WorldWideScience

Sample records for water table depths

  1. Simulating streamflow and water table depth with a coupled hydrological model

    Directory of Open Access Journals (Sweden)

    Alphonce Chenjerayi Guzha

    2010-09-01

    Full Text Available A coupled model integrating MODFLOW and TOPNET with the models interacting through the exchange of recharge and baseflow and river-aquifer interactions was developed and applied to the Big Darby Watershed in Ohio, USA. Calibration and validation results show that there is generally good agreement between measured streamflow and simulated results from the coupled model. At two gauging stations, average goodness of fit (R2, percent bias (PB, and Nash Sutcliffe efficiency (ENS values of 0.83, 11.15%, and 0.83, respectively, were obtained for simulation of streamflow during calibration, and values of 0.84, 8.75%, and 0.85, respectively, were obtained for validation. The simulated water table depths yielded average R2 values of 0.77 and 0.76 for calibration and validation, respectively. The good match between measured and simulated streamflows and water table depths demonstrates that the model is capable of adequately simulating streamflows and water table depths in the watershed and also capturing the influence of spatial and temporal variation in recharge.

  2. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    Science.gov (United States)

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  3. High-Resolution Assimilation of GRACE Terrestrial Water Storage Observations to Represent Local-Scale Water Table Depths

    Science.gov (United States)

    Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.

    2017-12-01

    Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at

  4. Accuracy of spatio-temporal RARX model predictions of water table depths

    NARCIS (Netherlands)

    Knotters, M.; Bierkens, M.F.P.

    2002-01-01

    Time series of water table depths (Ht) are predicted in space using a regionalised autoregressive exogenous variable (RARX) model with precipitation surplus (Pt) as input variable. Because of their physical basis, RARX model parameters can be guessed from auxiliary information such as a digital

  5. Discoloration of polyvinyl chloride (PVC) tape as a proxy for water-table depth in peatlands: validation and assessment of seasonal variability

    Science.gov (United States)

    Booth, Robert K.; Hotchkiss, Sara C.; Wilcox, Douglas A.

    2005-01-01

    Summary: 1. Discoloration of polyvinyl chloride (PVC) tape has been used in peatland ecological and hydrological studies as an inexpensive way to monitor changes in water-table depth and reducing conditions. 2. We investigated the relationship between depth of PVC tape discoloration and measured water-table depth at monthly time steps during the growing season within nine kettle peatlands of northern Wisconsin. Our specific objectives were to: (1) determine if PVC discoloration is an accurate method of inferring water-table depth in Sphagnum-dominated kettle peatlands of the region; (2) assess seasonal variability in the accuracy of the method; and (3) determine if systematic differences in accuracy occurred among microhabitats, PVC tape colour and peatlands. 3. Our results indicated that PVC tape discoloration can be used to describe gradients of water-table depth in kettle peatlands. However, accuracy differed among the peatlands studied, and was systematically biased in early spring and late summer/autumn. Regardless of the month when the tape was installed, the highest elevations of PVC tape discoloration showed the strongest correlation with midsummer (around July) water-table depth and average water-table depth during the growing season. 4. The PVC tape discoloration method should be used cautiously when precise estimates are needed of seasonal changes in the water-table.

  6. Evaporation from bare ground with different water-table depths based on an in-situ experiment in Ordos Plateau, China

    Science.gov (United States)

    Zhang, Zaiyong; Wang, Wenke; Wang, Zhoufeng; Chen, Li; Gong, Chengcheng

    2018-03-01

    The dynamic processes of ground evaporation are complex and are related to a multitude of factors such as meteorological influences, water-table depth, and materials in the unsaturated zone. To investigate ground evaporation from a homogeneous unsaturated zone, an in-situ experiment was conducted in Ordos Plateau of China. Two water-table depths were chosen to explore the water movement in the unsaturated zone and ground evaporation. Based on the experimental and calculated results, it was revealed that (1) bare ground evaporation is an atmospheric-limited stage for the case of water-table depth being close to the capillary height; (2) the bare ground evaporation is a water-storage-limited stage for the case of water-table depth being beyond the capillary height; (3) groundwater has little effect on ground-surface evaporation when the water depth is larger than the capillary height; and (4) ground evaporation is greater at nighttime than that during the daytime; and (5) a liquid-vapor interaction zone at nearly 20 cm depth is found, in which there exists a downward vapor flux on sunny days, leading to an increasing trend of soil moisture between 09:00 to 17:00; the maximum value is reached at midday. The results of this investigation are useful to further understand the dynamic processes of ground evaporation in arid areas.

  7. Water Table Depth Reconstruction in Ombrotrophic Peatlands Using Biomarker Abundance Ratios and Compound-Specific Hydrogen Isotope Composition

    Science.gov (United States)

    Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.

    2005-12-01

    Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate

  8. Decreased summer water table depth affects peatland vegetation

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Robroek, B.J.M.; Limpens, J.; Heijmans, M.M.P.D.; Schouten, M.G.C.; Berendse, F.

