of turbine condensate cleaning in the 225 MW unit in the power station in Polaniec. (author)

  16. Managing peatland vegetation for drinking water treatment.

    Science.gov (United States)

    Ritson, Jonathan P; Bell, Michael; Brazier, Richard E; Grand-Clement, Emilie; Graham, Nigel J D; Freeman, Chris; Smith, David; Templeton, Michael R; Clark, Joanna M

    2016-11-18

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.

  17. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  18. Technique of complex slime water treatment of coal-mining branch

    OpenAIRE

    Solodov, G. А.; Zhbyr, Е. V.; Papin, А. V.; Nevedrov, А. V.

    2007-01-01

    The possibility of complex slime water treatment at coal-mining and coal-treating plants producing marketable products: power-generating concentrate, coal-water fuel, magnetic fraction, industrial water is shown. A basic process flowsheet of slime water treatment presenting a united technological complex is suggested.

  19. Use of ionizing radiation in waste water treatment

    International Nuclear Information System (INIS)

    Cech, R.

    1976-01-01

    A survey is presented of methods and possibilities of applying ionizing radiation in industrial waste water treatment. The most frequently used radiation sources include the 60 Co and 137 Cs isotopes and the 90 Sr- 90 Y combined source. The results are reported and the methods used are described of waste water treatment by sedimenting impurities and decomposing organic and inorganic compounds by ionizing radiation. It was found that waste water irradiation accelerated sedimentation and decomposition processes. The doses used varied between 50 and 500 krads. Ionizing radiation may also be used in waste water disinfection in which the effects are used of radiation on microorganisms and of the synthesis of ozone which does not smell like normally used chlorine. The described methods are still controversial from the economic point of view but the cost of waste water treatment by irradiation will significantly be reduced by the use of spent fuel elements. (J.B.)

  20. Estrogen-related receptor gamma disruption of source water and drinking water treatment processes extracts.

    Science.gov (United States)

    Li, Na; Jiang, Weiwei; Rao, Kaifeng; Ma, Mei; Wang, Zijian; Kumaran, Satyanarayanan Senthik

    2011-01-01

    Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRgamma two-hybrid yeast assay to screen ERRgamma disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistic activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRgamma antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 microg/L. In the treatment processes, secondary chlorination was effective in removing ERRgamma antagonists, but the coagulation process led to significantly increased ERRgamma antagonistic activity. The drinking water treatment processes removed 73.5% of ERRgamma antagonists. To our knowledge, the occurrence of ERRgamma disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRy disrupting activities in drinking water.

  1. Physico-chemical pre-treatment for drinking water

    International Nuclear Information System (INIS)

    Hassanien, W. A. M.

    2004-08-01

    The objective of this work is to attempt to improve the quality of town water by application of alternating current, direct current and magnetic field to raw water as pre-treatment to enhance the coagulation and flocculation. The design and operation for these processes and the evaluation there of have been mentioned. Treatment generally requires application of electric current Ac or Dc (0.1-1.0 A) for residence current time 2-12 minutes, or application of magnetic field (20-400 mt). The measurement of turbidity and total suspended solids (TSS) of raw water were determined before and after treatment to obtain the efficiency of turbidity and TSS removal. Total bacteria count was determined using standard plate count method. Most probable number (MPN) technique was used to determine the number of coliform organisms that were present in water to obtain the efficiency of water purification. The results obtain revealed that treatment by Ac and Dc electric current gave turbidity removal efficiency in the range 40-81%, 17-76% and TSS in the range 37-61%, 9-57%, respectively. Coagulation of natural colloids and other material suspended in water is faster in water impacted by an electric current. When alum and polymer was used as coagulant together with Ac electric current, clarification rate was greater by 1.8-2.4 times in Damira 2001; 1.5-3.3 times by poly aluminum chloride together with Ac electric current ; 2.4-4.5 times by alum and poly diallyl dimethyl ammonium chloride together with Dc electric current in Damira 2002. The mortality efficiency of total bacteria count was 57-83% and of total coliform was 58-93% when exposed to electric current for an extended residence current times between 2 to 11 minutes. The mortality efficiency of total bacteria count was 60-85%, and of total coliform was 53-95% when exposed to current between 0.16-0.60 A at constant current time. The results obtained from physical and chemical analysis of raw water and water treated by Ac, Dc

  2. Physico-chemical pre-treatment for drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Hassanien, W A. M. [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2004-08-01

    The objective of this work is to attempt to improve the quality of town water by application of alternating current, direct current and magnetic field to raw water as pre-treatment to enhance the coagulation and flocculation. The design and operation for these processes and the evaluation there of have been mentioned. Treatment generally requires application of electric current Ac or Dc (0.1-1.0 A) for residence current time 2-12 minutes, or application of magnetic field (20-400 mt). The measurement of turbidity and total suspended solids (TSS) of raw water were determined before and after treatment to obtain the efficiency of turbidity and TSS removal. Total bacteria count was determined using standard plate count method. Most probable number (MPN) technique was used to determine the number of coliform organisms that were present in water to obtain the efficiency of water purification. The results obtain revealed that treatment by Ac and Dc electric current gave turbidity removal efficiency in the range 40-81%, 17-76% and TSS in the range 37-61%, 9-57%, respectively. Coagulation of natural colloids and other material suspended in water is faster in water impacted by an electric current. When alum and polymer was used as coagulant together with Ac electric current, clarification rate was greater by 1.8-2.4 times in Damira 2001; 1.5-3.3 times by poly aluminum chloride together with Ac electric current ; 2.4-4.5 times by alum and poly diallyl dimethyl ammonium chloride together with Dc electric current in Damira 2002. The mortality efficiency of total bacteria count was 57-83% and of total coliform was 58-93% when exposed to electric current for an extended residence current times between 2 to 11 minutes. The mortality efficiency of total bacteria count was 60-85%, and of total coliform was 53-95% when exposed to current between 0.16-0.60 A at constant current time. The results obtained from physical and chemical analysis of raw water and water treated by Ac, Dc

  3. Innovative on-site treatment cuts frac flowback water costs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    Water is an essential component of the drilling and hydraulic fracturing or fracking process and so the natural gas industry is a heavy user of water. Learning from other industries, gas producers are now employing mobile service providers with the latest integrated treatment systems (ITS) to clean flowback and produced water from fracturing operations at the wellhead. This paper presents a novel on-site treatment for frac water. ITS are pre-fabricated on moveable skids or a truck trailer with all the necessary controls, piping, valves, instrumentation, pumps, mixers and chemical injection modules. They remove oil and other hydrocarbons, suspended solids, and dissolved metals from the frac water using the tightly controlled chemistry, separation and filtration technology. This method can cut the average cost of treating produced water by 50%, simultaneously allowing drillers to maximize their efforts and manpower on generating oil and gas profits, rather than on water treatment.

  4. Process water treatment in Canada's oil sands industry : 1 : target pollutants and treatment objectives

    International Nuclear Information System (INIS)

    Allen, E.W.

    2008-01-01

    The continuous recycling of tailings pond water in the oil sands industry has contributed to an overall decline in water quality used for bitumen recovery, general water consumption, and remedial activities. This paper reviewed process water quality and toxicity data from 2 long-term oil sands operations. The aim of the study was to determine potential roles for water treatment and provide benchmarks for the selection of candidate water treatment technologies in the oil sands region of Alberta. An overview of the oil sands industry was provided as well as details of bitumen recovery processes. The study examined target pollutants and exceedances identified in environmental and industrial water quality guidelines. The study demonstrated that the salinity of tailings pond water increased at a rate of 75 mg per litre per year between 1980 and 2001. Increases in hardness, chloride, ammonia, and sulphates were also noted. Naphthenic acids released during bitumen extraction activities were determined as the primary cause of tailings pond water toxicity. A summary of recent studies on experimental reclamation ponds and treatment wetlands in the oil sands region was included. 19 refs., 4 tabs., 11 figs

  5. Treatment of oily water by flotation

    International Nuclear Information System (INIS)

    Ortiz O, H.B.

    2002-01-01

    The operation of the nuclear power plants such as Laguna Verde (CLV) with nuclear reactors of the boiling water type (BWR) produce radioactive waste solids, liquids and gaseous which require of a special treatment in their operation and arrangement. Such is the case of the liquid wastes from CLV which are a mixture of water and synthetic oils coming from leaks and spilling by pressure of maintenance of electro-mechanical equipment associated to the performance of the nuclear power plant. This mixture of water and spent oils is pretreated by means of sedimentation, centrifugation and evaporation. However the realized efforts by the CLV, the spent oil obtained from the pretreatment contains concentrations of radioactive material higher than the tolerance limits established in the normative in force in radiological safety (0.37 Bq m L -1 for 60 Co and 54 Mn). In this context it was necessary to design an efficient treatment system and economically profitable which separates the oil, the heavy metals and the leftovers of radioactive material that could be present in water, with the purpose of fulfil with the Mexican Official Standards corresponding for its unload or even it can reuse it in the wash process of treated oil. The treatment system of oily water waste consists of: a) Coagulation-flocculation, b) Flotation system with modified air dissolved (DAFm). The proposed flotation process allows to reach a higher separation efficiencies of: Concentration of greases and oils: 94.11 %; Turbidity: 98.6 %; 60 Co: 82.3 % ; Co: 94.8 % and Cr: 99.9 % (Author)

  6. 33 CFR 83.36 - Signals to attract attention (Rule 36).

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Signals to attract attention... SECURITY INLAND NAVIGATION RULES RULES Sound and Light Signals § 83.36 Signals to attract attention (Rule 36). If necessary to attract the attention of another vessel, any vessel may make light or sound...

  7. Characterization of hydraulic fracturing flowback water in Colorado: implications for water treatment.

    Science.gov (United States)

    Lester, Yaal; Ferrer, Imma; Thurman, E Michael; Sitterley, Kurban A; Korak, Julie A; Aiken, George; Linden, Karl G

    2015-04-15

    A suite of analytical tools was applied to thoroughly analyze the chemical composition of an oil/gas well flowback water from the Denver-Julesburg (DJ) basin in Colorado, and the water quality data was translated to propose effective treatment solutions tailored to specific reuse goals. Analysis included bulk quality parameters, trace organic and inorganic constituents, and organic matter characterization. The flowback sample contained salts (TDS=22,500 mg/L), metals (e.g., iron at 81.4 mg/L) and high concentration of dissolved organic matter (DOC=590 mgC/L). The organic matter comprised fracturing fluid additives such as surfactants (e.g., linear alkyl ethoxylates) and high levels of acetic acid (an additives' degradation product), indicating the anthropogenic impact on this wastewater. Based on the water quality results and preliminary treatability tests, the removal of suspended solids and iron by aeration/precipitation (and/or filtration) followed by disinfection was identified as appropriate for flowback recycling in future fracturing operations. In addition to these treatments, a biological treatment (to remove dissolved organic matter) followed by reverse osmosis desalination was determined to be necessary to attain water quality standards appropriate for other water reuse options (e.g., crop irrigation). The study provides a framework for evaluating site-specific hydraulic fracturing wastewaters, proposing a suite of analytical methods for characterization, and a process for guiding the choice of a tailored treatment approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Home Water Treatment Habits and Effectiveness in a Rural Arizona Community.

    Science.gov (United States)

    Lothrop, Nathan; Wilkinson, Sarah T; Verhougstraete, Marc; Sugeng, Anastasia; Loh, Miranda M; Klimecki, Walter; Beamer, Paloma I

    Drinking water quality in the United States (US) is among the safest in the world. However, many residents, often in rural areas, rely on unregulated private wells or small municipal utilities for water needs. These utilities may violate the Safe Drinking Water Act contaminant guidelines, often because they lack the required financial resources. Residents may use alternative water sources or install a home water treatment system. Despite increased home water treatment adoption, few studies have examined their use and effectiveness in the US. Our study addresses this knowledge gap by examining home water treatment in a rural Arizona community. Water samples were analyzed for metal(loid)s, and home treatment and demographic data were recorded in 31 homes. Approximately 42% of homes treated their water. Independent of source water quality, residents with higher income (OR = 1.25; 95%CI (1.00 - 1.64)) and education levels (OR = 1.49; 95%CI (1.12 - 2.12)) were more likely to treat their water. Some contaminant concentrations were effectively reduced with treatment, while some were not. We conclude that increased educational outreach on contaminant testing and treatment, especially to rural areas with endemic water contamination, would result in a greater public health impact while reducing rural health disparities.

  9. Innovative Treatment Technologies for Natural Waters and Wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  10. Scientific or rule-of-thumb techniques of ground-water management--Which will prevail?

    Science.gov (United States)

    McGuinness, Charles Lee

    1969-01-01

    Emphasis in ground-water development, once directed largely to quantitatively minor (but sociologically vital) service of human and stock needs, is shifting: aquifers are treated as possible regulating reservoirs managed conjunctively with surface water. Too, emphasis on reducing stream pollution is stimulating interest in aquifers as possible waste-storage media. Such management of aquifers requires vast amounts of data plus a much better understanding of aquifer-system behavior than now exists. Implicit in this deficiency of knowledge is a need for much new research, lest aquifers be managed according to ineffective rule-of-thumb standards, or even abandoned as unmanageable. The geohydrologist's task is to define both internal and boundary characteristics of aquifer systems. Stratigraphy is a primary determinant of these characteristics, but stratigraphically minor features may make aquifers transcend stratigraphic boundaries. For example, a structurally insignificant fracture may carry more water than a major fault; a minor stratigraphic discontinuity may be a major hydrologic boundary. Hence, there is a need for ways of defining aquifer boundaries and quantifying aquifer and confining-bed characteristics that are very different from ordinary stratigraphic techniques. Among critical needs are techniques for measuring crossbed permeability; for extrapolating and interpolating point data on direction and magnitude of permeability in defining aquifer geometry; and for accurately measuring geochemical properties of water and aquifer material, and interpreting those measurements in terms of source of water, rate of movement, and waste-sorbing capacities of aquifers and of confining beds--in general, techniques adequate for predicting aquifer response to imposed forces whether static, hydraulic, thermal, or chemical. Only when such predictions can be made routinely can aquifer characteristics be inserted into a master model that incorporates both the hydrologic and

  11. Laser removal of water repellent treatments on limestone

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Heras, Miguel; Alvarez de Buergo, Monica; Rebollar, Esther; Oujja, Mohamed; Castillejo, Marta; Fort, Rafael

    2003-12-15

    Protective and water repellent treatments are applied on stone materials used on buildings or sculptures of artistic value to reduce water intrusion without limiting the natural permeability to water vapour of the material. The effect of the wavelength associated with the laser removal of two water repellent treatments applied on limestone, Paraloid B-72, a copolymer of methyl acrylate and ethyl methacrylate, and Tegosivin HL-100, a modified polysiloxane resin, was investigated by using the four harmonics of a Q-switched Nd:YAG laser (1064, 532, 355 and 266 nm). The modifications induced on the surface of limestone samples by laser irradiation were studied using colorimetry, roughness measurements and scanning electron microscopy (SEM). The removal of the treatments was found to be dependent on the laser irradiation conditions and on the characteristics of the coatings. The fundamental laser radiation was effective in removing both treatments, but thermal alteration processes were induced on the constituent calcite crystals. The best results were obtained by irradiation in the near UV at 355 nm.

  12. Proposed rulemaking to risk-inform special treatment requirements

    International Nuclear Information System (INIS)

    Reed, Timothy A.; McKenna, Eileen M.

    2003-01-01

    This paper presents the status of Nuclear Regulatory Commission (NRC) rulemaking efforts to risk-inform special treatment requirements that reside in Title 10 of the Code of Federal Regulations, 10 CFR Part 21, Part 50, and Part 100. The staff has prepared a proposed rulemaking to add a new section to 10 CFR Part 50 to provide an alternative set of requirements for treatment of structures, systems and components (SSCs), using a risk-informed categorization process to determine safety significance of the SSCs. These requirements can be voluntarily adopted by light-water reactor licensees and applicants. The proposed rule is based upon extensive interactions with stakeholders (including consideration of public comments on draft rule language made available on the NRC rulemaking web site), experience with pilot plants, and guidance development activities. The NRC staff expects that stakeholder input provided in response to the proposed rule issuance will be valuable and support the efforts to issue the final rule. (author)

  13. Water treatment for fossil fuel power generation - technology status report

    International Nuclear Information System (INIS)

    2006-01-01

    This technology status report focuses on the use of water treatment technology in fossil fuel power plants. The use of polymeric ion exchange resins for deionization of water, the currently preferred use of ion exchange for economically treating water containing low dissolved salts, the use of low pressure high-flux membranes, membrane microfiltration, and reverse osmosis are discussed. Details are given of the benefits of the technologies, water use at power plants, the current status of water treatment technologies, and the potential for future developments, along with power plant market trends and potentials, worldwide developments, and UK capabilities in water treatment plant design and manufacturing

  14. Water reuse by membrane bioreactors (MBR)

    International Nuclear Information System (INIS)

    Garcia, G.; Huete, E.; Martinez, L. C.; Torres, A.

    2010-01-01

    This paper shows an up-to date overview of the use of membrane bioreactor (MBR) to obtain water treated for reusing it. Considering the existing rules. it has been presented a summary of published studies in which the quality of the effluent is analyzed in terms on physico-chemical and biological parameters. Furthermore, MBR results are compared with the conventional treatment ones. Due to the suitability of MBR technology for removing pathogens, particular attention has been paid to disinfection process and the mechanism that govern it. Results from reviewed studies of MBR have showed equal or better quality of water treated than conventional treatments (activated sludge plus disinfection tertiary treatment by the addition of antibacterial agents). (Author) 32 refs.

  15. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    Science.gov (United States)

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  16. The right to water in the Netherlands, a story on a Ruling of one Court that challenged a questionalble tradition

    NARCIS (Netherlands)

    mr.dr. Bart F.W. Wernaart

    2010-01-01

    After decades of rejection of direct applicability of Article 11 ICESCR, recognizing among other things the human right to food including water, a District Court in the Netherlands ruled in June 2008 that the provision can be invoked in a court of law. The decision was inspired by a presumed change

  17. Evaluation of appropriate technologies for grey water treatments and reuses.

    Science.gov (United States)

    Li, Fangyue; Wichmann, Knut; Otterpohl, Ralf

    2009-01-01

    As water is becoming a rare resource, the onsite reuse and recycling of grey water is practiced in many countries as a sustainable solution to reduce the overall urban water demand. However, the lack of appropriate water quality standards or guidelines has hampered the appropriate grey water reuses. Based on literature review, a non-potable urban grey water treatment and reuse scheme is proposed and the treatment alternatives for grey water reuse are evaluated according to the grey water characteristics, the proposed standards and economical feasibility.

  18. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  19. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  20. Levels of Organisation in agent-based modelling for renewable resources management. Agricultural water management collective rules enforcement in the French Drome River Valley Case Study

    International Nuclear Information System (INIS)

    Abrami, G.

    2004-11-01

    Levels of Organisation in agent-based modelling for renewable resources management. Agricultural water management collective rules enforcement in the French Dr me River Valley Case Study. In the context of Agent-Based Modelling for participative renewable resources management, this thesis is concerned with representing multiple tangled levels of organisation of a system. The Agent-Group-Role (AGR) formalism is borrowed from computer science research. It has been conceptually specified to handle levels of organisation, and behaviours within levels of organisation. A design methodology dedicated to AGR modelling has been developed, together with an implementation of the formalism over a multi-agent platform. AGR models of agricultural water management in the French Dr me River Valley have been built and tested. This experiment demonstrates the AGR formalism ability to (1) clarify usually implicit hypothesis on action modes, scales or viewpoints (2) facilitate the definition of scenarios with various collective rules, and various rules in enforcement behaviours (3) generate bricks for generic irrigated catchment models. (author)

  1. Intergroup Bias in Parliamentary Rule Enforcement

    DEFF Research Database (Denmark)

    Hjorth, Frederik Georg

    2016-01-01

    Political actors are often assigned roles requiring them to enforce rules without giving in-groups special treatment. But are such institutional roles likely to be successful? Here, I exploit a special case of exogenously assigned intergroup relations: debates in the Danish Parliament, in which P...... of clear rules, complete observability, and a tradition of parliamentary cooperation....

  2. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants

    International Nuclear Information System (INIS)

    Hoeger, Stefan J.; Hitzfeld, Bettina C.; Dietrich, Daniel R.

    2005-01-01

    Toxin-producing cyanobacteria (blue-green algae) are abundant in surface waters used as drinking water resources. The toxicity of one group of these toxins, the microcystins, and their presence in surface waters used for drinking water production has prompted the World Health Organization (WHO) to publish a provisional guideline value of 1.0 μg microcystin (MC)-LR/l drinking water. To verify the efficiency of two different water treatment systems with respect to reduction of cyanobacterial toxins, the concentrations of MC in water samples from surface waters and their associated water treatment plants in Switzerland and Germany were investigated. Toxin concentrations in samples from drinking water treatment plants ranged from below 1.0 μg MC-LR equiv./l to more than 8.0 μg/l in raw water and were distinctly below 1.0 μg/l after treatment. In addition, data to the worldwide occurrence of cyanobacteria in raw and final water of water works and the corresponding guidelines for cyanobacterial toxins in drinking water worldwide are summarized

  3. CFD in drinking water treatment

    NARCIS (Netherlands)

    Wols, B.A.

    2010-01-01

    Hydrodynamic processes largely determine the efficacy of drinking water treatment systems, in particular disinfection systems. A lack of understanding of the hydrodynamics has resulted in suboptimal designs of these systems. The formation of unwanted disinfection-by-products and the energy

  4. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  5. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    International Nuclear Information System (INIS)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung

    2013-01-01

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon

  6. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2013-05-15

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon.

  7. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    Science.gov (United States)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  8. Six-Hours-Rule - A Dogma for Military Surgery?

    National Research Council Canada - National Science Library

    Gerngross, Heinz; Kahle, Wilhelm

    2004-01-01

    Today, the six-hours-rule is a delicate item for military logistics and it is a great challenge for medical services to provide an adequate treatment during the first hours after wounding. DEFINITION: Six-hour-rule...

  9. Building Adjustable Pre-storm Reservoir Flood-control Release Rules

    Science.gov (United States)

    Yang, Shun-Nien; Chang, Li-Chiu; Chang, Fi-John; Hsieh, Cheng-Daw

    2017-04-01

    Typhoons hit Taiwan several times every year, which could cause serious flood disasters. Because mountainous terrains and steep landforms can rapidly accelerate the speed of flood flow during typhoon events, rivers cannot be a stable source of water supply. Reservoirs become the most effective floodwater storage facilities for alleviating flood damages in Taiwan. The pre-storm flood-control release can significantly increase reservoir storage capacity available to store floodwaters for reducing downstream flood damage, while the uncertainties of total forecasted rainfalls are very high in different stages of an oncoming typhoon, which may cause the risk of water shortage in the future. This study proposes adjustable pre-storm reservoir flood-control release rules in three designed operating stages with various hydrological conditions in the Feitsui Reservoir, a pivot reservoir for water supply to Taipei metropolitan in Taiwan, not only to reduce the risk of reservoir flood control and downstream flooding but also to consider water supply. The three operating stages before an oncoming typhoon are defined upon the timings when: (1) typhoon news is issued (3-7days before typhoon hit); (2) the sea warning is issued (2-4 days before typhoon hit); and (3) the land warning is issued (1-2 days before typhoon hit). We simulate 95 historical typhoon events with 3000 initial water levels and build some pre-storm flood-control release rules to adjust the amount of pre-release based on the total forecasted rainfalls at different operating stages. A great number of simulations (68.4 millions) are conducted to extract their major consequences and then build the adjustable pre-storm reservoir flood-control release rules. Accordingly, given a total forecasted rainfall and a water level, reservoir decision makers can easily identify the corresponding rule to tell the amount of pre-release in any stage. The results show that the proposed adjustable pre-release rules can effectively

  10. [Newly Designed Water Treatment Systems for Hospital Effluent].

    Science.gov (United States)

    Azuma, Takashi

    2018-01-01

     Pharmaceuticals are indispensable to contemporary life. Recently, the emerging problem of pharmaceutical-based pollution of river environments, including drinking water sources and lakes, has begun to receive significant attention worldwide. Because pharmaceuticals are designed to perform specific physiological functions in targeted regions of the human body, there is increasing concern regarding their toxic effects, even at low concentrations, on aquatic ecosystems and human health, via residues in drinking water. Pharmaceuticals are consistently employed in hospitals to treat disease; and Japan, one of the most advanced countries in medical treatment, ranks second worldwide in the quantity of pharmaceuticals employed. Therefore, the development of technologies that minimize or lessen the related environmental risks for clinical effluent is an important task as well as that for sewage treatment plants (STPs). However, there has been limited research on clinical effluent, and much remains to be elucidated. In light of this, we are investigating the occurrence of pharmaceuticals, and the development of water treatment systems for clinical effluent. This review discusses the current research on clinical effluent and the development of advanced water treatment systems targeted at hospital effluent, and explores strategies for future environmental risk assessment and risk management.

  11. Linking ceragenins to water-treatment membranes to minimize biofouling.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter

  12. Increase in extraction yields of coals by water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Iino; Toshimasa Takanohashi; Chunqi Li; Haruo Kumagai [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Institute for Energy Utilization

    2004-10-01

    The effect of water treatment at 500 and 600 K on solvent extractions of Pocahontas No. 3 (PO), Upper Freeport (UF), and Illinois No. 6 (IL) coals was investigated. All the coals used show that the water treatments at 600 K increased the extraction yields greatly in the extractions with a 1:1 carbon disulfide/N-methyl-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent, NMP, or 1-methylnaphthalene (1-MN). However, the water treatments at 500 K and the heat treatments at 600 K without water gave only a slight increase in the yields. Characterizations of the water-treated coals were performed using ultimate and proximate compositions, Fourier transform infrared analysis, solvent swelling, nuclear magnetic resonance relaxation time, and viscoelasticity behavior. The swelling degree in methanol and toluene was increased by the water treatment at 600 K, suggesting that crosslinks become loosened by the treatment. The results of infrared analysis and the extraction temperature dependency of the extraction yields with NMP and 1-MN suggest that the loosening of {pi} - interactions, and of both {pi} - interactions and hydrogen bonds, are responsible for the yield enhancements for PO and UF coals, respectively. However, for IL coal, which exhibited a decrease in oxygen content and the amount of hydrogen-bonded OH, suggesting the occurrence of some chemical reactions, the yield enhancements may be due to the relaxation of hydrogen bonds and the removal of oxygen functional groups, such as the breaking of ether bonds. 17 refs., 3 figs., 5 tabs.

  13. Modeling of the water uptake process for cowpea seeds (vigna unguiculata l.) under common treatment and microwave treatment

    International Nuclear Information System (INIS)

    Demirhan, E.

    2015-01-01

    The water uptake kinetics of cowpea seeds were carried out at two different water absorption treatments - common treatment and microwave treatment - to evaluate the effects of rehydration temperatures and microwave output powers on rehydration. Water uptake of cowpea seeds during soaking in water was studied at various temperatures of 20 - 45 degree C, and at various microwave output powers of 180 - 900 W. As the rehydration temperature and microwave output power increased, the water uptake of cowpea seeds increased and the rehydration time decreased. The Peleg and Richards Models were capable of predicting water uptake of cowpea seeds undergoing common treatment and microwave treatment, respectively. The effective diffusivity values were evaluated by fitting experimental absorption data to Fick second law of diffusion. The effective diffusivity coefficients for cowpea seeds varied from 7.75*10-11 to 1.99*10-10 m2/s and from 2.23*10-9 to 9.78*10-9 m2/s for common treatment and microwave treatment, respectively. (author)

  14. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jaseem, Q.Kh., E-mail: qjassem@kacst.edu.sa [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Almasoud, Fahad I. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Ababneh, Anas M. [Physics Dept., Faculty of Science, Islamic University in Madinah, Al-Madinah, P.O. Box 170 (Saudi Arabia); Al-Hobaib, A.S. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23 Bq/L, which exceeds the international limit of 0.185 Bq/L (5 pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750 Bq/kg, respectively, which exceed the national limit of 1000 Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2–18 Bq/m{sup 3} and 70–1000 nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3 mSv which is below the 1 mSv limit. - Highlights: • Radiological assessment of groundwater treatment plant was performed. • Radium Removal efficiency was calculated for different stages during water treatment. • Radium concentrations in sludge were measured and found to exceed the national limit for radioactive waste. • Air radon concentrations and dose rates were monitored in the water treatment plant. • The Reverse Osmosis (RO) unit was found to record the highest air radon concentrations and dose rates.

  15. Water: from the source to the treatment plan

    Science.gov (United States)

    Baude, I.; Marquet, V.

    2012-04-01

    Isabelle BAUDE isa.baude@free.fr Lycee français de Vienne Liechtensteinstrasse 37AVienna As a physics and chemistry teacher, I have worked on water from the source to the treatment plant with 27 pupils between 14 and 15 years old enrolled in the option "Science and laboratory". The objectives of this option are to interest students in science, to introduce them to practical methods of laboratory analyses, and let them use computer technology. Teaching takes place every two weeks and lasts 1.5 hours. The theme of water is a common project with the biology and geology teacher, Mrs. Virginie Marquet. Lesson 1: Introduction: The water in Vienna The pupils have to consider why the water is so important in Vienna (history, economy etc.) and where tap water comes from. Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2: Objectives of the session: What are the differences between mineral waters? Activities: Compare water from different origins (France: Evian, Vittel, Contrex. Austria: Vöslauer, Juvina, Gasteiner and tap water from Vienna) by tasting and finding the main ions they contain. Testing ions: Calcium, magnesium, sulphate, chloride, sodium, and potassium Lesson 3: Objectives of the session: Build a hydrometer Activities: Producing a range of calibration solutions, build and calibrate the hydrometer with different salt-water solutions. Measure the density of the Dead Sea's water and other mineral waters. Lesson 4: Objectives of the session: How does a fountain work? Activities: Construction of a fountain as Heron of Alexandria with simple equipment and try to understand the hydrostatic principles. Lesson 5: Objectives of the session: Study of the physical processes of water treatment (decantation, filtration, screening) Activities: Build a natural filter with sand, stone, carbon, and cotton wool. Retrieve the filtered water to test it during lesson 7. Lesson 6: Visit of the biggest treatment

  16. Security of water treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Forsha, C.A. [Univ. of Pittsburgh at Johnstown, Johnstowne, PA (United States)

    2002-06-15

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  17. Security of water treatment facilities

    International Nuclear Information System (INIS)

    Forsha, C.A.

    2002-01-01

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  18. Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

    NARCIS (Netherlands)

    Van der Helm, A.W.C.; Kramer, O.J.I.; Hooft, J.F.M.; De Moel, P.J.

