WorldWideScience

Sample records for water treatment field

  1. Magnetic Field Water Treatment Section - Overview

    International Nuclear Information System (INIS)

    Kopec, M.

    1999-01-01

    Full text: In the last year the activity of the team was focused on industrial implementing of methods developed, as well as on designing and implementing devices for magnetohydrodynamic water treatment and water filtration in the magnetic field. - Phase 1 of research for Ostrowiec Steelworks in Ostrowiec Swietokrzyski (IFJ N-3454 Research) on the possibilities of implementation of the methods of magnetohydrodynamic water treatment in water and sewage circuits, as well as of the method of filtration in the magnetic field were completed. In this part of research, phase analyses of deposits from water and sewage circuits were carried out. In the rolling mill circuit of Ostrowiec Steelworks, a magnetic filter with a capacity of 200 m 3 /h, designed in the Institute of Nuclear Physics was installed and tested. Implementation of this filter is predicted for the year 1999. - Research for the Kozienice Power Station in Swierze Gorne (IFJ N-3450 Research) on determination of the phase composition of total suspended solids in water-steam circuits was completed. - A preliminary evaluation was completed on economic effects of implementation of the prototype magnetic filter FM-500 which has been operational since 1993 in the circuit of turbine condensate cleaning in the 225 MW unit in the power station in Polaniec. (author)

  2. Water Treatment Plant Operation. Volume II. A Field Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  3. Water Treatment Plant Operation. Volume I. A Field Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  4. Water Treatment Plant Operation Volume 2. A Field Study Training Program. Revised.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  5. A field demonstration of the microbial treatment of sour produced water

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L. [Univ. of Tulsa, OK (United States); Morse, D.; Raterman, K. [Amoco Production Co., Tulsa, OK (United States)

    1995-12-31

    The potential for detoxification and deodorization of sulfide-laden water (sour water) by microbial treatment was evaluated at a petroleum production site under field conditions. A sulfide-tolerant strain of the chemautotroph and facultative anaerobe, Thiobacillus denitrificans, was introduced into an oil-skimming pit of the Amoco Production Company LACT 10 Unit of the Salt Creek Field, Wyoming. Field-produced water enters this pit from the oil/water separation treatment train at an average flowrate of 5,000 bbl/D (795 m{sup 3}/D) with a potential maximum of 98,000 bbl/D (15,580 m{sup 3}/D). Water conditions at the pit inlet are 4,800 mg/l TDS, 100 mg/l sulfide, pH 7.8, and 107{degrees}F. To this water an aqueous solution of ammonium nitrate and diphosphorous pentoxide was added to provide required nutrients for the bacteria. The first 20% of the pit was aerated to a maximum depth of 5 ft (1.5 m) to facilitate the aerobic oxidation of sulfide. No provisions for pH control or biomass recovery and recycle were made. Pilot operations were initiated in October 1992 with the inoculation of the 19,000 bbl (3,020 m{sup 3}) pit with 40 lb (18.1 kg) of dry weight biomass. After a brief acclimation period, a nearly constant mass flux of 175 lb/D (80 kg/D) sulfide was established to the pit. Bio-oxidation of sulfide to elemental sulfur and sulfate was immediate and complete. Subsequent pilot operations focused upon process optimization and process sensitivity to system upsets. The process appeared most sensitive to large variations in sulfide loading due to maximum water discharge events. However, recoveries from such events could be accomplished within hours. This paper details all pertinent aspects of pilot operation, performance, and economics. Based on this body of evidence, it is suggested that the oxidation of inorganic sulfides by T denitrificans represents a viable concept for the treatment of sour water coproduced with oil and gas.

  6. Biological treatment process for removing petroleum hydrocarbons from oil field produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Tellez, G.; Khandan, N.

    1995-12-31

    The feasibility of removing petroleum hydrocarbons from oil fields produced waters using biological treatment was evaluated under laboratory and field conditions. Based on previous laboratory studies, a field-scale prototype system was designed and operated over a period of four months. Two different sources of produced waters were tested in this field study under various continuous flow rates ranging from 375 1/D to 1,800 1/D. One source of produced water was an open storage pit; the other, a closed storage tank. The TDS concentrations of these sources exceeded 50,000 mg/l; total n-alkanes exceeded 100 mg/l; total petroleum hydrocarbons exceeded 125 mg/l; and total BTEX exceeded 3 mg/l. Removals of total n-alkanes, total petroleum hydrocarbons, and BTEX remained consistently high over 99%. During these tests, the energy costs averaged $0.20/bbl at 12 bbl/D.

  7. The Sterilization Effect of Cooperative Treatment of High Voltage Electrostatic Field and Variable Frequency Pulsed Electromagnetic Field on Heterotrophic Bacteria in Circulating Cooling Water

    Science.gov (United States)

    Gao, Xuetong; Liu, Zhian; Zhao, Judong

    2018-01-01

    Compared to other treatment of industrial circulating cooling water in the field of industrial water treatment, high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization technology, an advanced technology, is widely used because of its special characteristics--low energy consumption, nonpoisonous and environmentally friendly. In order to get a better cooling water sterilization effect under the premise of not polluting the environment, some experiments about sterilization of heterotrophic bacteria in industrial circulating cooling water by cooperative treatment of high voltage electrostatic field and variable frequency pulsed electromagnetic field were carried out. The comparison experiment on the sterilization effect of high-voltage electrostatic field and variable frequency pulsed electromagnetic field co-sterilization on heterotrophic bacteria in industrial circulating cooling water was carried out by change electric field strength and pulse frequency. The results show that the bactericidal rate is selective to the frequency and output voltage, and the heterotrophic bacterium can only kill under the condition of sweep frequency range and output voltage. When the voltage of the high voltage power supply is 4000V, the pulse frequency is 1000Hz and the water temperature is 30°C, the sterilization rate is 48.7%, the sterilization rate is over 90%. Results of this study have important guiding significance for future application of magnetic field sterilization.

  8. Amagnetic field-enhanced filtration/sorption Device and its potential for inexpensive water and wastewater treatment

    International Nuclear Information System (INIS)

    Navratil, J.D.

    2000-01-01

    A magnetic field-enhanced filtration/sorption device is described for removal of radioactive and heavy metals from water and wastewater. The device consists of a column of supported magnetite surrounded by a movable permanent magnet. The mineral magnetite, or synthetically prepared iron ferrite (Fe O Fe 2 O 3 ), is typically supported on various materials to permit adequate water passage through the column. In the presence of the external magnetic field, enhanced capacity was observed in using supported magnetite for removal of actinides and heavy metals from wastewater. The enhanced capacity is primarily due to magnetic filtration of colloidal and submicron particles along with some complex and ion exchange sorption mechanisms. The loaded magnetite can easily be regenerated by the removal of the magnetic field and use of a regenerating solution. This paper will review previous work on the use of iron oxides for wastewater treatment and discuss the development and potential of the magnetic filtration/sorption process for water and wastewater treatment

  9. In-situ treatment of acid mine waters using fluidized bed ash: Field study

    International Nuclear Information System (INIS)

    Everett, J.W.; Canty, G.A.

    1999-01-01

    A slurry of mine water and fluidized bed ash (FBA) was injected into an abandoned coal mine in eastern Oklahoma in July 1997. Oil-field technology was used to inject 1.8 Gg (418 tons) of FBA through five wells in 15 hours. Prior to injection the seep water had a pH of 4.4, was net acidic (acidity over 400 mg/L as CaCO 3 ), and had relatively high metal concentrations (in mg/L: Fe-200; Mn-7; and Al-6). After injection, during the period of effective treatment, the seep water had a pH above 6.0, less net acidity, and had lower metals concentrations (in mg/L: Fe-120; Mn-5; and Al-< PQL). When the treated seep water exited the mine, the dissolved metals oxidized and hydrolyzed. As the metals precipitated, the alkalinity introduced by the FBA was consumed and the pH dropped. However, the seep water characteristics upon entering the receiving stream were improved, compared to pre-injection. The resulting seep water quality is such that it is more amenable to further treatment by passive treatment methods, such as anoxic limestone drains or wetlands. Alkaline injection is a finite treatment process. Eventually, the added alkalinity is exhausted, at which time the seep returns to pre-injection conditions, necessitating another injection of ash. For the study discussed in this paper, the treatment lasted approximately 15 months. While the amount of alkalinity added to the mine could have potentially treated much more than a year's volume of seep water, it is believed that much of the injected alkalinity was unavailable in backwater areas in the mine. This alkalinity contributed little, if any, to the treatment of water flowing through the mine. Mine hydrology, especially during injection are crucial to treatment longevity

  10. Field-analysis of potable water quality and ozone efficiency in ozone-assisted biological filtration systems for surface water treatment.

    Science.gov (United States)

    Zanacic, Enisa; Stavrinides, John; McMartin, Dena W

    2016-11-01

    Potable water treatment in small communities is challenging due to a complexity of factors starting with generally poor raw water sources, a smaller tax and consumption base that limit capital and operating funds, and culminating in what is typically a less sophisticated and robust water treatment plant for production and delivery of safe, high quality potable water. The design and optimization of modular ozone-assisted biological filtration systems can address some of these challenges. In surface water treatment, the removal of organic matter (e.g., dissolved organic carbon - DOC), inorganic nutrients and other exposure-related contaminants (e.g., turbidity and dissolved solids) from the raw water source is essential. Thus, a combination of chemical and biological oxidation processes can produce an effective and efficient water treatment plant design that is also affordable and robust. To that end, the ozone-assisted biological filtration water treatment plants in two communities were evaluated to determine the efficacy of oxidation and contaminant removal processes. The results of testing for in-field system performance indicate that plant performance is particularly negatively impacted by high alkalinity, high organics loading, and turbidity. Both bicarbonate and carbonate alkalinity were observed to impede ozone contact and interaction with DOC, resulting in lower than anticipated DOC oxidation efficiency and bioavailability. The ozone dosage at both water treatment plants must be calculated on a more routine basis to better reflect both the raw water DOC concentration and presence of alkalinities to ensure maximized organics oxidation and minimization of trihalomethanes production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Treating mine waters in the Lorraine coal field - feedback from the La Houve treatment plant

    OpenAIRE

    Koeberlé , Nicolas; Levicki , Roger; Kaiser , Joël; Heitz , Sonia

    2013-01-01

    International audience; Coal extraction in the Lorraine coal field ended in 2004, after 150 years of mining. Stopping of mine drainage pumping caused the flooding of 180 million m3 of mine cavities. After around 2 to 5 years of filling, pumping became necessary to keep pace with rising levels of iron‐containing water. The elevated levels of iron mineralisation in the mine water are such that the water cannot be discharged directly into the natural environment, making treatment a necessity. In...

  12. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In

  13. Nanotechnology for water treatment and purification

    CERN Document Server

    Apblett, Allen

    2014-01-01

    This book describes the latest progress in the application of nanotechnology for water treatment and purification. Leaders in the field present both the fundamental science and a comprehensive overview of the diverse range of tools and technologies that have been developed in this critical area. Expert chapters present the unique physicochemical and surface properties of nanoparticles and the advantages that these provide for engineering applications that ensure a supply of safe drinking water for our growing population. Application areas include generating fresh water from seawater, preventing contamination of the environment, and creating effective and efficient methods for remediation of polluted waters. The chapter authors are leading world-wide experts in the field with either academic or industrial experience, ensuring that this comprehensive volume presents the state-of-the-art in the integration of nanotechnology with water treatment and purification. Covers both wastewater and drinking water treatmen...

  14. Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.

    Science.gov (United States)

    Wu, Tingting; Englehardt, James D

    2016-12-01

    An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Microbiological effectiveness of household water treatment technologies under field use conditions in rural Tanzania.

    Science.gov (United States)

    Mohamed, Hussein; Clasen, Thomas; Njee, Robert Mussa; Malebo, Hamisi M; Mbuligwe, Stephen; Brown, Joe

    2016-01-01

    To assess the microbiological effectiveness of several household water treatment and safe storage (HWTS) options in situ in Tanzania, before consideration for national scale-up of HWTS. Participating households received supplies and instructions for practicing six HWTS methods on a rotating 5-week basis. We analysed 1202 paired samples (source and treated) of drinking water from 390 households, across all technologies. Samples were analysed for thermotolerant (TTC) coliforms, an indicator of faecal contamination, to measure effectiveness of treatment in situ. All HWTS methods improved microbial water quality, with reductions in TTC of 99.3% for boiling, 99.4% for Waterguard ™ brand sodium hypochlorite solution, 99.5% for a ceramic pot filter, 99.5% for Aquatab ® sodium dichloroisocyanurate (NaDCC) tablets, 99.6% for P&G Purifier of Water ™ flocculent/disinfectant sachets, and 99.7% for a ceramic siphon filter. Microbiological performance was relatively high compared with other field studies and differences in microbial reductions between technologies were not statistically significant. Given that microbiological performance across technologies was comparable, decisions regarding scale-up should be based on other factors, including uptake in the target population and correct, consistent, and sustained use over time. © 2015 John Wiley & Sons Ltd.

  16. FIELD INVESTIGATION OF BIOLOGICAL TOILET SYSTEMS AND GREY WATER TREATMENT

    Science.gov (United States)

    The objective of the field program was to determine the operational characteristics and overall acceptability of popular models of biological toilets and a few select grey water systems. A field observation scheme was devised to take advantage of in-use sites throughout the State...

  17. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  18. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  19. Combination of microsecond and nanosecond pulsed electric field treatments for inactivation of Escherichia coli in water samples.

    Science.gov (United States)

    Žgalin, Maj Kobe; Hodžić, Duša; Reberšek, Matej; Kandušer, Maša

    2012-10-01

    Inactivation of microorganisms with pulsed electric fields is one of the nonthermal methods most commonly used in biotechnological applications such as liquid food pasteurization and water treatment. In this study, the effects of microsecond and nanosecond pulses on inactivation of Escherichia coli in distilled water were investigated. Bacterial colonies were counted on agar plates, and the count was expressed as colony-forming units per milliliter of bacterial suspension. Inactivation of bacterial cells was shown as the reduction of colony-forming units per milliliter of treated samples compared to untreated control. According to our results, when using microsecond pulses the level of inactivation increases with application of more intense electric field strengths and with number of pulses delivered. Almost 2-log reductions in bacterial counts were achieved at a field strength of 30 kV/cm with eight pulses and a 4.5-log reduction was observed at the same field strength using 48 pulses. Extending the duration of microsecond pulses from 100 to 250 μs showed no improvement in inactivation. Nanosecond pulses alone did not have any detectable effect on inactivation of E. coli regardless of the treatment time, but a significant 3-log reduction was achieved in combination with microsecond pulses.

  20. Long Term Field Development of a Surfactant Modified Zeolite/Vapor Phase Bioreactor System for Treatment of Produced Waters for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Katz; Kerry Kinney; Robert Bowman; Enid Sullivan; Soondong Kwon; Elaine Darby; Li-Jung Chen; Craig Altare

    2007-12-31

    The main goal of this research was to investigate the feasibility of using a combined physicochemical/biological treatment system to remove the organic constituents present in saline produced water. In order to meet this objective, a physical/chemical adsorption process was developed and two separate biological treatment techniques were investigated. Two previous research projects focused on the development of the surfactant modified zeolite adsorption process (DE-AC26-99BC15221) and development of a vapor phase biofilter (VPB) to treat the regeneration off-gas from the surfactant modified zeolite (SMZ) adsorption system (DE-FC26-02NT15461). In this research, the SMZ/VPB was modified to more effectively attenuate peak loads and to maintain stable biodegradation of the BTEX constituents from the produced water. Specifically, a load equalization system was incorporated into the regeneration flow stream. In addition, a membrane bioreactor (MBR) system was tested for its ability to simultaneously remove the aromatic hydrocarbon and carboxylate components from produced water. The specific objectives related to these efforts included the following: (1) Optimize the performance VPBs treating the transient loading expected during SMZ regeneration: (a) Evaluate the impact of biofilter operating parameters on process performance under stable operating conditions. (b) Investigate how transient loads affect biofilter performance, and identify an appropriate technology to improve biological treatment performance during the transient regeneration period of an SMZ adsorption system. (c) Examine the merits of a load equalization technology to attenuate peak VOC loads prior to a VPB system. (d) Evaluate the capability of an SMZ/VPB to remove BTEX from produced water in a field trial. (2) Investigate the feasibility of MBR treatment of produced water: (a) Evaluate the biodegradation of carboxylates and BTEX constituents from synthetic produced water in a laboratory-scale MBR. (b

  1. The effect of high voltage pulsed electric field on water molecular

    Science.gov (United States)

    Fan, Xuejie; Bai, Yaxiang; Ren, Ziying

    2017-10-01

    In order to study the mechanism of high voltage pulsed electric field pre-treatment on the food drying technology. In this paper, water was treated with high pulse electric field (HPEF) in different frequency, and different voltage, then, the viscosity coefficient and the surface tension coefficient of the water were measured. The results showed that indicated that the viscosity coefficient and the surface tension coefficient of the treated water can be decreased, and while HPEF pre-treatment was applied for 22.5kV at a frequency of 50Hz and 70 Hz, the surface tension and the viscosity coefficient of the pre-treatment treatment were reduced 13.1% and 7.5%, respectively.

  2. Water Supply and Treatment Equipment. Change Notice 1

    Science.gov (United States)

    2014-08-05

    Coagulation Filtration Total Dissolved Solids Water Quality Conductivity Potable water Turbidity Water Treatment/Purification Disinfection ...microorganisms (pathogenic) found in the raw water . The preferred Army field method of water disinfection is chlorination. Filtration Filtration...senses. It looks, tastes, and smells good and is neither too hot nor too cold. Potable water Water that is safe for drinking . Reverse osmosis

  3. Produced water silica removal treatment in PETROBRAS Fazenda Belem fields - Brazil; Tratamento da agua produzida do Campo de Fazenda Belem (PETROBRAS, UN/RNCE) para remocao de silica

    Energy Technology Data Exchange (ETDEWEB)

    Junior, Agenor J.; Sampaio, Alberto C.; Silva, Arnaldo F. da; Christiano, Fernando P.; Freire, Norma de O.; Pereira Junior, Oswaldo de A. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2008-07-01

    Extracting oil from mature fields generates huge volumes of produced water whose pollutive character requires adequate treatment to minimize environmental impact. Nevertheless, produced water may be re-used, avoiding environmental contamination and helping in water resources preservation. According to future use, produced water receives specific treatment, intending to remove critical contaminants to the application involved. In the case o UN/RNCE's Fazenda Belem Field produced water is treated for steam generation Membrane Separation Processes are currently in test for this treatment. These processes are sensitive to high water hardness and silica concentrations. To avoid scaling, caustic soda is added in the water-oil separator outlet, precipitating calcium carbonate and magnesium hydroxide. This treatment, however, helps solubilizing silica. Coagulation-flocculation laboratory tests were run with poly aluminum chloride (PAC) and magnesium chloride at constant temperature (45 deg C) and pH adjusted to 9,5, attempting to simulate the water-oil separator outlet conditions. Laboratory analysis showed good silica removal results only in samples treated with PAC, suggesting its use in produced water for steam generation pre-treatment, avoiding silica-based scaling in membranes. (author)

  4. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan

    2015-08-26

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly hinge upon the further development of nanomaterial sciences. The concept of rational design emphasizes ‘design-for-purpose’ and it necessitates a scientifically clear problem definition to initiate the nanomaterial design. The field of rational design of nanomaterials for water treatment has experienced a significant growth in the past decade and is poised to make its contribution in creating advanced next-generation water treatment technologies in the years to come. Within the water treatment context, this review offers a comprehensive and in-depth overview of the latest progress of the rational design, synthesis and applications of nanomaterials in adsorption, chemical oxidation and reduction reactions, membrane-based separation, oil/water separation, and synergistic multifunctional all-in-one nanomaterials/nanodevices. Special attention is paid on chemical concepts of the nanomaterial designs throughout the review.

  5. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    DEFF Research Database (Denmark)

    Battilani, Adriano; Steiner, Michele; Andersen, Martin

    2010-01-01

    The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse...... of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies...... which allow using the lowest irrigation water quality without harming food safety or yield and fruit or derivatives quality. This study presents the results of prototype testing of a small-scale compact pressurized membrane bioreactor and of a modular field treatment system including commercial gravel...

  6. PRODUCTION WELL WATER SHUT-OFF TREATMENT IN A HIGHLY FRACTURED SANDSTONE RESERVOIR; TOPICAL

    International Nuclear Information System (INIS)

    Lyle A. Johnson, Jr.

    2001-01-01

    As domestic oil and gas fields approach maturity or even abandonment, new methods are being tested to add life to the fields. One area being addressed is the reduction of water production to extend the economic life of a field. In many fields a very common problem is permeability heterogeneity from matrix variations, fractures, or both. Conventional procedures to remediate high water rates in fractured networks, including cement squeezing, openhole packers, and liners are generally unsuccessful. The objective of this project was to test the viability of using sequential treatment of a production well with a cross-linked polymer to restrict water production from highly permeable and fractured zones. The field used for testing was the Ashley Valley field in northeastern Utah. The process proposed for testing in this field was the sequential application of small batches of a cross-linked polymer, chromium (III) polyacrylamide polymer (Marcit(trademark)). First, the highest permeability fractures were to be blocked, followed progressively by smaller fractures, and finally the higher permeability matrix channels. The initial application of this polymer in September 1997 in the Ashley Valley (AV) well No.2 did increase oil production while decreasing both water production and the relative permeability to water. The successive application of the polymer was considered as a method to increase both daily and ultimate oil production and reduce produced water. The second polymer treatment was conducted in October 1999 in AV No.2. The treatment consisted of 4,994 barrels of 1,500-mg/l to 9,000-mg/l polymer at surface injection pressures no higher than 380 psig. During injection, four offset wells showed polymer breakthrough and were shut in during the remaining treatment. Present oil and water production rates for AV No.2 are 14 BOPD and 2,700 BWPD, which is a 44% decrease in the oil rate and a 40% reduction in water from the rates after the first treatment. The decrease in

  7. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1989-01-01

    Radon contamination of drinking water primarily affects individual homeowners and small communities using ground-water supplies. Presently, three types of treatment processes have been used to remove radon: granular activated carbon adsorption (GAC), diffused-bubble aeration, and packed-tower aeration. In order to obtain data on these treatment alternatives for small communities water supplies, a field evaluation study was conducted on these three processes as well as on several modifications to aeration of water in storage tanks considered to be low cost/low technology alternatives. The paper presents the results of these field studies conducted at a small mobile home park in rural New Hampshire. The conclusion of the study was that the selection of the appropriate treatment system to remove radon from drinking water depends primarily upon: (1) precent removal of process; (2) capital operating and maintenance costs; (3) safety (radiation); and (4) raw water quality (Fe, Mn, bacteria and organics)

  8. Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates

    Directory of Open Access Journals (Sweden)

    Manoj A. Lazar

    2012-12-01

    Full Text Available Photocatalytic water treatment using nanocrystalline titanium dioxide (NTO is a well-known advanced oxidation process (AOP for environmental remediation. With the in situ generation of electron-hole pairs upon irradiation with light, NTO can mineralize a wide range of organic compounds into harmless end products such as carbon dioxide, water, and inorganic ions. Photocatalytic degradation kinetics of pollutants by NTO is a topic of debate and the mostly reporting Langmuir-Hinshelwood kinetics must accompanied with proper experimental evidences. Different NTO morphologies or surface treatments on NTO can increase the photocatalytic efficiency in degradation reactions. Wisely designed photocatalytic reactors can decrease energy consumption or can avoid post-separation stages in photocatalytic water treatment processes. Doping NTO with metals or non-metals can reduce the band gap of the doped catalyst, enabling light absorption in the visible region. Coupling NTO photocatalysis with other water-treatment technologies can be more beneficial, especially in large-scale treatments. This review describes recent developments in the field of photocatalytic water treatment using NTO.

  9. Sludge pre-treatment with pulsed electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Kopplow, O.; Barjenbruch, M.; Heinz, V.

    2003-07-01

    The anaerobic stabilization process depends - among others - on the bio-availability of organic carbon. Through pre-treatment of the sludge which leads to the destruction of micro-organisms and to the setting-free of cell content substances (disintegration), the carbon can be microbially converted better and faster. Moreover, effects on the digestion are likely. However, only little experience is available in the sludge treatment with pulsed electric fields. Laboratory-scale digestion tests have been run to analyse the influence of pulsed electric fields on the properties of sludge, anaerobic degradation, sludge water reload and foaming of digesters. The results will be compared with those of other disintegration methods (high pressure homogenise, thermal treatment). The effect of pre-treatment on the sludge is shown by the COD release. Degrees of disintegration have been achieved up to 20%. The specific energy input was high. The energy consumption has been decreased by initial improvements (pre-heating to 55{sup o}C). The filament bacteria were partially destroyed. The foam reduction in the digesters was marginal. The anaerobic degradation performance has been improved in every case. The degradation rate of organic matter increased about 9%. Due to the increase of degradation, there is a higher reload of the sludge-water with COD and nitrogen compounds. (author)

  10. Physico-chemical pre-treatment for drinking water

    International Nuclear Information System (INIS)

    Hassanien, W. A. M.

    2004-08-01

    The objective of this work is to attempt to improve the quality of town water by application of alternating current, direct current and magnetic field to raw water as pre-treatment to enhance the coagulation and flocculation. The design and operation for these processes and the evaluation there of have been mentioned. Treatment generally requires application of electric current Ac or Dc (0.1-1.0 A) for residence current time 2-12 minutes, or application of magnetic field (20-400 mt). The measurement of turbidity and total suspended solids (TSS) of raw water were determined before and after treatment to obtain the efficiency of turbidity and TSS removal. Total bacteria count was determined using standard plate count method. Most probable number (MPN) technique was used to determine the number of coliform organisms that were present in water to obtain the efficiency of water purification. The results obtain revealed that treatment by Ac and Dc electric current gave turbidity removal efficiency in the range 40-81%, 17-76% and TSS in the range 37-61%, 9-57%, respectively. Coagulation of natural colloids and other material suspended in water is faster in water impacted by an electric current. When alum and polymer was used as coagulant together with Ac electric current, clarification rate was greater by 1.8-2.4 times in Damira 2001; 1.5-3.3 times by poly aluminum chloride together with Ac electric current ; 2.4-4.5 times by alum and poly diallyl dimethyl ammonium chloride together with Dc electric current in Damira 2002. The mortality efficiency of total bacteria count was 57-83% and of total coliform was 58-93% when exposed to electric current for an extended residence current times between 2 to 11 minutes. The mortality efficiency of total bacteria count was 60-85%, and of total coliform was 53-95% when exposed to current between 0.16-0.60 A at constant current time. The results obtained from physical and chemical analysis of raw water and water treated by Ac, Dc

  11. Physico-chemical pre-treatment for drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Hassanien, W A. M. [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2004-08-01

    The objective of this work is to attempt to improve the quality of town water by application of alternating current, direct current and magnetic field to raw water as pre-treatment to enhance the coagulation and flocculation. The design and operation for these processes and the evaluation there of have been mentioned. Treatment generally requires application of electric current Ac or Dc (0.1-1.0 A) for residence current time 2-12 minutes, or application of magnetic field (20-400 mt). The measurement of turbidity and total suspended solids (TSS) of raw water were determined before and after treatment to obtain the efficiency of turbidity and TSS removal. Total bacteria count was determined using standard plate count method. Most probable number (MPN) technique was used to determine the number of coliform organisms that were present in water to obtain the efficiency of water purification. The results obtain revealed that treatment by Ac and Dc electric current gave turbidity removal efficiency in the range 40-81%, 17-76% and TSS in the range 37-61%, 9-57%, respectively. Coagulation of natural colloids and other material suspended in water is faster in water impacted by an electric current. When alum and polymer was used as coagulant together with Ac electric current, clarification rate was greater by 1.8-2.4 times in Damira 2001; 1.5-3.3 times by poly aluminum chloride together with Ac electric current ; 2.4-4.5 times by alum and poly diallyl dimethyl ammonium chloride together with Dc electric current in Damira 2002. The mortality efficiency of total bacteria count was 57-83% and of total coliform was 58-93% when exposed to electric current for an extended residence current times between 2 to 11 minutes. The mortality efficiency of total bacteria count was 60-85%, and of total coliform was 53-95% when exposed to current between 0.16-0.60 A at constant current time. The results obtained from physical and chemical analysis of raw water and water treated by Ac, Dc

  12. Waste water treatment by ionizing radiations. Removal of biological and chemical risks by water and sludge treatment with electron beams. Orientation 10 July 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This report aims at analysing the reliability of the application of electron ionizing radiation in the treatment of waste waters and effluents, and at identifying possible fields of application and associated technological and economic implications. After some recalls on physics, electrochemistry, radiolysis, and water pollution, the report proposes an overview of the technique of irradiation of waters, with its scientific background (water radiolysis, chemical and biological effects), its process (recovery cycle and possible interventions, processed pollutants), the case of irradiation by electrons (power, rate, flexibility), an overview of benefits and drawbacks, and a brief history of this practice and an overview of current researches. After a recall of regulatory and political requirements, the report discusses possible fields of application: waste water treatment plants, domestic, agricultural and urban sewage wasters, hospital and medical wastes, liquid food industry products, industrial waters. The choice of accelerator parameters and components is then discussed

  13. New progress in wastewater treatment technology for standard-reaching discharge in sour gas fields

    Directory of Open Access Journals (Sweden)

    Jie Yang

    2018-02-01

    Full Text Available Gas field water is generally characterized by complex contaminant components and high salinity. Its proper treatment has always been the great concern in the field of environmental protection of oil & gas fields. In this paper, the wastewater from a gas field in the Sichuan Basin with high salinity and more contaminants (e.g. sulfides was treated as a case study for the standard-reaching discharge. Lab experiments were carried out to analyze the adaptability and effectiveness of coagulation–desulfurization composite treatment technology, chemical oxidation based ammonia nitrogen removal technology and cryogenic multi-efficacy distillation technology in the treatment of wastewater in this field. The results show that the removal rate of sulfides and oils is over 90% if polymeric ferric sulfate (PFS is taken as the coagulant combined with TS-1 desulfurization agent. Besides, the removal rate of ammonia nitrogen is over 96% if CA-1 is taken as the oxidant. Finally, after the gas field water is treated by means of cryogenic three-efficacy distillation technology, chloride concentration of distilled water is below 150 mg/L and CODcr concentration is less than 60 mg/L. It is concluded that after the whole process treatment, the main contaminant indicators of wastewater in this case study can satisfy the grade one standard specified in the Integrated Wastewater Discharge Standard (GB 8978–1996 and the chloride concentration can meet the requirement of the Standards for Irrigation Water Quality (GB 5084–2005. To sum up, the above mentioned composite technologies are efficient to the wastewater treatment in sour gas fields. Keywords: Sulfide-bearing gas field water, Coagulation, Desulfurization, Chemical oxidation, Standard discharge, Ammonia nitrogen, Chloride, Cryogenic multi-efficacy distillation, Sichuan Basin

  14. Progress report: Use of water hyacinth in wastewater treatment

    International Nuclear Information System (INIS)

    Mohd Yusof, Abdullah bin

    1981-01-01

    Previous studies have revealed that water hyacinth shows remarkable ability to remove, besides heavy metals, BOD and COD load from wastewaters which contain mainly organic pollutants. A survey was conducted to select suitable industrial effluents for pilot field studies, in particular wastewaters which were organic in nature such as those from food industries. A proposal to set up a pilot treatment system for field studies m addition to laboratory investigations was consistent with the recommendation put forward at the First Interim Project Review Meeting held in 1980 . It has been reported that introduction of water hyacinth into digested sugar waste would significantly enhance the efficiency of purification of the waste. Brief trials with a sugar refinery effluent in the laboratory showed the possibility of subjecting the wastewater to the water hyacinth treatment system in a pilot field study and arrangements were then made for the study to be carried out at site

  15. Water Supply Treatment Sustainability of Panching Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Zulkifli, Nabil F.; Hadi, Iqmal H.

    2018-03-01

    In many parts of the world, freshwater is scarce and overexploited. The purpose of this study is to determine the water footprint of Water Supply Treatment Process (WSTP) at Panching Water Treatment Plant (WTP) as well as to identify the sustainability of the Sg. Kuantan as an intake resource due to the effect of land use development. The total water footprint (WF) will be calculated by using WF accounting manual. The results obtained shows that the water intake resource is still available but it is believed that it will not be able to cope with the increasing WF. The increment of water demand percentage by 1.8% from 2015 to 2016 has increased 11 times higher of the water footprint percentage, 19.9%. This result shows that the water consumption during the water supply treatment process is two times higher than the demand thus it shows the inefficient of the water management

  16. METHANE EMISSION FROM PADDY FIELDS AS INFLUENCED BY DIFFERENT WATER REGIMES IN CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    Prihasto Setyanto

    2013-07-01

    Full Text Available The concentration of methane (CH4 in the atmosphere is increasing at 1% per annum and rice fields are one of the sources that contribute to about 10-15% of the atmospheric CH4. One of the options to reduce greenhouse gas emission from rice fields is probably through water management. A field study was conducted to investigate the effects of water management practices on CH4 emission from rice field plots on a silty sand Aeric Tropaquept soil at Research Station for Agricultural Environment Preservation, Jakenan, Central Java, Indonesia, during the dry season of March to June 2002. Four water regimes tested were: (1 5 cm continuous flooding (CF, (2 0-1 cm continuous flooding (ST, (3 intermittent irrigation (IR where plots received continuously 5 cm of flooding with two times of draining at 15-20 and 25-30 days after transplanting (DAT, and (4 pulse irrigation (PI where plots were watered until 5 cm level and left to dry by itself until the water table reached 30 cm beneath soil surface then watered again. The total CH4 emissions of the four water treatments were 254, 185, 136 and 96 kg CH4 ha-1 for CF, ST, IR and PI, respectively. Methane emission increased during the early growing season, which coincided with the low redox potential of -100 to -150 mV in all treatments. Dry matter weight of straw and filled grain among the water treatments did not show significant differences. Likewise, total grain yield at 14% moisture content was not significantly different among treatments. However, this result should be carefully interpreted because the rice plants in all water treatments were infested by stem borer, which reduced the total grain yield of IR64 between 11% and 16%. This study suggests that intermittent and pulse irrigation practices will be important not only for water use efficiency, but also for CH4 emission reduction.

  17. Effect of magnetic field and silver nanoparticles on yield and water use efficiency of Carum copticum under water stress conditions

    Directory of Open Access Journals (Sweden)

    Seghatoleslami Mohammadjavad

    2015-03-01

    Full Text Available Normally the productivity of cropping systems in arid and semi- arid regions is very low. The sustainable agricultural systems try to find out environmental friendly technologies based on physical and biological treatments to increase crop production. In this study two irrigation treatments (control and water stress and six methods of fertilizer treatment (control, NPK-F, using magnetic band- M, using silver nano particles- N, M+N and M+N+50% F on performance of ajowan were compared. Results showed that treatments with magnetic field or base fertilizer had more yield compared to the control and silver nanoparticles (N treatments. Application of silver nanoparticles had no positive effect on yield. The highest seed and biomass WUE achieved in base fertilizer or magnetic field treatments. Under water stress treatment, seed WUE significantly increased. In conclusion magnetic field exposure, probably by encourage nutrient uptake efficiency could be applied to reduce fertilizer requirement. On the other hand the cultivation of plants under low MF could be an alternative way of WUE improving.

  18. Matching IMRT fields with static photon field in the treatment of head-and-neck cancer

    International Nuclear Information System (INIS)

    Li, Jonathan G.; Liu, Chihray; Kim, Siyong; Amdur, Robert J.; Palta, Jatinder R.

    2005-01-01

    Radiation treatment with intensity-modulated radiation therapy (IMRT) for head-and-neck cancer usually involves treating the superior aspects of the target volume with intensity-modulated (IM) fields, and the inferior portion of the target volume (the low neck nodes) with a static anterior-posterior field (commonly known as the low anterior neck, or LAN field). A match line between the IM and the LAN fields is created with possibly large dose inhomogeneities, which are clinically undesirable. We propose a practical method to properly match these fields with minimal dependence on patient setup errors. The method requires mono-isocentric setup of the IM and LAN fields with half-beam blocks as defined by the asymmetric jaws. The inferior jaws of the IM fields, which extend ∼1 cm inferiorly past the isocenter, are changed manually before patient treatment, so that they match the superior jaw of the LAN field at the isocenter. The matching of these fields therefore does not depend on the particular treatment plan of IMRT and depends only on the matching of the asymmetric jaws. Measurements in solid water phantom were performed to verify the field-matching technique. Dose inhomogeneities of less than 5% were obtained in the match-line region. Feathering of the match line is done twice during the course of a treatment by changing the matching jaw positions superiorly at 3-mm increments each time, which further reduces the dose inhomogeneity. Compared to the method of including the lower neck nodes in the IMRT fields, the field-matching technique increases the delivery efficiency and significantly reduces the total treatment time

  19. Water Treatment Group

    Data.gov (United States)

    Federal Laboratory Consortium — This team researches and designs desalination, water treatment, and wastewater treatment systems. These systems remediate water containing hazardous c hemicals and...

  20. The influence of the magnetic field on the crystallisation form of calcium carbonate and the testing of a magnetic water-treatment device

    Energy Technology Data Exchange (ETDEWEB)

    Kobe, S. E-mail: spomenka.kobe@ijs.si; Drazic, G.; McGuiness, P.J.; Strazisar, J

    2001-10-01

    By using X-ray analysis and a TEM equipped with a link AN-10000 EDXS analysing system and an ultra-thin-window Si(Li) detector, different crystal forms of CaCO{sub 3} crystals were characterised. These crystals were grown from tap water and model water both with and without a magnetic field. Separate aragonite crystals were formed in the treated water and clusters of calcite in the untreated water. We observed that under the influence of a magnetic field higher than 500 mT, the nucleation and subsequent growth of aragonite could be successfully used as a way of preventing scale. The prototype of a magnetic water-treatment device (MWTD) was constructed for testing in a pilot plant that treats tap water. It has been in use for more than 2 years and the results look very promising for reducing the need for chemically treated water. The weight gains of the heat exchangers, which were used in the three parallel pipelines equipped with three different devices against scaling, were followed. The MWTD designed and built in the IJS laboratory, showed only a slightly higher weight gain than that achieved with the use of chemicals.

  1. The influence of the magnetic field on the crystallisation form of calcium carbonate and the testing of a magnetic water-treatment device

    International Nuclear Information System (INIS)

    Kobe, S.; Drazic, G.; McGuiness, P.J.; Strazisar, J.

    2001-01-01

    By using X-ray analysis and a TEM equipped with a link AN-10000 EDXS analysing system and an ultra-thin-window Si(Li) detector, different crystal forms of CaCO 3 crystals were characterised. These crystals were grown from tap water and model water both with and without a magnetic field. Separate aragonite crystals were formed in the treated water and clusters of calcite in the untreated water. We observed that under the influence of a magnetic field higher than 500 mT, the nucleation and subsequent growth of aragonite could be successfully used as a way of preventing scale. The prototype of a magnetic water-treatment device (MWTD) was constructed for testing in a pilot plant that treats tap water. It has been in use for more than 2 years and the results look very promising for reducing the need for chemically treated water. The weight gains of the heat exchangers, which were used in the three parallel pipelines equipped with three different devices against scaling, were followed. The MWTD designed and built in the IJS laboratory, showed only a slightly higher weight gain than that achieved with the use of chemicals

  2. Household pasteurization of drinking-water: the chulli water-treatment system.

    Science.gov (United States)

    Islam, Mohammad Fakhrul; Johnston, Richard B

    2006-09-01

    A simple flow-through system has been developed which makes use of wasted heat generated in traditional clay ovens (chullis) to pasteurize surface water. A hollow aluminium coil is built into the clay chulli, and water is passed through the coil during normal cooking events. By adjusting the flow rate, effluent temperature can be maintained at approximately 70 degrees C. Laboratory testing, along with over 400 field tests on chulli systems deployed in six pilot villages, showed that the treatment completely inactivated thermotolerant coliforms. The chulli system produces up to 90 litres per day of treated water at the household level, without any additional time or fuel requirement. The technology has been developed to provide a safe alternative source of drinking-water in arsenic-contaminated areas, but can also have wide application wherever people consume microbiologically-contaminated water.

  3. Effect of magnetic field on the physical properties of water

    Science.gov (United States)

    Wang, Youkai; Wei, Huinan; Li, Zhuangwen

    2018-03-01

    In this study, the effect of magnetic field (MF) on the partial physical properties of water are reported, tap water (TW) and 4 types of magnetized water (MW) were measured in the same condition. It was found that the properties of TW were changed following the MF treatment, shown as the increase of evaporation amount, the decrease of specific heat and boiling point after magnetization, the changes depend on the magnetization effect. In addition, magnetic field strength (MFS) has a marked influence on the magnetization effect, the optimal magnetizing condition was determined as the MFS of 300 mT. The findings of this study offered a facile approach to improve cooling and power generation efficiency in industrial.

  4. Arsenic transport in irrigation water across rice-field soils in Bangladesh

    International Nuclear Information System (INIS)

    Polizzotto, Matthew L.; Lineberger, Ethan M.; Matteson, Audrey R.; Neumann, Rebecca B.; Badruzzaman, A. Borhan M.; Ashraf Ali, M.

    2013-01-01

    Experiments were conducted to analyze processes impacting arsenic transport in irrigation water flowing over bare rice-field soils in Bangladesh. Dissolved concentrations of As, Fe, P, and Si varied over space and time, according to whether irrigation water was flowing or static. Initially, under flowing conditions, arsenic concentrations in irrigation water were below well-water levels and showed little spatial variability across fields. As flowing-water levels rose, arsenic concentrations were elevated at field inlets and decreased with distance across fields, but under subsequent static conditions, concentrations dropped and were less variable. Laboratory experiments revealed that over half of the initial well-water arsenic was removed from solution by oxidative interaction with other water-column components. Introduction of small quantities of soil further decreased arsenic concentrations in solution. At higher soil-solution ratios, however, soil contributed arsenic to solution via abiotic and biotic desorption. Collectively, these results suggest careful design is required for land-based arsenic-removal schemes. -- Highlights: •We analyzed the processes impacting arsenic transport in flowing irrigation water. •Arsenic in Bangladesh rice-field irrigation water varied over space and time. •Arsenic was correlated with Fe, P, and Si in flowing and static water. •Oxidation, adsorption and desorption reactions controlled arsenic concentrations. •Land-based arsenic removal from water will be impacted by hydraulic conditions. -- Arsenic concentrations in flowing and static irrigation water in Bangladesh varied over space and time, suggesting careful design is required for land-based pre-treatment schemes that aim to remove As from solution

  5. Treatment of water contaminated with N-nitrosodimethylamine (NDMA)

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, K; Lakanowski, C; Somers, A; Whittaker, H; Hamid, H B [Environment Canada, Ottawa, ON (Canada); Anantaraman, A [Ottawa Univ., ON (Canada)

    1996-12-31

    A series of remediation technologies for contaminated soil and water at former nuclear missile sites in the countries of Eastern Europe have been developed. As part of this project the applicability of electrolytic reduction of N-nitrosodimethylamine (NDMA) in groundwater, using relatively cheap materials, was evaluated. It was found that reduction of NDMA in water could be achieved using inexpensive carbon electrodes and a simple two-electrode cell, making the process potentially applicable for the treatment of contaminated surface and groundwater in field conditions. Best results were achieved at pH 1 and a potential difference of 3 to 3.5 V. It is worth noting that the residual concentration of NDMA was still too high to discharge the water into the environment without additional treatment.

  6. Mine water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Komissarov, S V

    1980-10-01

    This article discusses composition of chemical compounds dissolved or suspended in mine waters in various coal basins of the USSR: Moscow basin, Kuzbass, Pechora, Kizelovsk, Karaganda, Donetsk and Chelyabinsk basins. Percentage of suspended materials in water depending on water source (water from water drainage system of dust suppression system) is evaluated. Pollution of mine waters with oils and coli bacteria is also described. Recommendations on construction, capacity of water settling tanks, and methods of mine water treatment are presented. In mines where coal seams 2 m or thicker are mined a system of two settling tanks should be used: in the upper one large grains are settled, in the lower one finer grains. The upper tank should be large enough to store mine water discharged during one month, and the lower one to store water discharged over two months. Salty waters from coal mines mining thin coal seams should be treated in a system of water reservoirs from which water evaporates (if climatic conditions permit). Mine waters from mines with thin coal seams but without high salt content can be treated in a system of long channels with water plants, which increase amount of oxygen in treated water. System of biological treatment of waste waters from mine wash-houses and baths is also described. Influence of temperature, sunshine and season of the year on efficiency of mine water treatment is also assessed. (In Russian)

  7. An Investigation of Emitters Clogging Under Magnetic Field and Water Quality

    Directory of Open Access Journals (Sweden)

    A. Kiani

    2016-02-01

    in the drip irrigation system. Materials and Methods: A field experiment was carried out in 2011 in Gorgan Agricultural Research Station to study emitter clogging in drip irrigation using magnetic, non-magnetic and acidic water under salinity condition. The geographical location of the farm was 36° 55′ N, 54° 25′ E and 13.3 m above mean sea level with annual rainfall 400-450 mm. The experiment was laid out with a split plot in a complete randomized block design with three replications. The treatments included three treatments of the management of emitters clogging including, magnetized water (M, non-magnetized water (N and acidic water (A plus using three water quality levels namely, well water (S1, saline waters 7 (S2 and 14 (S3 dS m-1. Two methods were simultaneously used to magnetize water. In the first method, an electromagnet was installed around the sub-main pipe before the flow of water to the laterals. The amount of power required to magnetize the irrigation water was 0.03 kW-h of electricity per m3 of water. In the second method, the permanent magnets (ceramic magnets were installed around the sub-main pipe before the laterals. In the second method the power requirement was 0.3 Tesla. To assess the emitter clogging, discharge and its variations as a function of time, emission uniformity, uniformity coefficient, and coefficient of variation were estimated and analyzed. Results and Discussion: The results of variance analysis showed that the effect of different irrigation management in irrigation system (N, M and A treatments and different levels of water quality on all parameters were significant. Statistical comparison showed that in all cases there were no significant differences between magnetized water and non-magnetized water treatments. However, acidic water was statistically different from the two types of water mentioned. Both magnetic and conventional indices were examined in this study. However, no significant difference was observed. But in

  8. Investigation of an innovative technology for oil-field brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Miskovic, D; Dalmacija, B; Hain, Z; Karlovic, E; Maric, S; Uzelac, N [Inst. of Chemistry, Faculty of Sciences, V. Vlahovica 2 (YU)

    1989-01-01

    Various aspects of an innovative technology for oil field brine treatment were investigated on a laboratory scale. The both free and dispersed oily matter were separated by gravitation and sedimentation. Apart from the physico-chemical oil removal process, special attention was paid to different variants of improved microbiological treatment: dilution with fresh water and application of powdered activated carbon (PAC). Advanced treatment was carried out on granular biological activated carbon (GBAC). A technological scheme for complete treatment was proposed. (author).

  9. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    Science.gov (United States)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  10. Electric Field Fluctuations in Water

    Science.gov (United States)

    Thorpe, Dayton; Limmer, David; Chandler, David

    2013-03-01

    Charge transfer in solution, such as autoionization and ion pair dissociation in water, is governed by rare electric field fluctuations of the solvent. Knowing the statistics of such fluctuations can help explain the dynamics of these rare events. Trajectories short enough to be tractable by computer simulation are virtually certain not to sample the large fluctuations that promote rare events. Here, we employ importance sampling techniques with classical molecular dynamics simulations of liquid water to study statistics of electric field fluctuations far from their means. We find that the distributions of electric fields located on individual water molecules are not in general gaussian. Near the mean this non-gaussianity is due to the internal charge distribution of the water molecule. Further from the mean, however, there is a previously unreported Bjerrum-like defect that stabilizes certain large fluctuations out of equilibrium. As expected, differences in electric fields acting between molecules are gaussian to a remarkable degree. By studying these differences, though, we are able to determine what configurations result not only in large electric fields, but also in electric fields with long spatial correlations that may be needed to promote charge separation.

  11. Ammonia volatilization losses from paddy fields under controlled irrigation with different drainage treatments.

    Science.gov (United States)

    He, Yupu; Yang, Shihong; Xu, Junzeng; Wang, Yijiang; Peng, Shizhang

    2014-01-01

    The effect of controlled drainage (CD) on ammonia volatilization (AV) losses from paddy fields under controlled irrigation (CI) was investigated by managing water table control levels using a lysimeter. Three drainage treatments were implemented, namely, controlled water table depth 1 (CWT1), controlled water table depth 2 (CWT2), and controlled water table depth 3 (CWT3). As the water table control levels increased, irrigation water volumes in the CI paddy fields decreased. AV losses from paddy fields reduced due to the increases in water table control levels. Seasonal AV losses from CWT1, CWT2, and CWT3 were 59.8, 56.7, and 53.0 kg N ha(-1), respectively. AV losses from CWT3 were 13.1% and 8.4% lower than those from CWT1 and CWT2, respectively. A significant difference in the seasonal AV losses was confirmed between CWT1 and CWT3. Less weekly AV losses followed by TF and PF were also observed as the water table control levels increased. The application of CD by increasing water table control levels to a suitable level could effectively reduce irrigation water volumes and AV losses from CI paddy fields. The combination of CI and CD may be a feasible water management method of reducing AV losses from paddy fields.

  12. Water purification by corona-above-water treatment

    NARCIS (Netherlands)

    Pemen, A.J.M.; Heesch, van E.J.M.; Hoeben, W.F.L.M.

    2012-01-01

    Advanced oxidation technologies (AOT), such as non-thermal plasmas, are considered to be very promising for the purpose of water treatment. The goal of this study is to test the feasibility of "Corona-above-water" technology for the treatment of drinking water. Experiments have been performed on the

  13. Biosorption treatment of brackish water

    International Nuclear Information System (INIS)

    Rizwan, M.; Ali, M.; Tariq, M.I.; Rehman, F.U.; Karim, A.; Makshoof, M.; Farooq, R.

    2010-01-01

    Biosorptivity of different agricultural wastes have been evaluated for the treatment of brackish water and a new method, based on the principle of bio-sorption has been described. Wastes of the Saccharum officinarum, Moringa oleifera, Triticum aestivcum and Oryza sativa have been used in raw forms as well as after converting them into ash and activated carbon as biosorbents for treatment of brackish water in this study. Samples of brackish water have been analyzed before and after treatment for quality control parameters of water. A significant Improvement has been observed in quality control parameters of water after treatment. pH of the water samples slightly increased from 7.68 to 7.97 with different treatments. A substantial decrease in conductivity,. TDS, TH, concentrations of cations and anions was observed in the samples of brackish water after treatment with different biosorbents. (author)

  14. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  15. Closed recirculation-Water treatment

    International Nuclear Information System (INIS)

    Hamza, Hamza B.; Ben Ali, Salah; Saad, Mohamed A.; Traish, Massud R.

    2005-01-01

    This water treatment is a practical work applied in the center, for a closed recirculation-water system. The system had experienced a serious corrosion problem, due to the use of inadequate water. This work includes chemical preparation for the system. Water treatment, special additives, and follow-up, which resulted in the stability of the case. This work can be applied specially for closed recirculation warm, normal, and chilled water. (author)

  16. Water Supply Treatment Sustainability of Semambu Water Supply Treatment Process - Water Footprint Approach

    Science.gov (United States)

    Aziz, Edriyana A.; Malek, Marlinda Abdul; Moni, Syazwan N.; Hadi, Iqmal H.; Zulkifli, Nabil F.

    2018-03-01

    In this study, the assessment by using Water Footprint (WF) approach was conducted to assess water consumption within the water supply treatment process (WSTP) services of Semambu Water Treatment Plant (WTP). Identification of the type of WF at each stage of WSTP was carried out and later the WF accounting for the period 2010 – 2016 was calculated. Several factors that might influence the accounting such as population, and land use. The increasing value of total WF per year was due to the increasing water demand from population and land use activities. However, the pattern of rainfall intensity from the monsoonal changes was not majorly affected the total amount of WF per year. As a conclusion, if the value of WF per year keeps increasing due to unregulated development in addition to the occurrences of climate changing, the intake river water will be insufficient and may lead to water scarcity. The findings in this study suggest actions to reduce the WF will likely have a great impact on freshwater resources availability and sustainability.