    2009-01-01

    Climate change can be expected to increase the frequency of summer droughts and associated low water tables in ombrotrophic peatlands. We studied the effects of periodic water table drawdown in a mesocosm experiment. Mesocosms were collected in Southern Sweden, and subsequently brought to an

  9. Sensitivity of stream flow and water table depth to potential climatic variability in a coastal forested watershed

    Science.gov (United States)

    Zhaohua Dai; Carl Trettin; Changsheng Li; Devendra M. Amatya; Ge Sun; Harbin Li

    2010-01-01

    A physically based distributed hydrological model, MIKE SHE, was used to evaluate the effects of altered temperature and precipitation regimes on the streamflow and water table in a forested watershed on the southeastern Atlantic coastal plain. The model calibration and validation against both streamflow and water table depth showed that the MIKE SHE was applicable for...

  10. Water Relations and Foliar Isotopic Composition of Prosopis tamarugo Phil., an Endemic Tree of the Atacama Desert Growing at Three Levels of Water Table Depth.

    Science.gov (United States)

    Garrido, Marco; Silva, Paola; Acevedo, Edmundo

    2016-01-01

    Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the "Pampa del Tamarugal", Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD) that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m, and 7.1 ± 0.1 m, (the last GWD being our reference) were selected and groups of four individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and mid-day water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ(13)C and δ(18)O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behavior and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P. tamarugo after

  11. Water relations and foliar isotopic composition of Prosopis tamarugo Phil. an endemic tree of the Atacama Desert growing under three levels of water table depth.

    Directory of Open Access Journals (Sweden)

    Marco eGarrido

    2016-03-01

    Full Text Available Prosopis tamarugo Phil. is a strict phreatophyte tree species endemic to the Pampa del Tamarugal, Atacama Desert. The extraction of water for various uses has increased the depth of the water table in the Pampa aquifers threatening its conservation. This study aimed to determine the effect of the groundwater table depth on the water relations of P. tamarugo and to present thresholds of groundwater depth (GWD that can be used in the groundwater management of the P. tamarugo ecosystem. Three levels of GWD, 11.2 ± 0.3 m, 10.3 ± 0.3 m and 7.1 ± 0.1 m, (the last GWD being our reference were selected and groups of 4 individuals per GWD were studied in the months of January and July of the years 2011 through 2014. When the water table depth exceeded 10 m, P. tamarugo had lower pre-dawn and midday water potential but no differences were observed in minimum leaf stomatal resistance when compared to the condition of 7.1 m GWD; the leaf tissue increased its δ13C and δ18O composition. Furthermore, a smaller green canopy fraction of the trees and increased foliage loss in winter with increasing water table depth was observed. The differences observed in the physiological behavior of P. tamarugo trees, attributable to the ground water depth; show that increasing the depth of the water table from 7 to 11 m significantly affects the water status of P. tamarugo. The results indicate that P. tamarugo has an anisohydric stomatal behaviour and that given a reduction in water supply it regulates the water demand via foliage loss. The growth and leaf physiological activities are highly sensitive to GWD. The foliage loss appears to prevent the trees from reaching water potentials leading to complete loss of hydraulic functionality by cavitation. The balance achieved between water supply and demand was reflected in the low variation of the water potential and of the variables related to gas exchange over time for a given GWD. This acclimation capacity of P

  12. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas

    Science.gov (United States)

    Zhang, Jianfeng; Zhu, Yan; Zhang, Xiaoping; Ye, Ming; Yang, Jinzhong

    2018-06-01

    Predicting water table depth over the long-term in agricultural areas presents great challenges because these areas have complex and heterogeneous hydrogeological characteristics, boundary conditions, and human activities; also, nonlinear interactions occur among these factors. Therefore, a new time series model based on Long Short-Term Memory (LSTM), was developed in this study as an alternative to computationally expensive physical models. The proposed model is composed of an LSTM layer with another fully connected layer on top of it, with a dropout method applied in the first LSTM layer. In this study, the proposed model was applied and evaluated in five sub-areas of Hetao Irrigation District in arid northwestern China using data of 14 years (2000-2013). The proposed model uses monthly water diversion, evaporation, precipitation, temperature, and time as input data to predict water table depth. A simple but effective standardization method was employed to pre-process data to ensure data on the same scale. 14 years of data are separated into two sets: training set (2000-2011) and validation set (2012-2013) in the experiment. As expected, the proposed model achieves higher R2 scores (0.789-0.952) in water table depth prediction, when compared with the results of traditional feed-forward neural network (FFNN), which only reaches relatively low R2 scores (0.004-0.495), proving that the proposed model can preserve and learn previous information well. Furthermore, the validity of the dropout method and the proposed model's architecture are discussed. Through experimentation, the results show that the dropout method can prevent overfitting significantly. In addition, comparisons between the R2 scores of the proposed model and Double-LSTM model (R2 scores range from 0.170 to 0.864), further prove that the proposed model's architecture is reasonable and can contribute to a strong learning ability on time series data. Thus, one can conclude that the proposed model can

  13. Modelling contrasting responses of wetland productivity to changes in water table depth

    Directory of Open Access Journals (Sweden)

