WorldWideScience

Sample records for water table dynamic

  1. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    Science.gov (United States)

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  2. Effect of water table dynamics on land surface hydrologic memory

    Science.gov (United States)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  3. Changes in vegetative communities and water table dynamics following timber harvesting in small headwater streams

    Science.gov (United States)

    B. Choi; J.C. Dewey; J. A. Hatten; A.W. Ezell; Z. Fan

    2012-01-01

    In order to better understand the relationship between vegetation communities and water table in the uppermost portions (ephemeral–intermittent streams) of headwater systems, seasonal plot-based field characterizations of vegetation were used in conjunction with monthly water table measurements. Vegetation, soils, and water table data were examined to determine...

  4. Water loss in table grapes: model development and validation under dynamic storage conditions

    Directory of Open Access Journals (Sweden)

    Ericsem PEREIRA

    2017-09-01

    Full Text Available Abstract Water loss is a critical problem affecting the quality of table grapes. Temperature and relative humidity (RH are essential in this process. Although mathematical modelling can be applied to measure constant temperature and RH impacts, it is proved that variations in storage conditions are normally encountered in the cold chain. This study proposed a methodology to develop a weight loss model for table grapes and validate its predictions in non-constant conditions of a domestic refrigerator. Grapes were maintained under controlled conditions and the weight loss was measured to calibrate the model. The model described the water loss process adequately and the validation tests confirmed its predictive ability. Delayed cooling tests showed that estimated transpiration rates in subsequent continuous temperature treatment was not significantly influenced by prior exposure conditions, suggesting that this model may be useful to estimate the weight loss consequences of interruptions in the cold chain.

  5. Dynamics of Soil Water Evaporation during Soil Drying in the Presence of a Shallow Water Table: Laboratory Experiment and Numerical Analysis

    Science.gov (United States)

    Han, J.; Lin, J.; Liu, P.; Li, W.

    2017-12-01

    Evaporation from a porous medium plays a key role in hydrological, agricultural, environmental, and engineering applications. Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. Although the magnitude of condensation zone was much smaller than that for the evaporation zone, the importance of the contribution of condensation zone to soil water dynamics should not be underestimated. Results from our experiment and numerical simulation show that this condensation process resulted in an unexpected and apparent water content increase in the middle of vadose zone profile.

  6. Woody riparian vegetation response to different alluvial water table regimes

    Science.gov (United States)

    Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.

    2000-01-01

    Woody riparian vegetation in western North American riparian ecosystems is commonly dependent on alluvial groundwater. Various natural and anthropogenic mechanisms can cause groundwater declines that stress riparian vegetation, but little quantitative information exists on the nature of plant response to different magnitudes, rates, and durations of groundwater decline. We observed groundwater dynamics and the response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima saplings at 3 sites between 1995 and 1997 along the Bill Williams River, Arizona. At a site where the lowest observed groundwater level in 1996 (-1.97 m) was 1.11 m lower than that in 1995 (-0.86 m), 92-100% of Populus and Salix saplings died, whereas 0-13% of Tamarix stems died. A site with greater absolute water table depths in 1996 (-2.55 m), but less change from the 1995 condition (0.55 m), showed less Populus and Salix mortality and increased basal area. Excavations of sapling roots suggest that root distribution is related to groundwater history. Therefore, a decline in water table relative to the condition under which roots developed may strand plant roots where they cannot obtain sufficient moisture. Plant response is likely mediated by other factors such as soil texture and stratigraphy, availability of precipitation-derived soil moisture, physiological and morphological adaptations to water stress, and tree age. An understanding of the relationships between water table declines and plant response may enable land and water managers to avoid activities that are likely to stress desirable riparian vegetation.

  7. Cokriging model for estimation of water table elevation

    International Nuclear Information System (INIS)

    Hoeksema, R.J.; Clapp, R.B.; Thomas, A.L.; Hunley, A.E.; Farrow, N.D.; Dearstone, K.C.

    1989-01-01

    In geological settings where the water table is a subdued replica of the ground surface, cokriging can be used to estimate the water table elevation at unsampled locations on the basis of values of water table elevation and ground surface elevation measured at wells and at points along flowing streams. The ground surface elevation at the estimation point must also be determined. In the proposed method, separate models are generated for the spatial variability of the water table and ground surface elevation and for the dependence between these variables. After the models have been validated, cokriging or minimum variance unbiased estimation is used to obtain the estimated water table elevations and their estimation variances. For the Pits and Trenches area (formerly a liquid radioactive waste disposal facility) near Oak Ridge National Laboratory, water table estimation along a linear section, both with and without the inclusion of ground surface elevation as a statistical predictor, illustrate the advantages of the cokriging model

  8. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    oxidation rates near WP1. However, this mechanism could be important in the case of a shallow dynamic water table and more abundant/reactive sulfides in the shallow subsurface. Data from WP1 and numerical modeling results are thus consistent with the falling water table hypothesis, and illustrate fundamental processes linking climate and sulfide weathering in mineralized watersheds.

  9. Decreased summer water table depth affects peatland vegetation

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Robroek, B.J.M.; Limpens, J.; Heijmans, M.M.P.D.; Schouten, M.G.C.; Berendse, F.

    2009-01-01

    Climate change can be expected to increase the frequency of summer droughts and associated low water tables in ombrotrophic peatlands. We studied the effects of periodic water table drawdown in a mesocosm experiment. Mesocosms were collected in Southern Sweden, and subsequently brought to an

  10. Free product recovery at spill sites with fluctuating water tables

    International Nuclear Information System (INIS)

    Parker, J.C.; Katyal, A.K.; Zhu, J.L.; Kremesec, V.J.; Hockman, E.L.

    1992-01-01

    Spills and leaks of hydrocarbons from underground storage tanks, pipelines and other facilities pose a serious potential for groundwater contamination which can be very costly to remediate. The severity of the impacts and the cost of remediation can be reduced by various means. Lateral spreading of free phase hydrocarbons on the groundwater table can be prevented by pumping water to control the hydraulic gradient. Recovery of floating product may be performed by skimming hydrocarbons from wells, usually in combination with water pumping to increase the gradient. The environmental variables (water table gradient, water table fluctuations due to regional recovery wells, rates of water pumping)

  11. Numerical tables. Physical and chemical analyses of Rhine water 1984

    International Nuclear Information System (INIS)

    1984-01-01

    Tables present the methods of analysis and the data obtained on inorganic, organic, and radioactive impurities in Rhine water. The measuring stations were located in Switzerland, France, West Germany, and the Netherlands. (HP) [de

  12. Tables of the velocity of sound in sea water

    CERN Document Server

    Bark, L S; Meister, N A

    1964-01-01

    Tables of the Velocity of Sound in Sea Water contains tables of the velocity of sound in sea water computed on a ""Strela-3"" high-speed electronic computer and a T-5 tabulator at the Computational Center of the Academy of Sciences. Knowledge of the precise velocity of sound in sea water is of great importance when investigating sound propagations in the ocean and when solving practical problems involving the use of hydro-acoustic devices. This book demonstrates the computations made for the velocity of sound in sea water, which can be found in two ways: by direct measurement with the aid of s

  13. Empirical method for simulation of water tables by digital computers

    International Nuclear Information System (INIS)

    Carnahan, C.L.; Fenske, P.R.

    1975-09-01

    An empirical method is described for computing a matrix of water-table elevations from a matrix of topographic elevations and a set of observed water-elevation control points which may be distributed randomly over the area of interest. The method is applicable to regions, such as the Great Basin, where the water table can be assumed to conform to a subdued image of overlying topography. A first approximation to the water table is computed by smoothing a matrix of topographic elevations and adjusting each node of the smoothed matrix according to a linear regression between observed water elevations and smoothed topographic elevations. Each observed control point is assumed to exert a radially decreasing influence on the first approximation surface. The first approximation is then adjusted further to conform to observed water-table elevations near control points. Outside the domain of control, the first approximation is assumed to represent the most probable configuration of the water table. The method has been applied to the Nevada Test Site and the Hot Creek Valley areas in Nevada

  14. Relationships between water table and model simulated ET

    Science.gov (United States)

    Prem B. Parajuli; Gretchen F. Sassenrath; Ying Ouyang

    2013-01-01

    This research was conducted to develop relationships among evapotranspiration (ET), percolation (PERC), groundwater discharge to the stream (GWQ), and water table fluctuations through a modeling approach. The Soil and Water Assessment Tool (SWAT) hydrologic and crop models were applied in the Big Sunflower River watershed (BSRW; 7660 km2) within the Yazoo River Basin...

  15. Nitrogen Uptake in Soils under Different Water Table Depths ...

    African Journals Online (AJOL)

    A mathematical model was used to examine the interactions of NH4 + transport to rice roots, as well as to calculate root length densities required to relate N uptake to concentrations of NH4 + in solution around the rooting medium for three water treatments: water table 30 cm below the surface, 15 cm below the surface and ...

  16. Microtropography and water table fluctuation in a sphagnum mire

    Science.gov (United States)

    E.S. Verry

    1984-01-01

    A detailed organic soil profile description, 22 years of continuous water table records, and a hummock-hollow level survey were examined at a small Minnesota mire (a bog with remnants of poor fen vegetation). Variation in the level survey suggests that hollows be used to minimize variation when detailed topographic information is needed and to match profile...

  17. Modelling mid-span water table depth and drainage discharge ...

    African Journals Online (AJOL)

    2015-04-03

    Apr 3, 2015 ... were monitored in 1.7 m deep piezometers installed mid-way between two drains by using an electronic .... logical components in soils with shallow water tables. ..... dency of neither under-estimating nor over-estimating DDs,.

  18. Distribution Channel Intensity among Table Water Producers in Nigeria

    Directory of Open Access Journals (Sweden)

    Joseph Edewor Agbadudu

    2017-09-01

    Full Text Available Planning for and making reasonable decisions regarding reaching the target market with an organization’s product is a critical task on the part of management, which involves a careful evaluation and selection of its channel structure and intensity.This study therefore examines distribution channel intensity among table water producers in Edo State, Nigeria. The focus of the study is to ascertain the variables that significantly predict distribution intensity among the firms in the table water industry in Edo State. The study seeks to proffer answer to fundamental question of why brands within a single category of a given consumer good differ significantly in their distribution intensity. Using a survey research design, the data used for this study were obtained by taking a sample of 110 table water firms within the three senatorial districts in the State. The data obtained were presented and analyzed using different statistical tools such as mean and multiple regression through Statistical Packages for Social Sciences (SPSS version 22 software. Findings revealed that manufacturers’ target focus, manufacturers’ support program, brand quality and level of firm’s technological advancement were significant predictors of distribution channel intensity among the industrial players in table water industry in the State. Based on the findings, the study recommended that table water firms within the State can secure a competitive edge over their fellow counterpart in the industry by designing an optimal distribution intensity that will meet up their marketing objectives. It is also recommended that the adoption of modern technology in form of online sales is an efficient way of sales and distribution which could be used to enhance their distribution techniques if there is a need to cut down on middle men due to increased cost. The study concluded that optimal distribution intensity could be achieved not by mere imitation of competitors but through

  19. Experimental/analytical approaches to modeling, calibrating and optimizing shaking table dynamics for structural dynamic applications

    Science.gov (United States)

    Trombetti, Tomaso

    This thesis presents an Experimental/Analytical approach to modeling and calibrating shaking tables for structural dynamic applications. This approach was successfully applied to the shaking table recently built in the structural laboratory of the Civil Engineering Department at Rice University. This shaking table is capable of reproducing model earthquake ground motions with a peak acceleration of 6 g's, a peak velocity of 40 inches per second, and a peak displacement of 3 inches, for a maximum payload of 1500 pounds. It has a frequency bandwidth of approximately 70 Hz and is designed to test structural specimens up to 1/5 scale. The rail/table system is mounted on a reaction mass of about 70,000 pounds consisting of three 12 ft x 12 ft x 1 ft reinforced concrete slabs, post-tensioned together and connected to the strong laboratory floor. The slip table is driven by a hydraulic actuator governed by a 407 MTS controller which employs a proportional-integral-derivative-feedforward-differential pressure algorithm to control the actuator displacement. Feedback signals are provided by two LVDT's (monitoring the slip table relative displacement and the servovalve main stage spool position) and by one differential pressure transducer (monitoring the actuator force). The dynamic actuator-foundation-specimen system is modeled and analyzed by combining linear control theory and linear structural dynamics. The analytical model developed accounts for the effects of actuator oil compressibility, oil leakage in the actuator, time delay in the response of the servovalve spool to a given electrical signal, foundation flexibility, and dynamic characteristics of multi-degree-of-freedom specimens. In order to study the actual dynamic behavior of the shaking table, the transfer function between target and actual table accelerations were identified using experimental results and spectral estimation techniques. The power spectral density of the system input and the cross power spectral

  20. A New Approach to Simulate Groundwater Table Dynamics and Its Validation in China

    Science.gov (United States)

    Lv, M.; Lu, H.; Dan, L.; Yang, K.

    2017-12-01

    The groundwater has very important role in hydrology-climate-human activity interaction. But the groundwater table dynamics currently is not well simulated in global-scale land surface models. Meanwhile, almost all groundwater schemes are adopting a specific yield method to estimate groundwater table, in which how to determine the proper specific yield value remains a big challenge. In this study, we developed a Soil Moisture Correlation (SMC) method to simulate groundwater table dynamics. We coupled SMC with a hydrological model (named as NEW) and compared it with the original model in which a specific yield method is used (named as CTL). Both NEW and CTL were tested in Tangnaihai Subbasin of Yellow River and Jialingjiang Subbasin along Yangtze River, where underground water is less impacted by human activities. The simulated discharges by NEW and CTL are compared against gauge observations. The comparison results reveal that after calibration both models are able to reproduce the discharge well. However, there is no parameter needed to be calibrated for SMC. It indicates that SMC method is more efficient and easy-to-use than the specific yield method. Since there is no direct groundwater table observation in these two basins, simulated groundwater table were compared with a global data set provided by Fan et al. (2013). Both NEW and CTL estimate lower depths than Fan does. Moreover, when comparing the variation of terrestrial water storage (TWS) derived from NEW with that observed by GRACE, good agreements were confirmed. It demonstrated that SMC method is able to reproduce groundwater level dynamics reliably.

  1. Future water table rise at Yucca Mountain: A regulatory perspective

    International Nuclear Information System (INIS)

    Coleman, N.M.

    1995-01-01

    The U.S. Nuclear Regulatory Commission staff has developed a program of Systematic Regulatory Analysis (SRA). The purpose of this program is to ensure that important technical issues related to compliance with 10 CFR Part 60 will be identified before receipt of a license application. A plan is being developed to review the U.S. Department of Energy's (DOE's) demonstration of compliance in the license application for each part of the regulation. Under the siting criteria of NRC's Part 60, one of the potentially adverse conditions is the possibility that the water table may rise high enough to saturate a repository in the unsaturated zone. DOE must evaluate this and other conditions in a license application for a geologic repository site. DOE's evaluation must show compliance with the requirements of Part 60 with reasonable assurance. This paper describes the NRC staff's preliminary plans to review DOE's demonstration of compliance, including assumptions about a future rise of the water table

  2. Water table monitoring in a mined riparian zone

    Directory of Open Access Journals (Sweden)

    Thomaz Marques Cordeiro Andrade

    2010-04-01

    Full Text Available The objective of this study was to test an easily fabricated tool that assist in the manual installation of piezometers, as well as water table monitor in the research site, located at the Gualaxo do Norte River Watershed, state of Minas Gerais, Brazil. The tool is made of iron pipes and is a low-cost alternative for shallow groundwater observation wells. The measurements were done in a riparian zone after being gold mined, when vegetation and upper soil layers were removed. The wells were installed in three areas following a transect from the river bank. The method was viable for digging up to its maximum depth of 3 meters in a low resistance soil and can be improved to achieve a better resistance over impact and its maximum depth of perforation. Water table levels varied distinctly according to its depth in each point. It varies most in the more shallow wells in different areas, while it was more stable in the deeper ones. The water table profile reflected the probably profile f the terrain and can be a reference for its leveling in reconstitution of degraded banks where upper layers of the soil were removed. Groundwater monitoring can be also an indicator of the suitability of the substrate for soil reconstitution in terms of the maintenance of an infiltration capacity similar to the original material.

  3. Stochastic analysis of unsaturated steady flows above the water table

    Science.gov (United States)

    Severino, Gerardo; Scarfato, Maddalena; Comegna, Alessandro

    2017-08-01

    Steady flow takes place into a three-dimensional partially saturated porous medium where, due to their spatial variability, the saturated conductivity Ks, and the relative conductivity Kr are modeled as random space functions (RSF)s. As a consequence, the flow variables (FVs), i.e., pressure-head and specific flux, are also RSFs. The focus of the present paper consists into quantifying the uncertainty of the FVs above the water table. The simple expressions (most of which in closed form) of the second-order moments pertaining to the FVs allow one to follow the transitional behavior from the zone close to the water table (where the FVs are nonstationary), till to their far-field limit (where the FVs become stationary RSFs). In particular, it is shown how the stationary limits (and the distance from the water table at which stationarity is attained) depend upon the statistical structure of the RSFs Ks, Kr, and the infiltrating rate. The mean pressure head >> has been also computed, and it is expressed as =Ψ0>(1+ψ>), being ψ a characteristic heterogeneity function which modifies the zero-order approximation Ψ0 of the pressure head (valid for a vadose zone of uniform soil properties) to account for the spatial variability of Ks and Kr. Two asymptotic limits, i.e., close (near field) and away (far field) from the water table, are derived into a very general manner, whereas the transitional behavior of ψ between the near/far field can be determined after specifying the shape of the various input soil properties. Besides the theoretical interest, results of the present paper are useful for practical purposes, as well. Indeed, the model is tested against to real data, and in particular it is shown how it is possible for the specific case study to grasp the behavior of the FVs within an environment (i.e., the vadose zone close to the water table) which is generally very difficult to access by direct inspection.

  4. Improvements in flight table dynamic transparency for hardware-in-the-loop facilities

    Science.gov (United States)

    DeMore, Louis A.; Mackin, Rob; Swamp, Michael; Rusterholtz, Roger

    2000-07-01

    Flight tables are a 'necessary evil' in the Hardware-In-The- Loop (HWIL) simulation. Adding the actual or prototypic flight hardware to the loop, in order to increase the realism of the simulation, forces us to add motion simulation to the process. Flight table motion bases bring unwanted dynamics, non- linearities, transport delays, etc to an already difficult problem sometimes requiring the simulation engineer to compromise the results. We desire that the flight tables be 'dynamically transparent' to the simulation scenario. This paper presents a State Variable Feedback (SVF) control system architecture with feed-forward techniques that improves the flight table's dynamic transparency by significantly reducing the table's low frequency phase lag. We offer some actual results with existing flight tables that demonstrate the improved transparency. These results come from a demonstration conducted on a flight table in the KHILS laboratory at Eglin AFB and during a refurbishment of a flight table for the Boeing Company of St. Charles, Missouri.

  5. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables

    Science.gov (United States)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.

    2018-01-01

    Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with

  6. African Mahogany transpiration with Granier method and water table lysimeter

    Directory of Open Access Journals (Sweden)

    Ana C. O. Sérvulo

    Full Text Available ABSTRACT The thermal dissipation probe (Granier method is useful in the water deficit monitoring and irrigation management of African Mahogany, but its model needs proper adjustment. This paper aimed to adjust and validate the Granier sap flux model to estimate African Mahogany transpiration, measure transpiration using lysimeter and relate it to atmospheric water demand. Weather conditions, transpiration and sap flux were monitored in three units of 2.5-year-old African Mahogany trees in constant water table lysimeter, in Goiânia, GO. Sapwood area (SA, leaf area (LA, transpiration measured by lysimeter (TLYS and estimated by sap flux (TSF were evaluated. The SA comprised 55.24% of the trunk’s transversal section. The LA varied from 11.95 to 10.66 m2. TLYS and TSF varied from 2.94 to 29.31 and from 0.94 to 15.45 L d-1, respectively. The original model underestimated transpiration by 44.4%, being the adjusted equation F = 268.25 . k1.231. SA was significant (F < 0.05. Due the root confinement, the transpiration showed low correlation, but positive, with the atmospheric water demand.

  7. Optimization of irrigation water in stone fruit and table grapes

    Science.gov (United States)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. The main objective of this experiment was to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. Five demonstration plots were established in representative crops of the irrigating community of Campotejar (Murcia, Spain): i) Peach trees, cv. catherina in the "Periquitos" farm; ii) Apricot trees, cv. "Red Carlet" in "La Hoya del Fenazar" farm; iii) Nectarine trees, cv. Viowhite in "Agrícola Don Fernando" farm; iv) Table grape, cv "Crimson Seedless" in "La Hornera" farm; and v) Paraguayan cv. carioca in "The Hornera" farm. In each demonstration plot, at least two irrigation treatments were established: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. The plant water status indicators evaluated were midday stem water potential and Trunk Diameter Fluctuation derived indices: maximum daily shrinkage (MDS) and trunk daily growth rate (TGR); vegetative growth of the different crops from trunk diameter and pruning dry weight, fruit growth and fruit

  8. A time series approach to inferring groundwater recharge using the water table fluctuation method

    Science.gov (United States)

    Crosbie, Russell S.; Binning, Philip; Kalma, Jetse D.

    2005-01-01

    The water table fluctuation method for determining recharge from precipitation and water table measurements was originally developed on an event basis. Here a new multievent time series approach is presented for inferring groundwater recharge from long-term water table and precipitation records. Additional new features are the incorporation of a variable specific yield based upon the soil moisture retention curve, proper accounting for the Lisse effect on the water table, and the incorporation of aquifer drainage so that recharge can be detected even if the water table does not rise. A methodology for filtering noise and non-rainfall-related water table fluctuations is also presented. The model has been applied to 2 years of field data collected in the Tomago sand beds near Newcastle, Australia. It is shown that gross recharge estimates are very sensitive to time step size and specific yield. Properly accounting for the Lisse effect is also important to determining recharge.

  9. Peatland pines as a proxy for water table fluctuations: disentangling tree growth, hydrology and possible human influence.

    Science.gov (United States)

    Smiljanić, Marko; Seo, Jeong-Wook; Läänelaid, Alar; van der Maaten-Theunissen, Marieke; Stajić, Branko; Wilmking, Martin

    2014-12-01

    Dendrochronological investigations of Scots pine (Pinus sylvestris L.) growing on Männikjärve peatland in central Estonia showed that annual tree growth of peatland pines can be used as a proxy for past variations of water table levels. Reconstruction of past water table levels can help us to better understand the dynamics of various ecological processes in peatlands, e.g. the formation of vegetation patterns or carbon and nitrogen cycling. Männikjärve bog has one of the longest water table records in the boreal zone, continuously monitored since 1956. Common uncertainties encountered while working with peatland trees (e.g. narrow, missing and wedging rings) were in our case exacerbated with difficulties related to the instability of the relationship between tree growth and peatland environment. We hypothesized that the instable relationship was mainly due to a significant change of the limiting factor, i.e. the rise of the water table level due to human activity. To test our hypothesis we had to use several novel methods of tree-ring chronology analysis as well as to test explicitly whether undetected missing rings biased our results. Since the hypothesis that the instable relationship between tree growth and environment was caused by a change in limiting factor could not be rejected, we proceeded to find possible significant changes of past water table levels using structural analysis of the tree-ring chronologies. Our main conclusions were that peatland pines can be proxies to water table levels and that there were several shifting periods of high and low water table levels in the past 200 years. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Water-table fluctuations in the Amargosa Desert, Nye County, Nevada

    International Nuclear Information System (INIS)

    Paces, James B.; Whelan, Joseph

    2001-01-01

    Pleistocene ground-water discharge deposits approximately 20 km southwest of Yucca Mountain were previously thought to represent pluvial water-table rises of 80 to 120 m. Data from new boreholes at two of the three discharge sites indicate that the modern water-table is at depths of only 17 to 30 m and that this shallow water is part of the regional ground-water flow system rather than being perched. Calcite in equilibrium with this modern ground water would have isotopic compositions similar to those in Pleistocene calcite associated with the discharge deposits. Carbon and uranium isotopes in both ground water and discharge deposits imply that past discharge consisted of a mixture of both shallow and deep ground water. These data limit Pleistocene water-table fluctuations at the specified Amargosa Desert discharge sites to between 17 and 30 m and eliminate the need to invoke large water-table rises

  11. Numerical tables on physical and chemical analyses of Rhine water

    International Nuclear Information System (INIS)

    1982-01-01

    Tables on the places of measurement, the sampling methods and the methods of analysis used. The numerical tables of the measurement results are broken down in general parameters, organic, entrophicating and anorganic substances, orgnic micro-pollutants and radioactivity. (GG) [de

  12. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Science.gov (United States)

    E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...

  13. Effect of water table fluctuations on phreatophytic root distribution.

    Science.gov (United States)

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2014-11-07

    The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Changes in water table elevation at Yucca Mountain in response to seismic events

    International Nuclear Information System (INIS)

    Arnold, B.W.

    1996-01-01

    Investigation of mechanisms which could significantly alter the elevation of the water table at Yucca Mountain are motivated by the potential impacts such an occurrence would have on the performance of a high-level radioactive waste repository. In particular, we would like to evaluate the possibility of flooding a repository by water-table excursions. Changes in the water table could occur as relatively transient phenomena in response to seismic events by the seismic pumping mechanism. Quantitative evaluation of possible fluctuations of groundwater following earthquakes was undertaken in support of performance assessment calculations including seismicity

  15. Numerical tables on physical and chemical analyses of Rhine water 1983

    International Nuclear Information System (INIS)

    1984-01-01

    The numerical tables contain the measuring results of the physical-chemical studies on the Rhine water for the year 1983. The tables are arranged by general parameters, organic matter, eutrophicating substances, anorganic matter, metals, organic micropollution as well as by radioactivity (total alpha- or beta- and T-activity). (MM) [de

  16. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    Science.gov (United States)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  17. Mechanism for migration of light nonaqueous phase liquids beneath the water table

    International Nuclear Information System (INIS)

    Krueger, J.P.; Portman, M.E.

    1991-01-01

    This paper reports on an interesting transport mechanism may account for the presence of light nonaqueous phase liquid (LNAPL) found beneath the water table in fine-grained aquifers. During the course of two separate site investigations related to suspected releases from underground petroleum storage tanks, LNAPL was found 7 to 10 feet below the regional water table. In both cases, the petroleum was present within a sand seam which was encompassed within a deposit of finer-grained sediments. The presence of LNAPL below the water table is uncommon; typically, LNAPL is found floating on the water table or on the capillary fringe. The occurrence of LNAPL below the water table could have resulted from fluctuating regional water levels which allowed the petroleum to enter the sand when the water table was a lower stage or, alternately, could have occurred as a result of the petroleum depressing the water table beneath the level of the sand. In fine-grained soils where the lateral migration rate is low, the infiltrating LNAPL may depress the water table to significant depth. The LNAPL may float on the phreatic surface with the bulk of its volume beneath the phreatic surface. Once present in the sand and surrounded by water-saturated fine-grained sediments, capillary forces prevent the free movement of the petroleum back across the boundary from the coarse-grained sediments to the fine-grained sediments. Tapping these deposits with a coarser grained filter packed monitoring well releases the LNAPL, which may accumulate to considerable thickness in the monitoring well

  18. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system

    Science.gov (United States)

    Rezanezhad, F.; Couture, R.-M.; Kovac, R.; O'Connell, D.; Van Cappellen, P.

    2014-02-01

    Water table fluctuations significantly affect the biological and geochemical functioning of soils. Here, we introduce an automated soil column system in which the water table regime is imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The potential of this new system is illustrated by comparing results from two columns filled with 45 cm of the same homogenized riparian soil. In one soil column the water table remained constant at -20 cm below the soil surface, while in the other the water table oscillated between the soil surface and the bottom of the column, at a rate of 4.8 cm d-1. The experiment ran for 75 days at room temperature (25 ± 2 °C). Micro-sensors installed at -10 and -30 cm below the soil surface in the stable water table column recorded constant redox potentials on the order of 600 and -200 mV, respectively. In the fluctuating water table column, redox potentials at the same depths oscillated between oxidizing (∼700 mV) and reducing (∼-100 mV) conditions. Pore waters collected periodically and solid-phase analyses on core material obtained at the end of the experiment highlighted striking geochemical differences between the two columns, especially in the time series and depth distributions of Fe, Mn, K, P and S. Soil CO2 emissions derived from headspace gas analysis exhibited periodic variations in the fluctuating water table column, with peak values during water table drawdown. Transient redox conditions caused by the water table fluctuations enhanced microbial oxidation of soil organic matter, resulting in a pronounced depletion of particulate organic carbon in the midsection of the fluctuating water table column. Denaturing Gradient Gel Electrophoresis (DGGE) revealed the onset of differentiation of the bacterial communities in the upper (oxidizing) and lower (reducing) soil sections, although no systematic differences in microbial community structure

  19. Iron-mediated soil carbon response to water-table decline in an alpine wetland

    Science.gov (United States)

    Wang, Yiyun; Wang, Hao; He, Jin-Sheng; Feng, Xiaojuan

    2017-06-01

    The tremendous reservoir of soil organic carbon (SOC) in wetlands is being threatened by water-table decline (WTD) globally. However, the SOC response to WTD remains highly uncertain. Here we examine the under-investigated role of iron (Fe) in mediating soil enzyme activity and lignin stabilization in a mesocosm WTD experiment in an alpine wetland. In contrast to the classic `enzyme latch' theory, phenol oxidative activity is mainly controlled by ferrous iron [Fe(II)] and declines with WTD, leading to an accumulation of dissolvable aromatics and a reduced activity of hydrolytic enzyme. Furthermore, using dithionite to remove Fe oxides, we observe a significant increase of Fe-protected lignin phenols in the air-exposed soils. Fe oxidation hence acts as an `iron gate' against the `enzyme latch' in regulating wetland SOC dynamics under oxygen exposure. This newly recognized mechanism may be key to predicting wetland soil carbon storage with intensified WTD in a changing climate.

  20. Contribution of vegetation and water table on isoprene emission from boreal peatland microcosms

    DEFF Research Database (Denmark)

    Tiiva, Päivi; Faubert, Patrick; Räty, Sanna

    2009-01-01

    emission in these naturally wet ecosystems, although water table is predicted to decline due to climate warming. We studied the relative contribution of mosses vs. vascular plants to isoprene emission in boreal peatland microcosms in growth chambers by removing either vascular vegetation or both vascular...... hollows with intact vegetation, 45 ± 6 µg m-2 h-1, was decreased by 25% under water table drawdown. However, water table drawdown reduced net ecosystem carbon dioxide (CO2) exchange more dramatically than isoprene emission. Isoprene emission strongly correlated with both CO2 exchange and methane emission......Boreal peatlands are substantial sources of isoprene, a reactive hydrocarbon. However, it is not known how much mosses, vascular plants and peat each contribute to isoprene emission from peatlands. Furthermore, there is no information on the effects of declining water table depth on isoprene...

  1. Diffusive-dispersive mass transfer in the capillary fringe: Impact of water table fluctuations and heterogeneities

    DEFF Research Database (Denmark)

    Grathwohl, Peter; Haberer, Cristina; Ye, Yu

    Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...

  2. Water property lookup table (sanwat) for use with the two-phase computational code shaft

    International Nuclear Information System (INIS)

    Sherman, M.P.; Eaton, R.R.

    1980-10-01

    A lookup table for water thermodynamic and transport properties (SANWAT) has been constructed for use with the two-phase computational code, SHAFT. The table, which uses density and specific internal energy as independent variables, covers the liquid, two-phase, and vapor regions. The liquid properties of water are contained in a separate subtable in order to obtain high accuracy for this nearly incompressible region that is frequently encountered in studies of the characteristics of nuclear-waste repositories

  3. Water table tests of proposed heat transfer tunnels for small turbine vanes

    Science.gov (United States)

    Meitner, P. L.

    1974-01-01

    Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.

  4. Enhancing Groundwater Cost Estimation with the Interpolation of Water Tables across the United States

    Science.gov (United States)

    Rosli, A. U. M.; Lall, U.; Josset, L.; Rising, J. A.; Russo, T. A.; Eisenhart, T.

    2017-12-01

    Analyzing the trends in water use and supply across the United States is fundamental to efforts in ensuring water sustainability. As part of this, estimating the costs of producing or obtaining water (water extraction) and the correlation with water use is an important aspect in understanding the underlying trends. This study estimates groundwater costs by interpolating the depth to water level across the US in each county. We use Ordinary and Universal Kriging, accounting for the differences between aquifers. Kriging generates a best linear unbiased estimate at each location and has been widely used to map ground-water surfaces (Alley, 1993).The spatial covariates included in the universal Kriging were land-surface elevation as well as aquifer information. The average water table is computed for each county using block kriging to obtain a national map of groundwater cost, which we compare with survey estimates of depth to the water table performed by the USDA. Groundwater extraction costs were then assumed to be proportional to water table depth. Beyond estimating the water cost, the approach can provide an indication of groundwater-stress by exploring the historical evolution of depth to the water table using time series information between 1960 and 2015. Despite data limitations, we hope to enable a more compelling and meaningful national-level analysis through the quantification of cost and stress for more economically efficient water management.

  5. Precipitation patterns and moisture fluxes in a sandy, tropical environment with a shallow water table

    Science.gov (United States)

    Minihane, M. R.; Freyberg, D. L.

    2011-08-01

    Identifying the dominant mechanisms controlling recharge in shallow sandy soils in tropical climates has received relatively little attention. Given the expansion of coastal fill using marine sands and the growth of coastal populations throughout the tropics, there is a need to better understand the nature of water balances in these settings. We use time series of field observations at a coastal landfill in Singapore coupled with numerical modeling using the Richards' equation to examine the impact of precipitation patterns on soil moisture dynamics, including percolation past the root zone and recharge, in such an environment. A threshold in total precipitation event depth, much more so than peak precipitation intensity, is the strongest event control on recharge. However, shallow antecedent moisture, and therefore the timing between events along with the seasonal depth to water table, also play significant roles in determining recharge amounts. For example, at our field site, precipitation events of less than 3 mm per event yield little to no direct recharge, but for larger events, moisture content changes below the root zone are linearly correlated to the product of the average antecedent moisture content and the total event precipitation. Therefore, water resources planners need to consider identifying threshold precipitation volumes, along with the multiple time scales that capture variability in event antecedent conditions and storm frequency in assessing the role of recharge in coastal water balances in tropical settings.

  6. Stochastic estimation of plant-available soil water under fluctuating water table depths

    Science.gov (United States)

    Or, Dani; Groeneveld, David P.

    1994-12-01

    Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.

  7. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    Science.gov (United States)

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  8. Geostatistical investigation into the temporal evolution of spatial structure in a shallow water table

    Directory of Open Access Journals (Sweden)

    S. W. Lyon

    2006-01-01

    Full Text Available Shallow water tables near-streams often lead to saturated, overland flow generating areas in catchments in humid climates. While these saturated areas are assumed to be principal biogeochemical hot-spots and important for issues such as non-point pollution sources, the spatial and temporal behavior of shallow water tables, and associated saturated areas, is not completely understood. This study demonstrates how geostatistical methods can be used to characterize the spatial and temporal variation of the shallow water table for the near-stream region. Event-based and seasonal changes in the spatial structure of the shallow water table, which influences the spatial pattern of surface saturation and related runoff generation, can be identified and used in conjunction to characterize the hydrology of an area. This is accomplished through semivariogram analysis and indicator kriging to produce maps combining soft data (i.e., proxy information to the variable of interest representing general shallow water table patterns with hard data (i.e., actual measurements that represent variation in the spatial structure of the shallow water table per rainfall event. The area used was a hillslope in the Catskill Mountains region of New York State. The shallow water table was monitored for a 120 m×180 m near-stream region at 44 sampling locations on 15-min intervals. Outflow of the area was measured at the same time interval. These data were analyzed at a short time interval (15 min and at a long time interval (months to characterize the changes in the hydrologic behavior of the hillslope. Indicator semivariograms based on binary-transformed ground water table data (i.e., 1 if exceeding the time-variable median depth to water table and 0 if not were created for both short and long time intervals. For the short time interval, the indicator semivariograms showed a high degree of spatial structure in the shallow water table for the spring, with increased range

  9. Influence of the tension-saturated zone on contaminant migration in shallow water-table regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.

    1982-01-01

    Groundwater discharge represents a major pathway for the return to the biosphere of contaminants that are released to the subsurface environment. An understanding of the transport processes in groundwater discharge zones is therefore an important consideration in pathway analyses associated with the environmental assessment of proposed waste-management facilities. Shallow water tables are a common characteristic of groundwater discharge zones, particularly in humid climatic regions. In this paper, the results of field tests, laboratory tests and numerical simulations are used to show that under shallow water-table conditions, the zone of tension saturation can result in a rapid and highly disproportionate water-table response to precipitation. It is further shown that this response can result in complex migration patterns that would not be predicted by the classical approaches to solute transport modelling and that the response could result in large and highly transient inputs to surface water

  10. Water laws in eleven midwestern states: summary tables

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, T.L.; Torpy, M.F.

    1979-06-01

    Basic information about the water laws of Arkansas, Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Missouri, Ohio, and West Virginia is summarized. References to state laws and court decisions that may be useful in assessing the legal availability of water for energy development are provided. (MCW)

  11. Energy balance concept in the evaluation of water table management effects on corn growth: experimental investigation

    International Nuclear Information System (INIS)

    Kalita, P.K.; Kanwar, R.S.

    1992-01-01

    The effects of water table management practices (WTMP) on corn growth in 1989 and 1990 at two field sites, Ames and Ankeny, Iowa, were evaluated by calculating crop water stress index (CWSI) and monitoring plant physiological parameters during the growing seasons. Experiments were conducted on field lysimeters at the Ames site by maintaining water tables at 0.3-, 0.6-, and 0.9-m depths and in a subirrigation field at the Ankeny site with 0.2-, 0.3-, 0.6-, 0.9-, and 1.1-m water table depths, and periodically measuring leaf and air temperature, transpiration rate, stomatal conductance, and photosynthetically active radiation (PAR) using leaf chamber techniques. Net radiation of canopy was estimated using the leaf energy balance equation and leaf chamber measurements and then correlated with PAR. Analysis of data revealed that net radiation, leaf air temperature differential, transpiration rate, stomatal conductance, and CWSI were strongly related to WTMP during vegetative and flowering stages of corn growth. Excess water in the root zone with a water table depth of 0.2 m caused the maximum crop water stress and ceased crop growth. Both water and oxygen could be adequately maintained for favorable crop growth by adopting the best WTMP. Results indicate that plant physiological parameters and CWSI could be used to evaluate the effectiveness of WTMP and develop the best WTMP for corn growth in the humid region

  12. Model evaluation of seepage from uranium tailings disposal above and below the water table

    International Nuclear Information System (INIS)

    Nelson, R.W.; Meyer, P.R.; Oberlander, P.L.; Sneider, S.C.; Mayer, D.W.; Reisenauer, A.E.

    1983-03-01

    Model simulations identify the rate and amount of leachate released to the environment if disposed uranium mill tailings come into contact with ground water or if seepage from tailings reaches ground water. In this study, simulations of disposal above and below the water table, with various methods of leachate control, were compared. Three leachate control methods were used in the comparisons: clay bottom liners; stub-sidewall clay liners; and tailings drains with sumps, with the effluent pumped back from the sumps. The best leachate control for both above and below the water table is a combination of the three methods. The combined methods intercept up to 80% of the leachate volume in pits above the water table and intercept essentially all of the leachate in pits below the water table. Effluent pumping, however, requires continuous energy costs and an alternative method of disposal for the leachate that cannot be reused as makeup water in the mill process. Without the drains or effluent pumping, the clay bottom liners have little advantage in terms of the total volume of leachate lost. The clay liners do reduce the rate of leachate flow to the ground water, but the flow continues for a longer time. The buffering, sorption, and chemical reactions of the leachate passing directly through the liner are also advantages of the liner

  13. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    Science.gov (United States)

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  14. Combined uses of water-table fluctuation (WTF), chloride mass ...

    African Journals Online (AJOL)

    Agadaga

    isotopes methods to investigate groundwater recharge ... and isotopic characterization of groundwater, rainfall and the unsaturated zone were also carried out using a ..... Chloride concentrations in soil water extracted by lixiviation from.

  15. Environmental isotope profiles and evaporation in shallow water table soils

    International Nuclear Information System (INIS)

    Hussein, M.F.; Froehlich, K.; Nada, A.

    2001-01-01

    Environmental isotope methods have been employed to evaluate the processes of evaporation and soil salinisation in the Nile Delta. Stable isotope profiles (δ 18 O and δ 2 H) from three sites were analysed using a published isothermal model that analyses the steady-state isotopic profile in the unsaturated zone and provides an estimate of the evaporation rate. Evaporation rates estimated by this method at the three sites range between 60 and 98 mm y -1 which translates to an estimate of net water loss of one billion cubic meters per year from fallow soils on the Nile delta. Capillary rise of water through the root zone during the crop growing season is estimated to be three times greater than evaporation rate estimate and a modified water management strategy could be adopted in order to optimize water use and its management on the regional scale. (author)

  16. Radar sounding of bedrock and water table at Chalk River

    International Nuclear Information System (INIS)

    Annan, A.P.; Davis, J.L.

    1979-01-01

    When a spill of radioactive waste occurs, one of the main concerns is the flow pattern of ground water in the area of the spill. Ground probing radar is a relatively new geophysical technique which can provide high resolution data on the surficial geology and water distribution. The results of some preliminary radar experiments conducted at Chalk River Nuclear Laboratories (CRNL) of the Atomic Energy of Canada Limited (AECL), Chalk River, Ontario are presented. (auth)

  17. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

    Science.gov (United States)

    Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng

    2018-03-01

    The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

  18. Water table lowering to improve excavation performance and to reduce acid mine drainage

    International Nuclear Information System (INIS)

    Koppe, J.C.; Costa, J.F.; Laurent, O. Jr.

    1995-01-01

    This paper analyses the water table level fluctuations using wells located adjacent to the stripping cuts at the Butia-Leste coal mine, southernmost of Brazil. Piezometers monitored the water table fluctuations. Geological mapping provided additional information aiding the interpretation of the results. A contouring software was also used as tool to aid the interpretation of the data and the results visualisation. The parameters necessary in selecting the location of the wells and pumping volumes were calculated from the data obtained in the water table lowering tests. The results were used to minimise two main problems: the generation of acid mine drainage and the reduction of the excavation performance of the fleet used in overburden removal. 7 refs., 5 figs., 3 tabs

  19. Water tables constrain height recovery of willow on Yellowstone's northern range.

    Science.gov (United States)

    Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson

    2008-01-01

    Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery

  20. Dynamic response of an electrostatically actuated microbeam to drop-table test

    International Nuclear Information System (INIS)

    Ouakad, Hassen M; Younis, Mohammad I; Alsaleem, Fadi

    2012-01-01

    In this paper, we present a theoretical and experimental investigation into the dynamic response of an electrostatically actuated microbeam when subjected to drop-table test. For the theoretical part, a reduced-order model based on an Euler–Bernoulli beam model is utilized. The model accounts for the electrostatic bias on the microbeam and the shock pulse of the drop-table test. Simulation results are presented showing the combined effect of electrostatic force and mechanical shock in triggering early pull-in instability of the cantilever microbeams. The analytical simulation results are validated by finite-element results for the static response. Dynamic pull-in threshold as a function of the mechanical shock amplitude is shown over a wide range of shock spanning hundreds of thousands of g up to zero g. For the experimental part, a micromachined cantilever beam made of gold of length 50 µm is subjected to drop-table tests while being biased by electrostatic loads. Several experimental data are shown demonstrating the phenomenon of collapse due to the combined shock and electrostatic forces. It is also demonstrated that by biasing short and too stiff microbeams with electrostatic voltages, their stiffness is weakened. This lowers their threshold of collapse considerably to the range of acceleration that enables testing them with in-house shock testing equipments, such as drop-table tests. (paper)

  1. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    Science.gov (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  2. Influence of water table decline on growth allocation and endogenous gibberellins in black cottonwood

    Energy Technology Data Exchange (ETDEWEB)

    Rood, S.B.; Zanewich, K.; Stefura, C. [Lethbridge Univ., Lethbridge, AB (Canada). Dept. of Biological Sciences; Mahoney, J.M. [Alberta Environmental Protection, Lethbridge, AB (Canada)

    2000-06-01

    Cottonwoods have shown an adaptation to the riparian zone by coordinating root elongation to maintain contact with the water table, whose depth varies with the elevation of the adjacent river. The rate of water decline on growth allocation and concentrations of endogenous gibberellins (GAs) in black cottonwood saplings were studied at the University of Lethbridge, Alberta. Water declines were achieved by using rhizopods, and root elongation approximately doubled in response whereas leaf area was reduced. At some point, a greater water decline rate led to water stress resulting in reduced growth, increased leaf diffusive resistance, decreased water potential, and leaf senescence and abscission. After extraction of endogenous GAs, they were purified and analysed by gas chromatography-selected ion monitoring with internal ({sup 2}H{sub 2})GA standards. The results showed that GAs were higher in shoot tips and sequentially lower in basal stems, root tips, leaves and upper roots. Noticeable relationships did not appear between GA concentration and growth allocation across the water decline treatments. Only GA{sub 8} showed a consistent reduction in plants experiencing water table decline. This research did not permit the authors to conclude whether endogenous GAs play a primary role in the regulation of root elongation in response to water table decline. 7 figs., 25 refs.

  3. Creation of Soil Water and Physical data base and its inclusion in a new version of GIS of Soil Resources Attributive Table

    International Nuclear Information System (INIS)

    Kolev, Boyko

    2013-01-01

    For better using of GIS of Soil Resources a new version of the attributive table formation was created. This makes possible soil, physical, and water properties to be included into the table. The simulation procedure for soil hydro-physical properties determination was realized by using the soil particle size distribution data only. This develops a calculation algorithm for soil water content dynamic monitoring, which was realized for some of Bulgarian soils. The main aims of the study are: To demonstrate the usefulness of the new version of the attributive table formation. To show how the simulation model can be applied for environment conditions monitoring and agricultural production management. Keywords: environment conditions, simulation model, soil moisture at field capacity, wilting point, effective soil water content, particle size distribution

  4. Water table in Long Island, New York, March 1971

    Science.gov (United States)

    Koszalka, Edward J.; Koch, Ellis

    1971-01-01

    The geologic framework and the hydrologic situation in Long Island are periodically reviewed by the U.S. Geological Survey as new knowledge is obtained from current investigations. This work is done through cooperative programs with Nassau and Suffolk County agencies and the New York State Department of Environmental Conservation. A unique opportunity to update many of the hydrogeologic maps occurred when the Geological Survey's Mineola, N.Y., office participated in the New England River Basins Commission's "Long Island Sound Study." This map, one of a series of open-file maps showing the updated information, was compiled from data obtained from G. E. Kimmel (written commun., July 1972) and Jensen and Soren (in press). Comparison of the March 1971 data with similar data for March 1970 (Kimmel, 1970) shows virtually no change in water levels on Long Island during the 12 month period, except for a slight decline in levels in central Suffolk County.

  5. Effect of the spatial distribution of physical aquifer properties on modelled water table depth and stream discharge in a headwater catchment

    Directory of Open Access Journals (Sweden)

    C. Gascuel-Odoux

    2010-07-01

    Full Text Available Water table depth and its dynamics on hillslopes are often poorly predicted despite they control both water transit time within the catchment and solute fluxes at the catchment outlet. This paper analyses how relaxing the assumption of lateral homogeneity of physical properties can improve simulations of water table depth and dynamics. Four different spatial models relating hydraulic conductivity to topography have been tested: a simple linear relationship, a linear relationship with two different topographic indexes, two Ks domains with a transitional area. The Hill-Vi model has been modified to test these hypotheses. The studied catchment (Kervidy-Naizin, Western France is underlain by schist crystalline bedrock. A shallow and perennial groundwater highly reactive to rainfall events mainly develops in the weathered saprolite layer. The results indicate that (1 discharge and the water table in the riparian zone are similarly predicted by the four models, (2 distinguishing two Ks domains constitutes the best model and slightly improves prediction of the water table upslope, and (3 including spatial variations in the other parameters such as porosity or rate of hydraulic conductivity decrease with depth does not improve the results. These results underline the necessity of better investigations of upslope areas in hillslope hydrology.

  6. Measurement of the 226Ra-concentration in bottled Austrian mineral waters and table beverages

    International Nuclear Information System (INIS)

    Friedmann, H.; Hernegger, F.

    1978-01-01

    226 Ra being regarded nowadays as a toxic trace element, a systementic examination of bottled Austrian mineral waters and table beverages has been carried out. Only in one case was the maximum allowable concentration of 3.3 pCi/l, a value set up by the WHO, clearly exceeded. (orig.) [de

  7. Accuracy of spatio-temporal RARX model predictions of water table depths

    NARCIS (Netherlands)

    Knotters, M.; Bierkens, M.F.P.

    2002-01-01

    Time series of water table depths (Ht) are predicted in space using a regionalised autoregressive exogenous variable (RARX) model with precipitation surplus (Pt) as input variable. Because of their physical basis, RARX model parameters can be guessed from auxiliary information such as a digital

  8. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Science.gov (United States)

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional

  9. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Generation of Look-Up Tables for Dynamic Job Shop Scheduling Decision Support Tool

    Science.gov (United States)

    Oktaviandri, Muchamad; Hassan, Adnan; Mohd Shaharoun, Awaluddin

    2016-02-01

    Majority of existing scheduling techniques are based on static demand and deterministic processing time, while most job shop scheduling problem are concerned with dynamic demand and stochastic processing time. As a consequence, the solutions obtained from the traditional scheduling technique are ineffective wherever changes occur to the system. Therefore, this research intends to develop a decision support tool (DST) based on promising artificial intelligent that is able to accommodate the dynamics that regularly occur in job shop scheduling problem. The DST was designed through three phases, i.e. (i) the look-up table generation, (ii) inverse model development and (iii) integration of DST components. This paper reports the generation of look-up tables for various scenarios as a part in development of the DST. A discrete event simulation model was used to compare the performance among SPT, EDD, FCFS, S/OPN and Slack rules; the best performances measures (mean flow time, mean tardiness and mean lateness) and the job order requirement (inter-arrival time, due dates tightness and setup time ratio) which were compiled into look-up tables. The well-known 6/6/J/Cmax Problem from Muth and Thompson (1963) was used as a case study. In the future, the performance measure of various scheduling scenarios and the job order requirement will be mapped using ANN inverse model.

  11. Ground Water Recharge Estimation Using Water Table Fluctuation Method And By GIS Applications

    Science.gov (United States)

    Vajja, V.; Bekkam, V.; Nune, R.; M. v. S, R.

    2007-05-01

    Quite often it has become a debating point that how much recharge is occurring to the groundwater table through rainfall on one hand and through recharge structures such as percolation ponds and checkdams on the other. In the present investigations Musi basin of Andhra Pradesh, India is selected for study during the period 2005-06. Pre-monsoon and Post-monsoon groundwater levels are collected through out the Musi basin at 89 locations covering an area11, 291.69 km2. Geology of the study area and rainfall data during the study period has been collected. The contour maps of rainfall and the change in groundwater level between Pre-monsoon and Post- monsoon have been prepared. First the change in groundwater storage is estimated for each successive strips of areas enclosed between two contours of groundwater level fluctuations. In this calculation Specific yield (Sy) values are adopted based on the local Geology. Areas between the contours are estimated through Arc GIS software package. All such storages are added to compute the total storage for the entire basin. In order to find out the percent of rainfall converted into groundwater storage as well as to find out the ground water recharge due to storageponds, a contour map of rainfall for the study area is prepared and areas between successive contours have been calculated. Based on the Geology map, Infiltration values are adopted for each successive strip of the contour area. Then the amount of water infiltrated into the ground is calculated by adjusting the infiltration values for each strip, so that the total infiltrated water for the entire basin is matched with change in Ground water storage, which is 1314.37 MCM for the upper Musi basin while it is 2827.29 MCM for entire Musi basin. With this procedure on an average 29.68 and 30.66 percent of Rainfall is converted into Groundwater recharge for Upper Musi and for entire Musi basin respectively. In the total recharge, the contribution of rainfall directly to

  12. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

    Science.gov (United States)

    Weber, Lisa C.; Wiley, Michael J.; Wilcox, Douglas A.