    2015-01-01

    In practice, drinking water technologists use simplified calculation methods for aquatic chemistry calculations. Recently, the database stimela.dat is developed especially for aquatic chemistry for drinking water treatment processes. The database is used in PHREEQC, the standard in geohydrology for

  19. 78 FR 28242 - Notice of Lodging of Proposed Consent Decree Under the Safe Drinking Water Act

    Science.gov (United States)

    2013-05-14

    ... Drinking Water Act (SDWA) and the Surface Water Treatment Rule, promulgated under the SDWA. Under the terms... public water system and to pay $8,000 into an escrow account to be used by the association for future... DEPARTMENT OF JUSTICE Notice of Lodging of Proposed Consent Decree Under the Safe Drinking Water...

  20. REVIEW ON NATURAL METHODS FOR WASTE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Dubey

    2014-01-01

    Full Text Available In Ethiopia, the most common method of disposal of waste water is by land spreading. This treatment method has numerous problems, namely high labor requirements and the potential for eutrophication of surface an d ground waters. Constructed wetlands are commonl y used for treatment of seconda ry municipal wastewaters and they have been gaining popularity for treatment of agricultural wastewaters in Ethiopia. Intermittent sand filtration may offer an alternative to traditional treatment methods. As well as providing comparable treatment performance, they also have a smaller footprint, due to the substantially higher organic loading rates that may be applied to their surfaces. Th is paper discusses the performance and design criteria of constructed wetlands for the treatment of domestic and agricultural wastewater, and sand filters for the treatment of domestic wastewater. It also proposes sand filtration as an alt ernative treatment mechanism for agricultural wa stewater and suggests design guide lines.

  1. New QCD sum rules for nucleon axial-vector coupling constants

    International Nuclear Information System (INIS)

    Lee, F.X.; Leinweber, D.B.; Jin, X.

    1997-01-01

    Two new sets of QCD sum rules for the nucleon axial-vector coupling constants are derived using the external-field technique and generalized interpolating fields. An in-depth study of the predicative ability of these sum rules is carried out using a Monte Carlo based uncertainty analysis. The results show that the standard implementation of the QCD sum rule method has only marginal predicative power for the nucleon axial-vector coupling constants, as the relative errors are large. The errors range from approximately 50% to 100% compared to the nucleon mass obtained from the same method, which has only a 10%- 25% error. The origin of the large errors is examined. Previous analyses of these coupling constants are based on sum rules that have poor operator product expansion convergence and large continuum contributions. Preferred sum rules are identified and their predictions are obtained. We also investigate the new sum rules with an alternative treatment of the problematic transitions which are not exponentially suppressed in the standard treatment. The alternative treatment provides exponential suppression of their contributions relative to the ground state. Implications for other nucleon current matrix elements are also discussed. copyright 1997 The American Physical Society

  2. Survey of disinfection efficiency of small drinking water treatment ...

    African Journals Online (AJOL)

    A survey involving 181 water treatment plants across 7 provinces of South Africa: Mpumalanga, Limpopo, North West, Free State, KwaZulu-Natal, Eastern Cape and Western Cape was undertaken to identify the challenges facing small water treatment plants (SWTPs) in South Africa . Information gathered included ...

  3. 18 CFR 385.1109 - Orders (Rule 1109).

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Orders (Rule 1109). 385.1109 Section 385.1109 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... or denying the petition for adjustment within the determination period, the petitioner may treat the...

  4. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Strategies to tackle environmental pollution have been receiving increasing attention throughout the world in recent years. Radiation processing using electron beam accelerators and gamma irradiators has shown very promising results in this area. Radiation processing in wastewater treatment is an additive-free process that uses the short lived reactive species formed during the radiolysis of water for efficient decomposition of pollutants therein. The rapid growth of the global population, together with the increased development of agriculture and industry, have led to the generation of large quantities of polluted industrial and municipal wastewater. The recognition that these polluted waters may pose a serious threat to humans has led technologists to look for cost effective technologies for their treatment. A variety of methods based on biological, chemical, photochemical and electrochemical processes are being explored for decomposing the chemical and biological contaminants present in the wastewaters. Studies in recent years have demonstrated the effectiveness of ionizing radiation such as, gamma rays and electron beams or in combination with other treatments, in the decomposition of refractory organic compounds in aqueous solutions and in the effective removal or inactivation of various microorganisms and parasites. The application of electron beam processing for drinking water, wastewater and groundwater treatment offers the promise of a cost effective process. The installation of the first full scale electron beam plant in Daegu, Republic of Korea, to treat 10 000 m 3 day -1 textile wastewater has demonstrated that the process is a cost effective technology when compared to conventional treatment. The regular operation of this facility provides operational data on reliability and additional data for a detailed economic evaluation. The IAEA has been supporting activities in this area by organizing advisory group meetings, consultants meetings, symposia and

  5. Characterisation of some South African water treatment residues ...

    African Journals Online (AJOL)

    2005-07-03

    Jul 3, 2005 ... Land application of water treatment residue (WTR) the by-product from the production of potable water, is becoming the preferred ... were analysed for some physical (particle size distribution, particle density and plant available water) and chemical attributes ...... for Industrial Wastes – Theory and Practice.

  6. The beneficial usage of water treatment sludge as pottery product ...

    African Journals Online (AJOL)

    The disposal of sludge from water treatment operations has become a major problem in Malaysia. The problem becomes acute because of scarcity of space for installation of sludge treatment facilities and disposal of treated sludge. Traditionally, treated sludge from water treatment plant will be sent to landfill for disposal.

  7. Water treatment for 500 MWe PHWR plants

    International Nuclear Information System (INIS)

    Vasist, Sudheer; Sharma, M.C.; Agarwal, N.K.

    1995-01-01

    Large quantities of treated water is required for power generation. For a typical 500 MWe PHWR inland station with cooling towers, raw water at the rate of 6000 m 3 /hr is required. Impurities in cooling water give rise to the problems of corrosion, scaling, microbiological contamination, fouling, silical deposition etc. These problems lead to increased maintenance cost, reduced heat transfer efficiency, and possible production cut backs or shutdowns. The problems in coastal based power plants are more serious because of the highly corrosive nature of sea water used for cooling. An overview of the cooling water systems and water treatment method is enumerated. (author). 2 refs., 1 fig

  8. Basic safety rule number no.2002-01

    International Nuclear Information System (INIS)

    2002-12-01

    The purpose of this rule is to define acceptable methods for the development of probabilistic safety assessments(P.S.A.) and proven applications of P.S.A. for operating or future pressurized water reactors (PWR type reactors) of the French nuclear power programme, incorporating available French and international experience in this area. The standing group of experts for nuclear reactors has been consulted for the drafting of this rule. (N.C.)

  9. Nanofiltration technology in water treatment and reuse: applications and costs.

    Science.gov (United States)

    Shahmansouri, Arash; Bellona, Christopher

    2015-01-01

    Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals.

  10. Utilisation of drinking water treatment sludge for the manufacturing of ceramic products

    Science.gov (United States)

    Kizinievič, O.; Kizinievič, V.

    2017-10-01

    The influence of the additive of drinking water treatment sludge on the physical and mechanical properties, structural parameters, microstructure of the ceramic products is analysed in the research. Drinking water treatment sludge is renewable, environmentally-friendly, economical additive saving expensive natural raw materials when introduced into the ceramic products. The main drinking water treatment sludge component is amorphous Fe2O3 (70%). Formation masses are prepared by incorporating from 5 % to 60 % of drinking water treatment additive and by burning out at the temperature 1000 °C. Investigation showed that the physical and mechanical properties, microstructure of the ceramic bodies vary depending on the amount of drinking water treatment additive incorporated. In addition, drinking water treatment additive affects the ceramic body as a pigment that dyes the ceramic body in darker red colour.

  11. 18 CFR 35.41 - Market behavior rules.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Market behavior rules. 35.41 Section 35.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION... Sales of Electric Energy, Capacity and Ancillary Services at Market-Based Rates § 35.41 Market behavior...

  12. Household pasteurization of drinking-water: the chulli water-treatment system.

    Science.gov (United States)

    Islam, Mohammad Fakhrul; Johnston, Richard B

    2006-09-01

    A simple flow-through system has been developed which makes use of wasted heat generated in traditional clay ovens (chullis) to pasteurize surface water. A hollow aluminium coil is built into the clay chulli, and water is passed through the coil during normal cooking events. By adjusting the flow rate, effluent temperature can be maintained at approximately 70 degrees C. Laboratory testing, along with over 400 field tests on chulli systems deployed in six pilot villages, showed that the treatment completely inactivated thermotolerant coliforms. The chulli system produces up to 90 litres per day of treated water at the household level, without any additional time or fuel requirement. The technology has been developed to provide a safe alternative source of drinking-water in arsenic-contaminated areas, but can also have wide application wherever people consume microbiologically-contaminated water.

  13. [Maintenance and monitoring of water treatment system].

    Science.gov (United States)

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality.

  14. Fuzzy rule-based model for hydropower reservoirs operation

    Energy Technology Data Exchange (ETDEWEB)

    Moeini, R.; Afshar, A.; Afshar, M.H. [School of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    Real-time hydropower reservoir operation is a continuous decision-making process of determining the water level of a reservoir or the volume of water released from it. The hydropower operation is usually based on operating policies and rules defined and decided upon in strategic planning. This paper presents a fuzzy rule-based model for the operation of hydropower reservoirs. The proposed fuzzy rule-based model presents a set of suitable operating rules for release from the reservoir based on ideal or target storage levels. The model operates on an 'if-then' principle, in which the 'if' is a vector of fuzzy premises and the 'then' is a vector of fuzzy consequences. In this paper, reservoir storage, inflow, and period are used as premises and the release as the consequence. The steps involved in the development of the model include, construction of membership functions for the inflow, storage and the release, formulation of fuzzy rules, implication, aggregation and defuzzification. The required knowledge bases for the formulation of the fuzzy rules is obtained form a stochastic dynamic programming (SDP) model with a steady state policy. The proposed model is applied to the hydropower operation of ''Dez'' reservoir in Iran and the results are presented and compared with those of the SDP model. The results indicate the ability of the method to solve hydropower reservoir operation problems. (author)

  15. Enhanced drinking water supply through harvested rainwater treatment

    Science.gov (United States)

    Naddeo, Vincenzo; Scannapieco, Davide; Belgiorno, Vincenzo

    2013-08-01

    Decentralized drinking water systems represent an important element in the process of achieving the Millennium Development Goals, as centralized systems are often inefficient or nonexistent in developing countries. In those countries, most water quality related problems are due to hygiene factors and pathogens. A potential solution might include decentralized systems, which might rely on thermal and/or UV disinfection methods as well as physical and chemical treatments to provide drinking water from rainwater. For application in developing countries, decentralized systems major constraints include low cost, ease of use, environmental sustainability, reduced maintenance and independence from energy sources. This work focuses on an innovative decentralized system that can be used to collect and treat rainwater for potable use (drinking and cooking purposes) of a single household, or a small community. The experimented treatment system combines in one compact unit a Filtration process with an adsorption step on GAC and a UV disinfection phase in an innovative design (FAD - Filtration Adsorption Disinfection). All tests have been carried out using a full scale FAD treatment unit. The efficiency of FAD technology has been discussed in terms of pH, turbidity, COD, TOC, DOC, Escherichia coli and Total coliforms. FAD technology is attractive since it provides a total barrier for pathogens and organic contaminants, and reduces turbidity, thus increasing the overall quality of the water. The FAD unit costs are low, especially if compared to other water treatment technologies and could become a viable option for developing countries.

  16. Assessment of drinking water quality and rural household water treatment in Balaka District, Malawi

    Science.gov (United States)

    Mkwate, Raphael C.; Chidya, Russel C. G.; Wanda, Elijah M. M.

    2017-08-01

    Access to drinking water from unsafe sources is widespread amongst communities in rural areas such as Balaka District in Malawi. This situation puts many individuals and communities at risk of waterborne diseases despite some households adopting household water treatment to improve the quality of the water. However, there still remains data gaps regarding the quality of drinking water from such sources and the household water treatment methods used to improve public health. This study was, therefore, conducted to help bridge the knowledge gap by evaluating drinking water quality and adoption rate of household water treatment and storage (HWTS) practices in Nkaya, Balaka District. Water samples were collected from eleven systematically selected sites and analyzed for physico-chemical and microbiological parameters: pH, TDS, electrical conductivity (EC), turbidity, F-, Cl-, NO3-, Na, K, Fe, Faecal Coliform (FC) and Faecal Streptococcus (FS) bacteria using standard methods. The mean results were compared to the World Health Organization (WHO) and Malawi Bureau of Standards (MBS) (MS 733:2005) to ascertain the water quality for drinking purposes. A total of 204 randomly selected households were interviewed to determine their access to drinking water, water quality perception and HWTS among others. The majority of households (72%, n = 83) in Njerenje accessed water from shallow wells and rivers whilst in Phimbi boreholes were commonly used. Several households (>95%, n = 204) were observed to be practicing HWST techniques by boiling or chlorination and water storage in closed containers. The levels of pH (7.10-7.64), F- (0.89-1.46 mg/L), Cl- (5.45-89.84 mg/L), NO3- (0-0.16 mg/L), Na (20-490 mg/L), K (2.40-14 mg/L) and Fe (0.10-0.40 mg/L) for most sites were within the standard limits. The EC (358-2220 μS/cm), turbidity (0.54-14.60 NTU), FC (0-56 cfu/100 mL) and FS (0-120 cfu/100 mL) - mainly in shallow wells, were found to be above the WHO and MBS water quality

  17. Extraction of Static and Dynamic Reservoir Operation Rules by Genetic Programming

    Directory of Open Access Journals (Sweden)

    Habib Akbari Alashti

    2014-11-01

    Full Text Available Considering the necessity of desirable operation of limited water resources and assuming the significant role of dams in controlling and consuming the surface waters, highlights the advantageous of suitable operation rules for optimal and sustainable operation of dams. This study investigates the hydroelectric supply of a one-reservoir system of Karoon3 using nonlinear programming (NLP, genetic algorithm (GA, genetic programming (GP and fixed length gen GP (FLGGP in real-time operation of dam considering two approaches of static and dynamic operation rules. In static operation rule, only one rule curve is extracted for all months in a year whereas in dynamic operation rule, monthly rule curves (12 rules are extracted for each month of a year. In addition, nonlinear decision rule (NLDR curves are considered, and the total deficiency function as the target (objective function have been used for evaluating the performance of each method and approach. Results show appropriate efficiency of GP and FLGGP methods in extracting operation rules in both approaches. Superiority of these methods to operation methods yielded by GA and NLP is 5%. Moreover, according to the results, it can be remarked that, FLGGP method is an alternative for GP method, whereas the GP method cannot be used due to its limitations. Comparison of two approaches of static and dynamic operation rules demonstrated the superiority of dynamic operation rule to static operation rule (about 10% and therefore this method has more capabilities in real-time operation of the reservoirs systems.

  18. Application of graphene oxide in water treatment

    Science.gov (United States)

    Liu, Yongchen

    2017-11-01

    Graphene oxide has good hydrophilicity and has been tried to use it into thin films for water treatment in recent years. In this paper, the preparation methods of graphene oxide membrane are reviewed, including vacuum suction filtration, spray coating, spin coating, dip coating and the layer by layer method. Secondly, the mechanism of mass transfer of graphene membrane is introduced in detail. The application of the graphene oxide membrane, modified graphene oxide membrane and graphene hybrid membranes were discussed in RO, vaporization, nanofiltration and other aspects. Finally, the development and application of graphene membrane in water treatment were discussed.

  19. Multi-arm group sequential designs with a simultaneous stopping rule.

    Science.gov (United States)

    Urach, S; Posch, M

    2016-12-30

    Multi-arm group sequential clinical trials are efficient designs to compare multiple treatments to a control. They allow one to test for treatment effects already in interim analyses and can have a lower average sample number than fixed sample designs. Their operating characteristics depend on the stopping rule: We consider simultaneous stopping, where the whole trial is stopped as soon as for any of the arms the null hypothesis of no treatment effect can be rejected, and separate stopping, where only recruitment to arms for which a significant treatment effect could be demonstrated is stopped, but the other arms are continued. For both stopping rules, the family-wise error rate can be controlled by the closed testing procedure applied to group sequential tests of intersection and elementary hypotheses. The group sequential boundaries for the separate stopping rule also control the family-wise error rate if the simultaneous stopping rule is applied. However, we show that for the simultaneous stopping rule, one can apply improved, less conservative stopping boundaries for local tests of elementary hypotheses. We derive corresponding improved Pocock and O'Brien type boundaries as well as optimized boundaries to maximize the power or average sample number and investigate the operating characteristics and small sample properties of the resulting designs. To control the power to reject at least one null hypothesis, the simultaneous stopping rule requires a lower average sample number than the separate stopping rule. This comes at the cost of a lower power to reject all null hypotheses. Some of this loss in power can be regained by applying the improved stopping boundaries for the simultaneous stopping rule. The procedures are illustrated with clinical trials in systemic sclerosis and narcolepsy. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  20. Gaming the system. Dodging the rules, ruling the dodgers.

    Science.gov (United States)

    Morreim, E H

    1991-03-01

    Although traditional obligations of fidelity require physicians to deliver quality care to their patients, including to utilize costly technologies, physicians are steadily losing their accustomed control over the necessary resources. The "economic agents" who own the medical and monetary resources of care now impose a wide array of rules and restrictions in order to contain their costs of operation. However, physicians can still control resources indirectly through "gaming the system," employing tactics such as "fudging" that exploit resource rules' ambiguity and flexibility to bypass the rules while ostensibly honoring them. Physicians may be especially inclined to game the system where resource rules seriously underserve patients' needs, where economic agents seem to be "gaming the patient," with needless obstacles to care, or where others, such as hospitals or even physicians themselves, may be denied needed reimbursements. Though tempting, gaming is morally and medically hazardous. It can harm patients and society, offend honesty, and violate basic principles of contractual and distributive justice. It is also, in fact, usually unnecessary in securing needed resources for patients. More fundamentally, we must reconsider what physicians owe their patients. They owe what is theirs to give: their competence, care and loyalty. In light of medicine's changing economics, two new duties emerge: economic advising, whereby physicians explicitly discuss the economic as well as medical aspects of each treatment option; and economic advocacy, whereby physicians intercede actively on their patients' behalf with the economic agents who control the resources.

  1. 18 CFR 385.207 - Petitions (Rule 207).

    Science.gov (United States)

    2010-04-01

    ... section 23(b) of the Federal Power Act is treated as a petition for a declaratory order. (c) Except as... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Petitions (Rule 207). 385.207 Section 385.207 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION...

  2. A new water treatment scheme for thermal development : the SIBE process

    Energy Technology Data Exchange (ETDEWEB)

    Pedenaud, P.; Dang, F. [Total, Paris (France)

    2008-10-15

    The production of extra heavy oil or bitumen through thermal methods such as steam assisted gravity drainage (SAGD) involves the generation and injection into the reservoir of large quantities of steam which is recirculated with the produced bitumen. It is expected that maximizing the recycling of the produced water into steam will be mandatory, because of the need to minimize fresh water consumption and the possibility of increasingly stringent environmental regulations. The SAGD water treatment scheme is complex. It depends on the water characteristics, the steam generator type selected, and the decision to completely eliminate waste water disposal or use other waste handling and disposal methods. Other challenges such as the high silica content in the produced water, are encountered with SAGD water treatment. This paper presented an overview of the current water treatment process options for SAGD, as well as a new patented process called silica inhibition and blowdown evaporation (SIBE). The paper also presented an estimate of the economic benefit of the new SIBE process relative to conventional process schemes. Treatment objectives and water characteristics and the steps involved in conventional water treatment were first outlined. It was concluded that the silica and hardness removal scheme combined with the boiler blowdown evaporator were less economical because of higher investment cost due to the evaporation unit. 1 ref., 3 tabs., 4 figs.

  3. Zoujiashan uranium waste water treatment optimizaiton design

    International Nuclear Information System (INIS)

    Huang Lianjun

    2014-01-01

    Optimization design follows the decontamination triage, comprehensive management, such as wastewater treatment principle and from easy to difficult. increasing the slurry treatment, optimization design containing ρ (U) > defines I mg/L wastewater for higher uranium concentration wastewater, whereas low uranium concentration wastewater. Through the optimization design, solve the problem of water turbidity 721-15 wastewater treatment station of the lack of capacity and mine. (author)

  4. Treatment of mine-water from decommissioning uranium mines

    International Nuclear Information System (INIS)

    Fan Quanhui

    2002-01-01

    Treatment methods for mine-water from decommissioning uranium mines are introduced and classified. The suggestions on optimal treatment methods are presented as a matter of experience with decommissioned Chenzhou Uranium Mine

  5. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment.

    Science.gov (United States)

    Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D

    2016-02-27

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  6. Low-energy proton stopping power of N2, O2, and water vapor, and deviations from Bragg's rule

    International Nuclear Information System (INIS)

    Xu, Y.J.; Khandelwal, G.S.; Wilson, J.W.

    1984-01-01

    A modified local-plasma model, based on the works of Lindhard and Winther, and Bethe, Brown, and Walske is established. The Gordon-Kim model for molecular-electron density is used to calculate stopping power of N 2 , O 2 , and water vapor for protons of energy ranging from 40 keV to 2.5 MeV, resulting in good agreement with experimental data. Deviations from Bragg's rule are evaluated and are discussed under the present theoretical model

  7. Minireview: the health implications of water treatment with ozone.

    Science.gov (United States)

    Carmichael, N G; Winder, C; Borges, S H; Backhouse, B L; Lewis, P D

    1982-01-11

    Ozone is a highly efficient disinfectant which may have significant advantages in water treatment compared to chlorine. It has, however, been shown that mutagenic and possibly carcinogenic byproducts may be produced under certain conditions of ozonation. Light chlorination following ozonization may meet the highest standards of disinfection. In addition the destruction of much of the organic matter by prior ozone treatment may well result in less harmful chlorinated and brominated products in the finished water. In many cases ozone treatment alone may suffice. It would be desirable to test with long term in vivo experiments which of the alternatives produces the best combination of microbiologically clean and pleasant water with minimum mutagenic and carcinogenic effect.

  8. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  9. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  10. Heterotrophic monitoring at a drinking water treatment plant by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry after different drinking water treatments.

    Science.gov (United States)

    Sala-Comorera, Laura; Blanch, Anicet R; Vilaró, Carles; Galofré, Belén; García-Aljaro, Cristina

    2017-10-01

    The aim of this work was to assess the suitability of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for routine heterotrophic monitoring in a drinking water treatment plant. Water samples were collected from raw surface water and after different treatments during two campaigns over a 1-year period. Heterotrophic bacteria were studied and isolates were identified by MALDI-TOF MS. Moreover, the diversity index and the coefficient of population similarity were also calculated using biochemical fingerprinting of the populations studied. MALDI-TOF MS enabled us to characterize and detect changes in the bacterial community composition throughout the water treatment plant. Raw water showed a large and diverse population which was slightly modified after initial treatment steps (sand filtration and ultrafiltration). Reverse osmosis had a significant impact on the microbial diversity, while the final chlorination step produced a shift in the composition of the bacterial community. Although MALDI-TOF MS could not identify all the isolates since the available MALDI-TOF MS database does not cover all the bacterial diversity in water, this technique could be used to monitor bacterial changes in drinking water treatment plants by creating a specific protein profile database for tracking purposes.

  11. Grey water treatment in UASB reactor at ambient temperature.

    Science.gov (United States)

    Elmitwalli, T A; Shalabi, M; Wendland, C; Otterpohl, R

    2007-01-01

    In this paper, the feasibility of grey water treatment in a UASB reactor was investigated. The batch recirculation experiments showed that a maximum total-COD removal of 79% can be obtained in grey-water treatment in the UASB reactor. The continuous operational results of a UASB reactor treating grey water at different hydraulic retention time (HRT) of 20, 12 and 8 hours at ambient temperature (14-24 degrees C) showed that 31-41% of total COD was removed. These results were significantly higher than that achieved by a septic tank (11-14%), the most common system for grey water pre-treatment, at HRT of 2-3 days. The relatively lower removal of total COD in the UASB reactor was mainly due to a higher amount of colloidal COD in the grey water, as compared to that reported in domestic wastewater. The grey water had a limited amount of nitrogen, which was mainly in particulate form (80-90%). The UASB reactor removed 24-36% and 10-24% of total nitrogen and total phosphorus, respectively, in the grey water, due to particulate nutrients removal by physical entrapment and sedimentation. The sludge characteristics of the UASB reactor showed that the system had stable performance and the recommended HRT for the reactor is 12 hours.

  12. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    Science.gov (United States)

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  13. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  14. Biological treatment of drinking water by chitosan based ...

    African Journals Online (AJOL)

    ABI

    2015-03-18

    Mar 18, 2015 ... method. A membrane filtration technique is used for the treatment of water to remove or kill ... The characterization of synthesized nanoparticles was done by dynamic ... water and just 3% is available for drinking, agriculture,.

  15. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  16. EPA, environmentalists feud over land ban waste rule

    International Nuclear Information System (INIS)

    Hanson, D.

    1990-01-01

    The publication of the Environmental Protection Agency's final, major hazardous waste regulation marks the end of a five-year effort to control land disposal of waste. This article discusses how the rule has ignited a major fight between the agency and environmental groups that fear the regulation is far too lenient to industry. The rule will affect everyone who handles chemical waste from researchers to truck drivers. Although it is the last, it is also the largest of the hazardous waste regulations, covering a vast array of substances. The rule's provisions encompass almost 350 listed wastes, multisource leachate, mixed radioactive and hazardous waste, alternative treatments for lab packs, and treatment standards for waste that exhibits one or more hazardous characteristics

  17. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.

    Science.gov (United States)

    Appleman, Timothy D; Higgins, Christopher P; Quiñones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V

    2014-03-15

    The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n = 39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. The increase in extraction yields of coals by water treatment

    Energy Technology Data Exchange (ETDEWEB)

    M. Iino; T. Takanohashi; C. Li; N. Kashimura; K. Masaki; T. Shishido; I. Saito; H. Kumagai [Institute for Energy Utilization, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan)

    2005-07-01

    We have reported that the water treatments of bituminous coals at 600 K for 1 h increased their extraction yields greatly (Energy Fuels, 2005, 18, 1414). In this paper the effect of coal rank on the extraction yields enhancement by the water treatment has been investigated using four Argonne Premium coals, i.e., Pocahontas No. 3 (PO), Upper Freeport (UF), Illinois No.6 (IL), and Beulah Zap (BZ) coals with C % (daf) in the range 67 - 90%. All the coals used show that the water treatments at 600 K increased the extraction yields greatly with a 1:1 carbon disulfide / N-methyl-2-pyrrolidinone mixed solvent (CS2 / NMP) at room temperature. While, the water treatments at 500 K or the heat treatments at 600 K without water gave little increase in the yields. Characterizations of the water-treated coals were carried out from ultimate and proximate compositions, FT-IR spectrum, solvent swelling, NMR relaxation time, and viscoelasticity behavior. The effect of extraction temperature on the extraction yield enhancement was also investigated using polar NMP or non-polar 1-MN solvent. From these results it is concluded that for high coal rank coals the loosening of non-covalent bonds is responsible for the extraction yields enhancement by the water treatment. The loosening non-covalent bonds may be {pi}-{pi} interactions between aromatic rings for PO, and both {pi}-{pi} interactions and hydrogen bonds for UF. While, for lower rank IL and BZ, which showed decrease in O% and hydrogen-bonded OH, the yield enhancements may be due to the loosening of hydrogen bonds and the removal of oxygen functional groups. 9 refs., 5 figs., 1 tab.

  19. Derivation of Operation Rule for Ilisu Dam

    Directory of Open Access Journals (Sweden)

    Ahmed Abdul-Sahib Mohammed Ali

    2018-06-01

    Full Text Available Tigris River water that comes from Turkey represents the main water resource of this river in Iraq. The expansion in water river implementations has formed a source of trouble for the workers in the water resources management field in Iraqi. Unfortunately, there is no agreement between Iraq and Turkey till now to share the water of this international river. Consequently, the optimal operation of water resources systems, particularly a multi-objective, multi-reservoir, is of the most necessity at the present time. In this research two approaches, were used the dynamic programming (DP approach and simulation model to find the optimal monthly operation of Ilisu Dam (from an Iraqi point of view through a computer program (in Q. Basic language to find the optimum monthly release and storage by adopting an objective function that minimizes the release and storage losses (penalty. The historical inflow data of 588 months from (Oct. 1961 to Sep. 2009 formed the input data to the optimization models. Storage rule curves for the reservoir at (lower, mean, upper of (10%, 50%, and 90%, respectively, were found according to the results of the optimized operation. A simulation model was developed to operate the system using these rule curves.

  20. Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.

    Science.gov (United States)

    Wu, Tingting; Englehardt, James D

    2016-12-01

    An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sludge quantification at water treatment plant and its management scenario.

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  2. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Science.gov (United States)

    Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.

    2016-01-01

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152

  3. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Lydia S. Abebe

    2016-02-01

    Full Text Available The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI between 4.7 (±1.56 and 7.5 (±0.02 log10 for Escherichia coli, and between 2.8 (±0.10 and 4.5 (±1.04 log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO. According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  4. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1989-01-01

    Radon contamination of drinking water primarily affects individual homeowners and small communities using ground-water supplies. Presently, three types of treatment processes have been used to remove radon: granular activated carbon adsorption (GAC), diffused-bubble aeration, and packed-tower aeration. In order to obtain data on these treatment alternatives for small communities water supplies, a field evaluation study was conducted on these three processes as well as on several modifications to aeration of water in storage tanks considered to be low cost/low technology alternatives. The paper presents the results of these field studies conducted at a small mobile home park in rural New Hampshire. The conclusion of the study was that the selection of the appropriate treatment system to remove radon from drinking water depends primarily upon: (1) precent removal of process; (2) capital operating and maintenance costs; (3) safety (radiation); and (4) raw water quality (Fe, Mn, bacteria and organics)

  5. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    Science.gov (United States)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  6. New aspects of sewerage and water technology

    International Nuclear Information System (INIS)

    Niemczynowics, J.

    1993-01-01

    Highly developed countries with expensive water-related infrastructure, sophisticated waterworks and treatment plants, still contribute to local and global pollution. Many developing countries still lack water-treatment facilities and environmentally-sound water management. These problems are especially accentuated in some of the large and fast growing cities of the world. Means of solving the problems involve a new holistic approach to resource management. The goal of such an approach is to close the cycles of residuals that damage the environment, and to recover resources lost in residuals emitted from human activities. The most important step is to apply pollution prevention, i.e. pollution control at the source. Present knowledge suggests technologies that can solve the problem of pollution from human settlements on a single-house level. Alternatively, wastewater may be treated locally and reused. Ecologically-sound technologies that already exist should be used whenever possible. Water management can be integrated with management of other human activities, such as waste handling, industrial production, transportation, etc. Tools for implementation of such solutions are: legislation coupled with education programs; changing competition rules of the market economy; i.e. developing a sustainable society through resource recovery and reuse. Demonstration projects, in which the rules of preventive approach and novel technology are applied, may constitute a practical means of implementing such an approach. 34 refs, 3 figs

  7. Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota

    Science.gov (United States)

    Woznicki, S. A.; Wickham, J.