    R. F. Grant

    2012-11-01

    Full Text Available Responses of wetland productivity to changes in water table depth (WTD are controlled by complex interactions among several soil and plant processes, and hence are site-specific rather than general in nature. Hydrological controls on wetland productivity were studied by representing these interactions in connected hummock and hollow sites in the ecosystem model ecosys, and by testing CO2 and energy fluxes from the model with those measured by eddy covariance (EC during years with contrasting WTD in a shrub fen at Lost Creek, WI. Modelled interactions among coupled processes for O2 transfer, O2 uptake, C oxidation, N mineralization, N uptake and C fixation by diverse microbial, root and mycorrhizal populations enabled the model to simulate complex responses of CO2 exchange to changes in WTD that depended on the WTD at which change was occurring. At the site scale, greater WTD caused the model to simulate greater CO2 influxes and effluxes over hummocks vs. hollows, as has been found at field sites. At the landscape scale, greater WTD caused the model to simulate greater diurnal CO2 influxes and effluxes under cooler weather when water tables were shallow, but also smaller diurnal CO2 influxes and effluxes under warmer weather when water tables were deeper, as was also apparent in the EC flux measurements. At an annual time scale, these diurnal responses to WTD in the model caused lower net primary productivity (NPP and heterotrophic respiration (Rh, but higher net ecosystem productivity (NEP = NPP − Rh, to be simulated in a cooler year with a shallower water table than in a warmer year with a deeper one. This difference in NEP was consistent with those estimated from gap-filled EC fluxes in years with different water tables at Lost Creek and at similar boreal fens elsewhere. In sensitivity tests of the model, annual NEP

  14. Effect of the spatial distribution of physical aquifer properties on modelled water table depth and stream discharge in a headwater catchment

    Directory of Open Access Journals (Sweden)

    C. Gascuel-Odoux

    2010-07-01

    Full Text Available Water table depth and its dynamics on hillslopes are often poorly predicted despite they control both water transit time within the catchment and solute fluxes at the catchment outlet. This paper analyses how relaxing the assumption of lateral homogeneity of physical properties can improve simulations of water table depth and dynamics. Four different spatial models relating hydraulic conductivity to topography have been tested: a simple linear relationship, a linear relationship with two different topographic indexes, two Ks domains with a transitional area. The Hill-Vi model has been modified to test these hypotheses. The studied catchment (Kervidy-Naizin, Western France is underlain by schist crystalline bedrock. A shallow and perennial groundwater highly reactive to rainfall events mainly develops in the weathered saprolite layer. The results indicate that (1 discharge and the water table in the riparian zone are similarly predicted by the four models, (2 distinguishing two Ks domains constitutes the best model and slightly improves prediction of the water table upslope, and (3 including spatial variations in the other parameters such as porosity or rate of hydraulic conductivity decrease with depth does not improve the results. These results underline the necessity of better investigations of upslope areas in hillslope hydrology.

  15. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth

    Czech Academy of Sciences Publication Activity Database

    Juszczak, R.; Humphreys, E.; Acosta, Manuel; Michalak-Galczewska, M.; Kayzer, D.; Olejnik, Janusz

    2013-01-01

    Roč. 366, 1-2 (2013), s. 505-520 ISSN 0032-079X Institutional support: RVO:67179843 Keywords : Ecosystem respiration * Geogenous peatland * Chamber measurements * CO2 fluxes * Water table depth Subject RIV: EH - Ecology, Behaviour Impact factor: 3.235, year: 2013

  16. Estimating drain flow from measured water table depth in layered soils under free and controlled drainage

    Science.gov (United States)

    Saadat, Samaneh; Bowling, Laura; Frankenberger, Jane; Kladivko, Eileen

    2018-01-01

    Long records of continuous drain flow are important for quantifying annual and seasonal changes in the subsurface drainage flow from drained agricultural land. Missing data due to equipment malfunction and other challenges have limited conclusions that can be made about annual flow and thus nutrient loads from field studies, including assessments of the effect of controlled drainage. Water table depth data may be available during gaps in flow data, providing a basis for filling missing drain flow data; therefore, the overall goal of this study was to examine the potential to estimate drain flow using water table observations. The objectives were to evaluate how the shape of the relationship between drain flow and water table height above drain varies depending on the soil hydraulic conductivity profile, to quantify how well the Hooghoudt equation represented the water table-drain flow relationship in five years of measured data at the Davis Purdue Agricultural Center (DPAC), and to determine the impact of controlled drainage on drain flow using the filled dataset. The shape of the drain flow-water table height relationship was found to depend on the selected hydraulic conductivity profile. Estimated drain flow using the Hooghoudt equation with measured water table height for both free draining and controlled periods compared well to observed flow with Nash-Sutcliffe Efficiency values above 0.7 and 0.8 for calibration and validation periods, respectively. Using this method, together with linear regression for the remaining gaps, a long-term drain flow record for a controlled drainage experiment at the DPAC was used to evaluate the impacts of controlled drainage on drain flow. In the controlled drainage sites, annual flow was 14-49% lower than free drainage.

  17. Nitrogen Uptake in Soils under Different Water Table Depths ...

    African Journals Online (AJOL)

    A mathematical model was used to examine the interactions of NH4 + transport to rice roots, as well as to calculate root length densities required to relate N uptake to concentrations of NH4 + in solution around the rooting medium for three water treatments: water table 30 cm below the surface, 15 cm below the surface and ...

  18. Modelling mid-span water table depth and drainage discharge ...

    African Journals Online (AJOL)

    2015-04-03

    Apr 3, 2015 ... were monitored in 1.7 m deep piezometers installed mid-way between two drains by using an electronic .... logical components in soils with shallow water tables. ..... dency of neither under-estimating nor over-estimating DDs,.