  17. Advanced treatment and reuse system developed for oilfield process water

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Kevin

    2011-01-15

    An innovative plant to treat oilfield produced wastewater is being constructed in Trinidad and Tobago following recent regulations and industrial water supply challenges. The 4,100m3/day treatment system, developed by Golder Associates, will produce water for industrial reuse and effluent that meets new regulations. The treatment stages include: oil-water separation by gravity, equalization with a two-day capacity basin, dissolved air flotation, cooling, biotreatment/settling with immobilized cell bioreactors (ICB) technology, prefiltration/reverse osmosis and effluent storage/transfer. This advanced system will provide several important benefits including the elimination of inland discharge of minimally-treated water and the reduction of environmental and public health concerns. In addition, it will provide a new source of industrial water, resulting in a decrease in demand for fresh water. The success of this plant could lead to additional facilities in other oil field locations, expanding economic and environmental benefits of water reuse.

  18. Mine water treatment in Donbass

    Energy Technology Data Exchange (ETDEWEB)

    Azarenkov, P A; Anisimov, V M; Krol, V A

    1980-10-01

    About 2,000,000 m$SUP$3 of mine water are discharged by coal mines yearly to surface waters in the Donbass. Mine water in the region is rich in mineral salts and suspended matter (coal and rock particles). The DonUGI Institute developed a system of mine water treatment which permits the percentage of suspended matter to be reduced to 1.5 mg/l. The treated mine water can be used in fire fighting and in dust suppression systems in coal mines. A scheme of the water treatment system is shown. It consists of the following stages: reservoir of untreated mine water, chamber where mine water is mixed with reagents, primary sedimentation tanks, sand filters, and chlorination. Aluminium sulphate is used as a coagulation agent. To intensify coagulation polyacrylamide is added. Technical specifications of surface structures in which water treatment is carried out are discussed. Standardized mine water treatment systems with capacities of 600 m$SUP$3/h, with 900, 1200, 1500, 1800 and 2100 m$SUP$3/h capacities are used. (In Russian)

  19. On board short-time high temperature heat treatment of ballast water: a field trial under operational conditions.

    Science.gov (United States)

    Quilez-Badia, Gemma; McCollin, Tracy; Josefsen, Kjell D; Vourdachas, Anthony; Gill, Margaret E; Mesbahi, Ehsan; Frid, Chris L J

    2008-01-01

    A ballast water short-time high temperature heat treatment technique was applied on board a car-carrier during a voyage from Egypt to Belgium. Ballast water from three tanks was subjected for a few seconds to temperatures ranging from 55 degrees C to 80 degrees C. The water was heated using the vessel's heat exchanger steam and a second heat exchanger was used to pre-heat and cool down the water. The treatment was effective at causing mortality of bacteria, phytoplankton and zooplankton. The International Maritime Organization (IMO) standard was not agreed before this study was carried out, but comparing our results gives a broad indication that the IMO standard would have been met in some of the tests for the zooplankton, in all the tests for the phytoplankton; and probably on most occasions for the bacteria. Passing the water through the pump increased the kill rate but increasing the temperature above 55 degrees C did not improve the heat treatment's efficacy.

  20. Quantum mechanical force field for water with explicit electronic polarization.

    Science.gov (United States)

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  1. Some research aspects for irradiation treatment of the polluted waters in China

    International Nuclear Information System (INIS)

    Yang Jingtian; Yun Guichun; Ha Hongfei

    1988-01-01

    This paper is a review of some aspects of research work on radiation treatment of surface and industrial polluted waters in China. These studies include: radiation-oxidized decomposition of phenols, cyanides and pesticides etc., radiation decolourization of wastewater from dyeworks, radiation modification of the biodegradability of saponificated wastewater as well as radiation sterilization of surface water, hospital sewage sludge, industrial cooling-water and water flooding in oil field. (author)

  2. TREATMENT OF PRODUCED OIL AND GAS WATERS WITH SURFACTANT-MODIFIED ZEOLITE

    Energy Technology Data Exchange (ETDEWEB)

    Lynn E. Katz; R.S. Bowman; E.J. Sullivan

    2003-11-01

    Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. It is by some estimates the largest single waste stream in the country, aside from nonhazardous industrial wastes. Characteristics of produced water include high total dissolved solids content, dissolved organic constituents such as benzene and toluene, an oil and grease component, and chemicals added during the oil-production process. While most of the produced water is disposed via reinjection, some must be treated to remove organic constituents before the water is discharged. Current treatment options are successful in reducing the organic content; however, they cannot always meet the levels of current or proposed regulations for discharged water. Therefore, an efficient, cost-effective treatment technology is needed. Surfactant-modified zeolite (SMZ) has been used successfully to treat contaminated ground water for organic and inorganic constituents. In addition, the low cost of natural zeolites makes their use attractive in water-treatment applications. This report summarizes the work and results of this four-year project. We tested the effectiveness of surfactant-modified zeolite (SMZ) for removal of BTEX with batch and column experiments using waters with BTEX concentrations that are comparable to those of produced waters. The data from our experimental investigations showed that BTEX sorption to SMZ can be described by a linear isotherm model, and competitive effects between compounds were not significant. The SMZ can be readily regenerated using air stripping. We field-tested a prototype SMZ-based water treatment system at produced water treatment facilities and found that the SMZ successfully removes BTEX from produced waters as predicted by laboratory studies. When compared to other existing treatment technologies, the cost of the SMZ system is very competitive. Furthermore, the SMZ system is relatively compact, does not require the storage of

  3. Effect of post-slaughter vibration treatment on water holding in meat during its maturation

    International Nuclear Information System (INIS)

    Stasiak, D.M.; Dolatowski, Z.J.; Siudziak, A.; Latoch, A.

    2001-01-01

    Dissipation of ultrasonic wave energy may be accompanied by the changes in meat tissue structures; these changes affect the water holding capacity in meat during its maturing. Paper presents the results of study on water retention by homogenous beef in gravitation field of 1500 g and water holding capacity in meat under influence of external force 20 N and osmotic forces. Significant changes in meat properties connected with water holding capacity along the first 3 days after slaughter were observed. These changes were generated by meat treatment with ultrasonic field just after slaughter

  4. Cost effective water treatment program in Heavy Water Plant (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Prasada Rao, G.

    2002-01-01

    Water treatment technology is in a state of continuous evolution. The increasing urgency to conserve water and reduce pollution has in recent years produced an enormous demand for new chemical treatment programs and technologies. Heavy water plant (Manuguru) uses water as raw material (about 3000 m 3 /hr) and its treatment and management has benefited the plant in a significant way. It is a fact that if the water treatment is not proper, it can result in deposit formation and corrosion of metals, which can finally leads to production losses. Therefore, before selecting treatment program, complying w.r.t. quality requirements, safety and pollution aspects cost effectiveness shall be examined. The areas where significant benefits are derived, are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and in-house development of cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments has helped the plant in achieving zero discharge and indirectly increased cost reduction of final product (heavy water); the dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15-20 lakhs in a year beside other advantages; the change over of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs.1.4 crore a year besides other advantages; the change over to proprietary formulation to in-house formulation in cooling water treatment has resulted in a saving about Rs.11 lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored. (author)

  5. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  6. Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient

    Directory of Open Access Journals (Sweden)

    Peng Shang

    2012-12-01

    Full Text Available The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g, 1 g, 1.56 g and 1.96 g in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.

  7. Evaporation rate of water as a function of a magnetic field and field gradient.

    Science.gov (United States)

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-12-11

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.

  8. Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient

    Science.gov (United States)

    Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng

    2012-01-01

    The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air. PMID:23443127

  9. Industrial water pollution, water environment treatment, and health risks in China.

    Science.gov (United States)

    Wang, Qing; Yang, Zhiming

    2016-11-01

    The negative health effects of water pollution remain a major source of morbidity and mortality in China. The Chinese government is making great efforts to strengthen water environment treatment; however, no studies have evaluated the effects of water treatment on human health by water pollution in China. This study evaluated the association between water pollution and health outcomes, and determined the extent to which environmental regulations on water pollution may lead to health benefits. Data were extracted from the 2011 and 2013 China Health and Retirement Longitudinal Study (CHARLS). Random effects model and random effects Logit model were applied to study the relationship between health and water pollution, while a Mediator model was used to estimate the effects of environmental water treatment on health outcomes by the intensity of water pollution. Unsurprisingly, water pollution was negatively associated with health outcomes, and the common pollutants in industrial wastewater had differential impacts on health outcomes. The effects were stronger for low-income respondents. Water environment treatment led to improved health outcomes among Chinese people. Reduced water pollution mediated the associations between water environment treatment and health outcomes. The results of this study offer compelling evidence to support treatment of water pollution in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The Study of Environmental Pollution by the Waste of Drinking Water after the Treatment

    OpenAIRE

    , F. Hasani; , F. Sallaku; , N. Balaj; , S. Kadiri; , I. Lushi; , G. Hodolli

    2016-01-01

    In this study are presented the results of the radiation dose level of some radionuclide of waste during and after the treatment of drinking water, in the Water Treatment Plant - Shajkoc, Podujevo, Regional Water Company J.S.C.K.U.R."Pristina"- Kosovo. Samples were taken from the above mentioned locations and are treated in terms of physic-chemical in the Centre for Nuclear Applied Physics in Tirana. The Field measurements were carried out by the detector: Gamaspectrometer Gr-130; I...

  11. Radiation treatment of polluted water and wastewater

    International Nuclear Information System (INIS)

    2008-09-01

    Technical Committee meetings. Following the recommendations of scientists and consultants, the IAEA established a Coordinated Research Project on Remediation of Polluted Waters and Wastewater by Radiation Processing during the years 2002 to 2006, with the aim of establishing optimal treatment methodologies to treat drinking water and wastewater by using ionizing radiation from gamma rays and electron beam accelerators. This publication describes the most important results and achievements of the participating groups during the course of this Coordinated Research Project and will be of value for research groups working in the field of radiation technology for the treatment of aqueous effluents, and will serve as a basis for both pre-feasibility study and technology implementation

  12. The function of advanced treatment process in a drinking water treatment plant with organic matter-polluted source water.

    Science.gov (United States)

    Lin, Huirong; Zhang, Shuting; Zhang, Shenghua; Lin, Wenfang; Yu, Xin

    2017-04-01

    To understand the relationship between chemical and microbial treatment at each treatment step, as well as the relationship between microbial community structure in biofilms in biofilters and their ecological functions, a drinking water plant with severe organic matter-polluted source water was investigated. The bacterial community dynamics of two drinking water supply systems (traditional and advanced treatment processes) in this plant were studied from the source to the product water. Analysis by 454 pyrosequencing was conducted to characterize the bacterial diversity in each step of the treatment processes. The bacterial communities in these two treatment processes were highly diverse. Proteobacteria, which mainly consisted of beta-proteobacteria, was the dominant phylum. The two treatment processes used in the plant could effectively remove organic pollutants and microbial polution, especially the advanced treatment process. Significant differences in the detection of the major groups were observed in the product water samples in the treatment processes. The treatment processes, particularly the biological pretreatment and O 3 -biological activated carbon in the advanced treatment process, highly influenced the microbial community composition and the water quality. Some opportunistic pathogens were found in the water. Nitrogen-relative microorganisms found in the biofilm of filters may perform an important function on the microbial community composition and water quality improvement.

  13. Sustainable treatment of municipal waste water

    DEFF Research Database (Denmark)

    Hansen, Peter Augusto; Larsen, Henrik Fred

    The main goal of the EU FP6 NEPTUNE program is to develop new and improve existing waste water treatment technologies (WWTT) and sludge handling technologies for municipal waste water, in accordance with the concepts behind the EU Water Framework Directive. As part of this work, the project.......e. heavy metals, pharmaceuticals and endocrine disruptors) in the waste water. As a novel approach, the potential ecotoxicity and human toxicity impacts from a high number of micropollutants and the potential impacts from pathogens will be included. In total, more that 20 different waste water and sludge...... treatment technologies are to be assessed. This paper will present the first LCA results from running existing life cycle impact assessment (LCIA) methodology on some of the waste water treatment technologies. Keywords: Sustainability, LCA, micropollutants, waste water treatment technologies....

  14. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  15. Improvements in Thermal Performance of Mango Hot-water Treatment Equipments: Data Analysis, Mathematical Modelling and Numerical-computational Simulation

    Directory of Open Access Journals (Sweden)

    Elder M. Mendoza Orbegoso

    2017-06-01

    Full Text Available Mango is one of the most popular and best paid tropical fruits in worldwide markets, its exportation is regulated within a phytosanitary quality control for killing the “fruit fly”. Thus, mangoes must be subject to hot-water treatment process that involves their immersion in hot water over a period of time. In this work, field measurements, analytical and simulation studies are developed on available hot-water treatment equipment called “Original” that only complies with United States phytosanitary protocols. These approaches are made to characterize the fluid-dynamic and thermal behaviours that occur during the mangoes’ hot-water treatment process. Then, analytical model and Computational fluid dynamics simulations are developed for designing new hot-water treatment equipment called “Hybrid” that simultaneously meets with both United States and Japan phytosanitary certifications. Comparisons of analytical results with data field measurements demonstrate that “Hybrid” equipment offers a better fluid-dynamic and thermal performance than “Original” ones.

  16. Effect of pulsed electric field treatment on hot-boned muscles of different potential tenderness.

    Science.gov (United States)

    Suwandy, Via; Carne, Alan; van de Ven, Remy; Bekhit, Alaa El-Din A; Hopkins, David L

    2015-07-01

    In this study, the effect of pulsed electric field (PEF) treatment and ageing on the quality of beef M. longissimus lumborum (LL) and M. semimembranosus (SM) muscles was evaluated, including the tenderness, water loss and post-mortem proteolysis. Muscles were obtained from 12 steers (6 steers for each muscle), removed from the carcasses 4 hour postmortem and were treated with pulsed electric field within 2h. Six different pulsed electric field intensities (voltages of 5 and 10 kV × frequencies of 20, 50 and 90 Hz) plus a control were applied to each muscle to determine the optimum treatment conditions. Beef LL was found to get tougher with increasing treatment frequency whereas beef SM muscle was found to have up to 21.6% reduction in the shear force with pulsed electric field treatment. Post-mortem proteolysis showed an increase in both troponin and desmin degradation in beef LL treated with low intensity PEF treatment (20 Hz) compared to non-treated control samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Instability in an amorphous In–Ga–Zn–O field effect transistor upon water exposure

    International Nuclear Information System (INIS)

    Sharma, Bhupendra K; Ahn, Jong-Hyun

    2016-01-01

    The instability of an amorphous indium–gallium–zinc oxide (IGZO) field effect transistor is investigated upon water treatment. Electrical characteristics are measured before, immediately after and a few days after water treatment in ambient as well as in vacuum conditions. It is observed that after a few days of water exposure an IGZO field effect transistor (FET) shows relatively more stable behaviour as compared to before exposure. Transfer characteristics are found to shift negatively after immediate water exposure and in vacuum. More interestingly, after water exposure the off current is found to decrease by 1–2 orders of magnitude and remains stable even after 15 d of water exposure in ambient as well as in vacuum, whereas the on current more or less remains the same. An x-ray photoelectron spectroscopic study is carried out to investigate the qualitative and quantitative analysis of IGZO upon water exposure. The changes in the FET parameters are evaluated and attributed to the formation of excess oxygen vacancies and changes in the electronic structure of the IGZO bulk channel and at the IGZO/SiO 2 interface, which can further lead to the formation of subgap states. An attempt is made to distinguish which parameters of the FET are affected by the changes in the electronic structure of the IGZO bulk channel and at the IGZO/SiO 2 interface separately. (paper)

  18. Novel Americium Treatment Process for Surface Water and Dust Suppression Water

    International Nuclear Information System (INIS)

    Tiepel, E.W.; Pigeon, P.; Nesta, S.; Anderson, J.

    2006-01-01

    The Rocky Flats Environmental Technology Site (RFETS), a former nuclear weapons production plant, has been remediated under CERCLA and decommissioned to become a National Wildlife Refuge. The site conducted this cleanup effort under the Rocky Flats Cleanup Agreement (RFCA) that established limits for the discharge of surface and process waters from the site. At the end of 2004, while a number of process buildings were undergoing decommissioning, routine monitoring of a discharge pond (Pond A-4) containing approximately 28 million gallons of water was discovered to have been contaminated with a trace amount of Americium-241 (Am-241). While the amount of Am-241 in the pond waters was very low (0.5 - 0.7 pCi/l), it was above the established Colorado stream standard of 0.15 pCi/l for release to off site drainage waters. The rapid successful treatment of these waters to the regulatory limit was important to the site for two reasons. The first was that the pond was approaching its hold-up limit. Without rapid treatment and release of the Pond A-4 water, typical spring run-off would require water management actions to other drainages onsite or a mass shuttling of water for disposal. The second reason was that this type of contaminated water had not been treated to the stringent stream standard at Rocky Flats before. Technical challenges in treatment could translate to impacts on water and secondary waste management, and ultimately, cost impacts. All of the technical challenges and specific site criteria led to the conclusion that a different approach to the treatment of this problem was necessary and a crash treatability program to identify applicable treatment techniques was undertaken. The goal of this program was to develop treatment options that could be implemented very quickly and would result in the generation of no high volume secondary waste that would be costly to dispose. A novel chemical treatment system was developed and implemented at the RFETS to treat Am

  19. The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones

    DEFF Research Database (Denmark)

    Linderson, Maj-Lena; Iritz, Z.; Lindroth, A.

    2007-01-01

    The effect of water availability on stand-level productivity, transpiration, water use efficiency (WUE) and radiation use efficiency (RUE) is evaluated for different willow clones at stand level. The measurements were made during the growing season 2000 in a 3-year-old plantation in Scania......, southernmost Sweden. Six willow clones were included in the study: L78183, SW Rapp, SW Jorunn, SW Jorr, SW Tora and SW Loden. All clones were exposed to two water treatments: rain-fed, non-irrigated treatment and reduced water availability by reduced soil water recharge. Field measurements of stem sap...... low compared to other results. Generally, all clones, except for Jorunn, seem to be better off concerning biomass production, WUE and RUE than the reference clone. Jorr, Jorunn and Loden also seem to be able to cope with the reduced water availability with increase in the water use efficiency. Tora...

  20. Magnetic Field Effects on CaCO3 Precipitation Process in Hard Water

    Directory of Open Access Journals (Sweden)

    Nelson Saksono

    2010-10-01

    Full Text Available Magnetic treatment is applied as physical water treatment for scale prevention especially CaCO3, from hard water in piping equipment by reducing its hardness.Na2CO3 and CaCl2 solution sample was used in to investigate the magnetic fields influence on the formation of particle of CaCO3. By changing the strength of magnetic fields, exposure time and concentration of samples solution, this study presents quantitative results of total scale deposit, total precipitated CaCO3 and morphology of the deposit. This research was run by comparing magnetically and non-magnetically treated  samples. The results showed an increase of deposits formation rate and total number of precipitated CaCO3 of magnetically treated samples. The increase of concentration solution sample will also raised the deposit under magnetic  field. Microscope images showed a greater number but smaller size of CaCO3 deposits form in magnetically treated samples, and aggregation during the processes. X-ray diffraction (XRD analysis showed that magnetically samples were dominated by calcite. But, there was a significant decrease of calcite’s peak intensities from magnetized  samples that indicated the decrease of the amount of calcite and an increase of total amorphous of deposits. This result  showed that magnetization of hard water leaded to the decreasing of ion Ca2+ due to the increasing of total CaCO3 precipitation process.

  1. In-field radon measurement in water: a novel approach

    International Nuclear Information System (INIS)

    Talha, S.A.; Meijer, R.J. de; Lindsay, R.; Newman, R.T.; Maleka, P.P.; Hlatshwayo, I.N.

    2010-01-01

    This paper presents a novel approach of measuring radon in-water in the field by inserting a MEDUSA gamma-ray detector into a 210 L or 1000 L container. The experimental measurements include investigating the effect of ambient background gamma-rays on in-field radon measurement, calibrating the detector efficiency using several amounts of KCl salt dissolved in tap water, and measuring radon in borehole water. The results showed that there is fairly good agreement between the field and laboratory measurements of radon in water, based on measurements with Marinelli beakers on a HPGe detector. The MDA of the method is 0.5 Bq L -1 radon in-water. -- Research highlights: →Radon-in-water, large volume container, in-field measurements, MEDUSA gamma-ray detection system.

  2. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability

    OpenAIRE

    Adeleye, AS; Conway, JR; Garner, K; Huang, Y; Su, Y; Keller, AA

    2016-01-01

    © 2015 Elsevier B.V. The application of nanotechnology in drinking water treatment and pollution cleanup is promising, as demonstrated by a number of field-based (pilot and full scale) and bench scale studies. A number of reviews exist for these nanotechnology-based applications; but to better illustrate its importance and guide its development, a direct comparison between traditional treatment technologies and emerging approaches using nanotechnology is needed. In this review, the performanc...

  3. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Directory of Open Access Journals (Sweden)

    Ahmad Kayvani Fard

    2018-01-01

    Full Text Available Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling.

  4. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination

    Science.gov (United States)

    McKay, Gordon; Buekenhoudt, Anita; Motmans, Filip; Khraisheh, Marwan; Atieh, Muataz

    2018-01-01

    Inorganic membrane science and technology is an attractive field of membrane separation technology, which has been dominated by polymer membranes. Recently, the inorganic membrane has been undergoing rapid development and innovation. Inorganic membranes have the advantage of resisting harsh chemical cleaning, high temperature and wear resistance, high chemical stability, long lifetime, and autoclavable. All of these outstanding properties made inorganic membranes good candidates to be used for water treatment and desalination applications. This paper is a state of the art review on the synthesis, development, and application of different inorganic membranes for water and wastewater treatment. The inorganic membranes reviewed in this paper include liquid membranes, dynamic membranes, various ceramic membranes, carbon based membranes, silica membranes, and zeolite membranes. A brief description of the different synthesis routes for the development of inorganic membranes for application in water industry is given and each synthesis rout is critically reviewed and compared. Thereafter, the recent studies on different application of inorganic membrane and their properties for water treatment and desalination in literature are critically summarized. It was reported that inorganic membranes despite their high synthesis cost, showed very promising results with high flux, full salt rejection, and very low or no fouling. PMID:29304024

  5. Development and Validation of an Acid Mine Drainage Treatment Process for Source Water

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Ann [Battelle Memorial Institute, Columbus, OH (United States)

    2016-03-01

    Throughout Northern Appalachia and surrounding regions, hundreds of abandoned mine sites exist which frequently are the source of Acid Mine Drainage (AMD). AMD typically contains metal ions in solution with sulfate ions which have been leached from the mine. These large volumes of water, if treated to a minimum standard, may be of use in Hydraulic Fracturing (HF) or other industrial processes. This project’s focus is to evaluate an AMD water treatment technology for the purpose of providing treated AMD as an alternative source of water for HF operations. The HydroFlex™ technology allows the conversion of a previous environmental liability into an asset while reducing stress on potable water sources. The technology achieves greater than 95% water recovery, while removing sulfate to concentrations below 100 mg/L and common metals (e.g., iron and aluminum) below 1 mg/L. The project is intended to demonstrate the capability of the process to provide AMD as alternative source water for HF operations. The second budget period of the project has been completed during which Battelle conducted two individual test campaigns in the field. The first test campaign demonstrated the ability of the HydroFlex system to remove sulfate to levels below 100 mg/L, meeting the requirements indicated by industry stakeholders for use of the treated AMD as source water. The second test campaign consisted of a series of focused confirmatory tests aimed at gathering additional data to refine the economic projections for the process. Throughout the project, regular communications were held with a group of project stakeholders to ensure alignment of the project objectives with industry requirements. Finally, the process byproduct generated by the HydroFlex process was evaluated for the treatment of produced water against commercial treatment chemicals. It was found that the process byproduct achieved similar results for produced water treatment as the chemicals currently in use. Further

  6. Nanotechnology-based water treatment strategies.

    Science.gov (United States)

    Kumar, Sandeep; Ahlawat, Wandit; Bhanjana, Gaurav; Heydarifard, Solmaz; Nazhad, Mousa M; Dilbaghi, Neeraj

    2014-02-01

    The most important component for living beings on the earth is access to clean and safe drinking water. Globally, water scarcity is pervasive even in water-rich areas as immense pressure has been created by the burgeoning human population, industrialization, civilization, environmental changes and agricultural activities. The problem of access to safe water is inevitable and requires tremendous research to devise new, cheaper technologies for purification of water, while taking into account energy requirements and environmental impact. This review highlights nanotechnology-based water treatment technologies being developed and used to improve desalination of sea and brackish water, safe reuse of wastewater, disinfection and decontamination of water, i.e., biosorption and nanoadsorption for contaminant removal, nanophotocatalysis for chemical degradation of contaminants, nanosensors for contaminant detection, different membrane technologies including reverse osmosis, nanofiltration, ultrafiltration, electro-dialysis etc. This review also deals with the fate and transport of engineered nanomaterials in water and wastewater treatment systems along with the risks associated with nanomaterials.

  7. A control system based on field programmable gate array for papermaking sewage treatment

    International Nuclear Information System (INIS)

    Zhang, Zi Sheng; Xie, Chang; Xiong, Yan Qing; Liu, Zhi Qiang; Li, Qing

    2013-01-01

    A sewage treatment control system is designed to improve the efficiency of papermaking wastewater treatment system. The automation control system is based on Field Programmable Gate Array (FPGA), coded with Very-High-Speed Integrate Circuit Hardware Description Language (VHDL), compiled and simulated with Quartus. In order to ensure the stability of the data used in FPGA, the data is collected through temperature sensors, water level sensor and online PH measurement system. The automatic control system is more sensitive, and both the treatment efficiency and processing power are increased. This work provides a new method for sewage treatment control.

  8. Field manual for identifying and preserving high-water mark data

    Science.gov (United States)

    Feaster, Toby D.; Koenig, Todd A.

    2017-09-26

    This field manual provides general guidance for identifying and collecting high-water marks and is meant to be used by field personnel as a quick reference. The field manual describes purposes for collecting and documenting high-water marks along with the most common types of high-water marks. The manual provides a list of suggested field equipment, describes rules of thumb and best practices for finding high-water marks, and describes the importance of evaluating each high-water mark and assigning a numeric uncertainty value as part of the flagging process. The manual also includes an appendix of photographs of a variety of high-water marks obtained from various U.S. Geological Survey field investigations along with general comments about the logic for the assigned uncertainty values.

  9. Structure of the floating water bridge and water in an electric field.

    Science.gov (United States)

    Skinner, Lawrie B; Benmore, Chris J; Shyam, Badri; Weber, J K R; Parise, John B

    2012-10-09

    The floating water bridge phenomenon is a freestanding rope-shaped connection of pure liquid water, formed under the influence of a high potential difference (approximately 15 kV). Several recent spectroscopic, optical, and neutron scattering studies have suggested that the origin of the bridge is associated with the formation of anisotropic chains of water molecules in the liquid. In this work, high energy X-ray diffraction experiments have been performed on a series of floating water bridges as a function of applied voltage, bridge length, and position within the bridge. The two-dimensional X-ray scattering data showed no direction-dependence, indicating that the bulk water molecules do not exhibit any significant preferred orientation along the electric field. The only structural changes observed were those due to heating, and these effects were found to be the same as for bulk water. These X-ray scattering measurements are supported by molecular dynamics (MD) simulations which were performed under electric fields of 10(6) V/m and 10(9) V/m. Directional structure factor calculations were made from these simulations parallel and perpendicular to the E-field. The 10(6) V/m model showed no significant directional-dependence (anisotropy) in the structure factors. The 10(9) V/m model however, contained molecules aligned by the E-field, and had significant structural anisotropy.

  10. Modelling soil water dynamics and crop water uptake at the field level

    NARCIS (Netherlands)

    Kabat, P.; Feddes, R.A.

    1995-01-01

    Parametrization approaches to model soil water dynamics and crop water uptake at field level were analysed. Averaging and numerical difficulties in applying numerical soil water flow models to heterogeneous soils are highlighted. Simplified parametrization approaches to the soil water flow, such as

  11. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  12. A new approach for water treatment

    CERN Document Server

    Principe, R

    1999-01-01

    A quantity of up to 4000 m3/h of water is used at CERN for cooling purposes: experiments, magnets and radio frequency cavities are refrigerated by closed circuits filled with deionized water; other utilities, such as air-conditioning, use chilled/hot water, also in closed circuits. All these methods all employ a cold source, the primary supply of water, coming from the cooling towers. About 500 kCHF are spent every year on water treatment in order to keep the water within these networks in operational conditions. In the line of further rationalization of resources, the next generation of contracts with the water treatment industry will aim for improved performance and better monitoring of quality related parameters in this context. The author will provide a concise report based upon an examination of the state of the installations and of the philosophy followed up until now for water treatment. Furthermore, he/she will propose a new approach from both a technical and contractual point of view, in preparation ...

  13. Pre-sowing static magnetic field treatment for improving water and radiation use efficiency in chickpea (Cicer arietinum L.) under soil moisture stress.

    Science.gov (United States)

    Mridha, Nilimesh; Chattaraj, Sudipta; Chakraborty, Debashis; Anand, Anjali; Aggarwal, Pramila; Nagarajan, Shantha

    2016-09-01

    Soil moisture stress during pod filling is a major constraint in production of chickpea (Cicer arietinum L.), a fundamentally dry land crop. We investigated effect of pre-sowing seed priming with static magnetic field (SMF) on alleviation of stress through improvement in radiation and water use efficiencies. Experiments were conducted under greenhouse and open field conditions with desi and kabuli genotypes. Seeds exposed to SMF (strength: 100 mT, exposure: 1 h) led to increase in root volume and surface area by 70% and 65%, respectively. This enabled the crop to utilize 60% higher moisture during the active growth period (78-118 days after sowing), when soil moisture became limiting. Both genotypes from treated seeds had better water utilization, biomass, and radiation use efficiencies (17%, 40%, and 26% over control). Seed pre-treatment with SMF could, therefore, be a viable option for chickpea to alleviate soil moisture stress in arid and semi-arid regions, helping in augmenting its production. It could be a viable option to improve growth and yield of chickpea under deficit soil moisture condition, as the selection and breeding program takes a decade before a tolerant variety is released. Bioelectromagnetics. 37:400-408, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Secondary formation of disinfection by-products by UV treatment of swimming pool water

    DEFF Research Database (Denmark)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla Marie Speht; Andersen, Henrik Rasmus

    2015-01-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile...

  15. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    OpenAIRE

    Tervahauta, Taina; Bryant, Isaac; Leal, Lucía; Buisman, Cees; Zeeman, Grietje

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP), UASB reactor performance, chemical oxygen demand (COD) mass balance and methanization. Grey water sludge treatment with black water increased...

  16. Water Treatment Technology - Wells.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  17. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  18. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    International Nuclear Information System (INIS)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao; Song, Yenan; Li, Zhenhua; Zhao, Pei; Shang, Xuefu

    2015-01-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm 2 , and field enhancement factor of ∼1.3 × 10 4 . The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport

  19. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Song, Yenan; Li, Zhenhua; Zhao, Pei, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027 (China); Shang, Xuefu [Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  20. Evaluation of different treatment processes with respect to mutagenic activity in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Kool, H J; Hrubec, J; van Kreijl, C F; Piet, G J

    1985-12-01

    Treatment processes which are applied in The Netherlands during the preparation of drinking water have been evaluated with regard to introduction and removal of organic mutagens as well as halogenated organics. It appeared that the most efficient processes in reducing mutagenic activity were activated carbon filtration and artificial dune recharge. In general these processes were also the most efficient in removing halogenated organics. Using low doses of chlorine dioxide (less than 1 mg C1O2/l) for safety disinfection of drinking water, no change or substantial less mutagenic activity than by chlorination (1 mg Cl/l) was found. This counts too for the formation of halogenated organics. Transport chlorination of stored river Meuse water was able to introduce or activate mutagenic nitro organics which have not been found previously. Ozone treatment under field conditions showed mostly a tendency to decrease the activity of organic mutagens. It was also shown that dependent on the water quality and treatment conditions a slight increase of mutagenic activity occurred, but this activity would be reduced by increasing the ozone dose. It seems possible to optimize the ozone treatment conditions regarding the level of ozone dose and the contact time to avoid an increase of mutagenic activity. Furthermore it was shown that when a mutagenic raw water source was used a proper combination of treatment processes is able to produce drinking water in which no mutagenic activity could be detected under the test conditions. Finally it is stated that before far-reaching decisions with respect to use mutagenicity data for a selection of water sources or treatment processes will be made, more information on the relation mutagenic activity from drinking water and effects on human health should become available.

  1. Evaluating Nanoparticle Breakthrough during Drinking Water Treatment

    Science.gov (United States)

    Chalew, Talia E. Abbott; Ajmani, Gaurav S.; Huang, Haiou

    2013-01-01

    Background: Use of engineered nanoparticles (NPs) in consumer products is resulting in NPs in drinking water sources. Subsequent NP breakthrough into treated drinking water is a potential exposure route and human health threat. Objectives: In this study we investigated the breakthrough of common NPs—silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO)—into finished drinking water following conventional and advanced treatment. Methods: NPs were spiked into five experimental waters: groundwater, surface water, synthetic freshwater, synthetic freshwater containing natural organic matter, and tertiary wastewater effluent. Bench-scale coagulation/flocculation/sedimentation simulated conventional treatment, and microfiltration (MF) and ultrafiltration (UF) simulated advanced treatment. We monitored breakthrough of NPs into treated water by turbidity removal and inductively coupled plasma–mass spectrometry (ICP-MS). Results: Conventional treatment resulted in 2–20%, 3–8%, and 48–99% of Ag, TiO2, and ZnO NPs, respectively, or their dissolved ions remaining in finished water. Breakthrough following MF was 1–45% for Ag, 0–44% for TiO2, and 36–83% for ZnO. With UF, NP breakthrough was 0–2%, 0–4%, and 2–96% for Ag, TiO2, and ZnO, respectively. Variability was dependent on NP stability, with less breakthrough of aggregated NPs compared with stable NPs and dissolved NP ions. Conclusions: Although a majority of aggregated or stable NPs were removed by simulated conventional and advanced treatment, NP metals were detectable in finished water. As environmental NP concentrations increase, we need to consider NPs as emerging drinking water contaminants and determine appropriate drinking water treatment processes to fully remove NPs in order to reduce their potential harmful health outcomes. Citation: Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. 2013. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121

  2. Nuclear techniques to evaluate the water use of field crops irrigated in different stages of their cycles

    International Nuclear Information System (INIS)

    Libardi, P.L.; Moraes, S.O.; Saad, M.A.; Jong Van Lier, Q.; Vieira, O.; Luis Tuon, R.

    1995-01-01

    The search for soil - water management systems that rationalize the water use of field crops should always be emphasized. The present coordinated research programme of the joint division FAO/ AEA has the objective to contribute to a better understanding of this subject by improving the use efficiency of water resources in irrigated agriculture. This project is a contribution to this programme and consisted in the identification of specified development stages of bean ( phaseolus vulgaris, L ) and corn (Zea mays, L ) crops in which plants are less sensitive to water deficit. Experiments were carried out in a tropical soil of agricultural importance in a traditional irrigation field site of the state of Sao Paulo, Brazil. Neutron probe tensiometers were used to determine the soil water balance in different treatments. 3 tabs, 16 refs, (Author)

  3. Evaluation of Water Treatment Problems: Case Study of Maiduguri Water Treatment Plant (MWTP and Maiduguri Environs

    Directory of Open Access Journals (Sweden)

    M. N. Idris

    2017-10-01

    Full Text Available Water remains the most useful universal solvent to human being and other animals, because of its derivative importance. However, effort to improve on raw water treatment would continue to be a subject of concern, because the process procedures are been violated or not properly upheld. This study was carried out in order to identify peculiar problems associate with water treatment at the Maiduguri Water Treatment Plant (MWTP. This research study was based on prompt time-schedules and plant site-visits, interviewed questions were made and accessing the technology adopted in the process stages. Analytical data were obtained through the use of sampling bottles, camera, record sheets and other necessary laboratory equipment. The analysis showed that treated water contained excess chlorine and aluminum with 1.10mg/l and 0.68mg/l respectively. From this study, the following are the root causes: poor facility lay out, poor organizational and functional structures, wear of pump impellers and surface deterioration in the transmission line, lack of calibration test, constant head system not operation properly, lack of jar test conduction, improper maintenance of filter system, and the use of chemical coagulant. Inferences were made at the end of the research to enhance process efficiency, healthier and more economical treatment MWTP.

  4. Water Bridging Dynamics of Polymerase Chain Reaction in the Gauge Theory Paradigm of Quantum Fields

    Directory of Open Access Journals (Sweden)

    L. Montagnier

    2017-05-01

    Full Text Available We discuss the role of water bridging the DNA-enzyme interaction by resorting to recent results showing that London dispersion forces between delocalized electrons of base pairs of DNA are responsible for the formation of dipole modes that can be recognized by Taq polymerase. We describe the dynamic origin of the high efficiency and precise targeting of Taq activity in PCR. The spatiotemporal distribution of interaction couplings, frequencies, amplitudes, and phase modulations comprise a pattern of fields which constitutes the electromagnetic image of DNA in the surrounding water, which is what the polymerase enzyme actually recognizes in the DNA water environment. The experimental realization of PCR amplification, achieved through replacement of the DNA template by the treatment of pure water with electromagnetic signals recorded from viral and bacterial DNA solutions, is found consistent with the gauge theory paradigm of quantum fields.

  5. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    Directory of Open Access Journals (Sweden)

    Taina Tervahauta

    2014-08-01

    Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.

  6. Peracids in water treatment:a critical review

    OpenAIRE

    Luukkonen, T. (Tero); Pehkonen, S. O. (Simo O.)

    2017-01-01

    Abstract Peracids have gained interest in the water treatment over the last few decades. Peracetic acid (CH₃CO₃H) has already become an accepted alternative disinfectant in wastewater disinfection whereas performic acid (CHO₃H) has been studied much less, although it is also already commercially available. Additionally, peracids have been studied for drinking water disinfection, oxidation of aqueous (micro)pollutants, sludge treatment, and ballast water treatment, to name just a few exampl...

  7. Waste Water Treatment Unit

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    A wastewater treatment plant to treat both the sanitary and industrial effluent originated from process, utilities and off site units of the refinery is described. The purpose is to obtain at the end of the treatment plant, a water quality that is in compliance with contractual requirements and relevant environmental regulations. first treatment (pretreatment). Primary de-oiling, Equalization, Neutralization, Secondary de-oiling. Second treatment (Biological), The mechanism of BOD removal, Biological flocculation, Nutrient requirements, Nitrification, De-nitrification, Effect of temperature, Effect of ph, Toxicity

  8. Apparatus for ground water chemistry investigations in field caissons

    International Nuclear Information System (INIS)

    Cokal, E.J.; Stallings, E.; Walker, R.; Nyhan, J.W.; Polzer, W.L.; Essington, E.H.

    1985-01-01

    Los Alamos is currently in its second season of ground water chemistry and hydrology experimentation in a field facility that incorporates clusters of six, 3-meter-diameter by 6-meter-deep, soil-filled caissons and required ancillaries. Initial experience gained during the 1983 field season indicated the need for further development of the technology of this type of experimentation supporting hydrologic waste management research. Uniform field application of water/matrix solutions to the caisson, matrix and tracer solution blending/storage, and devices for ground water sampling are discussed

  9. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    Science.gov (United States)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  10. Field trials show the fertilizer value of nitrogen in irrigation water

    Directory of Open Access Journals (Sweden)

    Mike Cahn

    2017-04-01

    Full Text Available Increased regulatory activity designed to protect groundwater from degradation by nitrate-nitrogen (NO3-N is focusing attention on the efficiency of agricultural use of nitrogen (N. One area drawing scrutiny is the way in which growers consider the NO3-N concentration of irrigation water when determining N fertilizer rates. Four drip-irrigated field studies were conducted in the Salinas Valley evaluating the impact of irrigation water NO3-N concentration and irrigation efficiency on the N uptake efficiency of lettuce and broccoli crops. Irrigation with water NO3-N concentrations from 2 to 45 milligrams per liter were compared with periodic fertigation of N fertilizer. The effect of irrigation efficiency was determined by comparing an efficient (110% to 120% of crop evapotranspiration, ETc and an inefficient (160% to 200% of ETc irrigation treatment. Across these trials, NO3-N from irrigation water was at least as efficiently used as fertilizer N; the uptake efficiency of irrigation water NO3-N averaged approximately 80%, and it was not affected by NO3-N concentration or irrigation efficiency.

  11. Waste water treatment in surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Navasardyants, M A; Esipov, V Z; Ryzhkov, Yu A

    1981-01-01

    This paper evaluates problems associated with waste water from coal surface mines of the Kemerovougol' association in the Kuzbass. Waste water treatment in the Kuzbass is of major importance as the region is supplied with water from only one river, the Tom river. Water influx to Kemerovougol' surface mines in a year amounts to 136 million m/sup 3/. The water is used during technological processes, for fire fighting, and spraying to prevent dusting; the rest, about 82.1 million m/sup 3/, is discharged into surface waters. Of this amount, 25.1 million m/sup 3/ is heavily polluted water, 46.6 million m3 are polluted but within limits, and 10.4 million m/sup 3/ are characterized as relatively clean. Waste water is polluted with: suspended matters, oils and oil products, nitrates, nitrides and chlorides. Suspended matter content sometimes reaches 4,000 and 5,000 mg/l, and oil product content in water amounts to 2.17 mg/l. Water treatment in surface mines is two-staged: sumps and sedimentation tanks are used. Water with suspended matter content of 50 to 100 mg/l in winter and summer, and 200 to 250 mg/l in spring and autumn is reduced in sumps to 25 to 30 mg/l in summer and winter and to 40 to 50 mg/l in autumn and spring. During the first stage water treatment efficiency ranges from 50 to 80%. During the second stage water is collected in sedimentation tanks. It is noted that so-called secondary pollution is one of the causes of the relatively high level of suspended matter in discharged water. Water discharged from sedimentation tanks carries clay and loam particles from the bottom and walls of water tanks and channels.

  12. The effects of high-Ca hardness water treatment for secondary cooling water in HANARO

    International Nuclear Information System (INIS)

    Kang, T. J.; Park, Y. C.; Hwang, S. R.; Lim, I. C.; Choi, H. Y.

    2003-01-01

    Water-quality control of the second cooling system in HANARO has been altered from low Ca-hardness treatment to high Ca-hardness treatment since March, 2001. High Ca-hardness water treatment in HANARO is to maintain the calcium hardness around 12 by minimizing the blowdown of secondary cooling water. This paper describes the effect of cost reduction after change of water-quility treatment method. The result shows that the cost of the water could be reduced by 25% using the pond water in KAERI. The amount and cost for the chemical agent could be reduced by 40% and 10% respectively

  13. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  14. Water quality and treatment of river bank filtrate

    Directory of Open Access Journals (Sweden)

    W. W. J. M. de Vet

    2010-06-01

    Full Text Available In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the river bank infiltrate but also by water percolating through covering layers. In the polder areas, these top layers consist of peat and deposits from river sediments and sea intrusions.

    This paper discusses the origin and fate of macro components in river bank filtrate, based on extensive full-scale measurements in well fields and treatment systems of the Drinking Water Company Oasen in the Netherlands. First, it clarifies and illustrates redox reactions and the mixing of river bank filtrate and PW as the dominant processes determining the raw water quality for drinking water production. Next, full-scale results are elaborated on to evaluate trickling filtration as an efficient and proven one-step process to remove methane, iron, ammonium and manganese. The interaction of methane and manganese removal with nitrification in these systems is further analyzed. Methane is mostly stripped during trickling filtration and its removal hardly interferes with nitrification. Under specific conditions, microbial manganese removal may play a dominant role.

  15. Electrocoagulation in Water Treatment

    Science.gov (United States)

    Liu, Huijuan; Zhao, Xu; Qu, Jiuhui

    Electrocoagulation (EC) is an electrochemical method of treating polluted water where sacrificial anodes corrode to release active coagulant precursors (usually aluminum or iron cations) into solution. At the cathode, gas evolves (usually as hydrogen bubbles) accompanying electrolytic reactions. EC needs simple equipments and is designable for virtually any size. It is cost effective and easily operable. Specially, the recent technical improvements combined with a growing need for small-scale water treatment facilities have led to a revaluation of EC. In this chapter, the basic principle of EC was introduced first. Following that, reactions at the electrodes and electrode assignment were reviewed; electrode passivation process and activation method were presented; comparison between electrocoagulation and chemical coagulation was performed; typical design of the EC reactors was also described; and factors affecting electrocoagulation including current density, effect of conductivity, temperature, and pH were introduced in details. Finally, application of EC in water treatment was given in details.

  16. Performance and Acceptance of Novel Silver-Impregnated Ceramic Cubes for Drinking Water Treatment in Two Field Sites: Limpopo Province, South Africa and Dodoma Region, Tanzania

    Directory of Open Access Journals (Sweden)

    David M. Kahler

    2016-03-01

    Full Text Available Diarrheal disease and environmental enteropathy are serious public health concerns in low-income countries. In an effort to reduce enteric infection, researchers at the University of Virginia developed a new point-of-use (POU water treatment technology composed of silver-impregnated porous ceramic media. The ceramic is placed in a 15 L plastic container of water in the evening and the water is ready to drink in the morning. The purpose of this study was to assess field performance and local acceptance of technology in two communities in Limpopo Province, South Africa, and one community in Dodoma Region, Tanzania. Performance was determined by coliform testing of treated water. Acceptance was determined using data from 150 household surveys and a nine-day structured observational study at a local primary school. At the primary school, 100% of treated water samples had no detectable levels of total coliform bacteria (TCB in buckets filled by researchers. For all treated school buckets, 74% of samples achieved less than or equal to 1 CFU/100 mL and 3.2 average log reduction of TCB. Laboratory experiments with highly contaminated water diluted to lower turbidity achieved 4.2 average log reduction of TCB. Turbid water (approximately 10 NTU only achieved 1.1 average log reduction of TCB; turbidity and organic material may have interfered with disinfection. The Tanzania primary school (deep groundwater source had less turbid water and achieved 1.4 average log reduction of TCB; however, it did have high chloride levels that may have interfered with silver disinfection. The surveys revealed that the majority of people retrieve, store, and dispense water in ways that are compatible with the new technology. The willingness-to-pay study revealed potential customers would be willing to pay for the technology without subsidies. The results of this study indicate that this novel silver-impregnated ceramic POU water treatment technology is both effective and

  17. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1992-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigate water treatment process for nuclear reactor utilization. Analysis of output water chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerates to obtain the optimum quantity of pure water which reached to 15 cubic meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30 %. output water chemistry agree with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined.5 fig., 3 tab

  18. Grace buys aquatic quimica to boost water treatment stake

    International Nuclear Information System (INIS)

    Hunter, D.

    1993-01-01

    How W.R. Grace (Boca Raton, FL) president and newly appointed CEO J.P. Bolduc plans to expand Grace's core businesses following his drastic portfolio pruning during the past 18 months is a key question for Grace watchers. Grace's acquisition of $70-million/year water treatment firm Aquatec Quimica (Sao Paulo) is one indicator. Grace's $300-million/year Dearborn water treatment business is currently a weak number three [in the world market], and we want to be number one or number two, nothing less, Bolduc insists. The Aquatc buy meets his criterion of a synergistic and strategic acquisition with which he plans to expand the business, backed by more focused R ampersand D. Disposal last month of Homco oil field services operation, for $98.5 million, takes Bolduc toward his $500-million target for the year for asset sales. These totaled $1.1 billion at the end of 1992. The final tally will be more than the $1.5-billion target previously stated, Bolduc says, due to higher realizations on certain sales and additions to the list, including Grace Culinary and Colowyo Coal

  19. Characterization of field-measured soil-water properties

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Reichardt, K.; Wierenga, P.J.

    1983-01-01

    As part of a five-year co-ordinated research programme of the International Atomic Energy Agency, the Use of Radiation and Isotope Techniques in Studies of Soil-Water Regimes, soil physicists examined soil-water properties of one or two field sites in 11 different countries (Brazil, Belgium, Cyprus, Chile, Israel, Japan, Madagascar, Nigeria, Senegal, Syria and Thailand). The results indicate that the redistribution method yields values of soil-water properties that have a large degree of uncertainty, and that this uncertainty is not necessarily related to the kind of soil being analysed. Regardless of the fundamental cause of this uncertainty (experimental and computational errors versus natural soil variability), the conclusion is that further developments of field technology depend upon stochastic rather than deterministic concepts

  20. Public health aspects of waste-water treatment

    International Nuclear Information System (INIS)

    Lund, E.

    1975-01-01

    Among the bacteria, viruses and parasites which may be found in waste-water and polluted waters, those that are pathogenic to man are briefly described. The efficiency of different conventional waste-water treatments in removing the pathogens is reviewed, as well as additional factors of importance for the presence of micro-organisms in recipient waters. It is concluded that at present for treated waters no conventional treatment results in an effluent free from pathogens if they are present in the original waste-water. This is also true for sludges apart from pasteurization. The importance to public health of the presence of pathogens in recipient waters is briefly discussed. (author)

  1. The effect of water availability on stand-level productivity, transpiration, water use efficiency and radiation use efficiency of field-grown willow clones

    International Nuclear Information System (INIS)

    Linderson, Maj-Lena; Iritz, Zinaida; Lindroth, Anders

    2007-01-01

    The effect of water availability on stand-level productivity, transpiration, water use efficiency (WUE) and radiation use efficiency (RUE) is evaluated for different willow clones at stand level. The measurements were made during the growing season 2000 in a 3-year-old plantation in Scania, southernmost Sweden. Six willow clones were included in the study: L78183, SW Rapp, SW Jorunn, SW Jorr, SW Tora and SW Loden. All clones were exposed to two water treatments: rain-fed, non-irrigated treatment and reduced water availability by reduced soil water recharge. Field measurements of stem sap-flow and biometry are up-scaled to stand transpiration and stand dry substance production and used to assess WUE. RUE is estimated from the ratio between the stand dry substance production and the accumulated absorbed photosynthetic active radiation over the growing season. The total stand transpiration rate for the 5 months lies between 100 and 325 mm, which is fairly low compared to the Penman-Monteith transpiration for willow, reaching 400-450 mm for the same period. Mean WUE of all clones and treatments is 5.3 g/kg, which is high compared to earlier studies, while average RUE is 0.31 g/mol, which is slightly low compared to other results. Generally, all clones, except for Jorunn, seem to be better off concerning biomass production, WUE and RUE than the reference clone. Jorr, Jorunn and Loden also seem to be able to cope with the reduced water availability with increase in the water use efficiency. Tora performs significantly better than the other clones concerning both growth and efficiency in light and water use, but the effect of the dry treatment on stem growth shows sensitivity to water availability. The reduced stem growth could be due to a change in allocation patterns

  2. Field investigation of arsenic in ceramic pot filter-treated drinking water.

    Science.gov (United States)

    Archer, A R; Elmore, A C; Bell, E; Rozycki, C

    2011-01-01

    Ceramic pot filters (CPFs) is one of several household water treatment technologies that is used to treat drinking water in developing areas. The filters have the advantage of being able to be manufactured using primarily locally available materials and local labor. However, naturally-occurring arsenic present in the clay used to make the filters has the potential to contaminate the water in excess of the World Health Organization drinking water standard of 0.01 mg/L. A manufacturing facility in Guatemala routinely rinses filters to reduce arsenic concentrations prior to distribution to consumers. A systemic study was performed to evaluate the change in arsenic concentrations with increasing volumes of rinse water. Arsenic field kit results were compared to standard method laboratory results, and dissolved versus suspended arsenic concentrations in CPF-treated water were evaluated. The results of the study suggest that rinsing is an effective means of mitigating arsenic leached from the filters, and that even in the absence of a formal rinsing program, routine consumer use may result in the rapid decline of arsenic concentrations. More importantly, the results indicate that filter manufacturers should give strong consideration to implementing an arsenic testing program.