    2016-01-01

    The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  13. Excel PivotTables and PivotCharts Your Visual Blueprint for Creating Dynamic Spreadsheets

    CERN Document Server

    McFedries, Paul

    2010-01-01

    Master two of the most powerful features of Excel. Even if you use Excel all the time, you may not be up to speed on two of Excel's most useful features. PivotTable and PivotChart turn long lists of unreadable data into dynamic, easy-to-read tables and charts that highlight the information you need most; you can tweak results with a click or easily fuse data from several sources into one document. Now you can learn how to tap these powerful Excel tools with this practical guide. Using a series of step-by-step tutorials and easy-to-follow screenshots, this book shows you in a visual way how to

  14. Regional water table (2016) in the Mojave River and Morongo groundwater basins, southwestern Mojave Desert, California

    Science.gov (United States)

    Dick, Meghan; Kjos, Adam

    2017-12-07

    From January to April 2016, the U.S. Geological Survey (USGS), the Mojave Water Agency, and other local water districts made approximately 1,200 water-level measurements in about 645 wells located within 15 separate groundwater basins, collectively referred to as the Mojave River and Morongo groundwater basins. These data document recent conditions and, when compared with older data, changes in groundwater levels. A water-level contour map was drawn using data measured in 2016 that shows the elevation of the water table and general direction of groundwater movement for most of the groundwater basins. Historical water-level data stored in the USGS National Water Information System (https://waterdata.usgs.gov/nwis/) database were used in conjunction with data collected for this study to construct 37 hydrographs to show long-term (1930–2016) and short-term (1990–2016) water-level changes in the study area.

  15. How proteins modify water dynamics

    Science.gov (United States)

    Persson, Filip; Söderhjelm, Pär; Halle, Bertil

    2018-06-01

    Much of biology happens at the protein-water interface, so all dynamical processes in this region are of fundamental importance. Local structural fluctuations in the hydration layer can be probed by 17O magnetic relaxation dispersion (MRD), which, at high frequencies, measures the integral of a biaxial rotational time correlation function (TCF)—the integral rotational correlation time. Numerous 17O MRD studies have demonstrated that this correlation time, when averaged over the first hydration shell, is longer than in bulk water by a factor 3-5. This rotational perturbation factor (RPF) has been corroborated by molecular dynamics simulations, which can also reveal the underlying molecular mechanisms. Here, we address several outstanding problems in this area by analyzing an extensive set of molecular dynamics data, including four globular proteins and three water models. The vexed issue of polarity versus topography as the primary determinant of hydration water dynamics is resolved by establishing a protein-invariant exponential dependence of the RPF on a simple confinement index. We conclude that the previously observed correlation of the RPF with surface polarity is a secondary effect of the correlation between polarity and confinement. Water rotation interpolates between a perturbed but bulk-like collective mechanism at low confinement and an exchange-mediated orientational randomization (EMOR) mechanism at high confinement. The EMOR process, which accounts for about half of the RPF, was not recognized in previous simulation studies, where only the early part of the TCF was examined. Based on the analysis of the experimentally relevant TCF over its full time course, we compare simulated and measured RPFs, finding a 30% discrepancy attributable to force field imperfections. We also compute the full 17O MRD profile, including the low-frequency dispersion produced by buried water molecules. Computing a local RPF for each hydration shell, we find that the

  16. Risk evaluation of ground water table decline as a type of desertification. A case study are: Southern Iran

    Energy Technology Data Exchange (ETDEWEB)

    Asrari, E.; Masoudi, M.

    2009-07-01

    This paper presents a model to assess risk of ground water table decline. Taking into consideration eleven indicators of lowering of ground water table the model identifies areas with Potential Risk (risky zones) and areas of Actual risk as well as projects the probability of the worse degradation in future. (Author) 7 refs.

  17. Risk evaluation of ground water table decline as a type of desertification. A case study are: Southern Iran

    International Nuclear Information System (INIS)

    Asrari, E.; Masoudi, M.

    2009-01-01

    This paper presents a model to assess risk of ground water table decline. Taking into consideration eleven indicators of lowering of ground water table the model identifies areas with Potential Risk (risky zones) and areas of Actual risk as well as projects the probability of the worse degradation in future. (Author) 7 refs.

  18. Sensitivity of stream flow and water table depth to potential climatic variability in a coastal forested watershed

    Science.gov (United States)

    Zhaohua Dai; Carl Trettin; Changsheng Li; Devendra M. Amatya; Ge Sun; Harbin Li

    2010-01-01

    A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for...

  19. Simulation of upward flux from shallow water-table using UPFLOW model

    Directory of Open Access Journals (Sweden)

    M. H. Ali

    2013-11-01

    Full Text Available The upward movement of water by capillary rise from shallow water-table to the root zone is an important incoming flux. For determining exact amount of irrigation requirement, estimation of capillary flux or upward flux is essential. Simulation model can provide a reliable estimate of upward flux under variable soil and climatic conditions. In this study, the performance of model UPFLOW to estimate upward flux was evaluated. Evaluation of model performance was performed with both graphical display and statistical criteria. In distribution of simulated capillary rise values against observed field data, maximum data points lie around the 1:1 line, which means that the model output is reliable and reasonable. The coefficient of determination between observed and simulated values was 0.806 (r = 0.93, which indicates a good inter-relation between observed and simulated values. The relative error, model efficiency, and index of agreement were found as 27.91%, 85.93% and 0.96, respectively. Considering the graphical display of observed and simulated upward flux and statistical indicators, it can be concluded that the overall performance of the UPFLOW model in simulating actual upward flux from a crop field under variable water-table condition is satisfactory. Thus, the model can be used to estimate capillary rise from shallow water-table for proper estimation of irrigation requirement, which would save valuable water from over-irrigation.

  20. Modelling contrasting responses of wetland productivity to changes in water table depth

    Directory of Open Access Journals (Sweden)

    R. F. Grant

    2012-11-01

    Full Text Available Responses of wetland productivity to changes in water table depth (WTD are controlled by complex interactions among several soil and plant processes, and hence are site-specific rather than general in nature. Hydrological controls on wetland productivity were studied by representing these interactions in connected hummock and hollow sites in the ecosystem model ecosys, and by testing CO2 and energy fluxes from the model with those measured by eddy covariance (EC during years with contrasting WTD in a shrub fen at Lost Creek, WI. Modelled interactions among coupled processes for O2 transfer, O2 uptake, C oxidation, N mineralization, N uptake and C fixation by diverse microbial, root and mycorrhizal populations enabled the model to simulate complex responses of CO2 exchange to changes in WTD that depended on the WTD at which change was occurring. At the site scale, greater WTD caused the model to simulate greater CO2 influxes and effluxes over hummocks vs. hollows, as has been found at field sites. At the landscape scale, greater WTD caused the model to simulate greater diurnal CO2 influxes and effluxes under cooler weather when water tables were shallow, but also smaller diurnal CO2 influxes and effluxes under warmer weather when water tables were deeper, as was also apparent in the EC flux measurements. At an annual time scale, these diurnal responses to WTD in the model caused lower net primary productivity (NPP and heterotrophic respiration (Rh, but higher net ecosystem productivity (NEP = NPP − Rh, to be simulated in a cooler year with a shallower water table than in a warmer year with a deeper one. This difference in NEP was consistent with those estimated from gap-filled EC fluxes in years with different water tables at Lost Creek and at similar boreal fens elsewhere. In sensitivity tests of the model, annual NEP

  1. A shower look-up table to trace the dynamics of meteoroid streams and their sources

    Science.gov (United States)

    Jenniskens, Petrus

    2018-04-01

    Meteor showers are caused by meteoroid streams from comets (and some primitive asteroids). They trace the comet population and its dynamical evolution, warn of dangerous long-period comets that can pass close to Earth's orbit, outline volumes of space with a higher satellite impact probability, and define how meteoroids evolve in the interplanetary medium. Ongoing meteoroid orbit surveys have mapped these showers in recent years, but the surveys are now running up against a more and more complicated scene. The IAU Working List of Meteor Showers has reached 956 entries to be investigated (per March 1, 2018). The picture is even more complicated with the discovery that radar-detected streams are often different, or differently distributed, than video-detected streams. Complicating matters even more, some meteor showers are active over many months, during which their radiant position gradually changes, which makes the use of mean orbits as a proxy for a meteoroid stream's identity meaningless. The dispersion of the stream in space and time is important to that identity and contains much information about its origin and dynamical evolution. To make sense of the meteor shower zoo, a Shower Look-Up Table was created that captures this dispersion. The Shower Look-Up Table has enabled the automated identification of showers in the ongoing CAMS video-based meteoroid orbit survey, results of which are presented now online in near-real time at http://cams.seti.org/FDL/. Visualization tools have been built that depict the streams in a planetarium setting. Examples will be presented that sample the range of meteoroid streams that this look-up table describes. Possibilities for further dynamical studies will be discussed.

  2. Increasing the utility of regional water table maps: a new method for estimating groundwater recharge

    Science.gov (United States)

    Gilmore, T. E.; Zlotnik, V. A.; Johnson, M.

    2017-12-01

    Groundwater table elevations are one of the most fundamental measurements used to characterize unconfined aquifers, groundwater flow patterns, and aquifer sustainability over time. In this study, we developed an analytical model that relies on analysis of groundwater elevation contour (equipotential) shape, aquifer transmissivity, and streambed gradient between two parallel, perennial streams. Using two existing regional water table maps, created at different times using different methods, our analysis of groundwater elevation contours, transmissivity and streambed gradient produced groundwater recharge rates (42-218 mm yr-1) that were consistent with previous independent recharge estimates from different methods. The three regions we investigated overly the High Plains Aquifer in Nebraska and included some areas where groundwater is used for irrigation. The three regions ranged from 1,500 to 3,300 km2, with either Sand Hills surficial geology, or Sand Hills transitioning to loess. Based on our results, the approach may be used to increase the value of existing water table maps, and may be useful as a diagnostic tool to evaluate the quality of groundwater table maps, identify areas in need of detailed aquifer characterization and expansion of groundwater monitoring networks, and/or as a first approximation before investing in more complex approaches to groundwater recharge estimation.

  3. Simulating streamflow and water table depth with a coupled hydrological model

    Directory of Open Access Journals (Sweden)

    Alphonce Chenjerayi Guzha

    2010-09-01

    Full Text Available A coupled model integrating MODFLOW and TOPNET with the models interacting through the exchange of recharge and baseflow and river-aquifer interactions was developed and applied to the Big Darby Watershed in Ohio, USA. Calibration and validation results show that there is generally good agreement between measured streamflow and simulated results from the coupled model. At two gauging stations, average goodness of fit (R2, percent bias (PB, and Nash Sutcliffe efficiency (ENS values of 0.83, 11.15%, and 0.83, respectively, were obtained for simulation of streamflow during calibration, and values of 0.84, 8.75%, and 0.85, respectively, were obtained for validation. The simulated water table depths yielded average R2 values of 0.77 and 0.76 for calibration and validation, respectively. The good match between measured and simulated streamflows and water table depths demonstrates that the model is capable of adequately simulating streamflows and water table depths in the watershed and also capturing the influence of spatial and temporal variation in recharge.

  4. Hanford site water table changes 1950-1980: data observations and evaluation

    International Nuclear Information System (INIS)

    Zimmerman, D.A.; Reisenauer, A.E.; Black, G.D.; Young, M.A.

    1986-04-01

    The basalt formations underlying the Hanford site are being considered for characterization and evaluation as a deep geologic repository for defense and commercial radioactive wastes. To understand the hydrology of the Hanford area, we need to know if the ground-water system is in steady state and what impact a change in surface stress from artificial recharge may have on the underlying basalt aquifers. Researchers at Pacific Northwest Laboratory are supporting efforts to understand these issues by illustrating how changes in wastewater disposal activities at the Hanford site have altered the configuration of the water table surface with time. The objective of this work was to determine the magnitude and direction of changes in the elevation of the water table across the Hanford site from 1950 to 1980. Plots of the magnitudes of water-level changes occurring over 5-year intervals from 1950 through 1980 are presented. The water-level changes that occurred during each 5-year interval are related to water discharges from nuclear fuel reprocessing facilities or other discharge sources. The plots of water-level changes show large water-level increases in the vicinity of the Separations Area (200 East and 200 West) from 1950 to 1960; the rate of increase of water-level changes grows more slowly from 1960 to 1970, while the areal extent of the mounding continues to expand. Only small changes occur from 1970 to 1980; during this time period, the unconfined system appears to be in approximate equilibrium with the sources. Based on previous experience, it is believed that an increase in ground-water mounding will begin to appear near the 200 East Area B Pond as a result of the increased discharges from the restart of PUREX in 1983

  5. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 2: model coupling, application, factor importance, and uncertainty

    Science.gov (United States)

    Lauvernet, Claire; Muñoz-Carpena, Rafael

    2018-01-01

    Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in

  6. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 2: model coupling, application, factor importance, and uncertainty

    Directory of Open Access Journals (Sweden)

    C. Lauvernet

    2018-01-01

    Full Text Available Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018, we developed a physically based numerical algorithm (SWINGO that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate, where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil and hydraulic loading (rainfall + incoming runoff at each site. The presence of WT introduced more complex responses dominated by strong

  7. Investigation of dynamic response of HTR core and comparison with shaking table-tests

    International Nuclear Information System (INIS)

    Anderheggen, E.; Prater, E.G.; Kreis, A.

    1990-01-01

    The analytical studies and the shaking table tests have been performed with the aim of gaining a fundamental understanding of the dynamic behaviour of such core material and validating the numerical model. The dynamic analysis of a graphite pebble-bed core could be a fairly complex undertaking if all nonlinear effects were considered. However, to achieve a practicable solution the ensemble of spheres must be replaced by a statistically equivalent continuum. Based on the Hertz theories for regular configurations, the mechanical characteristics, at small shear strains, correspond to those of an isotropic nonlinear hypoelastic medium, in which the Lame constants are a function of volumetric strain. Thus, the initial modulus values depend on confining pressure, so that the medium is inhomogeneous with respect to depth. During seismic excitation the volumetric strain, and thus the moduli, will change with time. To simplify the analysis, however, a linearized form of the model has been adopted, as well as considerations concerning damping effects. The numerical simulations carried out thus far concern mainly the 1:6 rigid wall model (i.e. with a cylinder diameter of 1.5 m) investigated experimentally and take the form of a back-analysis. Subsequently, the walls were tested separately and finally the combined behaviour was investigated. To date only preliminary results for the modelling of the reflector walls have been obtained. The objectives of this paper are thus twofold. Firstly, to discuss the constitutive law and its implementation in a general purpose finite element program. Secondly, to present some preliminary results of the dynamic analysis and to compare these with data obtained from the shaking table tests. 5 refs, 2 figs, 1 tab

  8. "Periodic-table-style" paper device for monitoring heavy metals in water.

    Science.gov (United States)

    Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei

    2015-03-03

    If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.

  9. Effects of Permanently Raised Water Tables on Forest Overstory Vegetation in the Vicinity of the Tennessee-Tombigbee Waterway.

    Science.gov (United States)

    1982-08-01

    Mississippi Valley* Common Name Scientific Name Very Tolerant** Water hickory Carya aquatica Pecan C. illinoensis Buttonbush Cephalanthus occidentalis...Table I (Concluded) Common Name Scientific Name Intolerant* Ironwood Carpinus caroliniana Bitternut hickory Carya cordiformis Shellbark

  10. Water table and overbank flow frequency changes due to suburbanization-induced channel incision, Virginia Coastal Plain, USA

    Science.gov (United States)

    Hancock, G.; Mattell, N.; Christianson, E.; Wacksman, J.

    2004-12-01

    Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that incision has lowered floodplain water tables and decreased the overbank flow frequency, and suggest these changes impact vegetation distribution in a diverse, protected riparian habitat. The monitored stream is a tributary to the James River draining 1.3 km2, of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one m high knickpoint at a rate of 1-2 m/yr, primarily during high flow events. We installed 33 wells in six floodplain transects to assess water table elevations beneath the floodplain adjacent to the incising stream. To document the impacts of incision, two transects are located 30 and 50 m upstream of the knickpoint in unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream of the knickpoint in incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table response to storm events. Significant differences have been observed in the water table above and below the knickpoint. Above the knickpoint, the water table is relatively flat and is 0.2-0.4 m below the floodplain surface. Water table response to precipitation events is nearly immediate, with the water table rising to the floodplain surface in significant rainfall events. In the transect immediately downstream of the knickpoint, the water table possesses a steep gradient, rising from ~1 m below the floodplain at the stream to 0.3 m below the surface within 20 m. In the most downstream transects, the water table is relatively flat, but is one m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs

  11. High-Resolution Assimilation of GRACE Terrestrial Water Storage Observations to Represent Local-Scale Water Table Depths

    Science.gov (United States)

    Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.

    2017-12-01

    Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at

  12. Environmental impact assessment of quarries under water table: state of the art

    International Nuclear Information System (INIS)

    Menatti, M.; Vismara, R.

    2009-01-01

    After an overview of environmental problems concerning pits under water table, data and results showed in a few examples of literature and in some Environmental Impact Study are summarized. A close examination about sector normative instruments, in the field of E.I.A. (Environmental Impact Assessment) and S.E.A. (Strategic Environmental Assessment) is showed, through some key elements obtained from a few guidelines expressed by control and authorization governmental authority.In addition, the paper deals with a specific problem about wash water management and, in particular, silt material management; the possible impacts derived from the directly wash water introduction in the pit lake and from the use of settling lagoon are analyzed. [it

  13. Measuring the Change in Water Table with Gravity Methods - a Controlled Experiment

    DEFF Research Database (Denmark)

    Lund, S; Christiansen, Lars; Andersen, O. B.

    2009-01-01

    Gravity changes linearly with the change in soil water content. With the GRACE satellite mission the interest for ground-based gravity methods in hydrology has gained new attention. Time-lapse gravity data have the potential to constrain hydrological model parameters in a calibration scheme....... The greatest potential is seen for specific yield. The gravity signal from hydrology is small (10^-8 m/s^2 level) and the application of ground-based methods is mainly limited by the sensitivity of available instruments. In order to demonstrate the ability of the Scintrex CG-5 gravity meter to detect a change...... in water content, a controlled experiment was set up in 30 m by 20 m basin. The water table was lowered 0.69 m within 1½ hours and the corresponding gravity signal measured using two different approaches: a time series measurements at one location and a gravity network measurement including four points...

  14. A study on the influence of tides on the water table conditions of the shallow coastal aquifers

    Science.gov (United States)

    Singaraja, C.; Chidambaram, S.; Jacob, Noble

    2018-03-01

    Tidal variation and water level in aquifer is an important function in the coastal environment, this study attempts to find the relationship between water table fluctuation and tides in the shallow coastal aquifers. The study was conducted by selecting three coastal sites and by monitoring the water level for every 2-h interval in 24 h of observation. The study was done during two periods of full moon and new moon along the Cuddalore coastal region of southern part of Tamil Nadu, India. The study shows the relationship between tidal variation, water table fluctuations, dissolved oxygen, and electrical conductivity. An attempt has also been made in this study to approximate the rate of flow of water. Anyhow, the differences are site specific and the angle of inclination of the water table shows a significant relation to the mean sea level, with respect to the distance of the point of observation from the sea and elevation above mean sea level.

  15. Excess water dynamics in hydrotalcite: QENS study

    Indian Academy of Sciences (India)

    dynamics of excess water in hydrotalcite sample with varied content of excess water are reported. Translational motion of excess water can be best described by random transla- tional jump diffusion model. The observed increase in translational diffusivity with increase in the amount of excess water is attributed to the ...

  16. Secondary mineral evidence of large-scale water table fluctuations at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whelan, J.F.; Moscati, R.J.; Marshall, B.D

    1997-12-01

    At Yucca Mountain, currently under consideration as a potential permanent underground repository for high-level radioactive wastes, the present-day water table is 500 to 700 m deep. This thick unsaturated zone (UZ) is part of the natural barrier system and is regarded as a positive attribute of the potential site. The USGS has studied the stable isotopes and petrography of secondary calcite and silica minerals that coat open spaces in the UZ and form irregular veins and masses in the saturated zone (SZ). This paper reviews the findings from the several studies undertaken at Yucca Mountain on its mineralogy

  17. Water dynamics of vegetable using radiation

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko

    2000-01-01

    Neutral ray is specifically adsorbed and scattered by hydrogen, which is construction element of water. We applied nondestructive visualization of water dynamics in vegetable using neutral ray. The neutron ray was produced by JRR-3M of JAERI. Water dynamics of epigeal part of vegetable, tree, seed, root and soil near root were observed. The distribution and behavior of water were seen by image. For examples, the dry process of cedar, water adsorption process of seed of broad beam, corn, morning glory, rice and wheat. The growing process of root in the soil was analyzed by CT images that constructed three-dimensional image. Water image of root-soil system made clear water dynamics of the optional site near root. The distribution of water in the cut carnation was observed before and after dry treatment. The change of distribution of water was observed. (S.Y.)

  18. Stochastic simulation of time-series models combined with geostatistics to predict water-table scenarios in a Guarani Aquifer System outcrop area, Brazil

    Science.gov (United States)

    Manzione, Rodrigo L.; Wendland, Edson; Tanikawa, Diego H.

    2012-11-01

    Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.

  19. Evaluation of a mechanistic algorithm to calculate the influence of a shallow water table on hydrology sediment and pesticide transport through vegetative filter strips

    Science.gov (United States)

    Lauvernet, C.; Munoz-Carpena, R.; Carluer, N.

    2012-04-01

    Natural or introduced areas of vegetation, also known as vegetative filter strips (VFS), are a common environmental control practice to protect surface water bodies from human influence. In Europe, VFS are placed along the water network to protect from agrochemical drift during applications, in addition to runoff control. Their bottomland placement next to the streams often implies the presence of a seasonal shallow water table which can have a profound impact on the efficiency of the buffer zone (Lacas et al. 2005). A physically-based algorithm describing ponded infiltration into soils bounded by a water table, proposed by Salvucci and Enthekabi (1995), was further developed to simulate VFS dynamics by making it explicit in time, account for unsteady rainfall conditions, and by coupling to a numerical overland flow and transport model (VFSMOD) (Munoz-Carpena et al., submitted). In this study, we evaluate the importance of the presence of a shallow water table on filter efficiency (reductions in runoff, sediment and pesticide mass), in the context of all other input factors used to describe the system. Global sensitivity analysis (GSA) was used to rank the important input factors and the presence of interactions, as well as the contribution of the important factors to the output variance. GSA of VSFMOD modified for shallow water table was implemented on 2 sites selected in France because they represent different agro-pedo-climatic conditions for which we can compare the role of the factors influencing the performance of grassed buffer strips for surface runoff, sediment and pesticide removal. The first site at Morcille watershed in the Beaujolais wineyard (Rhône-Alpes) contains a very permeable sandy-clay with water table depth varying with the season (very deep in summer and shallow in winter), with a high slope (20 to 30%), and subject to strong seasonal storms (semi-continental, Mediterranean climate). The second site at La Jailliere (Loire-Atlantique, ARVALIS

  20. Effectiveness of table top water pitcher filters to remove arsenic from drinking water.

    Science.gov (United States)

    Barnaby, Roxanna; Liefeld, Amanda; Jackson, Brian P; Hampton, Thomas H; Stanton, Bruce A

    2017-10-01

    Arsenic contamination of drinking water is a serious threat to the health of hundreds of millions of people worldwide. In the United States ~3 million individuals drink well water that contains arsenic levels above the Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 10μg/L. Several technologies are available to remove arsenic from well water including anion exchange, adsorptive media and reverse osmosis. In addition, bottled water is an alternative to drinking well water contaminated with arsenic. However, there are several drawbacks associated with these approaches including relatively high cost and, in the case of bottled water, the generation of plastic waste. In this study, we tested the ability of five tabletop water pitcher filters to remove arsenic from drinking water. We report that only one tabletop water pitcher filter tested, ZeroWater®, reduced the arsenic concentration, both As 3+ and As 5+ , from 1000μg/L to water and its use reduces plastic waste associated with bottled water. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations

    Science.gov (United States)

    Cuthbert, M. O.; Acworth, R. I.; Andersen, M. S.; Larsen, J. R.; McCallum, A. M.; Rau, G. C.; Tellam, J. H.

    2016-02-01

    Understanding and managing groundwater resources in drylands is a challenging task, but one that is globally important. The dominant process for dryland groundwater recharge is thought to be as focused, indirect recharge from ephemeral stream losses. However, there is a global paucity of data for understanding and quantifying this process and transferable techniques for quantifying groundwater recharge in such contexts are lacking. Here we develop a generalized conceptual model for understanding water table and groundwater head fluctuations due to recharge from episodic events within ephemeral streams. By accounting for the recession characteristics of a groundwater hydrograph, we present a simple but powerful new water table fluctuation approach to quantify focused, indirect recharge over both long term and event time scales. The technique is demonstrated using a new, and globally unparalleled, set of groundwater observations from an ephemeral stream catchment located in NSW, Australia. We find that, following episodic streamflow events down a predominantly dry channel system, groundwater head fluctuations are controlled by pressure redistribution operating at three time scales from vertical flow (days to weeks), transverse flow perpendicular to the stream (weeks to months), and longitudinal flow parallel to the stream (years to decades). In relative terms, indirect recharge decreases almost linearly away from the mountain front, both in discrete monitored events as well as in the long-term average. In absolute terms, the estimated indirect recharge varies from 80 to 30 mm/a with the main uncertainty in these values stemming from uncertainty in the catchment-scale hydraulic properties.

  2. The effect of changing water table on methane fluxes at two Finnish mire sites

    International Nuclear Information System (INIS)

    Martikainen, P.J.; Nykaenen, H.; Crill, P.; Silvola, J.

    1992-01-01

    Methane fluxes were measured using static chamber technique on a minerotrophic fen and an ombrotrophic peat bog site located in the Lakkasuo mire complex in central Finland. Both sites consisted of a virgin area and an area drained in 1961 by ditching. The measurements in 1991 were made biweekly from spring thaw to winter freezing. During this period, the mean CH4 emission from the virgin minerotrophic site and virgin ombrotrophic site was 98 mg/m -2 d -1 and 40 mg/m -2 d -1 , respectively. The mean emission of CH 4 from the drained ombrotrophic site was 18 mg/m -2 d -1 . The drained minerotrophic site consumed methane during most of the measuring period, the average uptake was 0.13 mg/m2d. Draining had lowered the average water table by 4 cm at the ombrotrophic site and by 20 cm at minerotrophic site. The possible reasons for the different development of the water table and methane fluxes at ombrotrophic and minerotrophic sites after drainer are discussed

  3. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil.

    Science.gov (United States)

    Silva, A C; Higuchi, P; van den Berg, E

    2010-08-01

    In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  4. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil

    Directory of Open Access Journals (Sweden)

    AC. Silva

    Full Text Available In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh, total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  5. Climate change and water table fluctuation: Implications for raised bog surface variability

    Science.gov (United States)

    Taminskas, Julius; Linkevičienė, Rita; Šimanauskienė, Rasa; Jukna, Laurynas; Kibirkštis, Gintautas; Tamkevičiūtė, Marija

    2018-03-01

    Cyclic peatland surface variability is influenced by hydrological conditions that highly depend on climate and/or anthropogenic activities. A low water level leads to a decrease of peatland surface and an increase of C emissions into the atmosphere, whereas a high water level leads to an increase of peatland surface and carbon sequestration in peatlands. The main aim of this article is to evaluate the influence of hydrometeorological conditions toward the peatland surface and its feedback toward the water regime. A regional survey of the raised bog water table fluctuation and surface variability was made in one of the largest peatlands in Lithuania. Two appropriate indicators for different peatland surface variability periods (increase and decrease) were detected. The first one is an 200 mm y- 1 average net rainfall over a three-year range. The second one is an average annual water depth of 25-30 cm. The application of these indicators enabled the reconstruction of Čepkeliai peatland surface variability during a 100 year period. Processes of peatland surface variability differ in time and in separate parts of peatland. Therefore, internal subbasins in peatland are formed. Subbasins involve autogenic processes that can later affect their internal hydrology, nutrient status, and vegetation succession. Internal hydrological conditions, surface fluctuation, and vegetation succession in peatland subbasins should be taken into account during evaluation of their state, nature management projects, and other peatland research works.

  6. Development of Historical Water Table Maps of the 200 West Area of the Hanford Site (1950-1970)

    International Nuclear Information System (INIS)

    Kinney, Teena M.; McDonald, John P.

    2006-01-01

    A series of detailed historical water-table maps for the 200-West Area of the Hanford Site was made to aid interpretation of contaminant distribution in the upper aquifer. The contaminants are the result of disposal of large volumes of waste to the ground during Hanford Site operations, which began in 1944 and continued into the mid-1990s. Examination of the contaminant plumes that currently exist on site shows that the groundwater beneath the 200-West Area has deviated from its pre-Hanford west-to-east flow direction during the past 50 years. By using historical water-level measurements from wells around the 200-West Area, it was possible to create water-table contour maps that show probable historic flow directions. These maps are more detailed than previously published water-table maps that encompass the entire Hanford Site.

  7. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    OpenAIRE

    Munoz Carpena, R.; Lauvernet, C.; Carluer, N.

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To si...

  8. CORRELATION BETWEEN RAINFALL PATTERNS AND THE WATER TABLE IN THE GENERAL SEPARATIONS AREA OF THE SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Smith, C.

    2009-01-01

    The objective of the study was to evaluate rainfall and water table elevation data in search of a correlation that could be used to understand and predict water elevation changes. This information will be useful in placing screen zones for future monitoring wells and operations of groundwater treatment units. Fifteen wells in the General Separations Area (GSA) at Savannah River Site were evaluated from 1986 through 2001. The study revealed that the water table does respond to rainfall with minimal delay. (Water level information was available monthly, which restricted the ability to evaluate a shorter delay period.) Water elevations were found to be related to the cumulative sum (Q-Delta Sum) of the difference between the average rainfall for a specific month and the actual rainfall for that month, calculated from an arbitrary starting point. Water table elevations could also be correlated between wells, but using the right well for correlation was very important. The strongest correlation utilized a quadratic equation that takes into account the rainfall in a specific area and the rainfall from an adjacent area that contributes through a horizontal flow. Specific values vary from well to well as a result of geometry and underground variations. R2's for the best models ranged up to 0.96. The data in the report references only GSA wells but other wells (including confined water tables) on the site have been observed to return similar water level fluctuation patterns

  9. The impact of water table drawdown and drying on subterranean aquatic fauna in in-vitro experiments.

    Directory of Open Access Journals (Sweden)

    Christine Stumpp

    Full Text Available The abstraction of groundwater is a global phenomenon that directly threatens groundwater ecosystems. Despite the global significance of this issue, the impact of groundwater abstraction and the lowering of groundwater tables on biota is poorly known. The aim of this study is to determine the impacts of groundwater drawdown in unconfined aquifers on the distribution of fauna close to the water table, and the tolerance of groundwater fauna to sediment drying once water levels have declined. A series of column experiments were conducted to investigate the depth distribution of different stygofauna (Syncarida and Copepoda under saturated conditions and after fast and slow water table declines. Further, the survival of stygofauna under conditions of reduced sediment water content was tested. The distribution and response of stygofauna to water drawdown was taxon specific, but with the common response of some fauna being stranded by water level decline. So too, the survival of stygofauna under different levels of sediment saturation was variable. Syncarida were better able to tolerate drying conditions than the Copepoda, but mortality of all groups increased with decreasing sediment water content. The results of this work provide new understanding of the response of fauna to water table drawdown. Such improved understanding is necessary for sustainable use of groundwater, and allows for targeted strategies to better manage groundwater abstraction and maintain groundwater biodiversity.

  10. Study of energy transfer in table-top X-pinch driven by a water line

    International Nuclear Information System (INIS)

    Beg, F N; Zhang, T; Fedin, D; Beagen, B; Chua, E; Lee, J Y; Rawat, R S; Lee, P

    2007-01-01

    The current passing through X-pinches and the energy transferring from the pulse forming line to the load are modelled using a simple LCR circuit. A comparison of the electrical properties of two table-top X-pinch devices is made. It was found that up to 25% of the stored energy is transferred from the water transmission line to the load in the University of California,San Diego (UCSD) table-top X-pinch before x-ray emission starts. The highest energy transmitted (75%) is found after the current peak. In comparison, only 3% of the energy is transferred to the load in the National Institute of Education (NIE) X-pinch device just after the maximum current peak. The highest energy (25%) transmitted to the plasma occurs long after the current peak. The plasma in both devices is visually and qualitatively similar. However, the UCSD device emits intense x-rays with no x-rays observed in the NIE device. This observation is consistent with the electrical circuit analysis

  11. Optimal Dynamics of Intermittent Water Supply

    Science.gov (United States)

    Lieb, Anna; Wilkening, Jon; Rycroft, Chris

    2014-11-01

    In many urban areas of the developing world, piped water is supplied only intermittently, as valves direct water to different parts of the water distribution system at different times. The flow is transient, and may transition between free-surface and pressurized, resulting in complex dynamical features with important consequences for water suppliers and users. These consequences include degradation of distribution system components, compromised water quality, and inequitable water availability. The goal of this work is to model the important dynamics and identify operating conditions that mitigate certain negative effects of intermittent water supply. Specifically, we will look at valve parameters occurring as boundary conditions in a network model of transient, transition flow through closed pipes. Optimization will be used to find boundary values to minimize pressure gradients and ensure equitable water availability.

  12. Moderate drop in water table increases peatland vulnerability to post-fire regime shift.

    Science.gov (United States)

    Kettridge, N; Turetsky, M R; Sherwood, J H; Thompson, D K; Miller, C A; Benscoter, B W; Flannigan, M D; Wotton, B M; Waddington, J M

    2015-01-27

    Northern and tropical peatlands represent a globally significant carbon reserve accumulated over thousands of years of waterlogged conditions. It is unclear whether moderate drying predicted for northern peatlands will stimulate burning and carbon losses as has occurred in their smaller tropical counterparts where the carbon legacy has been destabilized due to severe drainage and deep peat fires. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland subjected to decadal drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition previously observed within only severely disturbed tropical peatlands. The combined impact of moderate drainage followed by wildfire converted the low productivity, moss-dominated peatland to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy of stored peat carbon.

  13. Electrical Resistivity Imaging of Tidal Fluctuations in the Water Table at Inwood Hill Park, Manhattan

    Science.gov (United States)

    Kenyon, P. M.; Kassem, D.; Olin, A.; Nunez, J.; Smalling, A.

    2005-05-01

    Inwood Hill Park is located on the northern tip of Manhattan and has been extensively modified over the years by human activities. In its current form, it has a backbone of exposed or lightly covered bedrock along the Hudson River, adjacent to a flat area with two tidal inlets along the northern shore of Manhattan. The tidal motions in the inlets are expected to drive corresponding fluctuations in the water table along the borders of the inlets. In the Fall of 2002, a group of students from the Department of Earth and Atmospheric Sciences at the City College of New York studied these fluctuations. Electrical resistivity cross sections were obtained with a Syscal Kid Switch 24 resistivity meter during the course of a tidal cycle at three locations surrounding the westernmost inlet in the park. No change was seen over a tidal cycle at Site 1, possibly due to the effect of concrete erosion barriers which were located between the land and the water surrounding this site. Measurements at Site 2 revealed a small, regular change in the water table elevation of approximately 5 cm over the course of a tidal cycle. This site is inferred to rest on alluvial sediments deposited by a small creek. The cross sections taken at different times during a tidal cycle at Site 3 were the most interesting. They show a very heterogeneous subsurface, with water spurting between blocks of high resistivity materials during the rising portion of the cycle. A small sinkhole was observed on the surface of the ground directly above an obvious plume of water in the cross section. Park personnel confirmed that this sinkhole, like others scattered around this site, is natural and not due to recent construction activity. They also indicated that debris from the construction of the New York City subways may have been dumped in the area in the past. Our conclusion is that the tidal fluctuations at Site 3 are being channeled by solid blocks in the construction debris, and that the sinkholes currently

  14. Bathymetric maps and water-quality profiles of Table Rock and North Saluda Reservoirs, Greenville County, South Carolina

    Science.gov (United States)

    Clark, Jimmy M.; Journey, Celeste A.; Nagle, Doug D.; Lanier, Timothy H.

    2014-01-01

    Lakes and reservoirs are the water-supply source for many communities. As such, water-resource managers that oversee these water supplies require monitoring of the quantity and quality of the resource. Monitoring information can be used to assess the basic conditions within the reservoir and to establish a reliable estimate of storage capacity. In April and May 2013, a global navigation satellite system receiver and fathometer were used to collect bathymetric data, and an autonomous underwater vehicle was used to collect water-quality and bathymetric data at Table Rock Reservoir and North Saluda Reservoir in Greenville County, South Carolina. These bathymetric data were used to create a bathymetric contour map and stage-area and stage-volume relation tables for each reservoir. Additionally, statistical summaries of the water-quality data were used to provide a general description of water-quality conditions in the reservoirs.

  15. Culture of microalgae biomass for valorization of table olive processing water

    International Nuclear Information System (INIS)

    Contreras, C.G.; Serrano, A.; Ruiz-Filippi, G.; Borja, R.; Fermoso, F.G.

    2016-01-01

    Table olive processing water (TOPW) contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80%) in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS)/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%). Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS). Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment. [es

  16. A Modified Water-Table Fluctuation Method to Characterize Regional Groundwater Discharge

    Directory of Open Access Journals (Sweden)

    Lihong Yang

    2018-04-01

    Full Text Available A modified Water-Table Fluctuation (WTF method is developed to quantitatively characterize the regional groundwater discharge patterns in stressed aquifers caused by intensive agricultural pumping. Two new parameters are defined to express the secondary information in the observed data. One is infiltration efficiency and the other is discharge modulus (recurring head loss due to aquifer discharge. An optimization procedure is involved to estimate these parameters, based on continuous groundwater head measurements and precipitation records. Using the defined parameters and precipitation time series, water level changes are calculated for individual wells with fidelity. The estimated parameters are then used to further address the characterization of infiltration and to better quantify the discharge at the regional scale. The advantage of this method is that it considers recharge and discharge simultaneously, whereas the general WTF methods mostly focus on recharge. In the case study, the infiltration efficiency reveals that the infiltration is regionally controlled by the intrinsic characteristics of the aquifer, and locally distorted by engineered hydraulic structures that alter surface water-groundwater interactions. The seasonality of groundwater discharge is characterized by the monthly discharge modulus. These results from individual wells are clustered into groups that are consistent with the local land use pattern and cropping structures.

  17. Dynamics of water bound to crystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    O’Neill, Hugh; Pingali, Sai Venkatesh; Petridis, Loukas; He, Junhong; Mamontov, Eugene; Hong, Liang; Urban, Volker; Evans, Barbara; Langan, Paul; Smith, Jeremy C.; Davison, Brian H.

    2017-09-19

    Interactions of water with cellulose are of both fundamental and technological importance. Here, we characterize the properties of water associated with cellulose using deuterium labeling, neutron scattering and molecular dynamics simulation. Quasi-elastic neutron scattering provided quantitative details about the dynamical relaxation processes that occur and was supported by structural characterization using small-angle neutron scattering and X-ray diffraction. We can unambiguously detect two populations of water associated with cellulose. The first is “non-freezing bound” water that gradually becomes mobile with increasing temperature and can be related to surface water. The second population is consistent with confined water that abruptly becomes mobile at ~260 K, and can be attributed to water that accumulates in the narrow spaces between the microfibrils. Quantitative analysis of the QENS data showed that, at 250 K, the water diffusion coefficient was 0.85 ± 0.04 × 10-10 m2sec-1 and increased to 1.77 ± 0.09 × 10-10 m2sec-1 at 265 K. MD simulations are in excellent agreement with the experiments and support the interpretation that water associated with cellulose exists in two dynamical populations. Our results provide clarity to previous work investigating the states of bound water and provide a new approach for probing water interactions with lignocellulose materials.

  18. Effects of high-rate wastewater spray disposal on the water-table aquifer, Hilton Head Island, South Carolina

    Science.gov (United States)

    Speiran, G.K.

    1985-01-01

    A study by the U.S. Geological Survey from April 1982 through December 1983 evaluated the effects of high-rate disposal of treated wastewater on the water table aquifer, Hilton Head Island, South Carolina. Flooding of topographically low areas resulted from the application of 10.8 inches of wastewater in 10 days in January 1983. The water table remained 2-1/2 to 5-1/2 feet below land surface when wastewater was applied at rates of 5 inches per week in August and December 1983. (USGS)

  19. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer

  20. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling

    Science.gov (United States)

    Bechtold, M.; Tiemeyer, B.; Laggner, A.; Leppelt, T.; Frahm, E.; Belting, S.

    2014-09-01

    Fluxes of the three main greenhouse gases (GHG) CO2, CH4 and N2O from peat and other soils with high organic carbon contents are strongly controlled by water table depth. Information about the spatial distribution of water level is thus a crucial input parameter when upscaling GHG emissions to large scales. Here, we investigate the potential of statistical modeling for the regionalization of water levels in organic soils when data covers only a small fraction of the peatlands of the final map. Our study area is Germany. Phreatic water level data from 53 peatlands in Germany were compiled in a new data set comprising 1094 dip wells and 7155 years of data. For each dip well, numerous possible predictor variables were determined using nationally available data sources, which included information about land cover, ditch network, protected areas, topography, peatland characteristics and climatic boundary conditions. We applied boosted regression trees to identify dependencies between predictor variables and dip-well-specific long-term annual mean water level (WL) as well as a transformed form (WLt). The latter was obtained by assuming a hypothetical GHG transfer function and is linearly related to GHG emissions. Our results demonstrate that model calibration on WLt is superior. It increases the explained variance of the water level in the sensitive range for GHG emissions and avoids model bias in subsequent GHG upscaling. The final model explained 45% of WLt variance and was built on nine predictor variables that are based on information about land cover, peatland characteristics, drainage network, topography and climatic boundary conditions. Their individual effects on WLt and the observed parameter interactions provide insight into natural and anthropogenic boundary conditions that control water levels in organic soils. Our study also demonstrates that a large fraction of the observed WLt variance cannot be explained by nationally available predictor variables and

  1. Upper Bound Solution for the Face Stability of Shield Tunnel below the Water Table

    Directory of Open Access Journals (Sweden)

    Xilin Lu

    2014-01-01

    Full Text Available By FE simulation with Mohr-Coulomb perfect elastoplasticity model, the relationship between the support pressure and displacement of the shield tunnel face was obtained. According to the plastic strain distribution at collapse state, an appropriate failure mechanism was proposed for upper bound limit analysis, and the formula to calculate the limit support pressure was deduced. The limit support pressure was rearranged to be the summation of soil cohesion c, surcharge load q, and soil gravity γ multiplied by their corresponding coefficients Nc, Nq, and Nγ, and parametric studies were carried out on these coefficients. In order to consider the influence of seepage on the face stability, the pore water pressure distribution and the seepage force on the tunnel face were obtained by FE simulation. After adding the power of seepage force into the equation of the upper bound limit analysis, the total limit support pressure for stabilizing the tunnel face under seepage condition was obtained. The total limit support pressure was shown to increase almost linearly with the water table.

  2. Non-methane biogenic volatile organic compound emissions from boreal peatland microcosms under warming and water table drawdown

    DEFF Research Database (Denmark)

    Faubert, P; Tiiva, P; Nakam, TA

    2011-01-01

    assessed the combined effect of warming and water table drawdown on the BVOC emissions from boreal peatland microcosms. We also assessed the treatment effects on the BVOC emissions from the peat soil after the 7-week long experiment. Emissions of isoprene, monoterpenes, sesquiterpenes, other reactive VOCs...

  3. The leaching of radioactivity from highly radioactive glass blocks buried below the water table: fifteen years of results

    International Nuclear Information System (INIS)

    Merritt, W.F.

    1976-03-01

    The results from two test burials of high-level fission products incorporated into nepheline syenite glass indicate that the nuclear wastes from fuel processing for a 30,000 MWe nuclear power industry could be incorporated into such glass and stored beneath the water table in the waste management area of Chalk River Nuclear Laboratories (CRNL) without harm to the environment. (author)

  4. Water table response to harvesting and simulated emerald ash borer mortality in black ash wetlands in Minnesota, USA

    Science.gov (United States)

    Robert A. Slesak; Christian F. Lenhart; Kenneth N. Brooks; Anthony W. D' Amato; Brian J. Palik

    2014-01-01

    Black ash wetlands are seriously threatened because of the invasive emerald ash borer (EAB). Wetland hydrology is likely to be modified following ash mortality, but the magnitude of hydrological impact following loss via EAB and alternative mitigation harvests is not clear. Our objective was to assess the water table response to simulated EAB and harvesting to...

  5. Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems

    Science.gov (United States)

    Karl M. Meingast; Michael J. Falkowski; Evan S. Kane; Lynette R. Potvin; Brian W. Benscoter; Alistair M.S. Smith; Laura L. Bourgeau-Chavez; Mary Ellen. Miller

    2014-01-01

    Wildland fire occurrence has been increasing in peatland ecosystems during recent decades. As such, there is a need for broadly applicable tools to detect and monitor controls on combustion such as surface peat moisture and water-table position. A field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss-dominated...

  6. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth

    Czech Academy of Sciences Publication Activity Database

    Juszczak, R.; Humphreys, E.; Acosta, Manuel; Michalak-Galczewska, M.; Kayzer, D.; Olejnik, Janusz

    2013-01-01

    Roč. 366, 1-2 (2013), s. 505-520 ISSN 0032-079X Institutional support: RVO:67179843 Keywords : Ecosystem respiration * Geogenous peatland * Chamber measurements * CO2 fluxes * Water table depth Subject RIV: EH - Ecology, Behaviour Impact factor: 3.235, year: 2013

  7. Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands

    Science.gov (United States)

    Magdalena M. Wiedermann; Evan S. Kane; Lynette R. Potvin; Erik A. Lilleskov

    2017-01-01

    Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors.We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually...

  8. LITHOLOGIC CONDITIONS OF THE WATER TABLE LOGGING IN THE AREA OF HAĆKI VILLAGE IN THE BIELSKA PLAIN

    Directory of Open Access Journals (Sweden)

    Krzysztof Micun

    2016-05-01

    Full Text Available The aim of the study was to examine lithological conditions of the water table in the area of Haćki village located in the Bielska Plain. The study involved the measurements of water level in dug wells, hand drill probing to a depth of 5 m, acquiring the samples of water-bearing deposits and analysing their granulation. The results of analyses allowed to calculate the permeability coefficient. The geological structure of the area is dominated by dusty deposits of various origins. Such deposits’ formation directly affects the conditions of filtration and depth of the water table. Groundwater logging near Haćki village in the Bielska Plain appears at a depth of several tens of centimeters to 2 meters in the depressions field and up a little over 5 meters in the case of higher ground surfaces. The presence of perched water was revealed on the hills, periodic leachates at the foot of the hills and scarps and one periodic spring. Water-bearing deposits are medium sands, fine sands and loamy fine sands or fine sands with silt. Consequently, the permeability coefficient is low or even very low. Its values range from 0,001 m·d-1 to 3,8 m·d-1 (d – 24 hours. The widespread presence of dusty deposits in the area affects the limited efficiency of the water table.

  9. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  10. Basic prerequisites and the practice of using deep water tables for burying liquid radioactive wastes

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    In the USSR, creating reservoirs for liquid radioactive wastes is one of the promising methods of safely disposing of them in deep water tables, in zones with a standing regime or a slow rate of subterranean water exchange. The results of investigations and the practice of burying (the wastes) indicate the reliability and effectiveness of such a method of final waste disposal when the basic requirements of environmental protection are observed. Geological formations and collector strata that guarantee the localization of the liquid radioactive wastes placed in them for many tens and even hundreds of thousands of years can be studied and chosen in different regions. The basic requirements and criteria to which the geological structures and collector strata must correspond for ensuring the safe burial of wastes have been formulated. Wastes are buried only after a comprehensive, scientifically based evaluation of the sanitary-radiation safety for this generation and future ones, taking into account the burial regime and the physico-chemical processes that accompany combining wastes with rocks and stratal waters, as well as the time of holding wastes to maximum permissible concentrations. Positive and negative factors that characterize the method are analyzed. Possible emergency situations with subterranean burial are evaluated. The composition and methods of the geological survey, hydrodynamic, geophysical, physico-chemical and sanitary-radiation investigations; methods of calculating and predicting the movement of wastes underground;methods of preparing wastes for burial and chemical methods of restoring the suitability of wells; design characteristics and conditions of preparing wells for use; methods of estimating heating and processes of radiolysis for a medium containing highly radioactive wastes; methods of operational and remote control of the burial process and the condition of the ambient medium, etc. are briefly examined

  11. Hydration dynamics in water clusters via quantum molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Turi, László, E-mail: turi@chem.elte.hu [Department of Physical Chemistry, Eötvös Loránd University, Budapest 112, P. O. Box 32, H-1518 (Hungary)

    2014-05-28

    We have investigated the hydration dynamics in size selected water clusters with n = 66, 104, 200, 500, and 1000 water molecules using molecular dynamics simulations. To study the most fundamental aspects of relaxation phenomena in clusters, we choose one of the simplest, still realistic, quantum mechanically treated test solute, an excess electron. The project focuses on the time evolution of the clusters following two processes, electron attachment to neutral equilibrated water clusters and electron detachment from an equilibrated water cluster anion. The relaxation dynamics is significantly different in the two processes, most notably restoring the equilibrium final state is less effective after electron attachment. Nevertheless, in both scenarios only minor cluster size dependence is observed. Significantly different relaxation patterns characterize electron detachment for interior and surface state clusters, interior state clusters relaxing significantly faster. This observation may indicate a potential way to distinguish surface state and interior state water cluster anion isomers experimentally. A comparison of equilibrium and non-equilibrium trajectories suggests that linear response theory breaks down for electron attachment at 200 K, but the results converge to reasonable agreement at higher temperatures. Relaxation following electron detachment clearly belongs to the linear regime. Cluster relaxation was also investigated using two different computational models, one preferring cavity type interior states for the excess electron in bulk water, while the other simulating non-cavity structure. While the cavity model predicts appearance of several different hydrated electron isomers in agreement with experiment, the non-cavity model locates only cluster anions with interior excess electron distribution. The present simulations show that surface isomers computed with the cavity predicting potential show similar dynamical behavior to the interior clusters of

  12. Dynamics of flood water infiltration and ground water recharge in hyperarid desert.

    Science.gov (United States)

    Dahan, Ofer; Tatarsky, Boaz; Enzel, Yehouda; Kulls, Christoph; Seely, Mary; Benito, Gererdo

    2008-01-01

    A study on flood water infiltration and ground water recharge of a shallow alluvial aquifer was conducted in the hyperarid section of the Kuiseb River, Namibia. The study site was selected to represent a typical desert ephemeral river. An instrumental setup allowed, for the first time, continuous monitoring of infiltration during a flood event through the channel bed and the entire vadose zone. The monitoring system included flexible time domain reflectometry probes that were designed to measure the temporal variation in vadose zone water content and instruments to concurrently measure the levels of flood and ground water. A sequence of five individual floods was monitored during the rainy season in early summer 2006. These newly generated data served to elucidate the dynamics of flood water infiltration. Each flood initiated an infiltration event which was expressed in wetting of the vadose zone followed by a measurable rise in the water table. The data enabled a direct calculation of the infiltration fluxes by various independent methods. The floods varied in their stages, peaks, and initial water contents. However, all floods produced very similar flux rates, suggesting that the recharge rates are less affected by the flood stages but rather controlled by flow duration and available aquifer storage under it. Large floods flood the stream channel terraces and promote the larger transmission losses. These, however, make only a negligible contribution to the recharge of the ground water. It is the flood duration within the active streambed, which may increase with flood magnitude that is important to the recharge process.