  19. Enhancing Groundwater Cost Estimation with the Interpolation of Water Tables across the United States

    Science.gov (United States)

    Rosli, A. U. M.; Lall, U.; Josset, L.; Rising, J. A.; Russo, T. A.; Eisenhart, T.

    2017-12-01

    Analyzing the trends in water use and supply across the United States is fundamental to efforts in ensuring water sustainability. As part of this, estimating the costs of producing or obtaining water (water extraction) and the correlation with water use is an important aspect in understanding the underlying trends. This study estimates groundwater costs by interpolating the depth to water level across the US in each county. We use Ordinary and Universal Kriging, accounting for the differences between aquifers. Kriging generates a best linear unbiased estimate at each location and has been widely used to map ground-water surfaces (Alley, 1993).The spatial covariates included in the universal Kriging were land-surface elevation as well as aquifer information. The average water table is computed for each county using block kriging to obtain a national map of groundwater cost, which we compare with survey estimates of depth to the water table performed by the USDA. Groundwater extraction costs were then assumed to be proportional to water table depth. Beyond estimating the water cost, the approach can provide an indication of groundwater-stress by exploring the historical evolution of depth to the water table using time series information between 1960 and 2015. Despite data limitations, we hope to enable a more compelling and meaningful national-level analysis through the quantification of cost and stress for more economically efficient water management.

  20. Water-table fluctuations in the Amargosa Desert, Nye County, Nevada

    International Nuclear Information System (INIS)

    Paces, James B.; Whelan, Joseph

    2001-01-01

    Pleistocene ground-water discharge deposits approximately 20 km southwest of Yucca Mountain were previously thought to represent pluvial water-table rises of 80 to 120 m. Data from new boreholes at two of the three discharge sites indicate that the modern water-table is at depths of only 17 to 30 m and that this shallow water is part of the regional ground-water flow system rather than being perched. Calcite in equilibrium with this modern ground water would have isotopic compositions similar to those in Pleistocene calcite associated with the discharge deposits. Carbon and uranium isotopes in both ground water and discharge deposits imply that past discharge consisted of a mixture of both shallow and deep ground water. These data limit Pleistocene water-table fluctuations at the specified Amargosa Desert discharge sites to between 17 and 30 m and eliminate the need to invoke large water-table rises

  1. Water table monitoring in a mined riparian zone

    Directory of Open Access Journals (Sweden)

    Thomaz Marques Cordeiro Andrade

    2010-04-01

    Full Text Available The objective of this study was to test an easily fabricated tool that assist in the manual installation of piezometers, as well as water table monitor in the research site, located at the Gualaxo do Norte River Watershed, state of Minas Gerais, Brazil. The tool is made of iron pipes and is a low-cost alternative for shallow groundwater observation wells. The measurements were done in a riparian zone after being gold mined, when vegetation and upper soil layers were removed. The wells were installed in three areas following a transect from the river bank. The method was viable for digging up to its maximum depth of 3 meters in a low resistance soil and can be improved to achieve a better resistance over impact and its maximum depth of perforation. Water table levels varied distinctly according to its depth in each point. It varies most in the more shallow wells in different areas, while it was more stable in the deeper ones. The water table profile reflected the probably profile f the terrain and can be a reference for its leveling in reconstitution of degraded banks where upper layers of the soil were removed. Groundwater monitoring can be also an indicator of the suitability of the substrate for soil reconstitution in terms of the maintenance of an infiltration capacity similar to the original material.

  2. Estimating steady-state evaporation rates from bare soils under conditions of high water table

    Science.gov (United States)

    Ripple, C.D.; Rubin, J.; Van Hylckama, T. E. A.

    1970-01-01

    A procedure that combines meteorological and soil equations of water transfer makes it possible to estimate approximately the steady-state evaporation from bare soils under conditions of high water table. Field data required include soil-water retention curves, water table depth and a record of air temperature, air humidity and wind velocity at one elevation. The procedure takes into account the relevant atmospheric factors and the soil's capability to conduct 'water in liquid and vapor forms. It neglects the effects of thermal transfer (except in the vapor case) and of salt accumulation. Homogeneous as well as layered soils can be treated. Results obtained with the method demonstrate how the soil evaporation rates·depend on potential evaporation, water table depth, vapor transfer and certain soil parameters.

  3. Stochastic estimation of plant-available soil water under fluctuating water table depths

    Science.gov (United States)

    Or, Dani; Groeneveld, David P.

    1994-12-01

    Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.

  4. Ground-Penetrating-Radar Profiles of Interior Alaska Highways: Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw Settlement over Ice-Rich Permafrost

    Science.gov (United States)

    2016-08-01

    along either massive ice surfaces or within sections of segregated ice. The uninsulated ice surface at Tok in Figure 17B is irregular. All of the...ER D C/ CR RE L TR -1 6- 14 ERDC’s Center-Directed Research Program Ground -Penetrating-Radar Profiles of Interior Alaska Highways...August 2016 Ground -Penetrating-Radar Profiles of Interior Alaska Highways Interpretation of Stratified Fill, Frost Depths, Water Table, and Thaw

  5. Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system

    Science.gov (United States)

    Rezanezhad, F.; Couture, R.-M.; Kovac, R.; O'Connell, D.; Van Cappellen, P.