  3. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    King, V.

    2000-01-01

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  4. Water treatments of the future

    International Nuclear Information System (INIS)

    Poon, John; Moore Kenneth

    2011-01-01

    This article discusses and reviews nine water technologies. They are solar desalination, synthetic aquaporin membranes, microbial fuel cell and desalination, forward osmosis, resource recovery and brine managment, 'Smart' water grids, micropollutant treatment, the Cities of the Future program and high retention membrane bioreactors.

  5. The micro-electrolysis technique in waste water treatment

    International Nuclear Information System (INIS)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang

    1997-01-01

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs

  6. The micro-electrolysis technique in waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jiti Zhou; Weihen Yang; Fenglin Yang; Xuemin Xiang; Yulu Wang [Dalian Univ. of Technology, Dalian (China)

    1997-12-31

    The micro-electrolysis is one of the efficient methods to treat some kinds of waste water. The experiments have shown its high efficiency in sewage treatment and some kinds of industrial waste water. It is suitable for pre-treatment of high concentrated waste water and deep treatment of waste water for reuse purpose. The disadvantage of micro-electrolysis is its high energy consumption in case of high electrolyte concentration. (author) 2 figs., 11 tabs., 2 refs.

  7. Pollution of water sources and removal of pollutants by advanced drinking-water treatment in China.

    Science.gov (United States)

    Wang, L; Wang, B

    2000-01-01

    The pollution of water resources and drinking water sources in China is described in this paper with basic data. About 90% of surface waters and over 60% of drinking water sources in urban areas have been polluted to different extents. The main pollutants present in drinking water sources are organic substances, ammonia nitrogen, phenols, pesticides and pathogenic micro-organisms, some of which cannot be removed effectively by the traditional water treatment processes like coagulation, sedimentation, filtration and chlorination, and the product water usually does not meet Chinese national drinking water standards, when polluted source water is treated. In some drinking-water plants in China, advanced treatment processes including activated carbon filtration and adsorption, ozonation, biological activated carbon and membrane separation have been employed for further treatment of the filtrate from a traditional treatment system producing unqualified drinking water, to make final product water meet the WHO guidelines and some developed countries' standards, as well as the Chinese national standards for drinking water. Some case studies of advanced water treatment plants are described in this paper as well.

  8. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1993-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigates water treatment process for nuclear reactor utilization. Analysis of outwater chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerants to obtain the optimum quantity of pure water which reached to 15 cubic-meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30%. Output water chemistry agrees with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined

  9. Development of a fast-water field guide

    International Nuclear Information System (INIS)

    Hansen, K.A.

    2001-01-01

    There are several manuals for oil spill response, but few have information on fast-water conditions. Between 1992 and 1997, approximately 58 per cent of all the oil spilled by volume in the United States happened in waterways with currents exceeding one knot, and the Coast Guard recognized the absence of standard terminology that could be used for fast-water responses. For that reason, an initiative was undertaken to create a document that addresses only fast-water issues. The resulting field guide can be used for training or responding to spills in fast-water. The user must rely on other manuals for issues on toxicity and shoreline cleanup as well as local contingency and site safety plans. The fast-water guide allows on-scene commanders and area supervisors the ability to define techniques and terminology for the responders in the field. It is particularly useful for Coast Guard Marine Safety Units when working with Coast Guard operational units during an emergency response. The current version of the guide that is under review by the working group contains 9 chapters and 9 appendices. The guide includes a decision-matrix that identifies various fat-water scenarios and provides recommended strategies. It then links to other sections of the document that contain details about the necessary equipment configurations. Photographs are provided to reinforce the concepts. The guide includes a checklist of the issues that must be addressed in any spill, such as weather and nature of the spill with some fast water issues added. Links to appropriate Internet sites are also included in the guide. Information within the guide can be condensed to one sheet for use in the field. 9 refs., 4 tabs., 11 figs

  10. Treatment of water closet flush water for recycle and reuse

    Energy Technology Data Exchange (ETDEWEB)

    Parker, C.E.

    1985-01-01

    Results from the operation of a 37.8 m/sup 3//d extended aeration and sand filtration system in the closed-loop treatment of water closet flush water are presented. The system has operated for four and one-half years at 95 percent recycle. During this period over 30,000 m/sup 3/ of flush water was treated and reused. Water inputs into the recycle system resulted from liquid human wastes plus wastage form potable water uses. Wasted potable water inputs were from wash basins, water fountains and custodial services. Operation of both the biological treatment unit and the pressure sand filter followed acceptable conventional practice. Variations in nitrogen (ammonia, nitrite and nitrate), pH and alkalinity that were observed could be accounted for through fundamental biological, chemical and physical relationships. The pH throughout the entire recycle system varied between 5.5 and 8.4. Recycled water pH rose from a preflush pH of approximately 7.0 to a pH of 8.4 immediately after flushing. The biological unit lowered the pH and functioned between pH values of 5.5 and 7.0. A slight rise in pH between the biological unit (through storage and filtration) and water closets was observed. The predominate biomass in the biological unit was fungi. Biological solids were threadlike; however, they readily separated by gravity settling. Wastage of biological solids from the biological unit in the recycle-reuse system was the same experienced for a comparable biological unit used to treat water closet wastewater that was not recycled. Results from this study have conclusively demonstrated on a full-scale basis the acceptability of using biological oxidation and sand filtration as a treatment train in the reuse of water closet wastewater with a recycle ratio of 20.

  11. Discharge and Treatment of Waste Water in Denmark

    DEFF Research Database (Denmark)

    Larsen, Torben

    1990-01-01

    This paper describes the waste water treatment situation in the area of Esbjerg. This example was chosen because the situation in Esbjerg is typical of that of most towns in Denmark, and because Esbjerg is closest to the British situation with respect to the receiving water. Esbjerg has...... a population of 70.000 inhabitans, and waste water treatment takes place in two treatment plants. These plants are now being extended to perform tertiary treatment, to fulfil the new Danish requirements. From 1992, the maximum average concentrations allowed for municipal waste water discharges to receiving...... waters will be; 15 mg/1 for BOD5, 8 mg/1 for total nitrogen, and 1.5 mg/1 for total phosphorus. These general requirements cover all types of receiving waters, but regional authorities have, in a number of cases, fixed lower values for sensitive areas....

  12. Waste Water Treatment And Data Book Of Method Of Water Quality Analysis

    International Nuclear Information System (INIS)

    1999-03-01

    This book indicates the method of water quality analysis and waste water treatment with collecting water quality data of advanced country and WHO, which introduces poisonous substance in industrial waste water such as heavy metal, ammonia, chlorine ion, PCB, chloroform, residual chlorine and manganese, reports about influence of those materials on human health, lists on method of analysis the poisonous substance, research way like working order and precautions on treatment and method of chemical process and use.

  13. Soil treatment technologies: Comparison of field experiences

    International Nuclear Information System (INIS)

    Hodges, H.I.; Jackson, D.W.; Kline, K.

    1992-01-01

    A number of on-site soil treatment technologies are available for closure of oil-field waste pits, leaking underground storage tank (LUST) sites, and general hydrocarbon contamination. This paper will contrast Separation Systems Consultants, Inc.'s (SSCI's) field experiences with the following soil restoration techniques: (1) Land Treatment using indigenous microbes; (2) Land Farming using commercial microbes; (3) Low Temperature Thermal Treatment; (4) Solidification. The technologies will be contrasted in terms of regulatory constraints and requirements, key set-up and maintenance consideration, selection factors. Included in the regulatory contrast is the authors' perception of regulatory attitudes toward the techniques. Because this paper is based on actual field experience and projects, the practical aspects of making the technologies work is emphasized

  14. Modification of water treatment plant at Heavy Water Plant (Kota)

    International Nuclear Information System (INIS)

    Gajpati, C.R.; Shrivastava, C.S.; Shrivastava, D.C.; Shrivastava, J.; Vithal, G.K.; Bhowmick, A.

    2008-01-01

    Heavy Water Production by GS process viz. H 2 S - H 2 O bi-thermal exchange process requires a huge quantity of demineralized (DM) water as a source of deuterium. Since the deuterium recovery of GS process is only 18-19%, the water treatment plant (WTP) was designed and commissioned at Heavy Water Plant (Kota) to produce demineralized water at the rate of 680 m 3 /hr. The WTP was commissioned in 1980 and till 2005; the plant was producing DM water of required quality. It was having three streams of strong cation resin, atmospheric degasser and strong anion exchange resin with co-current regeneration. In 2001 a new concept of layered bed resin was developed and engineered for water treatment plant. The concept was attractive in terms of saving of chemicals and thus preservation of environment. Being an ISO 9000 and ISO 14000 plant, the modification of WTP was executed in 2005 during major turn around. After modification, a substantial amount of acid and alkali is saved

  15. Progress of Nanocomposite Membranes for Water Treatment

    Directory of Open Access Journals (Sweden)

    Claudia Ursino

    2018-04-01

    Full Text Available The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  16. Progress of Nanocomposite Membranes for Water Treatment.

    Science.gov (United States)

    Ursino, Claudia; Castro-Muñoz, Roberto; Drioli, Enrico; Gzara, Lassaad; Albeirutty, Mohammad H; Figoli, Alberto

    2018-04-03

    The use of membrane-based technologies has been applied for water treatment applications; however, the limitations of conventional polymeric membranes have led to the addition of inorganic fillers to enhance their performance. In recent years, nanocomposite membranes have greatly attracted the attention of scientists for water treatment applications such as wastewater treatment, water purification, removal of microorganisms, chemical compounds, heavy metals, etc. The incorporation of different nanofillers, such as carbon nanotubes, zinc oxide, graphene oxide, silver and copper nanoparticles, titanium dioxide, 2D materials, and some other novel nano-scale materials into polymeric membranes have provided great advances, e.g., enhancing on hydrophilicity, suppressing the accumulation of pollutants and foulants, enhancing rejection efficiencies and improving mechanical properties and thermal stabilities. Thereby, the aim of this work is to provide up-to-date information related to those novel nanocomposite membranes and their contribution for water treatment applications.

  17. Effect of magnetic treatment of water on chemical properties of water ...

    African Journals Online (AJOL)

    This study assessed effect of magnetic treatment of water on chemical properties of water, sodium adsorption ratio, electrical conductivity (EC) of the water and the lifespan of the magnetic effect on water. Magnetic flux densities used for treating the water were 124, 319, 443 and 719 gauss. All the cations (Calcium, Sodium, ...

  18. Cascade air stripping: Techno-economic evaluation of a new ground water treatment process

    International Nuclear Information System (INIS)

    Nirmalakhandan, N.; Peace, G.L.; Shanbhag, A.R.; Speece, R.E.

    1992-01-01

    A simple modification of the conventional air-stripping process introduced as cascade air stripping is proposed for efficient and economical removal of semivolatile and low volatility contaminants from ground water. The technical feasibility and economic viability of this process are evaluated using field test results and cost model simulations. The field tests enabled the process model to be verified at various water flow rates ranging from 150 gpm to 400 gpm. The field study also demonstrated the feasibility of the proposed system at a near full-scale level. Cost models were used to compare the proposed process to conventional air stripping and granular-activated carbon adsorption in removing a range of contaminants. This analysis showed that the treatment cost (cents/1,000 gal) of cascade air stripping is about 15% lower than conventional air stripping and about 40% lower than granular-activated carbon adsorption

  19. Treatment of Oil & Gas Produced Water.

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, Brian P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    Production of oil and gas reserves in the New Mexico Four Corners Region results in large volumes of "produced water". The common method for handling the produced water from well production is re-injection in regulatory permitted salt water disposal wells. This is expensive (%7E $5/bbl.) and does not recycle water, an ever increasingly valuable commodity. Previously, Sandia National Laboratories and several NM small business tested pressure driven membrane-filtration techniques to remove the high TDS (total dissolved solids) from a Four Corners Coal Bed Methane produced water. Treatment effectiveness was less than optimal due to problems with pre-treatment. Inadequate pre-treatment allowed hydrocarbons, wax and biological growth to foul the membranes. Recently, an innovative pre-treatment scheme using ozone and hydrogen peroxide was pilot tested. Results showed complete removal of hydrocarbons and the majority of organic constituents from a gas well production water. ACKNOWLEDGEMENTS This report was made possible through funding from the New Mexico Small Business Administration (NMSBA) Program at Sandia National Laboratories. Special thanks to Juan Martinez and Genaro Montoya for guidance and support from project inception to completion. Also, special thanks to Frank McDonald, the small businesses team POC, for laying the ground work for the entire project; Teresa McCown, the gas well owner and very knowledgeable- fantastic site host; Lea and Tim Phillips for their tremendous knowledge and passion in the oil & gas industry.; and Frank Miller and Steve Addleman for providing a pilot scale version of their proprietary process to facilitate the pilot testing.

  20. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  1. Waste water treatment in Bukkerup (VB)

    DEFF Research Database (Denmark)

    Thomsen, Rikke; Overgaard, Morten; Jørgensen, Michael Søgaard

    1999-01-01

    In connection to the new waste water plan of Tølløse municipal the technical and environmental board has suggested that Bukkerup get a sewer system which brings the waste water to the treatment plant for Tysinge. All though the residents would like to list alternative suggestions which improve...... the local water environment but is still competitive.In this report the alternatives are listed, e.i. root system plants, sand filters and mini treatment plants.The conclusion is that root system plants and a combination of root system plants and sand filters are better that the sewer system....

  2. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a

  3. The collection and field chemical analysis of water samples

    International Nuclear Information System (INIS)

    Korte, N.E.; Ealey, D.T.; Hollenbach, M.H.

    1984-01-01

    A successful water sampling program requires a clear understanding of appropriate measurement and sampling procedures in order to obtain reliable field data and representative samples. It is imperative that the personnel involved have a thorough knowledge of the limitations of the techniques being used. Though this seems self-evident, many sampling and field-chemical-analysis programs are still not properly conducted. Recognizing these problems, the Department of Energy contracted with Bendix Field Engineering Corporation through the Technical Measurements Center to develop and select procedures for water sampling and field chemical analysis at waste sites. The fundamental causese of poor field programs are addressed in this paper, largely through discussion of specific field-measurement techniques and their limitations. Recommendations for improvement, including quality-assurance measures, are also presented

  4. Life cycle assessment of advanced waste water treatment

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Peter Augusto

    The EU FP6 NEPTUNE project is related to the EU Water Framework Directive and the main goal is to develop new and optimize existing waste water treatment technologies (WWTT) and sludge handling methods for municipal waste water. Besides nutrients, a special focus area is micropollutants (e....... In total more that 20 different waste water and sludge treatment technologies are to be assessed. This paper will present the preliminary LCA results from running the induced versus avoided impact approach (mainly based on existing LCIA methodology) on one of the advanced treatment technologies, i...

  5. Applications of nanotechnology in water and wastewater treatment.

    Science.gov (United States)

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-08-01

    Providing clean and affordable water to meet human needs is a grand challenge of the 21st century. Worldwide, water supply struggles to keep up with the fast growing demand, which is exacerbated by population growth, global climate change, and water quality deterioration. The need for technological innovation to enable integrated water management cannot be overstated. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency as well as to augment water supply through safe use of unconventional water sources. Here we review recent development in nanotechnology for water and wastewater treatment. The discussion covers candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines the opportunities and limitations to further capitalize on these unique properties for sustainable water management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Field-scale water balance closure in seasonally frozen conditions

    Directory of Open Access Journals (Sweden)

    X. Pan

    2017-11-01

    Full Text Available Hydrological water balance closure is a simple concept, yet in practice it is uncommon to measure every significant term independently in the field. Here we demonstrate the degree to which the field-scale water balance can be closed using only routine field observations in a seasonally frozen prairie pasture field site in Saskatchewan, Canada. Arrays of snow and soil moisture measurements were combined with a precipitation gauge and flux tower evapotranspiration estimates. We consider three hydrologically distinct periods: the snow accumulation period over the winter, the snowmelt period in spring, and the summer growing season. In each period, we attempt to quantify the residual between net precipitation (precipitation minus evaporation and the change in field-scale storage (snow and soil moisture, while accounting for measurement uncertainties. When the residual is negligible, a simple 1-D water balance with no net drainage is adequate. When the residual is non-negligible, we must find additional processes to explain the result. We identify the hydrological fluxes which confound the 1-D water balance assumptions during different periods of the year, notably blowing snow and frozen soil moisture redistribution during the snow accumulation period, and snowmelt runoff and soil drainage during the melt period. Challenges associated with quantifying these processes, as well as uncertainties in the measurable quantities, caution against the common use of water balance residuals to estimate fluxes and constrain models in such a complex environment.

  7. Medicine Of Water Treatment

    International Nuclear Information System (INIS)

    Shin, Jeong Rae

    1987-02-01

    This book deals with the medicine of water handling, which includes medicine for dispersion and cohesion, zeta-potential, congelation with Shalze Hardy's law, inorganic coagulants, inorganic high molecule coagulants, aid coagulant such as fly ash and sodium hydroxide, and effect of aluminum and iron on cohesion of clay suspension, organic coagulants like history of organic coagulants, a polyelectrolyte, coagulants for cation, and organic polymer coagulant, heavy metal and cyan exfoliants, application of drugs of water treatment.

  8. Field and laboratory simulations of storm water pulses: Behavioural avoidance by marine epifauna

    International Nuclear Information System (INIS)

    Roberts, David A.; Johnston, Emma L.; Mueller, Stefanie; Poore, Alistair G.B.

    2008-01-01

    Epifaunal communities associated with macroalgae were exposed to storm water pulses using a custom made irrigation system. Treatments included Millipore freshwater, freshwater spiked with trace metals and seawater controls to allow for the relative importance of freshwater inundation, trace metals and increased flow to be determined. Experimental pulses created conditions similar to those that occur following real storm water events. Brief storm water pulses reduced the abundance of amphipods and gastropods. Freshwater was the causative agent as there were no additional effects of trace metals on the assemblages. Laboratory assays indicated that neither direct nor latent mortality was likely following experimental pulses and that epifauna readily avoid storm water. Indirect effects upon epifauna through salinity-induced changes to algal habitats were not found in field recolonisation experiments. Results demonstrate the importance of examining the effects of pulsed contaminants under realistic exposure conditions and the need to consider ecologically relevant endpoints. - Brief storm water pulses trigger avoidance response in mobile epifauna due to the inundation of freshwater

  9. Organic carbon amendments for passive in situ treatment of mine drainage: Field experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, Matthew B.J., E-mail: mbjlindsay@uwaterloo.ca [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada); Blowes, David W.; Condon, Peter D.; Ptacek, Carol J. [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)

    2011-07-15

    Highlights: > Organic carbon amendments can support passive treatment of mine drainage. > Decreased transport of sulfide-oxidation products under sulfate-reducing conditions. > Treatment effectiveness dependent on organic carbon source and amendment rate. - Abstract: A field-scale experiment was conducted to evaluate various organic C sources as amendments for passive treatment of tailings pore water. Varied mixtures of peat, spent-brewing grain (SBG) and municipal biosolids (MB) were assessed for the potential to promote dissimilatory sulfate reduction (DSR) and metal-sulfide precipitation. Five amended cells and one control were constructed in the vadose zone of a sulfide- and carbonate-rich tailings deposit, and the geochemistry, microbiology and mineralogy were monitored for 4 a. Increases in pore-water concentrations of dissolved organic C (DOC) and decreases in aqueous SO{sub 4} concentrations of >2500 mg L{sup -1} were observed in cells amended with peat + SBG and peat + SBG + MB. Removal of SO{sub 4} was accompanied by shifts in {delta}{sup 34}S-SO{sub 4} values of >+30 per mille, undersaturation of pore water with respect to gypsum [CaSO{sub 4}.2H{sub 2}O], and increased populations of SO{sub 4}-reducing bacteria (SRB). Decreases in aqueous concentrations of Zn, Mn, Ni, Sb and Tl were observed for these cells relative to the control. Organic C introduction also supported growth of Fe-reducing bacteria (IRB) and increases in Fe and As concentrations. Enhanced Fe and As mobility occurred in all cells; however, maximum concentrations were observed in cells amended with MB. Subsequent decreases in Fe and As concentrations were attributed to DSR and metal-sulfide precipitation. The common presence of secondary Zn-S and Fe-S phases was observed by field emission-scanning electron microscopy (FE-SEM) and energy dispersive X-ray (EDS) spectroscopy. Selective extractions indicated that large decreases in water-soluble SO{sub 4} occurred in cells that supported DSR

  10. Organic carbon amendments for passive in situ treatment of mine drainage: Field experiments

    International Nuclear Information System (INIS)

    Lindsay, Matthew B.J.; Blowes, David W.; Condon, Peter D.; Ptacek, Carol J.

    2011-01-01

    Highlights: → Organic carbon amendments can support passive treatment of mine drainage. → Decreased transport of sulfide-oxidation products under sulfate-reducing conditions. → Treatment effectiveness dependent on organic carbon source and amendment rate. - Abstract: A field-scale experiment was conducted to evaluate various organic C sources as amendments for passive treatment of tailings pore water. Varied mixtures of peat, spent-brewing grain (SBG) and municipal biosolids (MB) were assessed for the potential to promote dissimilatory sulfate reduction (DSR) and metal-sulfide precipitation. Five amended cells and one control were constructed in the vadose zone of a sulfide- and carbonate-rich tailings deposit, and the geochemistry, microbiology and mineralogy were monitored for 4 a. Increases in pore-water concentrations of dissolved organic C (DOC) and decreases in aqueous SO 4 concentrations of >2500 mg L -1 were observed in cells amended with peat + SBG and peat + SBG + MB. Removal of SO 4 was accompanied by shifts in δ 34 S-SO 4 values of >+30 per mille, undersaturation of pore water with respect to gypsum [CaSO 4 .2H 2 O], and increased populations of SO 4 -reducing bacteria (SRB). Decreases in aqueous concentrations of Zn, Mn, Ni, Sb and Tl were observed for these cells relative to the control. Organic C introduction also supported growth of Fe-reducing bacteria (IRB) and increases in Fe and As concentrations. Enhanced Fe and As mobility occurred in all cells; however, maximum concentrations were observed in cells amended with MB. Subsequent decreases in Fe and As concentrations were attributed to DSR and metal-sulfide precipitation. The common presence of secondary Zn-S and Fe-S phases was observed by field emission-scanning electron microscopy (FE-SEM) and energy dispersive X-ray (EDS) spectroscopy. Selective extractions indicated that large decreases in water-soluble SO 4 occurred in cells that supported DSR. Furthermore, amendments that supported

  11. Structures of water molecules in carbon nanotubes under electric fields

    International Nuclear Information System (INIS)

    Winarto,; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-01-01

    Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electric field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate

  12. Present municipal water treatment and potential removal methods

    International Nuclear Information System (INIS)

    Lee, S.Y.; White, S.K.; Bondietti, E.A.

    1982-01-01

    Uranium analyses of raw water, intermediate stage, and treated water samples from 20 municipal water treatment plants indicated that the present treatment practices were not effective in removing uranium from raw waters when the influent concentration was in the range of 0.1 to 16 μg/L uranium. Laboratory batch tests revealed that the water softening and coagulant chemicals commonly used were able to remove more than 90% of the dissolved uranium ( < 100 μg/L) in waters if an optimum pH and dosage were provided. Absorbents, titanium oxide and activated charcoal, were also effective in uranium removal under specific conditions. Strong base anion exchange resin was the most efficient uranium adsorbent, and an anion exchange column is a recommended option for the treatment of private well waters containing uranium at higher than desirable levels

  13. Significant skin burns may occur with the use of a water balloon in HIFU treatment

    Science.gov (United States)

    Ritchie, Robert; Collin, Jamie; Wu, Feng; Coussios, Constantin; Leslie, Tom; Cranston, David

    2012-10-01

    HIFU is a minimally-invasive therapy suitable for treating selected intra-abdominal tumors. Treatment is safe although skin burns may occur due to pre-focal heating. HIFU treatment of a renal transplant tumor located in the left lower abdomen was undertaken in our centre. Treatment was performed prone, requiring displacement of the abdominal wall away from the treatment field using a water balloon, constructed of natural rubber latex and filled with degassed water. Intra-operatively, ultrasound imaging and physical examination of the skin directly over the focal region was normal. Immediately post-operative, a full-thickness skin burn was evident at the periphery of the balloon location, outside the expected HIFU path. Three possibilities may account for this complication. Firstly, the water balloon may have acted as a lens, focusing the HIFU to a neo-focus off axis. Secondly, air bubbles may have been entrapped between the balloon and the skin, causing heating at the interface. Finally, heating of the isolated water within the balloon may have been sufficient to cause burning. In this case, the placement of a water balloon caused a significant skin burn. Care should be taken in their use as burns, situated off axis, may occur even if the overlying skin appears normal.

  14. MWH's water treatment: principles and design

    National Research Council Canada - National Science Library

    Crittenden, John C

    2012-01-01

    ... with additional worked problems and new treatment approaches. It covers both the principles and theory of water treatment as well as the practical considerations of plant design and distribution...

  15. Waste water treatment today and tomorrow

    International Nuclear Information System (INIS)

    1992-01-01

    The papers discuss waste water treatment in the legislation of the EC, the German state, the Laender and communities, as well as water protection by preventing waste production and pollutant emissions. (EF) [de

  16. Database Dictionary for Ethiopian National Ground-Water DAtabase (ENGDA) Data Fields

    Science.gov (United States)

    Kuniansky, Eve L.; Litke, David W.; Tucci, Patrick

    2007-01-01

    Introduction This document describes the data fields that are used for both field forms and the Ethiopian National Ground-water Database (ENGDA) tables associated with information stored about production wells, springs, test holes, test wells, and water level or water-quality observation wells. Several different words are used in this database dictionary and in the ENGDA database to describe a narrow shaft constructed in the ground. The most general term is borehole, which is applicable to any type of hole. A well is a borehole specifically constructed to extract water from the ground; however, for this data dictionary and for the ENGDA database, the words well and borehole are used interchangeably. A production well is defined as any well used for water supply and includes hand-dug wells, small-diameter bored wells equipped with hand pumps, or large-diameter bored wells equipped with large-capacity motorized pumps. Test holes are borings made to collect information about the subsurface with continuous core or non-continuous core and/or where geophysical logs are collected. Test holes are not converted into wells. A test well is a well constructed for hydraulic testing of an aquifer in order to plan a larger ground-water production system. A water-level or water-quality observation well is a well that is used to collect information about an aquifer and not used for water supply. A spring is any naturally flowing, local, ground-water discharge site. The database dictionary is designed to help define all fields on both field data collection forms (provided in attachment 2 of this report) and for the ENGDA software screen entry forms (described in Litke, 2007). The data entered into each screen entry field are stored in relational database tables within the computer database. The organization of the database dictionary is designed based on field data collection and the field forms, because this is what the majority of people will use. After each field, however, the

  17. Water treatment in the EBR-II steam system

    International Nuclear Information System (INIS)

    Klein, M.A.; Hurst, H.

    1975-01-01

    Boiler-water treatment in the EBR-II steam system consists of demineralizing makeup water and using hydrazine to remove traces of oxygen and morpholine to adjust pH to 8.8-9.2. This treatment is called a ''zero-solids'' method, because the chemical agents and reaction products are either volatile or form water and do not contribute solids to the boiler water. A continuous blowdown is cooled, filtered, and deionized to remove impurities and maintain high purity of the water. If a cooling-water leak occurs, phosphate is added to control scaling, and the ''zero-solids'' eatment is suspended until the leak is repaired. Water streams are sampled at six points to control water purity. Examination of the steam drum and an evaporator show the metal surfaces to be in excellent condition with minimal corrosion. The EBR-II steam-generating plant has accumulated over 85,000 hours of in-service operation and has operated successfully for over ten years with the ''zero-solids'' treatment. (auth)

  18. Innovations in nanotechnology for water treatment

    Directory of Open Access Journals (Sweden)

    Gehrke I

    2015-01-01

    Full Text Available Ilka Gehrke, Andreas Geiser, Annette Somborn-SchulzFraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, GermanyAbstract: Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA.Keywords: nanotechnology, water technology, nanoadsorbents, nanometals, nanomembranes, photocatalysis

  19. Discussing simply waste water treatment in building green mine

    International Nuclear Information System (INIS)

    Zhou Yousheng

    2010-01-01

    Analysis simplfy it is important and necessary that uran ore enterprise build the green mine .According to focusing on waste water treatment in building green mine of some uran ore enterprise,analysis the problem in treating mine water, technics waste water, tailings water before remoulding the system of waster water treatment, evaluate the advanced technics, satisfy ability, steady effect, reach the mark of discharge. According to the experimental unit of building the green mine,some uran ore enterprise make the waster water reaching the mark of discharge after remoulding the system of waster water treatment.It provides valuable experienceto uran ore enterprise in building green mine. (authors)

  20. The Evaluation of Metals and Other Substances Released into Coal Mine Accrual Waters on the Wasatch Plateau Coal Field, Utah

    OpenAIRE

    Seierstad, Alberta J.; Adams, V. Dean; Lamarra, Vincent A.; Hoefs, Nancy J.; Hinchee, Robert E.

    1983-01-01

    Six sites on the Wasatch Plateau were chosen representing subsurface coal mines which were discharging or collecting accrual water on this coal field. Water samples were collected monthly at these sites for a period of 1 year (May 1981 to April 1982). Samples were taken before and after each mine's treatment system. Water sampels were analyzed for major anions and cations, trace metals, physical properaties, nutri...

  1. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    NARCIS (Netherlands)

    Tervahauta, T.H.; Bryant, I.M.; Hernandez Leal, L.; Buisman, C.J.N.; Zeeman, G.

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were

  2. Membrane technology water treatment facility

    International Nuclear Information System (INIS)

    Gruzdev, E. N.; Starikov, E.N.

    2009-01-01

    The suggested technical solution, in contrast with the traditional treatment methods using pressure filtration and sorption cleaning, can be applied with minimal used for equipment, stable production and the use of reagents, prevention of the formation of waste water with high mineral content and avoid the need for neutralization of the main stream of waste water

  3. Field Monitoring Protocol. Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  4. Field Monitoring Protocol: Heat Pump Water Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  5. Waste water treatment by flotation

    Directory of Open Access Journals (Sweden)

    Camelia Badulescu

    2005-11-01

    Full Text Available The flotation is succesfully applied as a cleaning method of waste water refineries, textile fabrics (tissues, food industry, paper plants, oils plants, etc. In the flotation process with the released air, first of all, the water is saturated with air compressed at pressures between 0,3 – 3 bar, followed by the relaxed phenomenon of the air-water solution in a flotation cell with slowly flowing. The supersaturation could be applied in the waste water treatment. In this case the waste water, which is in the atmospheric equilibrum, is introduced in a closed space where the depression is 0,3 – 0,5 bar. Our paper presents the hypobaric flotation cell and the technological flow of cleaning of domestic waste waters

  6. Household Water Treatments in Developing Countries

    Science.gov (United States)

    Smieja, Joanne A.

    2011-01-01

    Household water treatments (HWT) can help provide clean water to millions of people worldwide who do not have access to safe water. This article describes four common HWT used in developing countries and the pertinent chemistry involved. The intent of this article is to inform both high school and college chemical educators and chemistry students…

  7. Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initio molecular dynamics

    Science.gov (United States)

    Futera, Zdenek; English, Niall J.

    2017-07-01

    The response of water to externally applied electric fields is of central relevance in the modern world, where many extraneous electric fields are ubiquitous. Historically, the application of external fields in non-equilibrium molecular dynamics has been restricted, by and large, to relatively inexpensive, more or less sophisticated, empirical models. Here, we report long-time non-equilibrium ab initio molecular dynamics in both static and oscillating (time-dependent) external electric fields, therefore opening up a new vista in rigorous studies of electric-field effects on dynamical systems with the full arsenal of electronic-structure methods. In so doing, we apply this to liquid water with state-of-the-art non-local treatment of dispersion, and we compute a range of field effects on structural and dynamical properties, such as diffusivities and hydrogen-bond kinetics.

  8. Application of hydrodynamic cavitation in ballast water treatment.

    Science.gov (United States)

    Cvetković, Martina; Kompare, Boris; Klemenčič, Aleksandra Krivograd

    2015-05-01

    Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment.

  9. Field Testing of High Current Electrokinetic Nanoparticle Treatment for Corrosion Mitigation in Reinforced Concrete

    Science.gov (United States)

    Cardenas, Henry; Alexander, Joshua; Kupwade-Patil, Kunal; Calle, Luz marina

    2010-01-01

    Electrokinetic Nanoparticle (EN) treatment was used as a rapid repair measure to mitigate chloride induced corrosion of reinforced concrete in the field. EN treatment uses an electric field to transport positively charged nanoparticles to the reinforcement through the concrete capillary pores. Cylindrical reinforced concrete specimens were batched with 4.5 wt % salt content (based on cement mass). Three distinct electrokinetic treatments were conducted using high current density (up to 5 A/m2) to form a chloride penetration barrier that was established in 5 days, as opposed to the traditional 6-8 weeks, generally required for electrochemical chloride extraction (ECE). These treatments included basic EN treatment, EN with additional calcium treatment, and basic ECE treatment. Field exposures were conducted at the NASA Beachside Corrosion Test Site, Kennedy Space Center, Florida, USA. The specimens were subjected to sea water immersion at the test site as a posttreatment exposure. Following a 30-day post-treatment exposure period, the specimens were subjected to indirect tensile testing to evaluate treatment impact. The EN treated specimens exhibited 60% and 30% increases in tensile strength as compared to the untreated controls and ECE treated specimens respectively. The surfaces of the reinforcement bars of the control specimens were 67% covered by corrosion products. In contrast, the EN treated specimens exhibited corrosion coverage of only 4%. Scanning electron microscopy (SEM) revealed a dense concrete microstructure adjacent to the bars of the treated specimens as compared to the control and ECE specimens. Energy dispersive spectroscopic (EDS) analysis of the polished EN treated specimens showed a reduction in chloride content by a factor of 20 adjacent to the bars. This study demonstrated that EN treatment was successful in forming a chloride penetration barrier rapidly. This work also showed that the chloride barrier was effective when samples were exposed to

  10. Chemistry of cost effective water treatment programme in HWP (Manuguru)

    International Nuclear Information System (INIS)

    Mohapatra, C.; Laxmana Prasad, K.

    2008-01-01

    In order to develop a water treatment programme following points must be kept in mind: Effectiveness to achieve desired water quality objectives; Compliance with regulatory requirements; Cost minimization; Safety; Easy operation and protection to equipments. Heavy Water Plant (Manuguru) laboratory has developed treatment programs to treat raw water and cooling water which satisfy the above requirements and has been in use for last several years successfully without any problem. These treatment programs have been given to other plants in Heavy Water Board for implementation. This paper describes the chemistry of the treatment program and cost minimization achieved. Further these treatments have helped the plant in achieving ΦZero Discharge and indirectly reduced the production cost. The chemistry parameters are monitored regularly to ascertain the effectiveness of these treatments. The areas where significant benefits derived are raw water treatment using polyelectrolyte instead of inorganic coagulant (alum), change over of regenerant of cation exchangers from hydrochloric acid to sulfuric acid and development of in-house cooling water treatment formulation. The advantages and cost effectiveness of these treatments are discussed in detail. Further these treatments helped the plant in achieving Zero discharge and indirectly reduced production cost of heavy water. The dosage of 3 ppm of polyelectrolyte can replace 90 ppm alum at turbidity level of 300 NTU of raw water which has resulted in cost saving of Rs. 15 - 20 Lakhs in a year besides other advantages. The changeover of regenerant from HCl to H 2 SO 4 will result in cost saving of at least Rs. 1.4 Crore a year along with other advantages. The change over of proprietary formulation to in-house formulation in cooling water treatment has resulted a saving about Rs. 11 Lakhs a year. To achieve the above objectives in a sustainable way the performance results are being monitored (author)

  11. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    Science.gov (United States)

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  12. Microbial Communities Shaped by Treatment Processes in a Drinking Water Treatment Plant and Their Contribution and Threat to Drinking Water Safety

    Science.gov (United States)

    Li, Qi; Yu, Shuili; Li, Lei; Liu, Guicai; Gu, Zhengyang; Liu, Minmin; Liu, Zhiyuan; Ye, Yubing; Xia, Qing; Ren, Liumo

    2017-01-01

    Bacteria play an important role in water purification in drinking water treatment systems. On one hand, bacteria present in the untreated water may help in its purification through biodegradation of the contaminants. On the other hand, some bacteria may be human pathogens and pose a threat to consumers. The present study investigated bacterial communities using Illumina MiSeq sequencing of 16S rRNA genes and their functions were predicted using PICRUSt in a treatment system, including the biofilms on sand filters and biological activated carbon (BAC) filters, in 4 months. In addition, quantitative analyses of specific bacterial populations were performed by real-time quantitative polymerase chain reaction (qPCR). The bacterial community composition of post-ozonation effluent, BAC effluent and disinfected water varied with sampling time. However, the bacterial community structures at other treatment steps were relatively stable, despite great variations of source water quality, resulting in stable treatment performance. Illumina MiSeq sequencing illustrated that Proteobacteria was dominant bacterial phylum. Chlorine disinfection significantly influenced the microbial community structure, while other treatment processes were synergetic. Bacterial communities in water and biofilms were distinct, and distinctions of bacterial communities also existed between different biofilms. By contrast, the functional composition of biofilms on different filters were similar. Some functional genes related to pollutant degradation were found widely distributed throughout the treatment processes. The distributions of Mycobacterium spp. and Legionella spp. in water and biofilms were revealed by real-time quantitative polymerase chain reaction (qPCR). Most bacteria, including potential pathogens, could be effectively removed by chlorine disinfection. However, some bacteria presented great resistance to chlorine. qPCRs showed that Mycobacterium spp. could not be effectively removed by

  13. Impact of Magnetic Treatment of Irrigation Water on the Growth and Yield of Tomato

    Directory of Open Access Journals (Sweden)

    Kamorudeen Olaniyi YUSUF

    2015-09-01

    Full Text Available This study was carried out to determine whether magnetic treatment of the irrigation water may actually enhance vegetative growth and yield of tomato. Three magnetic flux densities of 124, 319 and 719 G (treatments T1, T2 and T3 were used to treat the water and a control experiment (Tc which was irrigated with non-magnetically treated water was also set up. The magnetic field was produced by an electromagnet that had a variable voltage unit varying the voltage from 4 to 12 V. The tomato were planted in buckets, kept in a transparent garden shed for 130 days and irrigated with magnetically treated water and non-magnetically treated water. A completely randomized design experimental layout was used in this study and each of the three treatments was replicated seven times. The results indicated that tomato crop irrigated with magnetically treated water grew faster than that of the non-magnetically treated water and the stem diameters were bigger than those of control. The heights of tomato plants (T1, T2 T3 and Tc after 47 days were 560.0, 556.4, 588.6 and 469.3 mm respectively. The total yield after 130 days of survey for T1, T2 T3 and Tc were 892.1, 1075.8, 1045.7 and 637.7 g respectively. The percentage increment in yield from the plants treated with magnetically treated water varied from 39.9 to 68.7% compared to the yield from untreated water.

  14. A Primer on Waste Water Treatment.

    Science.gov (United States)

    Department of the Interior, Washington, DC. Federal Water Pollution Control Administration.

    This information pamphlet is for teachers, students, or the general public concerned with the types of waste water treatment systems, the need for further treatment, and advanced methods of treating wastes. Present day pollution control methods utilizing primary and secondary waste treatment plants, lagoons, and septic tanks are described,…

  15. Hydraulic modelling of drinking water treatment plant operations

    Directory of Open Access Journals (Sweden)

    L. C. Rietveld

    2009-06-01

    Full Text Available The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand filtration and cascade and tower aeration. Using this treatment step library, a hydraulic model was set up, calibrated and validated for the drinking water treatment plant Harderbroek. With the actual valve position and pump speeds, the flows were calculated through the several treatment steps. A case shows the use of the model to calculate the new setpoints for the current frequency converters of the effluent pumps during a filter backwash.

  16. Evaluation of two methods in controlling dental treatment water contamination.

    Science.gov (United States)

    Bansal, Ritu; Puttaiah, Raghunath; Harris, Robert; Reddy, Anil

    2011-03-01

    Dental unit water systems are contaminated with biofilms that amplify bacterial counts in dental treatment water in excess of a million colony forming units per milliliter (cfu/ml). The Centers for Disease Control and Prevention and the American Dental Association have agreed that the maximum allowable contamination of dental treatment water not exceed 500 cfu/ml. This study was conducted to evaluate two protocols in controlling contamination of dental unit water systems and dental treatment water. Both methods used an antimicrobial self-dissolving chlorine dioxide (ClO₂) tablet at a high concentration (50 ppm) to shock the dental unit water system biofilms initially followed by periodic exposure. To treat dental treatment source water for patient care, 3 parts per million (ppm) ClO₂ in municipal/tap water was compared to use of a citrus botanical extract dissolved in municipal water. Heterotrophic microbial counts of effluent water and laser scanning confocal microscopy were performed to evaluate effects of the two treatments. Results from this study indicated that both treatments were effective in controlling biofilm contamination and reducing heterotrophic plate counts Contemp Dent Pract 2011;12(2):73-83. Source of support: Nil Conflict of interest: None declared.

  17. Water treatment technologies for a mixed waste remedial action

    International Nuclear Information System (INIS)

    Reith, C.; Freeman, G.; Ballew, B.

    1992-01-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  18. Water treatment technologies for a mixed waste remedial action

    Energy Technology Data Exchange (ETDEWEB)

    Reith, C; Freeman, G [Weldon Spring Site Remedial Action Project, Jacobs Engineering Group, Inc., St. Charles, MO (United States); Ballew, B [Weldon Spring Site Remedial Action Project, Dames and Moore, St. Charles, MO (United States)

    1992-07-01

    Water treatment is an important element of the Weldon Spring Site Remedial Action Project (WSSRAP), which is cleaning up a former uranium processing plant near St. Louis, Missouri. This project, under the management of the U.S. Department of Energy (DOE), includes treatment and release of contaminated surface water and possibly groundwater at the plant site and a nearby quarry, which was once used for waste disposal. The contaminants include uranium, thorium, radium, nitroaromatics, nitrates, and metals. Three water treatment plants will be used to treat contaminated water prior to its release to the Missouri River. The first, construction of which is nearly complete, will treat contaminated surface water and interstitial water in and around the quarry. A stepwise process of sedimentation, clarification, filtration, adsorption, and ion exchange will be used to remove the contaminants. A similar sequence will be used for the first train of the water treatment plant at the plant site, although process details have been adjusted to address the different contaminant concentrations. The site water treatment plant will also have a second train consisting of a vapor compression/ distillation (VCD) system. Train 2 is necessary to treat waters primarily from four raffinate pits containing high concentrations of inorganics (e.g., nitrates, sulfates, and chlorides) in addition to radionuclides, nitroaromatics, and metals contamination that are common in most of the waters at the site. Construction is under way on the First train of this facility. After it is treated, all water will be impounded and batch tested for compliance with the project's National Pollution Discharge Elimination System (NPDES) permits prior to release to the Missouri River. The third water treatment plant is a mobile system that will be used to treat waters in some of the building sumps. (author)

  19. Isolation of viruses from drinking water at the Point-Viau water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Payment, P.

    1981-04-01

    Viruses were isolated from every sample of raw (100 L) and treated (1000 L) water collected at a water treatment plant drawing sewage-contaminated river water. Few plaque-forming isolates were formed but cytopathogenic viruses were isolated as frequently in drinking water as in raw water. In drinking water some samples contained more than 1 cytopathogenic unit per litre, but most contained 1-10/100 L. These viruses had not been inactivated or removed by prechlorination, flocculation, filtration, ozonation, and postchlorination. There were no coliforms present and a residual chlorine level had been maintained. Poliovirus type 1 was a frequent isolate but many isolates were nonpoliovirus. The presence of these viruses in drinking water raises questions about the efficacy of some water treatment processes to remove viruses from polluted water.

  20. Residual water treatment for gamma radiation

    International Nuclear Information System (INIS)

    Mendez, L.

    1990-01-01

    The treatment of residual water by means of gamma radiation for its use in agricultural irrigation is evaluated. Measurements of physical, chemical, biological and microbiological contamination indicators were performed. For that, samples from the treatment center of residual water of San Juan de Miraflores were irradiated up to a 52.5 kGy dose. The study concludes that gamma radiation is effective to remove parasites and bacteria, but not for removal of the organic and inorganic matter. (author). 15 refs., 3 tabs., 4 figs

  1. Rational design of nanomaterials for water treatment

    KAUST Repository

    Li, Renyuan; Zhang, Lianbin; Wang, Peng

    2015-01-01

    The ever-increasing human demand for safe and clean water is gradually pushing conventional water treatment technologies to their limits and it is now a popular perception that the solutions to the existing and future water challenges will highly

  2. Process for the treatment of salt water

    Energy Technology Data Exchange (ETDEWEB)

    Hull, R J

    1966-06-12

    A procedure is described for the treatment of salty or brackish water for the production of steam, which is directly utilized afterward, either in a condensed form as sweet water or deoxidized for injection into oil formations for raising the temperature thereof and other uses. The water-purification treatment is continuous, and is of the type in which the salty or brackish water is passed in direct heat exchange relationship with the steam produced for preheating the water up to a temperature where some of the dissolved ions of calcium and magnesium are precipitated in the form of insoluble salts. In the passage of the preheated water being purified, a zone is created for the completion of the reaction. A part of the water is retained in this reaction zone while the other part is being passed in indirect heat exchange relationship with a heating means, for converting this part of the water into steam. All of the steam obtained in the latter described heat exchange is utilized in the water purification, and/or added to the produced steam, as first noted.

  3. Hanford facilities tracer study report (315 Water Treatment Facility)

    International Nuclear Information System (INIS)

    Ambalam, T.

    1995-01-01

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations

  4. Effluent and water treatment at AERE Harwell

    International Nuclear Information System (INIS)

    Lewis, J.B.

    1977-01-01

    The treatment of liquid wastes at Harwell is based on two main principles: separation of surface water, domestic sewage, trade wastes and radioactive effluents at source, and a system of holding tanks which are sampled so that the appropriate treatment can be given to any batch. All discharges are subject to independent monitoring by the authorising departments and the Thames Water Inspectors. (author)

  5. Application of solar disinfection for treatment of contaminated public water supply in a developing country: field observations.

    Science.gov (United States)

    Mustafa, Atif; Scholz, Miklas; Khan, Sadia; Ghaffar, Abdul

    2013-03-01

    A sustainable and low-cost point-of-use household drinking water solar disinfection (SODIS) technology was successfully applied to treat microbiologically contaminated water. Field experiments were conducted to determine the efficiency of SODIS and evaluate the potential benefits and limitations of SODIS under local climatic conditions in Karachi, Pakistan. In order to enhance the efficiency of SODIS, the application of physical interventions were also investigated. Twenty per cent of the total samples met drinking water guidelines under strong sunlight weather conditions, showing that SODIS is effective for complete disinfection under specific conditions. Physical interventions, including black-backed and reflecting rear surfaces in the batch reactors, enhanced SODIS performance. Microbial regrowth was also investigated and found to be more controlled in reactors with reflective and black-backed surfaces. The transfer of plasticizer di(2-ethylhexyl)phthalate (DEHP) released from the bottle material polyethylene terephthalate (PET) under SODIS conditions was also investigated. The maximum DEHP concentration in SODIS-treated water was 0.38 μg/L less than the value of 0.71 μg/L reported in a previous study and well below the WHO drinking-quality guideline value. Thus SODIS-treated water can successfully be used by the people living in squatter settlements of mega-cities, such as Karachi, with some limitations.

  6. The treatment of river water by reverse osmosis

    International Nuclear Information System (INIS)

    Ray, N.J.; Jenkins, M.A.; Coates, A.

    1977-01-01

    The suitability of rod, spirally would and hollow fibre reverse osmosis systems has been assessed for the treatment of River Trent water to produce water of boiler feed quality. Particular attention has been paid to the effects of the suspended solids level of the influent water supply on operating and cleaning regimes. The best performance was given by the rod-type membranes which could be used with relatively dirty water if suitable chemical and/or physical cleaning techniques were applied. However, even this system, requires some form of clarification of the raw supply, and this affects capital and overall running costs. The hollow fibre membrane, which cannot be readily cleaned required an excessively clean water supply to avoid rapid and irreversible loss of output and is unlikely to have full-scale application on this, or similar, water. The spirally wound membranes, whilst not so susceptible to suspended solids as the hollow fibre system, did not tolerate dirty water, and required the raw water to be clarified to a level that is unlikely to be continuously guaranteed. In its current stage of development reverse osmosis is unlikely to give a cost advantage over the main cation/anion exchange stage of present water treatment plant, even for the treatment of waters relatively high in dissolved salts (500 mg kg -1 ). Moreover, conventional pretreatment and final mixed ion-exchange beds would still be required to produce water of boiler feed quality. Reverse osmosis does, however, remove organic species and non reactive silicon; its selection is likely to be dictated by such requirements or where space is at a premium e.g. extensions to existing water treatment plants. (orig.) [de

  7. Available water modifications by topsoil treatments under mediterranean semiarid conditions: afforestation plan

    Science.gov (United States)

    Hueso Gonzalez, Paloma; Francisco Martinez Murillo, Juan; Damian Ruiz Sinoga, Jose

    2016-04-01

    During dry periods in the Mediterranean area, the lack of water entering the soil matrix reduces organic contributions to the soil. These processes lead to reduced soil fertility and soil vegetation recovery which creates a positive feedback process that can lead to desertification. Restoration of native vegetation is the most effective way to regenerate soil health, and control runoff and sediment yield. In Mediterranean areas, after a forestry proposal, it is highly common to register a significant number of losses for the saplings that have been introduced due to the lack of rainfall. When no vegetation is established, organic amendments can be used to rapidly protect the soil surface against the erosive forces of rain and runoff. In this study we investigated the hydrological effects of five soil treatments in relation to the temporal variability of the available water for plants. Five amendments were applied in an experimental set of plots: straw mulching; mulch with chipped branches of Aleppo Pine (Pinus halepensis L.); TerraCotten hydroabsobent polymers; sewage sludge; sheep manure and control. Plots were afforested following the same spatial pattern, and amendments were mixed with the soil at the rate 10 Mg ha-1. In control plots, during June, July, August and September, soils were registered below the wilting point, and therefore, in the area of water unusable by plants. These months were coinciding with the summer mediterranean drought. This fact justifies the high mortality found on plants after the seeding plan. Similarly, soils have never exceeded the field capacity value measured for control plots. Conversely, in the straw and pinus mulch, soils were above the wilting point during a longer time than in control plots. Thus, the soil moisture only has stayed below the 4.2 pF suction in July, July and August. Regarding the amount of water available was also higher, especially in the months of December, January and February. However, the field capacity

  8. Physical water treatment against calcification and rust

    International Nuclear Information System (INIS)

    Burger, A.

    1995-01-01

    In contrast to Germany, where the installation of small-sized, decentralised plants is still prefered, water supply companies in countries such as Denmark have already for some time successfully been using physical water treatment systems. Although the health and environmental benefits of this non-chemical method of water treatment are undisputed and its proper application is also economically beneficial, there is still a widerspread lack of information as to where such plants can be used. Consequently, older methods are often resorted to combatting calcification and rust. (orig.) [de

  9. Cooling water treatment for heavy water project (Paper No. 6.9)

    International Nuclear Information System (INIS)

    Valsangkar, H.N.