  13. The impact of long-term changes in water table height on carbon cycling in sub-boreal peatlands

    Science.gov (United States)

    Pypker, T. G.; Moore, P. A.; Waddington, J. M.; Hribljan, J. A.; Ballantyne, D.; Chimner, R. A.

    2011-12-01

    Peatlands are a critical component in the global carbon (C) cycle because they have been slowly sequestering atmospheric greenhouse gases as peat since the last glaciation. Today, soil C stocks in peatlands are estimated to represent 224 to 455 Pg, equal to 12-30% of the global soil C pool. At present, peatlands are estimated to sequester 76 Tg C yr-1. The flux of C to and from peatlands is likely to respond to climate change, thereby influencing atmospheric C concentrations. Peatland C budgets are tightly linked to their hydrology, hence, it is critical we understand how changes in hydrology will affect the C budgets of peatlands. The main objective of the project was to determine how long-term changes in water table height affect CO2 and CH4 fluxes from three adjacent peatlands. This study took place in the Seney National Wildlife Refuge (SNWR) in the Upper Peninsula of Michigan. SNWR is home to the largest wetland drainage project in Michigan. In 1912, ditches and dikes were created in an effort to convert approximately 20,000 ha of peatland to agriculture. The ditches and dikes were unsuccessful in creating agricultural land, but they are still in place. The manipulation of water table heights provides an opportunity to research how long-term peat drying or wetting alters C cycling in peatlands. From May to November in 2009, 2010 and 2011, we monitored CO2 fluxes using eddy covariance and chamber techniques in three adjacent peatlands with lowered, relatively unaltered ("control") and raised water table heights. In 2011, we installed CH4 analyzers to continuously monitor CH4 fluxes at the sites with high and relatively unaltered water table heights. The results are compared across sites to determine how changes in water table height might affect C fluxes sub-boreal peatlands.

  14. Dynamics of the floating water bridge

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Gatterer, Karl; Holler, Gert; Woisetschlaeger, Jakob

    2008-01-01

    When high voltage is applied to distilled water filled into two beakers close to each other, a water connection forms spontaneously, giving the impression of a floating water bridge (Fuchs et al 2007 J. Phys. D: Appl. Phys. 40 6112-4). This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. The build-up mechanism, the chemical properties and the dynamics of this bridge as well as related additional phenomena are presented and discussed

  15. The surface elevation table and marker horizon technique: A protocol for monitoring wetland elevation dynamics

    Science.gov (United States)

    James C. Lynch,; Phillippe Hensel,; Cahoon, Donald R.

    2015-01-01

    The National Park Service, in response to the growing evidence and awareness of the effects of climate change on federal lands, determined that monitoring wetland elevation change is a top priority in North Atlantic Coastal parks (Stevens et al, 2010). As a result, the NPS Northeast Coastal and Barrier Network (NCBN) in collaboration with colleagues from the U.S. Geological Survey (USGS) and The National Oceanic and Atmospheric Administration (NOAA) have developed a protocol for monitoring wetland elevation change and other processes important for determining the viability of wetland communities. Although focused on North Atlantic Coastal parks, this document is applicable to all coastal and inland wetland regions. Wetlands exist within a narrow range of elevation which is influenced by local hydrologic conditions. For coastal wetlands in particular, local hydrologic conditions may be changing as sea levels continue to rise. As sea level rises, coastal wetland systems may respond by building elevation to maintain favorable hydrologic conditions for their survival. This protocol provides the reader with instructions and guidelines on designing a monitoring plan or study to: A) Quantify elevation change in wetlands with the Surface Elevation Table (SET). B) Understand the processes that influence elevation change, including vertical accretion (SET and Marker Horizon methods). C) Survey the wetland surface and SET mark to a common reference datum to allow for comparing sample stations to each other and to local tidal datums. D) Survey the SET mark to monitor its relative stability. This document is divided into two parts; the main body that presents an overview of all aspects of monitoring wetland elevation dynamics, and a collection of Standard Operating Procedures (SOP) that describes in detail how to perform or execute each step of the methodology. Detailed instruction on the installation, data collection, data management and analysis are provided in this report

  16. Dynamic model for a boiling water reactor

    International Nuclear Information System (INIS)

    Muscettola, M.

    1963-07-01

    A theoretical formulation is derived for the dynamics of a boiling water reactor of the pressure tube and forced circulation type. Attention is concentrated on neutron kinetics, fuel element heat transfer dynamics, and the primary circuit - that is the boiling channel, riser, steam drum, downcomer and recirculating pump of a conventional La Mont loop. Models for the steam and feedwater plant are not derived. (author)

  17. Holes in the Bathtub: Water Table Dependent Services and Threshold Behavior in an Economic Model of Groundwater Extraction

    Science.gov (United States)

    Kirk-lawlor, N. E.; Edwards, E. C.

    2012-12-01

    In many groundwater systems, the height of the water table must be above certain thresholds for some types of surface flow to exist. Examples of flows that depend on water table elevation include groundwater baseflow to river systems, groundwater flow to wetland systems, and flow to springs. Meeting many of the goals of sustainable water resource management requires maintaining these flows at certain rates. Water resource management decisions invariably involve weighing tradeoffs between different possible usage regimes and the economic consequences of potential management choices are an important factor in these tradeoffs. Policies based on sustainability may have a social cost from forgoing present income. This loss of income may be worth bearing, but should be well understood and carefully considered. Traditionally, the economic theory of groundwater exploitation has relied on the assumption of a single-cell or "bathtub" aquifer model, which offers a simple means to examine complex interactions between water user and hydrologic system behavior. However, such a model assumes a closed system and does not allow for the simulation of groundwater outflows that depend on water table elevation (e.g. baseflow, springs, wetlands), even though those outflows have value. We modify the traditional single-cell aquifer model by allowing for outflows when the water table is above certain threshold elevations. These thresholds behave similarly to holes in a bathtub, where the outflow is a positive function of the height of the water table above the threshold and the outflow is lost when the water table drops below the threshold. We find important economic consequences to this representation of the groundwater system. The economic value of services provided by threshold-dependent outflows (including non-market value), such as ecosystem services, can be incorporated. The value of services provided by these flows may warrant maintaining the water table at higher levels than would

  18. Dynamics of water absorption through superabsorbent polymer

    Science.gov (United States)

    Chang, Sooyoung; Kim, Wonjung

    2017-11-01

    Superabsorbent polymers (SAPs) consist of hydrophilic cross-linked polymer networks that can absorb and retain a great amount of water relative to their own mass, so that they are widely used for disposable diapers and holding soil moisture in agriculture. SAPs are typically available in the form of submillimeter-sized particles, and the water absorption is driven by capillary flows between particles as well as diffusion that entail swelling. Although the control of water absorption of SAPs is important in engineering applications, but the dynamics of water absorption in SAP particles has not been fully understood. We examine the dynamics of the water absorption of sodium polyacrylate, one of the most common SAP. We experimentally measured the water absorption of sodium polyacrylate particles in one-dimensional confined channel. The water flows through the particles were analyzed by capillarity dominant at the early stage and by diffusion involving volume expansion critical at a later stage. The results provide a quantitative basis of the hydrodynamic analysis of the water flow through SAP particles from a macroscopic point of view, facilitating the prediction of water uptake of SAPs in hygienic and agricultural applications. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No.2015R1A2A2A04006181).

  19. Effects of leaf area index on the coupling between water table, land surface energy fluxes, and planetary boundary layer at the regional scale

    Science.gov (United States)

    Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.

    2013-12-01

    Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.

  20. Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm)

    Science.gov (United States)

    Lynette R. Potvin; Evan S. Kane; Rodney A. Chimner; Randall K. Kolka; Erik A. Lilleskov

    2015-01-01

    Aims Our objective was to assess the impacts of water table position and plant functional type on peat structure, plant community composition and aboveground plant production. Methods We initiated a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional groups (PFG: sedge, Ericaceae,...

  1. Simulation of the water-table altitude in the Biscayne Aquifer, southern Dade County, Florida, water years 1945-89

    Science.gov (United States)

    Merritt, M.L.

    1995-01-01

    A digital model of the flow system in the highly permeable surficial aquifer of southern Dade County, Florida, was constructed for the purposes of better understanding processes that influence the flow system and of supporting the construction of a subregional model of the transport of brackish water from a flowing artesian well. Problems that needed resolution in this endeavor included the development of methods to represent the influence of flowing surface water in seasonally inundated wetlands and the influence of a network of controlled canals developed in stages during the simulation time period (water years 1945-89). An additional problem was the general lack of natural aquifer boundaries near the boundaries of the study area. The model construction was based on a conceptual description of the Biscayne aquifer developed from the results of previous U.S. Geological Survey investigations. Modifications were made to an existing three- dimensional finite-difference simulator of ground- water flow to enable an upper layer of the grid to represent seasonally occurring overland sheetflow in a series of transient simulations of water levels from 1945 to 1989. A rewetting procedure was developed for the simulator that permitted resaturation of cells in this layer when the wet season recurred. An "equivalent hydraulic conductivity" coefficient was assigned to the overland flow layer that was analogous, subject to various approximations, to the use of the Manning equation. The surficial semiconfining peat and marl layers, levees, canals, and control structures were also represented as part of the model grid with the appropriate choices of hydraulic coefficient values. For most of the Biscayne aquifer grid cells, the value assigned to hydraulic conductivity for model calibration was 30,000 feet per day and the value assigned to porosity was 20 percent. Boundary conditions were specified near data sites having long-term records of surface-water stages or water-table

  2. Methane transport and emissions from soil as affected by water table and vascular plants.

    Science.gov (United States)

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  3. [The marketing evaluation of the consumers' preference as regards the use of medicinal and medicinal table mineral waters].

    Science.gov (United States)

    Babaskin, D V; Babaskina, L I; Pavlova, A V

    2017-12-28

    The development of modern technologies in physiotherapy with the use of mineral waters, the expansion of the assortment of the medicinal and medicinal table waters as well as increasing the competitive advantages of domestic products require the more extensive marketing survey of the consumers' preferences in the market of mineral waters. The objective of the present study was the marketing evaluation of the consumers' preference in the segment of medicinal and medicinal table mineral waters in the city of Moscow. The survey involved 697 consumers of medicinal and medicinal table mineral waters. The sampling was carried out by the deterministic quota method. The field research was conducted by means of personal verbal interviews (32%) and the CATI to Web method (phone recruiting and on-line questioning) (68%) with the use of the structured questionnaire. Positioning was carried out making use of the two-dimensional schematic map and scoring assessment on an individual basis with calculation of integrated indicators. The marketing evaluation has demonstrated that the principal motive for purchasing mineral waters in more than 40% of respondents was the treatment and prevention of various diseases including disturbances in the urogenital system as well as digestive and respiratory disorders that appear to be the most frequent reasons for the consumption of mineral waters. The main factors that form the preferences of the consumers as regards the use of a concrete variety of mineral waters were elucidated. Of crucial importance for approximately 40% of the consumers (p<0.01) proved to be their health condition, the medical indications, and the available information about the therapeutic effectiveness of one or another type of mineral waters. Other factors were the quality of mineral water, its cost, the manufacturer and/or place of production, the attractiveness of the packaging, etc. The evaluation of the positioning of the mineral water consumers' preferences made

  4. Dissimilar Dynamics of Coupled Water Vibrations

    NARCIS (Netherlands)

    Jansen, Thomas L. C.; Cringus, Dan; Pshenichnikov, Maxim S.

    2009-01-01

    Dissimilar dynamics of coupled stretch vibrations of a water molecule are revealed by two-dimensional, IR correlation spectroscopy. These are caused by essentially non-Gaussian fluctuations of the electric field exerted by the environment on the individual OH stretch vibrations. Non-Gaussian

  5. Water Table Depth Reconstruction in Ombrotrophic Peatlands Using Biomarker Abundance Ratios and Compound-Specific Hydrogen Isotope Composition

    Science.gov (United States)

    Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.

    2005-12-01

    Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate

  6. Pressure dependence of dynamical heterogeneity in water

    International Nuclear Information System (INIS)

    Teboul, Victor

    2008-01-01

    Using molecular dynamics simulations we investigate the effect of pressure on the dynamical heterogeneity in water. We show that the effect of a pressure variation in water is qualitatively different from the effect of a temperature variation on the dynamical heterogeneity in the liquid. We observe a strong decrease of the aggregation of molecules of low mobility together with a decrease of the characteristic time associated with this aggregation. However, the aggregation of the most mobile molecules and the characteristic time of this aggregation are only slightly affected. In accordance with this result, the non-Gaussian parameter shows an important decrease with pressure while the characteristic time t* of the non-Gaussian parameter is only slightly affected. These results highlight then the importance of pressure variation investigations in low temperature liquids on approach to the glass transition

  7. [Effects of water table manipulation on leaf photosynthesis, morphology and growth of Phragmites australis and Imperata cylindrica in the reclaimed tidal wetland at Dongtan of Chongming Island, China].

    Science.gov (United States)

    Zhong, Qi-Cheng; Wang, Jiang-Tao; Zhou, Jian-Hong; Ou, Qiang; Wang, Kai-Yun

    2014-02-01

    During the growing season of 2011, the leaf photosynthesis, morphological and growth traits of Phragmites australis and Imperata cylindrica were investigated along a gradient of water table (low, medium and high) in the reclaimed tidal wetland at the Dongtan of Chongming Island in the Yangtze Estuary of China. A series of soil factors, i. e., soil temperature, moisture, salinity and inorganic nitrogen content, were also measured. During the peak growing season, leaf photosynthetic capacity of P. australis in the wetland with high water table was significantly lower than those in the wetland with low and medium water tables, and no difference was observed in leaf photosynthetic capacity of I. cylindrica at the three water tables. During the entire growing season, at the shoot level, the morphological and growth traits of P. australis got the optimum in the wetland with medium water table, but most of the morphological and growth traits of I. cylindrica had no significant differences at the three water tables. At the population level, the shoot density, leaf area index and aboveground biomass per unit area were the highest in the wetland with high water table for P. australis, but all of the three traits were the highest in the wetland with low water table for I. cylindrica. At the early growing season, the rhizome biomass of P. australis in the 0-20 cm soil layer had no difference at the three water tables, and the rhizome biomass of I. cylindrica in the 0-20 cm soil layer in the wetland with high water table was significantly lower than those in the wetland with low and medium water table. As a native hygrophyte before the reclamation, the variations of performances of P. australis at the three water tables were probably attributed to the differences in the soil factors as well as the intensity of competition from I. cylindrica. To appropriately manipulate water table in the reclaimed tidal wetland may restrict the growth and propagation of the mesophyte I

  8. A Dynamic Framework for Water Security

    Science.gov (United States)

    Srinivasan, Veena; Konar, Megan; Sivapalan, Murugesu

    2017-04-01

    Water security is a multi-faceted problem, going beyond mere balancing of supply and demand. Conventional attempts to quantify water security starting rely on static indices at a particular place and point in time. While these are simple and scalable, they lack predictive or explanatory power. 1) Most static indices focus on specific spatial scales and largely ignore cross-scale feedbacks between human and water systems. 2) They fail to account for the increasing spatial specialization in the modern world - some regions are cities others are agricultural breadbaskets; so water security means different things in different places. Human adaptation to environmental change necessitates a dynamic view of water security. We present a framework that defines water security as an emergent outcome of a coupled socio-hydrologic system. Over the medium term (5-25 years), water security models might hold governance, culture and infrastructure constant, but allow humans to respond to changes and thus predict how water security would evolve. But over very long time-frames (25-100 years), a society's values, norms and beliefs themselves may themselves evolve; these in turn may prompt changes in policy, governance and infrastructure. Predictions of water security in the long term involve accounting for such regime shifts in the cultural and political context of a watershed by allowing the governing equations of the models to change.

  9. Water relations and foliar isotopic composition of Prosopis tamarugo Phil. an endemic tree of the Atacama Desert growing under three levels of water table depth.

    Directory of Open Access Journals (Sweden)

    Marco eGarrido

    2016-03-01

    Full Text Available Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the Pampa del Tamarugal, Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m and 7.1 ± 0.1 m, (the last GWD being our reference were selected and groups of 4 individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and midday water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ13C and δ18O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behaviour and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P

  10. Water Relations and Foliar Isotopic Composition of Prosopis tamarugo Phil., an Endemic Tree of the Atacama Desert Growing at Three Levels of Water Table Depth.

    Science.gov (United States)

    Garrido, Marco; Silva, Paola; Acevedo, Edmundo

    2016-01-01

    Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the "Pampa del Tamarugal", Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ(13)C and δ(18)O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after

  11. Nitrogen Release in Pristine and Drained Peat Profiles in Response to Water Table Fluctuations: A Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Merjo P. P. Laine

    2013-01-01

    Full Text Available In the northern hemisphere, variability in hydrological conditions was suggested to increase as a consequence of climate warming, which may result in longer droughts than the area has experienced before. Due to their predominately anoxic conditions, peatlands are expected to respond to changes in hydrological conditions, such as successive drying and rewetting periods. As peatlands are rich in organic matter, any major changes in water table may influence the decomposition of it. The hydrological conditions may also influence release of nutrients from peat profiles as well as affect their transport to downstream ecosystems. In our mesocosm experiment, artificial water table fluctuations in pristine peat profiles caused an increase in dissolved organic nitrogen (DON and ammonium (NH4+-N concentrations, while no response was found in drained peat profiles, although originating from the same peatland complex.

  12. Dynamics of water confined in clay minerals

    International Nuclear Information System (INIS)

    Le Caer, S.; Pommeret, S.; Renault, J.Ph.; Lima, M.; Righini, R.; Gosset, D.; Simeone, D.; Bergaya, F.

    2012-01-01

    Ultrafast infrared spectroscopy of the O-D stretching mode of dilute HOD in H 2 O probes the local environment and the hydrogen bond network of confined water. The dynamics of water molecules confined in the interlayer space of montmorillonites (Mt) and in interaction with two types of cations (Li + and Ca 2+ ) but also with the negatively charged siloxane surface are studied. The results evidence that the OD vibrational dynamics is significantly slowed down in confined media: it goes from 1.7 ps in neat water to 2.6 Ps in the case of Li + cations with two water pseudo-layers (2.2-2.3 ps in the case of Ca 2+ cations) and to 4.7 ps in the case of Li + cations with one water pseudo-layer. No significant difference between the two cations is noticed. In this 2D confined geometry (the interlayer space being about 0.6 nm for two water pseudo-layers), the relaxation time constants obtained are comparable to the ones measured in analogous concentrated salt solutions. Nevertheless, and in strong opposition to the observations performed in the liquid phase, anisotropy experiments evidence the absence of rotational motions on a 5 ps time scale, proving that the hydrogen bond network in the interlayer space of the clay mineral is locked at this time scale. (authors)

  13. Dynamics and reactivity of confined water

    International Nuclear Information System (INIS)

    Musat, R.

    2008-01-01

    In the context of new sustainable energy sources quest, the nuclear energy remains a key solution. However, with the development of nuclear technology, problems relating to nuclear waste disposal arise; thus, the radiolysis of water in confined media is extremely important with respect to matters related to long time storage of nuclear waste. Studies in model porous media would allow the projection of a confined water radiolysis simulator. A first step in this direction was made by studying the radiolysis of water confined in Vycor and CPG glasses; this study continues the trend set and investigates the effects of confinement in metal materials upon the water radiolysis allowing the understanding of metal - water radiation induced corrosion. A further/complete understanding of the radiolytic process under confinement requires knowledge of the effect of confinement upon the dynamics of confined molecules and on the evolution of the species produced upon ionizing radiation. In this respect, we have used the OH vibrator as a probe of the hydrogen bond network properties and thus investigated the dynamics of confined water using IR time resolved spectroscopy. The evolution of the hydrated electron under confinement was studied on a nano and picosecond time scale using UV pump - visible probe technique and single shot spectroscopy. (author) [fr

  14. An analytical study on nested flow systems in a Tóthian basin with a periodically changing water table

    Science.gov (United States)

    Zhao, Ke-Yu; Jiang, Xiao-Wei; Wang, Xu-Sheng; Wan, Li; Wang, Jun-Zhi; Wang, Heng; Li, Hailong

    2018-01-01

    Classical understanding on basin-scale groundwater flow patterns is based on Tóth's findings of a single flow system in a unit basin (Tóth, 1962) and nested flow systems in a complex basin (Tóth, 1963), both of which were based on steady state models. Vandenberg (1980) extended Tóth (1962) by deriving a transient solution under a periodically changing water table in a unit basin and examined the flow field distortion under different dimensionless response time, τ∗. Following Vandenberg's (1980) approach, we extended Tóth (1963) by deriving the transient solution under a periodically changing water table in a complex basin and examined the transient behavior of nested flow systems. Due to the effect of specific storage, the flow field is asymmetric with respect to the midline, and the trajectory of internal stagnation points constitutes a non-enclosed loop, whose width decreases when τ∗ decreases. The distribution of the relative magnitude of hydraulic head fluctuation, Δh∗ , is dependent on the horizontal distance away from a divide and the depth below the land surface. In the shallow part, Δh∗ decreases from 1 at the divide to 0 at its neighboring valley under all τ∗, while in the deep part, Δh∗ reaches a threshold, whose value decreases when τ∗ increases. The zones with flowing wells are also found to change periodically. As water table falls, there is a general trend of shrinkage in the area of zones with flowing wells, which has a lag to the declining water table under a large τ∗. Although fluxes have not been assigned in our model, the recharge/discharge flux across the top boundary can be obtained. This study is critical to understand a series of periodically changing hydrogeological phenomena in large-scale basins.

  15. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    Science.gov (United States)

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  16. Quality evaluation of commercially sold table water samples in Michael Okpara University of Agriculture, Umudike, Nigeria and surrounding environments

    Directory of Open Access Journals (Sweden)

    D.O. Okorie

    2015-01-01

    Full Text Available In Michael Okpara University of Agriculture, Umudike, Nigeria (MOUAU and surrounding environments, table water of different brands is commercially hawked by vendors. To the best of our knowledge, there is no scientific documentation on the quality of these water samples. Hence this study which evaluated the quality of different brands of water samples commercially sold in MOUAU and surrounding environments. The physicochemical properties (pH, total dissolved solids (TDS, biochemical oxygen demand (BOD, total hardness, dissolved oxygen, Cl, NO3, ammonium nitrogen (NH3N, turbidity, total suspended solids (TSS, Ca, Mg, Na and K of the water samples as indices of their quality were carried out using standard techniques. Results obtained from this study indicated that most of the chemical constituents of these table water samples commercially sold in Umudike environment conformed to the standards given by the Nigerian Industrial Standard (NIS, World Health Organization (WHO and American Public Health Association (APHA, respectively, while values obtained for ammonium nitrogen in these water samples calls for serious checks on methods of their production and delivery to the end users.

  17. Shrub water use dynamics in arctic Alaska

    Science.gov (United States)

    Clark, J.; Young-Robertson, J. M.; Tape, K. D.

    2016-12-01

    In the Arctic tundra, hydrologic processes influence the majority of ecosystem processes, from soil thermal dynamics to energy balance and trace gas exchange to vegetation community distributions. The tundra biome is experiencing a broad spectrum of ecosystem changes spurred by 20th century warming, including deciduous shrub expansion. Deciduous woody vegetation typically has high water use rates compared to evergreen and herbaceous species, and is projected to have a greater impact on energy balance than altered albedo from changes in snowpack. However, the impact of greater shrub cover on water balance has been overlooked. Shrubs have the potential to significantly dry the soil, accessing stored soil moisture in the organic layers, while increasing atmospheric moisture. The goal of this study is to quantify the water use dynamics (sap flux and stem water content) of three common arctic shrub species (Salix alexensis, S. pulchra, Betula nana) over two growing seasons. Stem water content was measured through a novel application of time domain reflectometry (TDR). Maximum sap flow rates varied by species: S. alexensis-600g/hr, S. pulchra-60g/hr, and B. nana-40g/hr. We found daily sap flow rates are highly correlated with atmospheric moisture demand (VPD) and not limited by soil moisture or antecedent precipitation. Stem water content varied between 20% and 60%, was correlated with soil moisture, and showed weak diurnal variation. This is one of the first studies to provide a detailed look at arctic tundra shrub water balance and explore the environmental controls on water flux. Planned future work will expand on these results for estimates of evapotranspiration over larger landscape areas.

  18. Manipulative lowering of the water table during summer does not affect CO2 emissions and uptake in a fen in Germany.

    Science.gov (United States)

    Muhr, Jan; Höhle, Juliane; Otieno, Dennis O; Borken, Werner

    2011-03-01

    We simulated the effect of prolonged dry summer periods by lowering the water table on three manipulation plots (D(1-3)) in a minerotrophic fen in southeastern Germany in three years (2006-2008). The water table at this site was lowered by drainage and by excluding precipitation; three nonmanipulated control plots (C(1-3)) served as a reference. We found no significant differences in soil respiration (R(Soil)), gross primary production (GPP), or aboveground respiration (R(AG)) between the C(1-3) and D(1-3) plots in any of the measurement years. The water table on the control plots was naturally low, with a median water table (2006-2008) of 8 cm below the surface, and even lower during summer when respiratory activity was highest, with median values (C(1-3)) between 11 and 19 cm below the surface. If it is assumed that oxygen availability in the uppermost 10 cm was not limited by the location of the water table, manipulative lowering of the water table most likely increased oxygen availability only in deeper peat layers where we expect R(Soil) to be limited by poor substrate quality rather than anoxia. This could explain the lack of a manipulation effect. In a second approach, we estimated the influence of the water table on R(Soil) irrespective of treatment. The results showed a significant correlation between R(Soil) and water table, but with R(Soil) decreasing at lower water tables rather than increasing. We thus conclude that decomposition in the litter layer is not limited by waterlogging in summer, and deeper peat layers bear no significant decomposition potential due to poor substrate quality. Consequently, we do not expect enhanced C losses from this site due to increasing frequency of dry summers. Assimilation and respiration of aboveground vegetation were not affected by water table fluctuations between 10 and >60 cm depth, indicating the lack of stress resulting from either anoxia (high water table) or drought (low water table).

  19. Culture of microalgae biomass for valorization of table olive processing water

    Directory of Open Access Journals (Sweden)

    Contreras, C. G.

    2016-09-01

    Full Text Available Table olive processing water (TOPW contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80% in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%. Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS. Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment.El agua resultante del proceso de elaboración de la aceituna de mesa (TOPW presenta un elevado contenido en sustancias complejas, como fenoles, que podría permitir su uso como sustrato para el cultivo de microalgas. El objetivo de este estudio se centra en evaluar la capacidad de crecimiento de Nannochloropsis gaditana en TOPW a distintas concentraciones (10-80% con vistas a la valorización de estas aguas. El mayor incremento de biomasa se obtuvo para un porcentaje del 40% de TOPW, alcanzando un aumento de 0.36 ± 0.50 mg sólidos en suspensión volátiles (SSV/L. Los componentes presentes en la biomasa han sido similares para los experimentos con 10-40% de TOPW, siendo las proteínas los compuestos mayoritarios en todos los casos (56-74%. Los fenoles totales quedaron retenidos en las microalgas, alcanzando una concentraci

  20. Water dynamics in different biochar fractions.

    Science.gov (United States)

    Conte, Pellegrino; Nestle, Nikolaus

    2015-09-01

    Biochar is a carbonaceous porous material deliberately applied to soil to improve its fertility. The mechanisms through which biochar acts on fertility are still poorly understood. The effect of biochar texture size on water dynamics was investigated here in order to provide information to address future research on nutrient mobility towards plant roots as biochar is applied as soil amendment. A poplar biochar has been stainless steel fractionated in three different textured fractions (1.0-2.0 mm, 0.3-1.0 mm and <0.3 mm, respectively). Water-saturated fractions were analyzed by fast field cycling (FFC) NMR relaxometry. Results proved that 3D exchange between bound and bulk water predominantly occurred in the coarsest fraction. However, as porosity decreased, water motion was mainly associated to a restricted 2D diffusion among the surface-site pores and the bulk-site ones. The X-ray μ-CT imaging analyses on the dry fractions revealed the lowest surface/volume ratio for the coarsest fraction, thereby corroborating the 3D water exchange mechanism hypothesized by FFC NMR relaxometry. However, multi-micrometer porosity was evidenced in all the samples. The latter finding suggested that the 3D exchange mechanism cannot even be neglected in the finest fraction as previously excluded only on the basis of NMR relaxometry results. X-ray μ-CT imaging showed heterogeneous distribution of inorganic materials inside all the fractions. The mineral components may contribute to the water relaxation mechanisms by FFC NMR relaxometry. Further studies are needed to understand the role of the inorganic particles on water dynamics. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Tables of homogeneous equilibrium critical flow parameters for water in SI units

    International Nuclear Information System (INIS)

    Hall, D.G.; Czapary, L.S.

    1980-09-01

    This reference document presents tables and charts containing data calculated using the homogeneous equilibrium critical flow model (HEM). The ranges of stagnation state properties for which data are presented include: pressures from 2 to 22 120kPa, temperatures from 290 to 640 K, and thermodynamic qualities from 0 to 1

  2. A Mathematical View of Water Table Fluctuations in a Shallow Aquifer in Brazil

    NARCIS (Netherlands)

    Neto, Dagmar C.; Chang, Hung K.; van Genuchten, Martinus Th

    Detailed monitoring of the groundwater table can provide important data about both short- and long-term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4years (2002 to 2005)

  3. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Directory of Open Access Journals (Sweden)

    J. Zhu

    2017-12-01

    Full Text Available The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs participating in Coupled Model Inter-comparison Project 5 (CMIP5 under the Representative Concentration Pathways (RCPs 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  4. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Science.gov (United States)

    Zhu, Jie; Sun, Ge; Li, Wenhong; Zhang, Yu; Miao, Guofang; Noormets, Asko; McNulty, Steve G.; King, John S.; Kumar, Mukesh; Wang, Xuan

    2017-12-01

    The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs) participating in Coupled Model Inter-comparison Project 5 (CMIP5) under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration) by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  5. Use of well points to determine the thickness and extent of floating product atop the water table

    International Nuclear Information System (INIS)

    Liikala, T.L.; Lewis, R.; Gilmore, T.; Hoffmann, H.

    1994-01-01

    The release of petroleum products to the ground water is a widespread problem. Conventional plume tracking techniques are to drill wells and measure product thickness and extent. In this study, well points were installed to rapidly and inexpensively determine the thickness and extent of floating product atop the water table. Spills and leaks of JP-4 have produced a discrete full layer atop the water table at one site at Eielson Air Force Base near Fairbanks, Alaska. The 0.2- to 1.3-foot-thick layer was identified in two ground water monitoring wells at a depth of approximately 10 feet. The layer is contained within unconsolidated glaciofluvial sands and gravels. A comprehensive assessment of the product thickness and extent was necessary for the site remedial investigation/feasibility study. The emplacement of additional monitoring wells was discouraged because of time and budget constraints. The fuel layer was delineated with 18 screened well points. The points consist of 2-inch-diameter galvanized steel pipe. The points were driven into the floating products with a hollow-stem auger rig sampling hammer. The product thickness was measured with an interface probe. The presence of floating product could be measured immediately after emplacement; the product thickness measurements typically stabilized within three days. The product thickness compared favorably with those measured in adjacent monitoring wells

  6. The effect of urbanization in an arid region: Formation of a perched water table that causes environmental damages

    Science.gov (United States)

    Karnieli, A.; Issar, A.; Wolf, M.

    1984-03-01

    Construction in a new neighborhood in the israeli town of Dimona, situated in an arid region in the south of the country (150 mm average annual rainfall), resulted in a rise in groundwater levels during the subsequent rainy seasons This caused flooding of shelter basements, soil sliding, and sagging which permanently damaged walls and buildings The neighborhood had been built on continental sands and marls blanketed by loess, on a valley slope near a rocky anticlinal dip-slope Subsurface studies, using piezometer holes and groundwater analyses, revealed the presence of sand lenses alternating with plastic marls, which act as seasonal aquifers with perched water tables Groundwaters obtain high SO{4/-2} and Cl- corrosivity through contact with these nonflushed marls of the Neogene valley fill (Hazeva Formation) The reasons for the rising of groundwater were found to be (a) artificial interference with the natural (pre-construction) drainage system—interception of the hillside runoff by building plots, roads, etc, (b) partial denudation of the loess blanket, increasing the local infiltration and the build-up of local, perched water tables, and (c) corrosion of concrete and steel pipelines, as well as foundations, by prolonged contact with corrosive groundwater, resulting in haphazard but massive leakage Guidelines are proposed for an environmental improvement plan, which would include terracing and planting of the watershed above town to increase evapotranspiration, lowering of the water table by pumping, and diverting the water to suburban parks (groves of saltresistant trees), and replacement of steel and cement pipes by a non-corrodable plastic pipe system

  7. Water balance dynamics in the Nile Basin

    Science.gov (United States)

    Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.

    2009-01-01

    Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.

  8. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas

    Science.gov (United States)

    Zhang, Jianfeng; Zhu, Yan; Zhang, Xiaoping; Ye, Ming; Yang, Jinzhong

    2018-06-01

    Predicting water table depth over the long-term in agricultural areas presents great challenges because these areas have complex and heterogeneous hydrogeological characteristics, boundary conditions, and human activities; also, nonlinear interactions occur among these factors. Therefore, a new time series model based on Long Short-Term Memory (LSTM), was developed in this study as an alternative to computationally expensive physical models. The proposed model is composed of an LSTM layer with another fully connected layer on top of it, with a dropout method applied in the first LSTM layer. In this study, the proposed model was applied and evaluated in five sub-areas of Hetao Irrigation District in arid northwestern China using data of 14 years (2000-2013). The proposed model uses monthly water diversion, evaporation, precipitation, temperature, and time as input data to predict water table depth. A simple but effective standardization method was employed to pre-process data to ensure data on the same scale. 14 years of data are separated into two sets: training set (2000-2011) and validation set (2012-2013) in the experiment. As expected, the proposed model achieves higher R2 scores (0.789-0.952) in water table depth prediction, when compared with the results of traditional feed-forward neural network (FFNN), which only reaches relatively low R2 scores (0.004-0.495), proving that the proposed model can preserve and learn previous information well. Furthermore, the validity of the dropout method and the proposed model's architecture are discussed. Through experimentation, the results show that the dropout method can prevent overfitting significantly. In addition, comparisons between the R2 scores of the proposed model and Double-LSTM model (R2 scores range from 0.170 to 0.864), further prove that the proposed model's architecture is reasonable and can contribute to a strong learning ability on time series data. Thus, one can conclude that the proposed model can

  9. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Structure and dynamics of interfacial water. Role of hydratation water in the globular proteins dynamics

    International Nuclear Information System (INIS)

    Zanotti, J.M.

    1997-01-01

    This memoir includes five chapters. In the first chapter, are given the elements of the neutrons scattering theory that is used in this study. the second chapter is devoted to a general presentation of the interaction between biological macro molecule and water. The third part is dedicated to the study of the structure and the dynamics of interfacial water in the neighbouring of model systems, the vycor and the amorphous carbon. The results presented in this part are compared with these one relative to water dynamics at the C-phycocyanin surface. This study makes the object of the fourth chapter. Then, in the fifth and last chapter are discussed the results relative to the role of hydratation on the parv-albumin dynamics for which have been combined the neutron quasi elastic incoherent scattering and the nuclear magnetic resonance of the carbon 13 solid in natural abundance

  11. Finite element modeling of a shaking table test to evaluate the dynamic behaviour of a soil-foundation system

    International Nuclear Information System (INIS)

    Abate, G.; Massimino, M. R.; Maugeri, M.

    2008-01-01

    The deep investigation of soil-foundation interaction behaviour during earthquakes represent one of the key-point for a right seismic design of structures, which can really behave well during earthquake, avoiding dangerous boundary conditions, such as weak foundations supporting the superstructures. The paper presents the results of the FEM modeling of a shaking table test involving a concrete shallow foundation resting on a Leighton Buzzard sand deposit. The numerical simulation is performed using a cap-hardening elasto-plastic constitutive model for the soil and specific soil-foundation contacts to allow slipping and up-lifting phenomena. Thanks to the comparison between experimental and numerical results, the power and the limits of the proposed numerical model are focused. Some aspects of the dynamic soil-foundation interaction are also pointed out

  12. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated‐unsaturated flow assessment

    Science.gov (United States)

    Loheide, Steven P.; Butler, James J.; Gorelick, Steven M.

    2005-01-01

    Groundwater consumption by phreatophytes is a difficult‐to‐measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated‐unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified.

  13. Current Comparative Table (CCT) automates customized searches of dynamic biological databases.

    Science.gov (United States)

    Landsteiner, Benjamin R; Olson, Michael R; Rutherford, Robert

    2005-07-01

    The Current Comparative Table (CCT) software program enables working biologists to automate customized bioinformatics searches, typically of remote sequence or HMM (hidden Markov model) databases. CCT currently supports BLAST, hmmpfam and other programs useful for gene and ortholog identification. The software is web based, has a BioPerl core and can be used remotely via a browser or locally on Mac OS X or Linux machines. CCT is particularly useful to scientists who study large sets of molecules in today's evolving information landscape because it color-codes all result files by age and highlights even tiny changes in sequence or annotation. By empowering non-bioinformaticians to automate custom searches and examine current results in context at a glance, CCT allows a remote database submission in the evening to influence the next morning's bench experiment. A demonstration of CCT is available at http://orb.public.stolaf.edu/CCTdemo and the open source software is freely available from http://sourceforge.net/projects/orb-cct.

  14. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs

  15. Monitoring water phase dynamics in winter clouds

    Science.gov (United States)

    Campos, Edwin F.; Ware, Randolph; Joe, Paul; Hudak, David

    2014-10-01

    This work presents observations of water phase dynamics that demonstrate the theoretical Wegener-Bergeron-Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central High Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and nowcasting the evolution of supercooled droplets in winter clouds.

  16. Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China

    Directory of Open Access Journals (Sweden)

    Huijie Li

    2015-05-01

    Full Text Available In the Heihe River basin, China, increased salinity and water shortages present serious threats to the sustainability of arid wetlands. It is critical to understand the interactions between soil water and salts (from saline shallow groundwater and the river and their effects on plant growth under the influence of shallow groundwater and irrigation. In this study, the Hydrus-1D model was used in an arid wetland of the Middle Heihe River to investigate the effects of the dynamics of soil water, soil salinization, and depth to water table (DWT as well as groundwater salinity on Chinese tamarisk root water uptake. The modeled soil water and electrical conductivity of soil solution (ECsw are in good agreement with the observations, as indicated by RMSE values (0.031 and 0.046 cm3·cm−3 for soil water content, 0.037 and 0.035 dS·m−1 for ECsw, during the model calibration and validation periods, respectively. The calibrated model was used in scenario analyses considering different DWTs, salinity levels and the introduction of preseason irrigation. The results showed that (I Chinese tamarisk root distribution was greatly affected by soil water and salt distribution in the soil profile, with about 73.8% of the roots being distributed in the 20–60 cm layer; (II root water uptake accounted for 91.0% of the potential maximal value when water stress was considered, and for 41.6% when both water and salt stress were considered; (III root water uptake was very sensitive to fluctuations of the water table, and was greatly reduced when the DWT was either dropped or raised 60% of the 2012 reference depth; (IV arid wetland vegetation exhibited a high level of groundwater dependence even though shallow groundwater resulted in increased soil salinization and (V preseason irrigation could effectively increase root water uptake by leaching salts from the root zone. We concluded that a suitable water table and groundwater salinity coupled with proper irrigation

  17. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site: The Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    To adequately manage the low level nuclear waste (LLW) repository in Area 5 of the Nevada Test Site (NTS), a knowledge of the water table under the site is paramount. The estimated thickness of the arid intermountain basin alluvium is roughly 900 feet. Very little reliable water table data for Area 5 currently exists. The Special Projects Section of the Reynolds Electrical ampersand Engineering Co., Inc. Waste Management Department is currently formulating a long-range drilling and sampling plan in support of a Resource Conservation Recovery Act (RCRA) Part B permit waiver for groundwater monitoring and liner systems. An estimate of the water table under the LLW repository, called the Radioactive Waste Management Site (RWMS) in Area 5, is needed for the drilling and sampling plan. Very old water table elevation estimates at about a dozen widely scattered test drill holes, as well as water wells, are available from declassified US Geological Survey, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory drilling logs. A three-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed using the Dupuit assumption. A prescribed positive vertical downward infiltration/evaporation condition is assumed at the atmosphere/soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximate is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary point.'' Several realistic scenarios approximating the water table under the RWMS in Area 5 of the NTS are discussed

  18. Rapid freezing of water under dynamic compression

    Science.gov (United States)

    Myint, Philip C.; Belof, Jonathan L.

    2018-06-01

    Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid–ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.

  19. Dynamic modelling of Industrial Heavy Water Plant

    International Nuclear Information System (INIS)

    Teruel, F.E.

    1997-01-01

    The dynamic behavior of the isotopic enrichment unites of the Industrial Heavy Water Plant, located in Arroyito, Neuquen, Argentina, was modeled and simulated in the present work. Dynamic models of the chemical and isotopic interchange processes existent in the plant, were developed. This served as a base to obtain representative models of the different unit and control systems. The developed models were represented in a modular code for each unit. Each simulator consists of approximately one hundred non-linear-first-order differential equations and some other algebraic equation, which are time resolved by the code. The different simulators allow to change a big number of boundary conditions and the control systems set point for each simulation, so that the program become very versatile. The output of the code allows to see the evolution through time of the variables of interest. An interface which facilitates the use of the first enrichment stage simulator was developed. This interface allows an easy access to generate wished events during the simulation and includes the possibility to plot evolution of the variables involved. The obtained results agree with the expected tendencies. The calculated nominal steady state matches by the manufacturer. The different steady states obtained, agree with previous works. The times and tendencies involved in the transients generated by the program, are in good agreement with the experience obtained at the plant. Based in the obtained results, it is concluded that the characteristic times of the plant are determined by the masses involved in the process. Different characteristics in the system dynamic behavior were generated with the different simulators, and were validated by plant personnel. This work allowed to understand the different process involved in the heavy water manufacture, and to develop a very useful tool for the personnel of the plant. (author). 14 refs., figs., tabs. plant. (author). 14 refs., figs., tabs

  20. Groundwater in the Boreal Plains: How Climate and Geology Interact to Control Water Table Configurations in a Sub-Humid, Low-Relief Region

    Science.gov (United States)

    Hokanson, K. J.; Devito, K.; Mendoza, C. A.

    2017-12-01

    The Boreal Plain (BP) region of Canada, a landscape characterized by low-relief, a sub-humid climate and heterogeneous glacial landforms, is experiencing unprecedented anthropogenic and natural disturbance, including climate change and oil & gas operations. Understanding the controls on and the natural variability of water table position, and subsequently predicting changes in water table position under varying physical and climatic scenarios will become important as water security becomes increasingly threatened. The BP is composed of a mosaic of forestland, wetland, and aquatic land covers that contrast in dominant vegetation cover, evapotranspiration, and soil storage that, in turn, influence water table configurations. Additionally, these land-covers overlie heterogeneous glacial landforms with large contrasts in storage and hydraulic properties which, when coupled with wet-dry climate cycles, result in complex water table distributions in time and space. Several forestland-wetland-pond complexes were selected at the Utikuma Research Study Area (URSA) over three distinct surficial geologic materials (glacial fluvial outwash, stagnant ice moraine, lacustrine clay plain) to explore the roles of climate (cumulative departure from the long term yearly mean precipitation), geology, topographic position, and land cover on water table configurations over 15 years (2002 - 2016). In the absence of large groundwater flow systems, local relief and shallow low conductivity substrates promote the formation of near-surface water tables that are less susceptible to climate variation, regardless of topography. Furthermore, in areas of increased storage, wet and dry climate conditions can result in appreciably different water table configurations over time, ranging from mounds to hydraulic depressions, depending on the arrangement of land-covers, dominant surficial geology, and substrate layering.

  1. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Science.gov (United States)

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  2. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Directory of Open Access Journals (Sweden)

    Xue-Dong Lou

    Full Text Available A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm, SUVA(254 nm, Abs(400 nm, and SUVA(400 nm were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  3. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    Science.gov (United States)

    Muñoz-Carpena, Rafael; Lauvernet, Claire; Carluer, Nadia

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO) based on a combination of approaches by Salvucci and Entekhabi (1995) and Chu (1997) with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation). The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure) exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes. SWINGO is

  4. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 1: nonuniform infiltration and soil water redistribution

    Directory of Open Access Journals (Sweden)

    R. Muñoz-Carpena

    2018-01-01

    Full Text Available Vegetation buffers like vegetative filter strips (VFSs are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO based on a combination of approaches by Salvucci and Entekhabi (1995 and Chu (1997 with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation. The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes

  5. Spatial variation of nitrogen pollution of the water table at Oued M'Zab (Northern Algerian Sahara)

    Science.gov (United States)

    Benhedid, H.; Bouhoun, M. Daddi

    2018-05-01

    The aim of our work is the study of spatial variations of the water table pollution of Oued M'Zab, in order to determine their abilities of use and the posed problems of degradation. The methodological approach we adopted is to make a spatial study of the variability of nitrogen pollution, as well as to classify water quality according to international standards. The main results obtained in this research show that NH4+ range from 0 to 0,143 mg.l-1 with an average of 0,048 ± 0,039 mg.l-1, the NO2- from 0 to 0,209 mg.l-1 give an average of 0,007 ± 0,033 mg.l-1, and the NO3- vary between 14,264 and 143,465 mg.l-1, with a mean value 54,594 ± 30,503 mg.l-1. According to W.H.O. standards, the majority of these waters are classified as polluted and not drinkable. Our research shows a degradation of the underground water resources in M'Zab Valley. It resulted that it is essential to regulate the use of water and set out other adjustments in order to safeguard the underground water resources so as to promote sustainable development in the valley of M'Zab.

  6. Ultrafast table-top dynamic radiography of spontaneous or stimulated events

    Science.gov (United States)

    Smilowitz, Laura; Henson, Bryan

    2018-01-16

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography. For example, certain embodiments concern X-ray radiography of spontaneous events. Particular embodiments of the disclosed technology provide continuous high-speed x-ray imaging of spontaneous dynamic events, such as explosions, reaction-front propagation, and even material failure. Further, in certain embodiments, x-ray activation and data collection activation are triggered by the object itself that is under observation (e.g., triggered by a change of state detected by one or more sensors monitoring the object itself).

  7. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms

    Science.gov (United States)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka

    2010-11-01

    Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.

  8. Responses of Cloud Type Distributions to the Large-Scale Dynamical Circulation: Water Budget-Related Dynamical Phase Space and Dynamical Regimes

    Science.gov (United States)

    Wong, Sun; Del Genio, Anthony; Wang, Tao; Kahn, Brian; Fetzer, Eric J.; L'Ecuyer, Tristan S.

    2015-01-01

    Goals: Water budget-related dynamical phase space; Connect large-scale dynamical conditions to atmospheric water budget (including precipitation); Connect atmospheric water budget to cloud type distributions.

  9. Physico-chemical characteristics of the ground water table after monsoon: a case study at central Travancore in Kerala

    Directory of Open Access Journals (Sweden)

    Sankar S Vishnu

    2014-05-01

    Full Text Available Water quality plays an important role in maintaining plant and animal life. Lack of good quality drinking water and water for sanitation cause health problems. Water quality characteristics arise from a group of physical, chemical and biological factors. The dynamic balance of the aquatic system can be destroyed by human activities resulting in water pollution.Well water has traditionally considered as a safe resource of water for consumption without treatment and extensively used for individual water supply in rural and many urban areas.In this paper a preliminary analysis is done to explore the water quality of selected wells in order to correlate the effect of pollution on water quality at these locations. Water samples are collected from different regions of Vazhappally area located on central travancore of Kerala. These sites are important because people depend only on well water for drinking purpose. The samples are collected from ten locations and analyzed for chemical parameters such as pH, conductivity, salinity, turbidity, acidity, alkainity, hardness, total phosphates, dissolved oxygen, biological oxygen demand, total dissolved solids and Iron content. Samples are also analysed for coliform bacteria which cause pathogenic diseases. Remarkable differences are observed mainly in biological oxygen demand, acidity and hardness. Finally, an attempt has been done to correlate the observed chemical parameters and the waterquality standards. DOI: http://dx.doi.org/10.3126/ije.v3i2.10501 International Journal of the Environment Vol.3(2 2014: 20-27

  10. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site the Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, T.F.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    A two-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed and discussed. The Dupuit assumption is made. A prescribed downward vertical infiltration/evaporation condition is assumed at the atmosphere-soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximation is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary points.'' Several realistic scenarios approximating the water table under the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS) are discussed

  11. A DYNAMIC APPROACH TO CALCULATE SHADOW PRICES OF WATER RESOURCES FOR NINE MAJOR RIVERS IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Jing HE; Xikang CHEN; Yong SHI

    2006-01-01

    China is experiencing from serious water issues. There are many differences among the Nine Major Rivers basins of China in the construction of dikes, reservoirs, floodgates, flood discharge projects, flood diversion projects, water ecological construction, water conservancy management, etc.The shadow prices of water resources for Nine Major Rivers can provide suggestions to the Chinese government. This article develops a dynamic shadow prices approach based on a multiperiod input-output optimizing model. Unlike previous approaches, the new model is based on the dynamic computable general equilibrium (DCGE) model to solve the problem of marginal long-term prices of water resources.First, definitions and algorithms of DCGE are elaborated. Second, the results of shadow prices of water resources for Nine Major Rivers in 1949-2050 in China using the National Water Conservancy input-holding-output table for Nine Major Rivers in 1999 are listed. A conclusion of this article is that the shadow prices of water resources for Nine Major Rivers are largely based on the extent of scarcity.Selling prices of water resources should be revised via the usage of parameters representing shadow prices.

  12. Dynamic combinatorial chemistry with diselenides and disulfides in water

    DEFF Research Database (Denmark)

    Rasmussen, Brian; Sørensen, Anne; Gotfredsen, Henrik

    2014-01-01

    Diselenide exchange is introduced as a reversible reaction in dynamic combinatorial chemistry in water. At neutral pH, diselenides are found to mix with disulfides and form dynamic combinatorial libraries of diselenides, disulfides, and selenenylsulfides. This journal is......Diselenide exchange is introduced as a reversible reaction in dynamic combinatorial chemistry in water. At neutral pH, diselenides are found to mix with disulfides and form dynamic combinatorial libraries of diselenides, disulfides, and selenenylsulfides. This journal is...

  13. Water dynamics clue to key residues in protein folding

    International Nuclear Information System (INIS)

    Gao, Meng; Zhu, Huaiqiu; Yao, Xin-Qiu; She, Zhen-Su

    2010-01-01

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  14. Analysis of Tide and Offshore Storm-Induced Water Table Fluctuations for Structural Characterization of a Coastal Island Aquifer

    Science.gov (United States)

    Trglavcnik, Victoria; Morrow, Dean; Weber, Kela P.; Li, Ling; Robinson, Clare E.