    2014-02-01

    Water table fluctuations significantly affect the biological and geochemical functioning of soils. Here, we introduce an automated soil column system in which the water table regime is imposed using a computer-controlled, multi-channel pump connected to a hydrostatic equilibrium reservoir and a water storage reservoir. The potential of this new system is illustrated by comparing results from two columns filled with 45 cm of the same homogenized riparian soil. In one soil column the water table remained constant at -20 cm below the soil surface, while in the other the water table oscillated between the soil surface and the bottom of the column, at a rate of 4.8 cm d-1. The experiment ran for 75 days at room temperature (25 ± 2 °C). Micro-sensors installed at -10 and -30 cm below the soil surface in the stable water table column recorded constant redox potentials on the order of 600 and -200 mV, respectively. In the fluctuating water table column, redox potentials at the same depths oscillated between oxidizing (∼700 mV) and reducing (∼-100 mV) conditions. Pore waters collected periodically and solid-phase analyses on core material obtained at the end of the experiment highlighted striking geochemical differences between the two columns, especially in the time series and depth distributions of Fe, Mn, K, P and S. Soil CO2 emissions derived from headspace gas analysis exhibited periodic variations in the fluctuating water table column, with peak values during water table drawdown. Transient redox conditions caused by the water table fluctuations enhanced microbial oxidation of soil organic matter, resulting in a pronounced depletion of particulate organic carbon in the midsection of the fluctuating water table column. Denaturing Gradient Gel Electrophoresis (DGGE) revealed the onset of differentiation of the bacterial communities in the upper (oxidizing) and lower (reducing) soil sections, although no systematic differences in microbial community structure

  6. Depth dependent microbial carbon use efficiency in the capillary fringe as affected by water table fluctuations in a column incubation experiment

    Science.gov (United States)

    Pronk, G. J.; Mellage, A.; Milojevic, T.; Smeaton, C. M.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Microbial growth and turnover of soil organic carbon (SOC) depend on the availability of electron donors and acceptors. The steep geochemical gradients in the capillary fringe between the saturated and unsaturated zones provide hotspots of soil microbial activity. Water table fluctuations and the associated drying and wetting cycles within these zones have been observed to lead to enhanced turnover of SOC and adaptation of the local microbial communities. To improve our understanding of SOC degradation under changing moisture conditions, we carried out an automated soil column experiment with integrated of hydro-bio-geophysical monitoring under both constant and oscillating water table conditions. An artificial soil mixture composed of quartz sand, montmorillonite, goethite and humus was used to provide a well-defined system. This material was inoculated with a microbial community extracted from a forested riparian zone. The soils were packed into 6 columns (60 cm length and 7.5 cm inner diameter) to a height of 45 cm; and three replicate columns were incubated under constant water table while another three were saturated and drained monthly. The initial soil development, carbon cycling and microbial community development were then characterized during 10 months of incubation. This system provides an ideal artificial gradient from the saturated to the unsaturated zone to study soil development from initially homogeneous materials and the same microbial community composition under controlled conditions. Depth profiles of SOC and microbial biomass after 329 days of incubation showed a depletion of carbon in the transition drying and wetting zone that was not associated with higher accumulation of microbial biomass, indicating a lower carbon use efficiency of the microbial community established within the water table fluctuation zone. This was supported by a higher ATP to microbial biomass carbon ratio within the same zone. The findings from this study highlight the

  7. Mechanism for migration of light nonaqueous phase liquids beneath the water table

    International Nuclear Information System (INIS)

    Krueger, J.P.; Portman, M.E.

    1991-01-01

    This paper reports on an interesting transport mechanism may account for the presence of light nonaqueous phase liquid (LNAPL) found beneath the water table in fine-grained aquifers. During the course of two separate site investigations related to suspected releases from underground petroleum storage tanks, LNAPL was found 7 to 10 feet below the regional water table. In both cases, the petroleum was present within a sand seam which was encompassed within a deposit of finer-grained sediments. The presence of LNAPL below the water table is uncommon; typically, LNAPL is found floating on the water table or on the capillary fringe. The occurrence of LNAPL below the water table could have resulted from fluctuating regional water levels which allowed the petroleum to enter the sand when the water table was a lower stage or, alternately, could have occurred as a result of the petroleum depressing the water table beneath the level of the sand. In fine-grained soils where the lateral migration rate is low, the infiltrating LNAPL may depress the water table to significant depth. The LNAPL may float on the phreatic surface with the bulk of its volume beneath the phreatic surface. Once present in the sand and surrounded by water-saturated fine-grained sediments, capillary forces prevent the free movement of the petroleum back across the boundary from the coarse-grained sediments to the fine-grained sediments. Tapping these deposits with a coarser grained filter packed monitoring well releases the LNAPL, which may accumulate to considerable thickness in the monitoring well

  8. Energy balance concept in the evaluation of water table management effects on corn growth: experimental investigation

    International Nuclear Information System (INIS)

    Kalita, P.K.; Kanwar, R.S.