    1992-01-01

    With minor exceptions, water is the preferred industrial medium for the removal of unwanted heat from process systems. The application of various chemical treatments is required to protect the system from water related and process related problems of corrosion, scale and deposition and biofouling. The paper discusses the cooling water problems for heavy water industries along with the impact caused by associated fertilizer units. (author). 6 figs

  10. WATER MICROPOLLUTANTS: CLASSIFICATION AND TREATMENT TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Yolanda Patiño

    2014-06-01

    Full Text Available This article reviews the different kinds of emerging contaminants, their origin and use, and their presence in the Spanish waters, both in surface and groundwater. Micropollutants are compounds of different origin and chemical nature which had been unnoticed (due to their low concentration and don’t have specific regulation. They are divided into six major groups, and many of them behave as endocrine disruptors causing large negative effects on human health and environment. They are in waters because the waste water treatment plants are not designed for their removal, so they are being discharged. Different alternatives for their removal are discussed - physico- chemical, biological and hybrid treatment technologies -. Among the physicochemical process, the advance oxidation processes (AOPs are very promising.

  11. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  12. Monografieen informatiesysteem technieken. Compartiment Water

    NARCIS (Netherlands)

    Joziasse J; Wiering ACF; Annokee GJ; Arkenbout GJ; Assink JW; Engelhard WFJM; Hinsenveld M; van Veen HJ; van Voorneburg F; Rinzema A; van Tongeren WGJM

    1992-01-01

    This report contains 17 monographs of techniques used in the field of treatment of waste water. It is the fourth report in a series of four, containing techniques in the field of waste, water, air and soil treatment. The source of this information is the information system on environmental

  13. Waste water treatment plant city of Kraljevo

    Directory of Open Access Journals (Sweden)

    Marinović Dragan D.

    2016-01-01

    Full Text Available In all countries, in the fight for the preservation of environmental protection, water pollution, waste water is one of the very serious and complex environmental problems. Waste waters pollute rivers, lakes, sea and ground water and promote the development of micro-organisms that consume oxygen, which leads to the death of fish and the occurrence of pathogenic microbes. Water pollution and determination of its numerous microbiological contamination, physical agents and various chemical substances, is becoming an increasing health and general social problem. Purification of industrial and municipal waste water before discharge into waterways is of great importance for the contamination of the water ecosystems and the protection of human health. To present the results of purification of industrial and municipal wastewater in the city center Kraljevo system for wastewater treatment. The investigated physical and chemical parameters were performed before and after the city's system for wastewater treatment. The results indicate that the effect of purification present the physical and chemical parameters in waste water ranges from 0 - 19%.

  14. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    Science.gov (United States)

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  15. Produced water treatment methods for SAGD

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, K. [Veolia Water Solutions and Technologies, Mississauga, ON (Canada)

    2008-07-01

    Produced water treatment methods for steam assisted gravity drainage (SAGD) processes were presented. Lime softening is used to remove sludge before weak acid cation processes. However, the process is not reliable in cold climates, and disposal of the sludge is now posing environmental problems in Alberta. High pH MVC evaporation processes use sodium hydroxide (NaOH) additions to prevent silica scaling. However the process produces silica wastes that are difficult to dispose of. The sorption slurry process was designed to reduce the use of caustic soda and develop a cost-effective method of disposing evaporator concentrates. The method produces 98 per cent steam quality for SAGD injection. Silica is sorbed onto crystals in order to prevent silica scaling. The evaporator concentrate from the process is suitable for on- and off-site deep well disposal. The ceramic membrane process was designed to reduce the consumption of chemicals and improve the reliability of water treatment processes. The ion exchange desilication process uses 80 per cent less power and produces 80 per cent fewer CO{sub 2} emissions than MVC evaporators. A comparative operating cost evaluation of various electric supply configurations and produced water treatment processes was also included, as well as an analysis of produced water chemistry. tabs., figs.

  16. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application

    Science.gov (United States)

    Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A.; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability. PMID:27191160

  17. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application.

    Science.gov (United States)

    Ma, Ningning; Zhang, Lili; Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability.

  18. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application.

    Directory of Open Access Journals (Sweden)

    Ningning Ma

    Full Text Available A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK, application of inorganic fertilizer (NPK, combined application of inorganic fertilizer with maize straw (NPK+S and addition of biochar with inorganic fertilizer (NPK+B. Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability.

  19. Occurrence of neonicotinoid insecticides in finished drinking water and fate during drinking water treatment

    Science.gov (United States)

    Klarich, Kathryn L.; Pflug, Nicholas C.; DeWald, Eden M.; Hladik, Michelle L.; Kolpin, Dana W.; Cwiertny, David M.; LeFevre, Gergory H.

    2017-01-01

    Neonicotinoid insecticides are widespread in surface waters across the agriculturally-intensive Midwestern US. We report for the first time the presence of three neonicotinoids in finished drinking water and demonstrate their general persistence during conventional water treatment. Periodic tap water grab samples were collected at the University of Iowa over seven weeks in 2016 (May-July) after maize/soy planting. Clothianidin, imidacloprid, and thiamethoxam were ubiquitously detected in finished water samples and ranged from 0.24-57.3 ng/L. Samples collected along the University of Iowa treatment train indicate no apparent removal of clothianidin and imidacloprid, with modest thiamethoxam removal (~50%). In contrast, the concentrations of all neonicotinoids were substantially lower in the Iowa City treatment facility finished water using granular activated carbon (GAC) filtration. Batch experiments investigated potential losses. Thiamethoxam losses are due to base-catalyzed hydrolysis at high pH conditions during lime softening. GAC rapidly and nearly completely removed all three neonicotinoids. Clothianidin is susceptible to reaction with free chlorine and may undergo at least partial transformation during chlorination. Our work provides new insights into the persistence of neonicotinoids and their potential for transformation during water treatment and distribution, while also identifying GAC as an effective management tool to lower neonicotinoid concentrations in finished drinking water.

  20. Selection of candidate wells and optimization of conformance treatment design in the Barrancas Field using a 3D conformance simulator

    Energy Technology Data Exchange (ETDEWEB)

    Crosta, Dante; Elitseche, Luis [Repsol YPF (Argentina); Gutierrez, Mauricio; Ansah, Joe; Everett, Don [Halliburton Argentina S.A., Buenos Aires (Argentina)

    2004-07-01

    Minimizing the amount of unwanted water production is an important goal at the Barrancas field. This paper describes a selection process for candidate injection wells that is part of a pilot conformance project aimed at improving vertical injection profiles, reducing water cut in producing wells, and improving ultimate oil recovery from this field. The well selection process is based on a review of limited reservoir information available for this field to determine inter-well communications. The methodology focuses on the best use of available information, such as production and injection history, well intervention files, open hole logs and injectivity surveys. After the candidate wells were selected and potential water injection channels were identified, conformance treatment design and future performance of wells in the selected pilot area were evaluated using a new 3 -D conformance simulator, developed specifically for optimization of the design and placement of unwanted fluid shut-off treatments. Thus, when acceptable history match ing of the pilot area production was obtained, the 3 -D simulator was used to: evaluate the required volume of selected conformance treatment fluid; review expected pressures and rates during placement;. model temperature behavior; evaluate placement techniques, and forecast water cut reduction and incremental oil recovery from the producers in this simulated section of the pilot area. This paper outlines a methodology for selecting candidate wells for conformance treatments. The method involves application of several engineering tools, an integral component of which is a user-friendly conformance simulator. The use of the simulator has minimized data preparation time and allows the running of sensitivity cases quickly to explore different possible scenarios that best represent the reservoir. The proposed methodology provides an efficient means of identifying conformance problems and designing optimized solutions for these individual

  1. The tunable mechanical property of water-filled carbon nanotubes under an electric field

    Science.gov (United States)

    Ye, Hongfei; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen; Zong, Zhi; Zheng, Yonggang

    2014-03-01

    The spring-induced compression of water-filled carbon nanotubes (CNTs) under an electric field is investigated by molecular dynamics simulations. Due to the incompressibility and polarity of water, the mechanical property of CNTs can be tuned through filling with water molecules and applying an electric field. To explore the variation of the mechanical property of water-filled CNTs, the effects of the CNT length, the filling density and the electric field intensity are examined. The simulation results indicate that the water filling and electric field can result in a slight change in the elastic property (the elastic modulus and Poisson's ratio) of water-filled CNTs. However, the yield stress and average post-buckling stress exhibit a significant response to the water density and electric field intensity. As compared to hollow CNTs, the increment in yield stress of the water-filled CNTs under an electric field of 2.0 V Å-1 is up to 35.29%, which is even higher than that resulting from metal filling. The findings from this study provide a valuable theoretical basis for designing and fabricating the controlling units at the nanoscale.

  2. Environmental impact of peat mining. Development of storm water treatment methods

    International Nuclear Information System (INIS)

    Kloeve, Bjoern

    1997-11-01

    The aim of this series of studies has been to develop methods to reduce the environmental impacts of peat mining, that function when the pollution load is high and that are economically viable for all peat mines. Sediment transport and nutrient leaving were studied with the purpose of establishing more efficient treatment alternatives. A controlled experiment was set up to measure the erosion of peat from the soil surface and from ditch beds during heavy rainfall and runoff events and to measure the settling characteristics of base soil peat and peat deposited in channels. The study demonstrates the importance of channel bed erosion as the main source of sediment during peak runoff. Sediment transport and nutrient leaching were further observed in the field during 1995 and 1996. The study showed that suspended solids (SS) is mainly generated during extreme events, such as flooding. These high flow events erode the material deposited on the channel bed during low flows. The leaching of nitrogen occurs after large rain events, while high phosphorous concentrations occur when the water table is low. Treatment alternatives were developed to improve removal of SS and nutrients. Different types of ponds were tested in a laboratory study. The study showed that the main factor affecting the settling of small peat particles is the depth of the settling basin. A mathematical model showed that in the case of bare soil erosion, the best treatment alternative would be to store the water in the large drainage network rather than in the sedimentation basin. Different structures suitable for peak runoff control were tested under laboratory and field conditions 54 refs, 11 figs

  3. Green Walls as an Approach in Grey Water Treatment

    Science.gov (United States)

    Rysulova, Martina; Kaposztasova, Daniela; Vranayova, Zuzana

    2017-10-01

    Grey water contributes significantly to waste water parameters such as biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total phosphorus (Ptotal), total nitrogen (Ntotal), ammonium, boron, metals, salts, surfactants, synthetic chemicals, oils and greases, xenobiotic substances and microorganisms. Concentration of these pollutants and the water quality highlights the importance of treatment process in grey water systems. Treatment technologies operating under low energy and maintenance are usually preferred, since they are more cost effective for users. Treatment technologies based on natural processes represent an example of such technology including vegetated wall. Main aim of this paper is to introduce the proposal of vegetated wall managing grey water and brief characteristic of proposed system. Is expected that prepared experiment will establish the purifying ability and the potential of green wall application as an efficient treatment technology.

  4. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  5. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    Science.gov (United States)

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  6. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water.

    Science.gov (United States)

    Su, Hao-Chang; Liu, You-Sheng; Pan, Chang-Gui; Chen, Jun; He, Liang-Ying; Ying, Guang-Guo

    2018-03-01

    As emerging contaminants, antibiotic resistance genes (ARGs) have become a public concern. This study aimed to investigate the occurrence and diversity of ARGs, and variation in the composition of bacterial communities in source water, drinking water treatment plants, and tap water in the Pearl River Delta region, South China. Various ARGs were present in the different types of water. Among the 27 target ARGs, floR and sul1 dominated in source water from three large rivers in the region. Pearson correlation analysis suggested that sul1, sul2, floR, and cmlA could be potential indicators for ARGs in water samples. The total abundance of the detected ARGs in tap water was much lower than that in source water. Sand filtration and sedimentation in drinking water treatment plants could effectively remove ARGs; in contrast, granular activated carbon filtration increased the abundance of ARGs. It was found that Pseudomonas may be involved in the proliferation and dissemination of ARGs in the studied drinking water treatment system. Bacteria and ARGs were still present in tap water after treatment, though they were significantly reduced. More research is needed to optimize the water treatment process for ARG removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Citrus processing waste water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hawash, S; Hafez, A J; El-Diwani, G

    1988-02-01

    The process utilizes biological treatment to decompose organic matter and decreases the COD to a value of 230 ppm, using 161 of air per 1 of treated waste water for a contact time of 2.5 h. Ozone is used subsequently for further purification of the waste water by destroying refractory organics. This reduces the COD to a value of 40 ppm, and consequently also lowers the BOD. Ozone also effectively removed the yellow-brown colour due to humic substances in dissolved or colloidal form; their oxidation leaves the water sparkling. Iron and manganese are also eliminated.

  8. SISTEM PENGOLAHAN AIR MINUM SEDERHANA (PORTABLE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Isna Syauqiah

    2017-04-01

    Full Text Available Water is the most important thing for living. Lately it is difficult to get clean water and suitable for consumption. Many water sources are commonly used not as good as it used to be. It needs to research about making a simple water treatment system with variable time and suitable volume for Martapura river conditions by knowing the quality of drinking water that produced. The technology used includes water treatment conducted physically (filtration and aeration, chemical processing (adsorption and desinfection using UV. This research was conducted in several stages. First is the design of portable water treatment itself is by making the columns of aeration, filtration column, adsorption column, and columns where the desinfection equipment are separated. Second, the optimizing tools that aim to determine the optimum time and volume of each instrument. So it will be obtained the optimum time and volume for whole instrument. Third, the analysis results of Martapura river. Based on research results obtained that the design of this tool is less effective with the quality of Martapura river water conditions to be processed into drinking water that is usually consumed by people around because the quality of drinking water that produced has not reached the standard of specified drinking water quality standard. Optimum time for this tool is 135 s with a desinfection time for 2 minutes and the optimum volume of entering water amounts to 2 L

  9. BTEX compounds in water - future trends and directions for water treatment

    OpenAIRE

    Fayemiwo, OM; Daramola, MO; Moothi, K

    2017-01-01

    BTEX (benzene, toluene, ethylbenzene, and xylene) compounds are common water resource and potable water pollutants that are often left undetected and untreated by municipal treatment systems in spite of the negative repercussions associated with their ingestion. The US EPA has classified these pollutants as priority pollutant, yet they are persistently present in a variety of water resources. In this review paper, we highlight the sources and reported concentrations of BTEX compounds in water...

  10. Water and nutrient budgets at field and regional scale : travel times of drainage water and nutrient loads to surface water

    NARCIS (Netherlands)

    Eertwegh, van den G.A.P.H.

    2002-01-01

    Keywords : water and nutrient budget, travel time of drainage water, dual-porosity concept, agricultural nutrient losses, loads to surface water, field-scale experiments, regional-scale

  11. Hydraulic modelling of drinking water treatment plant operations

    NARCIS (Netherlands)

    Worm, G.I.M.; Mesman, G.A.M.; Van Schagen, K.M.; Borger, K.J.; Rietveld, L.C.

    2009-01-01

    The flow through a unit of a drinking water treatment plant is one of the most important parameters in terms of a unit's effectiveness. In the present paper, a new EPAnet library is presented with the typical hydraulic elements for drinking water treatment processes well abstraction, rapid sand

  12. Laboratory testing and field implementation of scale inhibitor squeeze treatments to subsea and platform horizontal wells, North Sea Basin

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M. M.; Lewis, M. [Nalco/Exxon Energy Chemicals Ltd, Aberdeen (United Kingdom); Tomlinson, C. J.; Pritchard, A. R. P. [Enterprise Oil Plc, Aberdeen (United Kingdom)

    1998-12-31

    Field results from a number of scale squeeze treatments carried out on subsea and platform horizontal wells in the Nelson Field of the North Sea are presented. Scale inhibitor chemicals are reviewed along with factors which influence inhibitor selection for both horizontal and highly deviated wells. Formation brine/inhibitor incompatibility, formation minerals/inhibitor incompatibility, and the potential for sand production and oil-in-water process as a result of these incompatibilities, are discussed. Practical difficulties in squeezing subsea horizontal wells, the use of chemical stabilizers to reduce formation brine/inhibitor incompatibility, variation of pump rates to encourage propagation of inhibitor along the wellbore, and the potential of fluid diversion are outlined, stressing the significance of production logging data (or good reservoir simulation data), to evaluate the location of water production prior to the squeeze treatment. Results of these treatments show that with the correct laboratory evaluation of both scale inhibitor and divertor agents, and with appropriate utilization of production logging or reservoir simulation data, it is possible to carry out scale inhibitor squeeze treatments of subsea and platform horizontal wells without having to resort to coiled tubing. 22 refs., 1 tab., 14 figs

  13. Efficiency of preliminary discharge of stratum water in Tuymazinskoe oil field

    Science.gov (United States)

    Almukhametova, E. M.; Akimov, A. V.; Kalinina, S. V.; Fatkullin, I. F.; Gizetdinov, I. A.

    2017-10-01

    The high water content of oil is a common occurrence for many Russian fields at the late stage of development. Due to the elimination of associated water in oil, the overload of field pipelines often takes place. Products are often collected by a one-pipe system, which means that the formation water is discharged using special plants PWDS. Research workers have made it clear that the complexity of production “BashNIPIneft” and OGPD “Tuymazaneft” on Tuimazy field was due to the fact that the collection of production, in most cases, uses a centralized system, which loses its advantages when there is a large content of water in the emulsions. Research has indicated that the reagents, used in the field, proved to be ineffective, as the oil of Devonian formations is heavily saturated with paraffins. But, ultimately, the most effective agents for the destruction of emulsions have been nonetheless identified. This paper describes the implementation of the system of track discharge of formation water, which is currently in use for many oil companies not only in Russia but also worldwide.

  14. SU-F-T-216: Evaluating Dosimetry Accuracy of a Treatment Planning System On Small Proton Fields

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, M; Xiao, Z; Zou, J; Chen, T; Yue, N [Rutgers University, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: This study is aiming to identify the smallest field size for which a treatment planning system (TPS) can accurately calculate the relative dose distribution. The finding would be used as a guideline to choose the smallest proton field for clinical treatment. Methods: Mevion S250™ double scattering proton delivery system and Eclipse™ TPS (Varian) with pencil beam convolution (PBC) dose algorithm were used in this study. Square sized fields of 1 cm, 2 cm, 3 cm, 4 cm, 5 cm, and 10 cm were planned on a cubical water phantom with iso-center placed at 10 cm depth. All beams used the same proton beam option: range 15 cm and modulation 10 cm. Dose in water was calculated without any compensator. Gafchromic™ EBT3 film and diode detectors were used to measure the central axis dose distribution and lateral dose profiles at 5 cm, 10 cm, and 14 cm depth. Results: The preliminary film measurement shows good agreement between Eclipse calculated lateral dose profiles for all tested field sizes. The differences on full width half maximum were ≤ 1 mm while the differences on the penumbras were between 1 mm and 2 mm between Eclipse and film. For the depth dose, Eclipse results matched well with film measurements for field sizes down to 2 cm{sup 2}. With smaller field size of 1 cm{sup 2}, Eclipse was able to predict the decreasing of SOBP due to the lack of lateral charged particle equilibrium in depth. However, it did not match the film measurement. Diode measurement results will be available at the time of presentation. Conclusion: The PBC dose algorithm in Eclipse can accurately calculate relative dose distribution in double scattered proton system for field size down to 2 cm{sup 2}.

  15. Managing peatland vegetation for drinking water treatment.

    Science.gov (United States)

    Ritson, Jonathan P; Bell, Michael; Brazier, Richard E; Grand-Clement, Emilie; Graham, Nigel J D; Freeman, Chris; Smith, David; Templeton, Michael R; Clark, Joanna M

    2016-11-18

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.

  16. Influence of bird feces to water quality in paddy fields during winter season

    Science.gov (United States)

    Somura, H.; Takeda, I.; Masunaga, T.; Mori, Y.; Ide, J.

    2009-12-01

    Thousands of migratory birds such as tundra swan came to the paddy fields for overwintering in recent years in the study area. They stayed in paddy fields during night time for sleeping and used around the fields as a feeding ground during day time. During the birds stay, it was observed that water pooled in the paddy fields gradually turned green and gave off a bad smell. In this study, we tried to estimate the influence of the bird’s feces to water quality in the paddy fields. The study area is in the southeastern portion of Matsue City in Shimane Prefecture, Japan. In several paddy fields, puddling procedure was executed after harvesting rice and then water was stored in the paddy fields during winter season. This is because of being easier of farming activities such as weeding next season and of avoiding using pesticide for weeding with rising of environmental awareness. Water in the paddy fields was collected once or twice a month from the target fields and analyzed nitrogen, phosphorus, and organic carbon in 2007. In the study in 2006, as water was sampled once a week and the changes in the water quality had been grasped, we paid attention to behavior of the birds in a day in the field investigation in 2007. The number of the birds was counted once an hour from visible 7 am to 6 pm once a month. In addition to this, fresh feces were sampled from the fields and analyzed the contents of nitrogen, phosphorus, and organic carbon in the feces. As results, average water qualities of TN, TP, and TOC from November 2007 to March 2008 showed very high concentrations compared with a river water concentration used as irrigation water. More than 70% of TN in the water was ammonia nitrogen. Moreover, comparing with a standard fertilizer amount of nitrogen and phosphorus for paddy fields during irrigation period, it was estimated that the amount of nitrogen excreted by the bird’s feces during the winter season was equivalent to the standard fertilizer amount and the

  17. Sterols indicate water quality and wastewater treatment efficiency.

    Science.gov (United States)

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  18. Technique of complex slime water treatment of coal-mining branch

    OpenAIRE

    Solodov, G. А.; Zhbyr, Е. V.; Papin, А. V.; Nevedrov, А. V.

    2007-01-01

    The possibility of complex slime water treatment at coal-mining and coal-treating plants producing marketable products: power-generating concentrate, coal-water fuel, magnetic fraction, industrial water is shown. A basic process flowsheet of slime water treatment presenting a united technological complex is suggested.

  19. Use of ionizing radiation in waste water treatment

    International Nuclear Information System (INIS)

    Cech, R.

    1976-01-01

    A survey is presented of methods and possibilities of applying ionizing radiation in industrial waste water treatment. The most frequently used radiation sources include the 60 Co and 137 Cs isotopes and the 90 Sr- 90 Y combined source. The results are reported and the methods used are described of waste water treatment by sedimenting impurities and decomposing organic and inorganic compounds by ionizing radiation. It was found that waste water irradiation accelerated sedimentation and decomposition processes. The doses used varied between 50 and 500 krads. Ionizing radiation may also be used in waste water disinfection in which the effects are used of radiation on microorganisms and of the synthesis of ozone which does not smell like normally used chlorine. The described methods are still controversial from the economic point of view but the cost of waste water treatment by irradiation will significantly be reduced by the use of spent fuel elements. (J.B.)

  20. Estrogen-related receptor gamma disruption of source water and drinking water treatment processes extracts.

    Science.gov (United States)

    Li, Na; Jiang, Weiwei; Rao, Kaifeng; Ma, Mei; Wang, Zijian; Kumaran, Satyanarayanan Senthik

    2011-01-01

    Environmental chemicals in drinking water can impact human health through nuclear receptors. Additionally, estrogen-related receptors (ERRs) are vulnerable to endocrine-disrupting effects. To date, however, ERR disruption of drinking water potency has not been reported. We used ERRgamma two-hybrid yeast assay to screen ERRgamma disrupting activities in a drinking water treatment plant (DWTP) located in north China and in source water from a reservoir, focusing on agonistic, antagonistic, and inverse agonistic activity to 4-hydroxytamoxifen (4-OHT). Water treatment processes in the DWTP consisted of pre-chlorination, coagulation, coal and sand filtration, activated carbon filtration, and secondary chlorination processes. Samples were extracted by solid phase extraction. Results showed that ERRgamma antagonistic activities were found in all sample extracts, but agonistic and inverse agonistic activity to 4-OHT was not found. When calibrated with the toxic equivalent of 4-OHT, antagonistic effluent effects ranged from 3.4 to 33.1 microg/L. In the treatment processes, secondary chlorination was effective in removing ERRgamma antagonists, but the coagulation process led to significantly increased ERRgamma antagonistic activity. The drinking water treatment processes removed 73.5% of ERRgamma antagonists. To our knowledge, the occurrence of ERRgamma disruption activities on source and drinking water in vitro had not been reported previously. It is vital, therefore, to increase our understanding of ERRy disrupting activities in drinking water.

  1. Innovative on-site treatment cuts frac flowback water costs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    Water is an essential component of the drilling and hydraulic fracturing or fracking process and so the natural gas industry is a heavy user of water. Learning from other industries, gas producers are now employing mobile service providers with the latest integrated treatment systems (ITS) to clean flowback and produced water from fracturing operations at the wellhead. This paper presents a novel on-site treatment for frac water. ITS are pre-fabricated on moveable skids or a truck trailer with all the necessary controls, piping, valves, instrumentation, pumps, mixers and chemical injection modules. They remove oil and other hydrocarbons, suspended solids, and dissolved metals from the frac water using the tightly controlled chemistry, separation and filtration technology. This method can cut the average cost of treating produced water by 50%, simultaneously allowing drillers to maximize their efforts and manpower on generating oil and gas profits, rather than on water treatment.

  2. Electro-suppression of water nano-droplets' solidification in no man's land: Electromagnetic fields' entropic trapping of supercooled water

    Science.gov (United States)

    Nandi, Prithwish K.; Burnham, Christian J.; English, Niall J.

    2018-01-01

    Understanding water solidification, especially in "No Man's Land" (NML) (150 K < T < 235 K) is crucially important (e.g., upper-troposphere cloud processes) and challenging. A rather neglected aspect of tropospheric ice-crystallite formation is inevitably present electromagnetic fields' role. Here, we employ non-equilibrium molecular dynamics of aggressively quenched supercooled water nano-droplets in the gas phase under NML conditions, in externally applied electromagnetic (e/m) fields, elucidating significant differences between effects of static and oscillating fields: although static fields induce "electro-freezing," e/m fields exhibit the contrary - solidification inhibition. This anti-freeze action extends not only to crystal-ice formation but also restricts amorphisation, i.e., suppression of low-density amorphous ice which forms otherwise in zero-field NML environments. E/m-field applications maintain water in the deeply supercooled state in an "entropic trap," which is ripe for industrial impacts in cryo-freezing, etc.

  3. Secondary formation of disinfection by-products by UV treatment of swimming pool water

    Energy Technology Data Exchange (ETDEWEB)

    Spiliotopoulou, Aikaterini [Water ApS, Farum Gydevej 64, 3520 Farum (Denmark); Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby (Denmark); Hansen, Kamilla M.S., E-mail: kmsh@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby (Denmark); Andersen, Henrik R. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby (Denmark)

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  4. Secondary formation of disinfection by-products by UV treatment of swimming pool water

    International Nuclear Information System (INIS)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M.S.; Andersen, Henrik R.

    2015-01-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  5. Cyanobacteria, Toxins and Indicators: Field Monitoring,Treatment Facility Monitoring and Treatment Studies

    Science.gov (United States)

    This presentation is a compilation of harmful algal bloom (HAB) related field monitoring data from the 2015 bloom season, treatment plant monitoring data from the 2013 and 2014 bloom seasons, and bench-scale treatment study data from 2015.

  6. Process water treatment in Canada's oil sands industry : 1 : target pollutants and treatment objectives

    International Nuclear Information System (INIS)

    Allen, E.W.

    2008-01-01

    The continuous recycling of tailings pond water in the oil sands industry has contributed to an overall decline in water quality used for bitumen recovery, general water consumption, and remedial activities. This paper reviewed process water quality and toxicity data from 2 long-term oil sands operations. The aim of the study was to determine potential roles for water treatment and provide benchmarks for the selection of candidate water treatment technologies in the oil sands region of Alberta. An overview of the oil sands industry was provided as well as details of bitumen recovery processes. The study examined target pollutants and exceedances identified in environmental and industrial water quality guidelines. The study demonstrated that the salinity of tailings pond water increased at a rate of 75 mg per litre per year between 1980 and 2001. Increases in hardness, chloride, ammonia, and sulphates were also noted. Naphthenic acids released during bitumen extraction activities were determined as the primary cause of tailings pond water toxicity. A summary of recent studies on experimental reclamation ponds and treatment wetlands in the oil sands region was included. 19 refs., 4 tabs., 11 figs

  7. Treatment of oily water by flotation

    International Nuclear Information System (INIS)

    Ortiz O, H.B.

    2002-01-01

    The operation of the nuclear power plants such as Laguna Verde (CLV) with nuclear reactors of the boiling water type (BWR) produce radioactive waste solids, liquids and gaseous which require of a special treatment in their operation and arrangement. Such is the case of the liquid wastes from CLV which are a mixture of water and synthetic oils coming from leaks and spilling by pressure of maintenance of electro-mechanical equipment associated to the performance of the nuclear power plant. This mixture of water and spent oils is pretreated by means of sedimentation, centrifugation and evaporation. However the realized efforts by the CLV, the spent oil obtained from the pretreatment contains concentrations of radioactive material higher than the tolerance limits established in the normative in force in radiological safety (0.37 Bq m L -1 for 60 Co and 54 Mn). In this context it was necessary to design an efficient treatment system and economically profitable which separates the oil, the heavy metals and the leftovers of radioactive material that could be present in water, with the purpose of fulfil with the Mexican Official Standards corresponding for its unload or even it can reuse it in the wash process of treated oil. The treatment system of oily water waste consists of: a) Coagulation-flocculation, b) Flotation system with modified air dissolved (DAFm). The proposed flotation process allows to reach a higher separation efficiencies of: Concentration of greases and oils: 94.11 %; Turbidity: 98.6 %; 60 Co: 82.3 % ; Co: 94.8 % and Cr: 99.9 % (Author)

  8. Characterization of hydraulic fracturing flowback water in Colorado: implications for water treatment.

    Science.gov (United States)

    Lester, Yaal; Ferrer, Imma; Thurman, E Michael; Sitterley, Kurban A; Korak, Julie A; Aiken, George; Linden, Karl G

    2015-04-15

    A suite of analytical tools was applied to thoroughly analyze the chemical composition of an oil/gas well flowback water from the Denver-Julesburg (DJ) basin in Colorado, and the water quality data was translated to propose effective treatment solutions tailored to specific reuse goals. Analysis included bulk quality parameters, trace organic and inorganic constituents, and organic matter characterization. The flowback sample contained salts (TDS=22,500 mg/L), metals (e.g., iron at 81.4 mg/L) and high concentration of dissolved organic matter (DOC=590 mgC/L). The organic matter comprised fracturing fluid additives such as surfactants (e.g., linear alkyl ethoxylates) and high levels of acetic acid (an additives' degradation product), indicating the anthropogenic impact on this wastewater. Based on the water quality results and preliminary treatability tests, the removal of suspended solids and iron by aeration/precipitation (and/or filtration) followed by disinfection was identified as appropriate for flowback recycling in future fracturing operations. In addition to these treatments, a biological treatment (to remove dissolved organic matter) followed by reverse osmosis desalination was determined to be necessary to attain water quality standards appropriate for other water reuse options (e.g., crop irrigation). The study provides a framework for evaluating site-specific hydraulic fracturing wastewaters, proposing a suite of analytical methods for characterization, and a process for guiding the choice of a tailored treatment approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Treatment technology for removing radon from small community water supplies

    International Nuclear Information System (INIS)

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1990-01-01

    This paper reports on the selection of an appropriate treatment system to remove radon from drinking water which depends primarily upon percent removal; capital and operating and maintenance costs; safety; raw water quality with respect to parameters such as Fe, Mn, bacteria, and organics. The radon removal efficiency of the diffused bubble and packed tower aeration exceeded 99% at A:W ratios of 15:1 and 5:1, respectively; the GAC system averaged 81 ± 7.7%. Though our field evaluations indicated that GAC systems may not be as efficient as aeration systems, the system tested was operated above design requirements for most of the study period. Other researchers have found removals of greater than 99% with GAC point-of-entry applications. Therefore, each of these processes has the potential to consistently remove 99% of the radon applied. However, even this percent removal may not be sufficient to meet an MCL in the range of 200 to 1000 pCi/L if the raw water contained more than 20,000 to 100,000 pCi/L, respectively

  10. Home Water Treatment Habits and Effectiveness in a Rural Arizona Community.

    Science.gov (United States)

    Lothrop, Nathan; Wilkinson, Sarah T; Verhougstraete, Marc; Sugeng, Anastasia; Loh, Miranda M; Klimecki, Walter; Beamer, Paloma I

    Drinking water quality in the United States (US) is among the safest in the world. However, many residents, often in rural areas, rely on unregulated private wells or small municipal utilities for water needs. These utilities may violate the Safe Drinking Water Act contaminant guidelines, often because they lack the required financial resources. Residents may use alternative water sources or install a home water treatment system. Despite increased home water treatment adoption, few studies have examined their use and effectiveness in the US. Our study addresses this knowledge gap by examining home water treatment in a rural Arizona community. Water samples were analyzed for metal(loid)s, and home treatment and demographic data were recorded in 31 homes. Approximately 42% of homes treated their water. Independent of source water quality, residents with higher income (OR = 1.25; 95%CI (1.00 - 1.64)) and education levels (OR = 1.49; 95%CI (1.12 - 2.12)) were more likely to treat their water. Some contaminant concentrations were effectively reduced with treatment, while some were not. We conclude that increased educational outreach on contaminant testing and treatment, especially to rural areas with endemic water contamination, would result in a greater public health impact while reducing rural health disparities.

  11. Innovative Treatment Technologies for Natural Waters and Wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  12. SU-E-T-323: Dosimetric Evaluation of Small Fields for SBRT Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R; Eldib, A; Wang, B; Ma, C; Li, J [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: Stereotactic body radiation therapy (SBRT) is commonly employed to treat small targets for effective tumor control with radiation beams of small field sizes. The goal of this work was to evaluate dosimetrically a treatment planning system (TPS) by comparing the calculated dose for SBRT treatment with ion-chamber measurements. Methods: 3D images of a solid-water phantom with a pinpoint ion-chamber (0.015cm3) inside were acquired with a CT scanner. Active volume of the ion-chamber was delineated on CT images. Targets with a diameter of 1.5cm, 2cm, 3cm, 4cm and 5cm were drawn around the chamber. 3DCRT plans were generated for each target size with centrally opened 6MV beams and off-axis beams by changing the isocenter location, respectively, using a TPS with the Analytical Anisotropic Algorithm. A 21iX linear accelerator was employed for plan delivery. The measured and calculated doses were compared. To evaluate the dose calculations in heterogeneity for small fields SBRT treatment, similar plans were also generated and delivered on a heterogeneous thoracic phantom for 5 different size targets in the lung. Results: Dose comparisons between measurements and calculations showed 5.2%, 1.88%, 1.34%, 1.01% and 0.85% difference for SBRT plans with small central axis beams and 0.96%, 0.15%, 0.58%, 0.22% and 0.77% difference for plans with off-axis beams for five different size targets. For the thoracic phantom, the differences on dose between measurements and calculations are bigger, which are 8%, 5.9%, 4.5%, 3.9% and 4.5%, respectively. Conclusion: Dose verification for small fields used in the SBRT treatment has been performed based on ion-chamber measurements in both homogenous and heterogeneous phantoms. More than a 5% difference has been observed in the heterogeneous phantom, especially for very small fields. To meet the ICRU recommendation on a dose difference of no more than 5%, some corrections on the commissioning parameters of the TPS are needed.

  13. Safe household water treatment and storage using ceramic drip filters: a randomised controlled trial in Bolivia.

    Science.gov (United States)

    Clasen, T; Brown, J; Suntura, O; Collin, S

    2004-01-01

    A randomised controlled field trial was conducted to evaluate the effectiveness of ceramic drip filters to improve the microbiological quality of drinking water in a low-income community in rural Bolivia. In four rounds of water sampling over five months, 100% of the samples were free of thermotolerant (faecal) coliforms (TTC) compared to an arithmetic mean TTC count of 1517, 406, 167 and 245 among control households which continued to use their customary sources of drinking water. The filter systems produced water that consistently met WHO drinking-water standards despite levels of turbidity that presented a challenge to other low-cost POU treatment methods. The filter systems also demonstrated an ability to maintain the high quality of the treated water against subsequent re-contamination in the home.

  14. Laser removal of water repellent treatments on limestone

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Heras, Miguel; Alvarez de Buergo, Monica; Rebollar, Esther; Oujja, Mohamed; Castillejo, Marta; Fort, Rafael

    2003-12-15

    Protective and water repellent treatments are applied on stone materials used on buildings or sculptures of artistic value to reduce water intrusion without limiting the natural permeability to water vapour of the material. The effect of the wavelength associated with the laser removal of two water repellent treatments applied on limestone, Paraloid B-72, a copolymer of methyl acrylate and ethyl methacrylate, and Tegosivin HL-100, a modified polysiloxane resin, was investigated by using the four harmonics of a Q-switched Nd:YAG laser (1064, 532, 355 and 266 nm). The modifications induced on the surface of limestone samples by laser irradiation were studied using colorimetry, roughness measurements and scanning electron microscopy (SEM). The removal of the treatments was found to be dependent on the laser irradiation conditions and on the characteristics of the coatings. The fundamental laser radiation was effective in removing both treatments, but thermal alteration processes were induced on the constituent calcite crystals. The best results were obtained by irradiation in the near UV at 355 nm.

  15. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    Directory of Open Access Journals (Sweden)

    Q. Xie

    2016-01-01

    Full Text Available This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high-throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  16. Seasonal variations of microbial community in a full scale oil field produced water treatment plant

    International Nuclear Information System (INIS)

    Xie, Q.; Bai, S.; Li, Y.; Liu, L.; Wang, S.; Xi, J.

    2016-01-01

    This study investigated the microbial community in a full scale anaerobic baffled reactor and sequencing batch reactor system for oil-produced water treatment in summer and winter. The community structures of fungi and bacteria were analyzed through polymerase chain reaction–denaturing gradient gel electrophoresis and Illumina high throughput sequencing, respectively. Chemical oxygen demand effluent concentration achieved lower than 50 mg/L level after the system in both summer and winter, however, chemical oxygen demand removal rates after anaerobic baffled reactor treatment system were significant higher in summer than that in winter, which conformed to the microbial community diversity. Saccharomycotina, Fusarium, and Aspergillus were detected in both anaerobic baffled reactor and sequencing batch reactor during summer and winter. The fungal communities in anaerobic baffled reactor and sequencing batch reactor were shaped by seasons and treatment units, while there was no correlation between abundance of fungi and chemical oxygen demand removal rates. Compared to summer, the total amount of the dominant hydrocarbon degrading bacteria decreased by 10.2% in anaerobic baffled reactor, resulting in only around 23% of chemical oxygen demand was removed in winter. Although microbial community significantly varied in the three parallel sulfide reducing bacteria, the performance of these bioreactors had no significant difference between summer and winter.

  17. Water treatment for fossil fuel power generation - technology status report

    International Nuclear Information System (INIS)

    2006-01-01

    This technology status report focuses on the use of water treatment technology in fossil fuel power plants. The use of polymeric ion exchange resins for deionization of water, the currently preferred use of ion exchange for economically treating water containing low dissolved salts, the use of low pressure high-flux membranes, membrane microfiltration, and reverse osmosis are discussed. Details are given of the benefits of the technologies, water use at power plants, the current status of water treatment technologies, and the potential for future developments, along with power plant market trends and potentials, worldwide developments, and UK capabilities in water treatment plant design and manufacturing

  18. Portable field water sample filtration unit

    International Nuclear Information System (INIS)

    Hebert, A.J.; Young, G.G.

    1977-01-01

    A lightweight back-packable field-tested filtration unit is described. The unit is easily cleaned without cross contamination at the part-per-billion level and allows rapid filtration of boiling hot and sometimes muddy water. The filtration results in samples that are free of bacteria and particulates and which resist algae growth even after storage for months. 3 figures

  19. Dual permeability soil water dynamics and water uptake by roots in irrigated potato fields

    DEFF Research Database (Denmark)

    Dolezal, Frantisek; Zumr, David; Vacek, Josef

    2007-01-01

    Water movement and uptake by roots in a drip-irrigated potato field was studied by combining field experiments, outputs of numerical simulations and summary results of an EU project (www.fertorganic.org). Detailed measurements of soil suction and weather conditions in the Bohemo-Moravian highland...

  20. Electropumping of water with rotating electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; De Luca, Sergio; Todd, Billy

    2013-01-01

    exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum...

  1. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    Science.gov (United States)

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  2. Evaluation of appropriate technologies for grey water treatments and reuses.

    Science.gov (United States)

    Li, Fangyue; Wichmann, Knut; Otterpohl, Ralf

    2009-01-01

    As water is becoming a rare resource, the onsite reuse and recycling of grey water is practiced in many countries as a sustainable solution to reduce the overall urban water demand. However, the lack of appropriate water quality standards or guidelines has hampered the appropriate grey water reuses. Based on literature review, a non-potable urban grey water treatment and reuse scheme is proposed and the treatment alternatives for grey water reuse are evaluated according to the grey water characteristics, the proposed standards and economical feasibility.

  3. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study

    Science.gov (United States)

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-01

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  4. Field efficacy and safety of fluralaner solution for administration in drinking water for the treatment of poultry red mite (Dermanyssus gallinae) infestations in commercial flocks in Europe.

    Science.gov (United States)

    Thomas, Emmanuel; Chiquet, Mathieu; Sander, Björn; Zschiesche, Eva; Flochlay, Annie Sigognault

    2017-10-09

    Welfare concerns, production losses caused by Dermanyssus gallinae, the poultry red mite (PRM), and widespread mite resistance to environmentally applied acaricides continue to drive an urgent need for new and effective control measures. Fluralaner is a novel systemic acaricide developed to address that need. A series of field studies was initiated to investigate the safety and efficacy of a fluralaner solution (10 mg/ml) administered in drinking water at a dose rate of 0.5 mg/kg on two occasions with a 7-day interval, for treatment of natural PRM infestations in chickens. Blinded, negative-controlled studies were completed in Europe across eight layer, two breeder, and two replacement chicken farms. At each farm, two similar flocks were housed in similar PRM-infested units (either rooms within a building, or separate buildings) varying from 550 to 100,000 birds per unit. One unit at each farm was allocated to fluralaner treatment, administered in drinking water on Days 0 and 7. One unit remained untreated. Mite traps were placed throughout each unit on Days -1, 0 or 1, 3, 6, 9, and 13 or 14, then at weekly or two-weekly intervals, retrieved after 24 h and processed for mite counts. Efficacy at each farm was assessed by mean PRM count reductions from traps in treated units compared with those from control units. Production parameters and safety were also monitored. Efficacy was 95.3 to 99.8% on Day 3 and 97.8 to 100% on Day 9, thereafter remaining above 90% for 56 to 238 days after treatment initiation. Post-treatment improvement in egg-laying rate was greater by 0.9 to 12.6% in the treated group at 9 of the 10 layer or breeder farms. There were no treatment-related adverse events. Fluralaner administered at 0.5 mg/kg via drinking water twice, 7 days apart, was well tolerated and highly efficacious against the PRM in naturally infested chickens representing a range of production types and management systems. The results indicate that this novel treatment has

  5. Amendment of arsenic and chromium polluted soil from wood preservation by iron residues from water treatment

    DEFF Research Database (Denmark)

    Nielsen, Sanne Skov; Petersen, L. R.; Kjeldsen, Peter

    2011-01-01

    An iron-rich water treatment residue (WTR) consisting mainly of ferrihydrite was used for immobilization of arsenic and chromium in a soil contaminated by wood preservatives. A leaching batch experiment was conducted using two soils, a highly contaminated soil (1033mgkg−1 As and 371mgkg−1 Cr....... Pore water was extracted during 3years from the amended soil and a control site. Pore water arsenic concentrations in the amended soil were more than two orders of magnitude lower than in the control for the upper samplers. An increased release of arsenic was observed during winter in both fields...

  6. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  7. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  8. Earth's field NMR detection of oil under arctic ice-water suppression

    Science.gov (United States)

    Conradi, Mark S.; Altobelli, Stephen A.; Sowko, Nicholas J.; Conradi, Susan H.; Fukushima, Eiichi

    2018-03-01

    Earth's field NMR has been developed to detect oil trapped under or in Arctic sea-ice. A large challenge, addressed here, is the suppression of the water signal that dominates the oil signal. Selective suppression of water is based on relaxation time T1 because of the negligible chemical shifts in the weak earth's magnetic field, making all proton signals overlap spectroscopically. The first approach is inversion-null recovery, modified for use with pre-polarization. The requirements for efficient inversion over a wide range of B1 and subsequent adiabatic reorientation of the magnetization to align with the static field are stressed. The second method acquires FIDs at two durations of pre-polarization and cancels the water component of the signal after the data are acquired. While less elegant, this technique imposes no stringent requirements. Similar water suppression is found in simulations for the two methods. Oil detection in the presence of water is demonstrated experimentally with both techniques.

  9. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants

    International Nuclear Information System (INIS)

    Hoeger, Stefan J.; Hitzfeld, Bettina C.; Dietrich, Daniel R.

    2005-01-01

    Toxin-producing cyanobacteria (blue-green algae) are abundant in surface waters used as drinking water resources. The toxicity of one group of these toxins, the microcystins, and their presence in surface waters used for drinking water production has prompted the World Health Organization (WHO) to publish a provisional guideline value of 1.0 μg microcystin (MC)-LR/l drinking water. To verify the efficiency of two different water treatment systems with respect to reduction of cyanobacterial toxins, the concentrations of MC in water samples from surface waters and their associated water treatment plants in Switzerland and Germany were investigated. Toxin concentrations in samples from drinking water treatment plants ranged from below 1.0 μg MC-LR equiv./l to more than 8.0 μg/l in raw water and were distinctly below 1.0 μg/l after treatment. In addition, data to the worldwide occurrence of cyanobacteria in raw and final water of water works and the corresponding guidelines for cyanobacterial toxins in drinking water worldwide are summarized

  10. CFD in drinking water treatment

    NARCIS (Netherlands)

    Wols, B.A.

    2010-01-01

    Hydrodynamic processes largely determine the efficacy of drinking water treatment systems, in particular disinfection systems. A lack of understanding of the hydrodynamics has resulted in suboptimal designs of these systems. The formation of unwanted disinfection-by-products and the energy

  11. Method of valuation of water field capacity

    International Nuclear Information System (INIS)

    Dancette, C.; Maertens, C.

    1973-01-01

    A method allowing the obtention of an approximation of field capacity, with only the determination of water retention at pF=3, is described. In alluvial soils, the accuracy of this method appears sufficient to satisfy the current needs in agriculture problems [fr

  12. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  13. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    International Nuclear Information System (INIS)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung

    2013-01-01

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon

  14. Analysis of the Difference of Radon Concentration between Water Treatment Plant and Tap water in house

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeongil; Yoo, Donghan; Kim, Heereyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2013-05-15

    As importance for the health, measurements and analysis about radon is active recently. Especially, radon concentration measurement about underground water which people drink was been carried out by the environment organizations in Korea and has been hot-issued because of the high radon concentration in water source. In present study, the difference of radon concentration among water source, water treatment plant and tap water in house is analyzed. It makes sense that the radon concentration in water treatment plant can represent the radon concentration in the tap water. Through the above experiments, the difference of the radon concentration between water treatment plant and tap water in house is figured out. It contributes to confirm more specific basis for estimating the annual radon exposure for the public. With further experiments and analysis, it is thought that it will be used as tool to assess more qualitatively for the radon concentration in tap water. Finally, this Fundamental approach will help in making new regulations about radon.

  15. Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization

    Science.gov (United States)

    Barnaby, R.J.; Oetting, G.C.; Gao, G.

    2004-01-01

    The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.

  16. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    Science.gov (United States)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  17. Effect of high intensity pulsed electric fields and heat treatments on vitamins of milk.

    Science.gov (United States)

    Bendicho, Silvia; Espachs, Alexandre; Arántegui, Javier; Martín, Olga

    2002-02-01

    The effects of high intensity pulsed electric field (HIPEF) treatments at room or moderate temperature on water-soluble (thiamine, riboflavin, ascorbic acid) and fat-soluble vitamins (cholecalciferol and tocopherol) were evaluated and compared with conventional thermal treatments. Vitamin retention was determined in two different substrates, milk and simulated skim milk ultrafiltrate (SMUF). Samples were subjected to HIPEF treatments of up to 400 micros at field strengths from 18.3 to 27.1 kV/cm and to heat treatments of up to 60 min at temperatures from 50 to 90 degrees C. No changes in vitamin content were observed after HIPEF or thermal treatments except for ascorbic acid. Milk retained more ascorbic acid after a 400 microstreatment at 22.6 kV/cm (93.4%) than after low (63 degrees C-30 min; 49.7% retained) or high (75 degrees C-15s; 86.7% retained) heat pasteurisation treatments. Retention of ascorbic acid fitted a first-order kinetic model for both HIPEF and thermal processes. First-order constant values varied from 1.8 x 10.4 to 1.27 x 10(-3) micros(-1) for the HIPEF treatments (18.3-27.1 kV/cm) and, for thermal processing ranged from 5 x 10(-3) to 8 x 10(-2) min(-1) (50-90 degrees C). No significant differences were found between the results obtained after applying HIPEF treatments at room or moderate temperature. However, results depended on the treatment media. A beneficial effect of natural skim milk components, mainly proteins, was observed on the preservation of ascorbic acid, since skim milk retained more ascorbic acid than SMUF after HIPEF treatments.

  18. Measurement and numerical simulation of high intensity focused ultrasound field in water

    Science.gov (United States)

    Lee, Kang Il

    2017-11-01

    In the present study, the acoustic field of a high intensity focused ultrasound (HIFU) transducer in water was measured by using a commercially available needle hydrophone intended for HIFU use. To validate the results of hydrophone measurements, numerical simulations of HIFU fields were performed by integrating the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation from the frequency-domain perspective with the help of a MATLAB-based software package developed for HIFU simulation. Quantitative values for the focal waveforms, the peak pressures, and the size of the focal spot were obtained in various regimes of linear, quasilinear, and nonlinear propagation up to the source pressure levels when the shock front was formed in the waveform. The numerical results with the HIFU simulator solving the KZK equation were compared with the experimental data and found to be in good agreement. This confirms that the numerical simulation based on the KZK equation is capable of capturing the nonlinear pressure field of therapeutic HIFU transducers well enough to make it suitable for HIFU treatment planning.

  19. Household water treatment systems: A solution to the production of safe drinking water by the low-income communities of Southern Africa

    Science.gov (United States)

    Mwabi, J. K.; Adeyemo, F. E.; Mahlangu, T. O.; Mamba, B. B.; Brouckaert, B. M.; Swartz, C. D.; Offringa, G.; Mpenyana-Monyatsi, L.; Momba, M. N. B.

    One of the United Nations Millennium Development Goals is to reduce to half by 2015 the number of people, worldwide, who lack access to safe water. Due to the numerous deaths and illnesses caused by waterborne pathogens, various household water treatment devices and safe storage technologies have been developed to treat and manage water at the household level. The new approaches that are continually being examined need to be durable, lower in overall cost and more effective in the removal of the contaminants. In this study, an extensive literature survey was conducted to regroup various household treatment devices that are suitable for the inexpensive treatment of water on a household basis. The survey has resulted in the selection of four household treatment devices: the biosand filter (BSF), bucket filter (BF), ceramic candle filter (CCF) and the silver-impregnated porous pot filter (SIPP). The first three filters were manufactured in a Tshwane University of Technology workshop, using modified designs reported in literature. The SIPP filter is a product of the Tshwane University of Technology. The performance of the four filters was evaluated in terms of flow rate, physicochemical contaminant (turbidity, fluorides, phosphates, chlorophyll a, magnesium, calcium and nitrates) and microbial contaminant ( Escherichia coli, Vibrio cholerae, Salmonella typhimurium, Shigella dysenteriae) removals. The flow rates obtained during the study period were within the recommended limits (171 l/h, 167 l/h, 6.4 l/h and 3.5 l/h for the BSF, BF, CCF and SIPP, respectively). Using standard methods, the results of the preliminary laboratory and field studies with spiked and environmental water samples indicated that all filters decreased the concentrations of contaminants in test water sources. The most efficiently removed chemical contaminant in spiked water was fluoride (99.9%) and the poorest removal efficiency was noted for magnesium (26-56%). A higher performance in chemical

  20. [Newly Designed Water Treatment Systems for Hospital Effluent].