    2018-04-01

    Analysis of water table fluctuations can provide important insight into the hydraulic properties and structure of a coastal aquifer system including the connectivity between the aquifer and ocean. This study presents an improved approach for characterizing a permeable heterogeneous coastal aquifer system through analysis of the propagation of the tidal signal, as well as offshore storm pulse signals through a coastal aquifer. Offshore storms produce high wave activity, but are not necessarily linked to significant onshore precipitation. In this study, we focused on offshore storm events during which no onshore precipitation occurred. Extensive groundwater level data collected on a sand barrier island (Sable Island, NS, Canada) show nonuniform discontinuous propagation of the tide and offshore storm pulse signals through the aquifer with isolated inland areas showing enhanced response to both oceanic forcing signals. Propagation analysis suggests that isolated inland water table fluctuations may be caused by localized leakage from a confined aquifer that is connected to the ocean offshore but within the wave setup zone. Two-dimensional groundwater flow simulations were conducted to test the leaky confined-unconfined aquifer conceptualization and to identify the effect of key parameters on tidal signal propagation in leaky confined-unconfined coastal aquifers. This study illustrates that analysis of offshore storm signal propagation, in addition to tidal signal propagation, provides a valuable and low resource approach for large-scale characterization of permeable heterogeneous coastal aquifers. Such an approach is needed for the effective management of coastal environments where water resources are threatened by human activities and the changing climate.

  15. Frozen Dynamics and Insulation of Water at the Lipid Interface

    NARCIS (Netherlands)

    Bakulin, A.A.; Cringus, D.; Pshenichnikov, M.S.; Wiersma, D.A.; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E

    2009-01-01

    2D IR correlation spectroscopy reveals extremely slow dynamics and splitting of the OH-stretching mode of water in anionic micelles. Water at the lipid interface behaves as if the molecules were isolated in a "frozen" environment.

  16. Incorporating human-water dynamics in a hyper-resolution land surface model

    Science.gov (United States)

    Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.

    2017-12-01

    The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in

  17. Collective Dynamics of Intracellular Water in Living Cells

    International Nuclear Information System (INIS)

    Orecchini, A; Sebastiani, F; Paciaroni, A; Petrillo, C; Sacchetti, F; Jasnin, M; Francesco, A De; Zaccai, G; Moulin, M; Haertlein, M

    2012-01-01

    Water dynamics plays a fundamental role for the fulfillment of biological functions in living organisms. Decades of hydrated protein powder studies have revealed the peculiar dynamical properties of hydration water with respect to pure water, due to close coupling interactions with the macromolecule. In such a framework, we have studied coherent collective dynamics in protein and DNA hydration water. State-of-the-art neutron instrumentation has allowed us to observe the propagation of coherent density fluctuations within the hydration shell of the biomolecules. The corresponding dispersion curves resulted to be only slightly affected by the coupling with the macromolecules. Nevertheless, the effects of the interaction appeared as a marked increase of the mode damping factors, which suggested a destructuring of the water hydrogen-bond network. Such results were interpreted as the signature of a 'glassy' dynamical character of macromolecule hydration water, in agreement with indications from measurements of the density of vibrational states. Extending the investigations to living organisms at physiological conditions, we present here an in-vivo study of collective dynamics of intracellular water in Escherichia coli cells. The cells and water were fully deuterated to minimise the incoherent neutron scattering background. The water dynamics observed in the living cells is discussed in terms of the dynamics of pure bulk water and that of hydration water measured in powder samples.

  18. Using stochastic dynamic programming to support catchment-scale water resources management in China

    Science.gov (United States)

    Davidsen, Claus; Pereira-Cardenal, Silvio Javier; Liu, Suxia; Mo, Xingguo; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2013-04-01

    A hydro-economic modelling approach is used to optimize reservoir management at river basin level. We demonstrate the potential of this integrated approach on the Ziya River basin, a complex basin on the North China Plain south-east of Beijing. The area is subject to severe water scarcity due to low and extremely seasonal precipitation, and the intense agricultural production is highly dependent on irrigation. Large reservoirs provide water storage for dry months while groundwater and the external South-to-North Water Transfer Project are alternative sources of water. An optimization model based on stochastic dynamic programming has been developed. The objective function is to minimize the total cost of supplying water to the users, while satisfying minimum ecosystem flow constraints. Each user group (agriculture, domestic and industry) is characterized by fixed demands, fixed water allocation costs for the different water sources (surface water, groundwater and external water) and fixed costs of water supply curtailment. The multiple reservoirs in the basin are aggregated into a single reservoir to reduce the dimensions of decisions. Water availability is estimated using a hydrological model. The hydrological model is based on the Budyko framework and is forced with 51 years of observed daily rainfall and temperature data. 23 years of observed discharge from an in-situ station located downstream a remote mountainous catchment is used for model calibration. Runoff serial correlation is described by a Markov chain that is used to generate monthly runoff scenarios to the reservoir. The optimal costs at a given reservoir state and stage were calculated as the minimum sum of immediate and future costs. Based on the total costs for all states and stages, water value tables were generated which contain the marginal value of stored water as a function of the month, the inflow state and the reservoir state. The water value tables are used to guide allocation decisions in

  19. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    Directory of Open Access Journals (Sweden)

    P. Straková

    2011-09-01

    Full Text Available Peatlands are carbon (C storage ecosystems sustained by a high water table (WT. High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years. We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N, phosphorus (P and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years and long-term (decades WT drawdown conditions under two nutrient regimes (bog and fen. The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees.

    Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition. Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P

  20. Litter type affects the activity of aerobic decomposers in a boreal peatland more than site nutrient and water table regimes

    Science.gov (United States)

    Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.

    2011-09-01

    Peatlands are carbon (C) storage ecosystems sustained by a high water table (WT). High WT creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WT drawdown caused by climate and/or land-use change. Aerobic decomposers are directly affected by WT drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WT drawdown on aerobic decomposer activity in plant litter at two stages of decomposition (incubated in the field for 1 or 2 years). We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen (N), phosphorus (P) and sulphur. Our study sites represented a three-stage chronosequence from pristine to short-term (years) and long-term (decades) WT drawdown conditions under two nutrient regimes (bog and fen). The litter types included reflected the prevalent vegetation: Sphagnum mosses, graminoids, shrubs and trees. Litter type was the main factor shaping microbial activity patterns and explained about 30 % of the variation in enzyme activities and activity allocation. Overall, enzyme activities were higher in vascular plant litters compared to Sphagnum litters, and the allocation of enzyme activities towards C or nutrient acquisition was related to the initial litter quality (chemical composition). Direct effects of WT regime, site nutrient regime and litter decomposition stage (length of incubation period) summed to only about 40 % of the litter type effect. WT regime alone explained about 5 % of the variation in enzyme activities and activity allocation. Generally, enzyme activity increased following the long-term WT drawdown and the activity allocation turned from P and N acquisition towards C

  1. Effect of agroforestry system on yield attributes of wheat (Triticum Aestivum l.) under shallow water table conditions

    International Nuclear Information System (INIS)

    Kiran, R.; Agnihotri, A.K.

    2001-01-01

    Fifteen tree rows of Eucalyptus tereticornis were planted at G.B.Pant University of Agriculture and Technology, Pant Nagar, located in tarai region of Uttaranchal in a Nelder fan design in March 1989 at the angle of 24øN' from each other starting from north in anticlockwise direction. Area per tree was 30 m 2 . Wheat was intercropped with Eucalyptus tereticornis of 21st November, 1996. Each row of trees was one treatment. There were 15 treatments with control as sole crop. Various yield attributes, net radiation and water table depth were measured below trees and in control, simultaneously. In treatments 7, 8, 9, 10 and 12 early vegetative growth was observed below trees. Higher yield attributing characters were also observed in some of the treatments below trees. In general, treatment 9 (192-216ø) gave better yield attributes than that of control

  2. Construcción de tablas de vida dinámicas para uno o dos sexos = Construction of unisex or sex-distinct dynamic life tables

    Directory of Open Access Journals (Sweden)

    Ewa Dylewska

    2012-03-01

    Full Text Available Mientras que las tablas de vida tradicionales describen la mortalidad actual en un determinado periodo de tiempo, las tablas de vida dinámicas permiten una proyección de mortalidad futura. Además de la edad y el sexo, las tablas de vida dinámicas tienen también una tercera dimensión, que es el tiempo. Por lo tanto, permiten observar cambios en la mortalidad que resultan no solamente de cambios en la edad sino también de cambios que aparecen a lo largo del tiempo. Esto se refiere sobre todo a la tendencia de disminución de riesgo de mortalidad. Las tablas de vida dinámicas son, por lo tanto, muy útiles en la construcción de seguros de vida de larga duración y planes de pensiones. También pueden ser aplicadas en la construcción de tablas unisex (relacionado con el dictamen C-236/09 – Test -Achats. El objetivo del estudio es comprobar la diferencia en la esperanza de vida a la edad x en España calculada utilizando las tablas de vida estáticas (tradicionales y dinámicas, para uno o ambos sexos. Este fin se realiza aplicando el modelo de Lee-Carter para pronosticar la mortalidad futura.Traditional life tables describe a level of mortality at one and defined period of time whereas dynamic life tables allow for projection of future mortality. Apart from age and gender, dynamic life tables also have a third dimension, which is time. In that way, it is possible to observe changes of mortality over the years. This is especially reflected in a mortality reduction trend. Dynamic life tables are therefore very useful in pricing long-term life contracts and especially in pricing annuities. Moreover, dynamic life tables can also be used in constructing unisex life tables (in relation with decision C-236/09 – Test-Achats. The purpose of this paper is to demonstrate differences in life expectancy at age x in Spain calculated by using static (traditional and dynamic life tables, both unisex and sex-distinct. Mortality projection is done

  3. Construcción de tablas de vida dinámicas para uno o dos sexos = Construction of unisex or sex-distinct dynamic life tables

    Directory of Open Access Journals (Sweden)

    Ewa Dylewska

    2012-12-01

    Full Text Available Mientras que las tablas de vida tradicionales describen la mortalidad actual en un determinado periodo de tiempo, las tablas de vida dinámicas permiten una proyección de mortalidad futura. Además de la edad y el sexo, las tablas de vida dinámicas tienen también una tercera dimensión, que es el tiempo. Por lo tanto, permiten observar cambios en la mortalidad que resultan no solamente de cambios en la edad sino también de cambios que aparecen a lo largo del tiempo. Esto se refiere sobre todo a la tendencia de disminución de riesgo de mortalidad. Las tablas de vida dinámicas son, por lo tanto, muy útiles en la construcción de seguros de vida de larga duración y planes de pensiones. También pueden ser aplicadas en la construcción de tablas unisex (relacionado con el dictamen C-236/09 – Test -Achats. El objetivo del estudio es comprobar la diferencia en la esperanza de vida a la edad x en España calculada utilizando las tablas de vida estáticas (tradicionales y dinámicas, para uno o ambos sexos. Este fin se realiza aplicando el modelo de Lee-Carter para pronosticar la mortalidad futura. Traditional life tables describe a level of mortality at one and defined period of time whereas dynamic life tables allow for projection of future mortality. Apart from age and gender, dynamic life tables also have a third dimension, which is time. In that way, it is possible to observe changes of mortality over the years. This is especially reflected in a mortality reduction trend. Dynamic life tables are therefore very useful in pricing long-term life contracts and especially in pricing annuities. Moreover, dynamic life tables can also be used in constructing unisex life tables (in relation with decision C-236/09 – Test-Achats. The purpose of this paper is to demonstrate differences in life expectancy at age x in Spain calculated by using static (traditional and dynamic life tables, both unisex and sex-distinct. Mortality projection is done

  4. A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability

    Science.gov (United States)

    Olefeldt, David; Euskirchen, Eugénie S.; Harden, Jennifer W.; Kane, Evan S.; McGuire, A. David; Waldrop, Mark P.; Turetsky, Merritt R.

    2017-01-01

    Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9-years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing season FCH4, GPP and NEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing season GPP in subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence on ER, but dominant contribution to ER switched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter-annual lag effects on ER in this rich fen, as has been observed in several nutrient-poor peatlands. While ER was dependent on soil temperatures at 2 cm depth, FCH4 was linked to soil temperatures at 25 cm. Inter-annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higher FCH4 in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short-term fluctuations in wetness caused significant lag effects on FCH4, but droughts caused no inter-annual lag effects on FCH4. Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens.

  5. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands.

    Science.gov (United States)

    Nosetto, Marcelo D; Jobbágy, Esteban G; Tóth, Tibor; Di Bella, Carlos M

    2007-07-01

    Plants, by influencing water fluxes across the ecosystem-vadose zone-aquifer continuum, can leave an imprint on salt accumulation and distribution patterns. We explored how the conversion of native grasslands to oak plantations affected the abundance and distribution of salts on soils and groundwater through changes in the water balance in naturally salt-affected landscapes of Hortobagy (Hungary), a region where artificial drainage performed approximately 150 years ago lowered the water table (from -2 to -5 m) decoupling it from the surface ecosystem. Paired soil sampling and detailed soil conductivity transects revealed consistently different salt distribution patterns between grasslands and plantations, with shallow salinity losses and deep salinity gains accompanying tree establishment. Salts accumulated in the upper soil layers during pre-drainage times have remained in drained grasslands but have been flushed away under tree plantations (65 and 83% loss of chloride and sodium, respectively, in the 0 to -0.5 m depth range) as a result of a five- to 25-fold increase in infiltration rates detected under plantations. At greater depth, closer to the current water table level, the salt balance was reversed, with tree plantations gaining 2.5 kg sodium chloride m(-2) down to 6 m depth, resulting from groundwater uptake and salt exclusion by tree roots in the capillary fringe. Diurnal water table fluctuations, detected in a plantation stand but not in the neighbouring grasslands, together with salt mass balances suggest that trees consumed approximately 380 mm groundwater per year, re-establishing the discharge regime and leading to higher salt accumulation rates than those interrupted by regional drainage practices more than a century ago. The strong influences of vegetation changes on water dynamics can have cascading consequences on salt accumulation and distribution, and a broad ecohydrological perspective that explicitly considers vegetation-groundwater links is

  6. Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea: Blaberidae).

    Science.gov (United States)

    Groenewald, Berlizé; Bazelet, Corinna S; Potter, C Paige; Terblanche, John S

    2013-10-15

    The importance of metabolic rate and/or spiracle modulation for saving respiratory water is contentious. One major explanation for gas exchange pattern variation in terrestrial insects is to effect a respiratory water loss (RWL) saving. To test this, we measured the rates of CO2 and H2O release ( and , respectively) in a previously unstudied, mesic cockroach, Aptera fusca, and compared gas exchange and water loss parameters among the major gas exchange patterns (continuous, cyclic, discontinuous gas exchange) at a range of temperatures. Mean , and per unit did not differ among the gas exchange patterns at all temperatures (P>0.09). There was no significant association between temperature and gas exchange pattern type (P=0.63). Percentage of RWL (relative to total water loss) was typically low (9.79±1.84%) and did not differ significantly among gas exchange patterns at 15°C (P=0.26). The method of estimation had a large impact on the percentage of RWL, and of the three techniques investigated (traditional, regression and hyperoxic switch), the traditional method generally performed best. In many respects, A. fusca has typical gas exchange for what might be expected from other insects studied to date (e.g. , , RWL and cuticular water loss). However, we found for A. fusca that expressed as a function of metabolic rate was significantly higher than the expected consensus relationship for insects, suggesting it is under considerable pressure to save water. Despite this, we found no consistent evidence supporting the conclusion that transitions in pattern type yield reductions in RWL in this mesic cockroach.

  7. Isotopic fractionation of soil water during the evaporation process in the presence of a phreatic water table

    International Nuclear Information System (INIS)

    Leopoldo, P.R.; Stolf, R.

    1979-01-01

    This experiment was conducted with columns of soil, constitued by alluvion sediment keeping a phreatic watertable at a depth of 40 cm and constant water supply, and its objective was to check the water behaviour as to its deuterium and oxigen content when moving from the lower layers to the upper layers, and consequent loss to the atmosphere through evaporation. It was noted that the existing D and 18 O content in the water forming the phreativ watertable practivally does not vary with this process. In addition to the observations on soil columns, soil water from the Brasilian northeastern region was collected and analysed. The phreatic watertable at the collecting site lay at a depth of about 40-50 cm. Preliminarily, it was noted that these results apparently indicate an excess evaporation, and are also consistent with those obtained by other investigators, who proposed the use of stable isotopes to study problems related to salinization of water in this region. (Author) [pt

  8. Efficient dynamic scarcity pricing in urban water supply

    Science.gov (United States)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel; Rougé, Charles; Harou, Julien J.; Escriva-Bou, Alvar

    2017-04-01

    Water pricing is a key instrument for water demand management. Despite the variety of existing strategies for urban water pricing, urban water rates are often far from reflecting the real value of the resource, which increases with water scarcity. Current water rates do not bring any incentive to reduce water use in water scarcity periods, since they do not send any signal to the users of water scarcity. In California, the recent drought has spurred the implementation of drought surcharges and penalties to reduce residential water use, although it is not a common practice yet. In Europe, the EU Water Framework Directive calls for the implementation of new pricing policies that assure the contribution of water users to the recovery of the cost of water services (financial instrument) while providing adequate incentives for an efficient use of water (economic instrument). Not only financial costs should be recovered but also environmental and resource (opportunity) costs. A dynamic pricing policy is efficient if the prices charged correspond to the marginal economic value of water, which increases with water scarcity and is determined by the value of water for all alternative uses in the basin. Therefore, in the absence of efficient water markets, measuring the opportunity costs of scarce water can only be achieved through an integrated basin-wide hydroeconomic simulation approach. The objective of this work is to design a dynamic water rate for urban water supply accounting for the seasonal marginal value of water in the basin, related to water scarcity. The dynamic pricing policy would send to the users a signal of the economic value of the resource when water is scarce, therefore promoting more efficient water use. The water rate is also designed to simultaneously meet the expected basic requirements for water tariffs: revenue sufficiency (cost recovery) and neutrality, equity and affordability, simplicity and efficiency. A dynamic increasing block rate (IBR

  9. Methane transport and emissions from soil as affected by water table and vascular plants

    OpenAIRE

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-01-01

    Background: The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here...

  10. SIMULATION OF THE BEHAVIOR OF THE WATER TABLE IN A COASTAL AQUIFER SYSTEM FINITE ELEMENT

    Directory of Open Access Journals (Sweden)

    Luis Lara Romero

    2016-06-01

    Full Text Available This paper presents the application of Galerkin method to discretize the model equation of groundwater ow in a conned aquifer semipermeable with tidal boundary conditions on one of its borders, the other borders remain constant. For the simulations was generated a numerical program, Ground Water Finite Element Method, which implements the method of nite elements with triangular elements with three nodes and a degree of freedom per node.

  11. Environmental Monitoring, Water Quality - MO 2009 Water Quality Standards - Table G Lake Classifications and Use Designations (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set contains Missouri Water Quality Standards (WQS) lake classifications and use designations described in the Missouri Code of State Regulations (CSR), 10...

  12. Water Table Management Reduces Tile Nitrate Loss in Continuous Corn and in a Soybean-Corn Rotation

    Directory of Open Access Journals (Sweden)

    Craig F. Drury

    2001-01-01

    Full Text Available Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR system was compared over 8 years (1991 to 1999 to a controlled tile drainage/subirrigation (CDS system on a low-slope (0.05 to 0.1% Brookston clay loam soil (Typic Argiaquoll in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994, continuous corn (Zea mays, L. was grown with annual nitrogen (N fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999, a soybean (Glycine max L., Merr.-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l–1 under DR (11.4 mg N l–1, but not under CDS (7.0 mg N l–1. In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l–1 and CDS (4.0 mg N l–1. During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge

  13. Fractal water quality fluctuations spanning the periodic table in an intensively farmed watershed.

    Science.gov (United States)

    Aubert, Alice H; Kirchner, James W; Gascuel-Odoux, Chantal; Faucheux, Mikael; Gruau, Gérard; Mérot, Philippe

    2014-01-21

    Recently developed measurement technologies can monitor surface water quality almost continuously, creating high-frequency multiparameter time series and raising the question of how best to extract insights from such rich data sets. Here we use spectral analysis to characterize the variability of water quality at the AgrHys observatory (Western France) over time scales ranging from 20 min to 12 years. Three years of daily sampling at the intensively farmed Kervidy-Naizin watershed reveal universal 1/f scaling for all 36 solutes, yielding spectral slopes of 1.05 ± 0.11 (mean ± standard deviation). These 36 solute concentrations show varying degrees of annual cycling, suggesting different controls on watershed export processes. Twelve years of daily samples of SO4, NO3, and dissolved organic carbon (DOC) show that 1/f scaling does not continue at frequencies below 1/year in those constituents, whereas a 12-year daily record of Cl shows a general 1/f trend down to the lowest measurable frequencies. Conversely, approximately 12 months of 20 min NO3 and DOC measurements show that at frequencies higher than 1/day, the spectra of these solutes steepen to slopes of roughly 3, and at time scales shorter than 2-3 h, the spectra flatten to slopes near zero, reflecting analytical noise. These results confirm and extend the recent discovery of universal fractal 1/f scaling in water quality at the relatively pristine Plynlimon watershed in Wales, further demonstrating the importance of advective-dispersive transport mixing in catchments. However, the steeper scaling at subdaily time scales suggests additional short-term damping of solute concentrations, potentially due to in-stream or riparian processes.

  14. BOREAS TGB-1/TGB-3 Water Table and Peat Temperature Data over the NSA

    Science.gov (United States)

    Bubier, Jill L.; Comer, Neil; Moore, Tim R.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-1 and TGB-3 teams collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the NSA. This data set contains continuous and manual measurements of water level and air and soil temperatures at the four subsites within the NSA Tower Fen site complex. The measurements were taken to understand the thermal and hydrological gradients associated with each plant community present in the fen. Measurements were taken from May to September 1994 and May to October 1996. The data are provided in tabular ASCII files.

  15. Performance of methods for estimation of table beet water requirement in Alagoas

    Directory of Open Access Journals (Sweden)

    Daniella P. dos Santos

    Full Text Available ABSTRACT Optimization of water use in agriculture is fundamental, particularly in regions where water scarcity is intense, requiring the adoption of technologies that promote increased irrigation efficiency. The objective of this study was to evaluate evapotranspiration models and to estimate the crop coefficients of beet grown in a drainage lysimeter in the Agreste region of Alagoas. The experiment was conducted at the Campus of the Federal University of Alagoas - UFAL, in the municipality of Arapiraca, AL, between March and April 2014. Crop evapotranspiration (ETc was estimated in drainage lysimeters and reference evapotranspiration (ETo by Penman-Monteith-FAO 56 and Hargreaves-Samani methods. The Hargreaves-Samani method presented a good performance index for ETo estimation compared with the Penman-Monteith-FAO method, indicating that it is adequate for the study area. Beet ETc showed a cumulative demand of 202.11 mm for a cumulative reference evapotranspiration of 152.00 mm. Kc values determined using the Penman-Monteith-FAO 56 and Hargreaves-Samani methods were overestimated, in comparison to the Kc values of the FAO-56 standard method. With the obtained results, it is possible to correct the equations of the methods for the region, allowing for adequate irrigation management.

  16. Long-term Water Table Monitoring of Rio Grande Riparian Ecosystems for Restoration Potential Amid Hydroclimatic Challenges

    Science.gov (United States)

    Thibault, James R.; Cleverly, James R.; Dahm, Clifford N.

    2017-12-01

    Hydrological processes drive the ecological functioning and sustainability of cottonwood-dominated riparian ecosystems in the arid southwestern USA. Snowmelt runoff elevates groundwater levels and inundates floodplains, which promotes cottonwood germination. Once established, these phreatophytes rely on accessible water tables (WTs). In New Mexico's Middle Rio Grande corridor diminished flooding and deepening WTs threaten native riparian communities. We monitored surface flows and riparian WTs for up to 14 years, which revealed that WTs and surface flows, including peak snowmelt discharge, respond to basin climate conditions and resource management. WT hydrographs influence the composition of riparian communities and can be used to assess if potential restoration sites meet native vegetation tolerances for WT depths, rates of recession, and variability throughout their life stages. WTs were highly variable in some sites, which can preclude native vegetation less adapted to deep drawdowns during extended droughts. Rates of WT recession varied between sites and should be assessed in regard to recruitment potential. Locations with relatively shallow WTs and limited variability are likely to be more viable for successful restoration. Suitable sites have diminished greatly as the once meandering Rio Grande has been constrained and depleted. Increasing demands on water and the presence of invasive vegetation better adapted to the altered hydrologic regime further impact native riparian communities. Long-term monitoring over a range of sites and hydroclimatic extremes reveals attributes that can be evaluated for restoration potential.

  17. Water-table and discharge changes associated with the 2016-2017 seismic sequence in central Italy: hydrogeological data and a conceptual model for fractured carbonate aquifers

    Science.gov (United States)

    Petitta, Marco; Mastrorillo, Lucia; Preziosi, Elisabetta; Banzato, Francesca; Barberio, Marino Domenico; Billi, Andrea; Cambi, Costanza; De Luca, Gaetano; Di Carlo, Giuseppe; Di Curzio, Diego; Di Salvo, Cristina; Nanni, Torquato; Palpacelli, Stefano; Rusi, Sergio; Saroli, Michele; Tallini, Marco; Tazioli, Alberto; Valigi, Daniela; Vivalda, Paola; Doglioni, Carlo

    2018-01-01

    A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0-6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m3/s, totaling more than 0.1 km3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L'Aquila 2009 post-earthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.

  18. Soil chemistry and ground-water quality of the water-table zone of the surficial aquifer, Naval Submarine Base Kings Bay, Camden County, Georgia, 1998 and 1999

    Science.gov (United States)

    Leeth, David C.

    2002-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the U.S. Department of the Navy, began an investigation to determine background ground-water quality of the water-table zone of the surficial aquifer and soil chemistry at Naval Submarine Base Kings Bay, Camden County, Georgia, and to compare these data to two abandoned solid- waste disposal areas (referred to by the U.S. Navy as Sites 5 and 16). The quality of water in the water-table zone generally is within the U.S. Environmental Protection Agency (USEPA) drinking-water regulation. The pH of ground water in the study area ranged from 4.0 to 7.6 standard units, with a median value of 5.4. Water from 29 wells is above the pH range and 3 wells are within the range of the USEPA secondary drinking-water regulation (formerly known as the Secondary Maximum Contaminant Level or SMCL) of 6.5 to 8.5 standard units. Also, water from one well at Site 5 had a chloride concentration of 570 milligrams per liter (mg/L,), which is above the USEPA secondary drinking-water regulation of 250 mg/L. Sulfate concentrations in water from two wells at Site 5 are above the USEPA secondary drinking-water regulation of 250 mg/L. Of 22 soil-sampling locations for this study, 4 locations had concentrations above the detection limit for either volatile organic compounds (VOCs), base-neutral acids (BNAs), or pesticides. VOCs detected in the study area include toluene in one background sample; and acetone in one background sample and one sample from Site 16--however, detection of these two compounds may be a laboratory artifact. Pesticides detected in soil at the Submarine Base include two degradates of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT): 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (4,4'-DDD) in one background sample, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (4,4'-DDE) in one background sample and one sample from Site 16; and dibenzofuran in one sample from Site 16. BNAs were detected in one background sample and in two

  19. Water-Protein Interactions: The Secret of Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Silvia Martini

    2013-01-01

    Full Text Available Water-protein interactions help to maintain flexible conformation conditions which are required for multifunctional protein recognition processes. The intimate relationship between the protein surface and hydration water can be analyzed by studying experimental water properties measured in protein systems in solution. In particular, proteins in solution modify the structure and the dynamics of the bulk water at the solute-solvent interface. The ordering effects of proteins on hydration water are extended for several angstroms. In this paper we propose a method for analyzing the dynamical properties of the water molecules present in the hydration shells of proteins. The approach is based on the analysis of the effects of protein-solvent interactions on water protons NMR relaxation parameters. NMR relaxation parameters, especially the nonselective (R1NS and selective (R1SE spin-lattice relaxation rates of water protons, are useful for investigating the solvent dynamics at the macromolecule-solvent interfaces as well as the perturbation effects caused by the water-macromolecule interactions on the solvent dynamical properties. In this paper we demonstrate that Nuclear Magnetic Resonance Spectroscopy can be used to determine the dynamical contributions of proteins to the water molecules belonging to their hydration shells.

  20. Polder effects on sediment-to-soil conversion: water table, residual available water capacity, and salt stress interdependence.

    Science.gov (United States)

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  1. Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity, and Salt Stress Interdependence

    Directory of Open Access Journals (Sweden)

    Raymond Tojo Radimy

    2013-01-01

    Full Text Available The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  2. Changes in soluble metal concentrations induced by variable water table levels as response to liming and Phragmites australis growth in metal-polluted wetland soils: Management effectiveness

    NARCIS (Netherlands)

    Gonzalez Alcaraz, M.N.; van Gestel, C.A.M.

    2016-01-01

    This study aimed to assess the effectiveness of liming and Phragmites australis growth for the management of metal-polluted wetland soils under fluctuating water table levels. Soil columns (20 cm in diameter and 60 cm high) were constructed with two soil types (pH ~ 6.4 and pH ~ 3.1) and four

  3. Mobility and transport of mercury and methylmercury in peat as a function of changes in water table regime and plant functional groups

    Science.gov (United States)

    Kristine M. Haynes; Evan S. Kane; Lynette Potvin; Erik A. Lilleskov; Randy Kolka; Carl P. J. Mitchell

    2017-01-01

    Climate change is likely to significantly affect the hydrology, ecology, and ecosystem function of peatlands, with potentially important but unclear impacts on mercury mobility within and transport from peatlands. Using a full-factorial mesocosm approach, we investigated the potential impacts on mercury mobility of water table regime changes (high and low) and...

  4. Understanding the dynamics of citrus water use

    CSIR Research Space (South Africa)

    Taylor, NJ

    2012-12-01

    Full Text Available The quantification of water use of citrus orchards is important in order to prevent stress developing in the orchard and to avoid wasting precious water resources. Measurement of citrus orchard water use is not possible under all environ-mental...

  5. Picosecond orientational dynamics of water in living cells.

    Science.gov (United States)

    Tros, Martijn; Zheng, Linli; Hunger, Johannes; Bonn, Mischa; Bonn, Daniel; Smits, Gertien J; Woutersen, Sander

    2017-10-12

    Cells are extremely crowded, and a central question in biology is how this affects the intracellular water. Here, we use ultrafast vibrational spectroscopy and dielectric-relaxation spectroscopy to observe the random orientational motion of water molecules inside living cells of three prototypical organisms: Escherichia coli, Saccharomyces cerevisiae (yeast), and spores of Bacillus subtilis. In all three organisms, most of the intracellular water exhibits the same random orientational motion as neat water (characteristic time constants ~9 and ~2 ps for the first-order and second-order orientational correlation functions), whereas a smaller fraction exhibits slower orientational dynamics. The fraction of slow intracellular water varies between organisms, ranging from ~20% in E. coli to ~45% in B. subtilis spores. Comparison with the water dynamics observed in solutions mimicking the chemical composition of (parts of) the cytosol shows that the slow water is bound mostly to proteins, and to a lesser extent to other biomolecules and ions.The cytoplasm's crowdedness leads one to expect that cell water is different from bulk water. By measuring the rotational motion of water molecules in living cells, Tros et al. find that apart from a small fraction of water solvating biomolecules, cell water has the same dynamics as bulk water.

  6. Water table and species identity outweigh carbon and nitrogen availability in a softwater plant community

    Science.gov (United States)

    Vanderhaeghe, Floris; Smolders, Alfons J. P.; Roelofs, Jan G. M.; Hoffmann, Maurice

    2013-02-01

    Performance of aquatic macrophytes is driven by many environmental factors, and a major challenge is to understand how aquatic macrophyte communities are structured in various environments. In softwater lakes in Western Europe, hydrological state (submersed/emersed), carbon dioxide and ammonium levels and species interactions are considered as driving forces in structuring amphibious plant communities. In this study we aimed at evaluating the relative importance of these factors for four species in a competitive neighbourhood. Softwater lake habitat was simulated during one growing season in laboratory conditions, mimicking water level fluctuation, photoperiod and temperature. Artificial communities consisted of small populations of four softwater macrophyte species: Luronium natans, Baldellia ranunculoides ssp. repens, Eleocharis multicaulis and Hydrocotyle vulgaris. These communities were subjected to two levels of carbon dioxide and ammonium. Additionally, monocultures of Baldellia and Eleocharis were grown at a higher nutrient level combination in order to measure their competitive response in a community. Time (hydrological state) and species identity turned out to be the only consistently significant factors determining community composition. Plant performance was clearly species-dependent, while carbon dioxide and ammonium did not have major effects. The competitive response was significant in both Eleocharis and Baldellia. Competition intensity was highest in the emersed state. Carbon dioxide had a supplementary effect on the within-species performance in Luronium, Baldellia and Eleocharis, with high carbon dioxide level mainly resulting in more flowers and more stolons. Community outcomes and competitive responses in aquatic macrophytes appear difficult to predict, because of mixed life strategies and morphological and functional plasticity. We conclude that hydrological state was the only important environmental factor. The identity of the species that

  7. Dynamics and structure of water-bitumen mixtures

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Greenfield, Michael L.; Hansen, Jesper Schmidt

    2016-01-01

    Systems of Cooee bitumen and water up to 4% mass are studied by molecular dynamics simulations. The cohesive energy density of the system is shown to decrease with an increasing water content. This decrease is due mainly to an increase in the interaction energy which is not high enough to counter......Systems of Cooee bitumen and water up to 4% mass are studied by molecular dynamics simulations. The cohesive energy density of the system is shown to decrease with an increasing water content. This decrease is due mainly to an increase in the interaction energy which is not high enough...... droplets being more stable at the highest temperature simulated. The droplet is mainly located close to the saturates molecules in bitumen. Finally, it is shown that the water dynamics is much slower in bitumen than in pure water because it is governed by the diffusion of the droplet and not of the single...

  8. Slow Dynamics and Structure of Supercooled Water in Confinement

    Directory of Open Access Journals (Sweden)

    Gaia Camisasca

    2017-04-01

    Full Text Available We review our simulation results on properties of supercooled confined water. We consider two situations: water confined in a hydrophilic pore that mimics an MCM-41 environment and water at interface with a protein. The behavior upon cooling of the α relaxation of water in both environments is well interpreted in terms of the Mode Coupling Theory of glassy dynamics. Moreover, we find a crossover from a fragile to a strong regime. We relate this crossover to the crossing of the Widom line emanating from the liquid-liquid critical point, and in confinement we connect this crossover also to a crossover of the two body excess entropy of water upon cooling. Hydration water exhibits a second, distinctly slower relaxation caused by its dynamical coupling with the protein. The crossover upon cooling of this long relaxation is related to the protein dynamics.

  9. Hydrogeologic characteristics and geospatial analysis of water-table changes in the alluvium of the lower Arkansas River Valley, southeastern Colorado, 2002, 2008, and 2015

    Science.gov (United States)

    Holmberg, Michael J.

    2017-05-15

    The U.S. Geological Survey in cooperation with the Lower Arkansas Valley Water Conservancy District measures groundwater levels periodically in about 100 wells completed in the alluvial material of the Arkansas River Valley in Pueblo, Crowley, Otero, Bent, and Prowers Counties in southeastern Colorado, of which 95 are used for the analysis in this report. The purpose of this report is to provide information to water-resource administrators, managers, planners, and users about groundwater characteristics in the alluvium of the lower Arkansas Valley extending roughly 150 miles between Pueblo Reservoir and the Colorado-Kansas State line. This report includes three map sheets showing (1) bedrock altitude at the base of the alluvium of the lower Arkansas Valley; (2) estimated spring-to-spring and fall-to-fall changes in water-table altitude between 2002, 2008, and 2015; and (3) estimated saturated thickness in the alluvium during spring and fall of 2002, 2008, and 2015, and thickness of the alluvium in the lower Arkansas Valley. Water-level changes were analyzed by geospatial interpolation methods.Available data included all water-level measurements made between January 1, 2001, and December 31, 2015; however, only data from fall and spring of 2002, 2008, and 2015 are mapped in this report. To account for the effect of John Martin Reservoir in Bent County, Colorado, lake levels at the reservoir were assigned to points along the approximate shoreline and were included in the water-level dataset. After combining the water-level measurements and lake levels, inverse distance weighting was used to interpolate between points and calculate the altitude of the water table for fall and spring of each year for comparisons. Saturated thickness was calculated by subtracting the bedrock surface from the water-table surface. Thickness of the alluvium was calculated by subtracting the bedrock surface from land surface using a digital elevation model.In order to analyze the response

  10. Phase transitions and dynamics of bulk and interfacial water

    International Nuclear Information System (INIS)

    Franzese, G; Hernando-Martinez, A; Kumar, P; Mazza, M G; Stokely, K; Strekalova, E G; Stanley, H E; De los Santos, F

    2010-01-01

    New experiments on water at the surface of proteins at very low temperature display intriguing dynamic behaviors. The extreme conditions of these experiments make it difficult to explore the wide range of thermodynamic state points needed to offer a suitable interpretation. Detailed simulations suffer from the same problem, where equilibration times at low temperature become extremely long. We show how Monte Carlo simulations and mean field calculations using a tractable model of water help interpret the experimental results. Here we summarize the results for bulk water and investigate the thermodynamic and dynamic properties of supercooled water at an interface.

  11. Phase transitions and dynamics of bulk and interfacial water

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, G; Hernando-Martinez, A [Departament de Fisica Fonamental, Universitat de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Kumar, P [Center for Studies in Physics and Biology, Rockefeller University, 1230 York Avenue, New York, NY 10021 (United States); Mazza, M G; Stokely, K; Strekalova, E G; Stanley, H E [Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215 (United States); De los Santos, F, E-mail: gfranzese@ub.ed [Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2010-07-21

    New experiments on water at the surface of proteins at very low temperature display intriguing dynamic behaviors. The extreme conditions of these experiments make it difficult to explore the wide range of thermodynamic state points needed to offer a suitable interpretation. Detailed simulations suffer from the same problem, where equilibration times at low temperature become extremely long. We show how Monte Carlo simulations and mean field calculations using a tractable model of water help interpret the experimental results. Here we summarize the results for bulk water and investigate the thermodynamic and dynamic properties of supercooled water at an interface.

  12. Modelling soil water dynamics and crop water uptake at the field level

    NARCIS (Netherlands)

    Kabat, P.; Feddes, R.A.

    1995-01-01

    Parametrization approaches to model soil water dynamics and crop water uptake at field level were analysed. Averaging and numerical difficulties in applying numerical soil water flow models to heterogeneous soils are highlighted. Simplified parametrization approaches to the soil water flow, such as

  13. Water table depth fluctuations during ENSO phenomenon on different tropical peat swamp forest land covers in Katingan, Indonesia

    Science.gov (United States)

    Rossita, A.; Witono, A.; Darusman, T.; Lestari, D. P.; Risdiyanto, I.

    2018-03-01

    As it is the main role to maintain hydrological function, peatland has been a limelight since drainage construction for agriculture evolved. Drainage construction will decrease water table depth (WTD) and result in CO2 emission release to the atmosphere. Regardless of human intervention, WTD fluctuations can be affected by seasonal climate and climate variability, foremost El Niño Southern Oscillation (ENSO). This study aims to determine the correlation between rainfall in Katingan and ENSO index, analyze the pattern of WTD fluctuation of open area and forest area in 2015 (during very strong El Niño) and 2016 (during weak La Niña), calculate the WTD trendline slope during the dry season, and rainfall and WTD correlation. The result showed that open area has a sharper slope of decreasing or increasing WTD when entering the dry, compared to the forest area. Also, it is found that very strong El Niño in 2015 generated a pattern of more extreme decreasing WTD during the dry season than weak La Niña in 2016.

  14. The reconstruction of late Holocene depth-to-water-table based on testate amoebae in an eastern Australian mire

    Science.gov (United States)

    Zheng, X.; Money, S.; Hope, G.

    2017-12-01

    There are relatively few quantitative palaeo-hydrological records available in eastern Australia, and those that are available, for example from dendroclimatology and the reconstruction of lake level, are often relatively short or have a relatively coarse temporal resolution (e.g. Wilkins et al. 2013; Palmer et al. 2015). Testate amoebae, a widely used hydrological proxy in the Northern Hemisphere, were used here to reconstruct depth to water table (DWT) at Snowy Flat, which is a Sphagnum-Richea-Empodismahigh altitude (1618 m asl) shrub bog in the Australian Capital Territory, Australia. Testate amoebae were quantified in a Snowy Flat core representing 4,200 cal Y BP and the community composition was used to reconstruct DWT based on our recently established transfer functions. Results from three different types of transfer functions (Fig. 1) consistently show there was a decreasing DWT (wetter) period centred on about 3350 cal Y BP, a trend towards increased dryness from about 3300 to 2200 cal Y BP and a distinctly drier period 850 to 700 cal Y BP which was immediately followed by a wetter period from 700 to 500 cal Y BP. We discuss these episodes and trends in relation to the drivers of climatic variability in this region and in particular, by comparing our results with other south-eastern Australia records, comment on the history of the southern annular mode.

  15. Dynamics of water clusters confined in proteins: a molecular dynamics simulation study of interfacial waters in a dimeric hemoglobin.

    Science.gov (United States)

    Gnanasekaran, Ramachandran; Xu, Yao; Leitner, David M

    2010-12-23

    Water confined in proteins exhibits dynamics distinct from the dynamics of water in the bulk or near the surface of a biomolecule. We examine the water dynamics at the interface of the two globules of the homodimeric hemoglobin from Scapharca inaequivalvis (HbI) by molecular dynamics (MD) simulations, with focus on water-protein hydrogen bond lifetimes and rotational anisotropy of the interfacial waters. We find that relaxation of the waters at the interface of both deoxy- and oxy-HbI, which contain a cluster of 17 and 11 interfacial waters, respectively, is well described by stretched exponentials with exponents from 0.1 to 0.6 and relaxation times of tens to thousands of picoseconds. The interfacial water molecules of oxy-HbI exhibit slower rotational relaxation and hydrogen bond rearrangement than those of deoxy-HbI, consistent with an allosteric transition from unliganded to liganded conformers involving the expulsion of several water molecules from the interface. Though the interfacial waters are translationally and rotationally static on the picosecond time scale, they contribute to fast communication between the globules via vibrations. We find that the interfacial waters enhance vibrational energy transport across the interface by ≈10%.

  16. Modelling flow dynamics in water distribution networks using ...

    African Journals Online (AJOL)

    One such approach is the Artificial Neural Networks (ANNs) technique. The advantage of ANNs is that they are robust and can be used to model complex linear and non-linear systems without making implicit assumptions. ANNs can be trained to forecast flow dynamics in a water distribution network. Such flow dynamics ...

  17. THz dynamics of nanoconfined water by ultrafast optical spectroscopy

    International Nuclear Information System (INIS)

    Taschin, A; Bartolini, P; Torre, R

    2017-01-01

    We investigated the vibrational dynamics and structural relaxation of water nanoconfined in porous silica samples with a pore size of 4 nm at different levels of hydration and temperature. We used the time-resolved optical Kerr effect (OKE), a spectroscopic technique that enables investigation of ultrafast water dynamics in a wide time (0.1–10 ps) or frequency (10 – 0.1 THz) window. At low hydration levels corresponding to two complete superficial water layers, no freezing occurs and the water remains mobile at all investigated temperatures. Meanwhile, at full hydration we witness a partial ice formation at about 248 K that coexists with the surface water remaining in the supercooled state. At low hydration, both structural and vibrational dynamics show significant modifications compared to bulk liquid water. This is due to the strong interaction of the water molecules with silica surfaces. Inner water, however, reveals relaxation dynamics very similar to bulk water. (paper)

  18. Proton dynamics and the phase diagram of dense water ice.

    Science.gov (United States)

    Hernandez, J-A; Caracas, R

    2018-06-07

    All the different phases of water ice between 2 GPa and several megabars are based on a single body-centered cubic sub-lattice of oxygen atoms. They differ only by the behavior of the hydrogen atoms. In this study, we investigate the dynamics of the H atoms at high pressures and temperatures in water ice from first-principles molecular dynamics simulations. We provide a detailed analysis of the O-H⋯O bonding dynamics over the entire stability domain of the body-centered cubic (bcc) water ices and compute transport properties and vibrational density-of-states. We report the first ab initio evidence for a plastic phase of water and we propose a coherent phase diagram for bcc water ices compatible with the two groups of melting curves and with the multiple anomalies reported in ice VII around 15 GPa.

  19. Shaking table test and dynamic response analysis of 3-D component base isolation system using multi-layer rubber bearings and coil springs

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Hideaki; Yamada, Hiroyuki; Ebisawa, Katsumi; Shibata, Katsuyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fujimoto, Shigeru [Toshiba Corp., Tokyo (Japan)

    2001-06-01

    Introduction of the base isolation technique into the seismic design of nuclear power plant components as well as buildings has been expected as one of the effective countermeasure to reduce the seismic force applied to components. A research program on the base isolation of nuclear components has been carried out at the Japan Atomic Energy Research Institute (JAERI) since 1991. A methodology and a computer code (EBISA: Equipment Base Isolation System Analysis) for evaluating the failure frequency of the nuclear component with the base isolation were developed. In addition, a test program, which is concerned with the above development, aiming at improvement of failure frequency analysis models in the code has been conducted since 1996 to investigate the dynamic behavior and to verify the effectiveness of component base isolation systems. Two base isolation test systems with different characteristics were fabricated and static and dynamic characteristics were measured by static loading and free vibration tests. One which consists of ball bearings and air springs was installed on the test bed to observe the dynamic response under natural earthquake motion. The effect of base isolation system has been observed under several earthquakes. Three-dimensional response and effect of base isolation of another system using multi-layer-rubber-bearings and coil springs has been investigated under various large earthquake motions by shaking table test. This report describes the results of the shaking table tests and dynamic response analysis. (author)

  20. Protein Dynamics in Organic Media at Varying Water Activity Studied by Molecular Dynamics Simulation

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; Abildskov, Jens; Peters, Günther H.J.

    2012-01-01

    In nonaqueous enzymology, control of enzyme hydration is commonly approached by fixing the thermodynamic water activity of the medium. In this work, we present a strategy for evaluating the water activity in molecular dynamics simulations of proteins in water/organic solvent mixtures. The method...... relies on determining the water content of the bulk phase and uses a combination of Kirkwood−Buff theory and free energy calculations to determine corresponding activity coefficients. We apply the method in a molecular dynamics study of Candida antarctica lipase B in pure water and the organic solvents...

  1. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, D. V.; Kaur, Harjeet

    2018-05-01

    Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation ( R 2 = 0.308) with the average water-table depth in the study area.

  2. A dynamic gravimetric standard for trace water.

    Science.gov (United States)

    Brewer, P J; Goody, B A; Woods, P T; Milton, M J T

    2011-10-01

    A system for generating traceable reference standards of water vapor at trace levels between 5 and 2000 nmol/mol has been developed. It can provide different amount fractions of trace water vapor by using continuous accurate measurements of mass loss from a permeation device coupled with a dilution system based on an array of critical flow orifices. An estimated relative expanded uncertainty of ±2% has been achieved for most amount fractions generated. The system has been used in an international comparison and demonstrates excellent comparability with National Metrology Institutes maintaining standards of water vapor in this range using other methods.

  3. The Effect of Water Table Fluctuation and its Salinity on Fe Crystal and Noncrystal in some Khuzestan Soils

    Directory of Open Access Journals (Sweden)

    mostafa Pajohannia

    2017-01-01

    Full Text Available Introduction: Iron is found in different forms in the soil. In the primary minerals, iron is found as Fe3+ or Fe2+ which converted to Fe2+ and released in unsuitable reduction conditions. Minerals such as sulfide or chlorine and bicarbonate can affect and change the different forms soil Fe. FeAs these elements are abundance in groundwater or soil, they are capable to react chemically with Fe and change different Fe forms and also may deposit or even leach them by increasing its solubility in the soil. Water table fluctuation is a regular phenomenon in Khuzestan that Fe forms change under these situations. The study of Fe oxide forms and its changes can be applied for evaluation of soil development. Therefore, the aim of this study is the water table fluctuation and its quality effects, and some physio-chemical properties on Fe oxides forms in non-saline and saline soils in Khuzestan. Materials and Methods: Soil samples were collected from two regions: saline (Abdolkhan and non-saline (South Susa regions. soil samples were collected from all horizons of 12 soil field studied profiles . The samples were analyzed for soil texture, pH, EC (soil: water ratio 1:5, organic carbon and aggregate stability (Kemper and Rosenau method. Fe forms also were extracted by two methods in all samples: di-tyonite sodium and ammonium oxalate extraction. Fe oxalate extracted was related to Feo (non crystal Fe and Fed-Feo was related to Fec (crystalline Fe. The Fe content were determined by atomic absorbtion spectrophotometer (AAS. Data were analysis in SAS and Excel software and results were presented. Results and Discussion: The results showed that texture were loamy sand to silty clay loam, OM was very poor (0.1-0.7%. The soil salinity was also 2.8-16.8 dS/m. Calcium carbonate equivalent was 38-40%. All pedons were classified in Entisols and Inceptisols according to Keys to soil taxonomy (2010. The results showed that the proportion of Fe with oxalate to di

  4. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  5. Comparison of groundwater transit velocity estimates from flux theory and water table recession based approaches for solute transport.

    Science.gov (United States)

    Rasiah, Velu; Armour, John David

    2013-02-15

    Reliable information in transit time (TT) derived from transit velocity (TV) for rain or irrigation water to mix with groundwater (GW) and the subsequent discharge to surface water bodies (SWB) is essential to address the issues associated with the transport of nutrients, particularly nitrate, from GW to SWB. The objectives of this study are to (i) compare the TV estimates obtained using flux theory-based (FT) approach with the water table rise/recession (WT) rate approach and (ii) explore the impact of the differences on solute transport from GW to SWB. The results from a study conducted during two rainy seasons in the northeast humid tropics of Queensland, Australia, showed the TV varied in space and over time and the variations depended on the estimation procedures. The lateral TV computed using the WT approach ranged from 1.00 × 10(-3) to 2.82 × 10(-1) m/d with a mean of 6.18 × 10(-2) m/d compared with 2.90 × 10(-4) to 5.15 × 10(-2) m/d for FT with a mean of 2.63 × 10(-2) m/d. The vertical TV ranged from 2.00 × 10(-3) to 6.02 × 10(-1) m/d with a mean of 1.28 × 10(-1) m/d for the WT compared with 6.76 × 10(-3)-1.78 m/d for the FT with a mean of 2.73 × 10(-1) m/d. These differences are attributed to the role played by different flow pathways. The bypass flow pathway played a role only in WT but not in FT. Approximately 86-95% of the variability in lateral solute transport was accounted for by the lateral TV and the total recession between two consecutive major rainfall events. A comparison of TT from FT and WT approaches indicated the laterally transported nitrate from the GW to the nearby creek was relatively 'new', implying the opportunity for accumulation and to undergo biochemical reactions in GW was low. The results indicated the WT approach produced more reliable TT estimates than FT in the presence of bypass flow pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments

    Science.gov (United States)

    Chen, Zhanlong; Wu, Xin-cai; Wu, Liang

    2008-12-01

    Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the

  7. Testing of components on the shaking table facilities of AEP and contribution to full scale dynamic testing of Kozloduy NPP. Final report

    International Nuclear Information System (INIS)

    Ambriashvili, Y.

    1996-01-01

    This final report summarizes the results of components testing on the shaking table facilities of 'Atomenergoproject' which are considered as a contribution to the full scale dynamic testing of the Kozloduy nuclear power plant Units 5 and 6. It was designed on 1.0 g according to the calculations that were based on accelerograms which included artificial and already known recordings of real earthquakes. Maximum acceleration of the designed spectrum and new spectrum which are recommended are now within the range of frequencies 2.5-20 Hz. Active reactor and the primary loop are seismic stable as well as the tested equipment tested by 'Atomenergoproject'

  8. Ground-Penetrating-Radar Profiles of Interior Alaska Highways: Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost

    Science.gov (United States)

    2016-08-01

    along either massive ice surfaces or within sections of segregated ice. The uninsulated ice surface at Tok in Figure 17B is irregular. All of the...ER D C/ CR RE L TR -1 6- 14 ERDC’s Center-Directed Research Program Ground -Penetrating-Radar Profiles of Interior Alaska Highways...August 2016 Ground -Penetrating-Radar Profiles of Interior Alaska Highways Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw

  9. Dynamic surface water-groundwater exchange and nitrogen transport in the riparian aquifer of a tidal river

    Science.gov (United States)

    Sawyer, A. H.; Barnes, R.; Wallace, C.; Knights, D.; Tight, D.; Bayer, M.