    1992-01-01

    The effects of water table management practices (WTMP) on corn growth in 1989 and 1990 at two field sites, Ames and Ankeny, Iowa, were evaluated by calculating crop water stress index (CWSI) and monitoring plant physiological parameters during the growing seasons. Experiments were conducted on field lysimeters at the Ames site by maintaining water tables at 0.3-, 0.6-, and 0.9-m depths and in a subirrigation field at the Ankeny site with 0.2-, 0.3-, 0.6-, 0.9-, and 1.1-m water table depths, and periodically measuring leaf and air temperature, transpiration rate, stomatal conductance, and photosynthetically active radiation (PAR) using leaf chamber techniques. Net radiation of canopy was estimated using the leaf energy balance equation and leaf chamber measurements and then correlated with PAR. Analysis of data revealed that net radiation, leaf air temperature differential, transpiration rate, stomatal conductance, and CWSI were strongly related to WTMP during vegetative and flowering stages of corn growth. Excess water in the root zone with a water table depth of 0.2 m caused the maximum crop water stress and ceased crop growth. Both water and oxygen could be adequately maintained for favorable crop growth by adopting the best WTMP. Results indicate that plant physiological parameters and CWSI could be used to evaluate the effectiveness of WTMP and develop the best WTMP for corn growth in the humid region

  9. Contribution of vegetation and water table on isoprene emission from boreal peatland microcosms

    DEFF Research Database (Denmark)

    Tiiva, Päivi; Faubert, Patrick; Räty, Sanna

    2009-01-01

    emission in these naturally wet ecosystems, although water table is predicted to decline due to climate warming. We studied the relative contribution of mosses vs. vascular plants to isoprene emission in boreal peatland microcosms in growth chambers by removing either vascular vegetation or both vascular...... hollows with intact vegetation, 45 ± 6 µg m-2 h-1, was decreased by 25% under water table drawdown. However, water table drawdown reduced net ecosystem carbon dioxide (CO2) exchange more dramatically than isoprene emission. Isoprene emission strongly correlated with both CO2 exchange and methane emission......Boreal peatlands are substantial sources of isoprene, a reactive hydrocarbon. However, it is not known how much mosses, vascular plants and peat each contribute to isoprene emission from peatlands. Furthermore, there is no information on the effects of declining water table depth on isoprene...

  10. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling

    Science.gov (United States)

    Bechtold, M.; Tiemeyer, B.; Laggner, A.; Leppelt, T.; Frahm, E.; Belting, S.

    2014-09-01

    Fluxes of the three main greenhouse gases (GHG) CO2, CH4 and N2O from peat and other soils with high organic carbon contents are strongly controlled by water table depth. Information about the spatial distribution of water level is thus a crucial input parameter when upscaling GHG emissions to large scales. Here, we investigate the potential of statistical modeling for the regionalization of water levels in organic soils when data covers only a small fraction of the peatlands of the final map. Our study area is Germany. Phreatic water level data from 53 peatlands in Germany were compiled in a new data set comprising 1094 dip wells and 7155 years of data. For each dip well, numerous possible predictor variables were determined using nationally available data sources, which included information about land cover, ditch network, protected areas, topography, peatland characteristics and climatic boundary conditions. We applied boosted regression trees to identify dependencies between predictor variables and dip-well-specific long-term annual mean water level (WL) as well as a transformed form (WLt). The latter was obtained by assuming a hypothetical GHG transfer function and is linearly related to GHG emissions. Our results demonstrate that model calibration on WLt is superior. It increases the explained variance of the water level in the sensitive range for GHG emissions and avoids model bias in subsequent GHG upscaling. The final model explained 45% of WLt variance and was built on nine predictor variables that are based on information about land cover, peatland characteristics, drainage network, topography and climatic boundary conditions. Their individual effects on WLt and the observed parameter interactions provide insight into natural and anthropogenic boundary conditions that control water levels in organic soils. Our study also demonstrates that a large fraction of the observed WLt variance cannot be explained by nationally available predictor variables and

  11. LITHOLOGIC CONDITIONS OF THE WATER TABLE LOGGING IN THE AREA OF HAĆKI VILLAGE IN THE BIELSKA PLAIN

    Directory of Open Access Journals (Sweden)

    Krzysztof Micun

    2016-05-01

    Full Text Available The aim of the study was to examine lithological conditions of the water table in the area of Haćki village located in the Bielska Plain. The study involved the measurements of water level in dug wells, hand drill probing to a depth of 5 m, acquiring the samples of water-bearing deposits and analysing their granulation. The results of analyses allowed to calculate the permeability coefficient. The geological structure of the area is dominated by dusty deposits of various origins. Such deposits’ formation directly affects the conditions of filtration and depth of the water table. Groundwater logging near Haćki village in the Bielska Plain appears at a depth of several tens of centimeters to 2 meters in the depressions field and up a little over 5 meters in the case of higher ground surfaces. The presence of perched water was revealed on the hills, periodic leachates at the foot of the hills and scarps and one periodic spring. Water-bearing deposits are medium sands, fine sands and loamy fine sands or fine sands with silt. Consequently, the permeability coefficient is low or even very low. Its values range from 0,001 m·d-1 to 3,8 m·d-1 (d – 24 hours. The widespread presence of dusty deposits in the area affects the limited efficiency of the water table.

  12. Water table depth fluctuations during ENSO phenomenon on different tropical peat swamp forest land covers in Katingan, Indonesia

    Science.gov (United States)

    Rossita, A.; Witono, A.; Darusman, T.; Lestari, D. P.; Risdiyanto, I.