    Science.gov (United States)

    Azuma, Takashi

    2018-01-01

     Pharmaceuticals are indispensable to contemporary life. Recently, the emerging problem of pharmaceutical-based pollution of river environments, including drinking water sources and lakes, has begun to receive significant attention worldwide. Because pharmaceuticals are designed to perform specific physiological functions in targeted regions of the human body, there is increasing concern regarding their toxic effects, even at low concentrations, on aquatic ecosystems and human health, via residues in drinking water. Pharmaceuticals are consistently employed in hospitals to treat disease; and Japan, one of the most advanced countries in medical treatment, ranks second worldwide in the quantity of pharmaceuticals employed. Therefore, the development of technologies that minimize or lessen the related environmental risks for clinical effluent is an important task as well as that for sewage treatment plants (STPs). However, there has been limited research on clinical effluent, and much remains to be elucidated. In light of this, we are investigating the occurrence of pharmaceuticals, and the development of water treatment systems for clinical effluent. This review discusses the current research on clinical effluent and the development of advanced water treatment systems targeted at hospital effluent, and explores strategies for future environmental risk assessment and risk management.

  1. Linking ceragenins to water-treatment membranes to minimize biofouling.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Altman, Susan Jeanne; Feng, Yanshu (Brigham Young University, Provo, Utah); Savage, Paul B. (Brigham Young University, Provo, Utah); Pollard, Jacob (Brigham Young University, Provo, Utah); Branda, Steven S.; Goeres, Darla (Montana State University, Bozeman, MT); Buckingham-Meyer, Kelli (Montana State University, Bozeman, MT); Stafslien, Shane (North Dakota State University, Fargo, ND); Marry, Christopher; Jones, Howland D. T.; Lichtenberger, Alyssa; Kirk, Matthew F.; McGrath, Lucas K. (LMATA, Albuquerque, NM)

    2012-01-01

    Ceragenins were used to create biofouling resistant water-treatment membranes. Ceragenins are synthetically produced antimicrobial peptide mimics that display broad-spectrum bactericidal activity. While ceragenins have been used on bio-medical devices, use of ceragenins on water-treatment membranes is novel. Biofouling impacts membrane separation processes for many industrial applications such as desalination, waste-water treatment, oil and gas extraction, and power generation. Biofouling results in a loss of permeate flux and increase in energy use. Creation of biofouling resistant membranes will assist in creation of clean water with lower energy usage and energy with lower water usage. Five methods of attaching three different ceragenin molecules were conducted and tested. Biofouling reduction was observed in the majority of the tests, indicating the ceragenins are a viable solution to biofouling on water treatment membranes. Silane direct attachment appears to be the most promising attachment method if a high concentration of CSA-121a is used. Additional refinement of the attachment methods are needed in order to achieve our goal of several log-reduction in biofilm cell density without impacting the membrane flux. Concurrently, biofilm forming bacteria were isolated from source waters relevant for water treatment: wastewater, agricultural drainage, river water, seawater, and brackish groundwater. These isolates can be used for future testing of methods to control biofouling. Once isolated, the ability of the isolates to grow biofilms was tested with high-throughput multiwell methods. Based on these tests, the following species were selected for further testing in tube reactors and CDC reactors: Pseudomonas ssp. (wastewater, agricultural drainage, and Colorado River water), Nocardia coeliaca or Rhodococcus spp. (wastewater), Pseudomonas fluorescens and Hydrogenophaga palleronii (agricultural drainage), Sulfitobacter donghicola, Rhodococcus fascians, Rhodobacter

  2. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Zhi, C.Y.; Bai, X.D.; Wang, E.G.

    2002-01-01

    The field emission capability of the carbon nanotubes (CNTs) has been improved by hydrogen plasma treatment, and the enhanced emission mechanism has been studied systematically using Fourier-transform infrared spectroscopy, Raman, and transmission electron microscopy. The hydrogen concentration in the samples increases with increasing plasma treatment duration. A C δ- -H δ+ dipole layer may form on CNTs' surface and a high density of defects results from the plasma treatment, which is likely to make the external surface of CNTs more active to emit electrons after treatment. In addition, the sharp edge of CNTs' top, after removal of the catalyst particles, may increase the local electronic field more effectively. The present study suggests that hydrogen plasma treatment is a useful method for improving the field electron emission property of CNTs

  3. Increase in extraction yields of coals by water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Iino; Toshimasa Takanohashi; Chunqi Li; Haruo Kumagai [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Institute for Energy Utilization

    2004-10-01

    The effect of water treatment at 500 and 600 K on solvent extractions of Pocahontas No. 3 (PO), Upper Freeport (UF), and Illinois No. 6 (IL) coals was investigated. All the coals used show that the water treatments at 600 K increased the extraction yields greatly in the extractions with a 1:1 carbon disulfide/N-methyl-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent, NMP, or 1-methylnaphthalene (1-MN). However, the water treatments at 500 K and the heat treatments at 600 K without water gave only a slight increase in the yields. Characterizations of the water-treated coals were performed using ultimate and proximate compositions, Fourier transform infrared analysis, solvent swelling, nuclear magnetic resonance relaxation time, and viscoelasticity behavior. The swelling degree in methanol and toluene was increased by the water treatment at 600 K, suggesting that crosslinks become loosened by the treatment. The results of infrared analysis and the extraction temperature dependency of the extraction yields with NMP and 1-MN suggest that the loosening of {pi} - interactions, and of both {pi} - interactions and hydrogen bonds, are responsible for the yield enhancements for PO and UF coals, respectively. However, for IL coal, which exhibited a decrease in oxygen content and the amount of hydrogen-bonded OH, suggesting the occurrence of some chemical reactions, the yield enhancements may be due to the relaxation of hydrogen bonds and the removal of oxygen functional groups, such as the breaking of ether bonds. 17 refs., 3 figs., 5 tabs.

  4. Modeling of the water uptake process for cowpea seeds (vigna unguiculata l.) under common treatment and microwave treatment

    International Nuclear Information System (INIS)

    Demirhan, E.

    2015-01-01

    The water uptake kinetics of cowpea seeds were carried out at two different water absorption treatments - common treatment and microwave treatment - to evaluate the effects of rehydration temperatures and microwave output powers on rehydration. Water uptake of cowpea seeds during soaking in water was studied at various temperatures of 20 - 45 degree C, and at various microwave output powers of 180 - 900 W. As the rehydration temperature and microwave output power increased, the water uptake of cowpea seeds increased and the rehydration time decreased. The Peleg and Richards Models were capable of predicting water uptake of cowpea seeds undergoing common treatment and microwave treatment, respectively. The effective diffusivity values were evaluated by fitting experimental absorption data to Fick second law of diffusion. The effective diffusivity coefficients for cowpea seeds varied from 7.75*10-11 to 1.99*10-10 m2/s and from 2.23*10-9 to 9.78*10-9 m2/s for common treatment and microwave treatment, respectively. (author)

  5. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jaseem, Q.Kh., E-mail: qjassem@kacst.edu.sa [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Almasoud, Fahad I. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Ababneh, Anas M. [Physics Dept., Faculty of Science, Islamic University in Madinah, Al-Madinah, P.O. Box 170 (Saudi Arabia); Al-Hobaib, A.S. [Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23 Bq/L, which exceeds the international limit of 0.185 Bq/L (5 pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750 Bq/kg, respectively, which exceed the national limit of 1000 Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2–18 Bq/m{sup 3} and 70–1000 nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3 mSv which is below the 1 mSv limit. - Highlights: • Radiological assessment of groundwater treatment plant was performed. • Radium Removal efficiency was calculated for different stages during water treatment. • Radium concentrations in sludge were measured and found to exceed the national limit for radioactive waste. • Air radon concentrations and dose rates were monitored in the water treatment plant. • The Reverse Osmosis (RO) unit was found to record the highest air radon concentrations and dose rates.

  6. Influence of Gamma Radiation on the Treatment of Sulfate Reducing Bacteria in the Injection Water Used for the Enhanced Oil Recovery

    International Nuclear Information System (INIS)

    El-Shahawy, M.R.; Ramzi, M.; Farag, R.M.

    2014-01-01

    The counts of sulfate reducing bacteria (SRB) in the water samples collected from the well head (formation water) and outlet of petroleum treatment plant (Produced water) in a petroleum field in middle delta- Egypt were determined. The data showed a low count of (SRB) in the collected formation water sample and there was an obvious increase in the bacterial counts which appeared in the produced water, that may reveal that the presence of appropriate conditions for the growth of (SRB) in the closed system in treatment plant. Two scale inhibitors were tested through jar test, the scale inhibitor I had maximum efficiency at 20 ppm, two SRB biocides were screened for their bactericidal activities. It was found that the biocides A was slightly superior in respect to the antibacterial efficacy compared to B in presence of 20 ppm scale inhibitor. These biocides were test for the study of the combined treatment with gamma radiation to maximize the efficiency on sulfate reducing bacteria using the minimum effective dose of both radiation and biocides to eliminate the negative impacts of the chemicals used and the radiation applied. The results demonstrated that, the lethal doses of biocides were (300 ppm) of biocides A or (400 ppm) of biocides B at 1 kGy irradiation dose. The treated produced water was evaluated in respect of enhanced oil recovery, the data showed increase of the recovery capacity by the irradiation and chemical treatment. This technology could be used for the water that are injected into reservoirs, and suitable for oil field and pipeline operators, and presented a viable bacteria control method

  7. Water: from the source to the treatment plan

    Science.gov (United States)

    Baude, I.; Marquet, V.

    2012-04-01

    Isabelle BAUDE isa.baude@free.fr Lycee français de Vienne Liechtensteinstrasse 37AVienna As a physics and chemistry teacher, I have worked on water from the source to the treatment plant with 27 pupils between 14 and 15 years old enrolled in the option "Science and laboratory". The objectives of this option are to interest students in science, to introduce them to practical methods of laboratory analyses, and let them use computer technology. Teaching takes place every two weeks and lasts 1.5 hours. The theme of water is a common project with the biology and geology teacher, Mrs. Virginie Marquet. Lesson 1: Introduction: The water in Vienna The pupils have to consider why the water is so important in Vienna (history, economy etc.) and where tap water comes from. Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2: Objectives of the session: What are the differences between mineral waters? Activities: Compare water from different origins (France: Evian, Vittel, Contrex. Austria: Vöslauer, Juvina, Gasteiner and tap water from Vienna) by tasting and finding the main ions they contain. Testing ions: Calcium, magnesium, sulphate, chloride, sodium, and potassium Lesson 3: Objectives of the session: Build a hydrometer Activities: Producing a range of calibration solutions, build and calibrate the hydrometer with different salt-water solutions. Measure the density of the Dead Sea's water and other mineral waters. Lesson 4: Objectives of the session: How does a fountain work? Activities: Construction of a fountain as Heron of Alexandria with simple equipment and try to understand the hydrostatic principles. Lesson 5: Objectives of the session: Study of the physical processes of water treatment (decantation, filtration, screening) Activities: Build a natural filter with sand, stone, carbon, and cotton wool. Retrieve the filtered water to test it during lesson 7. Lesson 6: Visit of the biggest treatment

  8. Security of water treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Forsha, C.A. [Univ. of Pittsburgh at Johnstown, Johnstowne, PA (United States)

    2002-06-15

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  9. Security of water treatment facilities

    International Nuclear Information System (INIS)

    Forsha, C.A.

    2002-01-01

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  10. Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

    NARCIS (Netherlands)

    Van der Helm, A.W.C.; Kramer, O.J.I.; Hooft, J.F.M.; De Moel, P.J.

    2015-01-01

    In practice, drinking water technologists use simplified calculation methods for aquatic chemistry calculations. Recently, the database stimela.dat is developed especially for aquatic chemistry for drinking water treatment processes. The database is used in PHREEQC, the standard in geohydrology for

  11. WATER DEFICIT EFFECT ON YIELD AND FORAGE QUALITY OF MEDICAGO SATIVA POPULATIONS UNDER FIELD CONDITIONS IN MARRAKESH AREA (MOROCCO

    Directory of Open Access Journals (Sweden)

    Mohamed FARISSI

    2014-06-01

    Full Text Available The present study focused the effect of water deficit on agronomic potential and some traits related to forage quality in plants of Moroccan Alfalfa (Medicago sativa L. populations (Taf 1, Taf 2, Dem and Tata originated from Oasis and High Atlas of Morocco and an introduced variety from Australia (Siriver. The experiment was conducted under field conditions in experimental station of INRA-Marrakech and under two irrigation treatments. The first treatment was normal irrigation, providing an amount of water corresponding to the potential evapo-transpiration of the crop, and the second treatment was water deficit stress (one irrigation per cut. For each treatment, the experiment was conducted as a split plot based on a randomized complete block design with four replications. The plants were measured and analyzed over three cuts. Some agronomic traits as, plant height, fresh and dry forage yields were measured. The forage quality was evaluated by leaf:stem ratio and the contents of plants in proteins and nitrogen. The results indicated that the water deficit has negatively affected the plant height and forage yield. The decrease in leaf:stem ratio was observed under water deficit conditions. However, the proteins and nitrogen contents were unaffected. The behavior of tested alfalfa genotypes was significantly different. The Moroccan alfalfa populations were more adapted to water deficit conditions comparatively to Siriver variety and the Tata population was the most adapted one.

  12. Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping

    Science.gov (United States)

    Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.

    2017-12-01

    Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.

  13. Water-molecular emission from cavitation bubbles affected by electric fields.

    Science.gov (United States)

    Lee, Hyang-Bok; Choi, Pak-Kon

    2018-04-01

    Orange emission was observed during multibubble sonoluminescence at 1 MHz in water saturated with noble gas. The emission arose in the vicinity of the peeled ground electrode of a piezoceramic transducer exposed to water, suggesting that cavitation bubbles were affected by the electric fields that leaked from the transducer. The spectrum of the emission exhibited a broad component whose intensity increased towards the near-infrared region with peaks at 713 and 813 nm. The spectral shape was independent of the saturation gas of He, Ne, or Kr. The broad component was attributed to the superposition of lines due to vibration-rotation transitions of water molecules, each of which was broadened by the high pressure and electric fields at bubble collapse. An emission mechanism based on charge induction by electric fields and the charged droplet model is proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Pulsed electric field processing of functional drink based on tender coconut water (Cococus nucifera L. - nannari (Hemidesmus indicus blended beverage

    Directory of Open Access Journals (Sweden)

    R. Kumar

    2014-01-01

    Full Text Available Tender coconut water (Cocos nucifera L. Nannari extract (Hemidesmus indicus L. ready-to serve (RTS blended beverage were optimised. Response Surface Methodology (RSM was employed to optimize the levels of independent variables (levels of tender coconut water, nannari extract and sugar. The responses of pH, ºBrix, CIE colour (L*, a* and b* value and OAA were studied. The data obtained were analysed by multiple regression technique to generate suitable mathematical models. The developed blended beverage was processed using pulsed electric field (PEF with electric field 31.2 kV/cm, 20 pulse widths at 100 Hz frequency to minimise nutritional and sensory attributes losses and compared with conventional thermal pasteurization (96 ºC for 360 s with p-value of 8.03. Thermal pasteurization showed a significant (p<0.05 decrease in colour value, radical scavenging activity and overall acceptability after treatment and also during storage, when compared to PEF treated tender coconut water-nannari blended beverage. PEF treatment also achieved a 3.01 ± 0.69 log inactivation, similar to thermal pasteurization of native micro flora. PEF treated tender coconut water-nannari blended beverage was stable up to 120 days under ambient storage condition (27-30 °C.

  15. Heat pulse probe measurements of soil water evaporation in a corn field

    Science.gov (United States)

    Latent heat fluxes from cropped fields consist of soil water evaporation and plant transpiration. It is difficult to accurately separate evapotranspiration into evaporation and transpiration. Heat pulse probes have been used to measure bare field subsurface soil water evaporation, however, the appl...

  16. REVIEW ON NATURAL METHODS FOR WASTE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Dubey

    2014-01-01

    Full Text Available In Ethiopia, the most common method of disposal of waste water is by land spreading. This treatment method has numerous problems, namely high labor requirements and the potential for eutrophication of surface an d ground waters. Constructed wetlands are commonl y used for treatment of seconda ry municipal wastewaters and they have been gaining popularity for treatment of agricultural wastewaters in Ethiopia. Intermittent sand filtration may offer an alternative to traditional treatment methods. As well as providing comparable treatment performance, they also have a smaller footprint, due to the substantially higher organic loading rates that may be applied to their surfaces. Th is paper discusses the performance and design criteria of constructed wetlands for the treatment of domestic and agricultural wastewater, and sand filters for the treatment of domestic wastewater. It also proposes sand filtration as an alt ernative treatment mechanism for agricultural wa stewater and suggests design guide lines.

  17. Survey of disinfection efficiency of small drinking water treatment ...

    African Journals Online (AJOL)

    A survey involving 181 water treatment plants across 7 provinces of South Africa: Mpumalanga, Limpopo, North West, Free State, KwaZulu-Natal, Eastern Cape and Western Cape was undertaken to identify the challenges facing small water treatment plants (SWTPs) in South Africa . Information gathered included ...

  18. Plasma treatment of multiwall carbon nanotubes for dispersion improvement in water

    International Nuclear Information System (INIS)

    Chen Changlun; Ogino, Akihisa; Nagatsu, Masaaki; Wang Xiangke

    2010-01-01

    Microwave excited Ar/H 2 O surface-wave plasma was used to treat multiwall carbon nanotubes (MWCNTs) to modify their surface characteristics and thus improve their dispersion capability in water. Changes in the atom composition and structure properties of MWCNTs were analyzed using x-ray photoelectron spectroscopy and Raman spectroscopy, and the surface morphology of MWCNTs was observed by field emission scanning electron microscopy and scanning transmission electron microscopy. The results indicated that Ar/H 2 O plasma treatment greatly enhanced the content of oxygen, and modified surface microstructure properties. The integrity of nanotube patterns, however, was not damaged.

  19. Surface modification of ultra thin PES-zeolite using thermal annealing to increase flux and rejection of produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Widayat,; Pradini, A. W.; Armeli, Y. P. [Department of Chemical Engineering, University of Diponegoro Prof. Soedarto, Tembalang, Semarang, 50239, Phone/Fax : (024) 7460058 (Indonesia)

    2015-12-29

    Membrane technology is an alternative of water treatment based on filtration that is being developed. Surface Modification using heat treatment has been investigated to improve the performance of ultra thin PES-Zeolite nanocomposite membrane for produced water treatment from Pertamina Balongan. Two types of membranes with surface modification and without modification were prepared to study the effect of surface modification on its permeation properties. Asymmetric ultra thin PES-Zeolite nanocomposite membrane for produced water treatment was casted using the dry/wet phase inversion technique from dope solutions containing polyethersulfone, N-methyl-2-pyrrolidone (NMP) as a solvent and zeolite as a filler. Experimental results showed that the heat treatment at near glass transition temperature was increase the rejection of COD, Turbidity and ion Ca{sup 2+}. The better adherence of zeolite particles in the polymer matrix combined with formation of charge transfer complexes (CTCs) and cross-linking might be the main factors to enhance the percent of rejection. Field emission scanning electron microscopy (FESEM) micrographs showed that the selective layer and the substructure of PES-zeolite membrane became denser and more compact after the heat treatment. The FESEM micrographs also showed that the heat treatment was increased the adherence of zeolite particle and polymer. Membranes treated at 180 °C for 15 seconds indicated increase the rejection and small decrease in flux for produced water treatment.

  20. Field soil-water properties measured through radiation techniques

    International Nuclear Information System (INIS)

    1984-07-01

    This report shows a major effort to make soil physics applicable to the behaviour of the field soils and presents a rich and diverse set of data which are essential for the development of effective soil-water management practices that improve and conserve the quality and quantity of agricultural lands. This piece of research has shown that the neutron moisture meter together with some complementary instruments like tensiometers, can be used not only to measure soil water contents but also be extremely handy to measure soil hydraulic characteristics and soil water flow. It is, however, recognized that hydraulic conductivity is highly sensitive to small changes in soil water content and texture, being extremely variable spatially and temporally

  1. Physico-chemical treatment of coke plant effluents for control of water pollution in India

    Energy Technology Data Exchange (ETDEWEB)

    Ghose, M.K. [Indian School of Mines, Dhanbad (India). Center of Mining Environmental

    2002-01-01

    Coal carbonizing industries in India are important and are growing every year. Large quantities of liquid effluents produced in this industry contain a large amount of suspended solids, high biochemical oxygen demand (BOD), chemical oxygen demand (COD), phenols, ammonia and other toxic substances, which are causing serious surface water pollution in the area. There is a large number of coke plants in the vicinity of Jharia Coal Field (JCF). The working principle of a coke plant and the effluents produced is described. One large coke plant was chosen to evaluate characteristics of the effluent and to suggest a proper treatment method. Present effluent treatment system was found to be inadequate and a large quantity of a very good quality coke breeze is being lost, which is also causing siltation on the riverbed in addition to surface water pollution. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. A scheme has been proposed for the treatment, which can be suitably adopted for the recycling, reuse or safe disposal of the treated effluent. Various unit process and unit operations are discussed. The process may be useful on industrial scale for various sites so as to maintain a clean environment.

  2. Characterisation of some South African water treatment residues ...

    African Journals Online (AJOL)

    2005-07-03

    Jul 3, 2005 ... Land application of water treatment residue (WTR) the by-product from the production of potable water, is becoming the preferred ... were analysed for some physical (particle size distribution, particle density and plant available water) and chemical attributes ...... for Industrial Wastes – Theory and Practice.

  3. The beneficial usage of water treatment sludge as pottery product ...

    African Journals Online (AJOL)

    The disposal of sludge from water treatment operations has become a major problem in Malaysia. The problem becomes acute because of scarcity of space for installation of sludge treatment facilities and disposal of treated sludge. Traditionally, treated sludge from water treatment plant will be sent to landfill for disposal.

  4. Mineralizing urban net-zero water treatment: Phase II field results and design recommendations

    Science.gov (United States)

    Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design ...

  5. Leaf gas exchange, fv/fm ratio, ion content and growth conditions of the two moringa species under magnetic water treatment

    International Nuclear Information System (INIS)

    Hasan, M.M.; Alharby, H.F.; Hajar, A.; Hakeem, K.R.

    2017-01-01

    The current greenhouse experiment investigates the role of magnetic water on the two Moringa species (Moringa oleifera and Moringa peregrina). Both species were exposed to the magnetic field (30 mT). The magnetic water increased the plant height, leaf number, leaflet number, and internode distances in both the species, respectively. Relative water content (RWC) and leaf area in both the species showed changes under magnetic water treatment. The results showed in magnetic water treatment, the leaf gas exchange parameters such as assimilation (A), stomatal conductance (gs), transpiration rate (E), and vapor pressure deficit (VPD) were increased. Similarly, Photosynthetic pigments (Chl a, Chl b, Chl (a+b), Carotenoids), photosynthetic water use efficiency (WUE) were also increased significantly. Magnetized water had also significant effects on the maximal efficiency of PSII photochemistry (Fv/Fm). Our study suggested that magnetic water treatment could be used as an environment-friendly technology for improving the growth and physiology of Moringa species. In addition, this technology could be further incorporated into the traditional methods of agriculture for the improvement of crop plants, particularly in the arid and sub-arid areas of the world. (author)

  6. Water treatment for 500 MWe PHWR plants

    International Nuclear Information System (INIS)

    Vasist, Sudheer; Sharma, M.C.; Agarwal, N.K.

    1995-01-01

    Large quantities of treated water is required for power generation. For a typical 500 MWe PHWR inland station with cooling towers, raw water at the rate of 6000 m 3 /hr is required. Impurities in cooling water give rise to the problems of corrosion, scaling, microbiological contamination, fouling, silical deposition etc. These problems lead to increased maintenance cost, reduced heat transfer efficiency, and possible production cut backs or shutdowns. The problems in coastal based power plants are more serious because of the highly corrosive nature of sea water used for cooling. An overview of the cooling water systems and water treatment method is enumerated. (author). 2 refs., 1 fig

  7. Assessment of Agricultural Water Productivity for Tea Production in Tea Fields of Guilan Province

    Directory of Open Access Journals (Sweden)

    kourosh majdsalimi

    2016-05-01

    Full Text Available Water productivity index is one of the main factors in efficient use of water for agricultural products. In this study, the rate of water productivity (WP in six irrigated tea fields and three rainfed (no irrigation were assessed by farmer’s management for two years (2009-2010. Yield of each tea field in successive harvests, soil moisture monitoring by gravimetric soil and use of water balance equation was conducted during the growing seasons. Volume of water entered to irrigation system and amount of water reached to surface level were also measured. Tea mean yield in irrigated and rainfed field were 2843 and 1095 Kg. ha-1, respectively. Average of gross irrigation and effective rainfall (WP and irrigation water productivity (IWP in the irrigated fields were 4.39 and 4.55 kg (made tea ha-1 mm-1 and average of net WP (actual evaportanspiration and net IWP was 5.18 and 6.61 kg ha-1 mm-1, respectively. Average WP in rainfed tea fields was 3.4 kg ha-1 for each mm of effective rainfall. The most effective factors on WP reduction in tea fields were improper harvesting operations (un standard plucking and economic problems. Moreover, improper operation and maintenance and old irrigation systems and unprincipled irrigation scheduling in irrigated tea fields were also effective on WP reduction. Comparing the results of this study with other studies in past, showed that by implementing the proper methods in irrigation management and appropriate agricultural practices can improve water productivity in tea fields.

  8. Nanofiltration technology in water treatment and reuse: applications and costs.

    Science.gov (United States)

    Shahmansouri, Arash; Bellona, Christopher

    2015-01-01

    Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals.

  9. Humic Acid and Water Management to Decrease Ferro (Fe2+ Solution and Increase Productivity of Established New Rice Field

    Directory of Open Access Journals (Sweden)

    Amrizal Saidi

    2012-01-01

    Full Text Available The purpose of this research was to gain a technological breakthrough in controlling Fe toxicity (Fe2+ on Ultisol ina new established rice field by using humic acid from rice straw compost and water management, so that optimalproduction of rice plants could be achieved. The experiment was designed using a 2 × 4 factorials with 3 replicationsin a split plot design. The main plot was water management consists of 2 levels: continuous and intermittentirrigation (2 weeks flooded and 2 weeks field capacity. Small plot was humic acid which was extracted from ricestraw compost by NaOH 0.5 N which consists of 4 levels: 0, 200, 400, and 600 mg kg-1. The results showed thatapplications of humic acid from 0 to 600 mg kg-1 that was followed by 2 weeks of intermittent irrigation decreasedFe2+ concentration. It was approaching levels that were not toxic to plants, with soil Fe2+ between 180-250 mg kg-1.The best treatment was found at the application of 600 mg kg-1 humic acid extracted from rice straw compostcombined with 2 week flooded – 2 weeks field capacity of water management. Those treatment decreased Fe2+concentration from 1,614 to 180 mg kg-1 and increased the dry weight of grain from 5.15 to 16.73 g pot-1 compared tocontinuous flooding and without humic acid application.

  10. Utilisation of drinking water treatment sludge for the manufacturing of ceramic products

    Science.gov (United States)

    Kizinievič, O.; Kizinievič, V.

    2017-10-01

    The influence of the additive of drinking water treatment sludge on the physical and mechanical properties, structural parameters, microstructure of the ceramic products is analysed in the research. Drinking water treatment sludge is renewable, environmentally-friendly, economical additive saving expensive natural raw materials when introduced into the ceramic products. The main drinking water treatment sludge component is amorphous Fe2O3 (70%). Formation masses are prepared by incorporating from 5 % to 60 % of drinking water treatment additive and by burning out at the temperature 1000 °C. Investigation showed that the physical and mechanical properties, microstructure of the ceramic bodies vary depending on the amount of drinking water treatment additive incorporated. In addition, drinking water treatment additive affects the ceramic body as a pigment that dyes the ceramic body in darker red colour.

  11. WATER DEFICIT EFFECT ON YIELD AND FORAGE QUALITY OF MEDICAGO SATIVA POPULATIONS UNDER FIELD CONDITIONS IN MARRAKESH AREA (MOROCCO)

    OpenAIRE

    Mohamed FARISSI; Cherki GHOULAM; Abdelaziz BOUIZGAREN

    2014-01-01

    The present study focused the effect of water deficit on agronomic potential and some traits related to forage quality in plants of Moroccan Alfalfa (Medicago sativa L.) populations (Taf 1, Taf 2, Dem and Tata) originated from Oasis and High Atlas of Morocco and an introduced variety from Australia (Siriver). The experiment was conducted under field conditions in experimental station of INRA-Marrakech and under two irrigation treatments. The first treatment was normal irrigation, providing an...

  12. Wetting and motion behaviors of water droplet on graphene under thermal-electric coupling field

    Science.gov (United States)

    Zhang, Zhong-Qiang; Dong, Xin; Ye, Hong-Fei; Cheng, Guang-Gui; Ding, Jian-Ning; Ling, Zhi-Yong

    2015-02-01

    Wetting dynamics and motion behaviors of a water droplet on graphene are characterized under the electric-thermal coupling field using classical molecular dynamics simulation method. The water droplet on graphene can be driven by the temperature gradient, while the moving direction is dependent on the electric field intensity. Concretely, the water droplet on graphene moves from the low temperature region to the high temperature region for the relatively weak electric field intensity. The motion acceleration increases with the electric field intensity on graphene, whereas the moving direction switches when the electric field intensity increases up to a threshold. The essence is the change from hydrophilic to hydrophobic for the water droplet on graphene at a threshold of the electric field intensity. Moreover, the driven force of the water droplet caused by the overall oscillation of graphene has important influence on the motion behaviors. The results are helpful to control the wettability of graphene and further develop the graphene-based fluidic nanodevices.

  13. [Maintenance and monitoring of water treatment system].

    Science.gov (United States)

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality.

  14. Enhanced drinking water supply through harvested rainwater treatment

    Science.gov (United States)

    Naddeo, Vincenzo; Scannapieco, Davide; Belgiorno, Vincenzo

    2013-08-01

    Decentralized drinking water systems represent an important element in the process of achieving the Millennium Development Goals, as centralized systems are often inefficient or nonexistent in developing countries. In those countries, most water quality related problems are due to hygiene factors and pathogens. A potential solution might include decentralized systems, which might rely on thermal and/or UV disinfection methods as well as physical and chemical treatments to provide drinking water from rainwater. For application in developing countries, decentralized systems major constraints include low cost, ease of use, environmental sustainability, reduced maintenance and independence from energy sources. This work focuses on an innovative decentralized system that can be used to collect and treat rainwater for potable use (drinking and cooking purposes) of a single household, or a small community. The experimented treatment system combines in one compact unit a Filtration process with an adsorption step on GAC and a UV disinfection phase in an innovative design (FAD - Filtration Adsorption Disinfection). All tests have been carried out using a full scale FAD treatment unit. The efficiency of FAD technology has been discussed in terms of pH, turbidity, COD, TOC, DOC, Escherichia coli and Total coliforms. FAD technology is attractive since it provides a total barrier for pathogens and organic contaminants, and reduces turbidity, thus increasing the overall quality of the water. The FAD unit costs are low, especially if compared to other water treatment technologies and could become a viable option for developing countries.

  15. Industrial--hydrogeological characteristics of water in the Orenburg Field

    Energy Technology Data Exchange (ETDEWEB)

    Kortsenshtein, V N; Zhabrev, I P; Uchastkin, Yu V; Alekseeva, I V

    1977-06-01

    An examination is made of the industrial hydrogeological conditions of the Orenburg Field in connection with the beginning of its development. Features of pay dirt water manifestation are demonstrated, genetic types of water brought out by gas flow are described, and methods are suggested for processing hydrogeological information. 3 references, 2 figures, 1 table.

  16. Assessment of drinking water quality and rural household water treatment in Balaka District, Malawi

    Science.gov (United States)

    Mkwate, Raphael C.; Chidya, Russel C. G.; Wanda, Elijah M. M.

    2017-08-01

    Access to drinking water from unsafe sources is widespread amongst communities in rural areas such as Balaka District in Malawi. This situation puts many individuals and communities at risk of waterborne diseases despite some households adopting household water treatment to improve the quality of the water. However, there still remains data gaps regarding the quality of drinking water from such sources and the household water treatment methods used to improve public health. This study was, therefore, conducted to help bridge the knowledge gap by evaluating drinking water quality and adoption rate of household water treatment and storage (HWTS) practices in Nkaya, Balaka District. Water samples were collected from eleven systematically selected sites and analyzed for physico-chemical and microbiological parameters: pH, TDS, electrical conductivity (EC), turbidity, F-, Cl-, NO3-, Na, K, Fe, Faecal Coliform (FC) and Faecal Streptococcus (FS) bacteria using standard methods. The mean results were compared to the World Health Organization (WHO) and Malawi Bureau of Standards (MBS) (MS 733:2005) to ascertain the water quality for drinking purposes. A total of 204 randomly selected households were interviewed to determine their access to drinking water, water quality perception and HWTS among others. The majority of households (72%, n = 83) in Njerenje accessed water from shallow wells and rivers whilst in Phimbi boreholes were commonly used. Several households (>95%, n = 204) were observed to be practicing HWST techniques by boiling or chlorination and water storage in closed containers. The levels of pH (7.10-7.64), F- (0.89-1.46 mg/L), Cl- (5.45-89.84 mg/L), NO3- (0-0.16 mg/L), Na (20-490 mg/L), K (2.40-14 mg/L) and Fe (0.10-0.40 mg/L) for most sites were within the standard limits. The EC (358-2220 μS/cm), turbidity (0.54-14.60 NTU), FC (0-56 cfu/100 mL) and FS (0-120 cfu/100 mL) - mainly in shallow wells, were found to be above the WHO and MBS water quality

  17. Application of graphene oxide in water treatment

    Science.gov (United States)

    Liu, Yongchen

    2017-11-01

    Graphene oxide has good hydrophilicity and has been tried to use it into thin films for water treatment in recent years. In this paper, the preparation methods of graphene oxide membrane are reviewed, including vacuum suction filtration, spray coating, spin coating, dip coating and the layer by layer method. Secondly, the mechanism of mass transfer of graphene membrane is introduced in detail. The application of the graphene oxide membrane, modified graphene oxide membrane and graphene hybrid membranes were discussed in RO, vaporization, nanofiltration and other aspects. Finally, the development and application of graphene membrane in water treatment were discussed.

  18. A new water treatment scheme for thermal development : the SIBE process

    Energy Technology Data Exchange (ETDEWEB)

    Pedenaud, P.; Dang, F. [Total, Paris (France)

    2008-10-15

    The production of extra heavy oil or bitumen through thermal methods such as steam assisted gravity drainage (SAGD) involves the generation and injection into the reservoir of large quantities of steam which is recirculated with the produced bitumen. It is expected that maximizing the recycling of the produced water into steam will be mandatory, because of the need to minimize fresh water consumption and the possibility of increasingly stringent environmental regulations. The SAGD water treatment scheme is complex. It depends on the water characteristics, the steam generator type selected, and the decision to completely eliminate waste water disposal or use other waste handling and disposal methods. Other challenges such as the high silica content in the produced water, are encountered with SAGD water treatment. This paper presented an overview of the current water treatment process options for SAGD, as well as a new patented process called silica inhibition and blowdown evaporation (SIBE). The paper also presented an estimate of the economic benefit of the new SIBE process relative to conventional process schemes. Treatment objectives and water characteristics and the steps involved in conventional water treatment were first outlined. It was concluded that the silica and hardness removal scheme combined with the boiler blowdown evaporator were less economical because of higher investment cost due to the evaporation unit. 1 ref., 3 tabs., 4 figs.

  19. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    International Nuclear Information System (INIS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-01-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  20. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Okoli, Chuka [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden); Boutonnet, Magali; Jaeras, Sven [Royal Institute of Technology (KTH), Chemical Technology (Sweden); Rajarao-Kuttuva, Gunaratna, E-mail: gkr@kth.se [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden)

    2012-10-15

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  1. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Science.gov (United States)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  2. Zoujiashan uranium waste water treatment optimizaiton design

    International Nuclear Information System (INIS)

    Huang Lianjun

    2014-01-01

    Optimization design follows the decontamination triage, comprehensive management, such as wastewater treatment principle and from easy to difficult. increasing the slurry treatment, optimization design containing ρ (U) > defines I mg/L wastewater for higher uranium concentration wastewater, whereas low uranium concentration wastewater. Through the optimization design, solve the problem of water turbidity 721-15 wastewater treatment station of the lack of capacity and mine. (author)

  3. Alkalinity in oil field waters - what alkalinity is and how it is measured

    International Nuclear Information System (INIS)

    Kaasa, B.; Oestvold, T.

    1996-01-01

    The alkalinity is an important parameter in the description of pH-behaviour, buffer capacity and scaling potentials in oil field waters. Although the alkalinity is widely used, it seems to be considerable confusion in connection with the concept. It is often used incorrectly and different authors define the concept in different ways. Several different methods for the determination of alkalinity can be found in the literature. This paper discusses the definition of alkalinity and how to use alkalinity in oil field waters to obtain data of importance for scale and pH predictions. There is also shown how a simple titration of oil field waters can give both the alkalinity and the content of organic acids in these waters. It is obvious from these findings that most of the methods used to day may give considerable errors when applied to oil field waters with high contents of organic acids. 8 refs., 8 figs., 5 tabs

  4. Treatment of mine-water from decommissioning uranium mines

    International Nuclear Information System (INIS)

    Fan Quanhui

    2002-01-01

    Treatment methods for mine-water from decommissioning uranium mines are introduced and classified. The suggestions on optimal treatment methods are presented as a matter of experience with decommissioned Chenzhou Uranium Mine

  5. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment.

    Science.gov (United States)

    Abebe, Lydia S; Chen, Xinyu; Sobsey, Mark D

    2016-02-27

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (± 1.56) and 7.5 (± 0.02) log10 for Escherichia coli, and between 2.8 (± 0.10) and 4.5 (± 1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  6. The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment.

    Science.gov (United States)

    Kim, Jeonghwan; Van der Bruggen, Bart

    2010-07-01

    Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Research work on the water and heat balance of a paddy field

    International Nuclear Information System (INIS)

    Oue, A.; Kamii, Y.

    2002-01-01

    Daily water consumption and seepage of a rice paddy field with acreage of 3086 m 2 in Noichi Town was investigated from April 10, 2001 to August 6, 2001. The soil of the paddy field is highly permeable, and 'Shirokaki' (paddling) was performed elaborately before 'Taue' (rice seedlings transplanting). The result is as follows. 1) Since the soil is highly permeable, a lot of seepage into the ground was observed after the development of crack by 'Nakaboshi' (intermittent full drainage of paddy field water) performed from the end of May to the first one third of June. 2) It is found that water temperatures of the paddy field near water inlet are lower and temperature far from the inlet is higher. 3) At the earlier stage of rice cultivation, the water temperature of the paddy field was higher than the air temperature, but at the last stage, both temperatures approached closer. 4) The seepage given by seepage meter varies much, but the seepage values calculated from daily water consumption (mm/d) minus estimated evapotranspiration by Penman's method gave rather stable seepage values. 5) The interrelationships between large scale pan evaporation (class A pan), small scale pan evaporation (with 20 cm diameter) and Penman's potential evapotranspiration were investigated by simple regressional analysis. The results were not so remarkable and not so highly interrelated. 6) After 'Nakaboshi' it was hard to calculate effective rain, because if all the water percolated into the soil should be counted as effective rainfall, we have enormous effective rainfall after Nakaboshi because of improved permeability

  8. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.

    Science.gov (United States)

    Su, Jiaye; Guo, Hongxia

    2011-01-25

    The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation-induced water flux is energetically due to the asymmetrical water-water interaction along the CNT axis. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is increased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E(c) related to the water flux is found. The water flux is increased as E is increased for E ≤ E(c), while it is almost unchanged for E > E(c). Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.

  9. Minireview: the health implications of water treatment with ozone.

    Science.gov (United States)

    Carmichael, N G; Winder, C; Borges, S H; Backhouse, B L; Lewis, P D

    1982-01-11

    Ozone is a highly efficient disinfectant which may have significant advantages in water treatment compared to chlorine. It has, however, been shown that mutagenic and possibly carcinogenic byproducts may be produced under certain conditions of ozonation. Light chlorination following ozonization may meet the highest standards of disinfection. In addition the destruction of much of the organic matter by prior ozone treatment may well result in less harmful chlorinated and brominated products in the finished water. In many cases ozone treatment alone may suffice. It would be desirable to test with long term in vivo experiments which of the alternatives produces the best combination of microbiologically clean and pleasant water with minimum mutagenic and carcinogenic effect.

  10. Integration of processes induced air flotation and photo-Fenton for treatment of residual waters contaminated with xylene

    International Nuclear Information System (INIS)

    Silva, Syllos S. da; Chiavone-Filho, Osvaldo; Barros Neto, Eduardo L. de; Nascimento, Claudio A.O.

    2012-01-01

    Highlights: ► We have studied the treatment of wastewater contaminated with hydrocarbons represented by the xylene, using these processes in an integrated mode: induced air flotation and photo-Fenton. ► We have selected xylene as representative contaminant due to properties of toxicity, solubility in water and vapor pressure. ► The manuscript presents a series of accurate experimental data that can be useful for material and energy optimization purposes in the xylene removal aiming the treatment of oil field produced water. - Abstract: Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min −1 for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H 2 O 2 concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal.

  11. Field experiments with subsurface releases of oil and and dyed water

    International Nuclear Information System (INIS)

    Rye, H.; Brandvik, P.J.; Strom, T.

    1998-01-01

    A field experiment with a subsurface release of oil and air was carried out in June 1996 close to the Frigg Field in the North Sea area. One of the purposes of this sea trial was to increase the knowledge concerning the behaviour of the oil and gas during a subsurface blowout. This was done by releasing oil and air at 106 meters depth with a realistic gas oil ratio (GOR=67) and release velocity of the oil. In addition to the oil release, several releases with dyed water and gas (GOR=7 - 65) were performed. Important and unique data were collected during these subsurface releases. In particular, the experiments with the dyed water releases combined with air turned out to be an efficient way of obtaining field data for the behaviour of subsurface plumes. The main conclusions from analysis for the data collected are: the field methodology used to study blowout releases in the field appears to be appropriate. The use of dyed water to determine the performance of the subsurface plume proved out to be an efficient way to obtain reliable and useful data. The behaviour of the subsurface plume is very sensitive to gas flow rates. For low gas flow rates, the plume did not reach the sea surface at all due to the presence of stratification in the ambient water. Some discrepancies were found between a numerical model for subsurface releases and field results. These discrepancies are pointed out, and recommendations for possible model improvements are given. (author)

  12. Treatment planning for SBRT using automated field delivery: A case study

    International Nuclear Information System (INIS)

    Ritter, Timothy A.; Owen, Dawn; Brooks, Cassandra M.; Stenmark, Matthew H.

    2015-01-01

    Stereotactic body radiation therapy (SBRT) treatment planning and delivery can be accomplished using a variety of techniques that achieve highly conformal dose distributions. Herein, we describe a template-based automated treatment field approach that enables rapid delivery of more than 20 coplanar fields. A case study is presented to demonstrate how modest adaptations to traditional SBRT planning can be implemented to take clinical advantage of this technology. Treatment was planned for a left-sided lung lesion adjacent to the chest wall using 25 coplanar treatment fields spaced at 11° intervals. The plan spares the contralateral lung and is in compliance with the conformality standards set forth in Radiation Therapy and Oncology Group protocol 0915, and the dose tolerances found in the report of the American Association of Physicists in Medicine Task Group 101. Using a standard template, treatment planning was accomplished in less than 20 minutes, and each 10 Gy fraction was delivered in approximately 5.4 minutes. For those centers equipped with linear accelerators capable of automated treatment field delivery, the use of more than 20 coplanar fields is a viable SBRT planning approach and yields excellent conformality and quality combined with rapid planning and treatment delivery. Although the case study discusses a laterally located lung lesion, this technique can be applied to centrally located tumors with similar results

  13. Process Control of Pre-Sowing Seed Treatment by Pulsed Electric Field

    Directory of Open Access Journals (Sweden)

    Starodubtseva Galina Petrovna

    2018-03-01

    Full Text Available Presented paper investigates the application of a line voltage changer to an installation for pre-sowing seed treatment by pulsed electric field (PEF in order to increase the sowing quality of seeds and to suppress pathogenic microflora. The installation comprises an AC voltage regulator, a high voltage source, a voltage inverter, a working chamber for seed treatment, a control unit, and current and voltage sensors. The proposed installation differs from the existing apparatuses as it automatically provides the transformation of the pulsed electric field parameters by constant monitoring of power processes in a layer of treated seeds and feedback sending to the control unit. Seed treatment efficiency depends on the dose being determined by the parameters of electric field, namely, intensity in the seed layer, pulse duration, pulse repetition frequency, and seed treatment time. The parameters of rational treatment were determined, and the minimum treatment dose was calculated on the basis of results from the laboratory tests on the effect of pulsed electric field on sowing qualities of winter wheat seeds. It was experimentally confirmed that the proposed installation provides automatic transformation of electric field parameters depending on the changes taking place in the seed layer on the example of seeds with different moisture content maintaining the necessary treatment dose, ensuring the stability and repeatability of results.

  14. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  15. Polymer/silicate well treatment techniques: state-of-art and experiences at the AlgyoeField, Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I.; Lakatos-Szabo, J. [Miskolc Univ. (Hungary). Resarch Inst. of Applied Chemistry; Troemboeczky, S.; Munkacsi, I.; Kosztin, B.; Palasthy, G. [Hungarian Oil and Gas Company, Szolnok (Hungary). Upstream Div.

    2000-04-01

    By joint application of silicates and polymers, a multifunctional, self-controlling chemical system is formed which works spontaneously even under harsh reservoir conditions, meanwhile the methods remain inexpensive, flexible and adaptable to any production technologies. A concise summary of the technique, its principle and main field projects are discussed in this article. It is shown that the silicates, combined with polymers offer unique opportunity to cure numerous production/injection problems including water shutt-off, profile correction, gas coning, etc. in oil and gas fields. Between 1980 and 1998 the field projects, comprising more than forty well treatments, yielded substantial additional oil production, life time of wells were extended and the overall profitability of the field was significantly increased, meanwhile environmentally friendly chemicals were used. Therefore, the Hungarian experts are convinced that the polymer/silicate method is reasonable alternative wherever and whenever the application of bulk or surface gelation or deposition is arising. (orig.)

  16. Heterotrophic monitoring at a drinking water treatment plant by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry after different drinking water treatments.

    Science.gov (United States)

    Sala-Comorera, Laura; Blanch, Anicet R; Vilaró, Carles; Galofré, Belén; García-Aljaro, Cristina

    2017-10-01

    The aim of this work was to assess the suitability of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) for routine heterotrophic monitoring in a drinking water treatment plant. Water samples were collected from raw surface water and after different treatments during two campaigns over a 1-year period. Heterotrophic bacteria were studied and isolates were identified by MALDI-TOF MS. Moreover, the diversity index and the coefficient of population similarity were also calculated using biochemical fingerprinting of the populations studied. MALDI-TOF MS enabled us to characterize and detect changes in the bacterial community composition throughout the water treatment plant. Raw water showed a large and diverse population which was slightly modified after initial treatment steps (sand filtration and ultrafiltration). Reverse osmosis had a significant impact on the microbial diversity, while the final chlorination step produced a shift in the composition of the bacterial community. Although MALDI-TOF MS could not identify all the isolates since the available MALDI-TOF MS database does not cover all the bacterial diversity in water, this technique could be used to monitor bacterial changes in drinking water treatment plants by creating a specific protein profile database for tracking purposes.

  17. Grey water treatment in UASB reactor at ambient temperature.

    Science.gov (United States)

    Elmitwalli, T A; Shalabi, M; Wendland, C; Otterpohl, R

    2007-01-01

    In this paper, the feasibility of grey water treatment in a UASB reactor was investigated. The batch recirculation experiments showed that a maximum total-COD removal of 79% can be obtained in grey-water treatment in the UASB reactor. The continuous operational results of a UASB reactor treating grey water at different hydraulic retention time (HRT) of 20, 12 and 8 hours at ambient temperature (14-24 degrees C) showed that 31-41% of total COD was removed. These results were significantly higher than that achieved by a septic tank (11-14%), the most common system for grey water pre-treatment, at HRT of 2-3 days. The relatively lower removal of total COD in the UASB reactor was mainly due to a higher amount of colloidal COD in the grey water, as compared to that reported in domestic wastewater. The grey water had a limited amount of nitrogen, which was mainly in particulate form (80-90%). The UASB reactor removed 24-36% and 10-24% of total nitrogen and total phosphorus, respectively, in the grey water, due to particulate nutrients removal by physical entrapment and sedimentation. The sludge characteristics of the UASB reactor showed that the system had stable performance and the recommended HRT for the reactor is 12 hours.

  18. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn (Comforce Technical Services, Inc.)

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  19. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    Science.gov (United States)

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration).

  20. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  1. Biological treatment of drinking water by chitosan based ...

    African Journals Online (AJOL)

    ABI

    2015-03-18

    Mar 18, 2015 ... method. A membrane filtration technique is used for the treatment of water to remove or kill ... The characterization of synthesized nanoparticles was done by dynamic ... water and just 3% is available for drinking, agriculture,.

  2. Generation of hydrogen free radicals from water for fuels by electric field induction

    International Nuclear Information System (INIS)

    Nong, Guangzai; Chen, Yiyi; Li, Ming; Zhou, Zongwen

    2015-01-01

    Highlights: • Hydrogen free radicals are generated from water splitting. • Hydrogen fuel is generated from water by electric field induction. • Hydrocarbon fuel is generated from CO_2 and water by electric field induction. - Abstract: Water is the most abundant resource for generating hydrogen fuel. In addition to dissociating H"+ and "−OH ions, certain water molecules dissociate to radicals under an electric field are considered. Therefore, an electric field inducing reactor is constructed and operated to generate hydrogen free radicals in this paper. Hydrogen free radicals begin to be generated under a 1.0 V electric field, and increasing the voltage and temperature increases the number of hydrogen free radicals. The production rate of hydrogen free radicals is 0.245 mmol/(L h) at 5.0 V and room temperature. The generated hydrogen free radicals are converted to polymer fuel and hydrogen fuel at production rates of 0.0093 mmol/(L h) and 0.0038 mmol/(L h) respectively, under 5.0 V and 0.25 mA. The results provide a way to generate hydrogen free radicals, which might be used to generate hydrocarbon fuel in industrial manufacture.

  3. Field efficacy evaluation and post-treatment contamination risk assessment of an ultraviolet disinfection and safe storage system.

    Science.gov (United States)

    Reygadas, Fermin; Gruber, Joshua S; Ray, Isha; Nelson, Kara L

    2015-11-15

    Inconsistent use of household water treatment and safe storage (HWTS) systems reduces their potential health benefits. Ultraviolet (UV) disinfection is more convenient than some existing HWTS systems, but it does not provide post-treatment residual disinfectant, which could leave drinking water vulnerable to recontamination. In this paper, using as-treated analyses, we report on the field efficacy of a UV disinfection system at improving household drinking water quality in rural Mexico. We further assess the risk of post-treatment contamination from the UV system, and develop a process-based model to better understand household risk factors for recontamination. This study was part of a larger cluster-randomized stepped wedge trial, and the results complement previously published population-level results of the intervention on diarrheal prevalence and water quality. Based on the presence of Escherichia coli (proportion of households with ≥ 1 E. coli/100 mL), we estimated a risk difference of -28.0% (95% confidence interval (CI): -33.9%, -22.1%) when comparing intervention to control households; -38.6% (CI: -48.9%, -28.2%) when comparing post- and pre-intervention results; and -37.1% (CI: -45.2%, -28.9%) when comparing UV disinfected water to alternatives within the household. We found substantial increases in post-treatment E. coli contamination when comparing samples from the UV system effluent (5.0%) to samples taken from the storage container (21.1%) and drinking glasses (26.0%). We found that improved household infrastructure, additional extractions from the storage container, additional time from when the storage container was filled, and increased experience of the UV system operator were associated with reductions in post-treatment contamination. Our results suggest that the UV system is efficacious at improving household water quality when used as intended. Promoting safe storage habits is essential for an effective UV system dissemination. The drinking

  4. Fresh water disinfection by pulsed low electric field

    International Nuclear Information System (INIS)

    Zheng, C; Xu, Y; Liu, Z; Yan, K

    2013-01-01

    In this paper, we describe a pulsed low electric field process for water disinfection. Electric intensity of 0.6–1.7 kV cm −1 is applied. Experiments are performed with a 1.2 L axis-cylinder reactor. A bipolar pulsed power source with pulsed width of 25 μs and frequency of 100–3000 Hz is used. Water conductivity of 3–200 μs cm −1 is investigated, which can significantly affect pulsed voltage-current waveforms and injected energy. Energy per pulse rises with increased water conductivity. The initial E. Coli density and water conductivity are two major factors influencing the disinfection. No disinfection effect is performed with deionized water of 3 μs cm −1 . When water conductivity is 25 μs cm −1 and bacteria density is 10 4 –10 6 cfu ml −1 , significant disinfection effect is observed. More than 99% of the cells can be disinfected with an energy density of less than 70 J ml −1 , while water temperature is below 30 °C.