    2017-12-01

    Tides in coastal rivers can propagate tens to hundreds of kilometers inland and drive large daily changes in water and nitrogen exchange across the sediment-water interface. We use field observations and numerical models to illuminate hydrodynamic controls on nitrogen export from the riparian aquifer to a fresh, tidal reach of White Clay Creek (Delaware, USA). In the banks, an aerobic zone with high groundwater nitrate concentrations occurs near the fluctuating water table. Continuous depth-resolved measurements of redox potential suggest that this zone is relatively stable over tidal timescales but moves up or down in response to storms. The main source of dissolved oxygen is soil air that is imbibed in the zone of water table fluctuations, and the source of nitrate is likely nitrification of ammonium produced locally from the mineralization of organic matter in floodplain soils. Much of the nitrate is removed by denitrification along oscillating flow paths towards the channel. Within centimeters of the sediment-water interface, denitrification is limited by the mixing of groundwater with oxygen-rich river water. Our models predict that the benthic zones of tidal rivers play an important role in removing new nitrate inputs from discharging groundwater but may be less effective at removing nitrate from river water. Nitrate removal and production rates are expected to vary significantly along tidal rivers as permeability, organic matter content, tidal range vary. It is imperative that we understand nitrogen dynamics along tidal rivers and their role in nitrogen export to the coast.

  10. Molecular Dynamics Simulations of Water Droplets On Hydrophilic Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water, at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle computations...... dynamics (MD) simulations of a hydrophilic air-water-silica system using the MD package FASTTUBE. We employ quantum chemistry calculation to obtain air-silica interaction parameters for the simulations. Our simulations are based in the following force fields: i) The silica-silica interaction is based...... of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems. For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence of air. Hence...

  11. Water Dynamics in the Hydration Shells of Biomolecules

    Science.gov (United States)

    2017-01-01

    The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water. PMID:28248491

  12. Dynamic response of IPEN experimental water loop

    International Nuclear Information System (INIS)

    Faya, A.J.G.; Bassel, W.S.

    1982-10-01

    A mathematical model has been developed to analyze the transient thermal response of the I.P.E.N. water loop during change of power operations. The model is capable of estimating the necessary test section power and heat exchanger mass flow rate for a given operating temperature. It can also determine the maximum heating or cooling rate to avoid thermal shocks in pipes and components. (Author) [pt

  13. Bulk water freezing dynamics on superhydrophobic surfaces

    Science.gov (United States)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  14. Accounting for intracell flow in models with emphasis on water table recharge and stream-aquifer interaction: 1. Problems and concepts

    Science.gov (United States)

    Jorgensen, Donald G.; Signor, Donald C.; Imes, Jeffrey L.

    1989-01-01

    Intracell flow is important in modeling cells that contain both sources and sinks. Special attention is needed if recharge through the water table is a source. One method of modeling multiple sources and sinks is to determine the net recharge per cell. For example, for a model cell containing both a sink and recharge through the water table, the amount of recharge should be reduced by the ratio of the area of influence of the sink within the cell to the area of the cell. The reduction is the intercepted portion of the recharge. In a multilayer model this amount is further reduced by a proportion factor, which is a function of the depth of the flow lines from the water table boundary to the internal sink. A gaining section of a stream is a typical sink. The aquifer contribution to a gaining stream can be conceptualized as having two parts; the first part is the intercepted lateral flow from the water table and the second is the flow across the streambed due to differences in head between the water level in the stream and the aquifer below. The amount intercepted is a function of the geometry of the cell, but the amount due to difference in head across the stream bed is largely independent of cell geometry. A discharging well can intercept recharge through the water table within a model cell. The net recharge to the cell would be reduced in proportion to the area of influence of the well within the cell. The area of influence generally changes with time. Thus the amount of intercepted recharge and net recharge may not be constant with time. During periods when the well is not discharging there will be no intercepted recharge even though the area of influence from previous pumping may still exist. The reduction of net recharge per cell due to internal interception of flow will result in a model-calculated mass balance less than the prototype. Additionally the “effective transmissivity” along the intercell flow paths may be altered when flow paths are occupied by

  15. Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation

    Science.gov (United States)

    2014-01-01

    Protein hydration shell dynamics play an important role in biochemical processes including protein folding, enzyme function, and molecular recognition. We present here a comparison of the reorientation dynamics of individual water molecules within the hydration shell of a series of globular proteins: acetylcholinesterase, subtilisin Carlsberg, lysozyme, and ubiquitin. Molecular dynamics simulations and analytical models are used to access site-resolved information on hydration shell dynamics and to elucidate the molecular origins of the dynamical perturbation of hydration shell water relative to bulk water. We show that all four proteins have very similar hydration shell dynamics, despite their wide range of sizes and functions, and differing secondary structures. We demonstrate that this arises from the similar local surface topology and surface chemical composition of the four proteins, and that such local factors alone are sufficient to rationalize the hydration shell dynamics. We propose that these conclusions can be generalized to a wide range of globular proteins. We also show that protein conformational fluctuations induce a dynamical heterogeneity within the hydration layer. We finally address the effect of confinement on hydration shell dynamics via a site-resolved analysis and connect our results to experiments via the calculation of two-dimensional infrared spectra. PMID:24479585

  16. Molecular Dynamics Simulations of Water Nanodroplets on Silica Surfaces

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.

    2009-01-01

    and DNA microarrays technologies.4,5,6,7,8 Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water,2,9-16 at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle...... computations of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems.3,16,17,18 For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence...

  17. Nonlinear dynamics of boiling water reactors

    International Nuclear Information System (INIS)

    March-Leuba, J.; Cacuci, D.G.; Perez, R.B.

    1983-01-01

    Recent stability tests in Boiling Water Reactors (BWRs) have indicated that these reactors can exhibit the special nonlinear behavior of following a closed trajectory called limit cycle. The existence of a limit cycle corresponds to an oscillation of fixed amplitude and period. During these tests, such oscillations had their amplitudes limited to about +- 15% of the operating power. Since limit cycles are fairly insensitive to parameter variations, it is possible to operate a BWR under conditions that sustain a limit cycle (of fixed amplitude and period) over a finite range of reactor parameters

  18. Collective dynamics of protein hydration water by brillouin neutron spectroscopy.

    Science.gov (United States)

    Orecchini, Andrea; Paciaroni, Alessandro; De Francesco, Alessio; Petrillo, Caterina; Sacchetti, Francesco

    2009-04-08

    By a detailed experimental study of THz dynamics in the ribonuclease protein, we could detect the propagation of coherent collective density fluctuations within the protein hydration shell. The emerging picture indicates the presence of both a dispersing mode, traveling with a speed greater than 3000 m/s, and a nondispersing one, characterized by an almost constant energy of 6-7 meV. In agreement with molecular dynamics simulations [Phys. Rev. Lett. 2002, 89, 275501], the features of the dispersion curves closely resemble those observed in pure liquid water [Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2004, 69, 061203]. On the contrary, the observed damping factors are much larger than in bulk water, with the dispersing mode becoming overdamped at Q = 0.6 A(-1) already. Such novel experimental findings are discussed as a dynamic signature of the disordering effect induced by the protein surface on the local structure of water.

  19. Environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks, New Jersey Coastal Plain, USA: migration to the water table.

    Science.gov (United States)

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman

    2010-01-01

    Fate of radium (Ra) in liquid regeneration brine wastes from water softeners disposed to septic tanks in the New Jersey Coastal Plain was studied. Before treatment, combined Ra ((226)Ra plus (228)Ra) concentrations (maximum, 1.54 Bq L(-1)) exceeded the 0.185 Bq L(-1) Maximum Contaminant Level in 4 of 10 studied domestic-well waters (median pH, 4.90). At the water table downgradient from leachfields, combined Ra concentrations were low (commonly 5.3, indicating sequestration; when pH was septic-tank effluents (maximum, 0.243 Bq L(-1))), indicating Ra mobilization from leachfield sediments. Confidence in quantification of Ra mass balance was reduced by study design limitations, including synoptic sampling of effluents and ground waters, and large uncertainties associated with analytical methods. The trend of Ra mobilization in acidic environments does match observations from regional water-quality assessments.

  20. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Inman, Daniel; Warner, Ethan; Stright, Dana; Macknick, Jordan; Peck, Corey

    2016-07-01

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of many feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user

  1. Study on seismic stability of seawall in man-made island. Pt. 1. Shaking table tests on dynamic behavior of seawall constructed on the bedrock

    International Nuclear Information System (INIS)

    Tochigi, Hitoshi; Kanatani, Mamoru; Kawai, Tadashi

    1999-01-01

    In the development of siting technology for off-shore nuclear power plants on man-made island, assessing the stability of seawall which ensures the safety of backfill ground against ocean waves and earthquakes is indispensable. In assessing seismic stability of seawall, evaluation of dynamic nonlinear behavior like sliding and settlement is an important factor. For this purpose, shake-table tests of seawall model have been carried out. By the experiments in the case of well compacted backfill ground, it is indicated that dynamic failure of caisson type seawall constructed on the strong seabed ground is mainly induced by the sliding of caisson toward the sea and followed by the settlement of backfill ground. And as the influence of armour embankment on the seismic stability of seawall, we experimentally showed that the sliding displacement of caisson during earthquake is reduced by the lateral pressure of armour units and armour embankment works effectively to rise up earthquake resistance capability of seawall. (author)

  2. Molecular mechanisms of water table lowering and nitrogen deposition in affecting greenhouse gas emissions from a Tibetan alpine wetland.

    Science.gov (United States)

    Wang, Hao; Yu, Lingfei; Zhang, Zhenhua; Liu, Wei; Chen, Litong; Cao, Guangmin; Yue, Haowei; Zhou, Jizhong; Yang, Yunfeng; Tang, Yanhong; He, Jin-Sheng

    2017-02-01

    Rapid climate change and intensified human activities have resulted in water table lowering (WTL) and enhanced nitrogen (N) deposition in Tibetan alpine wetlands. These changes may alter the magnitude and direction of greenhouse gas (GHG) emissions, affecting the climate impact of these fragile ecosystems. We conducted a mesocosm experiment combined with a metagenomics approach (GeoChip 5.0) to elucidate the effects of WTL (-20 cm relative to control) and N deposition (30 kg N ha -1  yr -1 ) on carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) fluxes as well as the underlying mechanisms. Our results showed that WTL reduced CH 4 emissions by 57.4% averaged over three growing seasons compared with no-WTL plots, but had no significant effect on net CO 2 uptake or N 2 O flux. N deposition increased net CO 2 uptake by 25.2% in comparison with no-N deposition plots and turned the mesocosms from N 2 O sinks to N 2 O sources, but had little influence on CH 4 emissions. The interactions between WTL and N deposition were not detected in all GHG emissions. As a result, WTL and N deposition both reduced the global warming potential (GWP) of growing season GHG budgets on a 100-year time horizon, but via different mechanisms. WTL reduced GWP from 337.3 to -480.1 g CO 2 -eq m -2 mostly because of decreased CH 4 emissions, while N deposition reduced GWP from 21.0 to -163.8 g CO 2 -eq m -2 , mainly owing to increased net CO 2 uptake. GeoChip analysis revealed that decreased CH 4 production potential, rather than increased CH 4 oxidation potential, may lead to the reduction in net CH 4 emissions, and decreased nitrification potential and increased denitrification potential affected N 2 O fluxes under WTL conditions. Our study highlights the importance of microbial mechanisms in regulating ecosystem-scale GHG responses to environmental changes. © 2016 John Wiley & Sons Ltd.

  3. Structure from Dynamics: Vibrational Dynamics of Interfacial Water as a Probe of Aqueous Heterogeneity

    Science.gov (United States)

    2018-01-01

    The structural heterogeneity of water at various interfaces can be revealed by time-resolved sum-frequency generation spectroscopy. The vibrational dynamics of the O–H stretch vibration of interfacial water can reflect structural variations. Specifically, the vibrational lifetime is typically found to increase with increasing frequency of the O–H stretch vibration, which can report on the hydrogen-bonding heterogeneity of water. We compare and contrast vibrational dynamics of water in contact with various surfaces, including vapor, biomolecules, and solid interfaces. The results reveal that variations in the vibrational lifetime with vibrational frequency are very typical, and can frequently be accounted for by the bulk-like heterogeneous response of interfacial water. Specific interfaces exist, however, for which the behavior is less straightforward. These insights into the heterogeneity of interfacial water thus obtained contribute to a better understanding of complex phenomena taking place at aqueous interfaces, such as photocatalytic reactions and protein folding. PMID:29490138

  4. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  5. Nonlinear dynamics of rotating shallow water methods and advances

    CERN Document Server

    Zeitlin, Vladimir

    2007-01-01

    The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa

  6. Optimizing basin-scale coupled water quantity and water quality management with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo

    2015-01-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth......-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water...... quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen...

  7. Water Tunnel Studies of Dynamic Wing Flap Effects

    Science.gov (United States)

    2016-06-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WATER TUNNEL...Master’s Thesis 4. TITLE AND SUBTITLE WATER TUNNEL STUDIES OF DYNAMIC WING FLAP EFFECTS 5. FUNDING NUMBERS 6. AUTHOR(S) Edgar E. González 7. PERFORMING...ABSTRACT (maximum 200 words ) The flow features developing over a two-element NACA 0012 airfoil, with the rear portion serving as a trailing edge flap

  8. Temporal dynamics of blue and green virtual water trade networks

    Science.gov (United States)

    Konar, M.; Dalin, C.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2012-12-01

    Global food security increasingly relies on the trade of food commodities. Freshwater resources are essential to agricultural production and are thus embodied in the trade of food commodities, referred to as "virtual water trade." Agricultural production predominantly relies on rainwater (i.e., "green water"), though irrigation (i.e., "blue water") does play an important role. These different sources of water have distinctly different opportunity costs, which may be reflected in the way these resources are traded. Thus, the temporal dynamics of the virtual water trade networks from these distinct water sources require characterization. We find that 42 × 109 m3 blue and 310 × 109 m3 green water was traded in 1986, growing to 78 × 109 m3 blue and 594 × 109 m3 green water traded in 2008. Three nations dominate the export of green water resources: the USA, Argentina, and Brazil. As a country increases its export trade partners it tends to export relatively more blue water. However, as a country increases its import trade partners it does not preferentially import water from a specific source. The amount of virtual water that a country imports by increasing its import trade partners has been decreasing over time, with the exception of the soy trade. Both blue and green virtual water networks are efficient: 119 × 109 m3 blue and 105 × 109 m3 green water were saved in 2008. Importantly, trade has been increasingly saving water over time, due to the intensification of crop trade on more water-efficient links.

  9. Evaluating water conservation and reuse policies using a dynamic water balance model.

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  10. Dynamic Stabilization of Metal Oxide–Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    McBriarty, Martin E.; von Rudorff, Guido Falk; Stubbs, Joanne E.; Eng, Peter J.; Blumberger, Jochen; Rosso, Kevin M.

    2017-02-08

    The interaction of water with metal oxide surfaces plays a crucial role in the catalytic and geochemical behavior of metal oxides. In a vast majority of studies, the interfacial structure is assumed to arise from a relatively static lowest energy configuration of atoms, even at room temperature. Using hematite (α-Fe2O3) as a model oxide, we show through a direct comparison of in situ synchrotron X-ray scattering with density functional theory-based molecular dynamics simulations that the structure of the (1102) termination is dynamically stabilized by picosecond water exchange. Simulations show frequent exchanges between terminal aquo groups and adsorbed water in locations and with partial residence times consistent with experimentally determined atomic sites and fractional occupancies. Frequent water exchange occurs even for an ultrathin adsorbed water film persisting on the surface under a dry atmosphere. The resulting time-averaged interfacial structure consists of a ridged lateral arrangement of adsorbed water molecules hydrogen bonded to terminal aquo groups. Surface pKa prediction based on bond valence analysis suggests that water exchange will influence the proton-transfer reactions underlying the acid/base reactivity at the interface. Our findings provide important new insights for understanding complex interfacial chemical processes at metal oxide–water interfaces.

  11. Scanning table

    CERN Multimedia

    1960-01-01

    Before the invention of wire chambers, particles tracks were analysed on scanning tables like this one. Today, the process is electronic and much faster. Bubble chamber film - currently available - (links can be found below) was used for this analysis of the particle tracks.

  12. Socioeconomic dynamics of water quality in the Egyptian Nile

    Science.gov (United States)

    Malik, Maheen; Nisar, Zainab; Karakatsanis, Georgios

    2016-04-01

    The Nile River remains the most important source of freshwater for Egypt as it accounts for nearly all of the country's drinking and irrigation water. About 95% of the total population is accounted to live along the Banks of the Nile(1). Therefore, water quality deterioration in addition to general natural scarcity of water in the region(2) is the main driver for carrying out this study. What further aggravates this issue is the water conflict in the Blue Nile region. The study evaluates different water quality parameters and their concentrations in the Egyptian Nile; further assessing the temporal dynamics of water quality in the area with (a) the Environmental Kuznets Curve (EKC)(3) and (b) the Jevons Paradox (JP)(4) in order to identify water quality improvements or degradations using selected socioeconomic variables(5). For this purpose various environmental indicators including BOD, COD, DO, Phosphorus and TDS were plotted against different economic variables including Population, Gross Domestic Product (GDP), Annual Fresh Water Withdrawal and Improved Water Source. Mathematically, this was expressed by 2nd and 3rd degree polynomial regressions generating the EKC and JP respectively. The basic goal of the regression analysis is to model and highlight the dynamic trend of water quality indicators in relation to their established permissible limits, which will allow the identification of optimal future water quality policies. The results clearly indicate that the dependency of water quality indicators on socioeconomic variables differs for every indicator; while COD was above the permissible limits in all the cases despite of its decreasing trend in each case, BOD and phosphate signified increasing concentrations for the future, if they continue to follow the present trend. This could be an indication of rebound effect explained by the Jevons Paradox i.e. water quality deterioration after its improvement, either due to increase of population or intensification

  13. Long-term rise of the Water Table in the Northeast US: Climate Variability, Land-Use Change, or Angry Beavers?

    Science.gov (United States)

    Boutt, D. F.

    2011-12-01

    The scientific evidence that humans are directly influencing the Earth's natural climate is increasingly compelling. Numerous studies suggest that climate change will lead to changes in the seasonality of surface water availability thereby increasing the need for groundwater development to offset those shortages. Research suggests that the Northeast region of the U.S. is experiencing significant changes to its' natural climate and hydrologic systems. Previous analysis of a long-term regional compilation of the water table response to the last 60 years of climate variability in New England documented a wide range of variability. The investigation evaluated the physical mechanisms, natural variability and response of aquifers in New England using 100 long term groundwater monitoring stations with 20 or more years of data coupled with 67 stream gages, 75 precipitation stations, and 43 temperature stations. Groundwater trends were calculated as normalized anomalies and analyzed with respect to regional compiled precipitation, temperature, and streamflow anomalies to understand the sensitivity of the aquifer systems to change. Interestingly, a trend and regression analysis demonstrate that water level fluctuations are producing statistically significant results with increasing water levels over at least the past thirty years at most (80 out of 100) well sites. In this contribution we investigate the causal mechanisms behind the observed ground water level trends using site-by-site land-use change assessments, cluster analysis, and spatial analysis of beaver populations (a possible proxy for beaver activity). Regionally, average annual precipitation has been slightly increasing since 1900, with 95% of the stations having statistically significant positive trends. Despite this, no correlation is observed between the magnitude of the annual precipitation trends and the magnitude of the groundwater level changes. Land-use change throughout the region has primarily taken

  14. Dynamic water accounting in heavily committed river basins

    Science.gov (United States)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  15. Dynamics of Biofilm Regrowth in Drinking Water Distribution Systems.

    Science.gov (United States)

    Douterelo, I; Husband, S; Loza, V; Boxall, J

    2016-07-15

    The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment, yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics, with findings demonstrating patterns of material accumulation, seasonality, and influential factors. Rigorous flushing operations repeated over a 1-year period on an operational chlorinated system in the United Kingdom are presented here. Intensive monitoring and sampling were undertaken, including time-series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. The results show that bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals, and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to residual chlorine, this suggests that limiting inorganic nutrients, rather than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, giving another reason for flushing being a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimize asset performance. This research provides novel information regarding the dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimize the performance of the distribution network and to guarantee safe and good-quality drinking water to consumers. Copyright © 2016 Douterelo et al.

  16. Is dynamic heterogeneity of water in presence of a protein ...

    Indian Academy of Sciences (India)

    Abstract. Rotational and translational dynamic heterogeneities (DHs) of ambient aqueous solutions of trimethylamine-N-oxide (TMAO) and tetramethylurea (TMU) at several solute concentrations have been inves- tigated and compared. Motional characteristics of water molecules at solute interfaces and in bulk solutions.

  17. Analysis of Dynamic Characteristics of Water Injection Pump

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Myeong; Lee, Jeong Hoon; Ha, Jeong Min; Ahn, Byung Hyun; Kim, Won Cheol; Choi, Byeong Keun [Gyeongsang Nat' l Univ., Jinju (Korea, Republic of)

    2013-12-15

    Water injection pump outputs oil with high pressure during this process, seawater is injected into the well to recover the well pressure and maintain high productivity. A water injection pump has high productivity, and herefore, it serves as a key piece of equipment in marine plants. In this light, water injection pumps are being studied widely in industry. In this study, the rotor dynamics is analyzed to determine the natural frequency according to the bearing stiffness and operation speed change. This study aims to establish the pump reliability through critical speed, stability, and unbalance response analysis.

  18. Soil Water Dynamics In Central Europe and Brazil

    DEFF Research Database (Denmark)

    Klein, Markus; Mahler, Claudio F.; Trapp, Stefan

    2000-01-01

    The comprehension of the soil water dynamics is important for the study of environmental processes. Precipitation, temperature, and water balance of Rio de Janeiro, Southeast Brazil and locations in Germany, Central Europe, are significantly different. Experience from one region could not be used...... on both approaches are applied to an actual case with the conditions in Germany. This case is also analyzed under the conditions of Rio de Janeiro. The effects of tropical environmental conditions on water transport in unsaturated soils are also discussed....

  19. Molecular dynamics simulations of lysozyme in water/sugar solutions

    Energy Technology Data Exchange (ETDEWEB)

    Lerbret, A. [Department of Food Science, Cornell University, 101 Stocking Hall, Ithaca, NY 14853 (United States); Affouard, F. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, Universite Lille I, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: frederic.affouard@univ-lille1.fr; Bordat, P. [Laboratoire de Chimie Theorique et de Physico-Chimie Moleculaire, UMR 5624, Universite de Pau et des Pays de l' Adour, 64000 Pau (France); Hedoux, A.; Guinet, Y.; Descamps, M. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, Universite Lille I, 59655 Villeneuve d' Ascq Cedex (France)

    2008-04-18

    Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface.

  20. A Country-Specific Water Consumption Inventory Considering International Trade in Asian Countries Using a Multi-Regional Input-Output Table

    Directory of Open Access Journals (Sweden)

    Yuya Ono

    2017-08-01

    Full Text Available Interest in the impacts of water use in the life cycle of products and services are increasing among various stakeholders. The water footprint is a tool to identify critical and effective points for reducing the impact of water use through the entire life cycle of products, services, and organizations. The purpose of this study was to develop a water consumption inventory database that focused on identifying of Asian water consumption using an input-output (IO framework. An Asia International Input-Output table (AIIO was applied in this study. The amount of water consumption required for agricultural products was estimated by modeling; for other sectors it was estimated from statistical reports. The intensities of direct water consumption in each sector were calculated by dividing the amount of water consumption by the domestic production. Based on the IO analysis using Leontief’s inverse matrix, the intensities of water consumption from cradle to gate were estimated for all goods and services. There was high intensity of water consumption in the primary industry sectors, together with a high dependency on rainwater as an input water source. The water consumption intensities generally showed a larger reduction in secondary sectors, in comparison with the tertiary sectors, due to the use of recycled water. There were differences between this study and previous studies due to the use of site-specific production data and the temporal resolution of crop production. By considering site-specific conditions, it is expected that the dataset developed here can be used for estimating the water footprint of products, services, and organizations in nine countries (Japan, South Korea, China, Taiwan, Thailand, the Philippines, Malaysia, Singapore, Indonesia, and USA.

  1. Water dynamics in a bean crop (Phaseolus vulgaris)

    International Nuclear Information System (INIS)

    Calvache, Marcelo; Garcia, Carlos.

    1987-01-01

    The dynamics of water was studied at 'La Tola', Experimental Teaching Center of the Central University of Ecuador, in a Sandy-Ioan, typic Haplustoll soil, in wich beans were growing. All the components of the crop water balance were determined. Real evapotranspiration was in direct relation to the growth of the crop, reaching its maximum value of 4.9 mm day-1, at pod setting, then decreasing slowly until maturation of the kernels. Up to 1 meter depth, water loss by drainage depended on rainfall, reaching up to 24% of the total water loss: the soil layer supplying most of the water for the use of the crop was between 0-40 cm, where the root activity was greatest

  2. Transcriptome Dynamics of Pseudomonas putida KT2440 under Water Stress

    DEFF Research Database (Denmark)

    Gülez, Gamze; Dechesne, Arnaud; Workman, Christopher

    2012-01-01

    Water deprivation can be a major stressor to microbial life in surface and subsurface soil. In unsaturated soils, the matric potential (Ψm) is often the main component of the water potential, which measures the thermodynamic availability of water. A low matric potential usually translates...... into water forming thin liquid films in the soil pores. Little is known of how bacteria respond to such conditions, where, in addition to facing water deprivation that might impair their metabolism, they have to adapt their dispersal strategy as swimming motility may be compromised. Using the pressurized...... porous surface model (PPSM), which allows creation of thin liquid films by controlling Ψm, we examined the transcriptome dynamics of Pseudomonas putida KT2440. We identified the differentially expressed genes in cells exposed to a mild matric stress (–0.4 MPa) for 4, 24, or 72 h. The major response...

  3. Hot Water after the Cold War – Water Policy Dynamics in (Semi-Authoritarian States

    Directory of Open Access Journals (Sweden)

    Peter P. Mollinga

    2010-10-01

    Full Text Available This introductory article of the special section introduces the central question that the section addresses: do water policy dynamics in (semi-authoritarian states have specific features as compared to other state forms? The article situates the question in the post-Cold War global water governance dynamics, argues that the state is a useful and required entry point for water policy analysis, explores the meaning of (semi-authoritarian as a category, and finally introduces the three papers, which are on China, South Africa and Vietnam.

  4. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Wei Gu; Garcia, A.E.; Schoenborn, B.P. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies.

  5. Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin

    International Nuclear Information System (INIS)

    Wei Gu; Garcia, A.E.; Schoenborn, B.P.

    1994-01-01

    Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies

  6. Water, gravity and trees: Relationship of tree-ring widths and total water storage dynamics

    Science.gov (United States)

    Creutzfeldt, B.; Heinrich, I.; Merz, B.; Blume, T.; Güntner, A.

    2012-04-01

    Water stored in the subsurface as groundwater or soil moisture is the main fresh water source not only for drinking water and food production but also for the natural vegetation. In a changing environment water availability becomes a critical issue in many different regions. Long-term observations of the past are needed to improve the understanding of the hydrological system and the prediction of future developments. Tree ring data have repeatedly proved to be valuable sources for reconstructing long-term climate dynamics, e.g. temperature, precipitation and different hydrological variables. In water-limited environments, tree growth is primarily influenced by total water stored in the subsurface and hence, tree-ring records usually contain information about subsurface water storage. The challenge is to retrieve the information on total water storage from tree rings, because a training dataset of water stored in the sub-surface is required for calibration against the tree-ring series. However, measuring water stored in the subsurface is notoriously difficult. We here present high-precision temporal gravimeter measurements which allow for the depth-integrated quantification of total water storage dynamics at the field scale. In this study, we evaluate the relationship of total water storage change and tree ring growth also in the context of the complex interactions of other meteorological forcing factors. A tree-ring chronology was derived from a Norway spruce stand in the Bavarian Forest, Germany. Total water storage dynamics were measured directly by the superconducting gravimeter of the Geodetic Observatory Wettzell for a 9-years period. Time series were extended to 63-years period by a hydrological model using gravity data as the only calibration constrain. Finally, water storage changes were reconstructed based on the relationship between the hydrological model and the tree-ring chronology. Measurement results indicate that tree-ring growth is primarily

  7. Water Quality Dynamics of Urban Water Bodies during Flooding in Can Tho City, Vietnam

    Directory of Open Access Journals (Sweden)

    Hong Quan Nguyen

    2017-04-01

    Full Text Available Water pollution associated with flooding is one of the major problems in cities in the global South. However, studies of water quality dynamics during flood events are not often reported in literature, probably due to difficult conditions for sampling during flood events. Water quality parameters in open water (canals, rivers, and lakes, flood water on roads and water in sewers have been monitored during the extreme fluvial flood event on 7 October 2013 in the city of Can Tho, Vietnam. This is the pioneering study of urban flood water pollution in real time in Vietnam. The results showed that water quality is very dynamic during flooding, especially at the beginning of the event. In addition, it was observed that the pathogen and contaminant levels in the flood water are almost as high as in sewers. The findings show that population exposed to flood water runs a health risk that is nearly equal to that of being in contact with sewer water. Therefore, the people of Can Tho not only face physical risk due to flooding, but are also exposed to health risks.

  8. Assessment of denitrification gaseous end-products in the soil profile under two water table management practices using repeated measures analysis.

    Science.gov (United States)

    Elmi, Abdirashid A; Astatkie, Tess; Madramootoo, Chandra; Gordon, Robert; Burton, David

    2005-01-01

    The denitrification process and nitrous oxide (N2O) production in the soil profile are poorly documented because most research into denitrification has concentrated on the upper soil layer (0-0.15 m). This study, undertaken during the 1999 and 2000 growing seasons, was designed to examine the effects of water table management (WTM), nitrogen (N) application rate, and depth (0.15, 0.30, and 0.45 m) on soil denitrification end-products (N2O and N2) from a corn (Zea mays L.) field. Water table management treatments were free drainage (FD) with open drains and subirrigation (SI) with a target water table depth of 0.6 m. Fertility treatments (ammonium nitrate) were 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). During both growing seasons greater denitrification rates were measured in SI than in FD, particularly in the surface soil (0-0.15 m) and at the intermediate (0.15-0.30 m) soil depths under N200 treatment. Greater denitrification rates under the SI treatment, however, were not accompanied with greater N2O production. The decrease in N2O production under SI was probably caused by a more complete reduction of N2O to N2, which resulted in lower N2O to (N2O + N2) ratios. Denitrification rate, N2O production and N2O to (N2O + N2) ratios were only minimally affected by N treatments, irrespective of sampling date and soil depth. Overall, half of the denitrification occurred at the 0.15- to 0.30- and 0.30- to 0.45-m soil layers, and under SI, regardless of fertility treatment level. Consequently, sampling of the 0- to 0.15-m soil layer alone may not give an accurate estimation of denitrification losses under SI practice.

  9. Water-table and potentiometric-surface altitudes in the upper glacial, Magothy, and Lloyd aquifers of Long Island, New York, April–May 2016

    Science.gov (United States)

    Como, Michael D.; Finkelstein, Jason S.; Rivera, Simonette L.; Monti, Jack; Busciolano, Ronald J.

    2018-06-06

    The U.S. Geological Survey, in cooperation with State and local agencies, systematically collects groundwater data at varying measurement frequencies to monitor the hydrologic conditions on Long Island, New York. Each year during April and May, the U.S. Geological Survey completes a synoptic survey of water levels to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island—the upper glacial, Magothy, and Lloyd aquifers—and the hydraulically connected Jameco and North Shore aquifers. These data and the maps constructed from them are commonly used in studies of the hydrology of Long Island and are used by water managers and suppliers for aquifer management and planning purposes.Water-level measurements made in 424 monitoring wells (observation and supply wells), 13 streamgages, and 2 lake gages across Long Island during April–May 2016 were used to prepare the maps in this report. Groundwater measurements were made by the wetted-tape or electric-tape method to the nearest hundredth of a foot. Contours of water-table and potentiometric-surface altitudes were created using the groundwater measurements. The water-table contours were interpreted using water-level data collected from 275 observation wells and 1 supply well screened in the upper glacial aquifer and the shallow Magothy aquifer and 13 streamgages and 2 lake gages. The potentiometric-surface contours of the Magothy aquifer were interpreted from measurements at 88 wells (61 observation wells and 27 supply wells) screened in the middle to deep Magothy aquifer and the contiguous and hydraulically connected Jameco aquifer. The potentiometric-surface contours of the Lloyd aquifer were interpreted from measurements at 60 wells (55 observation wells and 5 supply wells) screened in the Lloyd aquifer and the contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and

  10. Dynamic Stabilization of Metal Oxide–Water Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    McBriarty, Martin E.; von Rudorff, Guido Falk; Stubbs, Joanne; Eng, Peter; Blumberger, Jochen; Rosso, Kevin M.

    2017-02-08

    Metal oxide growth, dissolution, and redox reactivity depend on the structure and dynamics at the interface with aqueous solution. We present the most definitive analysis to date of the hydrated naturally abundant r-cut (11$\\bar{0}$2) termination of the iron oxide hematite (α-Fe2O3). In situ synchrotron X-ray scattering analysis reveals a ridged lateral arrangement of adsorbed water molecules hydrogen bonded to terminal aquo groups. Large-scale hybrid-functional density functional theory-based molecular dynamics (DFT-MD) simulations show how this structure is dynamically stabilized by picosecond exchange between aquo groups and adsorbed water, even under nominally dry conditions. Surface pKa prediction based on bond valence analysis suggests that water exchange may influence the proton transfer reactions associated with acid/base reactivity at the interface. Our findings rectify inconsistencies between existing models and may be extended to resolving more complex electrochemical phenomena at metal oxide-water interfaces.

  11. Effects of Dimerization of Serratia marcescens Endonuclease on Water Dynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuanying; Beck, Brian W.; Krause, Kurt; Weksberg, Tiffany E.; Pettitt, Bernard M.

    2007-02-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we show that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.

  12. Depth dependent microbial carbon use efficiency in the capillary fringe as affected by water table fluctuations in a column incubation experiment

    Science.gov (United States)

    Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the

  13. Validation of the dynamic model for a pressurized water reactor

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles.

    1979-01-01

    Dynamic model validation is a necessary procedure to assure that the developed empirical or physical models are satisfactorily representing the dynamic behavior of the actual plant during normal or abnormal transients. For small transients, physical models which represent isolated core, isolated steam generator and the overall pressurized water reactor are described. Using data collected during the step power changes that occured during the startup procedures, comparisons of experimental and actual transients are given at 30% and 100% of full power. The agreement between the transients derived from the model and those recorded on the plant indicates that the developed models are well suited for use for functional or control studies

  14. Molecular Dynamics Studies of Overbased Detergents on a Water Surface.

    Science.gov (United States)

    Bodnarchuk, M S; Dini, D; Heyes, D M; Breakspear, A; Chahine, S

    2017-07-25

    Molecular dynamics (MD) simulations are reported of model overbased detergent nanoparticles on a model water surface which mimic their behavior on a Langmuir trough or large water droplet in engine oil. The simulations predict that the structure of the nanoparticle on a water surface is different to when it is immersed in a bulk hydrophobic solvent. The surfactant tails are partly directed out of the water, while the carbonate core maximizes its extent of contact with the water. Umbrella sampling calculations of the potential of mean force between two particles showed that they are associated with varying degrees with a maximum binding free energy of ca. 10 k B T for the salicylate stabilized particle, ca. 8 k B T for a sulfurized alkyl phenate stabilized particle, and ca. 5 k B T for a sulfonate stabilized particle. The differences in the strength of attraction depend on the proximity of nearest approach and the energy penalty associated with the disruption of the hydration shell of water molecules around the calcium carbonate core when the two particles approach. This is greatest for the sulfonate particle, which partially loses the surfactant ions to the solution, and least for the salicylate, which forms the weakest water "cage". The particles are separated by a water hydration layer, even at the point of closest approach.

  15. Preference-based serial decision dynamics: your first sushi reveals your eating order at the sushi table.

    Directory of Open Access Journals (Sweden)

    Jaeseung Jeong

    Full Text Available In everyday life, we regularly choose among multiple items serially such as playing music in a playlist or determining priorities in a to-do list. However, our behavioral strategy to determine the order of choice is poorly understood. Here we defined 'the sushi problem' as how we serially choose multiple items of different degrees of preference when multiple sequences are possible, and no particular order is necessarily better than another, given that all items will eventually be chosen. In the current study, participants selected seven sushi pieces sequentially at the lunch table, and we examined the relationship between eating order and preference. We found two dominant selection strategies, with one group selecting in order from most to least preferred, and the other doing the opposite, which were significantly different from patterns generated from a random strategy. Interestingly, we found that more females tended to employ the favorite-first rather than favorite-last strategy. These two choice sequences appear to reflect two opposing behavioral strategies that might provide selective advantages in their own right, while also helping to provide solutions to otherwise unconstrained problems.

  16. POSTFUNDOPLICATION DYSPHAGIA CAUSES SIMILAR WATER INGESTION DYNAMICS AS ACHALASIA.

    Science.gov (United States)

    Dantas, Roberto Oliveira; Santos, Carla Manfredi; Cassiani, Rachel Aguiar; Alves, Leda Maria Tavares; Nascimento, Weslania Viviane

    2016-01-01

    - After surgical treatment of gastroesophageal reflux disease dysphagia is a symptom in the majority of patients, with decrease in intensity over time. However, some patients may have persistent dysphagia. - The objective of this investigation was to evaluate the dynamics of water ingestion in patients with postfundoplication dysphagia compared with patients with dysphagia caused by achalasia, idiopathic or consequent to Chagas' disease, and controls. - Thirty-three patients with postfundoplication dysphagia, assessed more than one year after surgery, together with 50 patients with Chagas' disease, 27 patients with idiopathic achalasia and 88 controls were all evaluated by the water swallow test. They drunk, in triplicate, 50 mL of water without breaks while being precisely timed and the number of swallows counted. Also measured was: (a) inter-swallows interval - the time to complete the task, divided by the number of swallows during the task; (b) swallowing flow - volume drunk divided by the time taken; (c) volume of each swallow - volume drunk divided by the number of swallows. - Patients with postfundoplication dysphagia, Chagas' disease and idiopathic achalasia took longer to ingest all the volume, had an increased number of swallows, an increase in interval between swallows, a decrease in swallowing flow and a decrease in water volume of each swallow compared with the controls. There was no difference between the three groups of patients. There was no correlation between postfundoplication time and the results. - It was concluded that patients with postfundoplication dysphagia have similar water ingestion dynamics as patients with achalasia.

  17. Fly ash dynamics in soil-water systems

    International Nuclear Information System (INIS)

    Sharma, S.; Fulekar, M.H.; Jayalakshmi, C.P.

    1989-01-01

    Studies regarding the effluents and coal ashes (or fly ash) resulting from coal burning are numerous, but their disposal and interactions with the soil and water systems and their detailed environmental impact assessment with concrete status reports on a global scale are scanty. Fly ash dynamics in soil and water systems are reviewed. After detailing the physical composition of fly ash, physicochemical changes in soil properties due to fly ash amendment are summarized. Areas covered include texture and bulk density, moisture retention, change in chemical equilibria, and effects of fly ash on soil microorganisms. Plant growth in amended soils is discussed, as well as plant uptake and accumulation of trace elements. In order to analyze the effect of fly ash on the physicochemical properties of water, several factors must be considered, including surface morphology of fly ash, pH of the ash sluice water, pH adjustments, leachability and solubility, and suspended ash and settling. The dynamics of fly ash in water systems is important due to pollution of groundwater resources from toxic components such as trace metals. Other factors summarized are bioaccumulation and biomagnification, human health effects of contaminants, and the impact of radionuclides in fly ash. Future research needs should focus on reduction of the environmental impact of fly ash and increasing utilization of fly ash as a soil amendment. 110 refs., 2 figs., 10 tabs

  18. Evidence on dynamic effects in the water content – water potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    static and dynamic moisture storage data and the more pronounced was the corresponding dynamic hysteresis. The paper thus provides clear experimental evidence on dynamic effects in the water content – water potential relation of building materials. By that, data published by previous authors as Topp et......Hygrothermal simulation has become a widely applied tool for the design and assessment of building structures under possible indoor and outdoor climatic conditions. One of the most important prerequisites of such simulations is reliable material data. Different approaches exist here to derive...... the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique...

  19. Orientational order and dynamics of water in bulk and in aqueous solutions of uranyl ions

    International Nuclear Information System (INIS)

    Chopra, Manish; Choudhury, Niharendu

    2014-01-01

    Molecular dynamics simulations in canonical ensemble of aqueous solutions of uranyl nitrate and bulk water at ambient condition have been carried out to investigate orientational order and dynamics of water. The orientational distributions of water around a central water molecule in bulk water and around a uranyl ion in an aqueous uranyl solution have been calculated. Orientational dynamics of water in bulk and in aqueous uranyl nitrate solution have also been analysed. (author)

  20. Dynamic contact angle of water-based titanium oxide nanofluid

    Science.gov (United States)

    2013-01-01

    This paper presents an investigation into spreading dynamics and dynamic contact angle of TiO2-deionized water nanofluids. Two mechanisms of energy dissipation, (1) contact line friction and (2) wedge film viscosity, govern the dynamics of contact line motion. The primary stage of spreading has the contact line friction as the dominant dissipative mechanism. At the secondary stage of spreading, the wedge film viscosity is the dominant dissipative mechanism. A theoretical model based on combination of molecular kinetic theory and hydrodynamic theory which incorporates non-Newtonian viscosity of solutions is used. The model agreement with experimental data is reasonable. Complex interparticle interactions, local pinning of the contact line, and variations in solid–liquid interfacial tension are attributed to errors. PMID:23759071

  1. Effect of supercritical water shell on cavitation bubble dynamics

    International Nuclear Information System (INIS)

    Shao Wei-Hang; Chen Wei-Zhong

    2015-01-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. (paper)

  2. Mechanisms of Acceleration and Retardation of Water Dynamics by Ions

    Czech Academy of Sciences Publication Activity Database

    Stirnemann, G.; Wernersson, Erik; Jungwirth, Pavel; Laage, D.

    2013-01-01

    Roč. 135, č. 32 (2013), s. 11824-11831 ISSN 0002-7863 R&D Projects: GA ČR GBP208/12/G016 Grant - others:European Research Council(XE) FP7-279977 Institutional support: RVO:61388963 Keywords : ions * water * molecular dynamics * NMR * IR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.444, year: 2013

  3. Water and suspended sediment dynamics in the Sungai Selangor estuary

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Kamarudin Samuding; Nazrul Hizam Yusoff

    2000-01-01

    Observations of salinity, temperature, suspended sediment concentration (SSC) and tidal current velocity were made in the lower and along the longitudinal axis sungai Selangor estuary over near-spring cycles. The variations of these parameters at the measurement stations and along the channel are presented to illustrate the water and sediment dynamics in the estuary. The results shows that the Sungai Selangor estuary changes from a partially-mixed type during neaps to a well-mixed one during springs. promoted by stronger tidal energy during the higher tidal ranges. The strong neap density stratification is also promoted by the high river discharges during the measurement period maximum concentration of suspended sediment 2000 mg,'/) occurs during maximum current velocities both during flood and ebb. The maximum salinity was achieved during high water slack but the salt water was totally flushed out of estuary during low water springs. The longitudinal axis measurement indicates that a partially-developed zone of turbidity maximum with a sediment concentration over 1000 mg/l was observed at the limit of salt water intrusion in salinity range less than 1 ppt. Tidal pumping as oppose to the estuarine circulation is the more dominant factor in the maximum formation as the salt water is totally excluded at low water. (author)

  4. People bouncing on trampolines: dramatic energy transfer, a table-top demonstration, complex dynamics and a zero sum game.

    Directory of Open Access Journals (Sweden)

    Manoj Srinivasan

    Full Text Available Jumping on trampolines is a popular backyard recreation. In some trampoline games (e.g., "seat drop war", when two people land on the trampoline with only a small time-lag, one person bounces much higher than the other, as if energy has been transferred from one to the other. First, we illustrate this energy-transfer in a table-top demonstration, consisting of two balls dropped onto a mini-trampoline, landing almost simultaneously, sometimes resulting in one ball bouncing much higher than the other. Next, using a simple mathematical model of two masses bouncing passively on a massless trampoline with no dissipation, we show that with specific landing conditions, it is possible to transfer all the kinetic energy of one mass to the other through the trampoline - in a single bounce. For human-like parameters, starting with equal energy, the energy transfer is maximal when one person lands approximately when the other is at the bottom of her bounce. The energy transfer persists even for very stiff surfaces. The energy-conservative mathematical model exhibits complex non-periodic long-term motions. To complement this passive bouncing model, we also performed a game-theoretic analysis, appropriate when both players are acting strategically to steal the other player's energy. We consider a zero-sum game in which each player's goal is to gain the other player's kinetic energy during a single bounce, by extending her leg during flight. For high initial energy and a symmetric situation, the best strategy for both subjects (minimax strategy and Nash equilibrium is to use the shortest available leg length and not extend their legs. On the other hand, an asymmetry in initial heights allows the player with more energy to gain even more energy in the next bounce. Thus synchronous bouncing unstable is unstable both for passive bouncing and when leg lengths are controlled as in game-theoretic equilibria.

  5. People Bouncing on Trampolines: Dramatic Energy Transfer, a Table-Top Demonstration, Complex Dynamics and a Zero Sum Game

    Science.gov (United States)

    Srinivasan, Manoj; Wang, Yang; Sheets, Alison

    2013-01-01

    Jumping on trampolines is a popular backyard recreation. In some trampoline games (e.g., “seat drop war”), when two people land on the trampoline with only a small time-lag, one person bounces much higher than the other, as if energy has been transferred from one to the other. First, we illustrate this energy-transfer in a table-top demonstration, consisting of two balls dropped onto a mini-trampoline, landing almost simultaneously, sometimes resulting in one ball bouncing much higher than the other. Next, using a simple mathematical model of two masses bouncing passively on a massless trampoline with no dissipation, we show that with specific landing conditions, it is possible to transfer all the kinetic energy of one mass to the other through the trampoline – in a single bounce. For human-like parameters, starting with equal energy, the energy transfer is maximal when one person lands approximately when the other is at the bottom of her bounce. The energy transfer persists even for very stiff surfaces. The energy-conservative mathematical model exhibits complex non-periodic long-term motions. To complement this passive bouncing model, we also performed a game-theoretic analysis, appropriate when both players are acting strategically to steal the other player's energy. We consider a zero-sum game in which each player's goal is to gain the other player's kinetic energy during a single bounce, by extending her leg during flight. For high initial energy and a symmetric situation, the best strategy for both subjects (minimax strategy and Nash equilibrium) is to use the shortest available leg length and not extend their legs. On the other hand, an asymmetry in initial heights allows the player with more energy to gain even more energy in the next bounce. Thus synchronous bouncing unstable is unstable both for passive bouncing and when leg lengths are controlled as in game-theoretic equilibria. PMID:24236029

  6. Structure and Dynamics of Urea/Water Mixtures Investigated by Vibrational Spectroscopy and Molecular Dynamics Simulation

    Science.gov (United States)

    Carr, J. K.; Buchanan, L. E.; Schmidt, J. R.; Zanni, M. T.; Skinner, J. L.

    2013-01-01

    Urea/water is an archetypical “biological” mixture, and is especially well known for its relevance to protein thermodynamics, as urea acts as a protein denaturant at high concentration. This behavior has given rise to an extended debate concerning urea’s influence on water structure. Based on a variety of methods and of definitions of water structure, urea has been variously described as a structure-breaker, a structure-maker, or as remarkably neutral towards water. Because of its sensitivity to microscopic structure and dynamics, vibrational spectroscopy can help resolve these debates. We report experimental and theoretical spectroscopic results for the OD stretch of HOD/H2O/urea mixtures (linear IR, 2DIR, and pump-probe anisotropy decay) and for the CO stretch of urea-D4/D2O mixtures (linear IR only). Theoretical results are obtained using existing approaches for water, and a modification of a frequency map developed for acetamide. All absorption spectra are remarkably insensitive to urea concentration, consistent with the idea that urea only very weakly perturbs water structure. Both this work and experiments by Rezus and Bakker, however, show that water’s rotational dynamics are slowed down by urea. Analysis of the simulations casts doubt on the suggestion that urea immobilizes particular doubly hydrogen bonded water molecules. PMID:23841646

  7. Effect of surface hydrophobicity on the dynamics of water at the nanoscale confinement: A molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Choudhury, Niharendu

    2013-01-01

    Highlights: • We present atomistic MD simulation of water confined between two paraffin-like plates. • Effect of plate hydrophobicity on the confined water dynamics is investigated. • Diffusivity of confined water is calculated from mean squared displacements. • Rotational dynamics of the confined water has bimodal nature of relaxation. • Monotonic dependence of translational and rotational dynamics on hydrophobicity. - Abstract: We present detailed molecular dynamics simulations of water in and around a pair of plates immersed in water to investigate the effect of degree of hydrophobicity or hydrophilicity of the plates on dynamics of water confined between the two plates. The nature of the plate has been tuned from hydrophobic to hydrophilic and vice versa by varying plate-water dispersion interaction. Analyses of the translational dynamics as performed by calculating mean squared displacements of the confined water reveal a monotonically decreasing trend of the diffusivity with increasing hydrophilicity of the plates. Orientational dynamics of the confined water also follows the same monotonic trend. Although orientational time constant almost does not change with the increase of plate-water dispersion interaction in the hydrophobic regime corresponding to the smaller plate-water attraction, it changes considerably in the hydrophilic regime corresponding to larger plate-water dispersion interactions

  8. Dynamic Stackelberg game model for water rationalization in drought emergency

    Science.gov (United States)

    Kicsiny, R.; Piscopo, V.; Scarelli, A.; Varga, Z.

    2014-09-01

    In water resource management, in case of a limited resource, there is a conflict situation between different consumers. In this paper, a dynamic game-theoretical model is suggested for the solution of such conflict. Let us suppose that in a region, water supply is based on a given aquifer, from which a quantity of effective reserve can be used without damaging the aquifer, and a long drought is foreseen. The use of water is divided between the social sector represented by the local authority, and the production sector, in our case, simplified to a single agricultural producer using water for irrigation; they are the players in the game. For a fixed time period, every day, a given amount is available, from which first the authority, then the producer takes a proportion, which corresponds to the strategy choices of the players. A price function is given, which depends on the total available reserve, the payoffs of both players are quantified as their net incomes for the whole period: for the producer: profit from selling the product minus price of water and tax paid, for the authority: tax received plus the gain for the authority from selling the water bought to the social sector minus price of water purchased. A solution (equilibrium) of the game consists of such strategy choices of both players, with which each player maximizes her/his total payoff (over the whole time horizon of the game) provided that the other player also maximizes her/his own payoff. In the paper, in a mathematical model for the above conflict situation, a deterministic continuum-strategy two-player discrete-time dynamic Stackelberg game with fixed finite time duration and closed-loop information structure is proposed, where the authority is “leader” and the producer is “follower”. The algorithms for the solution of the game are based on recent theoretical results of the authors. Illustrative numerical examples are also given.