    2018-03-01

    As it is the main role to maintain hydrological function, peatland has been a limelight since drainage construction for agriculture evolved. Drainage construction will decrease water table depth (WTD) and result in CO2 emission release to the atmosphere. Regardless of human intervention, WTD fluctuations can be affected by seasonal climate and climate variability, foremost El Niño Southern Oscillation (ENSO). This study aims to determine the correlation between rainfall in Katingan and ENSO index, analyze the pattern of WTD fluctuation of open area and forest area in 2015 (during very strong El Niño) and 2016 (during weak La Niña), calculate the WTD trendline slope during the dry season, and rainfall and WTD correlation. The result showed that open area has a sharper slope of decreasing or increasing WTD when entering the dry, compared to the forest area. Also, it is found that very strong El Niño in 2015 generated a pattern of more extreme decreasing WTD during the dry season than weak La Niña in 2016.

  13. Woody riparian vegetation response to different alluvial water table regimes

    Science.gov (United States)

    Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.

    2000-01-01

    Woody riparian vegetation in western North American riparian ecosystems is commonly dependent on alluvial groundwater. Various natural and anthropogenic mechanisms can cause groundwater declines that stress riparian vegetation, but little quantitative information exists on the nature of plant response to different magnitudes, rates, and durations of groundwater decline. We observed groundwater dynamics and the response of Populus fremontii, Salix gooddingii, and Tamarix ramosissima saplings at 3 sites between 1995 and 1997 along the Bill Williams River, Arizona. At a site where the lowest observed groundwater level in 1996 (-1.97 m) was 1.11 m lower than that in 1995 (-0.86 m), 92-100% of Populus and Salix saplings died, whereas 0-13% of Tamarix stems died. A site with greater absolute water table depths in 1996 (-2.55 m), but less change from the 1995 condition (0.55 m), showed less Populus and Salix mortality and increased basal area. Excavations of sapling roots suggest that root distribution is related to groundwater history. Therefore, a decline in water table relative to the condition under which roots developed may strand plant roots where they cannot obtain sufficient moisture. Plant response is likely mediated by other factors such as soil texture and stratigraphy, availability of precipitation-derived soil moisture, physiological and morphological adaptations to water stress, and tree age. An understanding of the relationships between water table declines and plant response may enable land and water managers to avoid activities that are likely to stress desirable riparian vegetation.

  14. Minimization of decision tree depth for multi-label decision tables

    KAUST Repository

    Azad, Mohammad

    2014-10-01

    In this paper, we consider multi-label decision tables that have a set of decisions attached to each row. Our goal is to find one decision from the set of decisions for each row by using decision tree as our tool. Considering our target to minimize the depth of the decision tree, we devised various kinds of greedy algorithms as well as dynamic programming algorithm. When we compare with the optimal result obtained from dynamic programming algorithm, we found some greedy algorithms produces results which are close to the optimal result for the minimization of depth of decision trees.

  15. Minimization of decision tree depth for multi-label decision tables

    KAUST Repository

    Azad, Mohammad; Moshkov, Mikhail

    2014-01-01

    In this paper, we consider multi-label decision tables that have a set of decisions attached to each row. Our goal is to find one decision from the set of decisions for each row by using decision tree as our tool. Considering our target to minimize the depth of the decision tree, we devised various kinds of greedy algorithms as well as dynamic programming algorithm. When we compare with the optimal result obtained from dynamic programming algorithm, we found some greedy algorithms produces results which are close to the optimal result for the minimization of depth of decision trees.

  16. Modelling mid-span water table depth and drainage discharge ...

    African Journals Online (AJOL)

    Results of simulated WTDs at various combinations of drain depth and spacing indicated that in clay soil a WTD of 1.0 to 1.5 m from the soil surface can be achieved by installing drain pipes at drain spacing ranging from 25 to 40 m and drain depth between 1.4 and 1.8 m. On the other hand, in clay-loam soil, the same 1.0 to ...

  17. Geostatistical investigation into the temporal evolution of spatial structure in a shallow water table

    Directory of Open Access Journals (Sweden)

    S. W. Lyon

    2006-01-01

    Full Text Available Shallow water tables near-streams often lead to saturated, overland flow generating areas in catchments in humid climates. While these saturated areas are assumed to be principal biogeochemical hot-spots and important for issues such as non-point pollution sources, the spatial and temporal behavior of shallow water tables, and associated saturated areas, is not completely understood. This study demonstrates how geostatistical methods can be used to characterize the spatial and temporal variation of the shallow water table for the near-stream region. Event-based and seasonal changes in the spatial structure of the shallow water table, which influences the spatial pattern of surface saturation and related runoff generation, can be identified and used in conjunction to characterize the hydrology of an area. This is accomplished through semivariogram analysis and indicator kriging to produce maps combining soft data (i.e., proxy information to the variable of interest representing general shallow water table patterns with hard data (i.e., actual measurements that represent variation in the spatial structure of the shallow water table per rainfall event. The area used was a hillslope in the Catskill Mountains region of New York State. The shallow water table was monitored for a 120 m×180 m near-stream region at 44 sampling locations on 15-min intervals. Outflow of the area was measured at the same time interval. These data were analyzed at a short time interval (15 min and at a long time interval (months to characterize the changes in the hydrologic behavior of the hillslope. Indicator semivariograms based on binary-transformed ground water table data (i.e., 1 if exceeding the time-variable median depth to water table and 0 if not were created for both short and long time intervals. For the short time interval, the indicator semivariograms showed a high degree of spatial structure in the shallow water table for the spring, with increased range

  18. Cokriging model for estimation of water table elevation

    International Nuclear Information System (INIS)

    Hoeksema, R.J.; Clapp, R.B.; Thomas, A.L.; Hunley, A.E.; Farrow, N.D.; Dearstone, K.C.