    2017-12-01

    Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influence future treatment processes is lacking. The drinking water treatment plant in Minneapolis, MN has recognized that land cover change threatens water quality in their source watershed, the Upper Mississippi River Basin (UMRB). Over 1,000 km2 of forests, wetlands, and grasslands in the UMRB were lost to agriculture from 2008-2013. This trend, coupled with a projected population increase of one million people in Minnesota by 2030, concerns drinking water treatment plant operators in Minneapolis with respect to meeting future demand for clean water in the UMRB. The objective of this study is to relate land cover change (forest and wetland loss, agricultural expansion, urbanization) to changes in treatment costs for the Minneapolis, MN drinking water utility. To do this, we first developed a framework to determine the relationship between land cover change and water quality in the context of recent historical changes and projected future changes in land cover. Next we coupled a watershed model, the Soil and Water Assessment Tool (SWAT) to projections of land cover change from the FOREcasting SCEnarios of Land-use Change (FORE-SCE) model for the mid-21st century. Using historical Minneapolis drinking water treatment data (chemical usage and costs), source water quality in the UMRB was linked to changes in treatment requirements as a function of projected future land cover change. These analyses will quantify the value of natural landscapes in protecting drinking water quality and future treatment processes requirements. In addition, our study provides the Minneapolis drinking water utility with information critical to their planning and capital improvement process.

  8. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  9. New electrochemical and photochemical systems for water and wastewater treatment

    International Nuclear Information System (INIS)

    Sarria, Victor M; Parra, Sandra; Rincon, Angela G; Torres, Ricardo A; Pulgarin, Cesar

    2005-01-01

    With the increasing pressure on a more effective use of water resources, the development of appropriate water treatment technologies become more and more important. Photochemical and electrochemical oxidation processes have been proposed in recent years as an attractive alternative for the treatment of contaminated water containing anthropogenic substances hardly biodegradable as well as to purify and disinfect drinking waters. The aim of this paper is to present some of our last results demonstrating that electrochemical, photochemical, and the coupling of these processes with biological systems are very promising alternatives for the improvement of the water quality

  10. Development of Future Rule Curves for Multipurpose Reservoir Operation Using Conditional Genetic and Tabu Search Algorithms

    Directory of Open Access Journals (Sweden)

    Anongrit Kangrang

    2018-01-01

    Full Text Available Optimal rule curves are necessary guidelines in the reservoir operation that have been used to assess performance of any reservoir to satisfy water supply, irrigation, industrial, hydropower, and environmental conservation requirements. This study applied the conditional genetic algorithm (CGA and the conditional tabu search algorithm (CTSA technique to connect with the reservoir simulation model in order to search optimal reservoir rule curves. The Ubolrat Reservoir located in the northeast region of Thailand was an illustrative application including historic monthly inflow, future inflow generated by the SWAT hydrological model using 50-year future climate data from the PRECIS regional climate model in case of B2 emission scenario by IPCC SRES, water demand, hydrologic data, and physical reservoir data. The future and synthetic inflow data of reservoirs were used to simulate reservoir system for evaluating water situation. The situations of water shortage and excess water were shown in terms of frequency magnitude and duration. The results have shown that the optimal rule curves from CGA and CTSA connected with the simulation model can mitigate drought and flood situations than the existing rule curves. The optimal future rule curves were more suitable for future situations than the other rule curves.

  11. Methods for waste waters treatment in textile industry

    OpenAIRE

    Srebrenkoska, Vineta; Zhezhova, Silvana; Risteski, Sanja; Golomeova, Saska

    2014-01-01

    The processes of production of textiles or wet treatments and finishing processes of textile materials are huge consumers of water with high quality. As a result of these various processes, considerable amounts of polluted water are released. This paper puts emphasis on the problem of environmental protection against waste waters generated by textile industry. The methods of pretreatment or purification of waste waters in the textile industry can be: Primary (screening, sedimentation, homo...

  12. Potential applications of plasma science techniques for water treatment systems

    International Nuclear Information System (INIS)

    Pavlik, D.

    1994-01-01

    The historical evolution of water treatment techniques and their impact on man and his environment are presented. Ancient man recognized the relationship between good water and good health. However, it was not until the late 1800's that man's own contribution to the pollution of water via biological and chemical contamination of the water stream was recognized as having adverse affects on water quality. Since that time virtually every nation has adopted laws and regulations to ensure that safe sources of unpolluted water are available to its citizens. In the United States, water quality is governed by the Clean Water Act of 1972 administered at the federal level by the Environmental Protection Agency (EPA). Further, each state has established its equivalent agency which administers its own laws and regulations. Different biological and chemical biohazards present in the water system are discussed. Biological contaminants include various types of viruses, bacteria, fungii, molds, yeasts, algae, amoebas, and parasites. Chemical contaminates include elemental heavy metals and other organic and inorganic compounds which interfere with normal biological functions. Conventional water treatments for both consumption and sewage effluent commonly employ four different principals: mechanical filtration, quiescent gravity settling, biological oxidation, and chemical treatment. Although these techniques have greatly reduced the incidence of water-borne disease recent studies suggest that more effective means of eliminating biohazards are needed. Regulatory requirements for more aggressive treatment and elimination of residual contaminants present a significant opportunity for the application of various forms of electromagnetic radiation techniques. A comparison between conventional techniques and more advanced methods using various forms of electromagnetic radiation is discussed

  13. Methods of removing uranium from drinking water. 1. A literature survey. 2. Present municipal water treatment and potential removal methods

    International Nuclear Information System (INIS)

    Drury, J.S.; Michelson, D.; Ensminger, J.T.; Lee, S.Y.; White, S.K.

    1982-12-01

    Literature was searched for methods of removing uranium from drinking water. U.S. manufacturers and users of water-treatment equipment and products were also contacted regarding methods of removing uranium from potable water. Based on the results of these surveys, it was recommended that untreated, partially treated, and finished water samples from municipal water-treatment facilities be analyzed to determine the extent of removal of uranium by presently used procedures, and that additional laboratory studies be performed to determine what changes are needed to maximize the effectiveness of treatments that are already in use in existing water-treatment plants

  14. Characterization and treatment of grey water : option for (re)use

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.

    2009-01-01

    Addressing the issues of water shortage and appropriate sanitation in Jordan, domestic grey water treatment receives growing interest. Grey water comprises the domestic wastewater flows excluding waters associated with the toilet. The topics of concern for grey water are its characteristics,

  15. The Consequences of the FAA not Offering Emergency Agricultural UAS Rules for Water Conservation During the 2012 Drought

    Science.gov (United States)

    Darling, R. G.

    2016-12-01

    The FAA's policies for agricultural Unmanned Aerial Systems (UAS) is essential towards preservation and optimization of water use in the parched Western United States. Had FAA applied emergency rules putting farmers on equal-footing with hobbyists for sUAS use at the beginning of the 2012 drought, the Western US could have been able to save approximately 3 Million/AF of water through improved irrigation management. For perspective, Los Angeles city's annual current consumption is 587,000 acre-feet. This study uses various assumptions about developed water use in agriculture and urban areas to determine water use, energy consumption, monetary loss through delay in FAA regulations. If the saved water was added to the ground the energy savings could have been approximately 1.27 Terra-Watt hours, enough energy to power the entire University of California system for 5 years. It remains unclear if new FAA regulations are sufficiently permissive to allow for widespread adoption of sUAS based precision agriculture. Substantial opportunities exist for utilizing UAS traffic management software in rural areas of less crowed airspace: incorporating geofencing and a notification system to operators and air traffic control as an alternative to a difficult examination process.

  16. Energy requirements for waste water treatment.

    Science.gov (United States)

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  17. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  18. Treatment of water contaminated with N-nitrosodimethylamine (NDMA)

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, K; Lakanowski, C; Somers, A; Whittaker, H; Hamid, H B [Environment Canada, Ottawa, ON (Canada); Anantaraman, A [Ottawa Univ., ON (Canada)

    1996-12-31

    A series of remediation technologies for contaminated soil and water at former nuclear missile sites in the countries of Eastern Europe have been developed. As part of this project the applicability of electrolytic reduction of N-nitrosodimethylamine (NDMA) in groundwater, using relatively cheap materials, was evaluated. It was found that reduction of NDMA in water could be achieved using inexpensive carbon electrodes and a simple two-electrode cell, making the process potentially applicable for the treatment of contaminated surface and groundwater in field conditions. Best results were achieved at pH 1 and a potential difference of 3 to 3.5 V. It is worth noting that the residual concentration of NDMA was still too high to discharge the water into the environment without additional treatment.

  19. Bioremediation of mine water.

    Science.gov (United States)

    Klein, Robert; Tischler, Judith S; Mühling, Martin; Schlömann, Michael

    2014-01-01

    Caused by the oxidative dissolution of sulfide minerals, mine waters are often acidic and contaminated with high concentrations of sulfates, metals, and metalloids. Because the so-called acid mine drainage (AMD) affects the environment or poses severe problems for later use, treatment of these waters is required. Therefore, various remediation strategies have been developed to remove soluble metals and sulfates through immobilization using physical, chemical, and biological approaches. Conventionally, iron and sulfate-the main pollutants in mine waters-are removed by addition of neutralization reagents and subsequent chemical iron oxidation and sulfate mineral precipitation. Biological treatment strategies take advantage of the ability of microorganisms that occur in mine waters to metabolize iron and sulfate. As a rule, these can be grouped into oxidative and reductive processes, reflecting the redox state of mobilized iron (reduced form) and sulfur (oxidized form) in AMD. Changing the redox states of iron and sulfur results in iron and sulfur compounds with low solubility, thus leading to their precipitation and removal. Various techniques have been developed to enhance the efficacy of these microbial processes, as outlined in this review.

  20. Radiation processing technology for industrial waste water treatment

    International Nuclear Information System (INIS)

    2011-01-01

    Radiation sterilization technology, cross-linked polymers and curing, food and environmental applications of the radiation is widely used for many years. At the same time, drinking water and wastewater treatment are the part of the radiation technology applications. For this purpose, drinking water and wastewater treatment plants in various countries has been established. In this project, gamma / electron beam radiation treatment is intended to be used for the treatment of alkaloid, textiles and polychlorinated biphenyls (PCBs) wastewater. In this regard, the chemical characterization of wastewater, the interaction with radiation, biological treatment and determination of toxicological properties are the laboratory studies milestones. After laboratory studies, the establishment of a pilot scale treatment plant has been planned. Within the framework of the project a series of dye used in textile industry were examined. Besides the irradiation, the changes in treatment efficiency were investigated by using of oxygen and hydrogen peroxide in conjunction with the irradiation. Same working methods were implemented in the wastewater treatment of Bolvadin Opium Alkaloid Factory as well. In addition to chemical analysis in this study, aerobic and anaerobic biological treatment process also have been applied. Standard reference materials has been used for the marine sediment study contaminated with polychlorinated biphenyls.

  1. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  2. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    Science.gov (United States)

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  3. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  4. Biological black water treatment combined with membrane separation

    NARCIS (Netherlands)

    van Voorthuizen, E.M.; Zwijnenburg, A.; van der Meer, Walterus Gijsbertus Joseph; Temmink, Hardy

    2008-01-01

    Separate treatment of black (toilet) water offers the possibility to recover energy and nutrients. In this study three combinations of biological treatment and membrane filtration were compared for their biological and membrane performance and nutrient conservation: a UASB followed by effluent

  5. Industrial process water treatment and reuse: A framework for synthesis and design

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Pennati, Alessandra; Bogataj, Milos

    2014-01-01

    Mathematical optimization has shown the potential to contribute to industrial water management, through the development of the solution methods needed for optimization-based design of wastewater treatment and reuse networks (also called water networks). Nevertheless, the application of this appro......, allowing a reduced water footprint, and the treatment costs are identified.......Mathematical optimization has shown the potential to contribute to industrial water management, through the development of the solution methods needed for optimization-based design of wastewater treatment and reuse networks (also called water networks). Nevertheless, the application...... algorithms. To this end, we propose a computer-aided framework for the design of water treatment and reuse networks. In the framework, optimization methods, problem analysis tools and wastewater engineering knowledge are integrated in a computer-aided environment, in order to facilitate the formulation...

  6. Gamma radiation treatment of waste waters from textile industries in ...

    African Journals Online (AJOL)

    Effects of gamma irradiation alone, and in combination with chemical treatment on color, odor, chemical oxyg-en demand (COD) and suspended solids in waste waters from textile industries in Ghana were studied to explore the potential of alternative and innovative processes for treatment of industrial waste waters. Waste ...

  7. Dataset on the cost estimation for spent filter backwash water (SFBW treatment

    Directory of Open Access Journals (Sweden)

    Afshin Ebrahimi

    2017-12-01

    Full Text Available The dataset presented in this article are related to the research article entitled “Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl3 as a pre-treatment” (Ebrahimi et al., 2017 [1]. This article reports the cost estimation for treating produced spent filter backwash water (SFBW during water treatment in Isfahan- Iran by various methods including primary sedimentation, coagulation & flocculation, second clarification, ultra filtration (UF and recirculation of settled SFBW to water treatment plant (WTP entrance. Coagulation conducted by PAFCl and FeCl3 as pre polymerized and traditional coagulants. Cost estimation showed that contrary to expectations, the recirculation of settled SFBW to WTP entrance is more expensive than other method and it costs about $ 37,814,817.6. Versus the cheapest option related to separate primary sedimentation, coagulation & flocculation in WTP. This option cost about $ 4,757,200 and $ 950,213 when FeCl3 and PAFCl used as coagulant, respectively. Keywords: Spent filter backwash water, Water treatment, Coat estimation, Water reuse

  8. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision.

    Science.gov (United States)

    Gwenzi, Willis; Chaukura, Nhamo; Noubactep, Chicgoua; Mukome, Fungai N D

    2017-07-15

    Approximately 600 million people lack access to safe drinking water, hence achieving Sustainable Development Goal 6 (Ensure availability and sustainable management of water and sanitation for all by 2030) calls for rapid translation of recent research into practical and frugal solutions within the remaining 13 years. Biochars, with excellent capacity to remove several contaminants from aqueous solutions, constitute an untapped technology for drinking water treatment. Biochar water treatment has several potential merits compared to existing low-cost methods (i.e., sand filtration, boiling, solar disinfection, chlorination): (1) biochar is a low-cost and renewable adsorbent made using readily available biomaterials and skills, making it appropriate for low-income communities; (2) existing methods predominantly remove pathogens, but biochars remove chemical, biological and physical contaminants; (3) biochars maintain organoleptic properties of water, while existing methods generate carcinogenic by-products (e.g., chlorination) and/or increase concentrations of chemical contaminants (e.g., boiling). Biochars have co-benefits including provision of clean energy for household heating and cooking, and soil application of spent biochar improves soil quality and crop yields. Integrating biochar into the water and sanitation system transforms linear material flows into looped material cycles, consistent with terra preta sanitation. Lack of design information on biochar water treatment, and environmental and public health risks constrain the biochar technology. Seven hypotheses for future research are highlighted under three themes: (1) design and optimization of biochar water treatment; (2) ecotoxicology and human health risks associated with contaminant transfer along the biochar-soil-food-human pathway, and (3) life cycle analyses of carbon and energy footprints of biochar water treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  10. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C., E-mail: bokeke@aum.edu [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Thomson, M. Sue [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Moss, Elica M. [Department of Natural Resources and Environmental Science, Alabama A and M University, AL 35762 (United States)

    2011-11-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R{sup 2} = 0.998) and turbidity (R{sup 2} = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity

  11. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    International Nuclear Information System (INIS)

    Okeke, Benedict C.; Thomson, M. Sue; Moss, Elica M.

    2011-01-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R 2 = 0.998) and turbidity (R 2 = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity pattern

  12. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment.

    Science.gov (United States)

    Westrick, Judy A; Szlag, David C; Southwell, Benjamin J; Sinclair, James

    2010-07-01

    This review focuses on the efficiency of different water treatment processes for the removal of cyanotoxins from potable water. Although several investigators have studied full-scale drinking water processes to determine the efficiency of cyanotoxin inactivation, many of the studies were based on ancillary practice. In this context, "ancillary practice" refers to the removal or inactivation of cyanotoxins by standard daily operational procedures and without a contingency operational plan utilizing specific treatment barriers. In this review, "auxiliary practice" refers to the implementation of inactivation/removal treatment barriers or operational changes explicitly designed to minimize risk from toxin-forming algae and their toxins to make potable water. Furthermore, the best drinking water treatment practices are based on extension of the multibarrier approach to remove cyanotoxins from water. Cyanotoxins are considered natural contaminants that occur worldwide and specific classes of cyanotoxins have shown regional prevalence. For example, freshwaters in the Americas often show high concentrations of microcystin, anatoxin-a, and cylindrospermopsin, whereas Australian water sources often show high concentrations of microcystin, cylindrospermopsin, and saxitoxins. Other less frequently reported cyanotoxins include lyngbyatoxin A, debromoaplysiatoxin, and beta-N-methylamino-L-alanine. This review focuses on the commonly used unit processes and treatment trains to reduce the toxicity of four classes of cyanotoxins: the microcystins, cylindrospermopsin, anatoxin-a, and saxitoxins. The goal of this review is to inform the reader of how each unit process participates in a treatment train and how an auxiliary multibarrier approach to water treatment can provide safer water for the consumer.

  13. Microbial pathogens in source and treated waters from drinking water treatment plants in the US

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...

  14. Sign rules for anisotropic quantum spin systems

    International Nuclear Information System (INIS)

    Bishop, R. F.; Farnell, D. J. J.; Parkinson, J. B.

    2000-01-01

    We present exact ''sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the importance of such sign rules in variational calculations and quantum Monte Carlo calculations is emphasized. This is illustrated by a simple variational treatment of a one-dimensional anisotropic spin model

  15. Radiation chemical studies on the treatment of waste water

    International Nuclear Information System (INIS)

    Sakumoto, Akihisa; Miyata, Teijiro; Arai, Michimasa; Arai, Hidehiko

    1982-10-01

    The radiation induced reaction in aqueous solution was studied to develope the radiation treatment as a new technique for waste water and to elevate the effectiveness of radiation. The effectiveness of radiation was enhanced by combination of radiation induced reaction with conventional methods such as biological treatment and coagulation treatment. The synergistic effect of radiation and ozone was studied by using phenol and ethylene glycol. The chain reaction was observed in the radiation induced oxidation. The combination of radiation and ozone is considered to be one of the most useful method. In this report, the mechanism of each reaction and the applicability of the reaction to the treatment of waste water are discussed. (author)

  16. Investigation of the potential influence of production treatment chemicals on produced water toxicity

    International Nuclear Information System (INIS)

    Stine, E.R.; Gala, W.R.; Henry, L.R.

    1993-01-01

    Production treatment chemicals represent a diverse collection of chemical classes, added at various points from the wellhead to the final flotation cell, to prevent operational upsets and enhance the separation of oil from water. Information in the literature indicates that while many treatment chemicals are thought to partition into oil and not into the produced water, there are cases where a sufficiently water soluble treatment chemical is added at high enough concentrations to suggest that the treatment chemical may add to the aquatic toxicity of the produced water. A study was conducted to evaluate the potential effect of production treatment chemicals on the toxicity of produced waters using the US EPA Seven-day Mysidopsis bahia Survival, Growth and Fecundity Test. Samples of produced water were collected and tested for toxicity from three platforms under normal operating conditions, followed by repeated sampling and testing after a 72-hour period in which treatment chemical usage was discontinued, to the degree possible. Significant reductions in produced water toxicity were observed for two of the three platforms tested following either cessation of treatment chemical usage, or by comparing the toxicity of samples collected upstream and downstream of the point of treatment chemical addition

  17. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  18. The treatment of scrofula in Ferrara (Italy) in the 19th century.

    Science.gov (United States)

    Vicentini, Chiara Beatrice; Altieri, Lorenzo; Guidi, Enrica; Contini, Carlo; Manfredini, Stefano

    2012-06-01

    The therapeutic approaches used against scrofula in the 19th Century in Ferrara are discussed. In the manuscripts and treatises of the time treasured in the town's libraries, hygienic and dietetic rules and treatment of this illness were described. In particular, baths and mineral water spas (sulphurous, ferruginous and other mineral waters, such as a bromo-iodine-salt water) and the sea-bathing establishment were recommended. The remedies reported in Campana's Pharmacopoeia ferrarese and the efficacious treatments employed in St Anna Hospital are discussed. The Committee and its President, Marquis Giovanni Manfredini, decided to cure the scrofulous in bathing establishments.

  19. Grey water treatment concept integrating water and carbon recovery and removal of micropollutants

    NARCIS (Netherlands)

    Hernandez Leal, L.; Zeeman, G.; Buisman, C.J.N.

    2011-01-01

    A total treatment concept was developed for grey water from 32 houses in Sneek, The Netherlands. A thorough characterization of COD, nutrients, metals, micropollutants and anions was carried out. Four biological treatment systems were tested: aerobic, anaerobic, combined anaerobic¿+¿aerobic and a

  20. Treatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL

    Directory of Open Access Journals (Sweden)

    Fazel Fazel Mohammadi-Moghaddam

    2015-10-01

    Full Text Available Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumption for filter backwash. This paper investigates the performance of a composite inorganic polymer of aluminium and ferric salt, Polyaluminium ferric chloride (PAFCl, for the removal of turbidity, color and natural organic matter (NOM from high turbid water. Materials and Methods: Experiments were carried out by Jar test experiment by synthetic water samples with 250 and 500 NTU turbidity that prepared in laboratory. Results: The results of conventional jar test showed that the optimum pH for coagulation of water sample was 7.5 to 8 and optimum dosage of the coagulant was 10 mg/L. Removal efficiency of turbidity, color and UV adsorbent at 254 nm at optimum dose and pH without filtration was 99.92%, 100% and 80.6% respectively for first sample (250 NTU and 99.95%, 99.49% and 84.77 for second sample (500 NTU respectively. Conclusion: It concluded that polyaluminium ferric chloride has a very good efficiency for the removal of turbidity, color and organic matter in high turbid water. Also it can be select as a coagulant for high turbid water and some waste water from water treatment plant like filter backwash water.

  1. Voyageurs National Park: Water-level regulation and effects on water quality and aquatic biology

    Science.gov (United States)

    Christensen, Victoria G.; Maki, Ryan P.; LeDuc, Jaime F.

    2018-01-01

    Following dam installations in the remote Rainy Lake Basin during the early 1900s, water-level fluctuations were considered extreme (1914–1949) compared to more natural conditions. In 1949, the International Joint Commission (IJC), which sets rules governing dam operation on waters shared by the United States and Canada, established the first rule curves to regulate water levels on these waterbodies. However, rule curves established prior to 2000 were determined to be detrimental to the ecosystem. Therefore, the IJC implemented an order in 2000 to change rule curves and to restore a more natural water regime. After 2000, measured chlorophyll-a concentrations in the two most eutrophic water bodies decreased whereas concentrations in oligotrophic lakes did not show significant water-quality differences. Fish mercury data were inconclusive, due to the variation in water levels and fish mercury concentrations, but can be used by the IJC as part of a long term data set.

  2. Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius.

    Science.gov (United States)

    Hernández Leal, L; Soeter, A M; Kools, S A E; Kraak, M H S; Parsons, J R; Temmink, H; Zeeman, G; Buisman, C J N

    2012-03-15

    In order to meet environmental quality criteria, grey water was treated in four different ways: 1) aerobic 2) anaerobic+aerobic 3) aerobic+activated carbon 4) aerobic+ozone. Since each treatment has its own specific advantages and disadvantages, the aim of this study was to compare the ecotoxicity of differently treated grey water using Chironomus riparius (96 h test) and Daphnia magna (48 h and 21d test) as test organisms. Grey water exhibited acute toxicity to both test organisms. The aerobic and combined anaerobic+aerobic treatment eliminated mortality in the acute tests, but growth of C. riparius was still affected by these two effluents. Post-treatment by ozone and activated carbon completely removed the acute toxicity from grey water. In the chronic toxicity test the combined anaerobic+aerobic treatment strongly affected D. magna population growth rate (47%), while the aerobic treatment had a small (9%) but significant effect. Hence, aerobic treatment is the best option for biological treatment of grey water, removing most of the toxic effects of grey water. If advanced treatment is required, the treatment with either ozone or GAC were shown to be very effective in complete removal of toxicity from grey water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Water (electrolyte) balance after abdominal therapeutic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cionini, L; Becciolini, A; Giannardi, G [Florence Univ. (Italy). Istituto di Radiologia

    1976-07-01

    Total body water, plasma volume and Na space have been studied in 34 patients receiving external radiotherapy on the pelvic region. Determinations were made on the same patients before, and half-way treatment; in a few cases, some determinations were also repeated after the end of treatment. The results failed to show any appreciable modification of the different parameters studied.

  4. Comparative study of household water treatment in a rural ...

    African Journals Online (AJOL)

    This research presents the household treatment of drinking water samples in a rural community in Nigeria by boiling and water guard. The physicochemical parameters of the raw water samples with exception of chloride, BOD and dissolved oxygen were within the permissible limits of the World Health Organization (WHO) ...

  5. Anaerobia Treatments of the domestic residual waters. Limitations potentialities

    International Nuclear Information System (INIS)

    Giraldo Gomez, Eugenio

    1993-01-01

    The quick growth of the Latin American cities has prevented that an appropriate covering of public services is achieved for the whole population, One of the undesirable consequences of this situation is the indiscriminate discharge from the domestic and industrial residual waters to the nearest bodies of water with its consequent deterioration and with disastrous consequences about the ecology and the public health. The developed countries have controlled this situation using systems of purification of the residual waters previously to their discharge in the receptor source. The same as the technology of the evacuation of the served waters, they have become numerous efforts for the application of the purification systems used in the countries developed to the socioeconomic, climatic and cultural conditions of our means. One of the results obtained in these efforts is the economic inability of the municipalities to pay the high investment costs and of operation of the traditional systems for the treatment of the residual waters. Contrary to another type of public services, the treatment of the residual waters needs of appropriate technological solutions for the Climatic and socioeconomic means of the developing countries, One of the technological alternatives for the purification of the residual waters that has had a great development in the last decades has been that of the biological treatments in t anaerobia ambient. The objective of this contribution is to present, to author's trial, the limitations and potentialities of this technology type with special emphasis in the case of the domestic residual waters

  6. Field-analysis of potable water quality and ozone efficiency in ozone-assisted biological filtration systems for surface water treatment.

    Science.gov (United States)

    Zanacic, Enisa; Stavrinides, John; McMartin, Dena W

    2016-11-01

    Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Developing an optimal valve closing rule curve for real-time pressure control in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Bazarganlari, Mohammad Reza; Afshar, Hossein [Islamic Azad University, Tehran (Iran, Islamic Republic of); Kerachian, Reza [University of Tehran, Tehran (Iran, Islamic Republic of); Bashiazghadi, Seyyed Nasser [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Sudden valve closure in pipeline systems can cause high pressures that may lead to serious damages. Using an optimal valve closing rule can play an important role in managing extreme pressures in sudden valve closure. In this paper, an optimal closing rule curve is developed using a multi-objective optimization model and Bayesian networks (BNs) for controlling water pressure in valve closure instead of traditional step functions or single linear functions. The method of characteristics is used to simulate transient flow caused by valve closure. Non-dominated sorting genetic algorithms-II is also used to develop a Pareto front among three objectives related to maximum and minimum water pressures, and the amount of water passes through the valve during the valve-closing process. Simulation and optimization processes are usually time-consuming, thus results of the optimization model are used for training the BN. The trained BN is capable of determining optimal real-time closing rules without running costly simulation and optimization models. To demonstrate its efficiency, the proposed methodology is applied to a reservoir-pipe-valve system and the optimal closing rule curve is calculated for the valve. The results of the linear and BN-based valve closure rules show that the latter can significantly reduce the range of variations in water hammer pressures.

  8. Toxicity assessment of water at different stages of treatment using Microtox assay

    Directory of Open Access Journals (Sweden)

    Pogorzelec Marta

    2017-01-01

    Full Text Available Number of potentially toxic hydrophobic organic contaminants e.g. polycyclic aromatic hydrocarbons, pesticides, polychlorinated biphenyls and dioxins having entered aquatic environment, including potential sources of drinking water. Unfortunately, not all micropollutants can be removed during water treatment processes. What is more, disinfectants can react with some organic compounds already present in the water, and form disinfection by-products which also can be toxic. The aim of this study was to assess toxicity of water at different stages of water treatment and to verify usefulness semipermeable membrane devices in monitoring of drinking water. For this purpose, semipermeable membrane devices (SPMDs were deployed in a surface water treatment plant. To determine the effect of water treatment on the presence of toxic micropollutants, study was conducted for a period of 5 months. Three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After sampling dialysis in organic solvent was carried out and extracts were then analyzed with the Microtox acute toxicity test. The study has indicated the utility as well as some limitations of combining SPMDs with bioluminescence assay in the monitoring of biological effects of bioavailable hydrophobic pollutants in drinking water.

  9. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life...... importance of the different life cycle stages and the individual impact categories in the total impact from the waste water treatment, and the degree to which micropollutants, pathogens and whole effluent toxicity have been included in earlier studies. The results show that more than 30 different WWTT (and...

  10. MSWT-01, flood disaster water treatment solution from common ideas

    Science.gov (United States)

    Ananto, Gamawan; Setiawan, Albertus B.; Z, Darman M.