  9. Vibrational and orientational dynamics of water in aqueous hydroxide solutions.

    Science.gov (United States)

    Hunger, Johannes; Liu, Liyuan; Tielrooij, Klaas-Jan; Bonn, Mischa; Bakker, Huib

    2011-09-28

    We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton. © 2011 American Institute of Physics

  10. Molecular Dynamics Study of Water Molecules in Interlayer of 14 ^|^Aring; Tobermorite

    KAUST Repository

    Yoon, Seyoon; Monteiro, Paulo J.M.

    2013-01-01

    The molecular structure and dynamics of interlayer water of 14 Å tobermorite are investigated based on molecular dynamics (MD) simulations. Calculated structural parameters of the interlayer water configuration are in good agreement with current

  11. Steam table routines for the simulation of nuclear power plants

    International Nuclear Information System (INIS)

    Hall, C.A.; Mutafelija, B.A.; Rapp, J.P.

    1976-01-01

    The dynamic simulation of nuclear power generating stations requires evaluation of a large number of steam and water properties at every integration time step. Some of the interpolation/approximation methods presently used are described with particular emphasis on the use of the bilinear transfinite interpolation method. The fundamental requirements for the steam table routines are outlined and different approaches are compared. The superiority of the bilinear transfinite interpolation method is discussed. The use of the steam table functions in real-time simulation is of particular interest

  12. Ab Initio Liquid Water Dynamics in Aqueous TMAO Solution.

    Science.gov (United States)

    Usui, Kota; Hunger, Johannes; Sulpizi, Marialore; Ohto, Tatsuhiko; Bonn, Mischa; Nagata, Yuki

    2015-08-20

    Ab initio molecular dynamics (AIMD) simulations in trimethylamine N-oxide (TMAO)-D2O solution are employed to elucidate the effects of TMAO on the reorientational dynamics of D2O molecules. By decomposing the O-D groups of the D2O molecules into specific subensembles, we reveal that water reorientational dynamics are retarded considerably in the vicinity of the hydrophilic TMAO oxygen (O(TMAO)) atom, due to the O-D···O(TMAO) hydrogen-bond. We find that this reorientational motion is governed by two distinct mechanisms: The O-D group rotates (1) after breaking the O-D···O(TMAO) hydrogen-bond, or (2) together with the TMAO molecule while keeping this hydrogen-bond intact. While the orientational slow-down is prominent in the AIMD simulation, simulations based on force field models exhibit much faster dynamics. The simulated angle-resolved radial distribution functions illustrate that the O-D···O(TMAO) hydrogen-bond has a strong directionality through the sp(3) orbital configuration in the AIMD simulation, and this directionality is not properly accounted for in the force field simulation. These results imply that care must be taken when modeling negatively charged oxygen atoms as single point charges; force field models may not adequately describe the hydration configuration and dynamics.

  13. The study of dynamic force acted on water strider leg departing from water surface

    Science.gov (United States)

    Sun, Peiyuan; Zhao, Meirong; Jiang, Jile; Zheng, Yelong

    2018-01-01

    Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  14. The study of dynamic force acted on water strider leg departing from water surface

    Directory of Open Access Journals (Sweden)

    Peiyuan Sun

    2018-01-01

    Full Text Available Water-walking insects such as water striders can skate on the water surface easily with the help of the hierarchical structure on legs. Numerous theoretical and experimental studies show that the hierarchical structure would help water strider in quasi-static case such as load-bearing capacity. However, the advantage of the hierarchical structure in the dynamic stage has not been reported yet. In this paper, the function of super hydrophobicity and the hierarchical structure was investigated by measuring the adhesion force of legs departing from the water surface at different lifting speed by a dynamic force sensor. The results show that the adhesion force decreased with the increase of lifting speed from 0.02 m/s to 0.4 m/s, whose mechanic is investigated by Energy analysis. In addition, it can be found that the needle shape setae on water strider leg can help them depart from water surface easily. Thus, it can serve as a starting point to understand how the hierarchical structure on the legs help water-walking insects to jump upward rapidly to avoid preying by other insects.

  15. Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method.

    Science.gov (United States)

    Zomorodian, Mehdi; Lai, Sai Hin; Homayounfar, Mehran; Ibrahim, Shaliza; Pender, Gareth

    2017-01-01

    Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD) and game theory (GT). The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS) method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the strategies for

  16. Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method.

    Directory of Open Access Journals (Sweden)

    Mehdi Zomorodian

    Full Text Available Conflicts over water resources can be highly dynamic and complex due to the various factors which can affect such systems, including economic, engineering, social, hydrologic, environmental and even political, as well as the inherent uncertainty involved in many of these factors. Furthermore, the conflicting behavior, preferences and goals of stakeholders can often make such conflicts even more challenging. While many game models, both cooperative and non-cooperative, have been suggested to deal with problems over utilizing and sharing water resources, most of these are based on a static viewpoint of demand points during optimization procedures. Moreover, such models are usually developed for a single reservoir system, and so are not really suitable for application to an integrated decision support system involving more than one reservoir. This paper outlines a coupled simulation-optimization modeling method based on a combination of system dynamics (SD and game theory (GT. The method harnesses SD to capture the dynamic behavior of the water system, utilizing feedback loops between the system components in the course of the simulation. In addition, it uses GT concepts, including pure-strategy and mixed-strategy games as well as the Nash Bargaining Solution (NBS method, to find the optimum allocation decisions over available water in the system. To test the capability of the proposed method to resolve multi-reservoir and multi-objective conflicts, two different deterministic simulation-optimization models with increasing levels of complexity were developed for the Langat River basin in Malaysia. The later is a strategic water catchment that has a range of different stakeholders and managerial bodies, which are however willing to cooperate in order to avoid unmet demand. In our first model, all water users play a dynamic pure-strategy game. The second model then adds in dynamic behaviors to reservoirs to factor in inflow uncertainty and adjust the

  17. Using stochastic dynamic programming to support catchment-scale water resources management in China

    DEFF Research Database (Denmark)

    Davidsen, Claus; Cardenal, Silvio Javier Pereira; Liu, Suxia

    2013-01-01

    contain the marginal value of stored water as a function of the month, the inflow state and the reservoir state. The water value tables are used to guide allocation decisions in simulation mode. The performance of the operation rules based on water value tables was evaluated. The approach was used......A hydro-economic modelling approach is used to optimize reservoir management at river basin level. We demonstrate the potential of this integrated approach on the Ziya River basin, a complex basin on the North China Plain south-east of Beijing. The area is subject to severe water scarcity due...... to low and extremely seasonal precipitation, and the intense agricultural production is highly dependent on irrigation. Large reservoirs provide water storage for dry months while groundwater and the external South-to-North Water Transfer Project are alternative sources of water. An optimization model...

  18. Modelling soil-water dynamics in the rootzone of structured and water-repellent soils

    Science.gov (United States)

    Brown, Hamish; Carrick, Sam; Müller, Karin; Thomas, Steve; Sharp, Joanna; Cichota, Rogerio; Holzworth, Dean; Clothier, Brent

    2018-04-01

    In modelling the hydrology of Earth's critical zone, there are two major challenges. The first is to understand and model the processes of infiltration, runoff, redistribution and root-water uptake in structured soils that exhibit preferential flows through macropore networks. The other challenge is to parametrise and model the impact of ephemeral hydrophobicity of water-repellent soils. Here we have developed a soil-water model, which is based on physical principles, yet possesses simple functionality to enable easier parameterisation, so as to predict soil-water dynamics in structured soils displaying time-varying degrees of hydrophobicity. Our model, WEIRDO (Water Evapotranspiration Infiltration Redistribution Drainage runOff), has been developed in the APSIM Next Generation platform (Agricultural Production Systems sIMulation). The model operates on an hourly time-step. The repository for this open-source code is https://github.com/APSIMInitiative/ApsimX. We have carried out sensitivity tests to show how WEIRDO predicts infiltration, drainage, redistribution, transpiration and soil-water evaporation for three distinctly different soil textures displaying differing hydraulic properties. These three soils were drawn from the UNSODA (Unsaturated SOil hydraulic Database) soils database of the United States Department of Agriculture (USDA). We show how preferential flow process and hydrophobicity determine the spatio-temporal pattern of soil-water dynamics. Finally, we have validated WEIRDO by comparing its predictions against three years of soil-water content measurements made under an irrigated alfalfa (Medicago sativa L.) trial. The results provide validation of the model's ability to simulate soil-water dynamics in structured soils.

  19. Integrating the social sciences to understand human-water dynamics

    Science.gov (United States)

    Carr, G.; Kuil, L., Jr.

    2017-12-01

    Many interesting and exciting socio-hydrological models have been developed in recent years. Such models often aim to capture the dynamic interplay between people and water for a variety of hydrological settings. As such, peoples' behaviours and decisions are brought into the models as drivers of and/or respondents to the hydrological system. To develop and run such models over a sufficiently long time duration to observe how the water-human system evolves the human component is often simplified according to one or two key behaviours, characteristics or decisions (e.g. a decision to move away from a drought or flood area; a decision to pump groundwater, or a decision to plant a less water demanding crop). To simplify the social component, socio-hydrological modellers often pull knowledge and understanding from existing social science theories. This requires them to negotiate complex territory, where social theories may be underdeveloped, contested, dynamically evolving, or case specific and difficult to generalise or upscale. A key question is therefore, how can this process be supported so that the resulting socio-hydrological models adequately describe the system and lead to meaningful understanding of how and why it behaves as it does? Collaborative interdisciplinary research teams that bring together social and natural scientists are likely to be critical. Joint development of the model framework requires specific attention to clarification to expose all underlying assumptions, constructive discussion and negotiation to reach agreement on the modelled system and its boundaries. Mutual benefits to social scientists can be highlighted, i.e. socio-hydrological work can provide insights for further exploring and testing social theories. Collaborative work will also help ensure underlying social theory is made explicit, and may identify ways to include and compare multiple theories. As socio-hydrology progresses towards supporting policy development, approaches that

  20. Dynamic Oil-in-Water Concentration Acquisition on a Pilot-Scaled Offshore Water-Oil Separation Facility

    DEFF Research Database (Denmark)

    Løhndorf, Petar Durdevic; Raju, Chitra Sangaraju; Bram, Mads Valentin

    2017-01-01

    This article is a feasibility study on using fluorescence-based oil-in-water (OiW) monitors for on-line dynamic efficiency measurement of a deoiling hydrocyclone. Dynamic measurements are crucial in the design and validation of dynamic models of the hydrocyclones, and to our knowledge, no dynamic...

  1. Alluvial Mountain Meadow Source-Sink Dynamics: Land-Cover Effects on Water and Fluvial Carbon Export

    Science.gov (United States)

    Weiss, T.; Covino, T. P.; Wohl, E.; Rhoades, C.; Fegel, T.; Clow, D. W.

    2017-12-01

    Fluvial networks of historically glaciated mountain landscapes alternate between confined and unconfined valley segments. In low-gradient unconfined reaches, river-connected wet meadows commonly establish, and have been recognized as important locations of long-term water, carbon, and nutrient storage. Among connected meadow floodplains, sink-source behavior shifts as a function of flow state; storing water at high flows (snowmelt) and contributing toward higher late-season baseflows. Despite these benefits, historical and contemporary land-use practices often result in the simplification of wet meadow systems, leading to reduced river-floodplain connectivity, lower water-tables and reductions in hydrologic buffering capacity. In this study, we are exploring hydrologic-carbon relationships across a gradient of valley confinement and river-floodplain connectivity (connected, n=3; disconnected, n=4) within the Colorado Rockies. Our approach includes hydrologic analysis, fluorometric assays, water chemistry, instream metabolic measures, and land-cover assessment to examine patterns between land-form, carbon quantity and quality, and stream ecosystem productivity. Between different meadow types, preliminary results suggest differences between instream productivity, carbon qualities, and hydrologic-carbon sink-source dynamics across the season. These data and analyses will provide insight into water, carbon and nutrient flux dynamics as a function of land-cover in mountain headwaters.

  2. Understanding catchment dynamics through a Space-Society-Water trialectic

    Science.gov (United States)

    Sutherland, Catherine; Jewitt, Graham; Risko, Susan; Hay, Ducan; Stuart-Hill, Sabine; Browne, Michelle

    2017-04-01

    Can healthy catchments be utilized to secure water for the benefit of society? This is a complex question as it requires an understanding of the connections and relations between biophysical, social, political, economic and governance dimensions over space and time in the catchment and must interrogate whether there is 'value' in investing in the catchment natural or ecological infrastructure (EI), how this should be done, where the most valuable EI is located, and whether an investment in EI will generate co-benefits socially, environmentally and economically. Here, we adopt a social ecological relations rather than systems approach to explore these interactions through development of a space-society-water trialectic. Trialectic thinking is challenging as it requires new epistemologies and it challenges conventional modes of thought. It is not ordered or fixed, but rather is constantly evolving, revealing the dynamic relations between the elements under exploration. The construction of knowledge, through detailed scientific research and social learning, which contributes to the understanding and achievement of sustainable water supply, water related resilient economic growth, greater social equity and justice in relation to water and the reduction of environmental risk is illustrated through research in the uMngeni Catchment, South Africa. Using four case studies as a basis, we construct the catchment level society-water-space trialectic as a way of connecting, assembling and comparing the understanding and knowledge that has been produced. The relations in the three elements of the trialectic are constructed through identifying, understanding and analysing the actors, discourses, knowledge, biophysical materialities, issues and spatial connections in the case studies. Together these relations, or multiple trajectories, are assembled to form the society-water-space trialectic, which illuminates the dominant relations in the catchment and hence reveal the leverage

  3. Macroscopic investigation of water volume effects on interfacial dynamic behaviors between clathrate hydrate and water.

    Science.gov (United States)

    Cha, Minjun; Couzis, Alexander; Lee, Jae W

    2013-05-14

    This study investigated the effects of the water volume on the interfacial dynamics between cyclopentane (CP) hydrate and water droplet in a CP/n-decane oil mixture. The adhesion force between CP hydrate and various water droplets was determined using the z-directional microbalance. Through repetition of precise measurements over several cycles from contact to detachment, we observed abnormal wetting behaviors in the capillary bridge during the retraction process when the water drop volume is larger than 100 μL. With the increase in water droplet volumes, the contact force between CP hydrate and water also increases up to 300 μL. However, there is a dramatic reduction of increasing rate in the contact forces over 300 μL of water droplet. With the addition of the surfactants of sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) to the water droplet, the contact force between CP hydrate and solution droplet exhibits a lower value and a transition volume of the contact force comes with a smaller solution volume of 200 μL. The water volume effects on the liquid wetting of the probe and the size of capillary bridges provide important insight into hydrate growth and aggregation/agglomeration in the presence of free water phase inside gas/oil pipelines.

  4. Cavitation in confined water: ultra-fast bubble dynamics

    Science.gov (United States)

    Vincent, Olivier; Marmottant, Philippe

    2012-02-01

    In the hydraulic vessels of trees, water can be found at negative pressure. This metastable state, corresponding to mechanical tension, is achieved by evaporation through a porous medium. It can be relaxed by cavitation, i.e. the sudden nucleation of vapor bubbles. Harmful for the tree due to the subsequent emboli of sap vessels, cavitation is on the contrary used by ferns to eject spores very swiftly. We will focus here on the dynamics of the cavitation bubble, which is of primary importance to explain the previously cited natural phenomena. We use the recently developed method of artificial tress, using transparent hydrogels as the porous medium. Our experiments, on water confined in micrometric hydrogel cavities, show an extremely fast dynamics: bubbles are nucleated at the microsecond timescale. For cavities larger than 100 microns, the bubble ``rings'' with damped oscillations at MHz frequencies, whereas for smaller cavities the oscillations become overdamped. This rich dynamics can be accounted for by a model we developed, leading to a modified Rayleigh-Plesset equation. Interestingly, this model predicts the impossibility to nucleate bubbles above a critical confinement that depends on liquid negative pressure and corresponds to approximately 100 nm for 20 MPa tensions.

  5. Dynamically slow processes in supercooled water confined between hydrophobic plates

    Energy Technology Data Exchange (ETDEWEB)

    Franzese, Giancarlo [Departamento de Fisica Fundamental, Universidad de Barcelona, Diagonal 647, Barcelona 08028 (Spain); Santos, Francisco de los, E-mail: gfranzese@ub.ed, E-mail: fdlsant@ugr.e [Departamento de Electromagnetismo y Fisica de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2009-12-16

    We study the dynamics of water confined between hydrophobic flat surfaces at low temperature. At different pressures, we observe different behaviors that we understand in terms of the hydrogen bond dynamics. At high pressure, the formation of the open structure of the hydrogen bond network is inhibited and the surfaces can be rapidly dried (dewetted) by formation of a large cavity with decreasing temperature. At lower pressure we observe strong non-exponential behavior of the correlation function, but with no strong increase of the correlation time. This behavior can be associated, on the one hand, to the rapid ordering of the hydrogen bonds that generates heterogeneities and, on the other hand, to the lack of a single timescale as a consequence of the cooperativity in the vicinity of the liquid-liquid critical point that characterizes the phase diagram at low temperature of the water model considered here. At very low pressures, the gradual formation of the hydrogen bond network is responsible for the large increase of the correlation time and, eventually, the dynamical arrest of the system, with a strikingly different dewetting process, characterized by the formation of many small cavities.

  6. Dynamically slow processes in supercooled water confined between hydrophobic plates

    International Nuclear Information System (INIS)

    Franzese, Giancarlo; Santos, Francisco de los

    2009-01-01

    We study the dynamics of water confined between hydrophobic flat surfaces at low temperature. At different pressures, we observe different behaviors that we understand in terms of the hydrogen bond dynamics. At high pressure, the formation of the open structure of the hydrogen bond network is inhibited and the surfaces can be rapidly dried (dewetted) by formation of a large cavity with decreasing temperature. At lower pressure we observe strong non-exponential behavior of the correlation function, but with no strong increase of the correlation time. This behavior can be associated, on the one hand, to the rapid ordering of the hydrogen bonds that generates heterogeneities and, on the other hand, to the lack of a single timescale as a consequence of the cooperativity in the vicinity of the liquid-liquid critical point that characterizes the phase diagram at low temperature of the water model considered here. At very low pressures, the gradual formation of the hydrogen bond network is responsible for the large increase of the correlation time and, eventually, the dynamical arrest of the system, with a strikingly different dewetting process, characterized by the formation of many small cavities.

  7. Hydro-dynamic damping theory in flowing water

    Science.gov (United States)

    Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.

    2014-03-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.

  8. Online analysis: Deeper insights into water quality dynamics in spring water.

    Science.gov (United States)

    Page, Rebecca M; Besmer, Michael D; Epting, Jannis; Sigrist, Jürg A; Hammes, Frederik; Huggenberger, Peter

    2017-12-01

    We have studied the dynamics of water quality in three karst springs taking advantage of new technological developments that enable high-resolution measurements of bacterial load (total cell concentration: TCC) as well as online measurements of abiotic parameters. We developed a novel data analysis approach, using self-organizing maps and non-linear projection methods, to approximate the TCC dynamics using the multivariate data sets of abiotic parameter time-series, thus providing a method that could be implemented in an online water quality management system for water suppliers. The (TCC) data, obtained over several months, provided a good basis to study the microbiological dynamics in detail. Alongside the TCC measurements, online abiotic parameter time-series, including spring discharge, turbidity, spectral absorption coefficient at 254nm (SAC254) and electrical conductivity, were obtained. High-density sampling over an extended period of time, i.e. every 45min for 3months, allowed a detailed analysis of the dynamics in karst spring water quality. Substantial increases in both the TCC and the abiotic parameters followed precipitation events in the catchment area. Differences between the parameter fluctuations were only apparent when analyzed at a high temporal scale. Spring discharge was always the first to react to precipitation events in the catchment area. Lag times between the onset of precipitation and a change in discharge varied between 0.2 and 6.7h, depending on the spring and event. TCC mostly reacted second or approximately concurrent with turbidity and SAC254, whereby the fastest observed reaction in the TCC time series occurred after 2.3h. The methodological approach described here enables a better understanding of bacterial dynamics in karst springs, which can be used to estimate risks and management options to avoid contamination of the drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Paleohydrology of the southern Great Basin, with special reference to water table fluctuations beneath the Nevada Test Site during the late(?) Pleistocene

    Science.gov (United States)

    Winograd, Isaac Judah; Doty, Gene C.

    1980-01-01

    Knowledge of the magnitude of water-table rise during Pleistocene pluvial climates, and of the resultant shortening of groundwater flow path and reduction in unsaturated zone thickness, is mandatory for a technical evaluation of the Nevada Test Site (NTS) or other arid zone sites as repositories for high-level or transuranic radioactive wastes. The distribution of calcitic veins filling fractures in alluvium, and of tufa deposits between the Ash Meadows spring discharge area and the Nevada Test Site indicates that discharge from the regional Paleozoic carbonate aquifer during the Late( ) Pleistocene pluvial periods may have occurred at an altitude about 50 meters higher than at present and 14 kilometers northeast of Ash Meadows. Use of the underflow equation (relating discharge to transmissivity, aquifer width, and hydraulic gradient), and various assumptions regarding pluvial recharge, transmissivity, and altitude of groundwater base level, suggest possible rises in potentiometric level in the carbonate aquifer of about -90 meters beneath central Frenchman Flat. During Wisconsin time the rise probably did not exceed 30 meters. Water-level rises beneath Frenchman Flat during future pluvials are unlikely to exceed 30 meters and might even be 10 meters lower than modern levels. Neither the cited rise in potentiometric level in the regional carbonate aquifer, nor the shortened flow path during the Late( ) Pleistocene preclude utilization of the NTS as a repository for high-level or transuranic-element radioactive wastes provided other requisite conditions are met as this site. Deep water tables, attendant thick (up to several hundred meter) unsaturated zones, and long groundwater flow paths characterized the region during the Wisconsin Stage and probably throughout the Pleistocene Epoch and are likely to so characterize it during future glacial periods. (USGS)

  10. POSTFUNDOPLICATION DYSPHAGIA CAUSES SIMILAR WATER INGESTION DYNAMICS AS ACHALASIA

    Directory of Open Access Journals (Sweden)

    Roberto Oliveira DANTAS

    Full Text Available ABSTRACT Background - After surgical treatment of gastroesophageal reflux disease dysphagia is a symptom in the majority of patients, with decrease in intensity over time. However, some patients may have persistent dysphagia. Objective - The objective of this investigation was to evaluate the dynamics of water ingestion in patients with postfundoplication dysphagia compared with patients with dysphagia caused by achalasia, idiopathic or consequent to Chagas' disease, and controls. Methods - Thirty-three patients with postfundoplication dysphagia, assessed more than one year after surgery, together with 50 patients with Chagas' disease, 27 patients with idiopathic achalasia and 88 controls were all evaluated by the water swallow test. They drunk, in triplicate, 50 mL of water without breaks while being precisely timed and the number of swallows counted. Also measured was: (a inter-swallows interval - the time to complete the task, divided by the number of swallows during the task; (b swallowing flow - volume drunk divided by the time taken; (c volume of each swallow - volume drunk divided by the number of swallows. Results - Patients with postfundoplication dysphagia, Chagas' disease and idiopathic achalasia took longer to ingest all the volume, had an increased number of swallows, an increase in interval between swallows, a decrease in swallowing flow and a decrease in water volume of each swallow compared with the controls. There was no difference between the three groups of patients. There was no correlation between postfundoplication time and the results. Conclusion - It was concluded that patients with postfundoplication dysphagia have similar water ingestion dynamics as patients with achalasia.

  11. Molecular dynamics simulations of radon accumulation in water and oil

    Energy Technology Data Exchange (ETDEWEB)

    Pafong, Elvira; Drossel, Barbara [Institut fuer Festkoerperphysik, Technische Universitaet Darmstadt (Germany)

    2016-07-01

    Radon is a radioactive gas that can enter the human body from air or from ground water. Radon can accumulate to levels that considerably rise the risk of lung cancer while it is also known as a a treatment of various ailments, most notably rheumatoid arthritis. The accumulation of radon differs between tissues, with particularly high concentrations in fatty cells. In order to understand the mechanisms responsible for the different solubility of radon in water and fat, we perform molecular dynamics simulations of radon gas at ambient conditions in contact with a bulk material consisting either of water or oil. We evaluate the diffusion coefficient of radon in both media as well as the equilibrium concentration. The crucial point here is to understand the hydrophobic interaction between water and radon as compared to the dispersive interaction between radon and oil. Therefore, we artificially vary the water charges (i.e., the hydrophobicity) as well as the parameters of the van-der-Waals interaction.

  12. Integrated approach to monitor water dynamics with drones

    Science.gov (United States)

    Raymaekers, Dries; De Keukelaere, Liesbeth; Knaeps, Els; Strackx, Gert; Decrop, Boudewijn; Bollen, Mark

    2017-04-01

    Remote sensing has been used for more than 20 years to estimate water quality in the open ocean and study the evolution of vegetation on land. More recently big improvements have been made to extend these practices to coastal and inland waters, opening new monitoring opportunities, eg. monitoring the impact of dredging activities on the aquatic environment. While satellite sensors can provide complete coverage and historical information of the study area, they are limited in their temporal revisit time and spatial resolution. Therefore, deployment of drones can create an added value and in combination with satellite information increase insights in the dynamics and actors of coastal and aquatic systems. Drones have the advantages of monitoring at high spatial detail (cm scale), with high frequency and are flexible. One of the important water quality parameters is the suspended sediment concentration. However, retrieving sediment concentrations from unmanned systems is a challenging task. The sediment dynamics in the port of Breskens, the Netherlands, were investigated by combining information retrieved from different data sources: satellite, drone and in-situ data were collected, analysed and inserted in sediment models. As such, historical (satellite), near-real time (drone) and predictive (sediment models) information, integrated in a spatial data infrastructure, allow to perform data analysis and can support decision makers.

  13. Nonlinear fluid dynamics of nanoscale hydration water layer

    Science.gov (United States)

    Jhe, Wonho; Kim, Bongsu; Kim, Qhwan; An, Sangmin

    In nature, the hydration water layer (HWL) ubiquitously exists in ambient conditions or aqueous solutions, where water molecules are tightly bound to ions or hydrophilic surfaces. It plays an important role in various mechanisms such as biological processes, abiotic materials, colloidal interaction, and friction. The HWL, for example, can be easily formed between biomaterials since most biomaterials are covered by hydrophilic molecules such as lipid bilayers, and this HWL is expected to be significant to biological and physiological functions. Here (1) we present the general stress tensor of the hydration water layer. The hydration stress tensor provided the platform form for holistic understanding of the dynamic behaviors of the confined HWL including tapping and shear dynamics which are until now individually studied. And, (2) through fast shear velocity ( 1mm/s) experiments, the elastic turbulence caused by elastic property of the HWL is indirectly observed. Our results may contribute to a deeper study of systems where the HWL plays an important role such as biomolecules, colloidal particles, and the MEMS. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (2016R1A3B1908660).

  14. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  15. Water-table altitude of the unconfined aquifer, Wood River Valley aquifer system, south-central Idaho, October 2012.

    Data.gov (United States)

    Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22–24, 2012; these wells are part of a network established...

  16. Fluid dynamic interaction between water hammer and centrifugal pumps

    International Nuclear Information System (INIS)

    Ismaier, A.; Schluecker, E.

    2009-01-01

    Centrifugal pumps generate in piping systems noticeable pressure pulsations. In this paper the dynamic interaction between water hammer and pressure pulsations is presented. The experimental investigations were performed at a piping system with nominal diameter DN 100 (respectively NPS 4) and 75 m total length, built at the Institute for Process Technology and Machinery. Different measurements at this testing facility show that pulsating centrifugal pumps can damp pressure surges generated by fast valve closing. It is also shown that 1-dimensional fluid codes can be used to calculate this phenomenon. Furthermore it is presented that pressure surges pass centrifugal pumps almost unhindered, because they are hydraulic open.

  17. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  18. Femtosecond dynamics of a cardiotonic medicine (milrinone) in neutral water

    Science.gov (United States)

    Gil, M.; Douhal, A.

    2006-09-01

    Milrinone is a medicine used to attenuate heart attack disease. Understanding its interaction with water is of importance for the knowledge of its stability and related phenomena. This intimate information requires the unraveling of the dynamics under the physiological conditions. Here we report the first study of ultrafast processes of this medicine. We show that S 2 relaxation of the keto structure (K) occurs in ˜150 fs and the intramolecular-charge transfer reaction in less than 100 fs to produce a relaxed CT-K state. An observed ˜10 ps decay is assigned to vibrational relaxation/cooling and twisting in the formed CT-K.

  19. Dynamic Simulation of Water Networks to Control and Reduce Physical Unaccounted-for Water

    Directory of Open Access Journals (Sweden)

    Nima Zorriasateyn

    2005-09-01

    Full Text Available A significant percentage of unaccounted-for water consists of leakage in water distribution networks in Iran. To detect leakage area with less costs and time spending and then identify the exact  place of it with special instruments, would be economical and a better water resource management. In this research, a real case has been selected and examined with dynamic simulation using MIKE NET. The method that has been carried out in this research based on maximizing the correlation coefficient and minimizing the sum of error squares between pressure measured inputs (observed data and calculated pressure (by model. According to the results, dynamic simulation of municipal water distribution system can be used as a guide to determine the place and the amount of leakage.Thereby the area of  large leakage can be simulated with appropriate accuracy through measured pressure. Therefor from management aspect, dynamic simulation can be used to decrease time consumption and to save costs for detecting leakage.

  20. Dynamics of ice nucleation on water repellent surfaces.

    Science.gov (United States)

    Alizadeh, Azar; Yamada, Masako; Li, Ri; Shang, Wen; Otta, Shourya; Zhong, Sheng; Ge, Liehui; Dhinojwala, Ali; Conway, Ken R; Bahadur, Vaibhav; Vinciquerra, A Joseph; Stephens, Brian; Blohm, Margaret L

    2012-02-14

    Prevention of ice accretion and adhesion on surfaces is relevant to many applications, leading to improved operation safety, increased energy efficiency, and cost reduction. Development of passive nonicing coatings is highly desirable, since current antiicing strategies are energy and cost intensive. Superhydrophobicity has been proposed as a lead passive nonicing strategy, yet the exact mechanism of delayed icing on these surfaces is not clearly understood. In this work, we present an in-depth analysis of ice formation dynamics upon water droplet impact on surfaces with different wettabilities. We experimentally demonstrate that ice nucleation under low-humidity conditions can be delayed through control of surface chemistry and texture. Combining infrared (IR) thermometry and high-speed photography, we observe that the reduction of water-surface contact area on superhydrophobic surfaces plays a dual role in delaying nucleation: first by reducing heat transfer and second by reducing the probability of heterogeneous nucleation at the water-substrate interface. This work also includes an analysis (based on classical nucleation theory) to estimate various homogeneous and heterogeneous nucleation rates in icing situations. The key finding is that ice nucleation delay on superhydrophobic surfaces is more prominent at moderate degrees of supercooling, while closer to the homogeneous nucleation temperature, bulk and air-water interface nucleation effects become equally important. The study presented here offers a comprehensive perspective on the efficacy of textured surfaces for nonicing applications.

  1. Chicago's water market: Dynamics of demand, prices and scarcity rents

    Science.gov (United States)

    Ipe, V.C.; Bhagwat, S.B.

    2002-01-01

    Chicago and its suburbs are experiencing an increasing demand for water from a growing population and economy and may experience water scarcity in the near future. The Chicago metropolitan area has nearly depleted its groundwater resources to a point where interstate conflicts with Wisconsin could accompany an increased reliance on those sources. Further, the withdrawals from Lake Michigan is limited by the Supreme Court decree. The growing demand and indications of possible scarcity suggest a need to reexamine the pricing policies and the dynamics of demand. The study analyses the demand for water and develops estimates of scarcity rents for water in Chicago. The price and income elasticities computed at the means are -0.002 and 0.0002 respectively. The estimated scarcity rents ranges from $0.98 to $1.17 per thousand gallons. The results indicate that the current prices do not fully account for the scarcity rents and suggest a current rate with in the range $1.53 to $1.72 per thousand gallons.

  2. OTEC Cold Water Pipe-Platform Subsystem Dynamic Interaction Validation

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Robert [Lockheed Martin Corporation, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates, Houston, TX (United States); Johnson, Peter [BMT Scientific Marine Services, Inc., Houston, TX (United States); Shi, Shan [Houston Offshore Engineering, Houston, TX (United States); Marinho, Thiago [Federal Univ. of Rio de Janeiro (Brazil). LabOceano

    2014-05-09

    A commercial floating 100-megawatt (MW) ocean thermal energy conversion (OTEC) power plant will require a cold water pipe (CWP) with a diameter of 10-meter (m) and length of up to 1,000 m. The mass of the cold water pipe, including entrained water, can exceed the mass of the platform supporting it. The offshore industry uses software-modeling tools to develop platform and riser (pipe) designs to survive the offshore environment. These tools are typically validated by scale model tests in facilities able to replicate real at-sea meteorological and ocean (metocean) conditions to provide the understanding and confidence to proceed to final design and full-scale fabrication. However, today’s offshore platforms (similar to and usually larger than those needed for OTEC applications) incorporate risers (or pipes) with diameters well under one meter. Secondly, the preferred construction method for large diameter OTEC CWPs is the use of composite materials, primarily a form of fiber-reinforced plastic (FRP). The use of these material results in relatively low pipe stiffness and large strains compared to steel construction. These factors suggest the need for further validation of offshore industry software tools. The purpose of this project was to validate the ability to model numerically the dynamic interaction between a large cold water-filled fiberglass pipe and a floating OTEC platform excited by metocean weather conditions using measurements from a scale model tested in an ocean basin test facility.

  3. Integrated system dynamics toolbox for water resources planning.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Marissa Devan; Passell, Howard David; Malczynski, Leonard A.; Peplinski, William J.; Tidwell, Vincent Carroll; Coursey, Don (University of Chicago, Chicago, IL); Hanson, Jason (University of New Mexico, Albuquerque, NM); Grimsrud, Kristine (University of New Mexico, Albuquerque, NM); Thacher, Jennifer (University of New Mexico, Albuquerque, NM); Broadbent, Craig (University of New Mexico, Albuquerque, NM); Brookshire, David (University of New Mexico, Albuquerque, NM); Chemak, Janie (University of New Mexico, Albuquerque, NM); Cockerill, Kristan (Cockeril Consulting, Boone, NC); Aragon, Carlos (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Hallett, Heather (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Vivoni, Enrique (New Mexico Univeristy of Technology and Mining (NM-TECH), Socorro, NM); Roach, Jesse

    2006-12-01

    Public mediated resource planning is quickly becoming the norm rather than the exception. Unfortunately, supporting tools are lacking that interactively engage the public in the decision-making process and integrate over the myriad values that influence water policy. In the pages of this report we document the first steps toward developing a specialized decision framework to meet this need; specifically, a modular and generic resource-planning ''toolbox''. The technical challenge lies in the integration of the disparate systems of hydrology, ecology, climate, demographics, economics, policy and law, each of which influence the supply and demand for water. Specifically, these systems, their associated processes, and most importantly the constitutive relations that link them must be identified, abstracted, and quantified. For this reason, the toolbox forms a collection of process modules and constitutive relations that the analyst can ''swap'' in and out to model the physical and social systems unique to their problem. This toolbox with all of its modules is developed within the common computational platform of system dynamics linked to a Geographical Information System (GIS). Development of this resource-planning toolbox represents an important foundational element of the proposed interagency center for Computer Aided Dispute Resolution (CADRe). The Center's mission is to manage water conflict through the application of computer-aided collaborative decision-making methods. The Center will promote the use of decision-support technologies within collaborative stakeholder processes to help stakeholders find common ground and create mutually beneficial water management solutions. The Center will also serve to develop new methods and technologies to help federal, state and local water managers find innovative and balanced solutions to the nation's most vexing water problems. The toolbox is an important step toward

  4. Three-dimensional hydrogeological modeling to assess the elevated-water-table technique for controlling acid generation from an abandoned tailings site in Quebec, Canada

    Science.gov (United States)

    Ethier, Marie-Pier; Bussière, Bruno; Broda, Stefan; Aubertin, Michel

    2018-01-01

    The Manitou Mine sulphidic-tailings storage facility No. 2, near Val D'Or, Canada, was reclaimed in 2009 by elevating the water table and applying a monolayer cover made of tailings from nearby Goldex Mine. Previous studies showed that production of acid mine drainage can be controlled by lowering the oxygen flux through Manitou tailings with a water table maintained at the interface between the cover and reactive tailings. Simulations of different scenarios were performed using numerical hydrogeological modeling to evaluate the capacity of the reclamation works to maintain the phreatic surface at this interface. A large-scale numerical model was constructed and calibrated using 3 years of field measurements. This model reproduced the field measurements, including the existence of a western zone on the site where the phreatic level targeted is not always met during the summer. A sensitivity analysis was performed to assess the response of the model to varying saturated hydraulic conductivities, porosities, and grain-size distributions. Higher variations of the hydraulic heads, with respect to the calibrated scenario results, were observed when simulating a looser or coarser cover material. Long-term responses were simulated using: the normal climatic data, data for a normal climate with a 2-month dry spell, and a simplified climate-change case. Environmental quality targets were reached less frequently during summer for the dry spell simulation as well as for the simplified climate-change scenario. This study illustrates how numerical simulations can be used as a key tool to assess the eventual performance of various mine-site reclamation scenarios.

  5. Scots pine (Pinus sylvestris L.) based reconstruction of 130 years of water table fluctuations in a peatland and its relevance for moisture variability assessments

    Science.gov (United States)

    Tamkevičiūtė, Marija; Edvardsson, Johannes; Pukienė, Rūtilė; Taminskas, Julius; Stoffel, Markus; Corona, Christophe; Kibirkštis, Gintautas

    2018-03-01

    Continuous water-table (WT) measurements from peatlands are scarce and - if existing at all -very short. Consequently, proxy indicators are critically needed to simulate hydrological changes in peatlands over longer time periods. In this study, we demonstrate that tree-ring width (TRW) records of Scots pine (Pinus sylvestris L.) growing in the Čepkeliai peatland (southern Lithuania) can be used as a proxy to reconstruct hydrological variability in a raised bog environment. A two-step modelling procedure was applied to extend existing measurements and to develop a new and longer peatland WT time series. To this end, we used instrumental WT measurements extending back to 2002, meteorological records, a P-PET (difference between precipitation and potential evapotranspiration) series covering the period 1935-2014, so as to construct a tree-ring based time series of WT fluctuations at the site for the period 1870-2014. Strongest correlations were obtained between average annual WT measured at the bog margin and total P-PET over 7 years (r = 0.923, p runoff since CE 1812 (r = 0.39, p < 0.00001, 1870-2014). We conclude that peatlands can act both as sinks and sources of greenhouse gases in case that hydrological conditions change, but that hydrological lags and complex feedbacks still hamper our understanding of several processes affecting the hydrology and carbon budget in peatlands. We therefore call for the development of further proxy records of water-table variability in peatlands to improve our understanding of peatland responses to climatic changes.

  6. Thermal conductivity of water: Molecular dynamics and generalized hydrodynamics results

    Science.gov (United States)

    Bertolini, Davide; Tani, Alessandro

    1997-10-01

    Equilibrium molecular dynamics simulations have been carried out in the microcanonical ensemble at 300 and 255 K on the extended simple point charge (SPC/E) model of water [Berendsen et al., J. Phys. Chem. 91, 6269 (1987)]. In addition to a number of static and dynamic properties, thermal conductivity λ has been calculated via Green-Kubo integration of the heat current time correlation functions (CF's) in the atomic and molecular formalism, at wave number k=0. The calculated values (0.67+/-0.04 W/mK at 300 K and 0.52+/-0.03 W/mK at 255 K) are in good agreement with the experimental data (0.61 W/mK at 300 K and 0.49 W/mK at 255 K). A negative long-time tail of the heat current CF, more apparent at 255 K, is responsible for the anomalous decrease of λ with temperature. An analysis of the dynamical modes contributing to λ has shown that its value is due to two low-frequency exponential-like modes, a faster collisional mode, with positive contribution, and a slower one, which determines the negative long-time tail. A comparison of the molecular and atomic spectra of the heat current CF has suggested that higher-frequency modes should not contribute to λ in this temperature range. Generalized thermal diffusivity DT(k) decreases as a function of k, after an initial minor increase at k=kmin. The k dependence of the generalized thermodynamic properties has been calculated in the atomic and molecular formalisms. The observed differences have been traced back to intramolecular or intermolecular rotational effects and related to the partial structure functions. Finally, from the results we calculated it appears that the SPC/E model gives results in better agreement with experimental data than the transferable intermolecular potential with four points TIP4P water model [Jorgensen et al., J. Chem. Phys. 79, 926 (1983)], with a larger improvement for, e.g., diffusion, viscosities, and dielectric properties and a smaller one for thermal conductivity. The SPC/E model shares

  7. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China

    Science.gov (United States)

    Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng

    2018-04-01

    Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.

  8. Physiological and morphological effects of high water tables on early growth of giant reed (Arundo donax), elephant grass (Pennisetum purpureum), energycane and sugarcane (Saccharum spp.)

    Energy Technology Data Exchange (ETDEWEB)

    Jennewein, Stephen Peter [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    Here, an increasing demand for renewable energy sources has spurred interest in high-biomass crops used for energy production. Species potentially well-suited for biofuel production in the seasonally wet organic Everglades Agricultural Area (EAA) of Florida include giant reed (Arundo donax), elephant grass (Pennisetum Purpureum), energycane (Saccharum spp.), and sugarcane (Saccharum spp.). The objectives in this study were to evaluate the role of fluctuating water tables on the morphology, physiology, and early season growth of these four genotypes. The candidate genotypes were grown in a greenhouse under three water table depths, defined by distance of the water table from the soil surface: two constant water tables (-16 cm and -40 cm) along with a flood cycle (2 weeks of flood to the soil level followed by 2 weeks at -40 cm from the soil level). The genotypes included CP 89-2143 (sugarcane), L 79-1002 (energycane), Merkeron (elephant grass), and wild type (giant reed). The experiment was repeated for plant cane, first ratoon, and successive plant cane crop cycles. Reductions in dry matter yield were observed among genotypes subjected to the -40 cm drained, periodically flooded (40F) water table relative to the -40 cm constant (40C) or -16 cm constant (16C). Plant cane dry weights were reduced by 37% in giant reed, 52% in elephant grass, 42% in energycane, and 34% in sugarcane in the 40F compared to 40C water table treatments. Similarly, in the first ratoon crop dry weights were reduced by 29% in giant reed, 42% in elephant grass, 27% in energycane, and 62% in sugarcane. In plant cane and successive plant cane, average total dry weight was greatest for elephant grass whereas ratoon total dry weight was greatest for energycane. Genotype had more pronounced effects on physiological attributes than water table including the highest stomatal conductance and SPAD values in giant reed, and the highest stalk populations in elephant grass and

  9. Observation of dynamic water microadsorption on Au surface

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaokang, E-mail: xiaokang.huang@tqs.com; Gupta, Gaurav; Gao, Weixiang; Tran, Van; Nguyen, Bang; McCormick, Eric; Cui, Yongjie; Yang, Yinbao; Hall, Craig; Isom, Harold [TriQuint Semiconductor, Inc., 500 W Renner Road, Richardson, Texas 75080 (United States)

    2014-05-15

    Experimental and theoretical research on water wettability, adsorption, and condensation on solid surfaces has been ongoing for many decades because of the availability of new materials, new detection and measurement techniques, novel applications, and different scales of dimensions. Au is a metal of special interest because it is chemically inert, has a high surface energy, is highly conductive, and has a relatively high melting point. It has wide applications in semiconductor integrated circuitry, microelectromechanical systems, microfluidics, biochips, jewelry, coinage, and even dental restoration. Therefore, its surface condition, wettability, wear resistance, lubrication, and friction attract a lot of attention from both scientists and engineers. In this paper, the authors experimentally investigated Au{sub 2}O{sub 3} growth, wettability, roughness, and adsorption utilizing atomic force microscopy, scanning electron microscopy, reflectance spectrometry, and contact angle measurement. Samples were made using a GaAs substrate. Utilizing a super-hydrophilic Au surface and the proper surface conditions of the surrounding GaAs, dynamic microadsorption of water on the Au surface was observed in a clean room environment. The Au surface area can be as small as 12 μm{sup 2}. The adsorbed water was collected by the GaAs groove structure and then redistributed around the structure. A model was developed to qualitatively describe the dynamic microadsorption process. The effective adsorption rate was estimated by modeling and experimental data. Devices for moisture collection and a liquid channel can be made by properly arranging the wettabilities or contact angles of different materials. These novel devices will be very useful in microfluid applications or biochips.

  10. Dynamic water exercise in individuals with late poliomyelitis.

    Science.gov (United States)

    Willén, C; Sunnerhagen, K S; Grimby, G

    2001-01-01

    To evaluate the specific effects of general dynamic water exercise in individuals with late effects of poliomyelitis. Before-after tests. A university hospital department. Twenty-eight individuals with late effects of polio, 15 assigned to the training group (TG) and 13 to the control group (CG). The TG completed a 40-minute general fitness training session in warm water twice weekly. Assessment instruments included the bicycle ergometer test, isokinetic muscle strength, a 30-meter walk indoors, Berg balance scale, a pain drawing, a visual analog scale, the Physical Activity Scale for the Elderly, and the Nottingham Health Profile (NHP). Peak load, peak work load, peak oxygen uptake, peak heart rate (HR), muscle function in knee extensors and flexors, and pain dimension of the NHP. The average training period was 5 months; compliance was 75% (range, 55-98). No negative effects were seen. The exercise did not influence the peak work load, peak oxygen uptake, or muscle function in knee extensors compared with the controls. However, a decreased HR at the same individual work load was seen, as well as a significantly lower distress in the dimension pain of the NHP. Qualitative aspects such as increased well-being, pain relief, and increased physical fitness were reported. A program of nonswimming dynamic exercises in heated water has a positive impact on individuals with late effects of polio, with a decreased HR at exercise, less pain, and a subjective positive experience. The program was well tolerated (no adverse effects were reported) and can be recommended for this group of individuals.

  11. Static dielectric constant of water within a bilayer using recent water models: a molecular dynamics study

    Science.gov (United States)

    Meneses-Juárez, Efrain; Rivas-Silva, Juan Francisco; González-Melchor, Minerva

    2018-05-01

    The water confined within a surfactant bilayer is studied using different water models via molecular dynamics simulations. We considered four representative rigid models of water: the SPC/E and the TIP4P/2005, which are commonly used in numerical calculations and the more recent TIP4Q and SPC/ε models, developed to reproduce the dielectric behaviour of pure water. The static dielectric constant of the confined water was analyzed as a function of the temperature for the four models. In all cases it decreases as the temperature increases. Additionally, the static dielectric constant of the bilayer-water system was estimated through its expression in terms of the fluctuations in the total dipole moment, usually applied for isotropic systems. The estimated dielectric was compared with the available experimental data. We found that the TIP4Q and the SPC/ε produce closer values to the experimental data than the other models, particularly at room temperature. It was found that the probability of finding the sodium ion close to the head of the surfactant decreases as the temperature increases, thus the head of the surfactant is more exposed to the interaction with water when the temperature is higher.

  12. Urbanization Changes the Temporal Dynamics of Nutrients and Water Chemistry

    Science.gov (United States)

    Steele, M.; Badgley, B.

    2017-12-01

    Recent studies find that urban development alters the seasonal dynamics of nutrient concentrations, where the highest concentrations of nitrogen occurred during the winter in urban watersheds, rather than the summer. However, the effects of urbanization on the seasonal concentrations of other nutrients and chemical components is unknown. Therefore, to determine how urbanization changes the seasonal dynamics, once a week we measured concentrations of dissolved organic carbon (DOC), nutrients (NO3, DON, TN, PO4), base cations (Ca, Mg, Na, K), anions (F, Cl, SO4), pH, sediment, temperature, conductivity, and dissolved oxygen (DO) of nine urban, agricultural, and minimally developed watersheds in southwest Virginia, USA. We found that urbanization disrupted the seasonal dynamics of all metrics, except DON, PO4, Ca, sediment, and DO, where some shifted to high concentrations during the winter (Cl, conductivity), highs during late winter or spring (DOC, Na), a season low (TN, SO4, NO3) or high (NH4) during the summer, or remained more constant throughout the year compared to the reference watersheds (Mg, K, pH). The complex changes in seasonal dynamics coincide with a decoupling of common correlations between constituents; for example, DO and NO3 are negatively correlated in reference watersheds (NO3 increases, DO decreases), but positively correlated in urban watersheds. These results suggest that as watersheds become more intensely developed, the influence of natural drivers like temperature and vegetation become steadily overcome by the influence of urban drivers like deicing salts and wastewater leakage, which exert increasing control of seasonal water quality and aquatic habitat.

  13. Fluctuating water table affects gross ecosystem production and gross radiation use efficiency in a sedge-grass marsh

    Czech Academy of Sciences Publication Activity Database

    Dušek, Jiří; Čížková, Hana; Stellner, Stanislav; Czerný, Radek; Květ, Jan

    2012-01-01

    Roč. 692, č. 1 (2012), s. 57-66 ISSN 0018-8158 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŽP(CZ) SP/2D1/93/07; GA MŠk OC08021 Institutional research plan: CEZ:AV0Z60870520 Keywords : Wetland * fen * carbon * water level * Carex acuta L. * Eddy covariance Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.985, year: 2012

  14. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available Water scarcity is without a doubt on of the greatest threats to the human species and has all the potential to destabilise world peace. Falling water tables are a new phenomenon. Up until the development of steam and electric motors, deep groudwater...

  15. Efecto del agua aplicada en las relaciones hídricas y productividad de la vid 'Crimson Seedless' Effect of applied water on water relations and productivity of 'Crimson Seedless' table grapes

    Directory of Open Access Journals (Sweden)

    Raúl Ferreyra

    2006-07-01

    Full Text Available Este estudio fue dirigido para evaluar la relación agua-rendimiento en vid de mesa cv. Crimson y establecer valores críticos para las mediciones del estado hídrico de las plantas. Los estudios de campo se desarrollaron durante tres años, en el Valle de Aconcagua, Chile, a 32º47'S y 70º42'O, en un suelo de textura franco arcillosa. Se proporcionaron a las plantas diferentes cantidades de agua de riego entre 40 y 100% de la evapotranspiración del cultivo (Etc. El potencial hídrico xilemático medido a mediodía (psixmin y la conductancia estomática estuvieron estrechamente relacionados con el déficit de agua impuesto y el rendimiento obtenido. Los rendimientos de la vid disminuyeron respecto al agua aplicada en el rango de los tratamientos estudiados. Sesenta por ciento de restricción de la Etc redujo 22% del rendimiento. Cuando la planta mantuvo psixmin mayor que -0,75 MPa entre cuaja y pinta, la producción y los calibres fueron mayores.This study aimed to evaluate the relationship between water and production in 'Crimson Seedless' table grapes, and to establish threshold values for plants water status. Field experiments were carried out, during a three-year period, in the Aconcagua Valley, Chile, at 32º47'S and 70º42'W, in a clay-loamy textured soil. Different irrigation water amounts were applied, between 40 and 100% crop evapotranspiration (Etc. Stem water potential measured at midday (psixmin and stomatal conductance were closely related to water shortage and yield obtained. Table grape yields decreased in comparison with applied water within the range of studied treatments. Sixty per cent Etc restriction decreased yields in 22%. When plants maintained psixmin greater than -0.75 MPa, between berry set and veraison, yield and berry size were high.

  16. Pulse radiolysis of liquid water using picosecond electron pulses produced by a table-top terawatt laser system

    International Nuclear Information System (INIS)

    Saleh, Ned; Flippo, Kirk; Nemoto, Koshichi; Umstadter, Donald; Crowell, Robert A.; Jonah, Charles D.; Trifunac, Alexander D.