  5. Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems.

    Science.gov (United States)

    Appleman, Timothy D; Higgins, Christopher P; Quiñones, Oscar; Vanderford, Brett J; Kolstad, Chad; Zeigler-Holady, Janie C; Dickenson, Eric R V

    2014-03-15

    The near ubiquitous presence of poly- and perfluoroalkyl substances (PFASs) in humans has raised concerns about potential human health effects from these chemicals, some of which are both extremely persistent and bioaccumulative. Because some of these chemicals are highly water soluble, one major pathway for human exposure is the consumption of contaminated drinking water. This study measured concentrations of PFASs in 18 raw drinking water sources and 2 treated wastewater effluents and evaluated 15 full-scale treatment systems for the attenuation of PFASs in water treatment utilities throughout the U.S. A liquid-chromatography tandem mass-spectrometry method was used to enable measurement of a suite of 23 PFASs, including perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs). Despite the differences in reporting levels, the PFASs that were detected in >70% of the source water samples (n = 39) included PFSAs, perfluorobutane sulfonic acid (74%), perfluorohexane sulfonic acid (79%), and perfluorooctane sulfonic acid (84%), and PFCAs, perfluoropentanoic acid (74%), perfluorohexanoic acid (79%), perfluoroheptanoic acid (74%), and perfluorooctanoic acid (74%). More importantly, water treatment techniques such as ferric or alum coagulation, granular/micro-/ultra- filtration, aeration, oxidation (i.e., permanganate, ultraviolet/hydrogen peroxide), and disinfection (i.e., ozonation, chlorine dioxide, chlorination, and chloramination) were mostly ineffective in removing PFASs. However, anion exchange and granular activated carbon treatment preferably removed longer-chain PFASs and the PFSAs compared to the PFCAs, and reverse osmosis demonstrated significant removal for all the PFASs, including the smallest PFAS, perfluorobutanoic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The increase in extraction yields of coals by water treatment

    Energy Technology Data Exchange (ETDEWEB)

    M. Iino; T. Takanohashi; C. Li; N. Kashimura; K. Masaki; T. Shishido; I. Saito; H. Kumagai [Institute for Energy Utilization, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki (Japan)

    2005-07-01

    We have reported that the water treatments of bituminous coals at 600 K for 1 h increased their extraction yields greatly (Energy Fuels, 2005, 18, 1414). In this paper the effect of coal rank on the extraction yields enhancement by the water treatment has been investigated using four Argonne Premium coals, i.e., Pocahontas No. 3 (PO), Upper Freeport (UF), Illinois No.6 (IL), and Beulah Zap (BZ) coals with C % (daf) in the range 67 - 90%. All the coals used show that the water treatments at 600 K increased the extraction yields greatly with a 1:1 carbon disulfide / N-methyl-2-pyrrolidinone mixed solvent (CS2 / NMP) at room temperature. While, the water treatments at 500 K or the heat treatments at 600 K without water gave little increase in the yields. Characterizations of the water-treated coals were carried out from ultimate and proximate compositions, FT-IR spectrum, solvent swelling, NMR relaxation time, and viscoelasticity behavior. The effect of extraction temperature on the extraction yield enhancement was also investigated using polar NMP or non-polar 1-MN solvent. From these results it is concluded that for high coal rank coals the loosening of non-covalent bonds is responsible for the extraction yields enhancement by the water treatment. The loosening non-covalent bonds may be {pi}-{pi} interactions between aromatic rings for PO, and both {pi}-{pi} interactions and hydrogen bonds for UF. While, for lower rank IL and BZ, which showed decrease in O% and hydrogen-bonded OH, the yield enhancements may be due to the loosening of hydrogen bonds and the removal of oxygen functional groups. 9 refs., 5 figs., 1 tab.

  7. Structural characterisation of pretreated solids from flow-through liquid hot water treatment of sugarcane bagasse in a fixed-bed reactor

    CSIR Research Space (South Africa)

    Reddy, P

    2015-05-01

    Full Text Available Untreated sugarcane bagasse and sugarcane bagasse pretreated with flow-through liquid hot water (LHW) treatment (170-207°C and 204-250 ml/min) in a fixed-bed reactor have been structurally characterised. Field emission gun scanning electron...

  8. Sludge quantification at water treatment plant and its management scenario.

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2017-08-15

    Large volume of sludge is generated at the water treatment plants during the purification of surface water for potable supplies. Handling and disposal of sludge require careful attention from civic bodies, plant operators, and environmentalists. Quantification of the sludge produced at the treatment plants is important to develop suitable management strategies for its economical and environment friendly disposal. Present study deals with the quantification of sludge using empirical relation between turbidity, suspended solids, and coagulant dosing. Seasonal variation has significant effect on the raw water quality received at the water treatment plants so forth sludge generation also varies. Yearly production of the sludge in a water treatment plant at Ghaziabad, India, is estimated to be 29,700 ton. Sustainable disposal of such a quantity of sludge is a challenging task under stringent environmental legislation. Several beneficial reuses of sludge in civil engineering and constructional work have been identified globally such as raw material in manufacturing cement, bricks, and artificial aggregates, as cementitious material, and sand substitute in preparing concrete and mortar. About 54 to 60% sand, 24 to 28% silt, and 16% clay constitute the sludge generated at the water treatment plant under investigation. Characteristics of the sludge are found suitable for its potential utilization as locally available construction material for safe disposal. An overview of the sustainable management scenario involving beneficial reuses of the sludge has also been presented.

  9. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Science.gov (United States)

    Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.

    2016-01-01

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities turbidity standards of the US EPA and guidance by the World Health Organization (WHO). According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152

  10. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Lydia S. Abebe

    2016-02-01

    Full Text Available The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI between 4.7 (±1.56 and 7.5 (±0.02 log10 for Escherichia coli, and between 2.8 (±0.10 and 4.5 (±1.04 log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO. According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  11. Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism.

    Science.gov (United States)

    Banaschik, Robert; Burchhardt, Gerhard; Zocher, Katja; Hammerschmidt, Sven; Kolb, Juergen F; Weltmann, Klaus-Dieter

    2016-12-01

    Pulsed corona plasma and pulsed electric fields were assessed for their capacity to kill Legionella pneumophila in water. Electrical parameters such as in particular dissipated energy were equal for both treatments. This was accomplished by changing the polarity of the applied high voltage pulses in a coaxial electrode geometry resulting in the generation of corona plasma or an electric field. For corona plasma, generated by high voltage pulses with peak voltages of +80kV, Legionella were completely killed, corresponding to a log-reduction of 5.4 (CFU/ml) after a treatment time of 12.5min. For the application of pulsed electric fields from peak voltages of -80kV a survival of log 2.54 (CFU/ml) was still detectable after this treatment time. Scanning electron microscopy images of L. pneumophila showed rupture of cells after plasma treatment. In contrast, the morphology of bacteria seems to be intact after application of pulsed electric fields. The more efficient killing for the same energy input observed for pulsed corona plasma is likely due to induced chemical processes and the generation of reactive species as indicated by the evolution of hydrogen peroxide. This suggests that the higher efficacy and efficiency of pulsed corona plasma is primarily associated with the combined effect of the applied electric fields and the promoted reaction chemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Mass transfer of H2O between petroleum and water: implications for oil field water sample quality

    International Nuclear Information System (INIS)

    McCartney, R.A.; Ostvold, T.

    2005-01-01

    Water mass transfer can occur between water and petroleum during changes in pressure and temperature. This process can result in the dilution or concentration of dissolved ions in the water phase of oil field petroleum-water samples. In this study, PVT simulations were undertaken for 4 petroleum-water systems covering a range of reservoir conditions (80-185 o C; 300-1000 bar) and a range of water-petroleum mixtures (volume ratios of 1:1000-300:1000) to quantify the extent of H 2 O mass transfer as a result of pressure and temperature changes. Conditions were selected to be relevant to different types of oil field water sample (i.e. surface, downhole and core samples). The main variables determining the extent of dilution and concentration were found to be: (a) reservoir pressure and temperature, (b) pressure and temperature of separation of water and petroleum, (c) petroleum composition, and (d) petroleum:water ratio (PWR). The results showed that significant dilution and concentration of water samples could occur, particularly at high PWR. It was not possible to establish simple guidelines for identifying good and poor quality samples due to the interplay of the above variables. Sample quality is best investigated using PVT software of the type used in this study. (author)

  13. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    Science.gov (United States)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  14. Forecasting land cover change impacts on drinking water treatment costs in Minneapolis, Minnesota

    Science.gov (United States)

    Woznicki, S. A.; Wickham, J.

    2017-12-01

    Source protection is a critical aspect of drinking water treatment. The benefits of protecting source water quality in reducing drinking water treatment costs are clear. However, forecasting the impacts of environmental change on source water quality and its potential to influence future treatment processes is lacking. The drinking water treatment plant in Minneapolis, MN has recognized that land cover change threatens water quality in their source watershed, the Upper Mississippi River Basin (UMRB). Over 1,000 km2 of forests, wetlands, and grasslands in the UMRB were lost to agriculture from 2008-2013. This trend, coupled with a projected population increase of one million people in Minnesota by 2030, concerns drinking water treatment plant operators in Minneapolis with respect to meeting future demand for clean water in the UMRB. The objective of this study is to relate land cover change (forest and wetland loss, agricultural expansion, urbanization) to changes in treatment costs for the Minneapolis, MN drinking water utility. To do this, we first developed a framework to determine the relationship between land cover change and water quality in the context of recent historical changes and projected future changes in land cover. Next we coupled a watershed model, the Soil and Water Assessment Tool (SWAT) to projections of land cover change from the FOREcasting SCEnarios of Land-use Change (FORE-SCE) model for the mid-21st century. Using historical Minneapolis drinking water treatment data (chemical usage and costs), source water quality in the UMRB was linked to changes in treatment requirements as a function of projected future land cover change. These analyses will quantify the value of natural landscapes in protecting drinking water quality and future treatment processes requirements. In addition, our study provides the Minneapolis drinking water utility with information critical to their planning and capital improvement process.

  15. STUDY ON WASTE WATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available Biogas is more and more used as an alternative source of energy, considering the fact that it is obtained from waste materials and it can be easily used in cities and rural communities for many uses, between which, as a fuel for households. Biogas has many energy utilisations, depending on the nature of the biogas source and the local demand. Generally, biogas can be used for heat production by direct combustion, electricity production by fuel cells or micro-turbines, Combined Hest and Power generation or as vehicle fuel. In this paper we search for another uses of biogas and Anaerobe Digestion substrate, such as: waste water treatment plants and agricultural wastewater treatment, which are very important in urban and rural communities, solid waste treatment plants, industrial biogas plants, landfill gas recovery plants. These uses of biogas are very important, because the gas emissions and leaching to ground water from landfill sites are serious threats for the environment, which increase more and more bigger during the constant growth of some human communities. That is why, in the developed European countries, the sewage sludge is treated by anaerobe digestion, depending on national laws. In Romania, in the last years more efforts were destined to use anaerobe digestion for treating waste waters and management of waste in general. This paper can be placed in this trend of searching new ways of using with maximum efficiency the waste resulted in big communities.

  16. New electrochemical and photochemical systems for water and wastewater treatment

    International Nuclear Information System (INIS)

    Sarria, Victor M; Parra, Sandra; Rincon, Angela G; Torres, Ricardo A; Pulgarin, Cesar

    2005-01-01

    With the increasing pressure on a more effective use of water resources, the development of appropriate water treatment technologies become more and more important. Photochemical and electrochemical oxidation processes have been proposed in recent years as an attractive alternative for the treatment of contaminated water containing anthropogenic substances hardly biodegradable as well as to purify and disinfect drinking waters. The aim of this paper is to present some of our last results demonstrating that electrochemical, photochemical, and the coupling of these processes with biological systems are very promising alternatives for the improvement of the water quality

  17. Methods for waste waters treatment in textile industry

    OpenAIRE

    Srebrenkoska, Vineta; Zhezhova, Silvana; Risteski, Sanja; Golomeova, Saska

    2014-01-01

    The processes of production of textiles or wet treatments and finishing processes of textile materials are huge consumers of water with high quality. As a result of these various processes, considerable amounts of polluted water are released. This paper puts emphasis on the problem of environmental protection against waste waters generated by textile industry. The methods of pretreatment or purification of waste waters in the textile industry can be: Primary (screening, sedimentation, homo...

  18. Effects of Position of Rainfed Rice Field in a Toposequence on Water Availability and Rice Yield in Central Java, Indonesia

    OpenAIRE

    SUGANDA, HUSEIN; PANINGBATAN, E.P; GUERRA, L.C; TUONG, T.P

    2003-01-01

    The productivity of rainfed rice needs to be increased in order to support the Indonesian Food Security programs, especially rice. Rainfall is one of the main sources of the water availability on the rainfed rice field. This research was conducted from October 2000 to February 2001 at four sites in Central Java Province. The objectives of this research were to study thevariability of water availability that influenced by toposequen's position and to analyze the rice yields due to treatments o...

  19. Potential applications of plasma science techniques for water treatment systems

    International Nuclear Information System (INIS)

    Pavlik, D.

    1994-01-01

    The historical evolution of water treatment techniques and their impact on man and his environment are presented. Ancient man recognized the relationship between good water and good health. However, it was not until the late 1800's that man's own contribution to the pollution of water via biological and chemical contamination of the water stream was recognized as having adverse affects on water quality. Since that time virtually every nation has adopted laws and regulations to ensure that safe sources of unpolluted water are available to its citizens. In the United States, water quality is governed by the Clean Water Act of 1972 administered at the federal level by the Environmental Protection Agency (EPA). Further, each state has established its equivalent agency which administers its own laws and regulations. Different biological and chemical biohazards present in the water system are discussed. Biological contaminants include various types of viruses, bacteria, fungii, molds, yeasts, algae, amoebas, and parasites. Chemical contaminates include elemental heavy metals and other organic and inorganic compounds which interfere with normal biological functions. Conventional water treatments for both consumption and sewage effluent commonly employ four different principals: mechanical filtration, quiescent gravity settling, biological oxidation, and chemical treatment. Although these techniques have greatly reduced the incidence of water-borne disease recent studies suggest that more effective means of eliminating biohazards are needed. Regulatory requirements for more aggressive treatment and elimination of residual contaminants present a significant opportunity for the application of various forms of electromagnetic radiation techniques. A comparison between conventional techniques and more advanced methods using various forms of electromagnetic radiation is discussed

  20. Numerical modelling of two-layer shallow water flow in microtidal salt-wedge estuaries: Finite volume solver and field validation

    Directory of Open Access Journals (Sweden)

    Krvavica Nino

    2017-03-01

    Full Text Available A finite volume model for two-layer shallow water flow in microtidal salt-wedge estuaries is presented in this work. The governing equations are a coupled system of shallow water equations with source terms accounting for irregular channel geometry and shear stress at the bed and interface between the layers. To solve this system we applied the Q-scheme of Roe with suitable treatment of source terms, coupling terms, and wet-dry fronts. The proposed numerical model is explicit in time, shock-capturing and it satisfies the extended conservation property for water at rest. The model was validated by comparing the steady-state solutions against a known arrested salt-wedge model and by comparing both steady-state and time-dependant solutions against field observations in Rječina Estuary in Croatia. When the interfacial friction factor λi was chosen correctly, the agreement between numerical results and field observations was satisfactory.

  1. Methods of removing uranium from drinking water. 1. A literature survey. 2. Present municipal water treatment and potential removal methods

    International Nuclear Information System (INIS)

    Drury, J.S.; Michelson, D.; Ensminger, J.T.; Lee, S.Y.; White, S.K.

    1982-12-01

    Literature was searched for methods of removing uranium from drinking water. U.S. manufacturers and users of water-treatment equipment and products were also contacted regarding methods of removing uranium from potable water. Based on the results of these surveys, it was recommended that untreated, partially treated, and finished water samples from municipal water-treatment facilities be analyzed to determine the extent of removal of uranium by presently used procedures, and that additional laboratory studies be performed to determine what changes are needed to maximize the effectiveness of treatments that are already in use in existing water-treatment plants

  2. Characterization and treatment of grey water : option for (re)use

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.

    2009-01-01

    Addressing the issues of water shortage and appropriate sanitation in Jordan, domestic grey water treatment receives growing interest. Grey water comprises the domestic wastewater flows excluding waters associated with the toilet. The topics of concern for grey water are its characteristics,

  3. 77 FR 12227 - Long Term 2 Enhanced Surface Water Treatment Rule: Uncovered Finished Water Reservoirs; Public...

    Science.gov (United States)

    2012-02-29

    ... Water Treatment Rule: Uncovered Finished Water Reservoirs; Public Meeting AGENCY: Environmental... review of the uncovered finished water reservoir requirement in the Long Term 2 Enhanced Surface Water... uncovered finished water reservoir requirement and the agency's Six Year Review process. EPA also plans to...

  4. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils.

    Science.gov (United States)

    White, John W; Coale, Frank J; Sims, J Thomas; Shober, Amy L

    2010-01-01

    Differences in the properties of organic phosphorus (P) sources, particularly those that undergo treatment to reduce soluble P, can affect soil P solubility and P transport in surface runoff. This 2-yr field study investigated soil P solubility and runoff P losses from two agricultural soils in the Mid-Atlantic region after land application of biosolids derived from different waste water treatment processes and poultry litter. Phosphorus speciation in the biosolids and poultry litter differed due to treatment processes and significantly altered soil P solubility and dissolved reactive P (DRP) and bioavailable P (FeO-P) concentrations in surface runoff. Runoff total P (TP) concentrations were closely related to sediment transport. Initial runoff DRP and FeO-P concentrations varied among the different biosolids and poultry litter applied. Over time, as sediment transport declined and DRP concentrations became an increasingly important component of runoff FeO-P and TP, total runoff P was more strongly influenced by the type of biosolids applied. Throughout the study, application of lime-stabilized biosolids and poultry litter increased concentrations of soil-soluble P, readily desorbable P, and soil P saturation, resulting in increased DRP and FeO-P concentrations in runoff. Land application of biosolids generated from waste water treatment processes that used amendments to reduce P solubility (e.g., FeCl(3)) did not increase soil P saturation and reduced the potential for DRP and FeO-P transport in surface runoff. These results illustrate the importance of waste water treatment plant process and determination of specific P source coefficients to account for differential P availability among organic P sources.

  5. Pretreatment of agriculture field water for improving membrane flux during pesticide removal

    Science.gov (United States)

    Mehta, Romil; Saha, N. K.; Bhattacharya, A.

    2017-10-01

    Pretreatment of feed water to improve membrane flux during filtration of agriculture field water containing substituted phenyl urea pesticide diuron has been reported. Laboratory-made reverse osmosis membrane was used for filtration. Preliminary experiments were conducted with model solution containing natural organic matter extracted from commercial humic acids, divalent ions Ca2+, Mg2+. Membrane fouling was characterized by pure water flux decline, change in membrane hydrophilicity and infrared spectroscopy. Natural organic matter present in field water causes severe membrane fouling. The presence of divalent cations further aggravated fouling. Use of ethylenediaminetetraacetic acid (EDTA) and polyacrylic acids (PAA) in feed resulted in the decrease in membrane fouling. Pretreatment of field water is a must if it is contaminated with micro-organism having membrane fouling potential. Feed water pretreatment and use of PAA restricted membrane fouling to 16 % after 60 h of filtration. Membrane permeate flux decline was maximum at the first 12 h and thereafter remained steady at around 45-46 lm-2h-1 till the end of 60 h. Diuron rejection remained consistently greater than 93 % throughout the experiment. Diuron rejection was found to be unaffected by membrane fouling.

  6. Influence of water management and fertilizer application on "1"3"7Cs and "1"3"3Cs uptake in paddy rice fields

    International Nuclear Information System (INIS)

    Wakabayashi, Shokichi; Itoh, Sumio; Kihou, Nobuharu; Matsunami, Hisaya; Hachinohe, Mayumi; Hamamatsu, Shioka; Takahashi, Shigeru

    2016-01-01

    Cesium-137 derived from the Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated large areas of agricultural land in Eastern Japan. Previous studies before the accident have indicated that flooding enhances radiocesium uptake in rice fields. We investigated the influence of water management in combination with fertilizers on "1"3"7Cs concentrations in rice plants at two fields in southern Ibaraki Prefecture. Stable Cs ("1"3"3Cs) in the plants was also determined as an analogue for predicting "1"3"7Cs behavior after long-term aging of soil "1"3"7Cs. The experimental periods comprised 3 y starting from 2012 in one field, and 2 y from 2013 in another field. These fields were divided into three water management sections: a long-flooding section without midsummer drainage, and medial-flooding, and short-flooding sections with one- or two-week midsummer drainage and earlier end of flooding than the long-flooding section. Six or four types of fertilizer subsections (most differing only in potassium application) were nested in each water management section. Generally, the long-flooding treatment led to higher "1"3"7Cs and "1"3"3Cs concentrations in both straw and brown rice than medial- and short-flooding treatments, although there were some notable exceptions in the first experimental year at each site. Effects of differing potassium fertilizer treatments were cumulative; the effects on "1"3"7Cs and "1"3"3Cs concentrations in rice plants were not obvious in 2012 and 2013, but in 2014, these concentrations were highest where potassium fertilizer had been absent and lowest where basal dressings of K had been tripled. The relationship between "1"3"7Cs and "1"3"3Cs in rice plants was not correlative in the first experimental year at each site, but correlation became evident in the subsequent year(s). This study demonstrates a novel finding that omitting midsummer drainage and/or delaying drainage during the grain-filling period

  7. Energy requirements for waste water treatment.

    Science.gov (United States)

    Svardal, K; Kroiss, H

    2011-01-01

    The actual mathematical models describing global climate closely link the detected increase in global temperature to anthropogenic activity. The only energy source we can rely on in a long perspective is solar irradiation which is in the order of 10,000 kW/inhabitant. The actual primary power consumption (mainly based on fossil resources) in the developed countries is in the range of 5 to 10 kW/inhabitant. The total power contained in our nutrition is in the range of 0.11 kW/inhabitant. The organic pollution of domestic waste water corresponds to approximately 0.018 kW/inhabitant. The nutrients contained in the waste water can also be converted into energy equivalents replacing market fertiliser production. This energy equivalent is in the range of 0.009 kW/inhabitant. Hence waste water will never be a relevant source of energy as long as our primary energy consumption is in the range of several kW/inhabitant. The annual mean primary power demand of conventional municipal waste water treatment with nutrient removal is in the range of 0.003-0.015 kW/inhabitant. In principle it is already possible to reduce this value for external energy supply to zero. Such plants should be connected to an electrical grid in order to keep investment costs low. Peak energy demand will be supported from the grid and surplus electric energy from the plant can be is fed to the grid. Zero 'carbon footprint' will not be affected by this solution. Energy minimisation must never negatively affect treatment efficiency because water quality conservation is more important for sustainable development than the possible reduction in energy demand. This argument is strongly supported by economical considerations as the fixed costs for waste water infrastructure are dominant.

  8. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  9. Pedotransfer functions to estimate soil water content at field capacity ...

    Indian Academy of Sciences (India)

    20

    available scarce water resources in dry land agriculture, but direct measurement thereof for multiple locations in the field is not always feasible. Therefore, pedotransfer functions (PTFs) were developed to estimate soil water retention at FC and PWP for dryland soils of India. A soil database available for Arid Western India ...

  10. Radiation processing technology for industrial waste water treatment

    International Nuclear Information System (INIS)

    2011-01-01

    Radiation sterilization technology, cross-linked polymers and curing, food and environmental applications of the radiation is widely used for many years. At the same time, drinking water and wastewater treatment are the part of the radiation technology applications. For this purpose, drinking water and wastewater treatment plants in various countries has been established. In this project, gamma / electron beam radiation treatment is intended to be used for the treatment of alkaloid, textiles and polychlorinated biphenyls (PCBs) wastewater. In this regard, the chemical characterization of wastewater, the interaction with radiation, biological treatment and determination of toxicological properties are the laboratory studies milestones. After laboratory studies, the establishment of a pilot scale treatment plant has been planned. Within the framework of the project a series of dye used in textile industry were examined. Besides the irradiation, the changes in treatment efficiency were investigated by using of oxygen and hydrogen peroxide in conjunction with the irradiation. Same working methods were implemented in the wastewater treatment of Bolvadin Opium Alkaloid Factory as well. In addition to chemical analysis in this study, aerobic and anaerobic biological treatment process also have been applied. Standard reference materials has been used for the marine sediment study contaminated with polychlorinated biphenyls.

  11. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016)

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  12. Study on the TOC concentration in raw water and HAAs in Tehran's water treatment plant outlet.

    Science.gov (United States)

    Ghoochani, Mahboobeh; Rastkari, Noushin; Nabizadeh Nodehi, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Nazmara, Shahrokh

    2013-11-12

    A sampling has been undertaken to investigate the variation of haloacetic acids formation and nature organic matter through 81 samples were collected from three water treatment plant and three major rivers of Tehran Iran. Changes in the total organic matter (TOC), ultraviolet absorbance (UV254), specific ultraviolet absorbance (SUVA) were measured in raw water samples. Haloacetic acids concentrations were monitored using a new static headspace GC-ECD method without a manual pre-concentration in three water treatment plants. The average concentration of TOC and HAAs in three rivers and three water treatment plants in spring, summer and fall, were 4, 2.41 and 4.03 mg/L and 48.75, 43.79 and 51.07 μg/L respectively. Seasonal variation indicated that HAAs levels were much higher in spring and fall.

  13. Integration of processes induced air flotation and photo-Fenton for treatment of residual waters contaminated with xylene

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Syllos S. da [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Chiavone-Filho, Osvaldo, E-mail: osvaldo@eq.ufrn.br [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Barros Neto, Eduardo L. de [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Nascimento, Claudio A.O. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, Cidade Universitaria, Sao Paulo 05508-900, SP (Brazil)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We have studied the treatment of wastewater contaminated with hydrocarbons represented by the xylene, using these processes in an integrated mode: induced air flotation and photo-Fenton. Black-Right-Pointing-Pointer We have selected xylene as representative contaminant due to properties of toxicity, solubility in water and vapor pressure. Black-Right-Pointing-Pointer The manuscript presents a series of accurate experimental data that can be useful for material and energy optimization purposes in the xylene removal aiming the treatment of oil field produced water. - Abstract: Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min{sup -1} for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H{sub 2}O{sub 2} concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal.

  14. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  15. Biological black water treatment combined with membrane separation

    NARCIS (Netherlands)

    van Voorthuizen, E.M.; Zwijnenburg, A.; van der Meer, Walterus Gijsbertus Joseph; Temmink, Hardy

    2008-01-01

    Separate treatment of black (toilet) water offers the possibility to recover energy and nutrients. In this study three combinations of biological treatment and membrane filtration were compared for their biological and membrane performance and nutrient conservation: a UASB followed by effluent

  16. Industrial process water treatment and reuse: A framework for synthesis and design

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Pennati, Alessandra; Bogataj, Milos

    2014-01-01

    Mathematical optimization has shown the potential to contribute to industrial water management, through the development of the solution methods needed for optimization-based design of wastewater treatment and reuse networks (also called water networks). Nevertheless, the application of this appro......, allowing a reduced water footprint, and the treatment costs are identified.......Mathematical optimization has shown the potential to contribute to industrial water management, through the development of the solution methods needed for optimization-based design of wastewater treatment and reuse networks (also called water networks). Nevertheless, the application...... algorithms. To this end, we propose a computer-aided framework for the design of water treatment and reuse networks. In the framework, optimization methods, problem analysis tools and wastewater engineering knowledge are integrated in a computer-aided environment, in order to facilitate the formulation...

  17. Gamma radiation treatment of waste waters from textile industries in ...

    African Journals Online (AJOL)

    Effects of gamma irradiation alone, and in combination with chemical treatment on color, odor, chemical oxyg-en demand (COD) and suspended solids in waste waters from textile industries in Ghana were studied to explore the potential of alternative and innovative processes for treatment of industrial waste waters. Waste ...

  18. ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING WATER TREATMENT

    Science.gov (United States)

    The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the new 10 ppb arsenic standard. One of the treatment options is co-precipitation of arsenic with iron. This tre...

  19. Dataset on the cost estimation for spent filter backwash water (SFBW treatment

    Directory of Open Access Journals (Sweden)

    Afshin Ebrahimi

    2017-12-01

    Full Text Available The dataset presented in this article are related to the research article entitled “Hybrid coagulation-UF processes for spent filter backwash water treatment: a comparison studies for PAFCl and FeCl3 as a pre-treatment” (Ebrahimi et al., 2017 [1]. This article reports the cost estimation for treating produced spent filter backwash water (SFBW during water treatment in Isfahan- Iran by various methods including primary sedimentation, coagulation & flocculation, second clarification, ultra filtration (UF and recirculation of settled SFBW to water treatment plant (WTP entrance. Coagulation conducted by PAFCl and FeCl3 as pre polymerized and traditional coagulants. Cost estimation showed that contrary to expectations, the recirculation of settled SFBW to WTP entrance is more expensive than other method and it costs about $ 37,814,817.6. Versus the cheapest option related to separate primary sedimentation, coagulation & flocculation in WTP. This option cost about $ 4,757,200 and $ 950,213 when FeCl3 and PAFCl used as coagulant, respectively. Keywords: Spent filter backwash water, Water treatment, Coat estimation, Water reuse

  20. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision.

    Science.gov (United States)

    Gwenzi, Willis; Chaukura, Nhamo; Noubactep, Chicgoua; Mukome, Fungai N D

    2017-07-15

    Approximately 600 million people lack access to safe drinking water, hence achieving Sustainable Development Goal 6 (Ensure availability and sustainable management of water and sanitation for all by 2030) calls for rapid translation of recent research into practical and frugal solutions within the remaining 13 years. Biochars, with excellent capacity to remove several contaminants from aqueous solutions, constitute an untapped technology for drinking water treatment. Biochar water treatment has several potential merits compared to existing low-cost methods (i.e., sand filtration, boiling, solar disinfection, chlorination): (1) biochar is a low-cost and renewable adsorbent made using readily available biomaterials and skills, making it appropriate for low-income communities; (2) existing methods predominantly remove pathogens, but biochars remove chemical, biological and physical contaminants; (3) biochars maintain organoleptic properties of water, while existing methods generate carcinogenic by-products (e.g., chlorination) and/or increase concentrations of chemical contaminants (e.g., boiling). Biochars have co-benefits including provision of clean energy for household heating and cooking, and soil application of spent biochar improves soil quality and crop yields. Integrating biochar into the water and sanitation system transforms linear material flows into looped material cycles, consistent with terra preta sanitation. Lack of design information on biochar water treatment, and environmental and public health risks constrain the biochar technology. Seven hypotheses for future research are highlighted under three themes: (1) design and optimization of biochar water treatment; (2) ecotoxicology and human health risks associated with contaminant transfer along the biochar-soil-food-human pathway, and (3) life cycle analyses of carbon and energy footprints of biochar water treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Simplified field-in-field technique for a large-scale implementation in breast radiation treatment

    International Nuclear Information System (INIS)

    Fournier-Bidoz, Nathalie; Kirova, Youlia M.; Campana, Francois; Dendale, Rémi; Fourquet, Alain

    2012-01-01

    We wanted to evaluate a simplified “field-in-field” technique (SFF) that was implemented in our department of Radiation Oncology for breast treatment. This study evaluated 15 consecutive patients treated with a simplified field in field technique after breast-conserving surgery for early-stage breast cancer. Radiotherapy consisted of whole-breast irradiation to the total dose of 50 Gy in 25 fractions, and a boost of 16 Gy in 8 fractions to the tumor bed. We compared dosimetric outcomes of SFF to state-of-the-art electronic surface compensation (ESC) with dynamic leaves. An analysis of early skin toxicity of a population of 15 patients was performed. The median volume receiving at least 95% of the prescribed dose was 763 mL (range, 347–1472) for SFF vs. 779 mL (range, 349–1494) for ESC. The median residual 107% isodose was 0.1 mL (range, 0–63) for SFF and 1.9 mL (range, 0–57) for ESC. Monitor units were on average 25% higher in ESC plans compared with SFF. No patient treated with SFF had acute side effects superior to grade 1-NCI scale. SFF created homogenous 3D dose distributions equivalent to electronic surface compensation with dynamic leaves. It allowed the integration of a forward planned concomitant tumor bed boost as an additional multileaf collimator subfield of the tangential fields. Compared with electronic surface compensation with dynamic leaves, shorter treatment times allowed better radiation protection to the patient. Low-grade acute toxicity evaluated weekly during treatment and 2 months after treatment completion justified the pursuit of this technique for all breast patients in our department.

  2. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  3. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Okeke, Benedict C., E-mail: bokeke@aum.edu [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Thomson, M. Sue [Department of Biology, Auburn University at Montgomery, P.O. Box 244023, Montgomery, AL 36124 (United States); Moss, Elica M. [Department of Natural Resources and Environmental Science, Alabama A and M University, AL 35762 (United States)

    2011-11-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R{sup 2} = 0.998) and turbidity (R{sup 2} = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity

  4. Occurrence, molecular characterization and antibiogram of water quality indicator bacteria in river water serving a water treatment plant

    International Nuclear Information System (INIS)

    Okeke, Benedict C.; Thomson, M. Sue; Moss, Elica M.

    2011-01-01

    Water pollution by microorganisms of fecal origin is a current world-wide public health concern. Total coliforms, fecal coliforms (Escherichia coli) and enterococci are indicators commonly used to assess the microbiological safety of water resources. In this study, influent water samples and treated water were collected seasonally from a water treatment plant and two major water wells in a Black Belt county of Alabama and evaluated for water quality indicator bacteria. Influent river water samples serving the treatment plant were positive for total coliforms, fecal coliforms (E. coli), and enterococci. The highest number of total coliform most probable number (MPN) was observed in the winter (847.5 MPN/100 mL) and the lowest number in the summer (385.6 MPN/100 mL). Similarly E. coli MPN was substantially higher in the winter (62.25 MPN/100 mL). Seasonal variation of E. coli MPN in influent river water samples was strongly correlated with color (R 2 = 0.998) and turbidity (R 2 = 0.992). Neither E. coli nor other coliform type bacteria were detected in effluent potable water from the treatment plant. The MPN of enterococci was the highest in the fall and the lowest in the winter. Approximately 99.7 and 51.5 enterococci MPN/100 mL were recorded in fall and winter seasons respectively. One-way ANOVA tests revealed significant differences in seasonal variation of total coliforms (P < 0.05), fecal coliforms (P < 0.01) and enterococci (P < 0.01). Treated effluent river water samples and well water samples revealed no enterococci contamination. Representative coliform bacteria selected by differential screening on Coliscan Easygel were identified by 16S ribosomal RNA gene sequence analysis. E. coli isolates were sensitive to gentamicin, trimethoprim/sulfamethazole, ciprofloxacin, vancomycin, tetracycline, ampicillin, cefixime, and nitrofurantoin. Nonetheless, isolate BO-54 displayed decreased sensitivity compared to other E. coli isolates. Antibiotic sensitivity pattern

  5. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment.

    Science.gov (United States)

    Westrick, Judy A; Szlag, David C; Southwell, Benjamin J; Sinclair, James

    2010-07-01

    This review focuses on the efficiency of different water treatment processes for the removal of cyanotoxins from potable water. Although several investigators have studied full-scale drinking water processes to determine the efficiency of cyanotoxin inactivation, many of the studies were based on ancillary practice. In this context, "ancillary practice" refers to the removal or inactivation of cyanotoxins by standard daily operational procedures and without a contingency operational plan utilizing specific treatment barriers. In this review, "auxiliary practice" refers to the implementation of inactivation/removal treatment barriers or operational changes explicitly designed to minimize risk from toxin-forming algae and their toxins to make potable water. Furthermore, the best drinking water treatment practices are based on extension of the multibarrier approach to remove cyanotoxins from water. Cyanotoxins are considered natural contaminants that occur worldwide and specific classes of cyanotoxins have shown regional prevalence. For example, freshwaters in the Americas often show high concentrations of microcystin, anatoxin-a, and cylindrospermopsin, whereas Australian water sources often show high concentrations of microcystin, cylindrospermopsin, and saxitoxins. Other less frequently reported cyanotoxins include lyngbyatoxin A, debromoaplysiatoxin, and beta-N-methylamino-L-alanine. This review focuses on the commonly used unit processes and treatment trains to reduce the toxicity of four classes of cyanotoxins: the microcystins, cylindrospermopsin, anatoxin-a, and saxitoxins. The goal of this review is to inform the reader of how each unit process participates in a treatment train and how an auxiliary multibarrier approach to water treatment can provide safer water for the consumer.

  6. Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India

    Science.gov (United States)

    Miller-Robbie, Leslie; Ramaswami, Anu; Amerasinghe, Priyanie

    2017-07-01

    Nutrients and water found in domestic treated wastewater are valuable and can be reutilized in urban agriculture as a potential strategy to provide communities with access to fresh produce. In this paper, this proposition is examined by conducting a field study in the rapidly developing city of Hyderabad, India. Urban agriculture trade-offs in water use, energy use and GHG emissions, nutrient uptake, and crop pathogen quality are evaluated, and irrigation waters of varying qualities (treated wastewater, versus untreated water and groundwater) are compared. The results are counter-intuitive, and illustrate potential synergies and key constraints relating to the food-energy-water-health (FEW-health) nexus in developing cities. First, when the impact of GHG emissions from untreated wastewater diluted in surface streams is compared with the life cycle assessment of wastewater treatment with reuse in agriculture, the treatment-plus-reuse case yields a 33% reduction in life cycle system-wide GHG emissions. Second, despite water cycling benefits in urban agriculture, only contamination and farmer behavior and harvesting practices. The study uncovers key physical, environmental, and behavioral factors that constrain benefits achievable at the FEW-health nexus in urban areas.

  7. Geochemical evidence of water-soluble gas accumulation in the Weiyuan gas field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shengfei Qin

    2016-01-01

    Full Text Available At present, there are several different opinions on the formation process of the Weiyuan gas field in the Sichuan Basin and the source of its natural gas. In view of the fact that the methane carbon isotope of the natural gas in the Weiyuan gas field is abnormally heavy, the geologic characteristics of gas reservoirs and the geochemical characteristics of natural gas were first analyzed. In the Weiyuan gas field, the principal gas reservoirs belong to Sinian Dengying Fm. The natural gas is mainly composed of methane, with slight ethane and trace propane. The gas reservoirs are higher in water saturation, with well preserved primary water. Then, it was discriminated from the relationship of H2S content vs. methane carbon isotope that the heavier methane carbon isotope of natural gas in this area is not caused by thermochemical sulfate reduction (TSR. Based on the comparison of methane carbon isotope in this area with that in adjacent areas, and combined with the tectonic evolution background, it is regarded that the natural gas in the Weiyuan gas field is mainly derived from water-soluble gas rather than be migrated laterally from adjacent areas. Some conclusions are made. First, since methane released from water is carbon isotopically heavier, the water-soluble gas accumulation after degasification results in the heavy methane carbon isotope of the gas produced from Weiyuan gas field. Second, along with Himalayan movement, great uplift occurred in the Weiyuan area and structural traps were formed. Under high temperature and high pressure, the gas dissolved in water experienced decompression precipitation, and the released natural gas accumulated in traps, consequently leading to the formation of Weiyuan gas field. Third, based on calculation, the amount of natural gas released from water which is entrapped in the Weiyuan gas field after the tectonic uplift is basically equal to the proved reserves of this field, confirming the opinion of water

  8. Microbial pathogens in source and treated waters from drinking water treatment plants in the US

    Science.gov (United States)

    An occurrence survey was conducted on selected pathogens in source and treated drinking water collected from 25 drinking water treatment plants (DWTPs) in the United States. Water samples were analyzed for the protozoa Giardia and Cryptosporidium (EPA Method 1623); the fungi Asp...

  9. Radiation chemical studies on the treatment of waste water

    International Nuclear Information System (INIS)

    Sakumoto, Akihisa; Miyata, Teijiro; Arai, Michimasa; Arai, Hidehiko

    1982-10-01

    The radiation induced reaction in aqueous solution was studied to develope the radiation treatment as a new technique for waste water and to elevate the effectiveness of radiation. The effectiveness of radiation was enhanced by combination of radiation induced reaction with conventional methods such as biological treatment and coagulation treatment. The synergistic effect of radiation and ozone was studied by using phenol and ethylene glycol. The chain reaction was observed in the radiation induced oxidation. The combination of radiation and ozone is considered to be one of the most useful method. In this report, the mechanism of each reaction and the applicability of the reaction to the treatment of waste water are discussed. (author)

  10. Field Performance of Heat Pump Water Heaters in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  11. Investigation of the potential influence of production treatment chemicals on produced water toxicity

    International Nuclear Information System (INIS)

    Stine, E.R.; Gala, W.R.; Henry, L.R.

    1993-01-01

    Production treatment chemicals represent a diverse collection of chemical classes, added at various points from the wellhead to the final flotation cell, to prevent operational upsets and enhance the separation of oil from water. Information in the literature indicates that while many treatment chemicals are thought to partition into oil and not into the produced water, there are cases where a sufficiently water soluble treatment chemical is added at high enough concentrations to suggest that the treatment chemical may add to the aquatic toxicity of the produced water. A study was conducted to evaluate the potential effect of production treatment chemicals on the toxicity of produced waters using the US EPA Seven-day Mysidopsis bahia Survival, Growth and Fecundity Test. Samples of produced water were collected and tested for toxicity from three platforms under normal operating conditions, followed by repeated sampling and testing after a 72-hour period in which treatment chemical usage was discontinued, to the degree possible. Significant reductions in produced water toxicity were observed for two of the three platforms tested following either cessation of treatment chemical usage, or by comparing the toxicity of samples collected upstream and downstream of the point of treatment chemical addition

  12. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the

  13. Grey water treatment concept integrating water and carbon recovery and removal of micropollutants

    NARCIS (Netherlands)

    Hernandez Leal, L.; Zeeman, G.; Buisman, C.J.N.

    2011-01-01

    A total treatment concept was developed for grey water from 32 houses in Sneek, The Netherlands. A thorough characterization of COD, nutrients, metals, micropollutants and anions was carried out. Four biological treatment systems were tested: aerobic, anaerobic, combined anaerobic¿+¿aerobic and a

  14. Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China

    Science.gov (United States)

    Wan, Tianfeng

    1984-10-01

    It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.

  15. Treatment of Highly Turbid Water by Polyaluminum Ferric Chloride (PAFCL

    Directory of Open Access Journals (Sweden)

    Fazel Fazel Mohammadi-Moghaddam

    2015-10-01

    Full Text Available Background & Aims of the Study: In some situation like rainfall seasons raw water become very turbid so it affected the water treatment plant processes and quality of produced water. Treatment of very high turbid water has some concerns like precursors for disinfection by-products and very loading rate of particle on filter's media and consequently increases in water consumption for filter backwash. This paper investigates the performance of a composite inorganic polymer of aluminium and ferric salt, Polyaluminium ferric chloride (PAFCl, for the removal of turbidity, color and natural organic matter (NOM from high turbid water. Materials and Methods: Experiments were carried out by Jar test experiment by synthetic water samples with 250 and 500 NTU turbidity that prepared in laboratory. Results: The results of conventional jar test showed that the optimum pH for coagulation of water sample was 7.5 to 8 and optimum dosage of the coagulant was 10 mg/L. Removal efficiency of turbidity, color and UV adsorbent at 254 nm at optimum dose and pH without filtration was 99.92%, 100% and 80.6% respectively for first sample (250 NTU and 99.95%, 99.49% and 84.77 for second sample (500 NTU respectively. Conclusion: It concluded that polyaluminium ferric chloride has a very good efficiency for the removal of turbidity, color and organic matter in high turbid water. Also it can be select as a coagulant for high turbid water and some waste water from water treatment plant like filter backwash water.

  16. The use of field redox measurements in assessing remediation of ground water containing petroleum hydrocarbons and chlorinated organic compounds

    International Nuclear Information System (INIS)

    Warner, S.D.; Gallinatti, J.D.; Honniball, J.H.

    1995-01-01

    Field measurements of the reduction-oxidation (redox) condition of ground water were used to assess the effects of in situ remediation of ground water affected by petroleum hydrocarbons and chlorinated organic compounds at multiple sites in northern California. The redox condition of ground water, traditionally measured quickly and inexpensively using a meter that measures electrode potential (Eh), is a valuable parameter by which to assess the conditions that affect the relative stability of various chemicals in ground water. Although not specific to a given redox couple measurements obtained using the traditional Eh meter give a sense of the relative tendency for a ground water to be reducing or oxidizing by providing a measurement of the system Eh. Two cases demonstrate the use of ground water Eh measurements in assessing the effects of in situ ground water remediation. In the first case, ground water affected by petroleum hydrocarbons-gasoline (TPHg), and benzene, toluene, ethylbenzene, and xylenes (BTEX) (ambient Eh of -100 to +100 millivolts [mv]) was treated by injecting hydrogen peroxide to supply oxygen to the subsurface environment and stimulate microbial activity. The second case involved remediation of ground water containing chlorinated organic compounds. In this case, a subsurface permeable ground water treatment wall containing granular iron was installed across the flow path of the affected ground water. The in situ chemical treatment, which successfully dechlorinates compounds such as trichloroethylene, 1,2-dichloroethylene, and vinyl chloride, caused reducing conditions in the ground water, which resulted in the decrease in ground water Eh from am ambient reading of about -50 mv to about -400 mv

  17. Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure

    Science.gov (United States)

    Güntner, Andreas; Reich, Marvin; Mikolaj, Michal; Creutzfeldt, Benjamin; Schroeder, Stephan; Wziontek, Hartmut

    2017-06-01

    In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet-temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85 % of the gravity signal due to local water storage changes originating within a radius of 4000 and 200 m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale.

  18. Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure

    Directory of Open Access Journals (Sweden)

    A. Güntner

    2017-06-01

    Full Text Available In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet–temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings, and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85 % of the gravity signal due to local water storage changes originating within a radius of 4000 and 200 m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale.

  19. General introduction for the “National field manual for the collection of water-quality data”

    Science.gov (United States)

    ,

    2018-02-28

    BackgroundAs part of its mission, the U.S. Geological Survey (USGS) collects data to assess the quality of our Nation’s water resources. A high degree of reliability and standardization of these data are paramount to fulfilling this mission. Documentation of nationally accepted methods used by USGS personnel serves to maintain consistency and technical quality in data-collection activities. “The National Field Manual for the Collection of Water-Quality Data” (NFM) provides documented guidelines and protocols for USGS field personnel who collect water-quality data. The NFM provides detailed, comprehensive, and citable procedures for monitoring the quality of surface water and groundwater. Topics in the NFM include (1) methods and protocols for sampling water resources, (2) methods for processing samples for analysis of water quality, (3) methods for measuring field parameters, and (4) specialized procedures, such as sampling water for low levels of mercury and organic wastewater chemicals, measuring biological indicators, and sampling bottom sediment for chemistry. Personnel who collect water-quality data for national USGS programs and projects, including projects supported by USGS cooperative programs, are mandated to use protocols provided in the NFM per USGS Office of Water Quality Technical Memorandum 2002.13. Formal training, for example, as provided in the USGS class, “Field Water-Quality Methods for Groundwater and Surface Water,” and field apprenticeships supplement the guidance provided in the NFM and ensure that the data collected are high quality, accurate, and scientifically defensible.

  20. Filtration in ultrasonic field; Filtracao em campo ultrassonico

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Inaura Carolina C. da; Cortes, Marcela de Araujo H.; Marques, Jose Jailton [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Dept. de Engenharia Quimica

    2008-07-01

    The production of water associated to the petroleum is an issue of big relevance in exploration areas classified as 'exhausted fields'. The current alternative in practice is the re-injection of the wastewater into the geological formation with the dual purpose of increasing oil recovery and pollution minimization. However, produced water presents several components that make impossible its direct re-injection, requiring a previous treatment. In this context, this work presents the state-of-art of filtration in ultrasonic field, in order to contribute to the development of a new treatment technology applicable to the produced water problem. (author)

  1. Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius.

    Science.gov (United States)

    Hernández Leal, L; Soeter, A M; Kools, S A E; Kraak, M H S; Parsons, J R; Temmink, H; Zeeman, G; Buisman, C J N

    2012-03-15

    In order to meet environmental quality criteria, grey water was treated in four different ways: 1) aerobic 2) anaerobic+aerobic 3) aerobic+activated carbon 4) aerobic+ozone. Since each treatment has its own specific advantages and disadvantages, the aim of this study was to compare the ecotoxicity of differently treated grey water using Chironomus riparius (96 h test) and Daphnia magna (48 h and 21d test) as test organisms. Grey water exhibited acute toxicity to both test organisms. The aerobic and combined anaerobic+aerobic treatment eliminated mortality in the acute tests, but growth of C. riparius was still affected by these two effluents. Post-treatment by ozone and activated carbon completely removed the acute toxicity from grey water. In the chronic toxicity test the combined anaerobic+aerobic treatment strongly affected D. magna population growth rate (47%), while the aerobic treatment had a small (9%) but significant effect. Hence, aerobic treatment is the best option for biological treatment of grey water, removing most of the toxic effects of grey water. If advanced treatment is required, the treatment with either ozone or GAC were shown to be very effective in complete removal of toxicity from grey water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Water (electrolyte) balance after abdominal therapeutic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cionini, L; Becciolini, A; Giannardi, G [Florence Univ. (Italy). Istituto di Radiologia

    1976-07-01

    Total body water, plasma volume and Na space have been studied in 34 patients receiving external radiotherapy on the pelvic region. Determinations were made on the same patients before, and half-way treatment; in a few cases, some determinations were also repeated after the end of treatment. The results failed to show any appreciable modification of the different parameters studied.

  3. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeonghwan [Department of Environmental Engineering, INHA University, Nam-gu, Yonghyun-dong 253, Incheon 402-751 (Korea, Republic of); Van der Bruggen, Bart, E-mail: bart.vanderbruggen@cit.kuleuven.b [K.U. Leuven, Department of Chemical Engineering, Laboratory for Applied Physical Chemistry and Environmental Technology, W. de Croylaan 46, B-3001 Leuven (Belgium)

    2010-07-15

    Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment. - Nanoparticles show a great potential for application in polymeric and ceramic membrane structures, in view of fouling mitigation and catalytic breakdown processes.

  4. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment

    International Nuclear Information System (INIS)

    Kim, Jeonghwan; Van der Bruggen, Bart

    2010-01-01

    Membrane separations are powerful tools for various applications, including wastewater treatment and the removal of contaminants from drinking water. The performance of membranes is mainly limited by material properties. Recently, successful attempts have been made to add nanoparticles or nanotubes to polymers in membrane synthesis, with particle sizes ranging from 4 nm up to 100 nm. Ceramic membranes have been fabricated with catalytic nanoparticles for synergistic effects on the membrane performance. Breakthrough effects that have been reported in the field of water and wastewater treatment include fouling mitigation, improvement of permeate quality and flux enhancement. Nanomaterials that have been used include titania, alumina, silica, silver and many others. This paper reviews the role of engineered nanomaterials in (pressure driven) membrane technology for water treatment, to be applied in drinking water production and wastewater recycling. Benefits and drawbacks are described, which should be taken into account in further studies on potential risks related to release of nanoparticles into the environment. - Nanoparticles show a great potential for application in polymeric and ceramic membrane structures, in view of fouling mitigation and catalytic breakdown processes.