    2013-06-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  11. MSWT-01, flood disaster water treatment solution from common ideas

    International Nuclear Information System (INIS)

    Ananto, Gamawan; Setiawan, Albertus B; Darman M Z

    2013-01-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m 3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  12. Development of sustainable water treatment technology using scientifically based calculated indexes of source water quality indicators

    Directory of Open Access Journals (Sweden)

    А. С. Трякина

    2017-10-01

    Full Text Available The article describes selection process of sustainable technological process flow chart for water treatment procedure developed on scientifically based calculated indexes of quality indicators for water supplied to water treatment facilities. In accordance with the previously calculated values of the indicators of the source water quality, the main purification facilities are selected. A more sustainable flow chart for the modern water quality of the Seversky Donets-Donbass channel is a two-stage filtering with contact prefilters and high-rate filters. The article proposes a set of measures to reduce such an indicator of water quality as permanganate oxidation. The most suitable for these purposes is sorption purification using granular activated carbon for water filtering. The increased water hardness is also quite topical. The method of ion exchange on sodium cation filters was chosen to reduce the water hardness. We also evaluated the reagents for decontamination of water. As a result, sodium hypochlorite is selected for treatment of water, which has several advantages over chlorine and retains the necessary aftereffect, unlike ozone. A technological flow chart with two-stage purification on contact prefilters and two-layer high-rate filters (granular activated carbon - quartz sand with disinfection of sodium hypochlorite and softening of a part of water on sodium-cation exchangers filters is proposed. This technological flow chart of purification with any fluctuations in the quality of the source water is able to provide purified water that meets the requirements of the current sanitary-hygienic standards. In accordance with the developed flow chart, guidelines and activities for the reconstruction of the existing Makeevka Filtering Station were identified. The recommended flow chart uses more compact and less costly facilities, as well as additional measures to reduce those water quality indicators, the values of which previously were in

  13. Controlling Bacterial Pathogens in Water for Reuse: Treatment Technologies for Water Recirculation in the Blue Diversion Autarky Toilet

    Directory of Open Access Journals (Sweden)

    Mi T. Nguyen

    2017-12-01

    Full Text Available HighlightBacterial growth in fecally-contaminated water is highly variable and dependent on several factors.Regrowth occurs after chlorination (low doses, no residual.Indigenous microbial communities variably impact bacterial growth.A combination of treatments can both inactivate and inhibit growth.The Blue Diversion AUTARKY Toilet is a urine-diverting toilet with on-site treatment. The toilet is being developed to provide a safe and affordable sanitation technology for people who lack access to sewer-based sanitation. Water used for personal hygiene, hand washing, and flushing to rinse urine- and feces-collection bowls is treated, stored, and recycled for reuse to reduce reliance on external water supplies. The system provides an opportunity to investigate hygiene of water for reuse following treatment. Treatment in the toilet includes a Biologically Activated Membrane Bioreactor (BAMBi followed by a secondary treatment technology. To identify effective secondary treatment, three options, including granular activated carbon (GAC only, GAC+chlorine (sodium hypochlorite, and GAC+electrolysis are considered based on the bacterial inactivation and growth inhibition efficiency. Four different hygiene-relevant bacteria are tested: Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, and Salmonella typhimurium. Our evaluation demonstrates that—despite treatment of water with the BAMBi—E. coli, P. aeruginosa, and S. typhimurium have the potential to grow during storage in the absence of microbial competition. Including the indigenous microbial community influences bacterial growth in different ways: E. coli growth decreases but P. aeruginosa growth increases relative to no competition. The addition of the secondary treatment options considerably improves water quality. A column of GAC after the BAMBi reduces E. coli growth potential by 2 log10, likely due to the reduction of carbon sources. Additional treatments including chlorination

  14. Mine water treatment with yellowcake by-production

    International Nuclear Information System (INIS)

    Csicsak, J.; Csoevari, M.; Eberfalvy, J.; Lendvai, Zs.

    2002-01-01

    Mining and milling of uranium ore in Hungary was terminated at the end of 1997. From that time rehabilitation works have been carrying out, which include manly the relocation of different solid wastes, such as waste rocks, heap leached residues, demolishing of former industrial buildings, clean up contaminated sites. Overall rehabilitation of the tailings ponds has also started. At first step the ground water restoration system is under construction, aiming at protecting the drinking water aquifer situated in the immediate vicinity of the tailings ponds. Former mining activity has been carried out also in the vicinity of the drinking water catchment area, for protection of that is compulsory to maintain appropriate depression in the mine in question. This means that mine water has to be pumped out continuously and because of the elevated uranium concentration in mine water, the water has to be treated. Thus the water quality protection is connected with uranium removal from the mine water. Mine water treatment process developed is based on anion-exchange process and removal of the uranium from the eluates with hydrogen peroxide. (author)

  15. Water treatment system for utilities: Phase 1 -- Technology assessment. Interim report

    International Nuclear Information System (INIS)

    Janss, T.M.; Tucker, R.E.

    1997-12-01

    A conceptual design for a water treatment system to reduce pollutants in manhole and vault water is presented as an alternative to current water disposal practices. Runoff and groundwater seepage that collects in vaults and manholes contains, or is likely to contain, concentrations of pollutants in excess of regulatory guidelines. Pollutants commonly present in storm water runoff consist of lead, cadmium, oil, grease and asbestos. The conceptual design presents the basis for a water treatment system that will reduce pollutant concentrations to levels below regulatory thresholds. The water treatment system is relatively inexpensive, small and simple to operate. A strainer is used to remove gross particulates, which are then stored for disposal. Utilizing centrifugal force, vault and manhole water is separated into constituent fractions including fine particulates, inorganics and oils. Fine particulates are stored with gross particulates for disposal. Chemical fixation is used to stabilize inorganics. Organic substances are stored for disposal. The water treatment system uses a granular activated carbon filter as an effluent polish to adsorb the remaining pollutants from the effluent water stream. The water can be discharged to the street or storm drain and the pollutants are stored for disposal as non-hazardous waste. This system represents a method to reduce pollutant volumes, reduced disposal costs and reduce corporate environmental liability. It should be noted that the initial phase of the development process is still in progress. This report is presented to reflect work in progress and as such should be considered preliminary

  16. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  17. Optimization of multi-reservoir operation with a new hedging rule: application of fuzzy set theory and NSGA-II

    Science.gov (United States)

    Ahmadianfar, Iman; Adib, Arash; Taghian, Mehrdad

    2017-10-01

    The reservoir hedging rule curves are used to avoid severe water shortage during drought periods. In this method reservoir storage is divided into several zones, wherein the rationing factors are changed immediately when water storage level moves from one zone to another. In the present study, a hedging rule with fuzzy rationing factors was applied for creating a transition zone in up and down each rule curve, and then the rationing factor will be changed in this zone gradually. For this propose, a monthly simulation model was developed and linked to the non-dominated sorting genetic algorithm for calculation of the modified shortage index of two objective functions involving water supply of minimum flow and agriculture demands in a long-term simulation period. Zohre multi-reservoir system in south Iran has been considered as a case study. The results of the proposed hedging rule have improved the long-term system performance from 10 till 27 percent in comparison with the simple hedging rule, where these results demonstrate that the fuzzification of hedging factors increase the applicability and the efficiency of the new hedging rule in comparison to the conventional rule curve for mitigating the water shortage problem.

  18. The future for electrocoagulation as a localised water treatment technology.

    Science.gov (United States)

    Holt, Peter K; Barton, Geoffrey W; Mitchell, Cynthia A

    2005-04-01

    Electrocoagulation is an electrochemical method of treating polluted water whereby sacrificial anodes corrode to release active coagulant precursors (usually aluminium or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles) at the cathode. Electrocoagulation has a long history as a water treatment technology having been employed to remove a wide range of pollutants. However electrocoagulation has never become accepted as a 'mainstream' water treatment technology. The lack of a systematic approach to electrocoagulation reactor design/operation and the issue of electrode reliability (particularly passivation of the electrodes over time) have limited its implementation. However recent technical improvements combined with a growing need for small-scale decentralised water treatment facilities have led to a re-evaluation of electrocoagulation. Starting with a review of electrocoagulation reactor design/operation, this article examines and identifies a conceptual framework for electrocoagulation that focuses on the interactions between electrochemistry, coagulation and flotation. In addition detailed experimental data are provided from a batch reactor system removing suspended solids together with a mathematical analysis based on the 'white water' model for the dissolved air flotation process. Current density is identified as the key operational parameter influencing which pollutant removal mechanism dominates. The conclusion is drawn that electrocoagulation has a future as a decentralised water treatment technology. A conceptual framework is presented for future research directed towards a more mechanistic understanding of the process.

  19. Conservation-reuse of water in fossil-fuel power plants including water treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Rao, T.S.R.

    1984-02-01

    The various areas where the conservation-reuse of water is possible are discussed. However, water conservation, especially effluent volume reduction-treatment reuse, should be seen in the light of pollution control measures. Some of the areas indicated recover a small quantity of water but they should be viewed in the light of well yield being not adequate, or having high salinity or having an increase of well water salinity after some use. Some of the methods can only be adopted at the design stage whereas others could be incorporated at the site.

  20. Fabrication of amine-functionalized magnetite nanoparticles for water treatment processes

    International Nuclear Information System (INIS)

    Chan, Candace C. P.; Gallard, Hervé; Majewski, Peter

    2012-01-01

    Amine-functionalized magnetite nanoparticles are synthesized by a one pot water based process using N-[3-(trimethoxysilyl)propyl]diethylenetriamine (TRIS) as surfactant. The prepared functionalised nanoparticles are characterised by BET surface area measurements, X-ray diffraction, zeta potential measurement, and X-ray photoelectron spectrometry (XPS). The results clearly show the presence of TRIS on the surface of the nanoparticles. XPS analysis indicates the presence of very small amounts of maghemite on the surface of the magnetite nanoparticles. Water treatment test shows that the prepared nanoparticles are capable to remove natural organic matter (NOM) from natural water samples. The removal of NOM by the prepared particles is characterized by analysing the dissolved organic carbon (DOC) content and UV absorbance at 254 nm (UV 254 ) after the treatment of the water samples at various doses and treatment times.

  1. Fabrication of amine-functionalized magnetite nanoparticles for water treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Candace C. P. [University of South Australia, Ian Wark Research Institute (Australia); Gallard, Herve [Universite de Poitiers, Laboratoire de Chimie et Microbiologie de l' Eau (LCME)-UMR CNRS 6008 (France); Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [Mawson Institute, University of South Australia, School of Advanced Manufacturing and Mechanical Engineering (Australia)

    2012-03-15

    Amine-functionalized magnetite nanoparticles are synthesized by a one pot water based process using N-[3-(trimethoxysilyl)propyl]diethylenetriamine (TRIS) as surfactant. The prepared functionalised nanoparticles are characterised by BET surface area measurements, X-ray diffraction, zeta potential measurement, and X-ray photoelectron spectrometry (XPS). The results clearly show the presence of TRIS on the surface of the nanoparticles. XPS analysis indicates the presence of very small amounts of maghemite on the surface of the magnetite nanoparticles. Water treatment test shows that the prepared nanoparticles are capable to remove natural organic matter (NOM) from natural water samples. The removal of NOM by the prepared particles is characterized by analysing the dissolved organic carbon (DOC) content and UV absorbance at 254 nm (UV{sub 254}) after the treatment of the water samples at various doses and treatment times.

  2. On the effects of adaptive reservoir operating rules in hydrological physically-based models

    Science.gov (United States)

    Giudici, Federico; Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2017-04-01

    Recent years have seen a significant increase of the human influence on the natural systems both at the global and local scale. Accurately modeling the human component and its interaction with the natural environment is key to characterize the real system dynamics and anticipate future potential changes to the hydrological regimes. Modern distributed, physically-based hydrological models are able to describe hydrological processes with high level of detail and high spatiotemporal resolution. Yet, they lack in sophistication for the behavior component and human decisions are usually described by very simplistic rules, which might underperform in reproducing the catchment dynamics. In the case of water reservoir operators, these simplistic rules usually consist of target-level rule curves, which represent the average historical level trajectory. Whilst these rules can reasonably reproduce the average seasonal water volume shifts due to the reservoirs' operation, they cannot properly represent peculiar conditions, which influence the actual reservoirs' operation, e.g., variations in energy price or water demand, dry or wet meteorological conditions. Moreover, target-level rule curves are not suitable to explore the water system response to climate and socio economic changing contexts, because they assume a business-as-usual operation. In this work, we quantitatively assess how the inclusion of adaptive reservoirs' operating rules into physically-based hydrological models contribute to the proper representation of the hydrological regime at the catchment scale. In particular, we contrast target-level rule curves and detailed optimization-based behavioral models. We, first, perform the comparison on past observational records, showing that target-level rule curves underperform in representing the hydrological regime over multiple time scales (e.g., weekly, seasonal, inter-annual). Then, we compare how future hydrological changes are affected by the two modeling

  3. The need for the use of high-level radiation in water treatment and in waste-water (sewage) treatment

    International Nuclear Information System (INIS)

    Nielson, N.E.

    1975-01-01

    After excellent conventional primary, followed by the best possible conventional aerobic secondary and then chemical disinfection, significant quantities of contaminants are still present in sewage, especially pathogenic organisms and toxic or toxicity-causing long-chain-molecular forms. These contaminants are generally encountered in waste-waters with a seldom predictable, almost totally random frequency. Many of these chemical forms enter re-use situations where they can become toxic to man, or to wildlife, even in concentrations of a few parts per thousand million. It has been amply demonstrated that the long-held contention is no longer valid that dilution of these contaminants to an innocuous level is easily attained by their release into large bodies of water such as lakes, oceans and rivers. At the same time, a great deal of energy is required when using known techniques in highly reliable systems for removing or rendering innocuous a large portion of these contaminants. In the light of this new (to some people) information describing a much larger, more complex set of conditions which must be considered in effective water pollution elimination, high-level radiation becomes very attractive. There is a great need for high-level radiation in water treatment or waste-water treatment where the ultimate goal is a safe, clean, non-environmentally degrading, safely re-usable quality of water. Gamma radiation, used under the right circumstances, is the most reliable, most cost-effective, most generally efficient technique in the tertiary stages. With the addition of select chemicals to increase the number of ionizations realized and/or to capitalize upon surface charge phenomena, its effectiveness can be even further expanded. (author)

  4. Systematic generation of rules for nuclear power plant diagnostics

    International Nuclear Information System (INIS)

    Reifman, J.; Lee, J.C.

    1988-01-01

    The knowledge base of an expert system is generally represented by a set of heuristic rules derived from the expert's own experience and judgmental knowledge. These heuristic or production rules are cast as if (condition), then (consequence) statements, and represent, for nuclear power plant diagnostic systems, information connecting symptoms to failures. In this paper, the authors apply an entropy minimax pattern recognition algorithm to automate the process of extracting and encoding knowledge into a set of rules. Knowledge is extracted by recognizing patterns in plant parameters or symptoms associated with failures or transient events, and is encoded by casting the discovered patterns as production rules. The paper discusses how the proposed method can systematically generate rules that characterize failure of pressurizer components based on transient events analyzed with a pressurizer components based on transient events analyzed with a pressurizer water reactor simulator program

  5. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.; Hoek, Eric M.V.

    2011-01-01

    readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality

  6. A Review on overboard CEOR discharged produced water treatment and remediation

    Science.gov (United States)

    Rawindran, H.; Krishnan, S.; Sinnathambi, C. M.

    2017-06-01

    Produced water is a waste by-product generated during oil and gas recovery operations. It contains the mixture of organic and inorganic compounds. Produced water management is a challenge faced by the petroleum practitioners worldwide. Build-up of chemical wastes from produced water causes huge footprint, which results in high CapEx and OpEx. Different technologies are practiced by various practitioners to treat the produced waste water. However, the constituents removed by each technology and the degree of organic compound removal has to be considered to identify the potential and effective treatment technologies for offshore industrial applications. Current produced water technologies and their successful applications have advantages and disadvantages and can be ranked on the basis of several factors, such as their discharge limit into water bodies, reinjection in producing well, or for any miscellaneous beneficial use. This paper attempts to provide a review of existing physical and chemical treatment technologies used for management of produced water. Based on our analysis, suitable methods will be recommended for offshore waste water treatment technologies.

  7. NOM characterization and removal at six Southern African water treatment plants

    Directory of Open Access Journals (Sweden)

    J. Haarhoff

    2010-04-01

    Full Text Available Organic pollution is a major concern during drinking water treatment. Major challenges attributed to organic pollution include the proliferation of pathogenic micro-organisms, prevalence of toxic and physiologically disruptive organic micro-pollutants, and quality deterioration in water distribution systems. A major component of organic pollution is natural organic matter (NOM. The operational mechanisms of most unit processes are well understood. However, their interaction with NOM is still the subject of scientific research. This paper takes the form of a meta-study to capture some of the experiences with NOM monitoring and analysis at a number of Southern African Water Treatment Plants. It is written from the perspective of practical process selection, to try and coax some pointers from the available data for the design of more detailed pilot work. NOM was tracked at six water treatment plants using dissolved organic carbon (DOC measurements. Fractionation of the DOC based on biodegradability and molecular weight distribution was done at a water treatment plant in Namibia. A third fractionation technique using ion exchange resins was used to assess the impact of ozonation on DOC. DOC measurements alone did not give much insight into NOM evolution through the treatment train. The more detailed characterization techniques showed that different unit processes preferentially remove different NOM fractions. Therefore these techniques provide better information for process design and optimisation than the DOC measurement which is routinely done during full scale operation at these water treatment plants.

  8. Hygiena 3, a Forgotten Project for Electrolytic Water Treatment

    Directory of Open Access Journals (Sweden)

    Kryštof Drnek

    2012-01-01

    Full Text Available In the interwar period, the city of Prague had to resolve the problem of treating the polluted water produced by its citizens. From 1933 - 1936 an ambitious competition was held. The idea behind the competition was to bring in new ideas and projects for a new water treatment station.Hygiena 3 was one of the projects that was submitted. It proposed a treatment procedure based on electrolytic consolidation of contaminants in water into flocks. The project was found to be inventive and interesting but too expensive and not effective. Nevertheless it was evaluated as a well developed proposal and received an award from the city.

  9. Validation Aspects of Water Treatment Systems for Pharmaceutical ...

    African Journals Online (AJOL)

    The goal of conducting validation is to demonstrate that a process, when operated within established limits, produces a product of consistent and specified quality with a high degree of assurance. Validation of water treatment systems is necessary to obtain water with all desired quality attributes. This also provides a ...

  10. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  11. ICEMENERG technologies of water treatment applied at Cernavoda NPP Unit 1

    International Nuclear Information System (INIS)

    Stanca, Angela; Bolma, Aurelia; Serbanescu, Agnes; Raducanu, Alice

    2002-01-01

    The paper presents the ICEMENERG technologies for water treatment applied at Cernavoda Unit 1, the treatment of the additional water for power steam generators and the chemical treatment of cooling system water. The requirements for quality of water totally demineralized as imposed by the AECL-ANSALDO consortium are as following: electrical conductivity, < 0.2 mS/cm; total silicon, <0.02 mg/L; ionic silicon, <0.01 mg/L; sodium, < 0.05 mg/L; TOC, <0.300 mg/L. These requirements raise rather difficult problems to be solved because the raw water source in case of Cernavoda NPP is Danube River which presents a raising trend of organic and inorganic contamination. Accordingly, experiments at laboratory scale reproducing the entire technological flow were conducted. The following operations were studied: pretreatment with limewash, ferric chloride (with and without coagulation additives); demineralization with ion exchangers of Purolite and Amberlite types. The system consisted of a cationic stage, formed of an strongly acid step with countercurrent recovery and an anionic stage formed of two steps, namely, a weakly basic step and a strongly basic step with recovery inserted; finishing on mixed bed. The paper presents also the chemical treatment/conditioning of the cooling loop of turbine condenser. The Cernavoda NPP cooling system is an open system with a single flow of cooling water comprising two systems, namely, the circulation water system ensuring the steam condenser cooling and the servicing water system ensuring the cooling of heat exchangers in the recirculated water circuit (RCWS), the turbine oil coolants, the coolants of auxiliary steam as well as the emergency core cooling system. Studies were conducted to ensure the chemical conditioning of the raw water from Danube River, particularly, to destroy and remove the shells, the algae and other components. Finally, the following four steps of conditioning the water of the cooling system are summarized: 1

  12. Investigation of Trihalomethanes in Drinking Water of Abbas Abad Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Kiani R

    2017-06-01

    Full Text Available Introduction: Chlorination is the most common and successful method for disinfection of drinking water, especially in developing countries. However, due to the probability of formation of disinfection by-products especially Trihalomethanes (THMs that are known as hazardous and usually carcinogenic compounds, this study was conducted to assess the investigation of THMs in drinking water of Abbas Abad water treatment plant in 2015. Methods: In this study, 81 water samples were gathered during autumn season of 2015. Temperature, pH, Ec, turbidity, and residual chlorine were measured on site. After samples preparation in the laboratory, THMs concentrations were determined using gas chromatography. All statistical analyses were performed using the SPSS statistical package. Results: The results showed that the minimum and maximum mean concentrations (µg/l for bromodichloromethane were 1.47 ± 0.57 and 1.90 ± 0.26, for bromoform were 1.47 ± 0.35 and 2.36 ± 1.10, for dibromochloromethane were 1.47 ± 0.42 and 1.53 ± 0.55, and for chloroform were 3.40 ± 0.70 and 7.53 ± 1.00, and all compounds were determined for stations 1 and 3, respectively. Also comparing the mean concentrations of assessed THMs with ISIRI and World Health Organization (WHO Maximum Permissible Limits (MPL showed significant differences (P < 0.05. Thus, the mean concentrations of all Trihalomethanes compounds were significantly lower than the maximum permissible limits. Conclusions: Although the mean concentrations of THMs were lower than MPL, yet due to discharge of restaurants and gardens’ wastewater into the Abbas Abad River, pre-chlorination process of water in Abbas Abad water treatment plant, high retention time and increasing loss of foliage into the water, especially in autumn season, the formation of Trihalomethanes compounds could increase. Therefore, periodic monitoring of THMs in drinking water distribution network is recommended.

  13. Waste water treatment by ionizing radiations. Removal of biological and chemical risks by water and sludge treatment with electron beams. Orientation 10 July 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This report aims at analysing the reliability of the application of electron ionizing radiation in the treatment of waste waters and effluents, and at identifying possible fields of application and associated technological and economic implications. After some recalls on physics, electrochemistry, radiolysis, and water pollution, the report proposes an overview of the technique of irradiation of waters, with its scientific background (water radiolysis, chemical and biological effects), its process (recovery cycle and possible interventions, processed pollutants), the case of irradiation by electrons (power, rate, flexibility), an overview of benefits and drawbacks, and a brief history of this practice and an overview of current researches. After a recall of regulatory and political requirements, the report discusses possible fields of application: waste water treatment plants, domestic, agricultural and urban sewage wasters, hospital and medical wastes, liquid food industry products, industrial waters. The choice of accelerator parameters and components is then discussed

  14. Facilities for treatment of radioactive contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1981-02-01

    The standard applies to processes applied in facilities for treatment of radioactive contaminated water in nuclear power plants with LWR- and HTR-type reactors. It does not apply to the treatment of concentrates obtained in the decontamination of water. (orig.) [de

  15. Polyethersulfone-based ultrafiltration hollow fibre membrane for drinking water treatment systems

    Science.gov (United States)

    Chew, Chun Ming; Ng, K. M. David; Ooi, H. H. Richard

    2017-12-01

    Conventional media/sand filtration has been the mainstream water treatment process for most municipal water treatment plants in Malaysia. Filtrate qualities of conventional media/sand filtration are very much dependent on the coagulation-flocculation process prior to filtration and might be as high as 5 NTU. However, the demands for better quality of drinking water through public piped-water supply systems are growing. Polymeric ultrafiltration (UF) hollow fibre membrane made from modified polyethersulfone (PES) material is highly hydrophilic with high tensile strength and produces excellent quality filtrate of below 0.3 NTU in turbidity. This advanced membrane filtration material is also chemical resistance which allows a typical lifespan of 5 years. Comparisons between the conventional media/sand filtration and PES-based UF systems are carried out in this paper. UF has been considered as the emerging technology in municipal drinking water treatment plants due to its consistency in producing high quality filtrates even without the coagulation-flocculation process. The decreasing cost of PES-based membrane due to mass production and competitive pricing by manufacturers has made the UF technology affordable for industrial-scale water treatment plants.

  16. Analysis of micromixers and biocidal coatings on water-treatment membranes to minimize biofouling.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Stephen W.; James, Darryl L. (Texas Tech University, Lubbock, TX); Hibbs, Michael R.; Jones, Howland D. T.; Hart, William Eugene; Khalsa, Siri Sahib; Altman, Susan Jeanne; Clem, Paul Gilbert; Elimelech, Menachem (Yale University, New Haven, CT); Cornelius, Christopher James; Sanchez, Andres L. (LMATA Government Services LLC, Albuquerque, NM); Noek, Rachael M.; Ho, Clifford Kuofei; Kang, Seokatae (Yale University, New Haven, CT); Sun, Amy Cha-Tien; Adout, Atar (Yale University, New Haven, CT); McGrath, Lucas K. (LMATA Government Services LLC, Albuquerque, NM); Cappelle, Malynda A.; Cook, Adam W.

    2009-12-01

    Biofouling, the unwanted growth of biofilms on a surface, of water-treatment membranes negatively impacts in desalination and water treatment. With biofouling there is a decrease in permeate production, degradation of permeate water quality, and an increase in energy expenditure due to increased cross-flow pressure needed. To date, a universal successful and cost-effect method for controlling biofouling has not been implemented. The overall goal of the work described in this report was to use high-performance computing to direct polymer, material, and biological research to create the next generation of water-treatment membranes. Both physical (micromixers - UV-curable epoxy traces printed on the surface of a water-treatment membrane that promote chaotic mixing) and chemical (quaternary ammonium groups) modifications of the membranes for the purpose of increasing resistance to biofouling were evaluated. Creation of low-cost, efficient water-treatment membranes helps assure the availability of fresh water for human use, a growing need in both the U. S. and the world.

  17. Effectiveness of home water treatment methods in Dschang ...

    African Journals Online (AJOL)

    The MPN (Most Probable Number) technique was used to assess the bacteriological quality of nine of the important drinking water sources in Dschang. Water from the most polluted source was then subjected to six home-based treatment methods, commonly used by the population. Boiling for up to thirty minutes was the ...

  18. Effect of microalgal treatments on pesticides in water.

    Science.gov (United States)

    Hultberg, Malin; Bodin, Hristina; Ardal, Embla; Asp, Håkan

    2016-01-01

    The effect of the microalgae Chlorella vulgaris on a wide range of different pesticides in water was studied. Treatments included short-term exposure (1 h) to living and dead microalgal biomass and long-term exposure (4 days) to actively growing microalgae. The initial pesticide concentration was 63.5 ± 3.9 µg L(-1). There was no significant overall reduction of pesticides after short-term exposure. A significant reduction of the total amount of pesticides was achieved after the long-term exposure to growing microalgae (final concentration 29.7 ± 1.0 µg L(-1)) compared with the long-term control (37.0 ± 1.2 µg L(-1)). The concentrations of 10 pesticides out of 38 tested were significantly lowered in the long-term algal treatment. A high impact of abiotic factors such as sunlight and aeration for pesticide reduction was observed when the initial control (63.5 ± 3.9 µg L(-1)) and the long-term control (37.0 ± 1.2 µg L(-1)) were compared. The results suggest that water treatment using microalgae, natural inhabitants of polluted surface waters, could be further explored not only for removal of inorganic nutrients but also for removal of organic pollutants in water.

  19. Education and Criminal Justice: The Educational Approach to Prison Administration. The United Nations Standard Minimum Rules for the Treatment of Prisoners.

    Science.gov (United States)

    Morin, Lucien; Cosman, J. W.

    The United Nations Standard Minimum Rules for the Treatment of Prisoners do not express the basic principle that would support a serious educational approach to prison administration. The crucial missing rationale is the concept of the inherent dignity of the individual human prisoner. This concept has certain basic educational implications,…

  20. Potential of Nanotechnology based water treatment solutions for the improvement of drinking water supplies in developing countries

    Science.gov (United States)

    Dutta, Joydeep; Bhattacharya, Prosun; Bundschuh, Jochen

    2016-04-01

    Over the last decades explosive population growth in the world has led to water scarcity across the globe putting additional pressure already scarce ground water resources and is pushing scientists and researchers to come up with new alternatives to monitor and treat water for use by mankind and for food security. Nearly 4 billion people around the world are known to lack access to clean water supply. Systematic water quality data is important for the assessment of health risks as well as for developing appropriate and affordable technologies for waste and drinking water treatments, and long-term decision making policy against water quality management. Traditional water treatment technologies are generally chemical-intensive processes requiring extremely large infrastructural support thus limiting their effective applications in developing nations which creates an artificial barrier to the application of technological solutions for the provision of clean water. Nanotechnology-based systems are in retrospect, smaller, energy and resource efficient. Economic impact assessment of the implementation of nanotechnology in water treatment and studies on cost-effectiveness and environmental and social impacts is of key importance prior to its wide spread acceptance. Government agencies and inter-governmental bodies driving research and development activities need to measure the effective potential of nanotechnology as a solution to global water challenges in order to effectively engage in fiscal, economic and social issues at national and international levels for different types of source waters with new national and international initiatives on nanotechnology and water need to be launched. Environmental pollution and industrialization in global scale is further leading to pollution of available water sources and thus hygienically friendly purification technologies are the need of the hour. Thus cost-effective treatment of pollutants for the transformation of hazardous

  1. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  2. Utilizing the fluidized bed to initiate water treatment on site

    International Nuclear Information System (INIS)

    Ahmadvand, H.; Germann, G.; Gandee, J.P.; Buehler, V.T.

    1995-01-01

    Escalating wastewater disposal costs coupled with enforcement of stricter regulations push industrial sites previously without water treatment to treat on site. These sites, inexperienced in water treatment, require a treatment technology that is easily installed, operated, and maintained. The aerobic granular activated carbon (GAC) fluidized bed incorporates biological and adsorptive technologies into a simple, cost-effective process capable of meeting strict effluent requirements. Two case studies at industrial sites illustrate the installation and operation of the fluidized bed and emphasize the ability to use the fluidized bed singularly or as an integral component of a treatment system capable of achieving treatment levels that allow surface discharge and reinjection. Attention is focused on BTEX (benzene, toluene, ethylbenzene, and xylenes)

  3. Your Resilience is My Vulnerability: ‘Rules in Use’ in a Local Water Conflict

    Directory of Open Access Journals (Sweden)

    Frank Sondershaus

    2014-03-01

    Full Text Available This paper uses an empirical analysis of a water conflict in the German state of Brandenburg to explore diverse constructions of vulnerability to water scarcity by local stakeholders. It demonstrates how, in the absence of effective formal institutions, these constructions are getting translated into conflictual resilience strategies practiced by these stakeholders, creating situations in which “your resilience is my vulnerability”. The novel contribution of the paper to resilience research is threefold. Firstly, it illustrates how the vulnerability and resilience of a socio-ecological system—such as small catchment—are socially constructed; that is, how they are not given but rather the product of stakeholders’ perceptions of threats and suitable responses to them. Secondly, the paper emphasizes the role of institutions—both formal and informal—in framing these vulnerability constructions and resilience strategies. Particular attention is paid to the importance of informal ‘rules in use’ emerging in the wake of (formal ‘institutional voids’ and how they work against collective solutions. Thirdly, by choosing a small-scale, commonplace dispute to study vulnerability and resilience, the paper seeks to redress the imbalance of resilience research (and policy on dramatic disaster events by revealing the relevance of everyday vulnerabilities, which may be less eye-catching but are far more widespread.

  4. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  5. Hot water treatments delay cold-induced banana peel blackening

    NARCIS (Netherlands)

    Promyou, S.; Ketsa, S.; Doorn, van W.G.