    2000-01-01

    A laser based electron generator is shown, for the first time, to produce sufficient charge to conduct time resolved investigations of radiation induced chemical events. Electron pulses generated by focussing terawatt laser pulses into a supersonic helium gas jet are used to ionize liquid water. The decay of the hydrated electrons produced by the ionizing electron pulses is monitored with 0.3 μs time resolution. Hydrated electron concentrations as high as 22 μM were generated. The results show that terawatt lasers offer both an alternative to linear accelerators and a means to achieve subpicosecond time resolution for pulse radiolysis studies. (c) 2000 American Institute of Physics

  17. Approximate dynamic fault tree calculations for modelling water supply risks

    International Nuclear Information System (INIS)

    Lindhe, Andreas; Norberg, Tommy; Rosén, Lars

    2012-01-01

    Traditional fault tree analysis is not always sufficient when analysing complex systems. To overcome the limitations dynamic fault tree (DFT) analysis is suggested in the literature as well as different approaches for how to solve DFTs. For added value in fault tree analysis, approximate DFT calculations based on a Markovian approach are presented and evaluated here. The approximate DFT calculations are performed using standard Monte Carlo simulations and do not require simulations of the full Markov models, which simplifies model building and in particular calculations. It is shown how to extend the calculations of the traditional OR- and AND-gates, so that information is available on the failure probability, the failure rate and the mean downtime at all levels in the fault tree. Two additional logic gates are presented that make it possible to model a system's ability to compensate for failures. This work was initiated to enable correct analyses of water supply risks. Drinking water systems are typically complex with an inherent ability to compensate for failures that is not easily modelled using traditional logic gates. The approximate DFT calculations are compared to results from simulations of the corresponding Markov models for three water supply examples. For the traditional OR- and AND-gates, and one gate modelling compensation, the errors in the results are small. For the other gate modelling compensation, the error increases with the number of compensating components. The errors are, however, in most cases acceptable with respect to uncertainties in input data. The approximate DFT calculations improve the capabilities of fault tree analysis of drinking water systems since they provide additional and important information and are simple and practically applicable.

  18. Optimizing conjunctive use of surface water and groundwater resources with stochastic dynamic programming

    DEFF Research Database (Denmark)

    Davidsen, Claus; Liu, Suxia; Mo, Xinguo

    2014-01-01

    . A stochastic dynamic programming (SDP) approach is used to minimize the basin-wide total costs arising from water allocations and water curtailments. Dynamic allocation problems with inclusion of groundwater resources proved to be more complex to solve with SDP than pure surface water allocation problems due...... to head-dependent pumping costs. These dynamic pumping costs strongly affect the total costs and can lead to non-convexity of the future cost function. The water user groups (agriculture, industry, domestic) are characterized by inelastic demands and fixed water allocation and water supply curtailment...

  19. Picosecond Fluorescence Dynamics of Tryptophan and 5-Fluorotryptophan in Monellin : Slow Water-Protein Relaxation Unmasked

    NARCIS (Netherlands)

    Xu, Jianhua; Chen, Binbin; Callis, Patrik Robert; Muiño, Pedro L; Rozeboom, Henriette J; Broos, Jaap; Toptygin, Dmitri; Brand, Ludwig; Knutson, Jay R

    2015-01-01

    Time Dependent Fluorescence Stokes (emission wavelength) Shifts (TDFSS) from tryptophan (Trp) following sub-picosecond excitation are increasingly used to investigate protein dynamics, most recently enabling active research interest into water dynamics near the surface of proteins. Unlike many

  20. Screening dynamic evaluation of SRS cooling water line

    International Nuclear Information System (INIS)

    Bezler, P.; Shteyngart, S.; Breidenbach, G.

    1991-01-01

    The production reactors at the Savannah River Site (SRS) have been shut down due to perceived safety concerns. A major concern is the seismic integrity of the plant. A comprehensive program is underway to assess the seismic capacity of the existing systems and components and to upgrade them to acceptable levels. The evaluation of the piping systems at the SRS is a major element of this program. Many of the piping systems at the production reactors were designed without performing dynamic analyses. Instead their design complied with good design practice for dead weight supported systems with proper accommodation of thermal expansion effects. In order to gain some insight as to the seismic capacity of piping installed in this fashion, dynamic analyses were performed for some lines. Since the piping was not seismically supported, the evaluations involved various approximations and the results are only used as a screening test of seismic adequacy. In this paper, the screening evaluations performed for the raw water inlet line are described. This line was selected for evaluation since it was considered typical of the smaller diameter piping systems at the plant. It is a dead weight supported system made up of a run of small diameter piping which extends for great distances over many dead weight supports and through wall penetrations. The results of several evaluations for the system using different approximations to represent the support system are described. 2 figs., 4 tabs

  1. VIDENTE: a graphical user interface and decision support system for stochastic modelling of water table fluctuations at a single location; includes documentation of the programs KALMAX, KALTFN, SSD and EMERALD and introductions to stochastic modellin

    NARCIS (Netherlands)

    Bierkens, M.F.P.; Bron, W.A.

    2000-01-01

    The VIDENTE program contains a decision support system (DSS) to choose between different models for stochastic modelling of water-table depths, and a graphical user interface to facilitate operating and running four implemented models: KALMAX, KALTFN,SSDS and EMERALD. In self-contained parts each of

  2. Local density inhomogeneities and dynamics in supercritical water: A molecular dynamics simulation approach.

    Science.gov (United States)

    Skarmoutsos, Ioannis; Samios, Jannis

    2006-11-02

    Molecular dynamics atomistic simulations in the canonical ensemble (NVT-MD) have been used to investigate the "Local Density Inhomogeneities and their Dynamics" in pure supercritical water. The simulations were carried out along a near-critical isotherm (Tr = T/Tc = 1.03) and for a wide range of densities below and above the critical one (0.2 rho(c) - 2.0 rho(c)). The results obtained reveal the existence of significant local density augmentation effects, which are found to be sufficiently larger in comparison to those reported for nonassociated fluids. The time evolution of the local density distribution around each molecule was studied in terms of the appropriate time correlation functions C(Delta)rhol(t). It is found that the shape of these functions changes significantly by increasing the density of the fluid. Finally, the local density reorganization times for the first and second coordination shell derived from these correlations exhibit a decreasing behavior by increasing the density of the system, signifying the density effect upon the dynamics of the local environment around each molecule.

  3. Monthly tables of measurements. October 2000

    International Nuclear Information System (INIS)

    2000-10-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  4. Water

    International Nuclear Information System (INIS)

    Chovanec, A.; Grath, J.; Kralik, M.; Vogel, W.

    2002-01-01

    An up-date overview of the situation of the Austrian waters is given by analyzing the status of the water quality (groundwater, surface waters) and water protection measures. Maps containing information of nitrate and atrazine in groundwaters (analyses at monitoring stations), nitrate contents and biological water quality of running waters are included. Finally, pollutants (nitrate, orthophosphate, ammonium, nitrite, atrazine etc.) trends in annual mean values and median values for the whole country for the years 1992-1999 are presented in tables. Figs. 5. (nevyjel)

  5. Conserved water-mediated H-bonding dynamics of catalytic Asn ...

    Indian Academy of Sciences (India)

    Prakash

    Extensive energy minimization and molecular dynamics simulation studies up to 2 ns ... Conserved water in molecular recognition; MD simulation; plant cysteine protease ..... Mustata G and Briggs J M 2004 Cluster analysis of water molecules.

  6. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Science.gov (United States)

    Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Lawrence B.

    2017-12-01

    Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation-reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May-October WTD drawdown of ˜ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled

  7. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Directory of Open Access Journals (Sweden)

    M. Mezbahuddin

    2017-12-01

    Full Text Available Water table depth (WTD effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1 oxygen transport, which controls energy yields from microbial and root oxidation–reduction reactions, and (2 vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May–October WTD drawdown of  ∼  0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re by 0.26 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. Similar increases in

  8. Insights into structural and dynamical features of water at halloysite interfaces probed by DFT and classical molecular dynamics simulations.

    Science.gov (United States)

    Presti, Davide; Pedone, Alfonso; Mancini, Giordano; Duce, Celia; Tiné, Maria Rosaria; Barone, Vincenzo

    2016-01-21

    Density functional theory calculations and classical molecular dynamics simulations have been used to investigate the structure and dynamics of water molecules on kaolinite surfaces and confined in the interlayer of a halloysite model of nanometric dimension. The first technique allowed us to accurately describe the structure of the tetrahedral-octahedral slab of kaolinite in vacuum and in interaction with water molecules and to assess the performance of two widely employed empirical force fields to model water/clay interfaces. Classical molecular dynamics simulations were used to study the hydrogen bond network structure and dynamics of water adsorbed on kaolinite surfaces and confined in the halloysite interlayer. The results are in nice agreement with the few experimental data available in the literature, showing a pronounced ordering and reduced mobility of water molecules at the hydrophilic octahedral surfaces of kaolinite and confined in the halloysite interlayer, with respect to water interacting with the hydrophobic tetrahedral surfaces and in the bulk. Finally, this investigation provides new atomistic insights into the structural and dynamical properties of water-clay interfaces, which are of fundamental importance for both natural processes and industrial applications.

  9. Stability analysis of roadway embankments supported by stone columns with the presence of water table under short-term and long-term conditions

    Directory of Open Access Journals (Sweden)

    Kadhim Shaymaa Tareq

    2018-01-01

    Full Text Available Use of stone column technique to improve soft foundation soils under roadway embankments has proven to increase the bearing capacity and reduce the potential settlement. The potential contribution of stone columns to the stability of roadway embankments against general (i.e. deep-seated failure needs to be thoroughly investigated. Therefore, a two-dimensional finite difference model implemented by FLAC/SLOPE 7.0 software, was employed in this study to assess the stability of a roadway embankment fill built on a soft soil deposit improved by stone column technique. The stability factor of safety was obtained numerically under both short-term and long-term conditions with the presence of water table. Two methods were adopted to convert the three-dimensional model into plane strain condition: column wall and equivalent improved ground methods. The effect of various parameters was studied to evaluate their influence on the factor of safety against embankment instability. For instance, the column diameter, columns’ spacing, soft soil properties for short-term and long-term conditions, and the height and friction angle of the embankment fill. The results of this study are developed in several design charts.

  10. Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the Sao Francisco river basin, Brazil

    NARCIS (Netherlands)

    Castro Teixeira, de A.H.; Bastiaanssen, W.G.M.; Bassoi, L.H.

    2007-01-01

    Energy and water balance parameters were measured in two commercial vineyards in the semiarid region of the São Francisco river basin, Brazil. Actual evapotranspiration (ET) was acquired with the Bowen ratio surface energy balance method. The ratio of the latent heat flux to the available energy, or

  11. Corrosion in the SCWR: insights from molecular dynamics simulations of the supercritical water - iron hydroxide interface

    Energy Technology Data Exchange (ETDEWEB)

    Kallikragas, D.; Plugatyr, A.; Svishchev, I.M., E-mail: dimitrioskallikragas@trentu.ca [Trent University, Peterborough, Ontario (Canada)

    2013-07-01

    The adsorption properties of supercritical water confined between parallel iron (II) hydroxide surfaces were determined through molecular dynamics simulations. Simulations were conducted at temperatures and water densities typically found in the heat transport system of the supercritical water cooled nuclear reactor (SCWR). Surface water layer densities were compared to those of the bulk water. Adsorption coverage was calculated as a function of the number of waters per surface OH group. Images of the water molecules configurations are provided along with the density profile of the adsorption layer. The observed localized adsorption and surface clustering of supercritical water, would likely produce more localized corrosion phenomena in the water bearing components of the SCWR. (author)

  12. Dynamic lifetimes of cagelike water clusters immersed in liquid water and their implications for hydrate nucleation studies

    Energy Technology Data Exchange (ETDEWEB)

    Guo, G.J.; Zhang, Y.G.; Li, M.; Wu, C.H. [Chinese Academy of Sciences, Inst. of Geology and Geophysics, Beijing (China). Key Laboratory of the Study of Earth' s Deep Interior

    2008-07-01

    In hydrate research fields, the hydrate nucleation mechanism still remains as an unsolved question. The static lifetimes of cagelike water clusters (CLWC) immersed in bulk liquid water have recently been measured by performing molecular dynamics simulations in the methane-water system, during which the member-water molecules of CLWCs are not allowed to exchange with their surrounding water molecules. This paper presented a study that measured the dynamic lifetimes of CLWCs permitting such water exchanges. The study involved re-analysis of previous simulation data that were used to study the effect of methane adsorption on the static lifetimes of a dodecahedral water cluster (DWC). The dynamic lifetimes of the DWC were calculated. The results of lifetime measurements of DWC in different systems were provided. The implications of this study for hydrate nucleation were also discussed. It was found that the dynamic lifetimes of CLWCs were not less than the static lifetimes previously obtained, and their ratio increased with the lifetime values. The results strengthened that CLWCs are metastable structures in liquid water and the occurrence probability of long-lived CLWCs will increase if one uses the dynamic lifetimes instead of the static lifetimes. 13 refs., 1 tab., 3 figs.

  13. High-frequency dynamics of liquid and supercritical water

    International Nuclear Information System (INIS)

    Bencivenga, F.; Cunsolo, A.; Krisch, M.; Monaco, G.; Sette, F.; Ruocco, G.

    2007-01-01

    The dynamic structure factor S(Q,ω) of water has been determined by high-resolution inelastic x-ray scattering (IXS) in a momentum (Q) and energy (E) transfer range extending from 2 to 4 nm -1 and from ±40 meV. IXS spectra have been recorded along an isobaric path (400 bar) in a temperature (T) interval ranging from ambient up to supercritical (T>647 K) conditions. The experimental data have been described in the frame of the generalized hydrodynamic theory, utilizing a model based on the memory function approach. This model allows identifying the active relaxation processes which affect the time decay of density fluctuations, as well as a direct determination of the Q, T, and density (ρ) dependencies of the involved transport parameters. The experimental spectra are well described by considering three different relaxation processes: the thermal, the structural, and the instantaneous one. On approaching supercritical conditions, we observe that the microscopic mechanism responsible for the structural relaxation is no longer related to the making and breaking of intermolecular bonds, but to binary intermolecular collisions

  14. Interventions and Interactions: Understanding Coupled Human-Water Dynamics for Improved Water Resources Management in the Himalayas

    Science.gov (United States)

    Crootof, A.

    2017-12-01

    Understanding coupled human-water dynamics offers valuable insights to address fundamental water resources challenges posed by environmental change. With hydropower reshaping human-water interactions in mountain river basins, there is a need for a socio-hydrology framework—which examines two-way feedback loops between human and water systems—to more effectively manage water resources. This paper explores the cross-scalar interactions and feedback loops between human and water systems in river basins affected by run-of-the-river hydropower and highlights the utility of a socio-hydrology perspectives to enhance water management in the face of environmental change. In the Himalayas, the rapid expansion of run-of-the-river hydropower—which diverts streamflow for energy generation—is reconfiguring the availability, location, and timing of water resources. This technological intervention in the river basin not only alters hydrologic dyanmics but also shapes social outcomes. Using hydropower development in the highlands of Uttarakhand, India as a case study, I first illustrate how run-of-the-river projects transform human-water dynamics by reshaping the social and physical landscape of a river basin. Second, I emphasize how examining cross-scalar feedbacks among structural dynamics, social outcomes, and values and norms in this coupled human-water system can inform water management. Third, I present hydrological and social literature, raised separately, to indicate collaborative research needs and knowledge gaps for coupled human-water systems affected by run-of-the-river hydropower. The results underscore the need to understand coupled human-water dynamics to improve water resources management in the face of environmental change.

  15. Cosolvent effect on the dynamics of water in aqueous binary mixtures

    Science.gov (United States)

    Zhang, Xia; Zhang, Lu; Jin, Tan; Zhang, Qiang; Zhuang, Wei

    2018-04-01

    Water rotational dynamics in the mixtures of water and amphiphilic molecules, such as acetone and dimethyl sulfoxide (DMSO), measured by femtosecond infrared, often vary non-monotonically as the amphiphilic molecule's molar fraction changes from 0 to 1. Recent study has attributed the non-ideal water rotation with concentration in DMSO-water mixtures to different microscopic hydrophilic-hydrophobic segregation structure in water-rich and water-poor mixtures. Interestingly, the acetone molecule has very similar molecular structure to DMSO, but the extremum of the water rotational time in the DMSO-water mixtures significantly shifts to lower concentration and the rotation of water is much faster than those in acetone-water mixtures. The simulation results here shows that the non-ideal rotational dynamics of water in both mixtures are due to the frame rotation during the interval of hydrogen bond (HB) switchings. A turnover of the frame rotation with concentration takes place as the structure transition of mixture from the hydrogen bond percolation structure to the hydrophobic percolation structure. The weak acetone-water hydrogen bond strengthens the hydrophobic aggregation and accelerates the relaxation of the hydrogen bond, so that the structure transition takes places at lower concentration and the rotation of water is faster in acetone-water mixture than in DMSO-water mixture. A generally microscopic picture on the mixing effect on the water dynamics in binary aqueous mixtures is presented here.

  16. Femtosecond vibrational dynamics in water nano-droplets

    NARCIS (Netherlands)

    Cringus, Gheorghe Dan

    2008-01-01

    Water is probably the most researched substance on Earth. The interest in water, and redominantly in liquid water, is due to its importance on both macro- and microscopic scales. Although people have been trying to understand water for centuries, this ubiquitous liquid is still surrounded by mystery

  17. A nuclear magnetic relaxation study of hydrogen exchange and water dynamics in aqueous systems

    International Nuclear Information System (INIS)

    Lankhorst, D.

    1983-01-01

    In this thesis exchange of water protons in solutions of some weak electrolytes and polyelectrolytes is studied. Also the dynamical behaviour of water molecules in pure water is investigated. For these purposes nuclear magnetic resonance relaxation measurements, in solutions of oxygen-17 enriched water, are interpreted. The exchange rate of the water protons is derived from the contribution of 1 H- 17 O scalar coupling to the proton transverse relaxation rate. This rate is measured by the Carr-Purcell technique. (Auth.)

  18. Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia).

    Science.gov (United States)

    Martignon, Stefania; Opazo-Gutiérrez, Mario Omar; Velásquez-Riaño, Möritz; Orjuela-Osorio, Iván Rodrigo; Avila, Viviana; Martinez-Mier, Esperanza Angeles; González-Carrera, María Clara; Ruiz-Carrizosa, Jaime Alberto; Silva-Hermida, Blanca Cecilia

    2017-06-01

    Fluoride is an element that affects teeth and bone formation in animals and humans. Though the use of systemic fluoride is an evidence-based caries preventive measure, excessive ingestion can impair tooth development, mainly the mineralization of tooth enamel, leading to a condition known as enamel fluorosis. In this study, we investigated the geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples in four endemic enamel fluorosis sentinel municipalities of the department of Huila, Colombia (Pitalito, Altamira, El Agrado and Rivera), and its possible relationship with the prevalence of enamel fluorosis in children. The concentration of fluoride in drinking water, table salt, active sediment, rock, and soil was evaluated by means of an ion selective electrode and the geochemical analyses were performed using X-ray fluorescence. Geochemical analysis revealed fluoride concentrations under 15 mg/kg in active sediment, rock and soil samples, not indicative of a significant delivery to the watersheds studied. The concentration of fluoride in table salt was found to be under the inferior limit (less than 180 μg/g) established by the Colombian regulations. Likewise, exposure doses for fluoride water intake did not exceed the recommended total dose for all ages from 6 months. Although the evidence does not point out at rocks, soils, fluoride-bearing minerals, fluoridated salt and water, the hypothesis of these elements as responsible of the current prevalence of enamel fluorosis cannot be discarded since, aqueducts might have undergone significant changes overtime.

  19. Molecular Dynamics Simulation of a Membrane/Water Interface : The Ordering of Water and Its Relation to the Hydration Force

    NARCIS (Netherlands)

    Marrink, Siewert-Jan; Berkowitz, Max; Berendsen, Herman J.C.

    1993-01-01

    In order to obtain a better understanding of the origin of the hydration force, three molecular dynamic simulations of phospholipid/water multilamellar systems were performed. The simulated systems only differed in the amount of interbilayer water, ranging from the minimum to the maximum amount of

  20. NNDSS - Table III. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table III. Tuberculosis - 2018.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  1. Pension Insurance Data Tables

    Data.gov (United States)

    Pension Benefit Guaranty Corporation — Find out about retirement trends in PBGC's data tables. The tables include statistics on the people and pensions that PBGC protects, including how many Americans are...

  2. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2016.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  3. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2014.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  4. NNDSS - Table II. Vibriosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Vibriosis - 2017. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year), and selected...

  5. NNDSS - Table III. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table III. Tuberculosis - 2017.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  6. NNDSS - Table IV. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table IV. Tuberculosis - 2015.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  7. NNDSS - Table II. Vibriosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Vibriosis - 2018. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding year), and selected...

  8. Tabled Execution in Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  9. Filling the gap: using non-invasive geophysical methods to monitor the processes leading to enhanced carbon turnover induced by periodic water table fluctuations

    Science.gov (United States)

    Mellage, A.; Pronk, G.; Atekwana, E. A.; Furman, A.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Subsurface transition environments such as the capillary fringe are characterized by steep gradients in redox conditions. Spatial and temporal variations in electron acceptor and donor availability - driven by hydrological changes - may enhance carbon turnover, in some cases resulting in pulses of CO2-respiration. Filling the mechanistic knowledge gap between the hydrological driver and its biogeochemical effects hinges on our ability to monitor microbial activity and key geochemical markers at a high spatial and temporal resolution. However, direct access to subsurface biogeochemical processes is logistically difficult, invasive and usually expensive. In-line, non-invasive geophysical techniques - Spectral Induced Polarization (SIP) and Electrodic Potential (EP), specifically - offer a comparatively inexpensive alternative and can provide data with high spatial and temporal resolution. The challenge lies in linking electrical responses to specific changes in biogeochemical processes. We conducted SIP and EP measurements on a soil column experiment where an artificial soil mixture was subjected to monthly drainage and imbibition cycles. SIP responses showed a clear dependence on redox zonation and microbial abundance. Temporally variable responses exhibited no direct moisture dependence suggesting that the measured responses recorded changes in microbial activity and coincided with the depth interval over which enhanced carbon turnover was observed. EP measurements detected the onset of sulfate mineralization and mapped its depth zonation. SIP and EP signals thus detected enhanced microbial activity within the water table fluctuation zone as well as the timing of the development of specific reactive processes. These findings can be used to relate measured electrical signals to specific reaction pathways and help inform reactive transport models, increasing their predictive capabilities.

  10. AcuTable

    DEFF Research Database (Denmark)

    Dibbern, Simon; Rasmussen, Kasper Vestergaard; Ortiz-Arroyo, Daniel

    2017-01-01

    In this paper we describe AcuTable, a new tangible user interface. AcuTable is a shapeable surface that employs capacitive touch sensors. The goal of AcuTable was to enable the exploration of the capabilities of such haptic interface and its applications. We describe its design and implementation...

  11. Table Tennis Club

    CERN Multimedia

    Table Tennis Club

    2013-01-01

    Apparently table tennis plays an important role in physics, not so much because physicists are interested in the theory of table tennis ball scattering, but probably because it provides useful breaks from their deep intellectual occupation. It seems that many of the greatest physicists took table tennis very seriously. For instance, Heisenberg could not even bear to lose a game of table tennis, Otto Frisch played a lot of table tennis, and had a table set up in his library, and Niels Bohr apparently beat everybody at table tennis. Therefore, as the CERN Table Tennis Club advertises on a poster for the next CERN Table Tennis Tournament: “if you want to be a great physicist, perhaps you should play table tennis”. Outdoor table at restaurant n° 1 For this reason, and also as part of the campaign launched by the CERN medical service “Move! & Eat better”, to encourage everyone at CERN to take regular exercise, the CERN Table Tennis Club, with the supp...

  12. Periodic Table of Students.

    Science.gov (United States)

    Johnson, Mike

    1998-01-01

    Presents an exercise in which an eighth-grade science teacher decorated the classroom with a periodic table of students. Student photographs were arranged according to similarities into vertical columns. Students were each assigned an atomic number according to their placement in the table. The table is then used to teach students about…

  13. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques.

    Science.gov (United States)

    F.C. Meinzer; J.R. Brooks; J.-C. Domec; B.L. Gartner; J.M. Warren; D.R. Woodruff; K. Bible; D.C. Shaw

    2006-01-01

    The volume and complexity of their vascular systems make the dynamics of tong-distance water transport in large trees difficult to study. We used heat and deuterated water (D20) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the coniferous species Pseudotsuga menziesii...

  14. Analysing the dynamics of transitions in residential water consumption in the Netherlands

    NARCIS (Netherlands)

    Agudelo-Vera, C.M.; Blokker, E.J.M.; Buscher, C.H.; Vreeburg, J.H.G.

    2014-01-01

    Water infrastructure is inherently a socio-technical system. Rapidly changing urban trends and long-term uncertainties make water infrastructure management complex. This paper analyses the dynamics of residential water consumption in the Netherlands since 1900. During this period, different drivers

  15. Carbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate change

    Science.gov (United States)

    Munir, T. M.; Perkins, M.; Kaing, E.; Strack, M.

    2015-02-01

    Midlatitude treed bogs represent significant carbon (C) stocks and are highly sensitive to global climate change. In a dry continental treed bog, we compared three sites: control, recent (1-3 years; experimental) and older drained (10-13 years), with water levels at 38, 74 and 120 cm below the surface, respectively. At each site we measured carbon dioxide (CO2) fluxes and estimated tree root respiration (Rr; across hummock-hollow microtopography of the forest floor) and net primary production (NPP) of trees during the growing seasons (May to October) of 2011-2013. The CO2-C balance was calculated by adding the net CO2 exchange of the forest floor (NEff-Rr) to the NPP of the trees. From cooler and wetter 2011 to the driest and the warmest 2013, the control site was a CO2-C sink of 92, 70 and 76 g m-2, the experimental site was a CO2-C source of 14, 57 and 135 g m-2, and the drained site was a progressively smaller source of 26, 23 and 13 g CO2-C m-2. The short-term drainage at the experimental site resulted in small changes in vegetation coverage and large net CO2 emissions at the microforms. In contrast, the longer-term drainage and deeper water level at the drained site resulted in the replacement of mosses with vascular plants (shrubs) on the hummocks and lichen in the hollows leading to the highest CO2 uptake at the drained hummocks and significant losses in the hollows. The tree NPP (including above- and below-ground growth and litter fall) in 2011 and 2012 was significantly higher at the drained site (92 and 83 g C m-2) than at the experimental (58 and 55 g C m-2) and control (52 and 46 g C m-2) sites. We also quantified the impact of climatic warming at all water table treatments by equipping additional plots with open-top chambers (OTCs) that caused a passive warming on average of ~ 1 °C and differential air warming of ~ 6 °C at midday full sun over the study years. Warming significantly enhanced shrub growth and the CO2 sink function of the drained

  16. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    KAUST Repository

    Martinez, N.

    2016-09-06

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  17. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    KAUST Repository

    Martinez, N.; Michoud, Gregoire; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-01-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  18. Seeing real-space dynamics of liquid water through inelastic x-ray scattering.

    Science.gov (United States)

    Iwashita, Takuya; Wu, Bin; Chen, Wei-Ren; Tsutsui, Satoshi; Baron, Alfred Q R; Egami, Takeshi

    2017-12-01

    Water is ubiquitous on earth, but we know little about the real-space motion of molecules in liquid water. We demonstrate that high-resolution inelastic x-ray scattering measurement over a wide range of momentum and energy transfer makes it possible to probe real-space, real-time dynamics of water molecules through the so-called Van Hove function. Water molecules are found to be strongly correlated in space and time with coupling between the first and second nearest-neighbor molecules. The local dynamic correlation of molecules observed here is crucial to a fundamental understanding of the origin of the physical properties of water, including viscosity. The results also suggest that the quantum-mechanical nature of hydrogen bonds could influence its dynamics. The approach used here offers a powerful experimental method for investigating real-space dynamics of liquids.

  19. A stochastic dynamic programming model for stream water quality ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    constraints of the water quality management problem; (ii) a water quality simulation model ... of acceptance and limited implementation of optimisation techniques. .... The response of river system to these sources of pollution can be integrated ...

  20. Assessment of water hammer effects on boiling water nuclear reactor core dynamics

    Directory of Open Access Journals (Sweden)

    Bousbia-Salah Anis

    2007-01-01

    Full Text Available Complex phenomena, as water hammer transients, occurring in nuclear power plants are still not very well investigated by the current best estimate computational tools. Within this frame work, a rapid positive reactivity addition into the core generated by a water hammer transient is considered. The numerical simulation of such phenomena was carried out using the coupled RELAP5/PARCS code. An over all data comparison shows good agreement between the calculated and measured core pressure wave trends. However, the predicted power response during the excursion phase did not correctly match the experimental tendency. Because of this, sensitivity studies have been carried out in order to identify the most influential parameters that govern the dynamics of the power excursion. After investigating the pressure wave amplitude and the void feed back responses, it was found that the disagreement between the calculated and measured data occurs mainly due to the RELAP5 low void condensation rate which seems to be questionable during rapid transients. .

  1. Application of quasi-elastic neutron scattering to dynamics study of confined water

    International Nuclear Information System (INIS)

    Li Hua; Zhang Lili; Yi Zhou

    2014-01-01

    Background: Quasi-elastic neutron scattering (QENS) is an important experiment for dynamics study of confined water. It is significant to study the dynamics of confined water in cement paste. Purpose: In this paper, we have two aims. One is to present a reviewer of QENS study on dynamics of confined water in cement paste in recent years. The other is to illustrate the QENS application to the study on dynamics of confined water based on cement paste. Method: Relaxing cage model (RCM) is specially introduced for the analyses of QENS spectra. Results: Based on RCM, several parameters for describing the dynamics of confined water in cement paste, can be obtained from the analyses of QENS spectra: a fraction of mobile 'glassy' water molecules embedded in amorphous gel region surrounding the hydration products, 1-p, the capture time of confined water molecule in some place-τ 0 , the average translational relaxation time-<τ>, the self-diffusion coefficient-D, and a phenomenological shape parameter describing the uniform of amorphous in cement paste-β. Conclusion: All these provide a practical method for QENS study on dynamics of confined water in cement paste. (authors)

  2. Mortality table construction

    Science.gov (United States)

    Sutawanir

    2015-12-01

    Mortality tables play important role in actuarial studies such as life annuities, premium determination, premium reserve, valuation pension plan, pension funding. Some known mortality tables are CSO mortality table, Indonesian Mortality Table, Bowers mortality table, Japan Mortality table. For actuary applications some tables are constructed with different environment such as single decrement, double decrement, and multiple decrement. There exist two approaches in mortality table construction : mathematics approach and statistical approach. Distribution model and estimation theory are the statistical concepts that are used in mortality table construction. This article aims to discuss the statistical approach in mortality table construction. The distributional assumptions are uniform death distribution (UDD) and constant force (exponential). Moment estimation and maximum likelihood are used to estimate the mortality parameter. Moment estimation methods are easier to manipulate compared to maximum likelihood estimation (mle). However, the complete mortality data are not used in moment estimation method. Maximum likelihood exploited all available information in mortality estimation. Some mle equations are complicated and solved using numerical methods. The article focus on single decrement estimation using moment and maximum likelihood estimation. Some extension to double decrement will introduced. Simple dataset will be used to illustrated the mortality estimation, and mortality table.

  3. CERN Table Tennis Club

    CERN Multimedia

    CERN Table Tennis Club

    2014-01-01

    CERN Table Tennis Club Announcing CERN 60th Anniversary Table Tennis Tournament to take place at CERN, from July 1 to July 15, 2014   The CERN Table Tennis Club, reborn in 2008, is encouraging people at CERN to take more regular exercise. This is why the Club, thanks to the strong support of the CERN Staff Association, installed last season a first outdoor table on the terrace of restaurant # 1, and will install another one this season on the terrace of Restaurant # 2. Table tennis provides both physical exercise and friendly social interactions. The CERN Table Tennis club is happy to use the unique opportunity of the 60th CERN anniversary to promote table tennis at CERN, as it is a game that everybody can easily play, regardless of level. Table tennis is particularly well suited for CERN, as many great physicists play table tennis, as you might already know: “Heisenberg could not even bear to lose a game of table tennis”; “Otto Frisch played a lot of table tennis;...

  4. Factors Affecting Water Dynamics and Their Assessment in Agricultural Landscapes

    International Nuclear Information System (INIS)

    Sakadevan, K.; Nguyen, M.L.

    2015-01-01

    The intensification and extension of agriculture have contributed significantly to the global food production in the last five decades. However, intensification without due attention to the ecosystem services and sustainability of soil and water resources contributed to land and water quality degradation such as soil erosion, decreased soil fertility and quality, salinization and nutrient discharge to surface and ground waters. Land use change from forests to crop lands altered the vegetation pattern and hydrology of landscapes with increased nutrient discharge from crop lands to riverine environment. Global climate change will increase the amount of water required for agriculture in addition to water needed for further irrigation development causing water scarcity in many dry, arid and semi-arid regions. The water and nutrient use efficiencies of agricultural production systems are still below 40% in many regions across the globe. Nitrogen (N) and phosphorus (P) fertilizer use in agriculture have accelerated the cycling of these nutrients in the landscape and contributed to water quality degradation. Such nutrient pollution has a wide array of consequences including eutrophication of inland waters and marine ecosystems. While intensifying drought conditions, increasing water consumption and environmental pollution in many parts of the world threatens agricultural productivity and livelihood, these also provided opportunities for farmers to use improved land and water management technologies and practices to make agriculture resilient to external shocks

  5. DYNAMICS OF WATER CONSUMPTION CHANGES IN A TOURIST RESORT

    Directory of Open Access Journals (Sweden)

    Izabela Bartkowska

    2014-10-01

    Over 2011–2012 water extraction to the municipal water supply network was studied. The volume of water extracted every day was analyzed and the gathered volumes were analyzed statistically. The varying water extraction was also studied. The obtained results were presented in a graphic form. Basing on the descriptive stats and prepared diagrams certain general conclusions were drawn and the collected study figures and facts were summed up. This allowed to determine days of the highest and lowest water consumption. Also months of extreme water extraction and consumption were determined. The water extraction ranged from 1641 m3/24h to 2607 m3/24h, at an average value of 2077.4 m3/24h. Over the period under study the day of the largest water extraction and consumption was in July and the day of the lowest water extraction and consumption in December. During a week inhabitants used the highest water amount on Saturdays and the lowest on Sundays and other feast-days. Basing on the conducted measurements also the coefficient of water consumption per capita was determined. The fluctuation of this coefficient was identical as that for the water consumption. Within the period of study it ranged from 73.3 l/M 24h to 116.5 l/M 24h. The average value of the specific water consumption was 92.8 l/M 24h. For the sake of discussion the obtained results were compared with observations across the country.

  6. Molecular Interactions and Reaction Dynamics in Supercritical Water Oxidation

    National Research Council Canada - National Science Library

    Johnston, K

    1998-01-01

    .... From UV-vis spectroscopic measurements and molecular dynamics simulation of chemical equilibria, we have shown that density effects on broad classes of reactions may be explained in terms of changes...

  7. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.

    2004-01-01

    Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding......-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together...... at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time...

  8. The Silica-Water Interface from the Analysis of Molecular Dynamic Simulations

    KAUST Repository

    Lardhi, Sheikha F.

    2013-01-01

    detailed understanding of the silica-water interface. In this study, we investigate the details of this interaction at microscopic level by analyzing trajectories obtained with ab initio molecular dynamic simulations. The system we consider consists of bulk

  9. Dynamics of bacterial communities before and after distribution in a full-scale drinking water network

    KAUST Repository

    El Chakhtoura, Joline; Prest, Emmanuelle I E C; Saikaly, Pascal; van Loosdrecht, Mark C.M.; Hammes, Frederik A.; Vrouwenvelder, Johannes S.

    2015-01-01

    Understanding the biological stability of drinking water distribution systems is imperative in the framework of process control and risk management. The objective of this research was to examine the dynamics of the bacterial community during

  10. TABLE TENNIS CLUB

    CERN Document Server

    TABLE TENNIS CLUB

    2010-01-01

    2010 CERN Table Tennis Tournament The CERN Table Tennis Club organizes its traditional CERN Table Tennis Tournament, at the Meyrin club, 2 rue de livron, in Meyrin, Saturday August 21st, in the afternoon. The tournament is open to all CERN staff, users, visitors and families, including of course summer students. See below for details. In order to register, simply send an E-mail to Jean-Pierre Revol (jean-pierre.revol@cern.ch). You can also download the registration form from the Club Web page (http://www.cern.ch/tabletennis), and send it via internal mail. Photo taken on August 22, 2009 showing some of the participants in the 2nd CERN Table Tennis tournament. INFORMATION ON CERN TABLE TENNIS CLUB CERN used to have a tradition of table tennis activities at CERN. For some reason, at the beginning of the 1980’s, the CERN Table Tennis club merged with the Meyrin Table Tennis club, a member of the Association Genevoise de Tennis de Table (AGTT). Therefore, if you want to practice table tennis, you...

  11. Testing the effects of basic numerical implementations of water migration on models of subduction dynamics

    Science.gov (United States)

    Quinquis, M. E. T.; Buiter, S. J. H.

    2014-06-01

    Subduction of oceanic lithosphere brings water into the Earth's upper mantle. Previous numerical studies have shown how slab dehydration and mantle hydration can impact the dynamics of a subduction system by allowing a more vigorous mantle flow and promoting localisation of deformation in the lithosphere and mantle. The depths at which dehydration reactions occur in the hydrated portions of the slab are well constrained in these models by thermodynamic calculations. However, computational models use different numerical schemes to simulate the migration of free water. We aim to show the influence of the numerical scheme of free water migration on the dynamics of the upper mantle and more specifically the mantle wedge. We investigate the following three simple migration schemes with a finite-element model: (1) element-wise vertical migration of free water, occurring independent of the flow of the solid phase; (2) an imposed vertical free water velocity; and (3) a Darcy velocity, where the free water velocity is a function of the pressure gradient caused by the difference in density between water and the surrounding rocks. In addition, the flow of the solid material field also moves the free water in the imposed vertical velocity and Darcy schemes. We first test the influence of the water migration scheme using a simple model that simulates the sinking of a cold, hydrated cylinder into a dry, warm mantle. We find that the free water migration scheme has only a limited impact on the water distribution after 1 Myr in these models. We next investigate slab dehydration and mantle hydration with a thermomechanical subduction model that includes brittle behaviour and viscous water-dependent creep flow laws. Our models demonstrate that the bound water distribution is not greatly influenced by the water migration scheme whereas the free water distribution is. We find that a bound water-dependent creep flow law results in a broader area of hydration in the mantle wedge, which

  12. Testing the effects of the numerical implementation of water migration on models of subduction dynamics

    Science.gov (United States)

    Quinquis, M. E. T.; Buiter, S. J. H.

    2013-10-01

    Subduction of oceanic lithosphere brings water into Earth's upper mantle. Previous numerical studies have shown how slab dehydration and mantle hydration can impact the dynamics of a subduction system by allowing a more vigorous mantle flow and promoting localisation of deformation in lithosphere and mantle. The depths at which dehydration reactions occur in the hydrated portions of the slab are well constrained in these models by thermodynamic calculations. However, the mechanism by which free water migrates in the mantle is incompletely known. Therefore, models use different numerical schemes to model the migration of free water. We aim to show the influence of the numerical scheme of free water migration on the dynamics of the upper mantle and more specifically the mantle wedge. We investigate the following three migration schemes with a finite-element model: (1) element-wise vertical migration of free water, occurring independent of the material flow; (2) an imposed vertical free water velocity; and (3) a Darcy velocity, where the free water velocity is calculated as a function of the pressure gradient between water and the surrounding rocks. In addition, the material flow field also moves the free water in the imposed vertical velocity and Darcy schemes. We first test the influence of the water migration scheme using a simple Stokes flow model that simulates the sinking of a cold hydrated cylinder into a hot dry mantle. We find that the free water migration scheme has only a limited impact on the water distribution after 1 Myr in these models. We next investigate slab dehydration and mantle hydration with a thermomechanical subduction model that includes brittle behaviour and viscous water-dependent creep flow laws. Our models show how the bound water distribution is not greatly influenced by the water migration scheme whereas the free water distribution is. We find that a water-dependent creep flow law results in a broader area of hydration in the mantle

  13. The Dynamics of Trust in the Shanghai Water Supply Regime

    Science.gov (United States)

    Zhen, Nahui; Barnett, Jon; Webber, Michael

    2018-02-01

    Trust in natural resource managers and planners is recognized as a crucial component of the public's perception of environmental risks, including the risk of consuming water in cities. Although China is famous for its dubious water quality, public perception of the performance of water suppliers in China has scarcely been considered. Yet this is important, not least because improvements in urban water quality are most likely if the public perceives that there is a risk, which is a function of their levels of trust. We, therefore, examine the Shanghai public's trust in urban water authorities through analysis of the results from a face-to-face questionnaire that 5007 residents responded to. We find that although respondents show a moderate level of overall trust in water suppliers, they have less trust in the honesty and fairness of these organizations. In addition, we find that hukou status and education help explain the differences in people's trust in Shanghai's water authorities, and that these are more influential than factors such as gender and age. For water managers in Shanghai, this implies trust can be improved through a greater effort at public relations and increased transparency about decision making and levels of pollution.

  14. Water dynamics and population pressure in the Nepalese Himalayas.

    Science.gov (United States)

    Schreier, H; Shah, P B

    1996-10-01

    The authors investigate the impact of water shortages, especially water for irrigation, on development in Nepal. "The problems associated with hydropower development will be illustrated by using the Kulekhani watershed project as a case study." The possible future effects on food supplies and health are discussed. excerpt

  15. System dynamics model of Suzhou water resources carrying capacity and its application

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2010-06-01

    Full Text Available A model of Suzhou water resources carrying capacity (WRCC was set up using the method of system dynamics (SD. In the model, three different water resources utilization programs were adopted: (1 continuity of existing water utilization, (2 water conservation/saving, and (3 water exploitation. The dynamic variation of the Suzhou WRCC was simulated with the supply-decided principle for the time period of 2001 to 2030, and the results were characterized based on socio-economic factors. The corresponding Suzhou WRCC values for several target years were calculated by the model. Based on these results, proper ways to improve the Suzhou WRCC are proposed. The model also produced an optimized plan, which can provide a scientific basis for the sustainable utilization of Suzhou water resources and for the coordinated development of the society, economy, and water resources.

  16. Development of a dynamic model for cleaning ultra filtration membranes fouled by surface water

    NARCIS (Netherlands)

    Zondervan, Edwin; Betlem, Ben H.L.; Roffel, Brian

    2007-01-01

    In this paper, a dynamic model for cleaning ultra filtration membranes fouled by surface water is proposed. A model that captures the dynamics well is valuable for the optimization of the cleaning process. The proposed model is based on component balances and contains three parameters that can be

  17. The dynamics of dissolved oxygen concentration for water quality monitoring and assessment in polder ditches

    NARCIS (Netherlands)

    Veeningen, R.

    1983-01-01

    This study deals with the use of the dynamics of dissolved oxygen concentration for water quality assessment in polder ditches. The dynamics of the dissolved oxygen concentration, i.e. the temporal and spatial variations in a few polder ditches under a range of natural, pollution and management

  18. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation.

    Science.gov (United States)

    Foroutan, Masumeh; Fatemi, S Mahmood; Esmaeilian, Farshad

    2017-02-01

    During the past decade, the research on fluids in nanoconfined geometries has received considerable attention as a consequence of their wide applications in different fields. Several nanoconfined systems such as water and ionic liquids, together with an equally impressive array of nanoconfining media such as carbon nanotube, graphene and graphene oxide have received increasingly growing interest in the past years. Water is the first system that has been reviewed in this article, due to its important role in transport phenomena in environmental sciences. Water is often considered as a highly nanoconfined system, due to its reduction to a few layers of water molecules between the extended surface of large macromolecules. The second system discussed here is ionic liquids, which have been widely studied in the modern green chemistry movement. Considering the great importance of ionic liquids in industry, and also their oil/water counterpart, nanoconfined ionic liquid system has become an important area of research with many fascinating applications. Furthermore, the method of molecular dynamics simulation is one of the major tools in the theoretical study of water and ionic liquids in nanoconfinement, which increasingly has been joined with experimental procedures. In this way, the choice of water and ionic liquids in nanoconfinement is justified by applying molecular dynamics simulation approaches in this review article.

  19. Differential effects of fine root morphology on water dynamics in the root-soil interface

    Science.gov (United States)

    DeCarlo, K. F.; Bilheux, H.; Warren, J.

    2017-12-01

    Soil water uptake form plants, particularly in the rhizosphere, is a poorly understood question in the plant and soil sciences. Our study analyzed the role of belowground plant morphology on soil structural and water dynamics of 5 different plant species (juniper, grape, maize, poplar, maple), grown in sandy soils. Of these, the poplar system was extended to capture drying dynamics. Neutron radiography was used to characterize in-situ dynamics of the soil-water-plant system. A joint map of root morphology and soil moisture was created for the plant systems using digital image processing, where soil pixels were connected to associated root structures via minimum distance transforms. Results show interspecies emergent behavior - a sigmoidal relationship was observed between root diameter and bulk/rhizosphere soil water content difference. Extending this as a proxy for extent of rhizosphere development with root age, we observed a logistic growth pattern for the rhizosphere: minimal development in the early stages is superceded by rapid onset of rhizosphere formation, which then stabilizes/decays with the likely root suberization. Dynamics analysis of water content differences between the root/rhizosphere, and rhizosphere/bulk soil interface highlight the persistently higher water content in the root at all water content and root size ranges. At the rhizosphere/bulk soil interface, we observe a shift in soil water dynamics by root size: in super fine roots, we observe that water content is primarily lower in the rhizosphere under wetter conditions, which then gradually increases to a relatively higher water content under drier conditions. This shifts to a persistently higher rhizosphere water content relative to bulk soil in both wet/dry conditions with increased root size, suggesting that, by size, the finest root structures may contribute the most to total soil water uptake in plants.

  20. Dynamic Oil-in-Water Concentration Acquisition on a Pilot-Scaled Offshore Water-Oil Separation Facility

    Directory of Open Access Journals (Sweden)

    Petar Durdevic

    2017-01-01

    Full Text Available This article is a feasibility study on using fluorescence-based oil-in-water (OiW monitors for on-line dynamic efficiency measurement of a deoiling hydrocyclone. Dynamic measurements are crucial in the design and validation of dynamic models of the hydrocyclones, and to our knowledge, no dynamic OiW analysis of hydrocyclones has been carried out. Previous studies have extensively studied the steady state efficiency perspective of hydrocyclones, and have related them to different key parameters, such as the pressure drop ratio (PDR, inlet flow rate, and the flow-spilt. Through our study, we were able to measure the dynamics of the hydrocyclone’s efficiency ( ϵ response to step changes in the inlet flow rate with high accuracy. This is a breakthrough in the modelling, control, and monitoring of hydrocyclones.

  1. Dynamic modelling of a PV pumping system with special consideration on water demand

    International Nuclear Information System (INIS)

    Campana, Pietro Elia; Li, Hailong; Yan, Jinyue

    2013-01-01

    Highlights: ► Evaluation of water demand and solar energy is essential for PV pumping system. ► The design for a PV water pumping system has been optimized based on dynamic simulations. ► It is important to conduct dynamic simulations to check the matching between water demand and water supply. ► AC pump driven by the fixed PV array is the most cost-effective solution. - Abstract: The exploitation of solar energy in remote areas through photovoltaic (PV) systems is an attractive solution for water pumping for irrigation systems. The design of a photovoltaic water pumping system (PVWPS) strictly depends on the estimation of the crop water requirements and land use since the water demand varies during the watering season and the solar irradiation changes time by time. It is of significance to conduct dynamic simulations in order to achieve the successful and optimal design. The aim of this paper is to develop a dynamic modelling tool for the design of a of photovoltaic water pumping system by combining the models of the water demand, the solar PV power and the pumping system, which can be used to validate the design procedure in terms of matching between water demand and water supply. Both alternate current (AC) and direct current (DC) pumps and both fixed and two-axis tracking PV array were analyzed. The tool has been applied in a case study. Results show that it has the ability to do rapid design and optimization of PV water pumping system by reducing the power peak and selecting the proper devices from both technical and economic viewpoints. Among the different alternatives considered in this study, the AC fixed system represented the best cost effective solution

  2. Dynamic and inertial controls on forest carbon-water relations

    Science.gov (United States)

    Maxwell, T.; Silva, L.; Horwath, W. R.

    2017-12-01

    This study fuses theory, empirical measurements, and statistical models to evaluate multiple processes controlling coupled carbon-water cycles in forest ecosystems. A series of latitudinal and altitudinal transects across the California Sierra Nevada was used to study the effects of climatic and edaphic gradients on intrinsic water-use efficiency (iWUE) - CO2 fixed per unit of water lost via transpiration - of nine dominant trees species. Transfer functions were determined between leaf, litter, and soil organic matter stable isotope ratios of carbon, oxygen, and nitrogen, revealing causal links between the physiological performance of tree species and stand-level estimations of productivity and water balance. Our results show that species iWUE is governed both by leaf traits (24% of the variation) and edaphic properties, such as parent material and soil development (3% and 12% of the variation, respectively). We show that soil properties combined with isotopic indicators can be used to explain constraints over iWUE by regulating water and nutrient availability across elevation gradients. Based on observed compositional shifts likely driven by changing climates in the region, encroachment of broad leaf trees could lead to an 80% increase in water loss via transpiration for each unit of CO2 fixed in Sierra mixed conifer zones. A combination of field-based, laboratory, and remote sensed data provide a useful framework for differentiating the effect of multiple controls of carbon and water cycles in temperate forest ecosystems.

  3. Analysis of the dynamics of a boiling water nuclear reactor

    International Nuclear Information System (INIS)

    Castillo D, R.

    1996-01-01

    The March-Leuba lineal reduced model is represented mathematically by a differential equations system, which corresponds to the direct transfer function, punctual kinetics approximation, neutron field dynamics, heat transfer in fuels, and channel dynamics approximation that relates the fuel temperature changes to the reactivity changes by vacuums. The model presents significant differences in one of the equation coefficients. The Pade order approximation used for the equation deduction for the channel has a different behavior to the exponential one for long periods of bubble residence. (Author)

  4. Standard Reference Tables -

    Data.gov (United States)

    Department of Transportation — The Standard Reference Tables (SRT) provide consistent reference data for the various applications that support Flight Standards Service (AFS) business processes and...

  5. Evaluation of a computer model to simulate water table response to subirrigation Avaliação de um modelo computacional para simular a resposta do lençol freático à subirrigação

    Directory of Open Access Journals (Sweden)

    Jadir Aparecido Rosa

    2002-12-01

    Full Text Available The objective of this work was to evaluate the water flow computer model, WATABLE, using experimental field observations on water table management plots from a site located near Hastings, FL, USA. The experimental field had scale drainage systems with provisions for subirrigation with buried microirrigation and conventional seepage irrigation systems. Potato (Solanum tuberosum L. growing seasons from years 1996 and 1997 were used to simulate the hydrology of the area. Water table levels, precipitation, irrigation and runoff volumes were continuously monitored. The model simulated the water movement from a buried microirrigation line source and the response of the water table to irrigation, precipitation, evapotranspiration, and deep percolation. The model was calibrated and verified by comparing simulated results with experimental field observations. The model performed very well in simulating seasonal runoff, irrigation volumes, and water table levels during crop growth. The two-dimensional model can be used to investigate different irrigation strategies involving water table management control. Applications of the model include optimization of the water table depth for each growth stage, and duration, frequency, and rate of irrigation.O objetivo deste trabalho foi avaliar o modelo computacional WATABLE usando-se dados de campo obtidos em uma área experimental em manejo de lençol freático, localizada em Hastings, FL, EUA. Na área experimental, estavam instalados um sistema de drenagem e sistemas de irrigação por subsuperfície com irrigação localizada e por canais. Ciclos de cultivo de batata (Solanum tuberosum L., nos anos de 1996 e 1997, foram usados para a simulação da hidrologia da área. Profundidades do lençol freático, chuvas, irrigação e escorrimento superficial foram monitorados constantemente. O modelo simulou o movimento da água a partir de uma linha de irrigação localizada enterrada, e a resposta do nível do len

  6. Dynamics of Individual and Collective Agricultural Adaptation to Water Scarcity

    Science.gov (United States)

    Burchfield, E. K.; Gilligan, J. M.