  5. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    Science.gov (United States)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  6. Comparative study of household water treatment in a rural ...

    African Journals Online (AJOL)

    This research presents the household treatment of drinking water samples in a rural community in Nigeria by boiling and water guard. The physicochemical parameters of the raw water samples with exception of chloride, BOD and dissolved oxygen were within the permissible limits of the World Health Organization (WHO) ...

  7. Anaerobia Treatments of the domestic residual waters. Limitations potentialities

    International Nuclear Information System (INIS)

    Giraldo Gomez, Eugenio

    1993-01-01

    The quick growth of the Latin American cities has prevented that an appropriate covering of public services is achieved for the whole population, One of the undesirable consequences of this situation is the indiscriminate discharge from the domestic and industrial residual waters to the nearest bodies of water with its consequent deterioration and with disastrous consequences about the ecology and the public health. The developed countries have controlled this situation using systems of purification of the residual waters previously to their discharge in the receptor source. The same as the technology of the evacuation of the served waters, they have become numerous efforts for the application of the purification systems used in the countries developed to the socioeconomic, climatic and cultural conditions of our means. One of the results obtained in these efforts is the economic inability of the municipalities to pay the high investment costs and of operation of the traditional systems for the treatment of the residual waters. Contrary to another type of public services, the treatment of the residual waters needs of appropriate technological solutions for the Climatic and socioeconomic means of the developing countries, One of the technological alternatives for the purification of the residual waters that has had a great development in the last decades has been that of the biological treatments in t anaerobia ambient. The objective of this contribution is to present, to author's trial, the limitations and potentialities of this technology type with special emphasis in the case of the domestic residual waters

  8. Performance and Flow Field of a Gravitation Vortex Type Water Turbine

    OpenAIRE

    Nishi, Yasuyuki; Inagaki, Terumi

    2017-01-01

    A gravitation vortex type water turbine, which mainly comprises a runner and a tank, generates electricity by introducing a flow of water into the tank and using the gravitation vortex generated when the water drains from the bottom of the tank. This water turbine is capable of generating electricity using a low head and a low flow rate with relatively simple structure. However, because its flow field has a free surface, this water turbine is extremely complicated, and thus its relevance to p...

  9. Toxicity assessment of water at different stages of treatment using Microtox assay

    Directory of Open Access Journals (Sweden)

    Pogorzelec Marta

    2017-01-01

    Full Text Available Number of potentially toxic hydrophobic organic contaminants e.g. polycyclic aromatic hydrocarbons, pesticides, polychlorinated biphenyls and dioxins having entered aquatic environment, including potential sources of drinking water. Unfortunately, not all micropollutants can be removed during water treatment processes. What is more, disinfectants can react with some organic compounds already present in the water, and form disinfection by-products which also can be toxic. The aim of this study was to assess toxicity of water at different stages of water treatment and to verify usefulness semipermeable membrane devices in monitoring of drinking water. For this purpose, semipermeable membrane devices (SPMDs were deployed in a surface water treatment plant. To determine the effect of water treatment on the presence of toxic micropollutants, study was conducted for a period of 5 months. Three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After sampling dialysis in organic solvent was carried out and extracts were then analyzed with the Microtox acute toxicity test. The study has indicated the utility as well as some limitations of combining SPMDs with bioluminescence assay in the monitoring of biological effects of bioavailable hydrophobic pollutants in drinking water.

  10. REVIEW OF EXISTING LCA STUDIES ON WASTE WATER TREATMENT TECHNOLOGIES

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hauschild, Michael Zwicky

    The EU research project “NEPTUNE” is related to the EU Water Framework Directive and focused on the development of new waste water treatment technologies (WWTT) for municipal waste water. The sustainability of these WWTTs is going to be assessed by the use of life cycle assessment (LCA). New life...... importance of the different life cycle stages and the individual impact categories in the total impact from the waste water treatment, and the degree to which micropollutants, pathogens and whole effluent toxicity have been included in earlier studies. The results show that more than 30 different WWTT (and...

  11. Field evaluation of a horizontal well recirculation system for groundwater treatment: Pilot test at the Clean Test Site Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    International Nuclear Information System (INIS)

    Muck, M.T.; Kearl, P.M.; Siegrist, R.L.

    1998-01-01

    This report presents the results of field testing a horizontal well recirculation system at the Portsmouth Gaseous Diffusion Plant (PORTS). The recirculation system uses a pair of horizontal wells, one for groundwater extraction and treatment and the other for reinjection of treated groundwater, to set up a recirculation flow field. The induced flow field from the injection well to the extraction well establishes a sweeping action for the removal and treatment of groundwater contaminants. The overall purpose of this project is to study treatment of mixed groundwater contaminants that occur in a thin water-bearing zone not easily targeted by traditional vertical wells. The project involves several research elements, including treatment-process evaluation, hydrodynamic flow and transport modeling, pilot testing at an uncontaminated site, and pilot testing at a contaminated site. The results of the pilot test at an uncontaminated site, the Clean Test Site (CTS), are presented in this report

  12. MSWT-01, flood disaster water treatment solution from common ideas

    Science.gov (United States)

    Ananto, Gamawan; Setiawan, Albertus B.; Z, Darman M.

    2013-06-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  13. MSWT-01, flood disaster water treatment solution from common ideas

    International Nuclear Information System (INIS)

    Ananto, Gamawan; Setiawan, Albertus B; Darman M Z

    2013-01-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m 3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  14. Can field-in-field technique replace wedge filter in radiotherapy treatment planning: a comparative analysis in various treatment sites

    International Nuclear Information System (INIS)

    Prabhakar, R.; Julka, P.K.; Rath, G.K.

    2008-01-01

    The aim of the study was to show whether field-in-field (FIF) technique can be used to replace wedge filter in radiation treatment planning. The study was performed in cases where wedges are commonly used in radiotherapy treatment planning. Thirty patients with different malignancies who received radiotherapy were studied. This includes patients with malignancies of brain, head and neck, breast, upper and lower abdomen. All the patients underwent computed tomography scanning and the datasets were transferred to the treatment planning system. Initially, wedge based planning was performed to achieve the best possible dose distribution inside the target volume with multileaf collimators (Plan1). Wedges were removed from a copy of the same plan and FIF plan was generated (Plan2). The two plans were then evaluated and compared for mean dose, maximum dose, median dose, doses to 2% (D 2 ) and 98% (D 9 8) of the target volume, volume receiving greater than 107% of the prescribed dose (V>107%), volume receiving less than 95% of the prescribed dose (V 2 , V>107% and CI for more of the sites with statistically significant reduction in monitor units. FIF results in better dose distribution in terms of homogeneity in most of the sites. It is feasible to replace wedge filter with FIF in radiotherapy treatment planning.

  15. Development of sustainable water treatment technology using scientifically based calculated indexes of source water quality indicators

    Directory of Open Access Journals (Sweden)

    А. С. Трякина

    2017-10-01

    Full Text Available The article describes selection process of sustainable technological process flow chart for water treatment procedure developed on scientifically based calculated indexes of quality indicators for water supplied to water treatment facilities. In accordance with the previously calculated values of the indicators of the source water quality, the main purification facilities are selected. A more sustainable flow chart for the modern water quality of the Seversky Donets-Donbass channel is a two-stage filtering with contact prefilters and high-rate filters. The article proposes a set of measures to reduce such an indicator of water quality as permanganate oxidation. The most suitable for these purposes is sorption purification using granular activated carbon for water filtering. The increased water hardness is also quite topical. The method of ion exchange on sodium cation filters was chosen to reduce the water hardness. We also evaluated the reagents for decontamination of water. As a result, sodium hypochlorite is selected for treatment of water, which has several advantages over chlorine and retains the necessary aftereffect, unlike ozone. A technological flow chart with two-stage purification on contact prefilters and two-layer high-rate filters (granular activated carbon - quartz sand with disinfection of sodium hypochlorite and softening of a part of water on sodium-cation exchangers filters is proposed. This technological flow chart of purification with any fluctuations in the quality of the source water is able to provide purified water that meets the requirements of the current sanitary-hygienic standards. In accordance with the developed flow chart, guidelines and activities for the reconstruction of the existing Makeevka Filtering Station were identified. The recommended flow chart uses more compact and less costly facilities, as well as additional measures to reduce those water quality indicators, the values of which previously were in

  16. Controlling Bacterial Pathogens in Water for Reuse: Treatment Technologies for Water Recirculation in the Blue Diversion Autarky Toilet

    Directory of Open Access Journals (Sweden)

    Mi T. Nguyen

    2017-12-01

    Full Text Available HighlightBacterial growth in fecally-contaminated water is highly variable and dependent on several factors.Regrowth occurs after chlorination (low doses, no residual.Indigenous microbial communities variably impact bacterial growth.A combination of treatments can both inactivate and inhibit growth.The Blue Diversion AUTARKY Toilet is a urine-diverting toilet with on-site treatment. The toilet is being developed to provide a safe and affordable sanitation technology for people who lack access to sewer-based sanitation. Water used for personal hygiene, hand washing, and flushing to rinse urine- and feces-collection bowls is treated, stored, and recycled for reuse to reduce reliance on external water supplies. The system provides an opportunity to investigate hygiene of water for reuse following treatment. Treatment in the toilet includes a Biologically Activated Membrane Bioreactor (BAMBi followed by a secondary treatment technology. To identify effective secondary treatment, three options, including granular activated carbon (GAC only, GAC+chlorine (sodium hypochlorite, and GAC+electrolysis are considered based on the bacterial inactivation and growth inhibition efficiency. Four different hygiene-relevant bacteria are tested: Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, and Salmonella typhimurium. Our evaluation demonstrates that—despite treatment of water with the BAMBi—E. coli, P. aeruginosa, and S. typhimurium have the potential to grow during storage in the absence of microbial competition. Including the indigenous microbial community influences bacterial growth in different ways: E. coli growth decreases but P. aeruginosa growth increases relative to no competition. The addition of the secondary treatment options considerably improves water quality. A column of GAC after the BAMBi reduces E. coli growth potential by 2 log10, likely due to the reduction of carbon sources. Additional treatments including chlorination

  17. Mine water treatment with yellowcake by-production

    International Nuclear Information System (INIS)

    Csicsak, J.; Csoevari, M.; Eberfalvy, J.; Lendvai, Zs.

    2002-01-01

    Mining and milling of uranium ore in Hungary was terminated at the end of 1997. From that time rehabilitation works have been carrying out, which include manly the relocation of different solid wastes, such as waste rocks, heap leached residues, demolishing of former industrial buildings, clean up contaminated sites. Overall rehabilitation of the tailings ponds has also started. At first step the ground water restoration system is under construction, aiming at protecting the drinking water aquifer situated in the immediate vicinity of the tailings ponds. Former mining activity has been carried out also in the vicinity of the drinking water catchment area, for protection of that is compulsory to maintain appropriate depression in the mine in question. This means that mine water has to be pumped out continuously and because of the elevated uranium concentration in mine water, the water has to be treated. Thus the water quality protection is connected with uranium removal from the mine water. Mine water treatment process developed is based on anion-exchange process and removal of the uranium from the eluates with hydrogen peroxide. (author)

  18. Water treatment system for utilities: Phase 1 -- Technology assessment. Interim report

    International Nuclear Information System (INIS)

    Janss, T.M.; Tucker, R.E.

    1997-12-01

    A conceptual design for a water treatment system to reduce pollutants in manhole and vault water is presented as an alternative to current water disposal practices. Runoff and groundwater seepage that collects in vaults and manholes contains, or is likely to contain, concentrations of pollutants in excess of regulatory guidelines. Pollutants commonly present in storm water runoff consist of lead, cadmium, oil, grease and asbestos. The conceptual design presents the basis for a water treatment system that will reduce pollutant concentrations to levels below regulatory thresholds. The water treatment system is relatively inexpensive, small and simple to operate. A strainer is used to remove gross particulates, which are then stored for disposal. Utilizing centrifugal force, vault and manhole water is separated into constituent fractions including fine particulates, inorganics and oils. Fine particulates are stored with gross particulates for disposal. Chemical fixation is used to stabilize inorganics. Organic substances are stored for disposal. The water treatment system uses a granular activated carbon filter as an effluent polish to adsorb the remaining pollutants from the effluent water stream. The water can be discharged to the street or storm drain and the pollutants are stored for disposal as non-hazardous waste. This system represents a method to reduce pollutant volumes, reduced disposal costs and reduce corporate environmental liability. It should be noted that the initial phase of the development process is still in progress. This report is presented to reflect work in progress and as such should be considered preliminary

  19. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  20. The future for electrocoagulation as a localised water treatment technology.

    Science.gov (United States)

    Holt, Peter K; Barton, Geoffrey W; Mitchell, Cynthia A

    2005-04-01

    Electrocoagulation is an electrochemical method of treating polluted water whereby sacrificial anodes corrode to release active coagulant precursors (usually aluminium or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles) at the cathode. Electrocoagulation has a long history as a water treatment technology having been employed to remove a wide range of pollutants. However electrocoagulation has never become accepted as a 'mainstream' water treatment technology. The lack of a systematic approach to electrocoagulation reactor design/operation and the issue of electrode reliability (particularly passivation of the electrodes over time) have limited its implementation. However recent technical improvements combined with a growing need for small-scale decentralised water treatment facilities have led to a re-evaluation of electrocoagulation. Starting with a review of electrocoagulation reactor design/operation, this article examines and identifies a conceptual framework for electrocoagulation that focuses on the interactions between electrochemistry, coagulation and flotation. In addition detailed experimental data are provided from a batch reactor system removing suspended solids together with a mathematical analysis based on the 'white water' model for the dissolved air flotation process. Current density is identified as the key operational parameter influencing which pollutant removal mechanism dominates. The conclusion is drawn that electrocoagulation has a future as a decentralised water treatment technology. A conceptual framework is presented for future research directed towards a more mechanistic understanding of the process.

  1. Conservation-reuse of water in fossil-fuel power plants including water treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Rao, T.S.R.

    1984-02-01

    The various areas where the conservation-reuse of water is possible are discussed. However, water conservation, especially effluent volume reduction-treatment reuse, should be seen in the light of pollution control measures. Some of the areas indicated recover a small quantity of water but they should be viewed in the light of well yield being not adequate, or having high salinity or having an increase of well water salinity after some use. Some of the methods can only be adopted at the design stage whereas others could be incorporated at the site.

  2. Electron/photon matched field technique for treatment of orbital disease

    International Nuclear Information System (INIS)

    Arthur, Douglas W.; Zwicker, Robert D.; Garmon, Pamela W.; Huang, David T.; Schmidt-Ullrich, Rupert K.

    1997-01-01

    Purpose: A number of approaches have been described in the literature for irradiation of malignant and benign diseases of the orbit. Techniques described to date do not deliver a homogeneous dose to the orbital contents while sparing the cornea and lens of excessive dose. This is a result of the geometry encountered in this region and the fact that the target volume, which includes the periorbital and retroorbital tissues but excludes the cornea, anterior chamber, and lens, cannot be readily accommodated by photon beams alone. To improve the dose distribution for these treatments, we have developed a technique that combines a low-energy electron field carefully matched with modified photon fields to achieve acceptable dose coverage and uniformity. Methods and Materials: An anterior electron field and a lateral photon field setup is used to encompass the target volume. Modification of these fields permits accurate matching as well as conformation of the dose distribution to the orbit. A flat-surfaced wax compensator assures uniform electron penetration across the field, and a sunken lead alloy eye block prevents excessive dose to the central structures of the anterior segment. The anterior edge of the photon field is modified by broadening the penumbra using a form of pseudodynamic collimation. Direct measurements using film and ion chamber dosimetry were used to study the characteristics of the fall-off region of the electron field and the penumbra of the photon fields. >From the data collected, the technique for accurate field matching and dose uniformity was generated. Results: The isodose curves produced with this treatment technique demonstrate homogeneous dose coverage of the orbit, including the paralenticular region, and sufficient dose sparing of the anterior segment. The posterior lens accumulates less than 40% of the prescribed dose, and the lateral aspect of the lens receives less than 30%. A dose variation in the match region of ±12% is confronted when

  3. Fabrication of amine-functionalized magnetite nanoparticles for water treatment processes

    International Nuclear Information System (INIS)

    Chan, Candace C. P.; Gallard, Hervé; Majewski, Peter

    2012-01-01

    Amine-functionalized magnetite nanoparticles are synthesized by a one pot water based process using N-[3-(trimethoxysilyl)propyl]diethylenetriamine (TRIS) as surfactant. The prepared functionalised nanoparticles are characterised by BET surface area measurements, X-ray diffraction, zeta potential measurement, and X-ray photoelectron spectrometry (XPS). The results clearly show the presence of TRIS on the surface of the nanoparticles. XPS analysis indicates the presence of very small amounts of maghemite on the surface of the magnetite nanoparticles. Water treatment test shows that the prepared nanoparticles are capable to remove natural organic matter (NOM) from natural water samples. The removal of NOM by the prepared particles is characterized by analysing the dissolved organic carbon (DOC) content and UV absorbance at 254 nm (UV 254 ) after the treatment of the water samples at various doses and treatment times.

  4. Fabrication of amine-functionalized magnetite nanoparticles for water treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Candace C. P. [University of South Australia, Ian Wark Research Institute (Australia); Gallard, Herve [Universite de Poitiers, Laboratoire de Chimie et Microbiologie de l' Eau (LCME)-UMR CNRS 6008 (France); Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [Mawson Institute, University of South Australia, School of Advanced Manufacturing and Mechanical Engineering (Australia)

    2012-03-15

    Amine-functionalized magnetite nanoparticles are synthesized by a one pot water based process using N-[3-(trimethoxysilyl)propyl]diethylenetriamine (TRIS) as surfactant. The prepared functionalised nanoparticles are characterised by BET surface area measurements, X-ray diffraction, zeta potential measurement, and X-ray photoelectron spectrometry (XPS). The results clearly show the presence of TRIS on the surface of the nanoparticles. XPS analysis indicates the presence of very small amounts of maghemite on the surface of the magnetite nanoparticles. Water treatment test shows that the prepared nanoparticles are capable to remove natural organic matter (NOM) from natural water samples. The removal of NOM by the prepared particles is characterized by analysing the dissolved organic carbon (DOC) content and UV absorbance at 254 nm (UV{sub 254}) after the treatment of the water samples at various doses and treatment times.

  5. The need for the use of high-level radiation in water treatment and in waste-water (sewage) treatment

    International Nuclear Information System (INIS)

    Nielson, N.E.

    1975-01-01

    After excellent conventional primary, followed by the best possible conventional aerobic secondary and then chemical disinfection, significant quantities of contaminants are still present in sewage, especially pathogenic organisms and toxic or toxicity-causing long-chain-molecular forms. These contaminants are generally encountered in waste-waters with a seldom predictable, almost totally random frequency. Many of these chemical forms enter re-use situations where they can become toxic to man, or to wildlife, even in concentrations of a few parts per thousand million. It has been amply demonstrated that the long-held contention is no longer valid that dilution of these contaminants to an innocuous level is easily attained by their release into large bodies of water such as lakes, oceans and rivers. At the same time, a great deal of energy is required when using known techniques in highly reliable systems for removing or rendering innocuous a large portion of these contaminants. In the light of this new (to some people) information describing a much larger, more complex set of conditions which must be considered in effective water pollution elimination, high-level radiation becomes very attractive. There is a great need for high-level radiation in water treatment or waste-water treatment where the ultimate goal is a safe, clean, non-environmentally degrading, safely re-usable quality of water. Gamma radiation, used under the right circumstances, is the most reliable, most cost-effective, most generally efficient technique in the tertiary stages. With the addition of select chemicals to increase the number of ionizations realized and/or to capitalize upon surface charge phenomena, its effectiveness can be even further expanded. (author)

  6. Feasibility and Treatment of Oil and Gas Produced Water as a Medium for Nannochloropsis Salina cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Enid J. [Los Alamos National Laboratory; Dean, Cynthia A. [Los Alamos National Laboratory; Yoshida, Thomas M. [Los Alamos National Laboratory; Steichen, Seth A. [Los Alamos National Laboratory; Laur, Paul A. [Eldorado Biofuels; Visolay, Alfonz [VM Technologies

    2012-06-06

    Some conclusions of this paper are: (1) How much PW is available - (a) Lots, but probably not enough to support the largest estimates of algae production needed, (b) Diluent water is likely needed to support cultivation in some cases, (c) An assessment of how much PW is really available for use is needed; (2) Where is it available - (a) In many places near other resources (land, CO{sub 2}, sunlight, nutrients) and infrastructure (pipelines, refineries, disposal operations/wells); (3) Is the water chemistry acceptable for use - (a) Yes, in many cases with minimal treatment, (b) Additional constituents of value exist in PW for media; (4) Does it need treatment prior to use - (a) Yes, it may often need treatment for organics, some metals, and biological contaminants, (b) Source control and monitoring can reduce need for treatment; (5) How much does it cost to treat it - (a) If desalination is not needed, from <$0.01-$0.60 per m3 is a starting estimate; and (6) Can you grow algae in it - (a) Yes, but we need more experimentation to optimize field conditions, media mixing, and algae types.

  7. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.; Hoek, Eric M.V.

    2011-01-01

    readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality

  8. A Review on overboard CEOR discharged produced water treatment and remediation

    Science.gov (United States)

    Rawindran, H.; Krishnan, S.; Sinnathambi, C. M.

    2017-06-01

    Produced water is a waste by-product generated during oil and gas recovery operations. It contains the mixture of organic and inorganic compounds. Produced water management is a challenge faced by the petroleum practitioners worldwide. Build-up of chemical wastes from produced water causes huge footprint, which results in high CapEx and OpEx. Different technologies are practiced by various practitioners to treat the produced waste water. However, the constituents removed by each technology and the degree of organic compound removal has to be considered to identify the potential and effective treatment technologies for offshore industrial applications. Current produced water technologies and their successful applications have advantages and disadvantages and can be ranked on the basis of several factors, such as their discharge limit into water bodies, reinjection in producing well, or for any miscellaneous beneficial use. This paper attempts to provide a review of existing physical and chemical treatment technologies used for management of produced water. Based on our analysis, suitable methods will be recommended for offshore waste water treatment technologies.

  9. NOM characterization and removal at six Southern African water treatment plants

    Directory of Open Access Journals (Sweden)

    J. Haarhoff

    2010-04-01

    Full Text Available Organic pollution is a major concern during drinking water treatment. Major challenges attributed to organic pollution include the proliferation of pathogenic micro-organisms, prevalence of toxic and physiologically disruptive organic micro-pollutants, and quality deterioration in water distribution systems. A major component of organic pollution is natural organic matter (NOM. The operational mechanisms of most unit processes are well understood. However, their interaction with NOM is still the subject of scientific research. This paper takes the form of a meta-study to capture some of the experiences with NOM monitoring and analysis at a number of Southern African Water Treatment Plants. It is written from the perspective of practical process selection, to try and coax some pointers from the available data for the design of more detailed pilot work. NOM was tracked at six water treatment plants using dissolved organic carbon (DOC measurements. Fractionation of the DOC based on biodegradability and molecular weight distribution was done at a water treatment plant in Namibia. A third fractionation technique using ion exchange resins was used to assess the impact of ozonation on DOC. DOC measurements alone did not give much insight into NOM evolution through the treatment train. The more detailed characterization techniques showed that different unit processes preferentially remove different NOM fractions. Therefore these techniques provide better information for process design and optimisation than the DOC measurement which is routinely done during full scale operation at these water treatment plants.

  10. Hygiena 3, a Forgotten Project for Electrolytic Water Treatment

    Directory of Open Access Journals (Sweden)

    Kryštof Drnek

    2012-01-01

    Full Text Available In the interwar period, the city of Prague had to resolve the problem of treating the polluted water produced by its citizens. From 1933 - 1936 an ambitious competition was held. The idea behind the competition was to bring in new ideas and projects for a new water treatment station.Hygiena 3 was one of the projects that was submitted. It proposed a treatment procedure based on electrolytic consolidation of contaminants in water into flocks. The project was found to be inventive and interesting but too expensive and not effective. Nevertheless it was evaluated as a well developed proposal and received an award from the city.

  11. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    Science.gov (United States)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  12. Validation Aspects of Water Treatment Systems for Pharmaceutical ...

    African Journals Online (AJOL)

    The goal of conducting validation is to demonstrate that a process, when operated within established limits, produces a product of consistent and specified quality with a high degree of assurance. Validation of water treatment systems is necessary to obtain water with all desired quality attributes. This also provides a ...

  13. Waste Water Management and Infectious Disease. Part II: Impact of Waste Water Treatment

    Science.gov (United States)

    Cooper, Robert C.

    1975-01-01

    The ability of various treatment processes, such as oxidation ponds, chemical coagulation and filtration, and the soil mantle, to remove the agents of infectious disease found in waste water is discussed. The literature concerning the efficiency of removal of these organisms by various treatment processes is reviewed. (BT)

  14. ICEMENERG technologies of water treatment applied at Cernavoda NPP Unit 1

    International Nuclear Information System (INIS)

    Stanca, Angela; Bolma, Aurelia; Serbanescu, Agnes; Raducanu, Alice

    2002-01-01

    The paper presents the ICEMENERG technologies for water treatment applied at Cernavoda Unit 1, the treatment of the additional water for power steam generators and the chemical treatment of cooling system water. The requirements for quality of water totally demineralized as imposed by the AECL-ANSALDO consortium are as following: electrical conductivity, < 0.2 mS/cm; total silicon, <0.02 mg/L; ionic silicon, <0.01 mg/L; sodium, < 0.05 mg/L; TOC, <0.300 mg/L. These requirements raise rather difficult problems to be solved because the raw water source in case of Cernavoda NPP is Danube River which presents a raising trend of organic and inorganic contamination. Accordingly, experiments at laboratory scale reproducing the entire technological flow were conducted. The following operations were studied: pretreatment with limewash, ferric chloride (with and without coagulation additives); demineralization with ion exchangers of Purolite and Amberlite types. The system consisted of a cationic stage, formed of an strongly acid step with countercurrent recovery and an anionic stage formed of two steps, namely, a weakly basic step and a strongly basic step with recovery inserted; finishing on mixed bed. The paper presents also the chemical treatment/conditioning of the cooling loop of turbine condenser. The Cernavoda NPP cooling system is an open system with a single flow of cooling water comprising two systems, namely, the circulation water system ensuring the steam condenser cooling and the servicing water system ensuring the cooling of heat exchangers in the recirculated water circuit (RCWS), the turbine oil coolants, the coolants of auxiliary steam as well as the emergency core cooling system. Studies were conducted to ensure the chemical conditioning of the raw water from Danube River, particularly, to destroy and remove the shells, the algae and other components. Finally, the following four steps of conditioning the water of the cooling system are summarized: 1

  15. SU-E-T-296: Single Field Per Day Vs. Multiple Fields Per Day and the Impact On BED in Proton Therapy Treatment

    International Nuclear Information System (INIS)

    Grantham, K; Wooten, H; Zhao, T; Klein, E

    2014-01-01

    Purpose: A common practice, in proton therapy, is to deliver a rotating subset of fields from the treatment plan for the daily fractions. This study compares the impact this practice has on the biological effective dose (BED) versus delivering all planned fields daily. Methods: For two scenarios (a phantom with a geometry approximating the anatomy of a prostate treatment with opposing lateral beams, and a clinical 3-field brain treatment), treatment plans were produced in Eclipse (Varian) to simulate delivery of one, two, and three fields per fraction. The RT-Dose file, structure set, and α/β ratios were processed using in-house MATLAB code to return a new RT-Dose file containing the BED (including a proton RBE of 1.1) which was imported back into Eclipse for analysis. Results: For targets and regions of field overlap in the treatment plan, BED is not affected by delivery regimen. In the phantom, BED in the femoral heads showed increased by 20% when a single field was used rather than two fields. In the brain treatment, the minimum BED to the left optic nerve and the pituitary gland increased by 13% and 10% respectively, for a one-field regime compared to three-fields per fraction. Comparing the two-field and threefield regimes, the optic nerve BED was not significantly affected and the minimum pituitary BED was 4% higher for two fields per day. Conclusion: Hypo-fractionation effects, in regions of non-overlap of fields, significantly increase the BED to the involved tissues by as much as 20%. Care should be taken to avoid inadvertently sacrificing plan effectiveness in the interest of reduced treatment time

  16. Investigation of Trihalomethanes in Drinking Water of Abbas Abad Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Kiani R

    2017-06-01

    Full Text Available Introduction: Chlorination is the most common and successful method for disinfection of drinking water, especially in developing countries. However, due to the probability of formation of disinfection by-products especially Trihalomethanes (THMs that are known as hazardous and usually carcinogenic compounds, this study was conducted to assess the investigation of THMs in drinking water of Abbas Abad water treatment plant in 2015. Methods: In this study, 81 water samples were gathered during autumn season of 2015. Temperature, pH, Ec, turbidity, and residual chlorine were measured on site. After samples preparation in the laboratory, THMs concentrations were determined using gas chromatography. All statistical analyses were performed using the SPSS statistical package. Results: The results showed that the minimum and maximum mean concentrations (µg/l for bromodichloromethane were 1.47 ± 0.57 and 1.90 ± 0.26, for bromoform were 1.47 ± 0.35 and 2.36 ± 1.10, for dibromochloromethane were 1.47 ± 0.42 and 1.53 ± 0.55, and for chloroform were 3.40 ± 0.70 and 7.53 ± 1.00, and all compounds were determined for stations 1 and 3, respectively. Also comparing the mean concentrations of assessed THMs with ISIRI and World Health Organization (WHO Maximum Permissible Limits (MPL showed significant differences (P < 0.05. Thus, the mean concentrations of all Trihalomethanes compounds were significantly lower than the maximum permissible limits. Conclusions: Although the mean concentrations of THMs were lower than MPL, yet due to discharge of restaurants and gardens’ wastewater into the Abbas Abad River, pre-chlorination process of water in Abbas Abad water treatment plant, high retention time and increasing loss of foliage into the water, especially in autumn season, the formation of Trihalomethanes compounds could increase. Therefore, periodic monitoring of THMs in drinking water distribution network is recommended.

  17. Facilities for treatment of radioactive contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1981-02-01

    The standard applies to processes applied in facilities for treatment of radioactive contaminated water in nuclear power plants with LWR- and HTR-type reactors. It does not apply to the treatment of concentrates obtained in the decontamination of water. (orig.) [de

  18. Polyethersulfone-based ultrafiltration hollow fibre membrane for drinking water treatment systems

    Science.gov (United States)

    Chew, Chun Ming; Ng, K. M. David; Ooi, H. H. Richard

    2017-12-01

    Conventional media/sand filtration has been the mainstream water treatment process for most municipal water treatment plants in Malaysia. Filtrate qualities of conventional media/sand filtration are very much dependent on the coagulation-flocculation process prior to filtration and might be as high as 5 NTU. However, the demands for better quality of drinking water through public piped-water supply systems are growing. Polymeric ultrafiltration (UF) hollow fibre membrane made from modified polyethersulfone (PES) material is highly hydrophilic with high tensile strength and produces excellent quality filtrate of below 0.3 NTU in turbidity. This advanced membrane filtration material is also chemical resistance which allows a typical lifespan of 5 years. Comparisons between the conventional media/sand filtration and PES-based UF systems are carried out in this paper. UF has been considered as the emerging technology in municipal drinking water treatment plants due to its consistency in producing high quality filtrates even without the coagulation-flocculation process. The decreasing cost of PES-based membrane due to mass production and competitive pricing by manufacturers has made the UF technology affordable for industrial-scale water treatment plants.

  19. Analysis of micromixers and biocidal coatings on water-treatment membranes to minimize biofouling.

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Stephen W.; James, Darryl L. (Texas Tech University, Lubbock, TX); Hibbs, Michael R.; Jones, Howland D. T.; Hart, William Eugene; Khalsa, Siri Sahib; Altman, Susan Jeanne; Clem, Paul Gilbert; Elimelech, Menachem (Yale University, New Haven, CT); Cornelius, Christopher James; Sanchez, Andres L. (LMATA Government Services LLC, Albuquerque, NM); Noek, Rachael M.; Ho, Clifford Kuofei; Kang, Seokatae (Yale University, New Haven, CT); Sun, Amy Cha-Tien; Adout, Atar (Yale University, New Haven, CT); McGrath, Lucas K. (LMATA Government Services LLC, Albuquerque, NM); Cappelle, Malynda A.; Cook, Adam W.

    2009-12-01

    Biofouling, the unwanted growth of biofilms on a surface, of water-treatment membranes negatively impacts in desalination and water treatment. With biofouling there is a decrease in permeate production, degradation of permeate water quality, and an increase in energy expenditure due to increased cross-flow pressure needed. To date, a universal successful and cost-effect method for controlling biofouling has not been implemented. The overall goal of the work described in this report was to use high-performance computing to direct polymer, material, and biological research to create the next generation of water-treatment membranes. Both physical (micromixers - UV-curable epoxy traces printed on the surface of a water-treatment membrane that promote chaotic mixing) and chemical (quaternary ammonium groups) modifications of the membranes for the purpose of increasing resistance to biofouling were evaluated. Creation of low-cost, efficient water-treatment membranes helps assure the availability of fresh water for human use, a growing need in both the U. S. and the world.

  20. Effectiveness of home water treatment methods in Dschang ...

    African Journals Online (AJOL)

    The MPN (Most Probable Number) technique was used to assess the bacteriological quality of nine of the important drinking water sources in Dschang. Water from the most polluted source was then subjected to six home-based treatment methods, commonly used by the population. Boiling for up to thirty minutes was the ...

  1. Effect of microalgal treatments on pesticides in water.

    Science.gov (United States)

    Hultberg, Malin; Bodin, Hristina; Ardal, Embla; Asp, Håkan

    2016-01-01

    The effect of the microalgae Chlorella vulgaris on a wide range of different pesticides in water was studied. Treatments included short-term exposure (1 h) to living and dead microalgal biomass and long-term exposure (4 days) to actively growing microalgae. The initial pesticide concentration was 63.5 ± 3.9 µg L(-1). There was no significant overall reduction of pesticides after short-term exposure. A significant reduction of the total amount of pesticides was achieved after the long-term exposure to growing microalgae (final concentration 29.7 ± 1.0 µg L(-1)) compared with the long-term control (37.0 ± 1.2 µg L(-1)). The concentrations of 10 pesticides out of 38 tested were significantly lowered in the long-term algal treatment. A high impact of abiotic factors such as sunlight and aeration for pesticide reduction was observed when the initial control (63.5 ± 3.9 µg L(-1)) and the long-term control (37.0 ± 1.2 µg L(-1)) were compared. The results suggest that water treatment using microalgae, natural inhabitants of polluted surface waters, could be further explored not only for removal of inorganic nutrients but also for removal of organic pollutants in water.

  2. Water intensity assessment of shale gas resources in the Wattenberg field in northeastern Colorado.

    Science.gov (United States)

    Goodwin, Stephen; Carlson, Ken; Knox, Ken; Douglas, Caleb; Rein, Luke

    2014-05-20

    Efficient use of water, particularly in the western U.S., is an increasingly important aspect of many activities including agriculture, urban, and industry. As the population increases and agriculture and energy needs continue to rise, the pressure on water and other natural resources is expected to intensify. Recent advances in technology have stimulated growth in oil and gas development, as well as increasing the industry's need for water resources. This study provides an analysis of how efficiently water resources are used for unconventional shale development in Northeastern Colorado. The study is focused on the Wattenberg Field in the Denver-Julesberg Basin. The 2000 square mile field located in a semiarid climate with competing agriculture, municipal, and industrial water demands was one of the first fields where widespread use of hydraulic fracturing was implemented. The consumptive water intensity is measured using a ratio of the net water consumption and the net energy recovery and is used to measure how efficiently water is used for energy extraction. The water and energy use as well as energy recovery data were collected from 200 Noble Energy Inc. wells to estimate the consumptive water intensity. The consumptive water intensity of unconventional shale in the Wattenberg is compared with the consumptive water intensity for extraction of other fuels for other energy sources including coal, natural gas, oil, nuclear, and renewables. 1.4 to 7.5 million gallons is required to drill and hydraulically fracture horizontal wells before energy is extracted in the Wattenberg Field. However, when the large short-term total freshwater-water use is normalized to the amount of energy produced over the lifespan of a well, the consumptive water intensity is estimated to be between 1.8 and 2.7 gal/MMBtu and is similar to surface coal mining.

  3. Potential of Nanotechnology based water treatment solutions for the improvement of drinking water supplies in developing countries

    Science.gov (United States)

    Dutta, Joydeep; Bhattacharya, Prosun; Bundschuh, Jochen

    2016-04-01

    Over the last decades explosive population growth in the world has led to water scarcity across the globe putting additional pressure already scarce ground water resources and is pushing scientists and researchers to come up with new alternatives to monitor and treat water for use by mankind and for food security. Nearly 4 billion people around the world are known to lack access to clean water supply. Systematic water quality data is important for the assessment of health risks as well as for developing appropriate and affordable technologies for waste and drinking water treatments, and long-term decision making policy against water quality management. Traditional water treatment technologies are generally chemical-intensive processes requiring extremely large infrastructural support thus limiting their effective applications in developing nations which creates an artificial barrier to the application of technological solutions for the provision of clean water. Nanotechnology-based systems are in retrospect, smaller, energy and resource efficient. Economic impact assessment of the implementation of nanotechnology in water treatment and studies on cost-effectiveness and environmental and social impacts is of key importance prior to its wide spread acceptance. Government agencies and inter-governmental bodies driving research and development activities need to measure the effective potential of nanotechnology as a solution to global water challenges in order to effectively engage in fiscal, economic and social issues at national and international levels for different types of source waters with new national and international initiatives on nanotechnology and water need to be launched. Environmental pollution and industrialization in global scale is further leading to pollution of available water sources and thus hygienically friendly purification technologies are the need of the hour. Thus cost-effective treatment of pollutants for the transformation of hazardous

  4. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  5. Utilizing the fluidized bed to initiate water treatment on site

    International Nuclear Information System (INIS)

    Ahmadvand, H.; Germann, G.; Gandee, J.P.; Buehler, V.T.

    1995-01-01

    Escalating wastewater disposal costs coupled with enforcement of stricter regulations push industrial sites previously without water treatment to treat on site. These sites, inexperienced in water treatment, require a treatment technology that is easily installed, operated, and maintained. The aerobic granular activated carbon (GAC) fluidized bed incorporates biological and adsorptive technologies into a simple, cost-effective process capable of meeting strict effluent requirements. Two case studies at industrial sites illustrate the installation and operation of the fluidized bed and emphasize the ability to use the fluidized bed singularly or as an integral component of a treatment system capable of achieving treatment levels that allow surface discharge and reinjection. Attention is focused on BTEX (benzene, toluene, ethylbenzene, and xylenes)

  6. Quality Characteristics of Wholemeal Flour and Bread from Durum Wheat (Triticum turgidum L subsp. durum Desf.) after Field Treatment with Plant Water Extracts.

    Science.gov (United States)

    Carrubba, Alessandra; Comparato, Andrea; Labruzzo, Andrea; Muccilli, Serena; Giannone, Virgilio; Spina, Alfio

    2016-09-01

    The use of selected plant water extracts to control pests and weeds is gaining growing attention in organic and sustainable agriculture, but the effects that such extracts may exert on the quality aspects of durum wheat are still unexplored. In 2014, 5 plant water extracts (Artemisia arborescens, Euphorbia characias, Rhus coriaria, Thymus vulgaris, Lantana camara) were prepared and distributed on durum wheat cv Valbelice to evaluate their potential herbicidal effects. After crop harvesting, the major physicochemical and technological parameters of wholemeal flours obtained from each treatment were measured and compared with those from chemical weeding and untreated controls. A baking test was also performed to evaluate the breadmaking quality. In wholemeal flours obtained after the treatment with plant extracts protein and dry gluten content were higher than in control and chemical weeding. Wholemeal flours obtained after chemical weeding reached the highest Mixograph parameters, and that from durum wheat treated with R. coriaria extract demonstrated a very high α-amylase activity. We concluded that the treatments with plant water extracts may influence many quality traits of durum wheat. This occurrence must be taken into account in overall decisions concerning the use of plant extracts in pest and weed management practice. © 2016 Institute of Food Technologists®

  7. Water Quality & Pollutant Source Monitoring: Field and Laboratory Procedures. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on techniques and instrumentation used to develop data in field monitoring programs and related laboratory operations concerned with water quality and pollution monitoring. Topics include: collection and handling of samples; bacteriological, biological, and chemical field and laboratory methods; field…

  8. Drinking water treatment plant costs and source water quality: An updated case study (2013-2016) Abstract

    Science.gov (United States)

    Watershed protection can play an important role in producing safe drinking water. However, many municipalities and drinking water treatment plants (DWTPs) lack the information on the potential benefits of watershed protection as an approach to improving source water quality. This...

  9. Hot water treatments delay cold-induced banana peel blackening

    NARCIS (Netherlands)

    Promyou, S.; Ketsa, S.; Doorn, van W.G.

    2008-01-01

    Banana fruit of cv. Gros Michel (Musa acuminata, AAA Group, locally called cv. Hom Thong) and cv. Namwa (Musa x paradisiaca, ABB Group) were immersed for 5, 10 and 15 min in water at 42 degrees C, or in water at 25 degrees C (control), and were then stored at 4 degrees C. Hot water treatment for 15

  10. Assessment of didecyldimethylammonium chloride as a ballast water treatment method

    NARCIS (Netherlands)

    van Slooten, Cees; Buma, Anita; Peperzak, Louis

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium

  11. Assessment of didecyldimethylammonium chloride as a ballast water treatment method

    NARCIS (Netherlands)

    van Slooten, C.; Peperzak, L.; Buma, A.G.J.

    2015-01-01

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium

  12. Development and Optimum Composition of Locally Developed Potable Water Treatment Tablets

    Directory of Open Access Journals (Sweden)

    Josiah Oladele BABATOLA

    2009-07-01

    Full Text Available Current high level of energy cost and operational cost of membrane technologies and couple with difficulties in obtaining chemicals for potable water treatment give rooms for development of local substance and low cost adsorbents for water treatment. This paper presents a follow-up study on an earlier work in which some water treatment Tablets were produced and tested. The current work was directed at establishing the optimum composition of the tablets. Alum, calcium hypochlorite and lime were combined in proportion and made into pastes and tablets. Residual chlorine contents of the tablets were determined. The quality of stream water samples treated with the tablets was measured by chlorine content, pH and turbidity removal. It is concluded that the best composition is one part alum, two parts hypochlorite and three parts lime and this produced treated water pH of 7.8, chlorine residual of 5.0 mg/l and settled water turbidity 3.0 NTU. The product is aimed for use in rural communities to reduce rampaging death from water borne diseases.

  13. Process Improvement Education with Professionals in the Addiction Treatment Field

    Science.gov (United States)

    Pulvermacher, Alice

    2006-01-01

    Continuing education is being provided to professionals in the addiction treatment field to help them develop skills in process improvement and better meet the needs and requests they encounter. Access and retention of individuals seeking addiction treatment have been two of the greatest challenges addiction treatment professionals face.…

  14. Development of electrospun nanofiber composites for pointof-use water treatment

    Science.gov (United States)

    Peter, Katherine T.

    A range of chemical pollutants now contaminate drinking water sources and present a public health concern, including organic compounds, such as pharmaceuticals and pesticides, and both metalloids and heavy metals, such as arsenic and lead. Metalloids and heavy metals have been detected in private drinking water wells, which do not fall under federal drinking water regulations, as well as in urban tap water, due to the introduction of contamination to the drinking water distribution system. Further, many so-called "emerging organic contaminants," which are present in drinking water sources at detectable levels but have unknown long-term health implications, do not fall under federal drinking water regulations. To protect the health of consumers, drinking water treatment at the point-of-use (POU) (i.e., the tap) is essential. Next-generation POU treatment technologies must require minimal energy inputs, be simple enough to permit broad application among different users, and be easily adaptable for removal of a wide range of pollutants. Nanomaterials, such as carbon nanotubes and iron oxide nanoparticles, are ideal candidates for next-generation drinking water treatment, as they exhibit unique, high reactivity and necessitate small treatment units. However, concerns regarding water pressure requirements and nanomaterial release into the treated supply limit their application in traditional reactor designs. To bridge the gap between potential and practical application of nanomaterials, this study utilizes electrospinning to fabricate composite nanofiber filters that effectively deploy nanomaterials in drinking water treatment. In electrospinning, a high voltage draws a polymer precursor solution (which can contain nanomaterial additives, in the case of nanocomposites) from a needle to deposit a non-woven nanofiber filter on a collector surface. Using electrospinning, we develop an optimized, macroporous carbon nanotube-carbon nanofiber composite that utilizes the

  15. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    Science.gov (United States)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    -30 kPa and, finally, from the end of May to the harvesting time (maturation process), irrigation was applied when SWP reached -25 kPa. Every time irrigation events were stopped when SWP at the field capacity (-10 kPa) was restored in the upper part of the root zone. Results showed a water saving of nearly 50% using the Irrig-OH device, without consequences on the quantity and quality of the production. Plant physiological status based on LWP, T and CWSI measurements showed that despite the different irrigation treatments adopted, no considerable plant stress was found in both rows. In particular, maximum values of the previous indices, performed at midday, were respectively -2 MPa, 1.4 mm h-1 and 0.6, which were in good agreement with those observed by many researches for no-stressed peach orchards in Mediterranean areas.

  16. Analysis of a solar collector field water flow network

    Science.gov (United States)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  17. Design of ANFIS Structures and GMDH Type-Neural Network for Prediction of Optimum Coagulant Dosage in Water Treatment Process Case Study: Great Water Treatment Plant in Guilan Province

    Directory of Open Access Journals (Sweden)

    Allahyar Daghbandan

    2015-11-01

    Full Text Available Given the increasing importance of surface water bodies as supply sources of drinking water and regarding the requirement for using different chemicals at various stages of water treatment processes, it is essential to investigate coagulant consumption in water treatment plants. Determination of the required dosage of coagulants used in the coagulation and flocculation unit is one of the most important decisions in water treatment operations. For this purpose, the jar test is generally used to determine the type and concentration of suitable coagulants in a water treatment plant. However, the test is rather time-consuming and unreliable due to the inaccurate results it yields. Instead, intelligent methods can be employed to overcome this shortcoming of the jar test. In this study, experimental data were collected over the period from 2011 to 2012 and further refined for study. Two non-linear models based on adaptive neuro-fuzzy inference system (ANFIS and GMDH-type neural networks were then developed and experimental results were used to determine the optimum poly-aluminium chloride dosage for use at Guilan water treatment plant. The effects of input parameters including temperature, pH, turbidity, suspended solids, electrical conductivity, and color were investigated on coagulant dosage. The ANFIS model was found to outperform the GMDH model in predicting the required poly-aluminium chloride dosage.

  18. Challenging the conventional wisdom -- The case for off-site water treatment

    International Nuclear Information System (INIS)

    Gidumal, R.H.

    1994-01-01

    Two recent remediation projects have demonstrated off-site water treatment as economically beneficial to on-site treatment. The project cost showed that significantly reduced capital costs and O and M costs were obtained by sending the material to a commercial waste water treatment plant vs. depending on on-site treatment. This paper will detail the line item capital costs as well as the expected annual operation and maintenance charges. The first project involved a major oil refinery needed to remediate a 2.1 MM gallon lagoon. The lagoon was used to dispose of primary oil/water/solids/separation sludge and currently comprised of 7% solid material. The second project is a remediation project with a pump and treat system. The water contains heavy metal (Pb, As) and VOC (ppm TCE, PCE, etc.) contamination. The Record of Decision (ROD) specified installation of groundwater/leachate extraction and injection wells within the existing landfill for dewatering and flushing of the system. The treatment choice for the leachate (40--60 GPM) was on-site pretreatment and discharge to the local POTW

  19. HEAVY METALS AS UNWANTED COMPONENTS OF BACKWASH WATER DERIVED FROM GROUNDWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Robert Nowak

    2016-06-01

    Full Text Available The paper presents some aspects of the problem of heavy metals presence in wastewater and sewage sludge from water treatment. In the first part, issues on quality of wastewaters and sludge produced during water treatment along with actions aimed at the neutralization of such wastes, were discussed. Subsequent parts of the work present the example of 12 groundwater treatment stations in a particular municipality, and the problem of backwash water quality, in particular, heavy metals contents. The analysis covered a period of three years: 2013, 2014, and 2015. The authors, using the discussed examples, have shown that besides hydrated iron and manganese oxides, also other toxic contaminants can be present in backwash water from groundwater treatment. In particular, the qualitative analysis of the backwash water revealed the presence of heavy metals, mainly zinc. The test results for backwash water were compared with those of filtrate qualitative assessment, wherein the heavy metals were not found. This fact indicated the metal retention in the filter bed and their unsustainable immobilization resulting in penetration of heavy metals from deposit to the backwash water along with other impurities, mainly iron and manganese oxides. The main conclusion from the study is to demonstrate the need for constant monitoring of the backwash water quality, including the presence of toxic heavy metals. This is also important because of the requirement to minimize the negative environmental impact of wastes generated during the water treatment process.

  20. Increased Oil Recovery from Mature Oil Fields Using Gelled Polymer Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Willhite, G.P.; Green, D.W.; McCool, S.

    2001-03-28

    Gelled polymer treatments were applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report is aimed at reducing barriers to the widespread use of these treatments by developing methods to predict gel behavior during placement in matrix rock and fractures, determining the persistence of permeability reduction after gel placement, and by developing methods to design production well treatments to control water production. Procedures were developed to determine the weight-average molecular weight and average size of polyacrylamide samples in aqueous solutions. Sample preparation techniques were key to achieving reproducible results.

  1. Procedures for field chemical analyses of water samples

    International Nuclear Information System (INIS)

    Korte, N.; Ealey, D.

    1983-12-01

    A successful water-quality monitoring program requires a clear understanding of appropriate measurement procedures in order to obtain reliable field data. It is imperative that the responsible personnel have a thorough knowledge of the limitations of the techniques being used. Unfortunately, there is a belief that field analyses are simple and straightforward. Yet, significant controversy as well as misuse of common measurement techniques abounds. This document describes procedures for field measurements of pH, carbonate and bicarbonate, specific conductance, dissolved oxygen, nitrate, Eh, and uranium. Each procedure section includes an extensive discussion regarding the limitations of the method as well as brief discussions of calibration procedures and available equipment. A key feature of these procedures is the consideration given to the ultimate use of the data. For example, if the data are to be used for geochemical modeling, more precautions are needed. In contrast, routine monitoring conducted merely to recognize gross changes can be accomplished with less effort. Finally, quality assurance documentation for each measurement is addressed in detail. Particular attention is given to recording sufficient information such that decisions concerning the quality of the data can be easily made. Application of the procedures and recommendations presented in this document should result in a uniform and credible water-quality monitoring program. 22 references, 4 figures, 3 tables

  2. Treatment of waters before use. Processes and applications

    International Nuclear Information System (INIS)

    Mouchet, P.

    2006-01-01

    Some industrial processes require a water without any particulate in suspension and stable with respect to various aspects: no post-precipitations, no interference with storage and distribution equipments (corrosion or fouling), no development of bacterial, algal or other type of fauna (no chemical nutrients) etc. The water preparation process used will be different depending on the origin of the water (surface or underground). This article describes, first, the different type of treatments depending on the origin of the water and on the quality requested (clear and stable water, drinkable water, specific complementary processes, different processing files). Then, in a second part, the application of these processes to some industries are given (beverage, food, textile, paper, steel-making, aerospace and automotive, petroleum, power plants, ultra-pure waters) and in particular the preparation of demineralized water for nuclear power plants is described. (J.S.)