    2008-01-01

    Banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) and cv. Namwa (Musa x paradisiaca, ABB Group) were immersed for 5, 10 and 15 min in water at 42 degrees C, or in water at 25 degrees C (control), and were then stored at 4 degrees C. Hot water treatment for 15

  6. Assessment of didecyldimethylammonium chloride as a ballast water treatment method

    NARCIS (Netherlands)

    van Slooten, Cees; Buma, Anita; Peperzak, Louis

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium

  7. Assessment of didecyldimethylammonium chloride as a ballast water treatment method

    NARCIS (Netherlands)

    van Slooten, C.; Peperzak, L.; Buma, A.G.J.

    2015-01-01

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium

  8. Development and Optimum Composition of Locally Developed Potable Water Treatment Tablets

    Directory of Open Access Journals (Sweden)

    Josiah Oladele BABATOLA

    2009-07-01

    Full Text Available Current high level of energy cost and operational cost of membrane technologies and couple with difficulties in obtaining chemicals for potable water treatment give rooms for development of local substance and low cost adsorbents for water treatment. This paper presents a follow-up study on an earlier work in which some water treatment Tablets were produced and tested. The current work was directed at establishing the optimum composition of the tablets. Alum, calcium hypochlorite and lime were combined in proportion and made into pastes and tablets. Residual chlorine contents of the tablets were determined. The quality of stream water samples treated with the tablets was measured by chlorine content, pH and turbidity removal. It is concluded that the best composition is one part alum, two parts hypochlorite and three parts lime and this produced treated water pH of 7.8, chlorine residual of 5.0 mg/l and settled water turbidity 3.0 NTU. The product is aimed for use in rural communities to reduce rampaging death from water borne diseases.

  9. Development of electrospun nanofiber composites for pointof-use water treatment

    Science.gov (United States)

    Peter, Katherine T.

    A range of chemical pollutants now contaminate drinking water sources and present a public health concern, including organic compounds, such as pharmaceuticals and pesticides, and both metalloids and heavy metals, such as arsenic and lead. Metalloids and heavy metals have been detected in private drinking water wells, which do not fall under federal drinking water regulations, as well as in urban tap water, due to the introduction of contamination to the drinking water distribution system. Further, many so-called "emerging organic contaminants," which are present in drinking water sources at detectable levels but have unknown long-term health implications, do not fall under federal drinking water regulations. To protect the health of consumers, drinking water treatment at the point-of-use (POU) (i.e., the tap) is essential. Next-generation POU treatment technologies must require minimal energy inputs, be simple enough to permit broad application among different users, and be easily adaptable for removal of a wide range of pollutants. Nanomaterials, such as carbon nanotubes and iron oxide nanoparticles, are ideal candidates for next-generation drinking water treatment, as they exhibit unique, high reactivity and necessitate small treatment units. However, concerns regarding water pressure requirements and nanomaterial release into the treated supply limit their application in traditional reactor designs. To bridge the gap between potential and practical application of nanomaterials, this study utilizes electrospinning to fabricate composite nanofiber filters that effectively deploy nanomaterials in drinking water treatment. In electrospinning, a high voltage draws a polymer precursor solution (which can contain nanomaterial additives, in the case of nanocomposites) from a needle to deposit a non-woven nanofiber filter on a collector surface. Using electrospinning, we develop an optimized, macroporous carbon nanotube-carbon nanofiber composite that utilizes the

  10. Drinking Water Research Division's research activities in support of EPA's regulatory agenda

    International Nuclear Information System (INIS)

    Clark, R.M.; Feige, W.A.

    1991-01-01

    The Safe Drinking Water Act and its Amendments will have a dramatic impact on the way in which one views the treatment and distribution of water in the U.S. The paper discusses the regulatory agenda, including proposed and promulgated regulations for volatile and synthetic organic contaminants, pesticides, lead, copper, inorganic contaminants, and radionuclides. In addition, the Surface Water Treatment and Coliform Rules are discussed in some detail. Tables are presented that list the Maximum Contaminant Levels (MCLs) and Maximum Contaminant Level Goals (MCLGs), as well as Best Available Technology (BAT) for reducing many of these contaminants to acceptable levels. Finally, a discussion of expected disinfection requirements and the regulation of disinfection by-products (DBP) is made. Treatment techniques for controlling DBPs are briefly described

  11. Design of ANFIS Structures and GMDH Type-Neural Network for Prediction of Optimum Coagulant Dosage in Water Treatment Process Case Study: Great Water Treatment Plant in Guilan Province

    Directory of Open Access Journals (Sweden)

    Allahyar Daghbandan

    2015-11-01

    Full Text Available Given the increasing importance of surface water bodies as supply sources of drinking water and regarding the requirement for using different chemicals at various stages of water treatment processes, it is essential to investigate coagulant consumption in water treatment plants. Determination of the required dosage of coagulants used in the coagulation and flocculation unit is one of the most important decisions in water treatment operations. For this purpose, the jar test is generally used to determine the type and concentration of suitable coagulants in a water treatment plant. However, the test is rather time-consuming and unreliable due to the inaccurate results it yields. Instead, intelligent methods can be employed to overcome this shortcoming of the jar test. In this study, experimental data were collected over the period from 2011 to 2012 and further refined for study. Two non-linear models based on adaptive neuro-fuzzy inference system (ANFIS and GMDH-type neural networks were then developed and experimental results were used to determine the optimum poly-aluminium chloride dosage for use at Guilan water treatment plant. The effects of input parameters including temperature, pH, turbidity, suspended solids, electrical conductivity, and color were investigated on coagulant dosage. The ANFIS model was found to outperform the GMDH model in predicting the required poly-aluminium chloride dosage.

  12. Challenging the conventional wisdom -- The case for off-site water treatment

    International Nuclear Information System (INIS)

    Gidumal, R.H.

    1994-01-01

    Two recent remediation projects have demonstrated off-site water treatment as economically beneficial to on-site treatment. The project cost showed that significantly reduced capital costs and O and M costs were obtained by sending the material to a commercial waste water treatment plant vs. depending on on-site treatment. This paper will detail the line item capital costs as well as the expected annual operation and maintenance charges. The first project involved a major oil refinery needed to remediate a 2.1 MM gallon lagoon. The lagoon was used to dispose of primary oil/water/solids/separation sludge and currently comprised of 7% solid material. The second project is a remediation project with a pump and treat system. The water contains heavy metal (Pb, As) and VOC (ppm TCE, PCE, etc.) contamination. The Record of Decision (ROD) specified installation of groundwater/leachate extraction and injection wells within the existing landfill for dewatering and flushing of the system. The treatment choice for the leachate (40--60 GPM) was on-site pretreatment and discharge to the local POTW

  13. HEAVY METALS AS UNWANTED COMPONENTS OF BACKWASH WATER DERIVED FROM GROUNDWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Robert Nowak

    2016-06-01

    Full Text Available The paper presents some aspects of the problem of heavy metals presence in wastewater and sewage sludge from water treatment. In the first part, issues on quality of wastewaters and sludge produced during water treatment along with actions aimed at the neutralization of such wastes, were discussed. Subsequent parts of the work present the example of 12 groundwater treatment stations in a particular municipality, and the problem of backwash water quality, in particular, heavy metals contents. The analysis covered a period of three years: 2013, 2014, and 2015. The authors, using the discussed examples, have shown that besides hydrated iron and manganese oxides, also other toxic contaminants can be present in backwash water from groundwater treatment. In particular, the qualitative analysis of the backwash water revealed the presence of heavy metals, mainly zinc. The test results for backwash water were compared with those of filtrate qualitative assessment, wherein the heavy metals were not found. This fact indicated the metal retention in the filter bed and their unsustainable immobilization resulting in penetration of heavy metals from deposit to the backwash water along with other impurities, mainly iron and manganese oxides. The main conclusion from the study is to demonstrate the need for constant monitoring of the backwash water quality, including the presence of toxic heavy metals. This is also important because of the requirement to minimize the negative environmental impact of wastes generated during the water treatment process.

  14. Treatment of waters before use. Processes and applications

    International Nuclear Information System (INIS)

    Mouchet, P.

    2006-01-01

    Some industrial processes require a water without any particulate in suspension and stable with respect to various aspects: no post-precipitations, no interference with storage and distribution equipments (corrosion or fouling), no development of bacterial, algal or other type of fauna (no chemical nutrients) etc. The water preparation process used will be different depending on the origin of the water (surface or underground). This article describes, first, the different type of treatments depending on the origin of the water and on the quality requested (clear and stable water, drinkable water, specific complementary processes, different processing files). Then, in a second part, the application of these processes to some industries are given (beverage, food, textile, paper, steel-making, aerospace and automotive, petroleum, power plants, ultra-pure waters) and in particular the preparation of demineralized water for nuclear power plants is described. (J.S.)

  15. Pollution Impact and Alternative Treatment for Produced Water

    Science.gov (United States)

    Hedar, Yusran; Budiyono

    2018-02-01

    Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  16. Advanced treatment and reuse system developed for oilfield process water

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Kevin

    2011-01-15

    An innovative plant to treat oilfield produced wastewater is being constructed in Trinidad and Tobago following recent regulations and industrial water supply challenges. The 4,100m3/day treatment system, developed by Golder Associates, will produce water for industrial reuse and effluent that meets new regulations. The treatment stages include: oil-water separation by gravity, equalization with a two-day capacity basin, dissolved air flotation, cooling, biotreatment/settling with immobilized cell bioreactors (ICB) technology, prefiltration/reverse osmosis and effluent storage/transfer. This advanced system will provide several important benefits including the elimination of inland discharge of minimally-treated water and the reduction of environmental and public health concerns. In addition, it will provide a new source of industrial water, resulting in a decrease in demand for fresh water. The success of this plant could lead to additional facilities in other oil field locations, expanding economic and environmental benefits of water reuse.

  17. Feasibility study of an aeration treatment system in a raw water storage reservoir used as a potable water source

    OpenAIRE

    Fronk, Robert Charles

    1996-01-01

    The systems engineering process has been utilized to determine the feasibility of an aeration treatment system for a raw water storage reservoir used as a potable water source. This system will be used to ensure a consistently high quality of raw water by the addition of dissolved oxygen into the reservoir. A needs analysis establishes the importance and requirements for a consistently high quality of raw water used as a source for a potable water treatment facility. This s...

  18. 18 CFR 157.5 - Purpose and intent of rules.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Purpose and intent of rules. 157.5 Section 157.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... the market contemplated by the proposed project and the nature and disposition of such other project...

  19. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    Science.gov (United States)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  20. Business rules for creating process flexibility : Mapping RIF rules and BDI rules

    NARCIS (Netherlands)

    Gong, Y.; Overbeek, S.J.; Janssen, M.

    2011-01-01

    Business rules and software agents can be used for creating flexible business processes. The Rule Interchange Format (RIF) is a new W3C recommendation standard for exchanging rules among disparate systems. Yet, the impact that the introduction of RIF has on the design of flexible business processes

  1. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water

    Science.gov (United States)

    This study was targeted at finding one or more environmentally efficient, economically feasible and ecologically sustainable bioremediation treatment modes for eutrophic water. Three biological species, i.e. water spinach (Ipomoea aquatica), loach (Misgurus anguillicaudatus) and ...

  2. Water feed and effluent treatment for hydrogen sulfide-water system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1981-01-01

    This invention provides a feed and effluent treatment system for improving the recovery of a gas (e.g. H 2 S) from solution in a liquid (e.g. water) when the liquid also contains dissolved nonvolatile components (e.g. the salts of sea water) at low temperatures. In a gas/liquid contact process in which the gas is at least partially soluble in the liquid, a portion of the liquid is extracted after it passes through a hot zone, the pressure of the liquid is reduced by flashing it through pressure reduction means to remove a portion of the dissolved gas, and the gas thus recovered is returned to the process

  3. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rossiter, Helfrid M.A. [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom); Owusu, Peter A.; Awuah, Esi [Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); MacDonald, Alan M. [British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA (United Kingdom); Schaefer, Andrea I., E-mail: Andrea.Schaefer@ed.ac.uk [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO{sub 3}{sup -}) were found in 21% of the samples, manganese (Mn) and fluoride (F{sup -}) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m{sup 3}, many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m{sup 3}) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic

  4. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    International Nuclear Information System (INIS)

    Rossiter, Helfrid M.A.; Owusu, Peter A.; Awuah, Esi; MacDonald, Alan M.; Schaefer, Andrea I.

    2010-01-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO 3 - ) were found in 21% of the samples, manganese (Mn) and fluoride (F - ) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m 3 , many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m 3 ) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment

  5. Chemical drinking water quality in Ghana: water costs and scope for advanced treatment.

    Science.gov (United States)

    Rossiter, Helfrid M A; Owusu, Peter A; Awuah, Esi; Macdonald, Alan M; Schäfer, Andrea I

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO(3)(-)) were found in 21% of the samples, manganese (Mn) and fluoride (F(-)) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about pound1200 and pound3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or "pay-as-you-fetch". The annual fee was between pound0.3-21, while the boreholes had a water collection fee of pound0.07-0.7/m(3), many wells were free. Interestingly, the most expensive water ( pound2.9-3.5/m(3)) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment. Those

  6. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    Science.gov (United States)

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  7. State of the art of produced water treatment.

    Science.gov (United States)

    Jiménez, S; Micó, M M; Arnaldos, M; Medina, F; Contreras, S

    2018-02-01

    Produced water (PW) is the wastewater generated when water from underground reservoirs is brought to the surface during oil or gas extraction. PW is generated in large amounts and has a complex composition, containing various toxic organic and inorganic compounds. PW is currently treated in conventional trains that include phase separators, decanters, cyclones and coarse filters in order to comply with existing regulation for discharge. These treatment trains do not achieve more restrictive limitations related to the reuse of the effluent (reinjection into extraction wells) or other beneficial uses (e.g., irrigation). Therefore, and to prevent environmental pollution, further polishing processes need to be carried out. Characterization of the PW to determine major constituents is the first step to select the optimum treatment for PW, coupled with environmental factors, economic considerations, and local regulatory framework. This review tries to provide an overview of different treatments that are being applied to polish this type of effluents. These technologies include membranes, physical, biological, thermal or chemical treatments, where special emphasis has been made on advanced oxidation processes due to the advantages offered by these processes. Commercial treatments, based on the combination, modification and improvement of simpler treatments, were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evaluation of dissolved air flotation and membrane filtration for drinking water treatment

    International Nuclear Information System (INIS)

    Van Benschoten, J.; Martin, C.; Schaefer, J.; Xu, L.; Franceschini, S.

    2002-01-01

    Laboratory and pilot-scale testing was conducted to evaluate the use of dissolved air flotation (DAF) followed by membrane filtration (MF) for drinking water treatment. At the laboratory scale, four water samples of varying water quality were tested. Pilot- scale DAF and MF plants located at the City of Buffalo Water Treatment facility utilized Lake Erie as a raw water source to evaluate this combination of treatment processes. A polyaluminum coagulant was used throughout the study. Study results demonstrated beneficial effects of coagulant addition in extending MF run time. Pilot testing showed additional benefits to using DAF as a pretreatment step to MF. In all testing, MF produced excellent water quality. Particulate matter appeared more important than concentration or type of dissolved organic matter in membrane fouling. (author)

  9. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Sewage treatment and bulk water sales contracts. 1780..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.63 Sewage treatment and bulk water sales contracts. Owners entering into agreements with private or public parties to treat sewage or...

  10. The Optimization-Based Design and Synthesis of Water Network for Water Management in an Industrial Process: Refinery Effluent Treatment Plant

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Siemanond, Kitipat; Quaglia, Alberto

    2014-01-01

    The increasing awareness of the sustainability of water resources has become an important issue. Many process industries contribute to high water consumption and wastewater generation. Problems in industrial water management include the processing of complex contaminants in wastewater, selection...... of wastewater treatment technologies, as well as water allocation, limited reuse, and recycling strategies. Therefore, a water and wastewater treatment network design requires the integration of both economic and environmental perspectives. The aim of this work was to modify and develop a generic model......-based synthesis process for a water/wastewater treatment network design problem utilizing the framework of Quaglia et al. (2013) in order to effectively design, synthesize, and optimize an industrial water management problem using different scenarios (both existing and retrofit system design). The model...

  11. Rule-Based Event Processing and Reaction Rules

    Science.gov (United States)

    Paschke, Adrian; Kozlenkov, Alexander

    Reaction rules and event processing technologies play a key role in making business and IT / Internet infrastructures more agile and active. While event processing is concerned with detecting events from large event clouds or streams in almost real-time, reaction rules are concerned with the invocation of actions in response to events and actionable situations. They state the conditions under which actions must be taken. In the last decades various reaction rule and event processing approaches have been developed, which for the most part have been advanced separately. In this paper we survey reaction rule approaches and rule-based event processing systems and languages.

  12. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes.

    Science.gov (United States)

    Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong

    2017-07-01

    Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.

  13. [The toxicity variation of organic extracts in drinking water treatment processes].

    Science.gov (United States)

    Mei, M; Wei, S; Zijian, W; Wenhua, W; Baohua, Z; Suxia, Z

    2001-01-01

    Source water samples and outlet water samples from different treatment processes of the Beijing Ninth Water Works were concentrated in situ with XAD-2 filled columns. GC-MS analysis and toxic assessment including acute toxicity evaluation by luminescent bacterium bioassay(Q67 strains) and mutagenicity assessment by Ames test(TA98 and TA100 strains with and without S9 addition) were conducted on these samples. The results showed that prechlorination caused the direct and indirect frame shift mutagenicity as well as indirect base pair substitute mutagenicity. Addition of coagulant may increase the base pair substitute mutagenic effects greatly. Sand and coal filtration and granular activated carbon filtration could effectively remove most of the formed mutagens. The rechlorination do not obviously increase the mutagenic effects. No mutagenic effect was observed in tap water. Acute toxicity showed the same variation with that of mutagenicity during the treatment processes. Sample from flocculation treatment process was found to be the most toxic sample. Results of GC-MS analysis showed that water in this plant was not contaminated by PCB. Concentrations of toluene, naphthalene and phenol increased in flocculation treatment process and in tap water. However, the concentrations of these substances were at the level of microgram/L, therefore, were not high enough to cause mutagenicity.

  14. Urban net-zero water treatment and mineralization: experiments, modeling and design.

    Science.gov (United States)

    Englehardt, James D; Wu, Tingting; Tchobanoglous, George

    2013-09-01

    Water and wastewater treatment and conveyance account for approximately 4% of US electric consumption, with 80% used for conveyance. Net zero water (NZW) buildings would alleviate demands for a portion of this energy, for water, and for the treatment of drinking water for pesticides and toxic chemical releases in source water. However, domestic wastewater contains nitrogen loads much greater than urban/suburban ecosystems can typically absorb. The purpose of this work was to identify a first design of a denitrifying urban NZW treatment process, operating at ambient temperature and pressure and circum-neutral pH, and providing mineralization of pharmaceuticals (not easily regulated in terms of environmental half-life), based on laboratory tests and mass balance and kinetic modeling. The proposed treatment process is comprised of membrane bioreactor, iron-mediated aeration (IMA, reported previously), vacuum ultrafiltration, and peroxone advanced oxidation, with minor rainwater make-up and H2O2 disinfection residual. Similar to biological systems, minerals accumulate subject to precipitative removal by IMA, salt-free treatment, and minor dilution. Based on laboratory and modeling results, the system can produce potable water with moderate mineral content from commingled domestic wastewater and 10-20% rainwater make-up, under ambient conditions at individual buildings, while denitrifying and reducing chemical oxygen demand to below detection (<3 mg/L). While economics appear competitive, further development and study of steady-state concentrations and sludge management options are needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Frameworks for amending reservoir water management

    Science.gov (United States)

    Mower, Ethan; Miranda, Leandro E.

    2013-01-01

    Managing water storage and withdrawals in many reservoirs requires establishing seasonal targets for water levels (i.e., rule curves) that are influenced by regional precipitation and diverse water demands. Rule curves are established as an attempt to balance various water needs such as flood control, irrigation, and environmental benefits such as fish and wildlife management. The processes and challenges associated with amending rule curves to balance multiuse needs are complicated and mostly unfamiliar to non-US Army Corps of Engineers (USACE) natural resource managers and to the public. To inform natural resource managers and the public we describe the policies and process involved in amending rule curves in USACE reservoirs, including 3 frameworks: a general investigation, a continuing authority program, and the water control plan. Our review suggests that water management in reservoirs can be amended, but generally a multitude of constraints and competing demands must be addressed before such a change can be realized.

  16. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    Science.gov (United States)

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  17. Feynman rules for fermion-number-violating interactions

    International Nuclear Information System (INIS)

    Denner, A.; Eck, H.; Hahn, O.; Kueblbeck, J.

    1992-01-01

    We present simple algorithmic Feynman rules for fermion-number-violating interactions. They do not involve explicit charge-conjugation matrices and resemble closely the familiar rules for Dirac fermions. We insist on a fermion flow through the graphs along fermion lines and get the correct relative signs between different interfering Feynman graphs as in the case of Dirac fermions. We only need the familiar Dirac propagator and fewer vertices than in the usual treatment of fermion-number-violating interactions. (orig.)

  18. Water Treatment Plant Operation. Volume II. A Field Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  19. Water Treatment Plant Operation. Volume I. A Field Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  20. Treatment of cyanide-contained Waste Water

    International Nuclear Information System (INIS)

    Scheglov, M.Y.

    1999-01-01

    This work contains results of theoretical and experimental investigations of possibility to apply industrial ionites of different kinds for recovering complex cyanide of some d-elements (Cu, Zn, an dso on) and free CN-ions with purpose to develop technology and unit for plating plant waste water treatment. Finally, on basis of experimental data about equilibrium kinetic and dynamic characteristic of the sorption in model solutions, strong base anionite in CN- and OH-forms was chosen. This anionite has the best values of operational sorption uptake. Recommendations of using the anionite have been developed for real cyanide-contained wastewater treatment

  1. Water: from the source to the treatment plan

    Science.gov (United States)

    Marquet, V.; Baude, I.

    2012-04-01

    As a biology and geology teacher, I have worked on water, from the source to the treatment plant, with pupils between 14 and 15 years old. Lesson 1. Introduction, the water in Vienna Aim: The pupils have to consider why the water is so important in Vienna (history, economy etc.) Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2. Soil, rock and water Aim: Permeability/ impermeability of the different layers of earth Activities: The pupils have measure the permeability and porosity of different stones: granite, clay, sand, carbonate and basalt. Lesson 3. Relationship between water's ion composition and the stone's mineralogy Aim: Each water source has the same ion composition as the soil where the water comes from. Activities: Comparison between the stone's mineralogy and ions in water. They had a diagram with the ions of granite, clay, sand, carbonate and basalt and the label of different water. They had to make hypotheses about the type of soil where the water came from. They verified this with a geology map of France and Austria. They have to make a profile of the area where the water comes from. They had to confirm or reject their hypothesis. Lesson 4 .Water-catchment and reservoir rocks Aim: Construction of a confined aquifer and artesian well Activities: With sand, clay and a basin, they have to model a confined aquifer and make an artesian well, using what they have learned in lesson 2. Lesson 5. Organic material breakdown and it's affect on the oxygen levels in an aquatic ecosystem Aim: Evaluate the relationship between oxygen levels and the amount of organic matter in an aquatic ecosystem. Explain the relationship between oxygen levels, bacteria and the breakdown of organic matter using an indicator solution. Activities: Put 5 ml of a different water sample in each tube with 20 drops of methylene blue. Observe the tubes after 1 month. Lesson 6. Visit to the biggest water treatment plant in

  2. Development of a Water Treatment Plant Operation Manual Using an Algorithmic Approach.

    Science.gov (United States)

    Counts, Cary A.

    This document describes the steps to be followed in the development of a prescription manual for training of water treatment plant operators. Suggestions on how to prepare both flow and narrative prescriptions are provided for a variety of water treatment systems, including: raw water, flocculation, rapid sand filter, caustic soda feed, alum feed,…

  3. The α3S corrections to the Bjorken sum rule for polarized electro-production and to the Gross-Llewellyn Smith sum rule

    International Nuclear Information System (INIS)

    Larin, S.A.; Nationaal Inst. voor Kernfysica en Hoge-Energiefysica; Vermaseren, J.A.M.

    1990-01-01

    The next-next-to-leading order QCD corrections to the Gross-Llewellyn Smith sum rule for deep inelastic neutrino-nucleon scattering and to the Bjorken sum rule for polarized electron-nucleon scattering have been computed. This involved the proper treatment of γ 5 inside the loop integrals with dimensional regularization. It is found that the difference between the two sum rules are entirely due to a class of 6 three loop graphs and is of the order of 1% of the leading QCD term. Hence the Q 2 behavior of both sum rules should be the same if the physics is described adequately by the lower order terms of perturbative QCD. (author). 12 refs.; 2 figs.; 4 tabs

  4. Pollution Impact and Alternative Treatment for Produced Water

    Directory of Open Access Journals (Sweden)

    Hedar Yusran

    2018-01-01

    Full Text Available Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  5. Treatment of radioactive waste water by flocculation method, (1)

    International Nuclear Information System (INIS)

    Kimura, Syojiro; Tsutsui, Tenson.

    1976-01-01

    Coagulation property of particle on the treatment of radioactive waste water by floculation method is varied with its electrical potential and mixing condition. The surface state of the particle is influenced by contents of coexistent materials in the waste water and added materials at the treatment process. In the case of using ferric hydroxide as coagulant, assuming the ions which decide the potential of the particle surface are Fe(OH) 2 + and Fe(OH) 4 - , calculated values of the potential agree with zeta-potential of ferric hydroxide particle which is formed from FeCl 4 and NaOH in demineralized water. When Na 2 CO 3 is in the waste water as coexistent materials, anion HCO 3 - adsorbs on the particle surface in connection with pH variation and thus the surface charge is being minus. If Ca 2+ ion is present in the waste water, the surface charge plus. ABS acts as single molecule anion at low concentration, but it forms micell at high concentration and influences zeta-potential of the particle. The potential of the particle is correlated to the coprecipitation rate of 90 Sr in the waste water. (auth.)

  6. Mechanisms of rule acquisition and rule following in inductive reasoning.

    Science.gov (United States)

    Crescentini, Cristiano; Seyed-Allaei, Shima; De Pisapia, Nicola; Jovicich, Jorge; Amati, Daniele; Shallice, Tim

    2011-05-25

    Despite the recent interest in the neuroanatomy of inductive reasoning processes, the regional specificity within prefrontal cortex (PFC) for the different mechanisms involved in induction tasks remains to be determined. In this study, we used fMRI to investigate the contribution of PFC regions to rule acquisition (rule search and rule discovery) and rule following. Twenty-six healthy young adult participants were presented with a series of images of cards, each consisting of a set of circles numbered in sequence with one colored blue. Participants had to predict the position of the blue circle on the next card. The rules that had to be acquired pertained to the relationship among succeeding stimuli. Responses given by subjects were categorized in a series of phases either tapping rule acquisition (responses given up to and including rule discovery) or rule following (correct responses after rule acquisition). Mid-dorsolateral PFC (mid-DLPFC) was active during rule search and remained active until successful rule acquisition. By contrast, rule following was associated with activation in temporal, motor, and medial/anterior prefrontal cortex. Moreover, frontopolar cortex (FPC) was active throughout the rule acquisition and rule following phases before a rule became familiar. We attributed activation in mid-DLPFC to hypothesis generation and in FPC to integration of multiple separate inferences. The present study provides evidence that brain activation during inductive reasoning involves a complex network of frontal processes and that different subregions respond during rule acquisition and rule following phases.

  7. Naturally occurring radionuclides in materials derived from urban water treatment plants in southeast Queensland, Australia

    International Nuclear Information System (INIS)

    Kleinschmidt, Ross; Akber, Riaz

    2008-01-01

    An assessment of radiologically enhanced residual materials generated during treatment of domestic water supplies in southeast Queensland, Australia, was conducted. Radioactivity concentrations of U-238, Th-232, Ra-226, Rn-222, and Po-210 in water, sourced from both surface water catchments and groundwater resources were examined both pre- and post-treatment under typical water treatment operations. Surface water treatment processes included sedimentation, coagulation, flocculation and filtration, while the groundwater was treated using cation exchange, reverse osmosis, activated charcoal or methods similar to surface water treatment. Waste products generated as a result of treatment included sediments and sludges, filtration media, exhausted ion exchange resin, backwash and wastewaters. Elevated residual concentrations of radionuclides were identified in these waste products. The waste product activity concentrations were used to model the radiological impact of the materials when either utilised for beneficial purposes, or upon disposal. The results indicate that, under current water resource exploitation programs, reuse or disposal of the treatment wastes from large scale urban water treatment plants in Australia do not pose a significant radiological risk

  8. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  9. The effects of Niger State water treatment plant effluent on its ...

    African Journals Online (AJOL)

    The effect of water treatment plant effluent on its receiving river (Kaduna) was examined. Samples were collected from the effluents discharge from Chanchaga water treatment plant into upstream and down stream of the receiving river monthly for six month. Samples were analyzed in the laboratory for microbial counts and ...

  10. Evacuation of performance and significant chemical constituents and by products in drinking water treatment

    International Nuclear Information System (INIS)

    Jamrah, I. A.

    1999-01-01

    Drinking water treatment is a task that comprises of several processes that eventually lead to the addition of chemicals to achieve the objectives of treatment. This study was conducted to assess treatment performance, explain the presence of significant chemical species in water, and investigate the interactions and chemical by-products that are formed during the course of treatment. Grab water samples were collected on a regular basis from the influent and effluent of Zai water treatment plant. Chemical analysis were conducted to determine the concentrations of various chemical species of interest. Turbidity, temperature, and pH of the samples were also measured. The study concluded that Zai Water Treatment Plant produces potable drinking water in accordance with Jordanian Standards. The use of treatment chemical resulted in an increase in the concentrations of certain materials, such as manganese, aluminum, and sulfate. The turbidity of the raw water and the TOC of the samples were positively correlated, and the treatment results in approximately 20% TOC reduction, which demonstrates that the measures used for the control of TOC (carbon adsorption and permanganate pre-oxidation), are not very effective. The study also showed that the TOC content of our raw water samples and the concentration of tribalomethanes resulting after disinfection were positively correlated, and that bromoform was the dominant component. Also chloroform was the minor component of tribalomethanes formed during treatment. Positive correlation between the total concentration of tribalomethanes in water and the chlorine dose used for disinfection was also observed, and the total concentration of tribalomethanes increased with temperature. The formation of tribalomethanes was enhanced as the pH of water increased and as the concentration of bromide ion in raw water became significant. (author). 25 refs., 14 figs.1 table

  11. Phonological reduplication in sign language: rules rule

    Directory of Open Access Journals (Sweden)

    Iris eBerent

    2014-06-01

    Full Text Available Productivity—the hallmark of linguistic competence—is typically attributed to algebraic rules that support broad generalizations. Past research on spoken language has documented such generalizations in both adults and infants. But whether algebraic rules form part of the linguistic competence of signers remains unknown. To address this question, here we gauge the generalization afforded by American Sign Language (ASL. As a case study, we examine reduplication (X→XX—a rule that, inter alia, generates ASL nouns from verbs. If signers encode this rule, then they should freely extend it to novel syllables, including ones with features that are unattested in ASL. And since reduplicated disyllables are preferred in ASL, such rule should favor novel reduplicated signs. Novel reduplicated signs should thus be preferred to nonreduplicative controls (in rating, and consequently, such stimuli should also be harder to classify as nonsigns (in the lexical decision task. The results of four experiments support this prediction. These findings suggest that the phonological knowledge of signers includes powerful algebraic rules. The convergence between these conclusions and previous evidence for phonological rules in spoken language suggests that the architecture of the phonological mind is partly amodal.