    2016-12-01

    Drought and water scarcity are challenging agricultural systems around the world. We draw on extensive field-work conducted with paddy farmers in rural Sri Lanka to study adaptations to water scarcity, including switching to less water-intensive crops, farming collectively on shared land, and turning to groundwater by digging wells. We explore how variability in climate affects agricultural decision-making at the community and individual levels using three decision-making heuristics, each characterized by an objective function: risk-averse expected utility, regret-adjusted expected utility, and prospect theory loss-aversion. We also assess how the introduction of individualized access to irrigation water with wells affects long-standing community-based drought mitigation practices. Results suggest that the growth of well-irrigation may produce sudden disruptions to community-based adaptations, but that this depends on the mental models farmers use to think about risk and make decisions under uncertainty.

  7. Dynamical explanation for the high water abundance detected in Orion

    International Nuclear Information System (INIS)

    Elitzur, M.

    1979-01-01

    Shock wave chemistry is suggested as the likely explanation for the high water abundance which has been recently detected in Orion by Phyllips et al. The existence of such a shock and its inferred properties are in agreement with other observations of Orion such as the broad velocity feature and H 2 vibration emission. Shock waves are proposed as the likely explanation for high water abundances observed in other sources such as the strong H 2 O masers

  8. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air......Silicon dioxides-water systems are abundant in nature and play fundamental roles in a diversity of novel science and engineering applications. Although extensive research has been devoted to study the nature of the interaction between silica and water a complete understanding of the system has...... perform extensive simulations of the water- air equilibrium and calibrate the water-air interaction to match the experimental solubility of N2 and O2 in water. For the silica-water system we calibrate the water-silica interaction to match the experimental contact angle of 27º. We subsequently study...

  9. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinglong [ORNL; Baudry, Jerome Y [ORNL

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  10. A system dynamic model to estimate hydrological processes and water use in a eucalypt plantation

    Science.gov (United States)

    Ying Ouyang; Daping Xu; Ted Leininger; Ningnan Zhang

    2016-01-01

    Eucalypts have been identified as one of the best feedstocks for bioenergy production due to theirfast-growth rate and coppicing ability. However, their water use efficiency along with the adverse envi-ronmental impacts is still a controversial issue. In this study, a system dynamic model was developed toestimate the hydrological processes and water use in a eucalyptus...

  11. Bio-economic modeling of water quality improvements using a dynamic applied general equilibrium approach

    NARCIS (Netherlands)

    Dellink, R.; Brouwer, R.; Linderhof, V.G.M.; Stone, K.

    2011-01-01

    An integrated bio-economic model is developed to assess the impacts of pollution reduction policies on water quality and the economy. Emission levels of economic activities to water are determined based on existing environmental accounts. These emission levels are built into a dynamic economic model

  12. Water quality dynamics in the Boro-Thamalakane-Boteti river system ...

    African Journals Online (AJOL)

    The quality of water in aquatic systems is subject to temporal and spatial variations due to varying effects of natural and anthropogenic factors. This study assessed the dynamics of water quality in the Boro-Thamalakane-Boteti river system along an upstream–downstream gradient above and below Maun during February, ...

  13. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Weissbrodt, D.G.; Hammes, F; van Loosdrecht, Mark C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year

  14. Observations and model estimates of diurnal water temperature dynamics in mosquito breeding sites in western Kenya

    NARCIS (Netherlands)

    Paaijmans, K.P.; Jacobs, A.F.G.; Takken, W.; Heusinkveld, B.G.; Githeko, A.K.; Dicke, M.; Holtslag, A.A.M.

    2008-01-01

    Water temperature is an important determinant of the growth and development of malaria mosquito immatures. To gain a better understanding of the daily temperature dynamics of malaria mosquito breeding sites and of the relationships between meteorological variables and water temperature, three clear

  15. Comparing Classical Water Models Using Molecular Dynamics to Find Bulk Properties

    Science.gov (United States)

    Kinnaman, Laura J.; Roller, Rachel M.; Miller, Carrie S.

    2018-01-01

    A computational chemistry exercise for the undergraduate physical chemistry laboratory is described. In this exercise, students use the molecular dynamics package Amber to generate trajectories of bulk liquid water for 4 different water models (TIP3P, OPC, SPC/E, and TIP4Pew). Students then process the trajectory to calculate structural (radial…

  16. The kinetics of crossflow dynamic membrane bioreactor | Li | Water SA

    African Journals Online (AJOL)

    Crossflow dynamic membrane bioreactor (CDMBR) kinetics was investigated by treating caprolactam wastewater over a period of 180 d. The removal efficiencies of organic substances and nitrogen averaged over 99% and 80%, respectively. The observed sludge yield was only 0.14 g SS·g-1 COD·d-1 at an SRT of 30 d ...

  17. Molecular dynamics study of the silica-water-SDA interactions

    NARCIS (Netherlands)

    Szyja, B.M.; Jansen, A.P.J.; Verstraelen, T.; Santen, van R.A.

    2009-01-01

    In this paper we have applied the molecular dynamics simulations in order to analyse the role of the structure directing tetrapropylammonium ions in the aggregation process that leads to silicalite formation. We address the specific question of how the interactions between silica precursor species

  18. On the slowdown mechanism of water dynamics around small amphiphiles

    NARCIS (Netherlands)

    Homsi Brandeburgo, W.; Thijmen van der Post, S.; Meijer, E.J.; Ensing, B.

    2015-01-01

    Aqueous solvation of small amphiphilic molecules exhibits a unique and complex dynamics, that is only partially understood. A recent series of studies on the hydration of small organic compounds, such as tetramethylurea (TMU), trimethylamine N-oxide (TMAO) and urea, has provided strong evidence of a

  19. High temporal resolution modeling of the impact of rain, tides, and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA.

    Science.gov (United States)

    Sukop, Michael C; Rogers, Martina; Guannel, Greg; Infanti, Johnna M; Hagemann, Katherine

    2018-03-01

    Modeling of groundwater levels in a portion of the low-lying coastal Arch Creek basin in northern Miami-Dade County in Southeast Florida USA, which is subject to repetitive flooding, reveals that rain-induced short-term water table rises can be viewed as a primary driver of flooding events under current conditions. Areas below 0.9m North American Vertical Datum (NAVD) elevation are particularly vulnerable and areas below 1.5m NAVD are vulnerable to exceptionally large rainfall events. Long-term water table rise is evident in the groundwater data, and the rate appears to be consistent with local rates of sea level rise. Linear extrapolation of long-term observed groundwater levels to 2060 suggest roughly a doubling of the number of days when groundwater levels exceed 0.9m NAVD and a threefold increase in the number of days when levels exceed 1.5m NAVD. Projected sea level rise of 0.61m by 2060 together with increased rainfall lead to a model prediction of frequent groundwater-related flooding in areas1.5m NAVD and widespread flooding of the area in the past. Tidal fluctuations in the water table are predicted to be more pronounced within 600m of a tidally influenced water control structure that is hydrodynamically connected to Biscayne Bay. The inland influence of tidal fluctuations appears to increase with increased sea level, but the principal driver of high groundwater levels under the 2060 scenario conditions remains groundwater recharge due to rainfall events. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. PREFACE: Dynamic crossover phenomena in water and other glass-forming liquids Dynamic crossover phenomena in water and other glass-forming liquids

    Science.gov (United States)

    Chen, Sow-Hsin; Baglioni, Piero

    2012-02-01

    This special section has been inspired by the workshop on Dynamic Crossover Phenomena in Water and Other Glass-Forming Liquids, held during November 11-13, 2010 at Pensione Bencistà, Fiesole, Italy, a well-preserved 14th century Italian villa tucked high in the hills overlooking Florence. The meeting, an assembly of world renowned scientists, was organized as a special occasion to celebrate the 75th birthday of Professor Sow-Hsin Chen of MIT, a pioneer in several aspects of complex fluids and soft matter physics. The workshop covered a large variety of experimental and theoretical research topics of current interest related to dynamic crossover phenomena in water and, more generally, in other glass-forming liquids. The 30 invited speakers/lecturers and approximately 60 participants were a select group of prominent physicists and chemists from the USA, Europe, Asia and Mexico, who are actively working in the field. Some highlights of this special issue include the following works. Professor Yamaguchi's group and their collaborators present a neutron spin echo study of the coherent intermediate scattering function of heavy water confined in cylindrical pores of MCM-41-C10 silica material in the temperature range 190-298 K. They clearly show that a fragile-to-strong (FTS) dynamic crossover occurs at about 225 K. They attribute the FTS dynamic crossover to the formation of a tetrahedral-like structure, which is preserved in the bulk-like water confined to the central part of the cylindrical pores. Mamontov and Kolesnikov et al study the collective excitations in an aqueous solution of lithium chloride over a temperature range of 205-270 K using neutron and x-ray Rayleigh-Brillouin (coherent) scattering. They detect both the low-frequency and the high-frequency sounds known to exist in pure bulk water above the melting temperature. They also perform neutron (incoherent) and x-ray (coherent) elastic intensity scan measurements. Clear evidence of the crossover in the

  1. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    Science.gov (United States)

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-01-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101

  2. Infrared and Raman Spectroscopy of Liquid Water through "First-Principles" Many-Body Molecular Dynamics.

    Science.gov (United States)

    Medders, Gregory R; Paesani, Francesco

    2015-03-10

    Vibrational spectroscopy is a powerful technique to probe the structure and dynamics of water. However, deriving an unambiguous molecular-level interpretation of the experimental spectral features remains a challenge due to the complexity of the underlying hydrogen-bonding network. In this contribution, we present an integrated theoretical and computational framework (named many-body molecular dynamics or MB-MD) that, by systematically removing uncertainties associated with existing approaches, enables a rigorous modeling of vibrational spectra of water from quantum dynamical simulations. Specifically, we extend approaches used to model the many-body expansion of interaction energies to develop many-body representations of the dipole moment and polarizability of water. The combination of these "first-principles" representations with centroid molecular dynamics simulations enables the simulation of infrared and Raman spectra of liquid water under ambient conditions that, without relying on any ad hoc parameters, are in good agreement with the corresponding experimental results. Importantly, since the many-body energy, dipole, and polarizability surfaces employed in the simulations are derived independently from accurate fits to correlated electronic structure data, MB-MD allows for a systematic analysis of the calculated spectra in terms of both electronic and dynamical contributions. The present analysis suggests that, while MB-MD correctly reproduces both the shifts and the shapes of the main spectroscopic features, an improved description of quantum dynamical effects possibly combined with a dissociable water potential may be necessary for a quantitative representation of the OH stretch band.

  3. Effect of water phase transition on dynamic ruptures with thermal pressurization: Numerical simulations with changes in physical properties of water

    Science.gov (United States)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2015-02-01

    Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.

  4. A parsimonious dynamic model for river water quality assessment.

    Science.gov (United States)

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Water quality modelling is of crucial importance for the assessment of physical, chemical, and biological changes in water bodies. Mathematical approaches to water modelling have become more prevalent over recent years. Different model types ranging from detailed physical models to simplified conceptual models are available. Actually, a possible middle ground between detailed and simplified models may be parsimonious models that represent the simplest approach that fits the application. The appropriate modelling approach depends on the research goal as well as on data available for correct model application. When there is inadequate data, it is mandatory to focus on a simple river water quality model rather than detailed ones. The study presents a parsimonious river water quality model to evaluate the propagation of pollutants in natural rivers. The model is made up of two sub-models: a quantity one and a quality one. The model employs a river schematisation that considers different stretches according to the geometric characteristics and to the gradient of the river bed. Each stretch is represented with a conceptual model of a series of linear channels and reservoirs. The channels determine the delay in the pollution wave and the reservoirs cause its dispersion. To assess the river water quality, the model employs four state variables: DO, BOD, NH(4), and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project in which quantity and quality data were gathered. A sensitivity analysis of the model output to the model input or parameters was done based on the Generalised Likelihood Uncertainty Estimation methodology. The results demonstrate the suitability of such a model as a tool for river water quality management.

  5. Dynamic voltage-current characteristics for a water jet plasma arc

    International Nuclear Information System (INIS)

    Yang Jiaxiang; Lan Sheng; Xu Zuoming

    2008-01-01

    A virtual instrument technology is used to measure arc current, arc voltage, dynamic V-I characteristics, and nonlinear conductance for a cone-shaped water jet plasma arc under ac voltage. Experimental results show that ac arc discharge mainly happens in water vapor evaporated from water when heated. However, due to water's cooling effect and its conductance, arc conductance, reignition voltage, extinguish voltage, and current zero time are very different from those for ac arc discharge in gas work fluid. These can be valuable to further studies on mechanism and characteristics of plasma ac discharge in water, and even in gas work fluid

  6. Nitrogen Dynamics Variation in Overlying Water of Jinshan Lake, China

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhou

    2015-01-01

    Full Text Available Jinshan Lake is a famous urban landscape lake with approximately 8.8 km2 water area, which is located on the north of Zhenjiang, of Jiangsu Province, China. Eighteen sampled sites were selected and overlying water was sampled from 2013 to 2014 to study the seasonal and spatial variation of nitrogen in overlying water of Jinshan Lake. Results showed that physicochemical characteristics of temperature, pH, and DO showed high seasonal variation, whereas they had no significant spatial differences in the 18 sampling points (P>0.05 in overlying water of Jinshan Lake. Nitrogen concentrations showed strong seasonal variation trends. The ranked order of TN was as follows: spring > summer > autumn > winter; the order of NH4+-N was as follows: spring > autumn > summer > winter, whereas NO3--N concentrations revealed an inverse seasonal pattern, with maxima occurring in winter and minimal values occurring in spring. Nitrogen concentrations had dramatic spatial changes in 18 sampling points of Jinshan Lake. Physicochemical parameter difference, domestic wastes pollution, and rainfall runoff source may have led to seasonal and spatial fluctuation variations of nitrogen in overlying water of Jinshan Lake, China.

  7. Non-periodic molecular dynamics simulations of coarse grained lipid bilayer in water

    DEFF Research Database (Denmark)

    Kotsalis, E. M.; Hanasaki, I.; Walther, Jens Honore

    2010-01-01

    We present a multiscale algorithm that couples coarse grained molecular dynamics (CGMD) with continuum solver. The coupling requires the imposition of non-periodic boundary conditions on the coarse grained Molecular Dynamics which, when not properly enforced, may result in spurious fluctuations o...... in simulating more complex systems by performing a non-periodic Molecular Dynamics simulation of a DPPC lipid in liquid coarse grained water.......We present a multiscale algorithm that couples coarse grained molecular dynamics (CGMD) with continuum solver. The coupling requires the imposition of non-periodic boundary conditions on the coarse grained Molecular Dynamics which, when not properly enforced, may result in spurious fluctuations...... of the material properties of the system represented by CGMD. In this paper we extend a control algorithm originally developed for atomistic simulations [3], to conduct simulations involving coarse grained water molecules without periodic boundary conditions. We demonstrate the applicability of our method...

  8. Nano-confined water in the interlayers of hydrocalumite: Reorientational dynamics probed by neutron spectroscopy and molecular dynamics computer simulations

    Science.gov (United States)

    Kalinichev, A. G.; Faraone, A.; Udovic, T.; Kolesnikov, A. I.; de Souza, N. R.; Reinholdt, M. X.; Kirkpatrick, R.

    2008-12-01

    Layered double hydroxides (LDHs, anionic clays) represent excellent model systems for detailed molecular- level studies of the structure, dynamics, and energetics of nano-confined water in mineral interlayers and nano-pores, because LDH interlayers can have a well-defined structures and contain H2O molecules and a wide variety of anions in structurally well-defined positions and coordinations. [Ca2Al(OH)6]Cl·2H2O, also known as hydrocalumite or Friedel's salt, has a well- ordered Ca,Al distribution in the hydroxide layer and a very high degree of H2O,Cl ordering in the interlayer. It is also one of the only LDH phase for which a single crystal structure refinement is available. Thus, it is currently the best model compound for understanding the structure and dynamical behavior of interlayer and surface species in other, less-ordered, LDHs. We investigated the structural and dynamic behavior of water in the interlayers of hydrocalumite using inelastic (INS) and quasielastic (QENS) neutron scattering and molecular dynamics computer simulations. The comperehensive neutron scattering studies were performed for one fully hydrated and one dehydrated sample of hydrocalumite using several complementary instruments (HFBS, DCS and FANS at NCNR; HRMECS and QENS at IPNS) at temperatures above and below the previously discovered order-disorder interlayer phase transition. Together the experimental and molecular modeling results capture the important details of the dynamics of nano-confined water and the effects of the orientational ordering of H2O molecules above and below the phase transition. They provide otherwise unobtainable experimental information about the transformation of H2O librational and diffusional modes across the order-disorder phase transition and significantly add to our current understanding of the structure and dynamics of water in LDH phases based on the earlier NMR, IR, X-ray, and calorimetric measurements. The approach can now be extended to probe the

  9. Molecular Dynamics Simulations of a Flexible Polyethylene: A Protein-Like Behaviour in a Water Solvent

    CERN Document Server

    Kretov, D A

    2005-01-01

    We used molecular dynamics (MD) simulations to study the density and the temperature behaviour of a flexible polyethylene (PE) subjected to various heating conditions and to investigate the PE chain conformational changes in a water solvent. First, we have considered the influence of the heating process on the final state of the polymeric system and the sensitivity of its thermodynamic characteristics (density, energy, etc.) for different heating regimes. For this purpose three different simulations were performed: fast, moderate, and slow heating. Second, we have investigated the PE chain conformational dynamics in water solvent for various simulation conditions and various configurations of the environment. From the obtained results we have got the pictures of the PE dynamical motions in water. We have observed a protein-like behaviour of the PE chain, like that of the DNA and the proteins in water, and have also estimated the rates of the conformational changes. For the MD simulations we used the optimized...

  10. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.

    Science.gov (United States)

    Yagasaki, Takuma; Saito, Shinji

    2009-09-15

    Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is

  11. 洁净手术室无菌台质量动态调查及预防措施探讨%Dynamic investigation and preventive measures of aseptic table in clean operating rooms

    Institute of Scientific and Technical Information of China (English)

    陶晓燕; 冯惠娟; 沈郁; 钱小毛

    2013-01-01

    OBJECTIVE To investigate the dynamic change of quality of aseptic table in clean operating room and discuss the prevention measures.METHODS We investigated 5 surgeries in each one clean operating room of hundred level,two clean operating room of thousand level and two clean operating room of ten thousand level.Drape and scissors were smeared to take culture and tampon were taken into 10ml sterilized saline water to take culture.The sampling was performed respectively at 1 hour,2 hour,3 hour,4 hour after the start of the surgery.It was judged as qualified that there was no strains of bacteria isolated.The qualified rates of the various samples at various segments were taken for statistical analysis.RESULTS Bacteria was not detected in 2 hours on the drape surface but then was positive culture after three hours as compared with that after four hours on surface of scissors and tampon bacteria were detected,the difference in the qualified rate was not statistically significant.Six monitoring points in 3 surgery were tested unqualified among the 25 surgeries,all the results were 1 CFU/plate.One point was in thousand level operating room and bacteria were detected on tampon after four hours.Five positive monitoring points were in ten thousand level operating room and bacteria were detected once on surface of drapes after one hour in NO.1 room and after four hours in NO.2,on surface of scissor and in tampon after four hours,the difference in the qualified rate was not statistically significant.The unqualified aseptic tables may related to the extended operation duration,the frequent flow of people and materials,and poor consciousness of aseptic operation and substandard action of the medical staff.CONCLUSION It is effective to ensure the quality of aseptic tables to intensify the consciousness of aseptic operation and make the environment management and people and logistic management strict.%目的 调查洁净手术室无菌台质量动态

  12. The Living Periodic Table

    Science.gov (United States)

    Nahlik, Mary Schrodt

    2005-01-01

    To help make the abstract world of chemistry more concrete eighth-grade students, the author has them create a living periodic table that can be displayed in the classroom or hallway. This display includes information about the elements arranged in the traditional periodic table format, but also includes visual real-world representations of the…

  13. Molecular Dynamics of Water in Wood Studied by Fast Field Cycling Nuclear Magnetic Resonance Relaxometry

    Directory of Open Access Journals (Sweden)

    Xinyu Li

    2016-01-01

    Full Text Available Water plays a very important role in wood and wood products. The molecular motion of water in wood is susceptible to thermal activation. Thermal energy makes water molecules more active and weakens the force between water and wood; therefore, the water molecules dynamic properties are greatly influenced. Molecular dynamics study is important for wood drying; this paper therefore focuses on water molecular dynamics in wood through fast field cycling nuclear magnetic resonance relaxometry techniques. The results show that the spin-lattice relaxation rate decreases with the Larmor frequency. Nuclear magnetic resonance dispersion profiles at different temperatures could separate the relaxation contribution of water in bigger pores and smaller pores. The T1 distribution from wide to narrow at 10 MHz Larmor frequency reflects the shrinkage of pore size with the higher temperature. The dependence of spin-lattice relaxation rate on correlation time for water molecular motion based on BPP (proposed by Bloembergen, Purcell, and Pound theory shows that water correlation time increases with higher temperature, and its activation energy, calculated using the Arrhenius transformation equation, is 9.06±0.53 kJ/mol.

  14. Qualification of the calculational methods of the fluence in the pressurised water reactors. Improvement of the cross sections treatment by the probability table method

    International Nuclear Information System (INIS)

    Zheng, S.H.

    1994-01-01

    It is indispensable to know the fluence on the nuclear reactor pressure vessel. The cross sections and their treatment have an important rule to this problem. In this study, two ''benchmarks'' have been interpreted by the Monte Carlo transport program TRIPOLI to qualify the calculational method and the cross sections used in the calculations. For the treatment of the cross sections, the multigroup method is usually used but it exists some problems such as the difficulty to choose the weighting function and the necessity of a great number of energy to represent well the cross section's fluctuation. In this thesis, we propose a new method called ''Probability Table Method'' to treat the neutron cross sections. For the qualification, a program of the simulation of neutron transport by the Monte Carlo method in one dimension has been written; the comparison of multigroup's results and probability table's results shows the advantages of this new method. The probability table has also been introduced in the TRIPOLI program; the calculational results of the iron deep penetration benchmark has been improved by comparing with the experimental results. So it is interest to use this new method in the shielding and neutronic calculation. (author). 42 refs., 109 figs., 36 tabs

  15. Characterization of dynamic change of Fan-delta reservoir properties in water-drive development

    Energy Technology Data Exchange (ETDEWEB)

    Wu Shenghe; Xiong Qihua; Liu Yuhong [Univ. of Petroleum Changping, Beijing (China)

    1997-08-01

    Fan-delta reservoir in Huzhuangji oil field of east China, is a typical highly heterogeneous reservoir. The oil field has been developed by water-drive for 10 years, but the oil recovery is less than 12%, and water cut is over 90%, resulting from high heterogeneity and serious dynamic change of reservoir properties. This paper aims at the study of dynamic change of reservoir properties in water-drive development. Through quantitative imaging analysis and mercury injection analysis of cores from inspection wells, the dynamic change of reservoir pore structure in water-drive development was studied. The results show that the {open_quotes}large pore channels{close_quotes} develop in distributary channel sandstone and become larger in water-drive development, resulting in more serious pore heterogeneity. Through reservoir sensitivity experiments, the rock-fluid reaction in water-drive development is studied. The results show the permeability of some distal bar sandstone and deserted channel sandstone becomes lower due to swelling of I/S clay minerals in pore throats. OD the other hand, the permeability of distributary channel and mouth bar sandstone become larger because the authigenic Koalinites in pore throats are flushed away with the increase of flow rate of injection water. Well-logging analysis of flooded reservoirs are used to study the dynamic change of reservoir properties in various flow units. The distribution of remaining oil is closely related to the types and distribution of flow units.

  16. Dispersed droplet dynamics during produced water treatment in oil industry

    NARCIS (Netherlands)

    van Eijkeren, D.F.

    2016-01-01

    For Lagrangian particle tracking applied to swirling flow produced water treatment the influence of the history force is investigated. In the expression for the history force an existing Reynolds number dependent kernel is adapted and validated for a range of experimental data for settling spheres.

  17. Several Dynamical Properties for a Nonlinear Shallow Water Equation

    Directory of Open Access Journals (Sweden)

    Ls Yong

    2014-01-01

    Full Text Available A nonlinear third order dispersive shallow water equation including the Degasperis-Procesi model is investigated. The existence of weak solutions for the equation is proved in the space L1(R∩BV (R under certain assumptions. The Oleinik type estimate and L2N(R  (N is a natural number estimate for the solution are obtained.

  18. Femtosecond water dynamics in reverse-micellar nanodroplets

    NARCIS (Netherlands)

    Cringus, D; Lindner, J; Milder, MTW; Pshenichnikov, MS; Vohringer, P; Wiersma, DA; Milder, Maaike T.W.; Pshenichnikov, Maxim S.; Vöhringer, Peter

    2005-01-01

    Vibrational energy relaxation and ultrafast thermalization following impulsive excitation of the OH-stretching band of water nanodroplets confined to reverse micelles is studied by infrared pump-probe spectroscopy with sub-100 fs time resolution. The self-consistent analysis of experimental data for

  19. Water and carbon dynamics in selected ecosystems in China

    Science.gov (United States)

    Ge Sun; J. Sun; G. Zhou

    2009-01-01

    Global climate change and unprecedented socioeconomic evelopment have resulted in tremendous environmental, ecological and resource stress on China’s continued growth.Among the numerous challenges, nothing is more pressing than ecosystem degradation as evidenced by the regional-scale air and water pollution, groundwater...

  20. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...

  1. Modelling flow dynamics in water distribution networks using ...

    African Journals Online (AJOL)

    DR OKE

    was used for modelling the flow and simulate water demand using a Matlab .... This process requires that the neural network compute the error derivative of the .... Furthermore, Matlab was used as a simulation tool; and the first step was ...

  2. A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley

    Science.gov (United States)

    Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2017-12-01

    The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.

  3. Water and agriculture in arid systems: a dynamic model of irrigation of Mazarron and Aguilas; Agua y agricultural en sistemas aridos: un modelo dinamico del regadio de Mazarron y Aguilas

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Fernandez, J.; Esteve Selma, M. A.

    2009-07-01

    The intensive use of groundwater resources in the new irrigated lands of Mazarron-Aguilas has led to the over-exploitation of the local aquifer and thus, to seawater intrusion, water salinization and falling off water tables, all of them key processes of desertification. The simulation results show that the unrealistic perceptions about the relationships between irrigated land and water resources constitutes a key factor to explain the highly unsustainable dynamics of irrigated lands in Mazarron and Aguilas and the whole SE Spain. The increase in water resources does not eliminate the problem because the feedback loops and endogenous factors of the system lead to a further increase in irrigated land and continuation of the water deficit, which shows a highly counter-intuitive behaviour. (Author) 3 refs.

  4. Belowground Water Dynamics Under Contrasting Annual and Perennial Plant Communities in an Agriculturally-Dominated Landscape

    Science.gov (United States)

    Mora, G.; Asbjornsen, H.; Helmers, M. J.; Shepherd, G. W.

    2005-12-01

    The conversion from grasslands and forests to row-crops in the Midwest has affected soil water cycling because plant characteristics are one of the main parameters determining soil storage capacity, infiltration rates, and surface runoff. Little is known, however, about the extent of modification of soil water dynamics under different plant communities. To address this important issue, we are documenting soil water dynamics under contrasting perennial and annual plant communities in an agriculturally-dominated landscape. Measurements of soil moisture and depths of uptake of source water were obtained for six vegetative cover types (corn and soybean field, brome pasture, degraded savanna, restored savanna, and restored prairie) at the Neal Smith National Wildlife Refuge in Prairie City, Iowa. The depths of uptake of soil water were determined on the basis of oxygen isotope composition of soil water and stem water. Measurements were performed once a month during an entire growing season. Preliminary results indicate that soil water present under the different vegetation types show similar profiles with depth during the dry months. Soil water in the upper 5 cm is enriched in oxygen-18 by about 5 per mil relative to soil water at 100 cm. Our preliminary results also indicate that the isotopic composition of stem water from annual plants is typically higher by about 2 per mil relative to that of stem water from perennial plants during the dry period. Whereas the oxygen isotopic composition for corn stem water is -5.49 per mil, that for elm and oak stem water is -7.62 and -7.51 per mil, respectively. The higher isotope values for corn suggest that annual crop plants are withdrawing water from shallower soil horizons relative to perennial plants. Moreover, our preliminary data suggest lower moisture content in soil under annual plant cover. We propose that the presence of deeper roots in the perennial vegetation allows these plants to tap into deeper water sources when

  5. Seasonal Dynamics of Water Use Strategy of Two Salix Shrubs in Alpine Sandy Land, Tibetan Plateau.

    Science.gov (United States)

    Zhu, Yajuan; Wang, Guojie; Li, Renqiang

    2016-01-01

    Water is a limiting factor for plant growth and vegetation dynamics in alpine sandy land of the Tibetan Plateau, especially with the increasing frequency of extreme precipitation events and drought caused by climate change. Therefore, a relatively stable water source from either deeper soil profiles or ground water is necessary for plant growth. Understanding the water use strategy of dominant species in the alpine sandy land ecosystem is important for vegetative rehabilitation and ecological restoration. The stable isotope methodology of δD, δ18O, and δ13C was used to determine main water source and long-term water use efficiency of Salix psammophila and S. cheilophila, two dominant shrubs on interdune of alpine sandy land in northeastern Tibetan Plateau. The root systems of two Salix shrubs were investigated to determine their distribution pattern. The results showed that S. psammophila and S. cheilophila absorbed soil water at different soil depths or ground water in different seasons, depending on water availability and water use strategy. Salix psammophila used ground water during the growing season and relied on shallow soil water recharged by rain in summer. Salix cheilophila used ground water in spring and summer, but relied on shallow soil water recharged by rain in spring and deep soil water recharged by ground water in fall. The two shrubs had dimorphic root systems, which is coincident with their water use strategy. Higher biomass of fine roots in S. psammophila and longer fine roots in S. cheilophila facilitated to absorb water in deeper soil layers. The long-term water use efficiency of two Salix shrubs increased during the dry season in spring. The long-term water use efficiency was higher in S. psammophila than in S. cheilophila, as the former species is better adapted to semiarid climate of alpine sandy land.

  6. Molecular dynamics study of room temperature ionic liquids with water at mica surface

    Directory of Open Access Journals (Sweden)

    Huanhuan Zhang

    2018-04-01

    Full Text Available Water in room temperature ionic liquids (RTILs could impose significant effects on their interfacial properties at a charged surface. Although the interfaces between RTILs and mica surfaces exhibit rich microstructure, the influence of water content on such interfaces is little understood, in particular, considering the fact that RTILs are always associated with water due to their hygroscopicity. In this work, we studied how different types of RTILs and different amounts of water molecules affect the RTIL-mica interfaces, especially the water distribution at mica surfaces, using molecular dynamics (MD simulation. MD results showed that (1 there is more water and a thicker water layer adsorbed on the mica surface as the water content increases, and correspondingly the average location of K+ ions is farther from mica surface; (2 more water accumulated at the interface with the hydrophobic [Emim][TFSI] than in case of the hydrophilic [Emim][BF4] due to the respective RTIL hydrophobicity and ion size. A similar trend was also observed in the hydrogen bonds formed between water molecules. Moreover, the 2D number density map of adsorbed water revealed that the high-density areas of water seem to be related to K+ ions and silicon/aluminum atoms on mica surface. These results are of great importance to understand the effects of hydrophobicity/hydrophicility of RTIL and water on the interfacial microstructure at electrified surfaces. Keywords: Room temperature ionic liquids, Hydrophobicity/hydrophicility, Water content, Electrical double layer, Mica surface

  7. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.

    Science.gov (United States)

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-09-07

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.

  8. A New Calculation Method of Dynamic Kill Fluid Density Variation during Deep Water Drilling

    Directory of Open Access Journals (Sweden)

    Honghai Fan

    2017-01-01

    Full Text Available There are plenty of uncertainties and enormous challenges in deep water drilling due to complicated shallow flow and deep strata of high temperature and pressure. This paper investigates density of dynamic kill fluid and optimum density during the kill operation process in which dynamic kill process can be divided into two stages, that is, dynamic stable stage and static stable stage. The dynamic kill fluid consists of a single liquid phase and different solid phases. In addition, liquid phase is a mixture of water and oil. Therefore, a new method in calculating the temperature and pressure field of deep water wellbore is proposed. The paper calculates the changing trend of kill fluid density under different temperature and pressure by means of superposition method, nonlinear regression, and segment processing technique. By employing the improved model of kill fluid density, deep water kill operation in a well is investigated. By comparison, the calculated density results are in line with the field data. The model proposed in this paper proves to be satisfactory in optimizing dynamic kill operations to ensure the safety in deep water.

  9. Time-Domain Nuclear Magnetic Resonance Investigation of Water Dynamics in Different Ginger Cultivars.

    Science.gov (United States)

    Huang, Chongyang; Zhou, Qi; Gao, Shan; Bao, Qingjia; Chen, Fang; Liu, Chaoyang

    2016-01-20

    Different ginger cultivars may contain different nutritional and medicinal values. In this study, a time-domain nuclear magnetic resonance method was employed to study water dynamics in different ginger cultivars. Significant differences in transverse relaxation time T2 values assigned to the distribution of water in different parts of the plant were observed between Henan ginger and four other ginger cultivars. Ion concentration and metabolic analysis showed similar differences in Mn ion concentrations and organic solutes among the different ginger cultivars, respectively. On the basis of Pearson's correlation analysis, many organic solutes and 6-gingerol, the main active substance of ginger, exhibited significant correlations with water distribution as determined by NMR T2 relaxation, suggesting that the organic solute differences may impact water distribution. Our work demonstrates that low-field NMR relaxometry provides useful information about water dynamics in different ginger cultivars as affected by the presence of different organic solutes.

  10. Molecular Dynamics Study of Water Molecules in Interlayer of 14 ^|^Aring; Tobermorite

    KAUST Repository

    Yoon, Seyoon

    2013-01-01

    The molecular structure and dynamics of interlayer water of 14 Å tobermorite are investigated based on molecular dynamics (MD) simulations. Calculated structural parameters of the interlayer water configuration are in good agreement with current knowledge of the refined structure. The MD simulations provide detailed information on the position and mobility of the hydrogen and oxygen of interlayer water, as well as its self-diffusion coefficient, through the interlayer of 14 Å tobermorite. Comparison of the MD simulation results at 100 and 300 K demonstrates that water molecules in the interlayer maintain their structure but change their mobility. The dominant configuration and self-diffusion coefficient of interlayer water are obtained in this study. Copyright © 2013 Japan Concrete Institute.

  11. Structural dynamics of supercooled water from quasielastic neutron scattering and molecular simulations.

    Science.gov (United States)

    Qvist, Johan; Schober, Helmut; Halle, Bertil

    2011-04-14

    One of the outstanding challenges presented by liquid water is to understand how molecules can move on a picosecond time scale despite being incorporated in a three-dimensional network of relatively strong H-bonds. This challenge is exacerbated in the supercooled state, where the dramatic slowing down of structural dynamics is reminiscent of the, equally poorly understood, generic behavior of liquids near the glass transition temperature. By probing single-molecule dynamics on a wide range of time and length scales, quasielastic neutron scattering (QENS) can potentially reveal the mechanistic details of water's structural dynamics, but because of interpretational ambiguities this potential has not been fully realized. To resolve these issues, we present here an extensive set of high-quality QENS data from water in the range 253-293 K and a corresponding set of molecular dynamics (MD) simulations to facilitate and validate the interpretation. Using a model-free approach, we analyze the QENS data in terms of two motional components. Based on the dynamical clustering observed in MD trajectories, we identify these components with two distinct types of structural dynamics: picosecond local (L) structural fluctuations within dynamical basins and slower interbasin jumps (J). The Q-dependence of the dominant QENS component, associated with J dynamics, can be quantitatively rationalized with a continuous-time random walk (CTRW) model with an apparent jump length that depends on low-order moments of the jump length and waiting time distributions. Using a simple coarse-graining algorithm to quantitatively identify dynamical basins, we map the newtonian MD trajectory on a CTRW trajectory, from which the jump length and waiting time distributions are computed. The jump length distribution is gaussian and the rms jump length increases from 1.5 to 1.9 Å as the temperature increases from 253 to 293 K. The rms basin radius increases from 0.71 to 0.75 Å over the same range. The

  12. Molecular Structure and Dynamics in Thin Water Films at the Silica and Graphite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Argyris, Dr. Dimitrios [University of Oklahoma; Tummala, Dr. Naga Rajesh [University of Oklahoma; StrioloDr., A [Vanderbilt University; Cole, David R [ORNL

    2008-01-01

    The structure and dynamic properties of interfacial water at the graphite and silica solid surfaces were investigated using molecular dynamics simulations. The effect of surface properties on the characteristics of interfacial water was quantified by computing density profiles, radial distribution functions, surface density distributions, orientation order parameters, and residence and reorientation correlation functions. In brief, our results show that the surface roughness, chemical heterogeneity, and surface heterogeneous charge distribution affect the structural and dynamic properties of the interfacial water molecules, as well as their rate of exchange with bulk water. Most importantly, our results indicate the formation of two distinct water layers at the SiO2 surface covered by a large density of hydroxyl groups. Further analysis of the data suggests a highly confined first layer where the water molecules assume preferential hydrogen-down orientation and a second layer whose behavior and characteristics are highly dependent on those of the first layer through a well-organized hydrogen bond network. The results suggest that water-water interactions, in particular hydrogen bonds, may be largely responsible for macroscopic interfacial properties such as adsorption and contact angle.

  13. Forest - water dynamics in a Mediterranean mountain environment.

    Science.gov (United States)

    Eliades, Marinos; Bruggeman, Adriana; Lange, Manfred; Camera, Corrado; Christou, Andreas

    2015-04-01

    In semi-arid Mediterranean mountain environments, the soil layer is very shallow or even absent due to the steep slopes. Soil moisture in these environments is limited, but still vegetation thrives. There is limited knowledge about where the vegetation extracts the water from, how much water it uses, and how it interacts with other processes in the hydrological cycle. The main objective of this study is to quantify the water balance components of a Pinus brutia forest at tree level, by measuring the tree transpiration and the redistribution of the water from trees to the soil and the bedrock fractures. The study area is located on a forested hill slope on the outside edge of Peristerona watershed in Cyprus. The site was mapped with the use of a total station and a differentially-corrected GPS, in order to create a high resolution DEM and soil depth map of the area. Soil depth was measured at a 1-m grid around the trees. Biometric measurements were taken from a total of 45 trees. Four trees were selected for monitoring. Six sap flow sensors are installed in the selected trees for measuring transpiration and reverse flows. Two trees have two sensors each to assess the variability. Four volumetric soil moisture sensors are installed around each tree at distances 1 m and 2 m away from the tree trunk. An additional fifth soil moisture sensor is installed in soil depths exceeding 20-cm depth. Four throughfall rain gauges were installed randomly around each tree to compute interception losses. Stemflow is measured by connecting an opened surface plastic tube collar at 1.6 m height around each tree trunk. The trunk surface gaps were filled with silicon glue in order to avoid any stemflow losses. The plastic collar is connected to a sealed surface rain gauge. A weather station monitors all meteorological variables on an hourly basis. Results showed a maximum sap flow volume of 77.9 L/d, from November to January. The sensors also measured a maximum negative flow of 7.9 L

  14. Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change

    International Nuclear Information System (INIS)

    Koch, Hagen; Voegele, Stefan

    2009-01-01

    According to the latest IPCC reports, the frequency of hot and dry periods will increase in many regions of the world in the future. For power plant operators, the increasing possibility of water shortages is an important challenge that they have to face. Shortages of electricity due to water shortages could have an influence on industries as well as on private households. Climate change impact analyses must analyse the climate effects on power plants and possible adaptation strategies for the power generation sector. Power plants have lifetimes of several decades. Their water demand changes with climate parameters in the short- and medium-term. In the long-term, the water demand will change as old units are phased out and new generating units appear in their place. In this paper, we describe the integration of functions for the calculation of the water demand of power plants into a water resources management model. Also included are both short-term reactive and long-term planned adaptation. This integration allows us to simulate the interconnection between the water demand of power plants and water resources management, i.e. water availability. Economic evaluation functions for water shortages are also integrated into the water resources management model. This coupled model enables us to analyse scenarios of socio-economic and climate change, as well as the effects of water management actions. (author)

  15. Water Flow in Karst Aquifer Considering Dynamically Variable Saturation Conduit

    Science.gov (United States)

    Tan, Chaoqun; Hu, Bill X.

    2017-04-01

    The karst system is generally conceptualized as dual-porosity system, which is characterized by low conductivity and high storage continuum matrix and high conductivity and quick flow conduit networks. And so far, a common numerical model for simulating flow in karst aquifer is MODFLOW2005-CFP, which is released by USGS in 2008. However, the steady-state approach for conduit flow in CFP is physically impractical when simulating very dynamic hydraulics with variable saturation conduit. So, we adopt the method proposed by Reimann et al. (2011) to improve current model, in which Saint-Venant equations are used to model the flow in conduit. Considering the actual background that the conduit is very big and varies along flow path and the Dirichlet boundary varies with rainfall in our study area in Southwest China, we further investigate the influence of conduit diameter and outflow boundary on numerical model. And we also analyze the hydraulic process in multi-precipitation events. We find that the numerical model here corresponds well with CFP for saturated conduit, and it could depict the interaction between matrix and conduit during very dynamic hydraulics pretty well compare with CFP.

  16. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    Science.gov (United States)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  17. Molecular dynamics study of homo-oligomeric ion channels: Structures of the surrounding lipids and dynamics of water movement

    Directory of Open Access Journals (Sweden)

    Thuy Hien Nguyen

    2018-03-01

    Full Text Available Molecular dynamics simulations were used to study the structural perturbations of lipids surrounding transmembrane ion channel forming helices/helical bundles and the movement of water within the pores of the ion-channels/bundles. Specifically, helical monomers to hexameric helical bundles embedded in palmitoyl-oleoyl-phosphatidyl-choline (POPC lipid bilayer were studied. Two amphipathic α-helices with the sequence Ac-(LSLLLSL3-NH2 (LS2, and Ac-(LSSLLSL3-NH2 (LS3, which are known to form ion channels, were used. To investigate the surrounding lipid environment, we examined the hydrophobic mismatch, acyl chain order parameter profiles, lipid head-to-tail vector projection on the membrane surface, and the lipid headgroup vector projection. We find that the lipid structure is perturbed within approximately two lipid solvation shells from the protein bundle for each system (~15.0 Å. Beyond two lipid “solvation” shells bulk lipid bilayer properties were observed in all systems. To understand water flow, we enumerated each time a water molecule enters or exited the channel, which allowed us to calculate the number of water crossing events and their rates, and the residence time of water in the channel. We correlate the rate of water crossing with the structural properties of these ion channels and find that the movements of water are predominantly governed by the packing and pore diameter, rather than the topology of each peptide or the pore (hydrophobic or hydrophilic. We show that the crossing events of water fit quantitatively to a stochastic process and that water molecules are traveling diffusively through the pores. These lipid and water findings can be used for understanding the environment within and around ion channels. Furthermore, these findings can benefit various research areas such as rational design of novel therapeutics, in which the drug interacts with membranes and transmembrane proteins to enhance the efficacy or reduce off

  18. Model development for prediction of soil water dynamics in plant production.

    Science.gov (United States)

    Hu, Zhengfeng; Jin, Huixia; Zhang, Kefeng

    2015-09-01

    Optimizing water use in agriculture and medicinal plants is crucially important worldwide. Soil sensor-controlled irrigation systems are increasingly becoming available. However it is questionable whether irrigation scheduling based on soil measurements in the top soil could make best use of water for deep-rooted crops. In this study a mechanistic model was employed to investigate water extraction by a deep-rooted cabbage crop from the soil profile throughout crop growth. The model accounts all key processes governing water dynamics in the soil-plant-atmosphere system. Results show that the subsoil provides a significant proportion of the seasonal transpiration, about a third of water transpired over the whole growing season. This suggests that soil water in the entire root zone should be taken into consideration in irrigation scheduling, and for sensor-controlled irrigation systems sensors in the subsoil are essential for detecting soil water status for deep-rooted crops.

  19. Structural and dynamical properties of water confined between two hydrophilic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Di Napoli, Solange, E-mail: dinapoli@tandar.cnea.gov.a [Depto. de Fisica - CAC, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, (1650) San Martin, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Gamba, Zulema, E-mail: gamba@tandar.cnea.gov.a [Depto. de Fisica - CAC, Comision Nacional de Energia Atomica, Av. Gral Paz 1499, (1650) San Martin, Buenos Aires (Argentina)

    2009-10-01

    The properties of water in the vicinity of surfaces and under confinement have been extensively studied because of the relevance of a quantitative understanding of many processes that not only take place in biological systems, like cells, membranes and microemulsions, but also in many others such as confined water in rocks, ionic channels and interestellar matter. In this work we perform molecular dynamic calculations of the nanoscopic structure of TIP5P model water confined between two hydrophilic surfaces. We calculate the diffusion coefficients and the atomic density profile of water molecules and polar ions in the system as a function of the number of water molecules per amphiphilic (n{sub W}). We also study the dependence of the water layer thickness and the profiles of water dipole orientation with this parameter.

  20. Structural and dynamical properties of water confined between two hydrophilic surfaces

    International Nuclear Information System (INIS)

    Di Napoli, Solange; Gamba, Zulema

    2009-01-01

    The properties of water in the vicinity of surfaces and under confinement have been extensively studied because of the relevance of a quantitative understanding of many processes that not only take place in biological systems, like cells, membranes and microemulsions, but also in many others such as confined water in rocks, ionic channels and interestellar matter. In this work we perform molecular dynamic calculations of the nanoscopic structure of TIP5P model water confined between two hydrophilic surfaces. We calculate the diffusion coefficients and the atomic density profile of water molecules and polar ions in the system as a function of the number of water molecules per amphiphilic (n W ). We also study the dependence of the water layer thickness and the profiles of water dipole orientation with this parameter.

  1. Elementary Statistics Tables

    CERN Document Server

    Neave, Henry R

    2012-01-01

    This book, designed for students taking a basic introductory course in statistical analysis, is far more than just a book of tables. Each table is accompanied by a careful but concise explanation and useful worked examples. Requiring little mathematical background, Elementary Statistics Tables is thus not just a reference book but a positive and user-friendly teaching and learning aid. The new edition contains a new and comprehensive "teach-yourself" section on a simple but powerful approach, now well-known in parts of industry but less so in academia, to analysing and interpreting process dat

  2. Planning for Regional Water Resources in Northwest China Using a Dynamic Simulation Model

    Science.gov (United States)

    Chen, C.; Kalra, A.; Ahmad, S.

    2014-12-01

    Problem of water scarcity is prominent in northwest China due to its typical desert climate. Exceedence of sustainable yield of groundwater resources has resulted in groundwater depletion, which has raised a series of issues such as drying wells, increasing pumping costs and environmental damage. With a rapid agricultural and economic development, population increase has added extra stress on available water resources by increasing municipal, agricultural and industrial demands. This necessitates efficient water resources management strategies with better understanding of the causes of water stress and options for sustainable development of economy and management of environment. This study focuses on simulating the water supply and demand, under the influence of changing climate, for Shanshan County, located in northwest of China. A dynamic simulation model is developed using the modeling tool Stella for monthly water balance for the period ranging from 2000-2030. Different future water demand and supply scenarios are developed to represent: (1) base scenario- with current practices; (2) change of the primary water source; (3) improvement of irrigation efficiency; (4) reduction of irrigation area; and (5) reduction of industrial water demand. The results indicate that besides growing demand, the low water use efficiency and low level of water reuse are the primary concerns for water scarcity. Groundwater recharge and abstraction could be balanced by 2030, by reducing industrial demand by 50% and using high efficiency irrigation for agriculture. The model provided a better understanding of the effect of different policies and can help in identifying water resources management strategies.

  3. Molecular dynamics study of the solvation of calcium carbonate in water.

    Science.gov (United States)

    Bruneval, Fabien; Donadio, Davide; Parrinello, Michele

    2007-10-25

    We performed molecular dynamics simulations of diluted solutions of calcium carbonate in water. To this end, we combined and tested previous polarizable models. The carbonate anion forms long-living hydrogen bonds with water and shows an amphiphilic character, in which the water molecules are expelled in a region close to its C(3) symmetry axis. The calcium cation forms a strongly bound ion pair with the carbonate. The first hydration shell around the CaCO(3) pair is found to be very similar to the location of the water molecules surrounding CaCO(3) in ikaite, the hydrated mineral.

  4. Analyzing energy-water exchange dynamics in the Thar desert

    Science.gov (United States)

    Raja, P.; Singh, Nilendu; Srinivas, C. V.; Singhal, Mohit; Chauhan, Pankaj; Singh, Maharaj; Sinha, N. K.

    2017-07-01

    Regions of strong land-atmosphere coupling will be more susceptible to the hydrological impacts in the intensifying hydrological cycle. In this study, micrometeorological experiments were performed to examine the land-atmosphere coupling strength over a heat low region (Thar desert, NW India), known to influence the Indian summer monsoon (ISM). Within the vortex of Thar desert heat low, energy-water exchange and coupling behavior were studied for 4 consecutive years (2011-2014) based on sub-hourly measurements of radiative-convective flux, state parameters and sub-surface thermal profiles using lead-lag analysis between various E-W balance components. Results indicated a strong (0.11-0.35) but variable monsoon season (July-September) land-atmosphere coupling events. Coupling strength declined with time, becomes negative beyond 10-day lag. Evapotranspiration (LE) influences rainfall at the monthly time-scale (20-40 days). Highly correlated monthly rainfall and LE anomalies (r = 0.55, P < 0.001) suggested a large precipitation memory linked to the local land surface state. Sensible heating (SH) during March and April are more strongly (r = 0.6-0.7) correlated to ISM rainfall than heating during May or June (r = 0.16-0.36). Analyses show strong and weak couplings among net radiation (Rn)-vapour pressure deficit (VPD), LE-VPD and Rn-LE switching between energy-limited to water-limited conditions. Consistently, +ve and -ve residual energy [(dE) = (Rn - G) - (SH + LE)] were associated with regional wet and dry spells respectively with a lead of 10-40 days. Dew deposition (18.8-37.9 mm) was found an important component in the annual surface water balance. Strong association of variation of LE and rainfall was found during monsoon at local-scale and with regional-scale LE (MERRA 2D) but with a lag which was more prominent at local-scale than at regional-scale. Higher pre-monsoon LE at local-scale as compared to low and monotonous variation in regional-scale LE led to

  5. The dynamics of water in hydrated white bread investigated using quasielastic neutron scattering

    International Nuclear Information System (INIS)

    Sjoestroem, J; Kargl, F; Fernandez-Alonso, F; Swenson, J

    2007-01-01

    The dynamics of water in fresh and in rehydrated white bread is studied using quasielastic neutron scattering (QENS). A diffusion constant for water in fresh bread, without temperature gradients and with the use of a non-destructive technique, is presented here for the first time. The self-diffusion constant for fresh bread is estimated to be D s = 3.8 x 10 -10 m 2 s -1 and the result agrees well with previous findings for similar sy