  3. Pollution Impact and Alternative Treatment for Produced Water

    Science.gov (United States)

    Hedar, Yusran; Budiyono

    2018-02-01

    Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  4. Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations

    International Nuclear Information System (INIS)

    Zhang Lue; Wang Xiang-Da; Liu Xiao-Zhou; Gong Xiu-Fen

    2015-01-01

    With converged shock wave, extracorporeal shock wave lithotripsy (ESWL) has become a preferable way to crush human calculi because of its advantages of efficiency and non-intrusion. Nonlinear spheroidal beam equations (SBE) are employed to illustrate the acoustic wave propagation for transducers with a wide aperture angle. To predict the acoustic field distribution precisely, boundary conditions are obtained for the SBE model of the monochromatic wave when the source is located on the focus of an ESWL transducer. Numerical results of the monochromatic wave propagation in water are analyzed and the influences of half-angle, fundamental frequency, and initial pressure are investigated. According to our results, with optimization of these factors, the pressure focal gain of ESWL can be enhanced and the effectiveness of treatment can be improved. (paper)

  5. A field guide for the protection and treatment of shorelines following an Orimulsion spill

    International Nuclear Information System (INIS)

    Owens, E. O.; Sergy, G.

    1997-01-01

    A field guide for use in marine shoreline protection and treatment for Orimulsion was prepared. Orimulsion is a bitumen-based fuel consisting of 70 per cent bitumen and 30 per cent water, stabilized by a surfactant. The guide addresses a wide range of issues related to the protection and cleanup of Orimulsion contamination. Topics covered include the fate, behaviour, persistence and natural removal rates, recommended techniques for shoreline protection, terminology for assessment documentation, and response decision guidelines. The manual covers both forms of Orimulsion, i.e. the non-sticky dispersed bitumen, as well as the tarry residue that results from weathering. 13 refs., 8 figs

  6. Prokaryotic community structure and activity of sulfate reducers in production water from high-temperature oil reservoirs with and without nitrate treatment

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    2009-01-01

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80°C) oil reservoirs......, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields...... were dominated by sequences affiliated with Firmicutes (Bacteria) and Thermococcales (Archaea). Potential heterotrophic nitrate reducers (Deferribacterales) were exclusively found at the nitrate-treated field, possibly stimulated by nitrate addition. Quantitative PCR of dsrAB genes revealed...

  7. Feasibility study of an aeration treatment system in a raw water storage reservoir used as a potable water source

    OpenAIRE

    Fronk, Robert Charles

    1996-01-01

    The systems engineering process has been utilized to determine the feasibility of an aeration treatment system for a raw water storage reservoir used as a potable water source. This system will be used to ensure a consistently high quality of raw water by the addition of dissolved oxygen into the reservoir. A needs analysis establishes the importance and requirements for a consistently high quality of raw water used as a source for a potable water treatment facility. This s...

  8. Pilot demonstrations of arsenic treatment technologies in U.S. Department of Energy Arsenic Water Technology Partnership program.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Aragon, Alicia R.; Siegal Malcolm D.; Dwyer, Brian P.

    2005-01-01

    The Arsenic Water Technology Partnership program is a multi-year program funded by a congressional appropriation through the Department of Energy. The program is designed to move technologies from benchscale tests to field demonstrations. It will enable water utilities, particularly those serving small, rural communities and Indian tribes, to implement the most cost-effective solutions to their arsenic treatment needs. As part of the Arsenic Water Technology Partnership program, Sandia National Laboratories is carrying out field demonstration testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. The scope for this work includes: (1) Selection of sites and identification of technologies for pilot demonstrations; (2) Laboratory studies to develop rapid small-scale test methods; and (3) Pilot-scale studies at community sites involving side-by-side tests of innovative technologies. The goal of site selection is to identify sites that allow examination of treatment processes and systems under conditions that are relevant to different geochemical settings throughout the country. A number of candidate sites have been identified through reviews of groundwater quality databases, conference proceedings and discussions with state and local officials. These include sites in New Mexico, Arizona, Colorado, Oklahoma, Michigan, and California. Candidate technologies for the pilot tests are being reviewed through vendor forums, proof-of-principle benchscale studies managed by the American Water Works Association Research Foundation (AwwaRF) and the WERC design contest. The review considers as many potential technologies as possible and screens out unsuitable ones by considering data from past performance testing, expected costs, complexity of operation and maturity of the technology. The pilot test configurations will depend on the site-specific conditions such as access, power availability

  9. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    Science.gov (United States)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  10. Integrated water quality, emergy and economic evaluation of three bioremediation treatment systems for eutrophic water

    Science.gov (United States)

    This study was targeted at finding one or more environmentally efficient, economically feasible and ecologically sustainable bioremediation treatment modes for eutrophic water. Three biological species, i.e. water spinach (Ipomoea aquatica), loach (Misgurus anguillicaudatus) and ...

  11. Water feed and effluent treatment for hydrogen sulfide-water system

    International Nuclear Information System (INIS)

    Spevack, J.S.

    1981-01-01

    This invention provides a feed and effluent treatment system for improving the recovery of a gas (e.g. H 2 S) from solution in a liquid (e.g. water) when the liquid also contains dissolved nonvolatile components (e.g. the salts of sea water) at low temperatures. In a gas/liquid contact process in which the gas is at least partially soluble in the liquid, a portion of the liquid is extracted after it passes through a hot zone, the pressure of the liquid is reduced by flashing it through pressure reduction means to remove a portion of the dissolved gas, and the gas thus recovered is returned to the process

  12. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rossiter, Helfrid M.A. [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom); Owusu, Peter A.; Awuah, Esi [Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, Kumasi (Ghana); MacDonald, Alan M. [British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA (United Kingdom); Schaefer, Andrea I., E-mail: Andrea.Schaefer@ed.ac.uk [School of Engineering, The University of Edinburgh, Edinburgh, EH9 3JL (United Kingdom)

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO{sub 3}{sup -}) were found in 21% of the samples, manganese (Mn) and fluoride (F{sup -}) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m{sup 3}, many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m{sup 3}) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic

  13. Chemical drinking water quality in Ghana: Water costs and scope for advanced treatment

    International Nuclear Information System (INIS)

    Rossiter, Helfrid M.A.; Owusu, Peter A.; Awuah, Esi; MacDonald, Alan M.; Schaefer, Andrea I.

    2010-01-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO 3 - ) were found in 21% of the samples, manganese (Mn) and fluoride (F - ) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about Pounds 1200 and Pounds 3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or 'pay-as-you-fetch'. The annual fee was between Pounds 0.3-21, while the boreholes had a water collection fee of Pounds 0.07-0.7/m 3 , many wells were free. Interestingly, the most expensive water ( Pounds 2.9-3.5/m 3 ) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment

  14. Chemical drinking water quality in Ghana: water costs and scope for advanced treatment.

    Science.gov (United States)

    Rossiter, Helfrid M A; Owusu, Peter A; Awuah, Esi; Macdonald, Alan M; Schäfer, Andrea I

    2010-05-01

    To reduce child mortality and improve health in Ghana boreholes and wells are being installed across the country by the private sector, NGO's and the Ghanaian government. Water quality is not generally monitored once a water source has been improved. Water supplies were sampled across Ghana from mostly boreholes, wells and rivers as well as some piped water from the different regions and analysed for the chemical quality. Chemical water quality was found to exceed the WHO guidelines in 38% of samples, while pH varied from 3.7 to 8.9. Excess levels of nitrate (NO(3)(-)) were found in 21% of the samples, manganese (Mn) and fluoride (F(-)) in 11% and 6.7%, respectively. Heavy metals such as lead (Pb), arsenic (As) and uranium (U) were localised to mining areas. Elements without health based guideline values such as aluminium (Al, 95%) and chloride (Cl, 5.7%) were found above the provisional guideline value. Economic information was gathered to identify water costs and ability to pay. Capital costs of wells and boreholes are about pound1200 and pound3800 respectively. The majority of installation costs are generally paid by the government or NGO's, while the maintenance is expected to be covered by the community. At least 58% of the communities had a water payment system in place, either an annual fee/one-off fee or "pay-as-you-fetch". The annual fee was between pound0.3-21, while the boreholes had a water collection fee of pound0.07-0.7/m(3), many wells were free. Interestingly, the most expensive water ( pound2.9-3.5/m(3)) was brought by truck. Many groundwater sources were not used due to poor chemical water quality. Considering the cost of unsuccessful borehole development, the potential for integrating suitable water treatment into the capital and maintenance costs of water sources is discussed. Additionally, many sources were not in use due to lack of water capacity, equipment malfunction or lack of economic resources to repair and maintain equipment. Those

  15. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    Science.gov (United States)

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  16. Evaluation of the freeze-thaw/evaporation process for the treatment of produced waters. Final report, August 1992--August 1996

    Energy Technology Data Exchange (ETDEWEB)

    Boysen, J.E.; Walker, K.L.; Mefford, J.L.; Kirsch, J.R. [Resource Technology Corp., Laramie, WY (United States); Harju, J.A. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

    1996-06-01

    The use of freeze-crystallization is becoming increasingly acknowledged as a low-cost, energy-efficient method for purifying contaminated water. The natural freezing process can be coupled with natural evaporative processes to treat oil and gas produced waters year round in regions where subfreezing temperatures seasonally occur. The climates typical of Colorado`s San Juan Basin and eastern slope, as well as the oil and gas producing regions of Wyoming, are well suited for application of these processes in combination. Specifically, the objectives of this research are related to the development of a commercially-economic FTE (freeze-thaw/evaporation) process for the treatment and purification of water produced in conjunction with oil and natural gas. The research required for development of this process consists of three tasks: (1) a literature survey and process modeling and economic analysis; (2) laboratory-scale process evaluation; and (3) field demonstration of the process. Results of research conducted for the completion of these three tasks indicate that produced water treatment and disposal costs for commercial application of the process, would be in the range of $0.20 to $0.30/bbl in the Rocky Mountain region. FTE field demonstration results from northwestern New Mexico during the winter of 1995--96 indicate significant and simultaneous removal of salts, metals, and organics from produced water. Despite the unusually warm winter, process yields demonstrate disposal volume reductions on the order of 80% and confirm the potential for economic production of water suitable for various beneficial uses. The total dissolved solids concentrations of the FTE demonstration streams were 11,600 mg/L (feed), 56,900 mg/L (brine), and 940 mg/L (ice melt).

  17. Environmental contaminants in oil field produced waters discharged into wetlands

    International Nuclear Information System (INIS)

    Ramirez, P. Jr.

    1994-01-01

    The 866-acre Loch Katrine wetland complex in Park County, Wyoming provides habitat for many species of aquatic birds. The complex is sustained primarily by oil field produced waters. This study was designed to determine if constituents in oil field produced waters discharged into Custer Lake and to Loch Katrine pose a risk to aquatic birds inhabiting the wetlands. Trace elements, hydrocarbons and radium-226 concentrations were analyzed in water, sediment and biota collected from the complex during 1992. Arsenic, boron, radium-226 and zinc were elevated in some matrices. The presence of radium-226 in aquatic vegetation suggests that this radionuclide is available to aquatic birds. Oil and grease concentrations in water from the produced water discharge exceeded the maximum 10 mg/l permitted by the WDEQ (1990). Total aliphatic and aromatic hydrocarbon concentrations in sediments were highest at the produced water discharge, 6.376 μg/g, followed by Custer Lake, 1.104 μg/g. The higher levels of hydrocarbons found at Custer Lake, compared to Loch Katrine, may be explained by Custer Lake's closer proximity to the discharge. Benzo(a)pyrene was not detected in bile from gadwalls collected at Loch Katrine but was detected in bile from northern shovelers collected at Custer Lake. Benzo(a)pyrene concentrations in northern shoveler bile ranged from 500 to 960 ng/g (ppb) wet weight. The presence of benzo(a)pyrene in the shovelers indicates exposure to petroleum hydrocarbons

  18. State of the art of produced water treatment.

    Science.gov (United States)

    Jiménez, S; Micó, M M; Arnaldos, M; Medina, F; Contreras, S

    2018-02-01

    Produced water (PW) is the wastewater generated when water from underground reservoirs is brought to the surface during oil or gas extraction. PW is generated in large amounts and has a complex composition, containing various toxic organic and inorganic compounds. PW is currently treated in conventional trains that include phase separators, decanters, cyclones and coarse filters in order to comply with existing regulation for discharge. These treatment trains do not achieve more restrictive limitations related to the reuse of the effluent (reinjection into extraction wells) or other beneficial uses (e.g., irrigation). Therefore, and to prevent environmental pollution, further polishing processes need to be carried out. Characterization of the PW to determine major constituents is the first step to select the optimum treatment for PW, coupled with environmental factors, economic considerations, and local regulatory framework. This review tries to provide an overview of different treatments that are being applied to polish this type of effluents. These technologies include membranes, physical, biological, thermal or chemical treatments, where special emphasis has been made on advanced oxidation processes due to the advantages offered by these processes. Commercial treatments, based on the combination, modification and improvement of simpler treatments, were also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evaluation of dissolved air flotation and membrane filtration for drinking water treatment

    International Nuclear Information System (INIS)

    Van Benschoten, J.; Martin, C.; Schaefer, J.; Xu, L.; Franceschini, S.

    2002-01-01

    Laboratory and pilot-scale testing was conducted to evaluate the use of dissolved air flotation (DAF) followed by membrane filtration (MF) for drinking water treatment. At the laboratory scale, four water samples of varying water quality were tested. Pilot- scale DAF and MF plants located at the City of Buffalo Water Treatment facility utilized Lake Erie as a raw water source to evaluate this combination of treatment processes. A polyaluminum coagulant was used throughout the study. Study results demonstrated beneficial effects of coagulant addition in extending MF run time. Pilot testing showed additional benefits to using DAF as a pretreatment step to MF. In all testing, MF produced excellent water quality. Particulate matter appeared more important than concentration or type of dissolved organic matter in membrane fouling. (author)

  20. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field.

    Science.gov (United States)

    Shine, M B; Guruprasad, K N; Anand, Anjali

    2011-09-01

    Experiments were conducted to study the effect of static magnetic fields on the seeds of soybean (Glycine max (L.) Merr. var: JS-335) by exposing the seeds to different magnetic field strengths from 0 to 300 mT in steps of 50 mT for 30, 60, and 90 min. Treatment with magnetic fields improved germination-related parameters like water uptake, speed of germination, seedling length, fresh weight, dry weight and vigor indices of soybean seeds under laboratory conditions. Improvement over untreated control was 5-42% for speed of germination, 4-73% for seedling length, 9-53% for fresh weight, 5-16% for dry weight, and 3-88% and 4-27% for vigor indices I and II, respectively. Treatment of 200 mT (60 min) and 150 mT (60 min), which were more effective than others in increasing most of the seedling parameters, were further explored for their effect on plant growth, leaf photosynthetic efficiency, and leaf protein content under field conditions. Among different growth parameters, leaf area, and leaf fresh weight showed maximum enhancement (more than twofold) in 1-month-old plants. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at the J-I-P phase. The total soluble protein map (SDS-polyacrylamide gel) of leaves showed increased intensities of the bands corresponding to a larger subunit (53 KDa) and smaller subunit (14 KDa) of Rubisco in the treated plants. We report here the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean. Copyright © 2011 Wiley-Liss, Inc.

  1. 7 CFR 1780.63 - Sewage treatment and bulk water sales contracts.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Sewage treatment and bulk water sales contracts. 1780..., Designing, Bidding, Contracting, Constructing and Inspections § 1780.63 Sewage treatment and bulk water sales contracts. Owners entering into agreements with private or public parties to treat sewage or...

  2. The Optimization-Based Design and Synthesis of Water Network for Water Management in an Industrial Process: Refinery Effluent Treatment Plant

    DEFF Research Database (Denmark)

    Sueviriyapan, Natthapong; Siemanond, Kitipat; Quaglia, Alberto

    2014-01-01

    The increasing awareness of the sustainability of water resources has become an important issue. Many process industries contribute to high water consumption and wastewater generation. Problems in industrial water management include the processing of complex contaminants in wastewater, selection...... of wastewater treatment technologies, as well as water allocation, limited reuse, and recycling strategies. Therefore, a water and wastewater treatment network design requires the integration of both economic and environmental perspectives. The aim of this work was to modify and develop a generic model......-based synthesis process for a water/wastewater treatment network design problem utilizing the framework of Quaglia et al. (2013) in order to effectively design, synthesize, and optimize an industrial water management problem using different scenarios (both existing and retrofit system design). The model...

  3. Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes.

    Science.gov (United States)

    Xu, Jiajiong; Tang, Wei; Ma, Jun; Wang, Hong

    2017-07-01

    Drinking water treatment processes remove undesirable chemicals and microorganisms from source water, which is vital to public health protection. The purpose of this study was to investigate the effects of treatment processes and configuration on the microbiome by comparing microbial community shifts in two series of different treatment processes operated in parallel within a full-scale drinking water treatment plant (DWTP) in Southeast China. Illumina sequencing of 16S rRNA genes of water samples demonstrated little effect of coagulation/sedimentation and pre-oxidation steps on bacterial communities, in contrast to dramatic and concurrent microbial community shifts during ozonation, granular activated carbon treatment, sand filtration, and disinfection for both series. A large number of unique operational taxonomic units (OTUs) at these four treatment steps further illustrated their strong shaping power towards the drinking water microbial communities. Interestingly, multidimensional scaling analysis revealed tight clustering of biofilm samples collected from different treatment steps, with Nitrospira, the nitrite-oxidizing bacteria, noted at higher relative abundances in biofilm compared to water samples. Overall, this study provides a snapshot of step-to-step microbial evolvement in multi-step drinking water treatment systems, and the results provide insight to control and manipulation of the drinking water microbiome via optimization of DWTP design and operation.

  4. Field development. Concept selection in deep water environment offshore Angola

    Energy Technology Data Exchange (ETDEWEB)

    Guenot, A.; Berger, J.C.; Limet, N. [TotalFinaElf, la Defense 6, Rosa-Lirio Project Group, 92 - Courbevoie (France)

    2002-10-01

    The significant oil discoveries made at the end of the 90's in the deep water environment offshore the coast of Angola, has led to a considerable amount of development activities. The first field in production was the turnkey development of the Kuito field on the Block 14 operated by Chevron. More recently the Girassol field has been put successfully in production on the Block 17, operated by TotalFinaElf. Both developments are making use of sub-sea wells connected to a moored dedicated FPSO. On the western side of the Girassol field, several discoveries have been made. They are known as the Rosa Lirio pole, from the names of two of the main channels. Values for water depth are in the same range than on Girassol (1300- 1400 m). A project group has been established in 1999 to evaluate the development of these discoveries. The purpose of this paper is to present the conceptual work which as been carried out, and in particular to show that even if many different concepts have been evaluated, the final choice has been also to make use of sub-sea trees. (authors)

  5. [The toxicity variation of organic extracts in drinking water treatment processes].

    Science.gov (United States)

    Mei, M; Wei, S; Zijian, W; Wenhua, W; Baohua, Z; Suxia, Z

    2001-01-01

    Source water samples and outlet water samples from different treatment processes of the Beijing Ninth Water Works were concentrated in situ with XAD-2 filled columns. GC-MS analysis and toxic assessment including acute toxicity evaluation by luminescent bacterium bioassay(Q67 strains) and mutagenicity assessment by Ames test(TA98 and TA100 strains with and without S9 addition) were conducted on these samples. The results showed that prechlorination caused the direct and indirect frame shift mutagenicity as well as indirect base pair substitute mutagenicity. Addition of coagulant may increase the base pair substitute mutagenic effects greatly. Sand and coal filtration and granular activated carbon filtration could effectively remove most of the formed mutagens. The rechlorination do not obviously increase the mutagenic effects. No mutagenic effect was observed in tap water. Acute toxicity showed the same variation with that of mutagenicity during the treatment processes. Sample from flocculation treatment process was found to be the most toxic sample. Results of GC-MS analysis showed that water in this plant was not contaminated by PCB. Concentrations of toluene, naphthalene and phenol increased in flocculation treatment process and in tap water. However, the concentrations of these substances were at the level of microgram/L, therefore, were not high enough to cause mutagenicity.

  6. Urban net-zero water treatment and mineralization: experiments, modeling and design.

    Science.gov (United States)

    Englehardt, James D; Wu, Tingting; Tchobanoglous, George

    2013-09-01

    Water and wastewater treatment and conveyance account for approximately 4% of US electric consumption, with 80% used for conveyance. Net zero water (NZW) buildings would alleviate demands for a portion of this energy, for water, and for the treatment of drinking water for pesticides and toxic chemical releases in source water. However, domestic wastewater contains nitrogen loads much greater than urban/suburban ecosystems can typically absorb. The purpose of this work was to identify a first design of a denitrifying urban NZW treatment process, operating at ambient temperature and pressure and circum-neutral pH, and providing mineralization of pharmaceuticals (not easily regulated in terms of environmental half-life), based on laboratory tests and mass balance and kinetic modeling. The proposed treatment process is comprised of membrane bioreactor, iron-mediated aeration (IMA, reported previously), vacuum ultrafiltration, and peroxone advanced oxidation, with minor rainwater make-up and H2O2 disinfection residual. Similar to biological systems, minerals accumulate subject to precipitative removal by IMA, salt-free treatment, and minor dilution. Based on laboratory and modeling results, the system can produce potable water with moderate mineral content from commingled domestic wastewater and 10-20% rainwater make-up, under ambient conditions at individual buildings, while denitrifying and reducing chemical oxygen demand to below detection (<3 mg/L). While economics appear competitive, further development and study of steady-state concentrations and sludge management options are needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Biostimulation and enhancement of pesticide degradation around water abstraction fields

    DEFF Research Database (Denmark)

    Levi, Suzi

    Groundwater contamination by pesticides is a widespread environmental problem and a major threat to drinking water supplies. Diffuse source contamination of groundwater that enters from an extensive area is characterized by low pesticide concentrations (nanogram-microgram per liter) in large...... volumes of water. It is regarded as one of the major threats to groundwater quality originating from agriculture, roads and railways. These large volumes of water in combination with the low concentration cause difficulties in preventing contamination of drinking water supplies and this is a challenge...... under aerobic conditions. Laboratory batch experiments were conducted with anaerobic aquifer material and groundwater collected near an operating drinking water abstraction field to study the potential for stimulating biodegradation of pesticides (bentazone, mecoprop and dichlorprop) at environmentally...

  8. Classroom and Field Experiments for Florida's Environmental Resources.

    Science.gov (United States)

    Lewis, Jim

    This booklet is intended to help teachers in Florida manage the growing interest in environmental education. Fourteen experiments are grouped into the environmental areas of the water cycle, groundwater, water pollution, waste and water treatment, air pollution, and field experiments. Experiments include demonstrations of the water cycle, the…

  9. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    Science.gov (United States)

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  10. Experimental and numerical reaction analysis on sodium-water chemical reaction field

    International Nuclear Information System (INIS)

    Deguchi, Yoshihiro; Takata, Takashi; Yamaguchi, Akira; Kikuchi, Shin; Ohshima, Hiroyuki

    2015-01-01

    In a sodium-cooled fast reactor (SFR), liquid sodium is used as a heat transfer fluid because of its excellent heat transport capability. On the other hand, it has strong chemical reactivity with water vapor. One of the design basis accidents of the SFR is the water leakage into the liquid sodium flow by a breach of heat transfer tubes. This process ends up damages on the heat transport equipment in the SFR. Therefore, the study on sodium-water chemical reactions is of paramount importance for security reasons. This study aims to clarify the sodium-water reaction mechanisms using an elementary reaction analysis. A quasi one-dimensional flame model is applied to a sodium-water counter-flow reaction field. The analysis contains 25 elementary reactions, which consist of 17 H_2-O_2 and 8 Na-H_2O reactions. Temperature and species concentrations in the counter-flow reaction field were measured using laser diagnostics such as LIF and CARS. The main reaction in the experimental conditions is Na+H_2O → NaOH+H and OH is produced by H_2O+H → H_2+OH. It is demonstrated that the reaction model in this study well explains the structure of the sodium-water counter-flow diffusion flame. (author)

  11. Treatment of cyanide-contained Waste Water

    International Nuclear Information System (INIS)

    Scheglov, M.Y.

    1999-01-01

    This work contains results of theoretical and experimental investigations of possibility to apply industrial ionites of different kinds for recovering complex cyanide of some d-elements (Cu, Zn, an dso on) and free CN-ions with purpose to develop technology and unit for plating plant waste water treatment. Finally, on basis of experimental data about equilibrium kinetic and dynamic characteristic of the sorption in model solutions, strong base anionite in CN- and OH-forms was chosen. This anionite has the best values of operational sorption uptake. Recommendations of using the anionite have been developed for real cyanide-contained wastewater treatment

  12. Water: from the source to the treatment plan

    Science.gov (United States)

    Marquet, V.; Baude, I.

    2012-04-01

    As a biology and geology teacher, I have worked on water, from the source to the treatment plant, with pupils between 14 and 15 years old. Lesson 1. Introduction, the water in Vienna Aim: The pupils have to consider why the water is so important in Vienna (history, economy etc.) Activities: Brainstorming about where and why we use water every day and why the water is different in Vienna. Lesson 2. Soil, rock and water Aim: Permeability/ impermeability of the different layers of earth Activities: The pupils have measure the permeability and porosity of different stones: granite, clay, sand, carbonate and basalt. Lesson 3. Relationship between water's ion composition and the stone's mineralogy Aim: Each water source has the same ion composition as the soil where the water comes from. Activities: Comparison between the stone's mineralogy and ions in water. They had a diagram with the ions of granite, clay, sand, carbonate and basalt and the label of different water. They had to make hypotheses about the type of soil where the water came from. They verified this with a geology map of France and Austria. They have to make a profile of the area where the water comes from. They had to confirm or reject their hypothesis. Lesson 4 .Water-catchment and reservoir rocks Aim: Construction of a confined aquifer and artesian well Activities: With sand, clay and a basin, they have to model a confined aquifer and make an artesian well, using what they have learned in lesson 2. Lesson 5. Organic material breakdown and it's affect on the oxygen levels in an aquatic ecosystem Aim: Evaluate the relationship between oxygen levels and the amount of organic matter in an aquatic ecosystem. Explain the relationship between oxygen levels, bacteria and the breakdown of organic matter using an indicator solution. Activities: Put 5 ml of a different water sample in each tube with 20 drops of methylene blue. Observe the tubes after 1 month. Lesson 6. Visit to the biggest water treatment plant in

  13. Development of a Water Treatment Plant Operation Manual Using an Algorithmic Approach.

    Science.gov (United States)

    Counts, Cary A.

    This document describes the steps to be followed in the development of a prescription manual for training of water treatment plant operators. Suggestions on how to prepare both flow and narrative prescriptions are provided for a variety of water treatment systems, including: raw water, flocculation, rapid sand filter, caustic soda feed, alum feed,…

  14. Pollution Impact and Alternative Treatment for Produced Water

    Directory of Open Access Journals (Sweden)

    Hedar Yusran

    2018-01-01

    Full Text Available Oil and gas exploration and production are two of the activities that potentially cause pollution and environmental damage. The largest waste generated from this activity is produced water. Produced water contains hazardous pollutants of both organic and inorganic materials, so that the produced water of oil and gas production cannot be discharged directly to the environment. Uncontrolled discharge can lead to the environmental damage, killing the life of water and plants. The produced water needs to be handled and fulfill the quality standards before being discharged to the environment. Several studies to reduce the contaminants in the produced water were conducted by researchers. Among them were gravity based separation - flotation, separation technique based on filtration, and biological process treatment. Therefore, some of these methods can be used as an alternative waste handling of produced water.

  15. Treatment of radioactive waste water by flocculation method, (1)

    International Nuclear Information System (INIS)

    Kimura, Syojiro; Tsutsui, Tenson.

    1976-01-01

    Coagulation property of particle on the treatment of radioactive waste water by floculation method is varied with its electrical potential and mixing condition. The surface state of the particle is influenced by contents of coexistent materials in the waste water and added materials at the treatment process. In the case of using ferric hydroxide as coagulant, assuming the ions which decide the potential of the particle surface are Fe(OH) 2 + and Fe(OH) 4 - , calculated values of the potential agree with zeta-potential of ferric hydroxide particle which is formed from FeCl 4 and NaOH in demineralized water. When Na 2 CO 3 is in the waste water as coexistent materials, anion HCO 3 - adsorbs on the particle surface in connection with pH variation and thus the surface charge is being minus. If Ca 2+ ion is present in the waste water, the surface charge plus. ABS acts as single molecule anion at low concentration, but it forms micell at high concentration and influences zeta-potential of the particle. The potential of the particle is correlated to the coprecipitation rate of 90 Sr in the waste water. (auth.)

  16. Treatment of radioactive contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1978-12-01

    This rule is to be applied to the design, construction, and operation of facilities for treatment of water contaminated with radioactive material in stationary nuclear power plants with LWRs and HTRs. According to the requirements of the rule these facilities are to be designed, constructed, and operated in such a way that a) uncontrolled discharge of water contaminated with radioactive material is avoided, b) the activity discharged with water is as low as possible, c) water contaminated with radioactive material will not reach the ground, d) the radiation exposure as a consequence of direct radiation, contamination, and inhalation of the persons occupied in the facilities is as low as possible and as a maximum corresponds to the values laid down in the radiation protection regulation or to the values of the operating license. This rule is not to be applied to facilities for coolant and storage pit clean-up as well as facilities for the treatment of concentrates produced during the contamination of the water. (orig./HP) [de

  17. Naturally occurring radionuclides in materials derived from urban water treatment plants in southeast Queensland, Australia

    International Nuclear Information System (INIS)

    Kleinschmidt, Ross; Akber, Riaz

    2008-01-01

    An assessment of radiologically enhanced residual materials generated during treatment of domestic water supplies in southeast Queensland, Australia, was conducted. Radioactivity concentrations of U-238, Th-232, Ra-226, Rn-222, and Po-210 in water, sourced from both surface water catchments and groundwater resources were examined both pre- and post-treatment under typical water treatment operations. Surface water treatment processes included sedimentation, coagulation, flocculation and filtration, while the groundwater was treated using cation exchange, reverse osmosis, activated charcoal or methods similar to surface water treatment. Waste products generated as a result of treatment included sediments and sludges, filtration media, exhausted ion exchange resin, backwash and wastewaters. Elevated residual concentrations of radionuclides were identified in these waste products. The waste product activity concentrations were used to model the radiological impact of the materials when either utilised for beneficial purposes, or upon disposal. The results indicate that, under current water resource exploitation programs, reuse or disposal of the treatment wastes from large scale urban water treatment plants in Australia do not pose a significant radiological risk

  18. A review of water treatment membrane nanotechnologies

    KAUST Repository

    Pendergast, MaryTheresa M.

    2011-01-01

    Nanotechnology is being used to enhance conventional ceramic and polymeric water treatment membrane materials through various avenues. Among the numerous concepts proposed, the most promising to date include zeolitic and catalytic nanoparticle coated ceramic membranes, hybrid inorganic-organic nanocomposite membranes, and bio-inspired membranes such as hybrid protein-polymer biomimetic membranes, aligned nanotube membranes, and isoporous block copolymer membranes. A semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness. Performance enhancement was based on water permeability, solute selectivity, and operational robustness, while commercial readiness was based on known or anticipated material costs, scalability (for large scale water treatment applications), and compatibility with existing manufacturing infrastructure. Overall, bio-inspired membranes are farthest from commercial reality, but offer the most promise for performance enhancements; however, nanocomposite membranes offering significant performance enhancements are already commercially available. Zeolitic and catalytic membranes appear reasonably far from commercial reality and offer small to moderate performance enhancements. The ranking of each membrane nanotechnology is discussed along with the key commercialization hurdles for each membrane nanotechnology. © 2011 The Royal Society of Chemistry.

  19. The effects of Niger State water treatment plant effluent on its ...

    African Journals Online (AJOL)

    The effect of water treatment plant effluent on its receiving river (Kaduna) was examined. Samples were collected from the effluents discharge from Chanchaga water treatment plant into upstream and down stream of the receiving river monthly for six month. Samples were analyzed in the laboratory for microbial counts and ...

  20. Evacuation of performance and significant chemical constituents and by products in drinking water treatment

    International Nuclear Information System (INIS)

    Jamrah, I. A.

    1999-01-01

    Drinking water treatment is a task that comprises of several processes that eventually lead to the addition of chemicals to achieve the objectives of treatment. This study was conducted to assess treatment performance, explain the presence of significant chemical species in water, and investigate the interactions and chemical by-products that are formed during the course of treatment. Grab water samples were collected on a regular basis from the influent and effluent of Zai water treatment plant. Chemical analysis were conducted to determine the concentrations of various chemical species of interest. Turbidity, temperature, and pH of the samples were also measured. The study concluded that Zai Water Treatment Plant produces potable drinking water in accordance with Jordanian Standards. The use of treatment chemical resulted in an increase in the concentrations of certain materials, such as manganese, aluminum, and sulfate. The turbidity of the raw water and the TOC of the samples were positively correlated, and the treatment results in approximately 20% TOC reduction, which demonstrates that the measures used for the control of TOC (carbon adsorption and permanganate pre-oxidation), are not very effective. The study also showed that the TOC content of our raw water samples and the concentration of tribalomethanes resulting after disinfection were positively correlated, and that bromoform was the dominant component. Also chloroform was the minor component of tribalomethanes formed during treatment. Positive correlation between the total concentration of tribalomethanes in water and the chlorine dose used for disinfection was also observed, and the total concentration of tribalomethanes increased with temperature. The formation of tribalomethanes was enhanced as the pH of water increased and as the concentration of bromide ion in raw water became significant. (author). 25 refs., 14 figs.1 table

  1. Removal of cyanobacterial amino acids in water treatment by activated carbon adsorption

    Czech Academy of Sciences Publication Activity Database

    Čermáková, Lenka; Kopecká, Ivana; Pivokonský, Martin; Pivokonská, Lenka; Janda, V.

    2017-01-01

    Roč. 173, č. 1 (2017), s. 330-338 ISSN 1383-5866 Institutional support: RVO:67985874 Keywords : amino acids * activated carbon * adsorption * algal organic matter * water treatment * coagulation * microcystis aeruginosa * peptides/proteins * permanganate pre-oxidation * water treatment Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.359, year: 2016

  2. System Life Cycle Evaluation(SM) (SLiCE): harmonizing water treatment systems with implementers' needs.

    Science.gov (United States)

    Goodman, Joseph; Caravati, Kevin; Foote, Andrew; Nelson, Molly; Woods, Emily

    2013-06-01

    One of the methods proposed to improve access to clean drinking water is the mobile packaged water treatment system (MPWTS). The lack of published system performance comparisons combined with the diversity of technology available and intended operating conditions make it difficult for stakeholders to choose the system best suited for their application. MPWTS are often deployed in emergency situations, making selection of the appropriate system crucial to avoiding wasted resources and loss of life. Measurable critical-to-quality characteristics (CTQs) and a system selection tool for MPWTS were developed by utilizing relevant literature, including field studies, and implementing and comparing seven different MPWTS. The proposed System Life Cycle Evaluation (SLiCE) method uses these CTQs to evaluate the diversity in system performance and harmonize relevant performance with stakeholder preference via a selection tool. Agencies and field workers can use SLiCE results to inform and drive decision-making. The evaluation and selection tool also serves as a catalyst for communicating system performance, common design flaws, and stakeholder needs to system manufacturers. The SLiCE framework can be adopted into other emerging system technologies to communicate system performance over the life cycle of use.

  3. Effect of metal oxide nanoparticles on Godavari river water treatment

    Science.gov (United States)

    Goud, Ravi Kumar; Ajay Kumar, V.; Reddy, T. Rakesh; Vinod, B.; Shravani, S.

    2018-05-01

    Nowadays there is a continuously increasing worldwide concern for the development of water treatment technologies. In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Nanomaterials reveal good results than other techniques used in water treatment because of its high surface area to volume ratio. In the present work, iron oxide and copper oxide nanoparticles were synthesized by simple heating method. The synthesized nanoparticles were used to purify Godavari river water. The effect of nanoparticles at 70°C temperature, 12 centimeter of sand bed height and pH of 8 shows good results as compared to simple sand bed filter. The attained values of BOD5, COD and Turbidity were in permissible limit of world health organization.

  4. An anaerobic incubation study of metal lability in drinking water treatment residue with implications for practical reuse.

    Science.gov (United States)

    Wang, Changhui; Yuan, Nannan; Pei, Yuansheng

    2014-06-15

    Drinking water treatment residue (WTR) is an inevitable by-product generated during the treatment of drinking water with coagulating agents. The beneficial reuse of WTR as an amendment for environmental remediation has attracted growing interest. In this work, we investigated the lability of Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn in Fe/Al hydroxide-comprised WTR based on a 180-day anaerobic incubation test using fractionation, in vitro digestion and a toxicity characteristic leaching procedure. The results indicated that most metals in the WTR were stable during anaerobic incubation and that the WTR before and after incubation could be considered non-hazardous in terms of leachable metal contents according to US EPA Method 1311. However, the lability of certain metals in the WTR after incubation increased substantially, especially Mn, which may be due to the reduction effect. Therefore, although there is no evidence presented to restrict the use of WTR in the field, the lability of metals (especially Mn) in WTR requires further assessment prior to field application. In addition, fractionation (e.g., BCR) is recommended for use to determine the potential lability of metals under various conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Performance of a Small-scale Treatment Wetland for Treatment of Landscaping Wash Water

    Science.gov (United States)

    Thompson, R. J.; Fayed, E.; Fish, W.

    2011-12-01

    A large number of lawn mowers and related equipment must be cleaned each day by commercial landscaping operations and state and local highway maintenance crews. Washing these devices produces wastewater that contains high amounts of organic matter and potentially problematic nutrients, as well as oil and grease and other chemicals and metals that come from the machinery itself. Dirty water washes off the mowers, flows off the pavement and into nearby storm drains without any kind of treatment. A better idea would be to collect such wastewater, retain it in an appropriate catchment such as an engineered wetland where natural processes could break down any pollutants in the wash water, and allow the water to naturally evaporate or percolate into the soil where it could recharge ground water resources safely. This research examines the performance of a small-scale treatment wetland tailored to remove nitrogen from landscaping wash water by incorporating both aerobic and anaerobic phases. Contaminants are analyzed through physical and chemical methods. Both methods involve collection of samples, followed by standardized, validated analytical laboratory tests for measuring total solids, total kjeldahl nitrogen, nitrates, total and dissolved phosphorus, COD, BOD, oil and grease, and metals (Zn and Cu). High levels of total solids, total kjeldahl nitrogen, nitrates, total and dissolved phosphorus, COD, BOD, oil and grease are found. Zinc and copper levels are low. Wetland treatment removes 99% total solids, 77% total kjeldahl nitrogen, 100% nitrates, 94% total phosphorus, 86% dissolved phosphorus, 94% COD, 97% BOD, and 76% oil and grease. The results will be a critical step towards developing a sustainable low-energy system for treating such wastewater that could be used by private landscaping companies and government agencies.

  6. Technical procedures for water resources: Volume 3, Environmental Field Program, Deaf Smith County Site, Texas: Final draft

    International Nuclear Information System (INIS)

    1987-08-01

    To ensure that the environmental field program comprehensively addresses the issues and requirements of the project, a site study plan (SSP) has been prepared for Water Resources (ONWI, 1987). This technical procedure (TP) has been developed to implement the field program described in the Water Resources Site Study Plan. This procedure provides the general method for the field collection of water and sediment samples from playa lakes using an Alpha horizontal type sampler or equivalent or a peristaltic pump for water and a KB-coring devise or ponar grab for sediments. The samples will be preserved and then shipped to a laboratory for analysis. The water quality and sediment samples will be collected as part of the surface-water quality field study described in the Site Plan for Water Resources. 15 refs., 5 figs., 3 tabs

  7. Multicausal analysis on water deterioration processes present in a drinking water treatment system.

    Science.gov (United States)

    Wang, Li; Ma, Fang; Pang, Changlong; Firdoz, Shaik

    2013-03-01

    The fluctuation of water turbidity has been studied during summer in the settling tanks of a drinking water treatment plant. Results from the multiple cause-effect model indicated that five main pathways interactively influenced thequalityof tank water. During rain, turbidity levels increased mainly as a result of decreasing pH and anaerobic reactions (partial effect = 68%). Increasing water temperature combined with dissolved oxygen concentration (partial effect = 64%) was the key parameterforcontrolling decreases in water turbidity during nighttime periods after a rainy day. The dominant factor influencing increases in turbidity during sunny daytime periods was algal blooms (partial effect = 86%). However, short-circuiting waves (partial effect = 77%) was the main cause for increased nighttime water turbidity after a sunny day. The trade offbetween regulatory pathways was responsible for environmental changes, and the outcome was determined by the comparative strengths of each pathway.

  8. Dissolved carbon and nitrogen dynamics in paddy fields under different water management practices and implications on green-house gas emissions

    Science.gov (United States)

    Miniotti, Eleonora; Said-Pullicino, Daniel; Bertora, Chiara; Pelissetti, Simone; Sacco, Dario; Grignani, Carlo; Lerda, Cristina; Romani, Marco; Celi, Luisella

    2013-04-01

    The alternation of oxidizing and reducing conditions in paddy soils results in considerable complexity in the biogeochemical cycling of elements and their interactions, influencing important soil processes. Water management practices may play an important role in controlling the loss of nutrients from rice paddies to surface and subsurface waters, as well as soil organic matter (SOM) stabilization and the emission of green-house gases (GHG) such as methane and nitrous oxide. The aim of this study was therefore to evaluate the interaction between changes in soil redox conditions and element cycling in temperate paddy soils as a function of different water management practices. The research was carried out within an experimental platform (1.2 ha) located at the Rice Research Center of Ente Nazionale Risi (Castello d'Agogna, PV, NW Italy) where three water management practices are being compared with two plots for each treatment. These included (i) rice cultivation under traditional submerged conditions (FLD); (ii) seeding under dry soil conditions and flooding delayed by about 40 days (DRY); (iii) seeding under dry soil conditions and rotational irrigation (IRR). Surface and subsurface (25, 50 and 75 cm) water samples were collected at regular intervals over the cropping season from V-notch weirs and porous ceramic suction cups installed in each plot, and subsequently analyzed for DOC, SUVA, Fe(II), ammonium and nitrate-N. Moreover, methane and nitrous oxide fluxes were measured in situ by the closed-chamber technique. DOC concentrations in soil solutions were generally higher in FLD and DRY treatments with respect to IRR throughout the cropping season. Higher DOC contents after field flooding in FLD and DRY treatments also corresponded with greater concentrations of reduced Fe, higher SUVA values, lower Eh values and higher pH values, suggesting that desorption of more aromatic, mineral-associated SOM could be responsible for the observed increase in DOC. These

  9. Increasing Water System Efficiency with Ultrafiltration Pre-treatment in Power Plants

    International Nuclear Information System (INIS)

    Majamaa, Katariina; Suarez, Javier; Gasia Eduard

    2012-09-01

    Water demineralization with reverse osmosis (RO) membranes has a long and successful history in water treatment for power plants. As the industry strives for more efficient, reliable and compact water systems, pressurized hollow-fiber ultrafiltration (UF) has become an increasingly appealing pre-treatment technology. Compared to conventional, non- membrane based pretreatments, ultrafiltration offers higher efficiency in the removal of suspended solids, microorganisms and colloidal matter, which are all common causes for operational challenges experienced in the RO systems. In addition, UF is more capable of handling varying feed water qualities and removes the risk of particle carry-over often seen with conventional filtration techniques. Ultrafiltration is a suitable treatment technology for various water types from surface waters to wastewater, and the more fluctuating or challenging the feed water source is, the better the benefits of UF are seen compared to conventional pretreatments. Regardless of the feed water type, ultrafiltration sustains a constant supply of high quality feed water to downstream RO, allowing a more compact and cost efficient RO system design with improved operational reliability. A detailed focus on the design and operational aspects and experiences of two plants is provided. These examples demonstrate both economical UF operation and tangible impact of RO process improvement. Experience from these plants can be leveraged to new projects. (authors)

  10. Titanium Dioxide-Based Antibacterial Surfaces for Water Treatment

    Science.gov (United States)

    The field of water disinfection is gaining much interest since waterborne diseases caused by pathogenic microorganisms directly endanger human health. Antibacterial surfaces offer a new, ecofriendly technique to reduce the harmful disinfection byproducts that form in medical and ...

  11. Water treatment for the ISER [intrinsically safe and economical reactor] plant

    International Nuclear Information System (INIS)

    Sugawara, Ichiro.

    1985-01-01

    The ISER reactor assures inherent safety by causing the core, which is submerged in pool water containing a high boric acid concentration, to quickly shut down the nuclear reaction when overheating, pump trip or other problems occur. However, large quantities of pool water may cause difficulties in water quality control and waste management, resulting in higher costs. Therefore, the ISER as a total plant would not be publicly acceptable unless the water treatment and waste management system offer both safety balanced with reactor inherent safety, and economy counterbalanced by large quantities of pool water. This report clarifies the passive safety concept of possible waste treatment and management systems, and the ways to economically construct such facilities

  12. Laboratory and field evaluation of the gas treatment approach for insitu remediation of chromate-contaminated soils

    International Nuclear Information System (INIS)

    Thornton, E.C.; Jackson, R.L.

    1994-04-01

    Laboratory scale soil treatment tests have been conducted as part of an effort to develop and implement an in situ chemical treatment approach to the remediation of chromate-contaminated soils through the use of reactive gases. These tests involved three different soil samples that were contaminated with Cr(VI) at the 200 ppM level. Treatment of the contaminated soils was performed by passing 100 ppM and 2000 ppM concentrations of hydrogen sulfide in nitrogen through soil columns until a S:Cr mole ratio of 10:1 was achieved. The treated soils were then leached with groundwater or deionized water and analyzed to assess the extent of chromium immobilization. Test results indicate >90% immobilization of chromium and demonstrate that the treatment process is irreversible. Ongoing developmental efforts are being directed towards the demonstration and evaluation of the gas treatment approach in a field test at a chromate-contaminated site. Major planned activities associated with this demonstration include laboratory testing of waste site soil samples, design of the treatment system and injection/extraction well network, geotechnical and geochemical characterization of the test site, and identification and resolution of regulatory and safety requirements

  13. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2017-01-15

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  14. Process water treatment in Canada's oil sands industry : 2 : a review of emerging technologies

    International Nuclear Information System (INIS)

    Allen, E.W.

    2008-01-01

    This review was conducted to identify candidate treatment technologies for treating oil sands process water. The oil sands industry in Canada uses large volumes of fresh water in order to extract bitumen deposits. The development of process water treatment technologies has become a critical issue for the industry, particularly as oil sand production is expected to triple in the next decade. However, treatment technologies must be adapted to consider the fouling potential of bitumens and fine clays as well as the effect of alkaline process water on treatment performance. The review included developments in chemical modifications to membranes and adsorbents designed to improve pollutant removal and reduce fouling; hybridization technologies designed to enhance the biological treatment of toxic feedwaters; recent advances in photocatalytic oxidation technologies for organic compounds; and new designs for large-scale treatment wetlands for polluted waste waters. It was concluded that major knowledge gaps must be optimized and preliminary studies must be conducted in order to understand how the treatment technologies will be affected by the chemical and physical characteristics of oil sands process water. 188 refs., 8 tabs

  15. Framework for feasibility assessment and performance analysis of riverbank filtration systems for water treatment

    KAUST Repository

    Sharma, Saroj K.

    2012-03-01

    Bank filtration (BF) is an attractive, robust and reliable water treatment technology. It has been used in Europe and USA for a long time; however experience with this technology so far is site specific. There are no guidelines or tools for transfer of this technology to other locations, specifically to developing countries. A four-step methodology was developed at UNESCO-IHE to analyse feasibility and to predict the performance of BF for water treatment. This included (i) hydraulic simulation using MODFLOW; (ii) determination of share of bank filtrate using NASRI BF simulator; (iii) prediction of water quality from a BF system using the water quality guidelines developed and (iv) comparison of the costs of BF systems and existing conventional surface water treatment systems for water treatment. The methodology was then applied to assess feasibility of BF in five cities in Africa. It was found that in most of the cities studied BF is a feasible and attractive option from hydraulic, water quality as well as operational cost considerations. Considerable operational and maintenance costs saving can be achieved and water quality can be further improved by switching from conventional chemical-based surface water treatment to BF or at least by replacing some of the treatment units with BF systems. © IWA Publishing 2012.

  16. The changes of macroscopic features and microscopic structures of water under influence of magnetic field

    International Nuclear Information System (INIS)

    Pang Xiaofeng; Deng Bo

    2008-01-01

    Influences of magnetic field on microscopic structures and macroscopic properties of water are studied by the spectrum techniques of infrared, Raman, visible, ultraviolet lights and X-ray. From these investigations, we know that the magnetic fields change the distribution of molecules and electrons, cause displacements and polarization of molecules and atoms, result in changes of dipole-moment transition and vibrational states of molecules and variation of transition probability of electrons, but does not alter the constitution of molecules and atoms. These are helpful in seeking the mechanism of magnetization of water. Meanwhile, we also measure the changed rules of the surface tension force, soaking effect or angle of contact, viscosity, rheology features, refraction index, dielectric constant and electric conductivity of magnetized water relative to that of pure water. The results show that the magnetic fields increase the soaking degree and hydrophobicity of water to materials, depress its surface-tension force, diminish the viscosity of war, enhance the feature of plastic flowing of water, and increase the refraction index, dielectric constant and electric conductivity of water after magnetization. These changes are caused by the above changes of microscopic structures under the action of magnetic field. Therefore, our studies are significant in science and has practical value of applications

  17. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    Science.gov (United States)

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  18. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C.; Hoeschele, M.

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the ARBI team validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. In addition to completing validation activities, this project looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. Based on these datasets, we conclude that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws. This has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  19. Validation of a Hot Water Distribution Model Using Laboratory and Field Data

    Energy Technology Data Exchange (ETDEWEB)

    Backman, C. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Hoeschele, M. [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2013-07-01

    Characterizing the performance of hot water distribution systems is a critical step in developing best practice guidelines for the design and installation of high performance hot water systems. Developing and validating simulation models is critical to this effort, as well as collecting accurate input data to drive the models. In this project, the Building America research team ARBI validated the newly developed TRNSYS Type 604 pipe model against both detailed laboratory and field distribution system performance data. Validation efforts indicate that the model performs very well in handling different pipe materials, insulation cases, and varying hot water load conditions. Limitations of the model include the complexity of setting up the input file and long simulation run times. This project also looked at recent field hot water studies to better understand use patterns and potential behavioral changes as homeowners convert from conventional storage water heaters to gas tankless units. The team concluded that the current Energy Factor test procedure overestimates typical use and underestimates the number of hot water draws, which has implications for both equipment and distribution system performance. Gas tankless water heaters were found to impact how people use hot water, but the data does not necessarily suggest an increase in usage. Further study in hot water usage and patterns is needed to better define these characteristics in different climates and home vintages.

  20. Effects of sterilization treatments on the analysis of TOC in water samples.

    Science.gov (United States)

    Shi, Yiming; Xu, Lingfeng; Gong, Dongqin; Lu, Jun

    2010-01-01

    Decomposition experiments conducted with and without microbial processes are commonly used to study the effects of environmental microorganisms on the degradation of organic pollutants. However, the effects of biological pretreatment (sterilization) on organic matter often have a negative impact on such experiments. Based on the principle of water total organic carbon (TOC) analysis, the effects of physical sterilization treatments on determination of TOC and other water quality parameters were investigated. The results revealed that two conventional physical sterilization treatments, autoclaving and 60Co gamma-radiation sterilization, led to the direct decomposition of some organic pollutants, resulting in remarkable errors in the analysis of TOC in water samples. Furthermore, the extent of the errors varied with the intensity and the duration of sterilization treatments. Accordingly, a novel sterilization method for water samples, 0.45 microm micro-filtration coupled with ultraviolet radiation (MCUR), was developed in the present study. The results indicated that the MCUR method was capable of exerting a high bactericidal effect on the water sample while significantly decreasing the negative impact on the analysis of TOC and other water quality parameters. Before and after sterilization treatments, the relative errors of TOC determination could be controlled to lower than 3% for water samples with different categories and concentrations of organic pollutants by using MCUR.