  12. Removal of cyanobacterial amino acids in water treatment by activated carbon adsorption

    Czech Academy of Sciences Publication Activity Database

    Čermáková, Lenka; Kopecká, Ivana; Pivokonský, Martin; Pivokonská, Lenka; Janda, V.

    2017-01-01

    Roč. 173, č. 1 (2017), s. 330-338 ISSN 1383-5866 Institutional support: RVO:67985874 Keywords : amino acids * activated carbon * adsorption * algal organic matter * water treatment * coagulation * microcystis aeruginosa * peptides/proteins * permanganate pre-oxidation * water treatment Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.359, year: 2016

  13. Effect of metal oxide nanoparticles on Godavari river water treatment

    Science.gov (United States)

    Goud, Ravi Kumar; Ajay Kumar, V.; Reddy, T. Rakesh; Vinod, B.; Shravani, S.

    2018-05-01

    Nowadays there is a continuously increasing worldwide concern for the development of water treatment technologies. In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Nanomaterials reveal good results than other techniques used in water treatment because of its high surface area to volume ratio. In the present work, iron oxide and copper oxide nanoparticles were synthesized by simple heating method. The synthesized nanoparticles were used to purify Godavari river water. The effect of nanoparticles at 70°C temperature, 12 centimeter of sand bed height and pH of 8 shows good results as compared to simple sand bed filter. The attained values of BOD5, COD and Turbidity were in permissible limit of world health organization.

  14. Performance of a Small-scale Treatment Wetland for Treatment of Landscaping Wash Water

    Science.gov (United States)

    Thompson, R. J.; Fayed, E.; Fish, W.

    2011-12-01

    A large number of lawn mowers and related equipment must be cleaned each day by commercial landscaping operations and state and local highway maintenance crews. Washing these devices produces wastewater that contains high amounts of organic matter and potentially problematic nutrients, as well as oil and grease and other chemicals and metals that come from the machinery itself. Dirty water washes off the mowers, flows off the pavement and into nearby storm drains without any kind of treatment. A better idea would be to collect such wastewater, retain it in an appropriate catchment such as an engineered wetland where natural processes could break down any pollutants in the wash water, and allow the water to naturally evaporate or percolate into the soil where it could recharge ground water resources safely. This research examines the performance of a small-scale treatment wetland tailored to remove nitrogen from landscaping wash water by incorporating both aerobic and anaerobic phases. Contaminants are analyzed through physical and chemical methods. Both methods involve collection of samples, followed by standardized, validated analytical laboratory tests for measuring total solids, total kjeldahl nitrogen, nitrates, total and dissolved phosphorus, COD, BOD, oil and grease, and metals (Zn and Cu). High levels of total solids, total kjeldahl nitrogen, nitrates, total and dissolved phosphorus, COD, BOD, oil and grease are found. Zinc and copper levels are low. Wetland treatment removes 99% total solids, 77% total kjeldahl nitrogen, 100% nitrates, 94% total phosphorus, 86% dissolved phosphorus, 94% COD, 97% BOD, and 76% oil and grease. The results will be a critical step towards developing a sustainable low-energy system for treating such wastewater that could be used by private landscaping companies and government agencies.

  15. Multicausal analysis on water deterioration processes present in a drinking water treatment system.

    Science.gov (United States)

    Wang, Li; Ma, Fang; Pang, Changlong; Firdoz, Shaik

    2013-03-01

    The fluctuation of water turbidity has been studied during summer in the settling tanks of a drinking water treatment plant. Results from the multiple cause-effect model indicated that five main pathways interactively influenced thequalityof tank water. During rain, turbidity levels increased mainly as a result of decreasing pH and anaerobic reactions (partial effect = 68%). Increasing water temperature combined with dissolved oxygen concentration (partial effect = 64%) was the key parameterforcontrolling decreases in water turbidity during nighttime periods after a rainy day. The dominant factor influencing increases in turbidity during sunny daytime periods was algal blooms (partial effect = 86%). However, short-circuiting waves (partial effect = 77%) was the main cause for increased nighttime water turbidity after a sunny day. The trade offbetween regulatory pathways was responsible for environmental changes, and the outcome was determined by the comparative strengths of each pathway.

  16. Increasing Water System Efficiency with Ultrafiltration Pre-treatment in Power Plants

    International Nuclear Information System (INIS)

    Majamaa, Katariina; Suarez, Javier; Gasia Eduard

    2012-09-01

    Water demineralization with reverse osmosis (RO) membranes has a long and successful history in water treatment for power plants. As the industry strives for more efficient, reliable and compact water systems, pressurized hollow-fiber ultrafiltration (UF) has become an increasingly appealing pre-treatment technology. Compared to conventional, non- membrane based pretreatments, ultrafiltration offers higher efficiency in the removal of suspended solids, microorganisms and colloidal matter, which are all common causes for operational challenges experienced in the RO systems. In addition, UF is more capable of handling varying feed water qualities and removes the risk of particle carry-over often seen with conventional filtration techniques. Ultrafiltration is a suitable treatment technology for various water types from surface waters to wastewater, and the more fluctuating or challenging the feed water source is, the better the benefits of UF are seen compared to conventional pretreatments. Regardless of the feed water type, ultrafiltration sustains a constant supply of high quality feed water to downstream RO, allowing a more compact and cost efficient RO system design with improved operational reliability. A detailed focus on the design and operational aspects and experiences of two plants is provided. These examples demonstrate both economical UF operation and tangible impact of RO process improvement. Experience from these plants can be leveraged to new projects. (authors)

  17. Development of probabilistic operating rules for Hluhluwe Dam, South Africa

    Science.gov (United States)

    Ndiritu, J.; Odiyo, J.; Makungo, R.; Mwaka, B.; Mthethwa, N.; Ntuli, C.; Andanje, A.

    2017-08-01

    Hluhluwe Dam, with a 30 million m3 reservoir that supplies water for irrigation and Hluhluwe municipality in Kwa-Zulu Natal Province, South Africa, was consistently experiencing low storage levels over several non-drought years since 2001. The dam was operated by rules of thumb and there were no records of water releases for irrigation - the main user of the dam. This paper describes an assessment of the historic behaviour of the reservoir since its completion in 1964 and the development of operating rules that accounted for: i) the multiple and different levels of reliability at which municipal and irrigation demands need to be supplied, and ii) inter-annual and inter-decadal variability of climate and inflows into the dam. The assessment of the behaviour of the reservoir was done by simulation assuming trigonometric rule curves that were optimized to maximize both yield and storage state using the SCE-UA method. The resulting reservoir behaviour matched the observed historic trajectory reasonably well and indicated that the dam has mainly been operated at a demand of 10 million m3/year until 2000 when the demand suddenly rose to 25 million m3/year. Operating rules were developed from a statistical analysis of the base yields from 500 simulations of the reservoir each using 5 year-long stochastically generated sequences of inflows, rainfall and evaporation. After the implementation of the operating rules in 2009, the storage state of the dam improved and matched those of other reservoirs in the region that had established operating rules.

  18. Water treatment for the ISER [intrinsically safe and economical reactor] plant

    International Nuclear Information System (INIS)

    Sugawara, Ichiro.

    1985-01-01

    The ISER reactor assures inherent safety by causing the core, which is submerged in pool water containing a high boric acid concentration, to quickly shut down the nuclear reaction when overheating, pump trip or other problems occur. However, large quantities of pool water may cause difficulties in water quality control and waste management, resulting in higher costs. Therefore, the ISER as a total plant would not be publicly acceptable unless the water treatment and waste management system offer both safety balanced with reactor inherent safety, and economy counterbalanced by large quantities of pool water. This report clarifies the passive safety concept of possible waste treatment and management systems, and the ways to economically construct such facilities

  19. 18 CFR 385.104 - Rule of construction (Rule 104).

    Science.gov (United States)

    2010-04-01

    ... Definitions § 385.104 Rule of construction (Rule 104). To the extent that the text of a rule is inconsistent with its caption, the text of the rule controls. [Order 376, 49 FR 21705, May 23, 1984] ...

  20. Process water treatment in Canada's oil sands industry : 2 : a review of emerging technologies

    International Nuclear Information System (INIS)

    Allen, E.W.

    2008-01-01

    This review was conducted to identify candidate treatment technologies for treating oil sands process water. The oil sands industry in Canada uses large volumes of fresh water in order to extract bitumen deposits. The development of process water treatment technologies has become a critical issue for the industry, particularly as oil sand production is expected to triple in the next decade. However, treatment technologies must be adapted to consider the fouling potential of bitumens and fine clays as well as the effect of alkaline process water on treatment performance. The review included developments in chemical modifications to membranes and adsorbents designed to improve pollutant removal and reduce fouling; hybridization technologies designed to enhance the biological treatment of toxic feedwaters; recent advances in photocatalytic oxidation technologies for organic compounds; and new designs for large-scale treatment wetlands for polluted waste waters. It was concluded that major knowledge gaps must be optimized and preliminary studies must be conducted in order to understand how the treatment technologies will be affected by the chemical and physical characteristics of oil sands process water. 188 refs., 8 tabs

  1. Framework for feasibility assessment and performance analysis of riverbank filtration systems for water treatment

    KAUST Repository

    Sharma, Saroj K.

    2012-03-01

    Bank filtration (BF) is an attractive, robust and reliable water treatment technology. It has been used in Europe and USA for a long time; however experience with this technology so far is site specific. There are no guidelines or tools for transfer of this technology to other locations, specifically to developing countries. A four-step methodology was developed at UNESCO-IHE to analyse feasibility and to predict the performance of BF for water treatment. This included (i) hydraulic simulation using MODFLOW; (ii) determination of share of bank filtrate using NASRI BF simulator; (iii) prediction of water quality from a BF system using the water quality guidelines developed and (iv) comparison of the costs of BF systems and existing conventional surface water treatment systems for water treatment. The methodology was then applied to assess feasibility of BF in five cities in Africa. It was found that in most of the cities studied BF is a feasible and attractive option from hydraulic, water quality as well as operational cost considerations. Considerable operational and maintenance costs saving can be achieved and water quality can be further improved by switching from conventional chemical-based surface water treatment to BF or at least by replacing some of the treatment units with BF systems. © IWA Publishing 2012.

  2. PRODUCTION WELL WATER SHUT-OFF TREATMENT IN A HIGHLY FRACTURED SANDSTONE RESERVOIR; TOPICAL

    International Nuclear Information System (INIS)

    Lyle A. Johnson, Jr.

    2001-01-01

    As domestic oil and gas fields approach maturity or even abandonment, new methods are being tested to add life to the fields. One area being addressed is the reduction of water production to extend the economic life of a field. In many fields a very common problem is permeability heterogeneity from matrix variations, fractures, or both. Conventional procedures to remediate high water rates in fractured networks, including cement squeezing, openhole packers, and liners are generally unsuccessful. The objective of this project was to test the viability of using sequential treatment of a production well with a cross-linked polymer to restrict water production from highly permeable and fractured zones. The field used for testing was the Ashley Valley field in northeastern Utah. The process proposed for testing in this field was the sequential application of small batches of a cross-linked polymer, chromium (III) polyacrylamide polymer (Marcit(trademark)). First, the highest permeability fractures were to be blocked, followed progressively by smaller fractures, and finally the higher permeability matrix channels. The initial application of this polymer in September 1997 in the Ashley Valley (AV) well No.2 did increase oil production while decreasing both water production and the relative permeability to water. The successive application of the polymer was considered as a method to increase both daily and ultimate oil production and reduce produced water. The second polymer treatment was conducted in October 1999 in AV No.2. The treatment consisted of 4,994 barrels of 1,500-mg/l to 9,000-mg/l polymer at surface injection pressures no higher than 380 psig. During injection, four offset wells showed polymer breakthrough and were shut in during the remaining treatment. Present oil and water production rates for AV No.2 are 14 BOPD and 2,700 BWPD, which is a 44% decrease in the oil rate and a 40% reduction in water from the rates after the first treatment. The decrease in

  3. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    Science.gov (United States)

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  4. FeynRules - Feynman rules made easy

    OpenAIRE

    Christensen, Neil D.; Duhr, Claude

    2008-01-01

    In this paper we present FeynRules, a new Mathematica package that facilitates the implementation of new particle physics models. After the user implements the basic model information (e.g. particle content, parameters and Lagrangian), FeynRules derives the Feynman rules and stores them in a generic form suitable for translation to any Feynman diagram calculation program. The model can then be translated to the format specific to a particular Feynman diagram calculator via F...

  5. Effects of sterilization treatments on the analysis of TOC in water samples.

    Science.gov (United States)

    Shi, Yiming; Xu, Lingfeng; Gong, Dongqin; Lu, Jun

    2010-01-01

    Decomposition experiments conducted with and without microbial processes are commonly used to study the effects of environmental microorganisms on the degradation of organic pollutants. However, the effects of biological pretreatment (sterilization) on organic matter often have a negative impact on such experiments. Based on the principle of water total organic carbon (TOC) analysis, the effects of physical sterilization treatments on determination of TOC and other water quality parameters were investigated. The results revealed that two conventional physical sterilization treatments, autoclaving and 60Co gamma-radiation sterilization, led to the direct decomposition of some organic pollutants, resulting in remarkable errors in the analysis of TOC in water samples. Furthermore, the extent of the errors varied with the intensity and the duration of sterilization treatments. Accordingly, a novel sterilization method for water samples, 0.45 microm micro-filtration coupled with ultraviolet radiation (MCUR), was developed in the present study. The results indicated that the MCUR method was capable of exerting a high bactericidal effect on the water sample while significantly decreasing the negative impact on the analysis of TOC and other water quality parameters. Before and after sterilization treatments, the relative errors of TOC determination could be controlled to lower than 3% for water samples with different categories and concentrations of organic pollutants by using MCUR.

  6. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER; TOPICAL

    International Nuclear Information System (INIS)

    John R. Gallagher

    2001-01-01

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  7. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    Science.gov (United States)

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  8. Moessbauer sum rules for use with synchrotron sources

    International Nuclear Information System (INIS)

    Lipkin, Harry J.

    1999-01-01

    The availability of tunable synchrotron radiation sources with millivolt resolution has opened new prospects for exploring dynamics of complex systems with Moessbauer spectroscopy. Early Moessbauer treatments and moment sum rules are extended to treat inelastic excitations measured in synchrotron experiments, with emphasis on the unique new conditions absent in neutron scattering and arising in resonance scattering: prompt absorption, delayed emission, recoil-free transitions and coherent forward scattering. The first moment sum rule normalizes the inelastic spectrum. New sum rules obtained for higher moments include the third moment proportional to the second derivative of the potential acting on the Moessbauer nucleus and independent of temperature in the the harmonic approximation

  9. Waste water treatment through public-private partnerships

    DEFF Research Database (Denmark)

    Carpintero, Samuel; Petersen, Ole Helby

    2014-01-01

    This paper analyses the experience of the regional government of Aragon (Spain) that has extensively used public-private partnerships for the construction and operation of waste water treatment plants. The paper argues that although overall the implementation of this PPP program might be considered...

  10. Method for the treatment of waste water with sludge granules

    NARCIS (Netherlands)

    Van Loosdrecht, M.C.; De Kreuk, M.K.

    2004-01-01

    The invention relates to a method for the treatment of waste water comprising an organic nutrient. According to the invention, the waste water is in a first step fed to sludge granules, after the supply of the waste water to be treated the sludge granules are fluidised in the presence of an

  11. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge

    International Nuclear Information System (INIS)

    Pestana, Carlos J.; Reeve, Petra J.; Sawade, Emma; Voldoire, Camille F.; Newton, Kelly; Praptiwi, Radisti; Collingnon, Lea; Dreyfus, Jennifer; Hobson, Peter; Gaget, Virginie; Newcombe, Gayle

    2016-01-01

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10 days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. - Highlights: • Cyanobacteria in water treatment sludge significantly impact supernatant quality • Cyanobacteria can survive, and thrive, in sludge lagoon supernatant and in treatment sludge • Metabolite concentrations in cyanobacteria in sludge can increase up to 500% • The risk associated with supernatant recycling was assessed relative to available treatment barriers

  12. Fate of cyanobacteria in drinking water treatment plant lagoon supernatant and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carlos J.; Reeve, Petra J.; Sawade, Emma [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Voldoire, Camille F. [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg 67087 (France); Newton, Kelly; Praptiwi, Radisti [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Collingnon, Lea [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); École Européenne de Chimie, Polymères et Matériaux (ECPM), Strasbourg 67087 (France); Dreyfus, Jennifer [Allwater, Adelaide Services Alliance, Wakefield St, Adelaide, SA 5001 (Australia); Hobson, Peter [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia); Gaget, Virginie [University of Adelaide, Ecology and Environmental Sciences, School of Biological Sciences, Adelaide, SA 5005 (Australia); Newcombe, Gayle, E-mail: gayle.newcombe@sawater.com.au [Australian Water Quality Centre, South Australian Water Corporation, Adelaide, SA 5000 (Australia)

    2016-09-15

    In conventional water treatment processes, where the coagulation and flocculation steps are designed to remove particles from drinking water, cyanobacteria are also concentrated into the resultant sludge. As a consequence, cyanobacteria-laden sludge can act as a reservoir for metabolites such as taste and odour compounds and cyanotoxins. This can pose a significant risk to water quality where supernatant from the sludge treatment facility is returned to the inlet to the plant. In this study the complex processes that can take place in a sludge treatment lagoon were investigated. It was shown that cyanobacteria can proliferate in the conditions manifest in a sludge treatment lagoon, and that cyanobacteria can survive and produce metabolites for at least 10 days in sludge. The major processes of metabolite release and degradation are very dependent on the physical, chemical and biological environment in the sludge treatment facility and it was not possible to accurately model the net effect. For the first time evidence is provided to suggest that there is a greater risk associated with recycling sludge supernatant than can be estimated from the raw water quality, as metabolite concentrations increased by up to 500% over several days after coagulation, attributed to increased metabolite production and/or cell proliferation in the sludge. - Highlights: • Cyanobacteria in water treatment sludge significantly impact supernatant quality • Cyanobacteria can survive, and thrive, in sludge lagoon supernatant and in treatment sludge • Metabolite concentrations in cyanobacteria in sludge can increase up to 500% • The risk associated with supernatant recycling was assessed relative to available treatment barriers.

  13. Performance evaluation of household water treatment systems used in Kerman for removal of cations and anions from drinking water

    Science.gov (United States)

    Malakootian, Mohammad; Amirmahani, Najmeh; Yazdanpanah, Ghazal; Nasiri, Alireza; Asadipour, Ali; Ebrahimi, Ahmad; Darvish Moghaddam, Sodaif

    2017-12-01

    Increased awareness in society of the consequences of contaminants in drinking water has created a demand for household water treatment systems, which provide higher quality water, to spread. The aim of this study was to evaluate the performance of household water treatment systems used in Kerman for the removal of cations and anions. Various brands of home water treatment devices commonly used in Kerman were selected, with one device chosen from each brand for study. In cases in which the devices were used extensively, samples were selected with filters that had been changed in proper time, based on the device's operational instructions. The samples were selected from homes in the center and four geographical directions of Kerman. Then, sampling was conducted in three stages of input and output water of each device. For each of the samples, parameters were measured, such as chloride, sulfate, bicarbonate, calcium, magnesium, hardness, sodium, nitrate and nitrite (mg/L), temperature (°C), and pH. The average removal efficiency of different parameters by 14 brands in Kerman, which include chloride ions, sulfate, bicarbonate, calcium, magnesium, sodium, nitrites, nitrates, and total hardness, was obtained at 68.48, 85, 67, 61.21, 78.97, 80.24, 32.59, 66.83, and 69.38%, respectively. The amount of sulfate, bicarbonate, chloride, calcium, magnesium, hardness, sodium, and nitrate in the output water of household water treatment systems was less than the input water of these devices, but nitrite concentration in the output of some devices was more than the input water and showed a significant difference ( p > 0.05).

  14. Linking water treatment practices and fish welfare

    DEFF Research Database (Denmark)

    Zubiaurre, Claire; Pedersen, Lars-Flemming

    2016-01-01

    Peracetic acids can be used as sanitizers to control water quality in aquaculture systems. As an alternative to formalin, chloramine-T or copper sulphate, PAA has strong anti-microbial effects, degrades quickly and is relatively safe to use. Its mode of action and associated rapid decay can make....... Supportive enzymatic, biochemical and physiological biomarkers can be used along with gill and epidermal histological measures to evaluate the effects on water treatment regimens. The ultimate goal is to define the therapeutic window where fish welfare is not compromised.PAA is among the few disinfectants...

  15. Drainage treatment technology for water pollution prevention

    Energy Technology Data Exchange (ETDEWEB)

    Ebise, Sen' ichi

    1988-03-01

    Drainage is purified either at terminal treatment plants or by septic tanks for sewage. At terminal treatment plants, sewage is purified by activated sludge prosessing or by biological treatment equipment. By the normal activated sludge processing, only 20 - 30 % of nitrogen and phosphur can be removed. To solve this problem, many advanced processing systems have been employed, representative systems being coagulating sedimentation, rapid filtration, recirculating nitro-denitrification, etc. The coagulating sedimentation is a treatment process in which such metallic salt coagulations as aluminum, iron, etc. are injected and mixed with sewage, and then phosphur and the like are sedimented in the form of grains. The rapid filtration requires no large space, and can reliably remove suspended matter. For large scale septic tank processing system, advance treatment processing is supplemented to improve the quality of treated water. Among other systems of sewage purification are oxidized channel, oxidized pond, soil treatment, etc. (2 figs, 2 refs)

  16. Cooling tower water ozonation at Southern University

    International Nuclear Information System (INIS)

    Chen, C.C.; Knecht, A.T.; Trahan, D.B.; Yaghi, H.M.; Jackson, G.H.; Coppenger, G.D.

    1990-01-01

    Cooling-tower water is a critical utility for many industries. In the past, inexpensive water coupled with moderate regulation of discharge water led to the neglect of the cooling tower as an energy resource. Now, with the increased cost of chemical treatment and tough EPA rules and regulations, this situation is rapidly changing. The operator of the DOE Y-12 Plant in Oak Ridge as well as many other industries are forced to develop an alternate method of water treatment. The cooling tower is one of the major elements in large energy systems. The savings accrued from a well engineered cooling tower can be a significant part of the overall energy conservation plan. During a short-term ozonation study between 1987-1988, the Y-12 Plant has been successful in eliminating the need for cooling tower treatment chemicals. However, the long-term impact was not available. Since April 1988, the ozone cooling water treatment study at the Y-12 Plant has been moved to the site at Southern University in Baton Rouge, Louisiana. The purpose of this continued study is to determine whether the use of ozonation on cooling towers is practical from an economic, technical and environmental standpoint. This paper discusses system design, operating parameter and performance testing of the ozonation system at Southern University

  17. Use of a water treatment sludge in a sewage sludge dewatering process

    Science.gov (United States)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  18. Mesophilic and thermophilic activated sludge post-treatment of paper mill process water

    NARCIS (Netherlands)

    Vogelaar, J.C.T.; Bouwhuis, E.; Klapwijk, A.; Spanjers, H.; Lier, van J.B.

    2002-01-01

    Increasing system closure in paper mills and higher process water temperatures make the applicability of thermophilic treatment systems increasingly important. The use of activated sludge as a suitable thermophilic post-treatment system for anaerobically pre-treated paper process water from a paper

  19. Description of station waste water treatment and study of reclaiming industry ceramic red

    International Nuclear Information System (INIS)

    Yadava, Y.P.; Rego, S.A.B.C.; Junior, B.S.; Bezerra, L.P.; Ferreira, R.A.S.

    2012-01-01

    So that the water meets potability standards required by the laws it passes through various treatment processes which generate waste called WTS (Water Treatment Sludge). This sludge is disposed of without any processing, however, environmental agencies and the public are demanding alternatives to this situation. Knowing this, this study aims to characterize the sludge from the Water Treatment Plant Botafogo and analyze its viability as a feedstock in the manufacture of red bricks. (author)

  20. Design rules for piping: Plastic stability of straight parts under level D loadings

    International Nuclear Information System (INIS)

    Touboul, F.; Ben Djidia, M.; Acker, D.

    1989-01-01

    Design rules for piping, elaborated for Fast Breeder Reactors, are based on analysis performed for Pressure Water Reactors. Interpretation of largely diversified straight parts tests, enable us to validate and improve existing rules and to propose a more suitable formula. Design rules for piping appear to be non conservative for austenitic thin tubes in bending or torsion. By introducing a B 2 coefficient, geometrically dependent, the gap between thin and thick tubes may be withheld. Conservatism of rules can be ensured by considering the allowable stress defined by ASME, Section III, Appendix F

  1. Treatment of mixed F006 contaminated material to meet the new EPA debris rule at the Savannah River Site

    International Nuclear Information System (INIS)

    Pickett, J.B.; Diener, G.A.; Carroll, S.J.; Steingard, J.M.

    1993-01-01

    The Westinghouse Savannah River Company (WSRC), as the operating contractor for the Department of Energy (DOE) at the Savannah River Site (SRS) has demonstrated a procedure to clean mixed (radioactive/hazardous) materials to meet the criteria in the recently promulgated Land Disposal Restrictions ''debris'' rule. The material was equipment (steel piping, transfer pumps valves) which had been used in industrial wastewater treatment facility to transfer listed F006 wastewater treatment plating line sludges to a RCRA storage tank complex. When the equipment needed to be replaced/repaired, it was concluded that the resulting debris would have to be managed as a mixed waste, due to the fact that the solid waste ''contained'' the listed hazardous waste

  2. Economic study of the treatment of surface water by small ...

    African Journals Online (AJOL)

    The purpose of this work is to evaluate the possibility of utilising an ultrafiltration process for the treatment of water from the dam in the Kabylia region of Algeria and, in particular, for the provision of drinking water to people living in dispersed small villages. The water quality was determined by measuring turbidity, and ...

  3. Factors associated with post-treatment E. coli contamination in households practising water treatment: a study of rural Cambodia.

    Science.gov (United States)

    Benwic, Aaron; Kim, Erin; Khema, Cinn; Phanna, Chet; Sophary, Phan; Cantwell, Raymond E

    2018-04-01

    The purpose of this study was to assess factors associated with Escherichia coli (E. coli) contamination in rural households in Cambodia that have adopted household water treatment. The following factors were significantly associated (α E. coli contamination: cleaning the drinking vessel with untreated water, not drying the cup (with a cloth), accessing treated water by the use of a scoop (ref: using a tap), having more than one untreated water storage container, having an untreated water storage container that appeared dirty on the outside, and cows living within 10 m of the household. This study provides further evidence confirming previous studies reporting an association between inadequate cleanliness of water storage containers and household drinking water contamination, and identifies practical recommendations statistically associated with reduced post-treatment E. coli contamination in the household setting in rural Cambodia.

  4. Investigations on the treatment of waste waters from pig breeding

    Energy Technology Data Exchange (ETDEWEB)

    Cute, E; Mambet, E; Juriari, E; Murgoci, C

    1967-01-01

    The introduction of intensive methods of pig breeding has caused changes in the characteristics, particularly the strength, of the piggeries waste waters; analytical data are tabulated for waste waters from 3 pig-breeding farms and 1 large pig-breeding combine in Romania. At older piggeries, waste waters are treated by sedimentation and sludge digestion in Imhoff tanks. In more recent establishments, treatment comprises primary sedimentation followed by storage of the settled waste waters in ponds to be used for irrigation, and separate digestion of sludge in open tanks. Experiments showed that precautions are necessary to prevent blocking of the sewerage system by easily-settleable material before reaching the sedimentation tanks; sedimentation is more efficient in horizontal sedimentation tanks than in the older Imhoff tanks; biological treatment is possible without addition of nutrients, but the waste waters must be diluted; and digestion requires a longer period than that for sewage sludge, difficulties being caused by the presence of coarse suspended particles of waste feeding stuffs.

  5. Removal of oil products from fitters in water treatment plants

    International Nuclear Information System (INIS)

    Carlson, B.B.; Olander, M.A.; Arvin, E.

    1996-01-01

    Gasoline and oil spills cause aromatic hydrocarbon pollution of ground water. Benzene, toluene and naphtalene can be found in water wells. The purpose of the experiment was to investigate the filtering of water and biological degradation of aromatics on water treatment filters. These filters were proved to reduce benzene, toluene and naphtalene concentration from 5-12 μg/l to 0,3-0,6 μg/l (86-98 % removal). (EG)

  6. Integrated oil sands tailings pond water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2010-07-01

    This PowerPoint presentation discussed research currently being conducted to treat oil sands tailings pond water (TPW). The treatment of TPW is challenged by the high level of naphthenic acids (NAs), the slow settling rate of fine particulate materials, and the complex chemistry of the water. The treatment process consisted of bioflocculation, sludge blanket assisted clarification, ozonation, and oil sands coke assisted hybrid biodegradation. The aggregation and adsorption process bound small particles and cells together while also ensuring the passive uptake of pollutants using microbial masses. The mixed liquor then passed through a sludge blanket to ensure enhanced particle capture. An ozonation process was used to increase the biodegradability of the TPW as well as to increase the biodegradability of the residual NAs after ozonation. The process used a hybrid bioreactor that consisted of both suspended and fixed microbial communities. The coke served as a biofilm carrier for the waste. Further studies are being conducted to investigate the efficiency and capability of the process. tabs., figs.

  7. 42 CFR 412.90 - General rules.

    Science.gov (United States)

    2010-10-01

    ... PROSPECTIVE PAYMENT SYSTEMS FOR INPATIENT HOSPITAL SERVICES Special Treatment of Certain Facilities Under the Prospective Payment System for Inpatient Operating Costs § 412.90 General rules. (a) Sole community hospitals... after October 1, 1984 are ESRD beneficiary discharges. In determining ESRD discharges, discharges in DRG...

  8. Performance of thirteen clinical rules to distinguish bacterial and presumed viral meningitis in Vietnamese children.

    Directory of Open Access Journals (Sweden)

    Nguyen Tien Huy

    Full Text Available BACKGROUND AND PURPOSE: Successful outcomes from bacterial meningitis require rapid antibiotic treatment; however, unnecessary treatment of viral meningitis may lead to increased toxicities and expense. Thus, improved diagnostics are required to maximize treatment and minimize side effects and cost. Thirteen clinical decision rules have been reported to identify bacterial from viral meningitis. However, few rules have been tested and compared in a single study, while several rules are yet to be tested by independent researchers or in pediatric populations. Thus, simultaneous test and comparison of these rules are required to enable clinicians to select an optimal diagnostic rule for bacterial meningitis in settings and populations similar to ours. METHODS: A retrospective cross-sectional study was conducted at the Infectious Department of Pediatric Hospital Number 1, Ho Chi Minh City, Vietnam. The performance of the clinical rules was evaluated by area under a receiver operating characteristic curve (ROC-AUC using the method of DeLong and McNemar test for specificity comparison. RESULTS: Our study included 129 patients, of whom 80 had bacterial meningitis and 49 had presumed viral meningitis. Spanos's rule had the highest AUC at 0.938 but was not significantly greater than other rules. No rule provided 100% sensitivity with a specificity higher than 50%. Based on our calculation of theoretical sensitivity and specificity, we suggest that a perfect rule requires at least four independent variables that posses both sensitivity and specificity higher than 85-90%. CONCLUSIONS: No clinical decision rules provided an acceptable specificity (>50% with 100% sensitivity when applying our data set in children. More studies in Vietnam and developing countries are required to develop and/or validate clinical rules and more very good biomarkers are required to develop such a perfect rule.

  9. An Update on Modifications to Water Treatment Plant Model

    Science.gov (United States)

    Water treatment plant (WTP) model is an EPA tool for informing regulatory options. WTP has a few versions: 1). WTP2.2 can help in regulatory analysis. An updated version (WTP3.0) will allow plant-specific analysis (WTP-ccam) and thus help meet plant-specific treatment objectives...

  10. Effects of Hot Water Treatment and Temperature on Seedling ...

    African Journals Online (AJOL)

    An experiment was conducted at the Faculty of Agriculture, University of Maiduguri, to study the effect of hot water treatment and temperature on the morphological characteristics of Arabic gum. The experiment was laid out in a Randomized Complete Block Design in a factorial arrangement. The treatments included a ...

  11. Factors determining water treatment behavior for the prevention of cholera in Chad.

    Science.gov (United States)

    Lilje, Jonathan; Kessely, Hamit; Mosler, Hans-Joachim

    2015-07-01

    Cholera is a well-known and feared disease in developing countries, and is linked to high rates of morbidity and mortality. Contaminated drinking water and the lack of sufficient treatment are two of the key causes of high transmission rates. This article presents a representative health survey performed in Chad to inform future intervention strategies in the prevention and control of cholera. To identify critical psychological factors for behavior change, structured household interviews were administered to N = 1,017 primary caregivers, assessing their thoughts and attitudes toward household water treatment according to the Risk, Attitude, Norm, Ability, and Self-regulation model. The intervention potential for each factor was estimated by analyzing differences in means between groups of current performers and nonperformers of water treatment. Personal risk evaluation for diarrheal diseases and particularly for cholera was very low among the study population. Likewise, the perception of social norms was found to be rather unfavorable for water treatment behaviors. In addition, self-reported ability estimates (self-efficacy) revealed some potential for intervention. A mass radio campaign is proposed, using information and normative behavior change techniques, in combination with community meetings focused on targeting abilities and personal commitment to water treatment. © The American Society of Tropical Medicine and Hygiene.

  12. Onsite defluoridation system for drinking water treatment using calcium carbonate.

    Science.gov (United States)

    Wong, Elaine Y; Stenstrom, Michael K

    2018-06-15

    Fluoride in drinking water has several effects on teeth and bones. At concentrations of 1-1.5 mg/L, fluoride can strengthen enamel, improving dental health, but at concentrations above 1.5 to 4 mg/L can cause dental fluorosis. At concentrations of 4-10 mg/L, skeletal fluorosis can occur. There are many areas of the world that have excessive fluoride in drinking water, such as China, India, Sri Lanka, and the Rift Valley countries in Africa. Treatment solutions are needed, especially in poor areas where drinking water treatment plants are not available. On-site or individual treatment alternatives can be attractive if constructed from common materials and if simple enough to be constructed and maintained by users. Advanced on-site methods, such as under sink reserve osmosis units, can remove fluoride but are too expensive for developing areas. This paper investigates calcium carbonate as a cost effective sorbent for an onsite defluoridation drinking water system. Batch and column experiments were performed to characterize F - removal properties. Fluoride sorption was described by a Freundlich isotherm model, and it was found that the equilibrium time was approximately 3 h. Calcium carbonate was found to have comparable F - removal abilities as the commercial ion exchange resins and possessed higher removal effectiveness compared to calcium containing eggshells and seashells. It was also found that the anion Cl- did not compete with F - at typical drinking water concentrations, having little impact on the effectiveness of the treatment system. A fluoride removal system is proposed that can be used at home and can be maintained by users. Through this work, we can be a step closer to bringing safe drinking water to those that do not have access to it. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Science.gov (United States)

    Pogorzelec, Marta; Piekarska, Katarzyna

    2017-11-01

    The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  14. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Directory of Open Access Journals (Sweden)

    Pogorzelec Marta

    2017-01-01

    Full Text Available The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland. To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC. Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  15. In-situ treatment of acid mine waters using fluidized bed ash: Field study

    International Nuclear Information System (INIS)

    Everett, J.W.; Canty, G.A.

    1999-01-01

    A slurry of mine water and fluidized bed ash (FBA) was injected into an abandoned coal mine in eastern Oklahoma in July 1997. Oil-field technology was used to inject 1.8 Gg (418 tons) of FBA through five wells in 15 hours. Prior to injection the seep water had a pH of 4.4, was net acidic (acidity over 400 mg/L as CaCO 3 ), and had relatively high metal concentrations (in mg/L: Fe-200; Mn-7; and Al-6). After injection, during the period of effective treatment, the seep water had a pH above 6.0, less net acidity, and had lower metals concentrations (in mg/L: Fe-120; Mn-5; and Al-< PQL). When the treated seep water exited the mine, the dissolved metals oxidized and hydrolyzed. As the metals precipitated, the alkalinity introduced by the FBA was consumed and the pH dropped. However, the seep water characteristics upon entering the receiving stream were improved, compared to pre-injection. The resulting seep water quality is such that it is more amenable to further treatment by passive treatment methods, such as anoxic limestone drains or wetlands. Alkaline injection is a finite treatment process. Eventually, the added alkalinity is exhausted, at which time the seep returns to pre-injection conditions, necessitating another injection of ash. For the study discussed in this paper, the treatment lasted approximately 15 months. While the amount of alkalinity added to the mine could have potentially treated much more than a year's volume of seep water, it is believed that much of the injected alkalinity was unavailable in backwater areas in the mine. This alkalinity contributed little, if any, to the treatment of water flowing through the mine. Mine hydrology, especially during injection are crucial to treatment longevity

  16. Selenium-Water Treatment Residual Adsorption And Characterization

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) have the ability to adsorb tremendous quantities of soil-borne P, and have been shown to adsorb other anions, such as As (V), As (III), and ClO4-. Environmental issues associated with Se in the Western US led us to study W...

  17. Effectiveness of a Barge-Based Ballast Water Treatment System for Multi-Terminal Ports

    Directory of Open Access Journals (Sweden)

    Lovro Maglić

    2015-10-01

    Full Text Available The paper presents outcomes of the discrete event simulation of the ballast water management in a multi-terminal port. The simulation includes ship’s manoeuvring, cargo and ballast operations and a barge-based ballast water treatment system operating within all terminal areas. The barge-based ballast water treatment system is used by ships unable to use their own equipment, not equipped with an appropriate ballast treatment system or non-compliant with the Ballast Water Management (BWM Convention 2004 for whatever reason. The main goal is to estimate the productivity and cost effectiveness of such systems as an option to support ships not able to comply with the BWM Convention, once it enters into force. The model was built and tested in Arena simulation software. Process parameters are based on real traffic data for the port of Rijeka. The results indicate that barge-based ballast treatment facility will be heavily underutilized, and that such systems are cost-effective only in ports where large volumes of ballast water need to be delivered to shore treatment systems.

  18. Ozonated water in the post-harvest treatment of coffee fruits

    Directory of Open Access Journals (Sweden)

    Fernando J. B. Brandão

    Full Text Available ABSTRACT Ozone is used in many countries for the treatment of effluents, becoming a viable alternative in sanitation of coffee wastewater. However, the strong ozone oxidation, responsible for its germicidal effect, can also compromise grain and beverage quality. The objective of this study was to evaluate the quality of Arabica coffee in different periods of treatment with ozonated water and its effect after drying. Coffee fruits were subjected to ozonation at regular intervals of 0, 5, 10, 20, and 30 min, with continuous stirring promoted by a recirculating water system at constant rate of 1 ppm of solubilized ozone. The design was completely randomized with five treatments and four replicates. After obtaining the data, the analysis of variance was performed and means were compared by Tukey test (p ≤ 0.05. The results showed a partial reduction of fungi after washing with ozonated water, but the same effect was not observed after drying. For coffee quality analysis, the longest times of exposure to the solubilized gas in the water produced some negative results in electrical conductivity and total and reducing sugars. However, the sensory quality of the beverage was maintained.

  19. Grey water characteristics and treatment options for rural areas in Jordan.

    Science.gov (United States)

    Halalsheh, M; Dalahmeh, S; Sayed, M; Suleiman, W; Shareef, M; Mansour, M; Safi, M

    2008-09-01

    Low water consumption in rural areas in Jordan had resulted in the production of concentrated grey water. Average COD, BOD and TSS values were 2568mg/l, 1056mg/l and 845mg/l, respectively. The average grey water generation was measured to be 14L/c.d. Three different treatment options were selected based on certain criterions, and discussed in this article. The examined treatment systems are septic tank followed by intermittent sand filter; septic tank followed by wetlands; and UASB-hybrid reactor. Advantages and disadvantages of each system are presented. It was concluded that UASB-hybrid reactor would be the most suitable treatment option in terms of compactness and simplicity in operation. The volume of UASB-hybrid reactor was calculated to be 0.268m(3) with a surface area of 0.138m(2) for each house having 10 inhabitants on average. Produced effluent is expected to meet Jordanian standards set for reclaimed water reuse in irrigating fruit trees.

  20. New Safety rules

    CERN Multimedia

    Safety Commission

    2008-01-01

    The revision of CERN Safety rules is in progress and the following new Safety rules have been issued on 15-04-2008: Safety Procedure SP-R1 Establishing, Updating and Publishing CERN Safety rules: http://cern.ch/safety-rules/SP-R1.htm; Safety Regulation SR-S Smoking at CERN: http://cern.ch/safety-rules/SR-S.htm; Safety Regulation SR-M Mechanical Equipment: http://cern.ch/safety-rules/SR-M.htm; General Safety Instruction GSI-M1 Standard Lifting Equipment: http://cern.ch/safety-rules/GSI-M1.htm; General Safety Instruction GSI-M2 Standard Pressure Equipment: http://cern.ch/safety-rules/GSI-M2.htm; General Safety Instruction GSI-M3 Special Mechanical Equipment: http://cern.ch/safety-rules/GSI-M3.htm. These documents apply to all persons under the Director General’s authority. All Safety rules are available at the web page: http://www.cern.ch/safety-rules The Safety Commission

  1. Ruled-based control of off-grid desalination powered by renewable energies

    Directory of Open Access Journals (Sweden)

    Alvaro Serna

    2015-08-01

    Full Text Available A rule-based control is presented for desalination plants operating under variable, renewable power availability. This control algorithm is based on two sets of rules: first, a list that prioritizes the reverse osmosis (RO units of the plant is created, based on the current state and the expected water demand; secondly, the available energy is then dispatched to these units following this prioritized list. The selected strategy is tested on a specific case study: a reverse osmosis plant designed for the production of desalinated water powered by wind and wave energy. Simulation results illustrate the correct performance of the plant under this control.

  2. Effects of water treatment processes used at waterworks on natural radionuclide concentrations

    International Nuclear Information System (INIS)

    Haemaelaeinen, K.; Vesterbacka, P.; Maekelaeinen, I.; Arvela, H.

    2004-08-01

    The occurrence of uranium and other natural radionuclides in waters of waterworks and the effects of the conventional water treatment processes on radionuclide concentrations were investigated. Water samples were collected from 17 waterworks. Radionuclide concentrations of the collected samples were compared to the currently valid concentrations according to the Finnish regulation, ST guide 12.3. Similarly the measured concentrations were compared to the values presented in the 98/83/EC directive and in the Commission recommendation, 2001/928/Euratom. The guidelines based on chemical toxicity of uranium were also considered. This report presents a summary of the radionuclide concentrations in waters distributed by waterworks. Short-term and logn-term temporal variation of radionuclide levels in raw water were also investigated. Waterworks selected to this study used different kinds of raw water sources and a variety of water treatment processes. Water samples were collected from 46 water catchments which used groundwater in soil, artificial groundwater or groundwater in bedrock as a source of raw water. The most common water treatment used in these catchments was alkalization. Other treatment processes used were various types of filtrations (sand, anthracite, slow sand and membrane filtration) and aeration. Four of the catchments distributed water without treatment. Sampling was carried out in co-operation with local health inspectors and waterworks staff in spring 2002. Later that autumn, monitoring samples were collected from eight catchments. The maximum value for radon, presented in ST guide 12.3, was exceeded in three water catchments that used groundwater in bedrock as a source of raw water. No exceedings were found in those water catchments that use groundwater in soil or artificial groundwater. The limits of uranium and radium calculated from the total indicative dose (98/83/EC) were not exceeded but the guidelines for lead and polonium, given in the

  3. RESOLUTION OF THE PROBLEM OF TREATMENT OF WASTE WATER GENERATED BY CAR WASHES AND TRANSPORT ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Gogina Elena Sergeevna

    2012-12-01

    big cities of Russia. At the same time, the quality of the waste water treated by local water treatment stations fails to meet the present-day standard requirements. Moreover, potable water shall not be used for the purpose of washing transport vehicles. Within the recent 10 years, MGSU has developed a number of research projects aimed at the resolution of this problem. The concept developed by the MGSU specialists is to attain the highest quality of treated waste water generated by car washes and transport enterprises using the most advanced technologies of water treatment rather than to design new water treatment plants. Various methods may be applied for this purpose: restructuring of water treatment facilities, advanced feed, updated regulations governing the operation of water treatment plants.

  4. Modifications to the Rules of the CERN Health Insurance Scheme

    CERN Multimedia

    HR Department

    2010-01-01

    On the proposal of the CHIS Board, and following examination by the Standing Concertation Committee on 29 April 2010, the Director-General has approved the new Rules of the CERN Health Insurance Scheme, which will come into effect on 1 June 2010. The Rules will shortly be available on the CHIS web site. As the Rules had not been revised since 2003, it had become necessary to make certain changes in order to bring them into line with other texts (such as the Staff Rules and Regulations and Administrative Circulars) and to clarify some practices. The new Rules do not introduce any new benefits or remove any existing ones. The following changes will affect all insured members:   Description of change Articles in the new Rules Time limit for claiming reimbursement The time period is measured from the invoice date (instead of the date of treatment). ...

  5. Waste water treatment of hydrometallurgical mill in mine No. 754

    International Nuclear Information System (INIS)

    Zhang Yiqun

    1997-01-01

    The author briefly introduces some measures to waste water treatment of hydrometallurgical mill of Uranium Mine No. 754. It is shown in practice that making rational use of waste water is advantageous to production, reducing qcost and lightening environment pollution

  6. Bacterial treatment effectiveness of point-of-use ceramic water filters.

    Science.gov (United States)

    Bielefeldt, Angela R; Kowalski, Kate; Summers, R Scott

    2009-08-01

    Laboratory experiments were conducted on six point-of-use (POU) ceramic water filters that were manufactured in Nicaragua; two filters were used by families for ca. 4 years and the other filters had limited prior use in our lab. Water spiked with ca. 10(6)CFU/mL of Escherichia coli was dosed to the filters. Initial disinfection efficiencies ranged from 3 - 4.5 log, but the treatment efficiency decreased with subsequent batches of spiked water. Silver concentrations in the effluent water ranged from 0.04 - 1.75 ppb. Subsequent experiments that utilized feed water without a bacterial spike yielded 10(3)-10(5)CFU/mL bacteria in the effluent. Immediately after recoating four of the filters with a colloidal silver solution, the effluent silver concentrations increased to 36 - 45 ppb and bacterial disinfection efficiencies were 3.8-4.5 log. The treatment effectiveness decreased to 0.2 - 2.5 log after loading multiple batches of highly contaminated water. In subsequent loading of clean water, the effluent water contained filters. This indicates that the silver had some benefit to reducing bacterial contamination by the filter. In general these POU filters were found to be effective, but showed loss of effectiveness with time and indicated a release of microbes into subsequent volumes of water passed through the system.

  7. Water Treatment Plant Operation Volume 2. A Field Study Training Program. Revised.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  8. Evaluating the sustainability of ceramic filters for point-of-use drinking water treatment.

    Science.gov (United States)

    Ren, Dianjun; Colosi, Lisa M; Smith, James A

    2013-10-01

    This study evaluates the social, economic, and environmental sustainability of ceramic filters impregnated with silver nanoparticles for point-of-use (POU) drinking water treatment in developing countries. The functional unit for this analysis was the amount of water consumed by a typical household over ten years (37,960 L), as delivered by either the POU technology or a centralized water treatment and distribution system. Results indicate that the ceramic filters are 3-6 times more cost-effective than the centralized water system for reduction of waterborne diarrheal illness among the general population and children under five. The ceramic filters also exhibit better environmental performance for four of five evaluated life cycle impacts: energy use, water use, global warming potential, and particulate matter emissions (PM10). For smog formation potential, the centralized system is preferable to the ceramic filter POU technology. This convergence of social, economic, and environmental criteria offers clear indication that the ceramic filter POU technology is a more sustainable choice for drinking water treatment in developing countries than the centralized treatment systems that have been widely adopted in industrialized countries.

  9. Simulation of gamma irradiation system for a ballast water treatment

    International Nuclear Information System (INIS)

    Faez, T. P.; Sarkar, S.

    2006-01-01

    Invasion by different kinds of ballast the water microorganisms is one of the most important marine environment problems around the world therefore preventing the invasion of these unwanted and harmful stowaways is one of the main strategies of responsible agencies. Some of these methods such as ocean exchange, heating, filtration, hydro cyclones, UV irradiation and chemical treatment, have various problems such as technical deficiency, high costs, lack of safety and environmental side effects. Materials and Methods: A novel system of treatment by Gamma irradiation is designed to irradiate the blast water uniformly and effectively. To determine the dose distribution as a function of distance from the irradiation source, the MCNP code was used. The systems used for source implant in this simulation were Paterson-Parker, Paris and Network systems. In each system, Sivert-integral and inverse square law were used in MATLAB program to determine the dose distribution. Results: Results of initial laboratory tests on offshore water samples of Siri Island indicated that the appropriate dose for deactivation of organisms of water samples is approximately one kGy. It has been demonstrated that the dose can be provided by twenty five 100,000 Ci line sources of ' 60 Co in a triangle implant arranged in a 1*1*1 m3 cubic shape water pipe. In order to increase efficiency and radiation safety, water passed from two other coaxial and bigger cubes, after passing from the first cube. A one meter thick wall of concrete around the cubes was adequate to shield the system completely. Conclusion: The main advantages of this system such as high efficiency, safety, reliability, minimum environmental adverse effects, proves that this novel method not only can be used for ballast water treatment, but is also effective for drinking water purification

  10. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Science.gov (United States)

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  11. Evaluation of Five Treatment Plants for the Removal of Microcystins in Drinking Water

    Directory of Open Access Journals (Sweden)

    Manuel Álvarez Cortiñas

    2017-06-01

    Full Text Available In Galicia there are supplies that collect water from reservoirs showing growth of cyanobacteria that could produce toxins. The drinking water treatment plants (DWTPs of these supplies should provide adequate treatment and be subjected to maintenance. WHO guidelines make recommendations on the most suitable treatments for removing microcystins. The Department of Health developed a protocol of action against these events jointly with water basin authorities. 4 reservoirs and five treatment plants were identified for this study. The treatments of the plants, the maintenance carried out at the DWTPs and the results for sestonic and dissolved toxins analyzed by the Public Health Laboratory of Galicia in the reservoirs near the point of collection, before the treatment plants and after them, during the 2013-2014 biennium were evaluated.

  12. Study of the efficiency of some water treatment unit that present in houses in Erbil city-Iraq

    Science.gov (United States)

    Toma, Janan. Jabbar.; Hanna, Aveen. Matti.

    2017-09-01

    Many people in Erbil city started more than two decade to put special treatment units in their houses to purified water to become safer for drinking uses. The aim of this study was determine the efficiency of six kind water treatment units which include (two replicate of Crystal Water Purifier, So-Safe Water Filter, R O Water Purifier, Kontec Water Purified and Al-Kawther Purified Water). Water samples were collected in two sites one before and other after treatment unit. Each sample was collect with three replication during May to October-2016. Analyzed for Major cations concentration (calcium, magnesium, sodium and potassium), anions concentration (nitrate and chloride) and hydrogen ion concentration (pH), electrical conductivity (EC), total dissolved solids (TDS), alkalinity and total hardness by using standard methods. The water quality index values for all raw water sample befor and after treatment was good and excellent respectively for drinking purposes. Efficiency of So-Safe Water Filter was 66.32% it means was more efficiency than others special water treatment units while in RO Water Purifier was 27.14%, means less efficiency than other water purifier water under this study. Values for major cations, anions and others chemicals characteristics in the water samples after treatment became lower concentrations than befor treatment, likely an indication that these were removed by treatment. According to guideline of world health organization all of variables except total hardness befor treatment are safe and suitable for drinking purposes.

  13. Effects of source, water conditioning and thermal treatment on ...

    African Journals Online (AJOL)

    at 15 % moisture content amounting to 61.3 MJ was the optimum thermal treatment for achieving germination of 69 %. R. heudelotii seeds soaked in water for 15 days at moisture content of 24 % over dry weight followed by thermal treatment improved germination by 22 %. The highest germination of 79 % was obtained for ...

  14. Pencegahan Korosi Dengan Boiler Water Treatment (Bwt) Pada Ketel Uap Kapal.

    OpenAIRE

    Suleman, Suleman

    2007-01-01

    This paper explained about a using of Boiler Water Treatment (BWT) as corrosion protection for boiler on ship. BWT used as addition on boiler water, which used destilat water. As experiment results, BWT used on destilat water and destilat - seawater mixed given not koagulan patch on. The simulation given not satisfied results, caused by good not equipment.

  15. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    Science.gov (United States)

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment. Copyright 2009 Wiley-Liss, Inc.

  16. Recycling of drinking water treatment residue as an additional medium in columns for effective P removal from eutrophic surface water.

    Science.gov (United States)

    Wang, Changhui; Wu, Yu; Bai, Leilei; Zhao, Yaqian; Yan, Zaisheng; Jiang, Helong; Liu, Xin

    2018-07-01

    This study assesses the feasibility of recycling drinking water treatment residue (DWTR) to treat eutrophic surface water in a one-year continuous flow column test. Heat-treated DWTR was used as an additional medium (2%-4%) in columns in case excessive organic matter and N were released from the DWTR to surface water. The results indicated that with minimal undesirable effects on other water properties, DWTR addition substantially enhanced P removal, rendering P concentrations in treated water oligotrophic and treated water unsuitable for Microcystis aeruginosa breeding. Long-term stable P removal by DWTR-column treatment was mainly attributed to the relatively low P levels in raw water (cycles and multiple pollution control (e.g., Dechloromonas, Geobacter, Leucobacter, Nitrospira, Rhodoplanes, and Sulfuritalea); an apparent decrease in Mycobacterium with potential pathogenicity was observed in DWTR-columns. Regardless, limited denitrification of DWTR-columns was observed as a result of low bioavailability of C in surface water. This finding indicates that DWTR can be used with other methods to ensure denitrification for enhanced treatment effects. Overall, the use of DWTR as an additional medium in column systems can potentially treat eutrophic surface water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. NPDES Permit for Crow Nation Water Treatment Plants in Montana

    Science.gov (United States)

    Under NPDES permit MT-0030538, the U.S. Bureau of Indian Affairs is authorized to discharge from the Crow Agency water treatment plants via the wastewater treatment facility located in Bighorn County, Montana to the Little Bighorn River.

  18. Degradation of nicotine in water solutions using a water falling film DBD plasma reactor: direct and indirect treatment

    Science.gov (United States)

    Krupež, Jelena; Kovačević, Vesna V.; Jović, Milica; Roglić, Goran M.; Natić, Maja M.; Kuraica, Milorad M.; Obradović, Bratislav M.; Dojčinović, Biljana P.

    2018-05-01

    Nicotine degradation efficiency in water solutions was studied using a water falling film dielectric barrier discharge (DBD) reactor. Two different treatments were applied: direct treatment, the recirculation of the solution through a DBD reactor, and indirect treatment, the bubbling of the gas from the DBD through the porous filter into the solution. In a separate experiment, samples spiked with nicotine in double distilled water (ddH2O) and tap water were studied and compared after both treatments. Furthermore, the effects of the homogeneous catalysts, namely, Fe2+ and H2O2, were tested in the direct treatment. Nicotine degradation efficiency was determined using high-performance liquid chromatography. A degradation efficiency of 90% was achieved after the direct treatment catalyzed with Fe2+. In order to analyze the biodegradability, mineralization level, and toxicity of the obtained solutions, after all degradation procedures the values of the following parameters were determined: total organic carbon, chemical oxygen demand, biochemical oxygen demand, and the Artemia salina toxicity test. The results showed that an increase in biodegradability was obtained, after all treatments. A partial nicotine mineralization was achieved and the mortality of the A. salina organism decreased in the treated samples, all of which indicating the effective removal of nicotine and the creation of less toxic solutions. Nicotine degradation products were identified using ultrahigh-performance liquid chromatography coupled with a linear ion trap Orbitrap hybrid mass spectrometer and a simple mechanism for oxidative degradation of nicotine in non-thermal plasma systems is proposed.

  19. Anaerobe-Aerobe Submerged Biofilter Technology for Domestic Waste Water Treatment

    International Nuclear Information System (INIS)

    Nusa-Idaman-Said

    2000-01-01

    Water pollution in the big cities in Indonesia, especially in DKI Jakarta has shown serious problems. One of the potential sources of water pollution is domestic wastewater that is wastewater from kitchens, laundry, bathing and toilets. These problems have become more serious since the spreads of sewerage systems are still low, so that domestic, institutional and commercial wastewater cause severe water pollution in many rivers or shallow ground water. Bases on the fact that the progress of development of sewerage system is still low, it is important to develop low cost technology for individual house hold or semi communal wastewater treatment such as using anaerobic and aerobic submerged biofilter. This paper describes alternative technology for treatment of household wastewater or organic wastewater using anaerobic and aerobic submerged biofilter. Using this technology can decrease BOD, COD and Suspended Solids (SS) concentration more than 90 %. (author)

  20. Behavior of gadolinium-based diagnostics in water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cyris, Maike

    2013-04-25

    Wastewater treatment plants throughout Europe are retrofitted for a sufficient removal of micropollutants. Most target compounds are eliminated efficiently at reasonable costs by oxidation. Sorption processes, on the other hand, are favored as no transformation products are formed. For oxidation, ozone is preferred presently. Its action is divided in two main reaction pathways: Via ozone and via hydroxyl radicals formed by ozone-matrix reactions. Oxidation efficiency strongly depends on reaction rate constants. Sorption processes are usually characterized, including sorption strength, by determination of isotherms. Also, for description of filtration processes isotherm data are necessary. So far, gadolinium chelates, used as contrast agents in magnetic resonance imaging, have not been investigated in both advanced wastewater treatment processes. The stable chelates are excreted without metabolization. Conventional wastewater treatment does not remove them substantially. They remain intact and no free Gd(III) is released. This may be changed due to oxidative treatment which potentially destroys the chelates, and Gd(III) ions which are toxic, contrary to the chelated form, may be liberated. Monitoring campaigns in wastewater and drinking water have been performed to demonstrate the relevance of gadolinium in such treatment steps. In a European monitoring campaign an average concentration of 118 ng L{sup -1} gadolinium has been determined for 75 wastewater treatment plants effluents, corresponding to a non-geogenic gadolinium concentration of 116 ng L{sup -1}. In drinking water in the Ruhr area, a densely populated region in Germany, gadolinium and the anomaly were measurable by a factor of five lower than the average in the investigated wastewater samples. The determined concentrations in drinking water are lower than acute toxic effect concentration. The speciation of gadolinium in the investigated samples is unknown, as only total element concentration has been

  1. Behavior of gadolinium-based diagnostics in water treatment

    International Nuclear Information System (INIS)

    Cyris, Maike

    2013-01-01

    Wastewater treatment plants throughout Europe are retrofitted for a sufficient removal of micropollutants. Most target compounds are eliminated efficiently at reasonable costs by oxidation. Sorption processes, on the other hand, are favored as no transformation products are formed. For oxidation, ozone is preferred presently. Its action is divided in two main reaction pathways: Via ozone and via hydroxyl radicals formed by ozone-matrix reactions. Oxidation efficiency strongly depends on reaction rate constants. Sorption processes are usually characterized, including sorption strength, by determination of isotherms. Also, for description of filtration processes isotherm data are necessary. So far, gadolinium chelates, used as contrast agents in magnetic resonance imaging, have not been investigated in both advanced wastewater treatment processes. The stable chelates are excreted without metabolization. Conventional wastewater treatment does not remove them substantially. They remain intact and no free Gd(III) is released. This may be changed due to oxidative treatment which potentially destroys the chelates, and Gd(III) ions which are toxic, contrary to the chelated form, may be liberated. Monitoring campaigns in wastewater and drinking water have been performed to demonstrate the relevance of gadolinium in such treatment steps. In a European monitoring campaign an average concentration of 118 ng L -1 gadolinium has been determined for 75 wastewater treatment plants effluents, corresponding to a non-geogenic gadolinium concentration of 116 ng L -1 . In drinking water in the Ruhr area, a densely populated region in Germany, gadolinium and the anomaly were measurable by a factor of five lower than the average in the investigated wastewater samples. The determined concentrations in drinking water are lower than acute toxic effect concentration. The speciation of gadolinium in the investigated samples is unknown, as only total element concentration has been determined

  2. Utilities respond to nuclear station blackout rule

    International Nuclear Information System (INIS)

    Rubin, A.M.; Beasley, B.; Tenera, L.P.

    1990-01-01

    The authors discuss how nuclear plants in the United States have taken actions to respond to the NRC Station Blackout Rule, 10CFR50.63. The rule requires that each light water cooled nuclear power plant licensed to operate must be able to withstand for a specified duration and recover from a station blackout. Station blackout is defined as the complete loss of a-c power to the essential and non-essential switch-gear buses in a nuclear power plant. A station blackout results from the loss of all off-site power as well as the on-site emergency a-c power system. There are two basic approaches to meeting the station blackout rule. One is to cope with a station blackout independent of a-c power. Coping, as it is called, means the ability of a plant to achieve and maintain a safe shutdown condition. The second approach is to provide an alternate a-c power source (AAC)

  3. Plasma treatment of diamond nanoparticles for dispersion improvement in water

    International Nuclear Information System (INIS)

    Yu Qingsong; Kim, Young Jo; Ma, Hongbin

    2006-01-01

    Low-temperature plasmas of methane and oxygen mixtures were used to treat diamond nanoparticles to modify their surface characteristics and thus improve their dispersion capability in water. It was found that the plasma treatment significantly reduced water contact angle of diamond nanoparticles and thus rendered the nanoparticles with strong water affinity for dispersion enhancement in polar media such as water. Surface analysis using Fourier transform infrared spectroscopy confirmed that polar groups were imparted on nanoparticle surfaces. As a result, improved suspension stability was observed with plasma treated nanoparticles when dispersed in water

  4. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  5. Solar-assisted MED treatment of Eskom power station waste water

    Science.gov (United States)

    Roos, Thomas H.; Rogers, David E. C.; Gericke, Gerhard

    2017-06-01

    The comparative benefits of multi-effect distillation (MED) used in conjunction with Nano Filtration (NF), Reverse Osmosis (RO) and Eutectic Freeze Crystallization (EFC) are determined for waste water minimization for inland coal fired power stations for Zero Liquid Effluent Discharge (ZLED). A sequence of technologies is proposed to achieve maximal water recovery and brine concentration: NF - physico-chemical treatment - MED - EFC. The possibility of extending the concentration of RO reject arising from minewater treatment at the Lethabo power station with MED alone is evaluated with mineral formation modelling using the thermochemical modelling software Phreeq-C. It is shown that pretreatment is essential to extend the amount of water that can be recovered, and this can be beneficially supported by NF.

  6. Dataset on the spent filter backwash water treatment by sedimentation, coagulation and ultra filtration

    OpenAIRE

    Mokhtar Mahdavi; Afshin Ebrahimi; Hossein Azarpira; Hamid Reza Tashauoei; Amir Hossein Mahvi

    2017-01-01

    During operation of most water treatment plants, spent filter backwash water (SFBW) is generated, which accounts about 2â10% of the total plant production. By increasing world population and water shortage in many countries, SFBW can be used as a permanent water source until the water treatment plant is working. This data article reports the practical method being used for water reuse from SFBW through different method including pre-sedimentation, coagulation and flocculation, second clarific...

  7. Practices that Prevent the Formation of Cyanobacterial Blooms in Water Resources and remove Cyanotoxins during Physical Treatment of Drinking Water

    Science.gov (United States)

    This book chapter presents findings of different studies on the prevention and elimination of cyanobacterial blooms in raw water resources as well as the removal of cyanotoxins during water treatment with physical processes. Initially,treatments that can be applied at the source ...

  8. Potential exposure and treatment efficiency of nanoparticles in water supplies based on wastewater reclamation

    DEFF Research Database (Denmark)

    Kirkegaard, Peter; Hansen, Steffen Foss; Rygaard, Martin

    2015-01-01

    Water scarcity brings an increased focus on wastewater reclamation for drinking water supply. Meanwhile, the production volume of nanoparticles (NPs) is rapidly increasing, but to date there has been little attention given to the fate of NPs in water systems based on wastewater reclamation. We have...... investigated the possible concentrations of silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO) nanoparticles in tap water for water supplies based on reclaimed wastewater. Tap water concentrations of the NPs were assessed by mass flow analyses of two typical wastewater reclamation concepts: 1) advanced...... studies are available on the removal efficiencies of NPs by advanced water treatment processes with a majority of the identified studies focusing on removal efficiencies in wastewater treatment plants and fate in surface waters. The NP removal efficiency of several treatment processes is unknown...

  9. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review.

    Science.gov (United States)

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu; Vepsäläinen, Mikko

    2018-01-01

    Natural organic matter (NOM) is a complex matrix of organic substances produced in (or channeled to) aquatic ecosystems via various biological, geological and hydrological cycles. Such variability is posing a serious challenge to most water treatment technologies, especially the ones designed to treat drinking water supplies. Lately, in addition to the fluctuating composition of NOM, a substantial increase of its concentration in fresh waters, and also municipal wastewater effluents, has been reported worldwide, which justifies the urgent need to develop highly efficient and versatile water treatment processes. Coagulation is among the most applied processes for water and wastewater treatment. The application of coagulation to remove NOM from drinking water supplies has received a great deal of attention from researchers around the world because it was efficient and helped avoiding the formation of disinfection by products (DBPs). Nonetheless, with the increased fluctuation of NOM in water (concentration and composition), the efficiency of conventional coagulation was substantially reduced, hence the need to develop enhanced coagulation processes by optimizing the operating conditions (mainly the amount coagulants and pH), developing more efficient inorganic or organic coagulants, as well as coupling coagulation with other water treatment technologies. In the present review, recent research studies dealing with the application of coagulation for NOM removal from drinking water supplies are presented and compared. In addition, integration schemes combining coagulation and other water treatment processes are presented, including membrane filtration, oxidation, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process

    DEFF Research Database (Denmark)

    Volcke, Eveline; Gernaey, Krist; Vrecko, Darko

    2006-01-01

    treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios......In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water...

  11. Constructed Wetland Treatment Systems For Water Quality Improvement

    International Nuclear Information System (INIS)

    Nelson, E.

    2010-01-01

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m 3 per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m 3 of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m 3 per day, and be able to handle 9,690 m 3 of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during the first season of

  12. CONSTRUCTED WETLAND TREATMENT SYSTEMS FOR WATER QUALITY IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.

    2010-07-19

    The Savannah River National Laboratory implemented a constructed wetland treatment system (CWTS) in 2000 to treat industrial discharge and stormwater from the Laboratory area. The industrial discharge volume is 3,030 m{sup 3} per day with elevated toxicity and metals (copper, zinc and mercury). The CWTS was identified as the best treatment option based on performance, capital and continuing cost, and schedule. A key factor for this natural system approach was the long-term binding capacity of heavy metals (especially copper, lead, and zinc) in the organic matter and sediments. The design required that the wetland treat the average daily discharge volume and be able to handle 83,280 m{sup 3} of stormwater runoff in a 24 hour period. The design allowed all water flow within the system to be driven entirely by gravity. The CWTS for A-01 outfall is composed of eight one-acre wetland cells connected in pairs and planted with giant bulrush to provide continuous organic matter input to the system. The retention basin was designed to hold stormwater flow and to allow controlled discharge to the wetland. The system became operational in October of 2000 and is the first wetland treatment system permitted by South Carolina DHEC for removal of metals. Because of the exceptional performance of the A-01 CWTS, the same strategy was used to improve water quality of the H-02 outfall that receives discharge and stormwater from the Tritium Area of SRS. The primary contaminants in this outfall were also copper and zinc. The design for this second system required that the wetland treat the average discharge volume of 415 m{sup 3} per day, and be able to handle 9,690 m{sup 3} of stormwater runoff in a 24 hour period. This allowed the building of a system much smaller than the A-01 CWTS. The system became operational in July 2007. Metal removal has been excellent since water flow through the treatment systems began, and performance improved with the maturation of the vegetation during

  13. Rules and routines in organizations and the management of safety rules

    Energy Technology Data Exchange (ETDEWEB)

    Weichbrodt, J. Ch.

    2013-07-01

    This thesis is concerned with the relationship between rules and routines in organizations and how the former can be used to steer the latter. Rules are understood as formal organizational artifacts, whereas organizational routines are collective patterns of action. While research on routines has been thriving, a clear understanding of how rules can be used to influence or control organizational routines (and vice-versa) is still lacking. This question is of particular relevance to safety rules in high-risk organizations, where the way in which organizational routines unfold can ultimately be a matter of life and death. In these organizations, an important and related issue is the balancing of standardization and flexibility – which, in the case of rules, takes the form of finding the right degree of formalization. In high-risk organizations, the question is how to adequately regulate actors’ routines in order to facilitate safe behavior, while at the same time leaving enough leeway for actors to make good decisions in abnormal situations. The railroads are regarded as high-risk industries and also rely heavily on formal rules. In this thesis, the Swiss Federal Railways (SBB) were therefore selected for a field study on rules and routines. The issues outlined so far are being tackled theoretically (paper 1), empirically (paper 2), and from a practitioner’s (i.e., rule maker’s) point of view (paper 3). In paper 1, the relationship between rules and routines is theoretically conceptualized, based on a literature review. Literature on organizational control and coordination, on rules in human factors and safety, and on organizational routines is combined. Three distinct roles (rule maker, rule supervisor, and rule follower) are outlined. Six propositions are developed regarding the necessary characteristics of both routines and rules, the respective influence of the three roles on the rule-routine relationship, and regarding organizational aspects such as

  14. Rules and routines in organizations and the management of safety rules

    International Nuclear Information System (INIS)

    Weichbrodt, J. Ch.

    2013-01-01

    This thesis is concerned with the relationship between rules and routines in organizations and how the former can be used to steer the latter. Rules are understood as formal organizational artifacts, whereas organizational routines are collective patterns of action. While research on routines has been thriving, a clear understanding of how rules can be used to influence or control organizational routines (and vice-versa) is still lacking. This question is of particular relevance to safety rules in high-risk organizations, where the way in which organizational routines unfold can ultimately be a matter of life and death. In these organizations, an important and related issue is the balancing of standardization and flexibility – which, in the case of rules, takes the form of finding the right degree of formalization. In high-risk organizations, the question is how to adequately regulate actors’ routines in order to facilitate safe behavior, while at the same time leaving enough leeway for actors to make good decisions in abnormal situations. The railroads are regarded as high-risk industries and also rely heavily on formal rules. In this thesis, the Swiss Federal Railways (SBB) were therefore selected for a field study on rules and routines. The issues outlined so far are being tackled theoretically (paper 1), empirically (paper 2), and from a practitioner’s (i.e., rule maker’s) point of view (paper 3). In paper 1, the relationship between rules and routines is theoretically conceptualized, based on a literature review. Literature on organizational control and coordination, on rules in human factors and safety, and on organizational routines is combined. Three distinct roles (rule maker, rule supervisor, and rule follower) are outlined. Six propositions are developed regarding the necessary characteristics of both routines and rules, the respective influence of the three roles on the rule-routine relationship, and regarding organizational aspects such as

  15. Supercritical water oxidation test bed effluent treatment study

    International Nuclear Information System (INIS)

    Barnes, C.M.

    1994-04-01

    This report presents effluent treatment options for a 50 h Supercritical Water Test Unit. Effluent compositions are calculated for eight simulated waste streams, using different assumed cases. Variations in effluent composition with different reactor designs and operating schemes are discussed. Requirements for final effluent compositions are briefly reviewed. A comparison is made of two general schemes. The first is one in which the effluent is cooled and effluent treatment is primarily done in the liquid phase. In the second scheme, most treatment is performed with the effluent in the gas phase. Several unit operations are also discussed, including neutralization, mercury removal, and evaporation

  16. Evaluation of different treatment processes with respect to mutagenic activity in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Kool, H J; Hrubec, J; van Kreijl, C F; Piet, G J

    1985-12-01

    Treatment processes which are applied in The Netherlands during the preparation of drinking water have been evaluated with regard to introduction and removal of organic mutagens as well as halogenated organics. It appeared that the most efficient processes in reducing mutagenic activity were activated carbon filtration and artificial dune recharge. In general these processes were also the most efficient in removing halogenated organics. Using low doses of chlorine dioxide (less than 1 mg C1O2/l) for safety disinfection of drinking water, no change or substantial less mutagenic activity than by chlorination (1 mg Cl/l) was found. This counts too for the formation of halogenated organics. Transport chlorination of stored river Meuse water was able to introduce or activate mutagenic nitro organics which have not been found previously. Ozone treatment under field conditions showed mostly a tendency to decrease the activity of organic mutagens. It was also shown that dependent on the water quality and treatment conditions a slight increase of mutagenic activity occurred, but this activity would be reduced by increasing the ozone dose. It seems possible to optimize the ozone treatment conditions regarding the level of ozone dose and the contact time to avoid an increase of mutagenic activity. Furthermore it was shown that when a mutagenic raw water source was used a proper combination of treatment processes is able to produce drinking water in which no mutagenic activity could be detected under the test conditions. Finally it is stated that before far-reaching decisions with respect to use mutagenicity data for a selection of water sources or treatment processes will be made, more information on the relation mutagenic activity from drinking water and effects on human health should become available.

  17. Viral indicators for fecal contamination - a one-year viral metagenomic study of treatment efficiency in danish waste water treatment plants

    DEFF Research Database (Denmark)

    Hellmér, Maria; Stranddorf, Kasper; Seidel, Michael

    2017-01-01

    from two urban waste water treatment plants in Copenhagen. All samples are investigated for their viral content and the presence of pathogens by metagenomic sequencing and analyzed specifically for HAdV, JCPyV, norovirus GI and GII (NoV GI and GII) using quantitative (q)PCR. Preliminary qPCR results......, the number of identified pathogenic viral species decreases with treatment of the waste water. Further bioinformatic analyses will investigate the seasonal variations of viral composition within a sample as well as the effect of the treatment system. Updated qPCR and metagenomics data will be presented....... are therefore using metagenomics sequencing with the aim to map the viriome in different water sources. In addition we investigate the possibility to use Human Adenovirus (HAdV) or JC Polyomavirus (JCPyV) as indicator for human fecal contamination. Water has been sampled monthly throughout the treatment process...

  18. Need for certification of household water treatment products: examples from Haiti.

    Science.gov (United States)

    Murray, Anna; Pierre-Louis, Jocelyne; Joseph, Flaurine; Sylvain, Ginelove; Patrick, Molly; Lantagne, Daniele

    2015-04-01

    To evaluate four household water treatment (HWT) products currently seeking approval for distribution in Haiti, through the application of a recently-developed national HWT product certification process. Four chemical treatment products were evaluated against the certification process validation stage by verifying international product certifications confirming treatment efficacy and reviewing laboratory efficacy data against WHO HWT microbiological performance targets; and against the approval stage by confirming product composition, evaluating treated water chemical content against national and international drinking water quality guidelines and reviewing packaging for dosing ability and usage directions in Creole. None of the four evaluated products fulfilled validation or approval stage requirements. None was certified by an international agency as efficacious for drinking water treatment, and none had data demonstrating its ability to meet WHO HWT performance targets. All product sample compositions differed from labelled composition by >20%, and no packaging included complete usage directions in Creole. Product manufacturers provided information that was inapplicable, did not demonstrate product efficacy, and was insufficient to ensure safe product use. Capacity building is needed with country regulatory agencies to objectively evaluate HWT products. Products should be internationally assessed against WHO performance targets and also locally approved, considering language, culture and usability, to ensure effective HWT. © 2014 John Wiley & Sons Ltd.

  19. Release of natural radionuclides in the Czech Republic - from water treatment plants where water from underground water sources is treated

    International Nuclear Information System (INIS)

    Sinaglova, R.

    2014-01-01

    In this abstract author deals with the treatment of drinking water in the Czech Republic with removing of natural radionuclides as well as with treatment of filter cartridges. The advantage of these technologies is that flushing is not required so no wastewater occurs. Used ion exchangers with higher content of uranium are processed in the chemical treatment of uranium ores, managed by DIAMO, state enterprise. (authors)

  20. An updated nuclear criticality slide rule

    International Nuclear Information System (INIS)

    Hopper, C.M.; Broadhead, B.L.

    1998-04-01

    This Volume 2 contains the functional version of the updated nuclear criticality slide rule (more accurately, sliding graphs) that is referenced in An Updated Nuclear Criticality Slide Rule: Technical Basis, NUREG/CR-6504, Vol. 1 (ORNL/TM-13322/V1). This functional slide rule provides a readily usable open-quotes in-handclose quotes method for estimating pertinent nuclear criticality accident information from sliding graphs, thereby permitting (1) the rapid estimation of pertinent criticality accident information without laborious or sophisticated calculations in a nuclear criticality emergency situation, (2) the appraisal of potential fission yields and external personnel radiation exposures for facility safety analyses, and (3) a technical basis for emergency preparedness and training programs at nonreactor nuclear facilities. The slide rule permits the estimation of neutron and gamma dose rates and integrated doses based upon estimated fission yields, distance from the fission source, and time-after criticality accidents for five different critical systems. Another sliding graph permits the estimation of critical solution fission yields based upon fissile material concentration, critical vessel geometry, and solution addition rate. Another graph provides neutron and gamma dose-reduction factors for water, steel, and concrete. Graphs from historic documents are provided as references for estimating critical parameters of various fissile material systems. Conversion factors for various English and metric units are provided for quick reference

  1. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Directory of Open Access Journals (Sweden)

    Ahmad Kayvani Fard

    2018-01-01

    Full Text Available Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  2. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Science.gov (United States)

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  3. Membrane bioreactors in waste water treatment - status and trends

    Energy Technology Data Exchange (ETDEWEB)

    Kraume, M. [Technische Universitaet Berlin, Chair of Chemical and Process Engineering, Berlin (Germany); Drews, A. [HTW Berlin, FB II, Life Science Engineering, Berlin (Germany)

    2010-08-15

    Due to their unique advantages like controlled biomass retention, improved effluent quality, and decreased footprint, membrane bioreactors (MBRs) are being increasingly used in waste water treatment up to a capacity of several 100,000 p.e. This article reviews the current status of MBRs and reports trends in MBR design and operation. Typical operational and design parameters are given as well as guidelines for waste water treatment plant revamping. To further improve the biological performance, specific or hybrid process configurations are shown to lead to, e.g., enhanced nutrient removal. With regards to reducing membrane fouling, optimized modules, advanced control, and strategies like the addition of flux enhancers are currently emerging. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Membrane chemical reactor (MCR) combining photocatalysis and microfiltration for grey water treatment.

    Science.gov (United States)

    Rivero, M J; Parsons, S A; Jeffrey, P; Pidou, M; Jefferson, B

    2006-01-01

    Urban water recycling is now becoming an important issue where water resources are becoming scarce. This paper looks at reusing grey water; the preference is treatment processes based on biological systems to remove the dissolved organic content. Here, an alternative process, photocatalysis is discussed as it is an attractive technology that could be well-suited for treating the recalcitrant organic compounds found in grey water. The photocatalytic process oxidises organic reactants at a catalyst surface in the presence of ultraviolet light. Given enough exposure time, organic compounds will be oxidized into CO2 and water. The best contact is achieved in a slurry reactor but a second step to separate and recover the catalyst is need. This paper discusses a new membrane chemical reactor (MCR) combining photocatalysis and microfiltration for grey water treatment.

  5. TAPWAT: Definition structure and applications for modelling drinking water treatment

    NARCIS (Netherlands)

    Versteegh JFM; Gaalen FW van; Rietveld LC; Evers EG; Aldenberg TA; Cleij P; Technische Universiteit Delft; LWD

    2001-01-01

    The 'Tool for the Analysis of the Production of drinking WATer' (TAPWAT) model has been developed for describing drinking-water quality in integral studies in the context of the Environmental Policy Assessment of the RIVM. The model consists of modules that represent individual steps in a treatment

  6. Progress report: Use of water hyacinth in wastewater treatment

    International Nuclear Information System (INIS)

    Mohd Yusof, Abdullah bin

    1981-01-01

    Previous studies have revealed that water hyacinth shows remarkable ability to remove, besides heavy metals, BOD and COD load from wastewaters which contain mainly organic pollutants. A survey was conducted to select suitable industrial effluents for pilot field studies, in particular wastewaters which were organic in nature such as those from food industries. A proposal to set up a pilot treatment system for field studies m addition to laboratory investigations was consistent with the recommendation put forward at the First Interim Project Review Meeting held in 1980 . It has been reported that introduction of water hyacinth into digested sugar waste would significantly enhance the efficiency of purification of the waste. Brief trials with a sugar refinery effluent in the laboratory showed the possibility of subjecting the wastewater to the water hyacinth treatment system in a pilot field study and arrangements were then made for the study to be carried out at site

  7. Impact of Harmful Algal Blooms on Several Lake Erie Drinking Water Treatment Plants

    Science.gov (United States)

    Recent events in Ohio have demonstrated the challenge treatment facilities face in providing safe drinking water when encountering extreme harmful algal bloom (HAB) events. Over the last two years the impact of HAB-related microcystins on several drinking water treatment facilit...

  8. Mine Water Treatment in Hongai Coal Mines

    Science.gov (United States)

    Dang, Phuong Thao; Dang, Vu Chi

    2018-03-01

    Acid mine drainage (AMD) is recognized as one of the most serious environmental problem associated with mining industry. Acid water, also known as acid mine drainage forms when iron sulfide minerals found in the rock of coal seams are exposed to oxidizing conditions in coal mining. Until 2009, mine drainage in Hongai coal mines was not treated, leading to harmful effects on humans, animals and aquatic ecosystem. This report has examined acid mine drainage problem and techniques for acid mine drainage treatment in Hongai coal mines. In addition, selection and criteria for the design of the treatment systems have been presented.

  9. An evaluation of a water treatment plant with improved overall effectiveness as an objective

    OpenAIRE

    Homsi, Ibrahim J.

    1995-01-01

    The XYZ water Authority (Authority) supplies a population of approximately one million people with drinking water. This water is being produced by three water treatment plants and several independent well sites. The River water Treatment Plant (WTP), the Authority's largest and most modern of all three plants has been experiencing, over a period of ten years, severe and premature equipment failures which are causing process interruptions, production losses and high maintenance cost. These fai...

  10. Hydraulic modeling of clay ceramic water filters for point-of-use water treatment.

    Science.gov (United States)

    Schweitzer, Ryan W; Cunningham, Jeffrey A; Mihelcic, James R

    2013-01-02

    The acceptability of ceramic filters for point-of-use water treatment depends not only on the quality of the filtered water, but also on the quantity of water the filters can produce. This paper presents two mathematical models for the hydraulic performance of ceramic water filters under typical usage. A model is developed for two common filter geometries: paraboloid- and frustum-shaped. Both models are calibrated and evaluated by comparison to experimental data. The hydraulic models are able to predict the following parameters as functions of time: water level in the filter (h), instantaneous volumetric flow rate of filtrate (Q), and cumulative volume of water produced (V). The models' utility is demonstrated by applying them to estimate how the volume of water produced depends on factors such as the filter shape and the frequency of filling. Both models predict that the volume of water produced can be increased by about 45% if users refill the filter three times per day versus only once per day. Also, the models predict that filter geometry affects the volume of water produced: for two filters with equal volume, equal wall thickness, and equal hydraulic conductivity, a filter that is tall and thin will produce as much as 25% more water than one which is shallow and wide. We suggest that the models can be used as tools to help optimize filter performance.

  11. Costs of Arsenic Removal Technologies for Small Water Systems: U.S. EPA Arsenic Removal Technology Demonstration Program

    Science.gov (United States)

    As part of the Arsenic Rule Implementation Research Program, between July 2003 and July 2011, the U.S. environmental Protection Agency (EPA) conducted 50 full-scale demonstration projects on treatment systems removing arsenic from drinking water in 26 states throughout the U.S. ...

  12. Treatment of contaminated greywater using pelletised mine water sludge.

    Science.gov (United States)

    Abed, Suhail N; Almuktar, Suhad A; Scholz, Miklas

    2017-07-15

    Precipitated sludge (ochre) obtained from a mine water treatment plant was considered as an adsorbent substance for pollutants, since ochre is relatively free from problematic levels of toxic elements, which could impair on the quality of water to be treated. Artificially created ochre pellets from mixing Portland cement with raw ochre sludge were utilised to remediate either high (HC) or low (LC) contaminated synthetic greywater (SGW) in mesocosm-scale stabilisation ponds at 2-day and 7-day contact times under real weather conditions in Salford. After a specific retention time, treated SGW was agitated before sampling to evaluate pollutant removal mechanisms (other than sedimentation) such as adsorption by ochre pellets, before replacing the treated water with new inflow SGW. The results showed that cement-ochre pellets have a high ability to adsorb ortho-phosphate-phosphorous (PO 4 -P) significantly (p treatment for HC-SGW at 2- and 7-day contact times, respectively. Cadmium was still adsorbed significantly (p treatment of LC-SGW. However, the calcium (Ca) content decreased significantly (p < 0.05) within ochre pellets treating both types of greywaters due to mobilisation. The corresponding increases of Ca in greywater were significant (p < 0.05). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. REMOVAL OF ARSENIC IN DRINKING WATER: ARS CFU-50 APC ELECTROFLOCCULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    ETV testing of the ARS CFU-50 APC Electroflocculation and Filtration Water Treatment System (ARS CFU-50 APC) for arsenic removal was conducted at the Town of Bernalillo Well #3 site from April 18 through May 2, 2006. The source water was chlorinated groundwater from two supply w...

  14. Treatment of waste waters with peat moss

    Energy Technology Data Exchange (ETDEWEB)

    Coupal, B; Lalancette, J M

    1976-01-01

    Waste waters containing heavy metals such as Hg, Cd, Zn, Cu, Fe, Ni, Cr/sup 6 +/, Cr/sup 3 +/, Ag, Pb, Sb or cyanide, phosphates and organic matters such as oil, detergents and dyes can be treated efficiently after a crude settling by contacting with peat moss. Chromium, as Cr/sup 6 +/, can be eliminated in one step from a starting solution of low turbidity to give effluent containing less than 10 ppb of Cr/sup 6 +/ and less than 40 ppb of Cr/sup 3 +/. The characteristics and performances of a contacting machine of 20,000 gal/day capacity for the treatment of industrial waste waters are reported.

  15. Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules

    Science.gov (United States)

    Hassanpour, Saeed; O'Connor, Martin J.; Das, Amar K.

    Rule bases are increasingly being used as repositories of knowledge content on the Semantic Web. As the size and complexity of these rule bases increases, developers and end users need methods of rule abstraction to facilitate rule management. In this paper, we describe a rule abstraction method for Semantic Web Rule Language (SWRL) rules that is based on lexical analysis and a set of heuristics. Our method results in a tree data structure that we exploit in creating techniques to visualize, paraphrase, and categorize SWRL rules. We evaluate our approach by applying it to several biomedical ontologies that contain SWRL rules, and show how the results reveal rule patterns within the rule base. We have implemented our method as a plug-in tool for Protégé-OWL, the most widely used ontology modeling software for the Semantic Web. Our tool can allow users to rapidly explore content and patterns in SWRL rule bases, enabling their acquisition and management.

  16. Photocatalytic Treatment of Shower Water Using a Pilot Scale Reactor

    Directory of Open Access Journals (Sweden)

    Yash Boyjoo

    2012-01-01

    Full Text Available Treatment of shower water deserves special consideration for reuse not only because of its low pollutant loading but also because it is produced in large quantities. In this study, a pilot scale study of photocatalytic degradation of impurities in real shower water was performed in a 31 L volume reactor using titanium dioxide as the photocatalyst. The reactor was operated in a continuous slurry recirculation mode. Several operational parameters were studied including the slurry initial pH, catalyst concentration, air flow rate, and slurry recirculation rate. Up to 57% of total organic carbon (TOC elimination was obtained after 6 hours of treatment (for 3.0 slurry initial pH, 0.07 gL−1 catalyst concentration, 1.8 Lmin−1 air flow rate, and 4.4 Lmin−1 slurry recirculation rate. This study showed that photocatalysis could be successfully transposed from bench scale to pilot scale. Furthermore, the ease of operation and the potential to use solar energy make photocatalysis an attractive prospect with respect to treatment of grey water.

  17. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates.

    Science.gov (United States)

    Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Energy use and carbon footprint for potable water and wastewater treatment

    Directory of Open Access Journals (Sweden)

    Presura Elena

    2017-07-01

    Full Text Available Wastewater treatment plants (WWTPs and drinking water treatment plants (DWTPs are sources of emissions of greenhouse gases (GHGs, such as carbon dioxide (CO2, nitrous oxide (N2O and methane (CH4. Carbon dioxide emissions have a big contribution to climate change. In general they come from burning fossil fuels to generate the electricity necessary for operating the treatment processes. The demand of energy depends on the treatment processes, but also on the quality of water source or wastewater influent. Water companies have to continuously supply safe drinking water to population and to treat and discharge wastewater according to regulations at a cost as low as possible. In Romania reporting of GHGs is not mandatory for water companies. Evaluation of GHG emissions from water industry have become a subject of great interest because of concern regarding climate change. Research and regulation have been conducted by different authors based on a regional basis. This paper proposes to estimate and compare the carbon emissions resulting from power consumption of Constanta South WWTP and PALAS Constanta DWTP. The energy supplier is different for these plants. In order to calculate the carbon emissions the amount of specific CO2 emissions is determined. The contribution of each primary source to produce the amount of electricity which is consumed is taken into account. WWTP has high power consumption in biological processes, because there are the aeration tanks, the sewage pumping station and the equipment for sludge. DWTP has high power consumption because of the pumping equipment used for raw water abstraction from deep wells and those for drinking water distribution to consumers. In order to identify, sort and display possible causes of the high power consumption of WWTP, Ishikawa chart is used. Through its configuration, the diagram allows highlighting and prioritizing the causes which generate this effect. Some management options are presented in

  19. Bioremediation of Aluminium from the Waste Water of a Conventional Water Treatment Plant Using the Freshwater Macroalga Oedogonium

    Directory of Open Access Journals (Sweden)

    David A. Roberts

    2018-05-01

    Full Text Available Conventional water treatment processes use aluminium sulphate (alum as a coagulant in the production of potable water. While alum is an inexpensive and reliable means of treating water, the process generates waste water containing dissolved Al. This waste water is primarily dealt with via on-site retention. In this study we investigate the cultivation of the freshwater macroalga Oedogonium as a means to sequester dissolved Al from waste water from a conventional water treatment plant. Furthermore, we examine the use of CO2 to manipulate the pH of cultivation as a means of enhancing the sequestration of Al by either increasing the productivity of Oedogonium or increasing the bioavailability of Al in the waste water. The relative bioavailability of Al under conditions of CO2 and no-CO2 provision was contrasted by comparing Al uptake by Diffusive Gradients in Thin Films (DGTs. Oedogonium was able to grow rapidly in the waste water (12 g dry weight m−2 day−1 while consistently sequestering Al. The Oedogonium-treated waste water had a sufficiently low Al concentration that it could be used in unrestricted irrigation in the surrounding region. When CO2 was added to the waste water containing concentrations of Al up to 8 mg L−1, there was a slight increase (~10% in the rate of sequestration of Al by Oedogonium relative to waste water not receiving CO2. This was due to two concurrent processes. The provision of CO2 increased the productivity of Oedogonium by 15% and the bioavailability of Al by up to 200%, as measured by the DGTs. Despite this strong effect of CO2 on Al bioavailability, the increase in Al sequestration by Oedogonium when CO2 was provided was modest (~10%. Al was sequestered by Oedogonium to concentrations below permissible limits for discharge without the need for the addition CO2. The cultivation of Oedogonium in waste water from conventional treatments plants can simultaneously treat waste water for re-use and provide a biomass

  20. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.