    1989-01-01

    In geological settings where the water table is a subdued replica of the ground surface, cokriging can be used to estimate the water table elevation at unsampled locations on the basis of values of water table elevation and ground surface elevation measured at wells and at points along flowing streams. The ground surface elevation at the estimation point must also be determined. In the proposed method, separate models are generated for the spatial variability of the water table and ground surface elevation and for the dependence between these variables. After the models have been validated, cokriging or minimum variance unbiased estimation is used to obtain the estimated water table elevations and their estimation variances. For the Pits and Trenches area (formerly a liquid radioactive waste disposal facility) near Oak Ridge National Laboratory, water table estimation along a linear section, both with and without the inclusion of ground surface elevation as a statistical predictor, illustrate the advantages of the cokriging model

  19. Influence of water table decline on growth allocation and endogenous gibberellins in black cottonwood

    Energy Technology Data Exchange (ETDEWEB)

    Rood, S.B.; Zanewich, K.; Stefura, C. [Lethbridge Univ., Lethbridge, AB (Canada). Dept. of Biological Sciences; Mahoney, J.M. [Alberta Environmental Protection, Lethbridge, AB (Canada)

    2000-06-01

    Cottonwoods have shown an adaptation to the riparian zone by coordinating root elongation to maintain contact with the water table, whose depth varies with the elevation of the adjacent river. The rate of water decline on growth allocation and concentrations of endogenous gibberellins (GAs) in black cottonwood saplings were studied at the University of Lethbridge, Alberta. Water declines were achieved by using rhizopods, and root elongation approximately doubled in response whereas leaf area was reduced. At some point, a greater water decline rate led to water stress resulting in reduced growth, increased leaf diffusive resistance, decreased water potential, and leaf senescence and abscission. After extraction of endogenous GAs, they were purified and analysed by gas chromatography-selected ion monitoring with internal ({sup 2}H{sub 2})GA standards. The results showed that GAs were higher in shoot tips and sequentially lower in basal stems, root tips, leaves and upper roots. Noticeable relationships did not appear between GA concentration and growth allocation across the water decline treatments. Only GA{sub 8} showed a consistent reduction in plants experiencing water table decline. This research did not permit the authors to conclude whether endogenous GAs play a primary role in the regulation of root elongation in response to water table decline. 7 figs., 25 refs.

  20. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    Science.gov (United States)

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  1. Variation of Pressure with Depth of Water: Working with High-Tech and Low-Cost Materials

    Science.gov (United States)

    Ornek, Funda; Zziwa, Byansi Jude; Taganahan, Teresita D.

    2013-01-01

    When you dive underwater, you feel the pressure on your ears and, as you dive deeper, more pressure is felt. This article presents an activity that teachers might find useful for demonstrating the relationship between water depth and pressure. (Contains 5 figures and 1 table.)

  2. Analytical estimation show low depth-independent water loss due to vapor flux from deep aquifers

    Science.gov (United States)

    Selker, John S.

    2017-06-01

    Recent articles have provided estimates of evaporative flux from water tables in deserts that span 5 orders of magnitude. In this paper, we present an analytical calculation that indicates aquifer vapor flux to be limited to 0.01 mm/yr for sites where there is negligible recharge and the water table is well over 20 m below the surface. This value arises from the geothermal gradient, and therefore, is nearly independent of the actual depth of the aquifer. The value is in agreement with several numerical studies, but is 500 times lower than recently reported experimental values, and 100 times larger than an earlier analytical estimate.

  3. The impact of water table drawdown and drying on subterranean aquatic fauna in in-vitro experiments.

    Directory of Open Access Journals (Sweden)

    Christine Stumpp

    Full Text Available The abstraction of groundwater is a global phenomenon that directly threatens groundwater ecosystems. Despite the global significance of this issue, the impact of groundwater abstraction and the lowering of groundwater tables on biota is poorly known. The aim of this study is to determine the impacts of groundwater drawdown in unconfined aquifers on the distribution of fauna close to the water table, and the tolerance of groundwater fauna to sediment drying once water levels have declined. A series of column experiments were conducted to investigate the depth distribution of different stygofauna (Syncarida and Copepoda under saturated conditions and after fast and slow water table declines. Further, the survival of stygofauna under conditions of reduced sediment water content was tested. The distribution and response of stygofauna to water drawdown was taxon specific, but with the common response of some fauna being stranded by water level decline. So too, the survival of stygofauna under different levels of sediment saturation was variable. Syncarida were better able to tolerate drying conditions than the Copepoda, but mortality of all groups increased with decreasing sediment water content. The results of this work provide new understanding of the response of fauna to water table drawdown. Such improved understanding is necessary for sustainable use of groundwater, and allows for targeted strategies to better manage groundwater abstraction and maintain groundwater biodiversity.

  4. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables

    Science.gov (United States)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.

    2018-01-01

    both free drainage and various water table depths to quantify the effect of assuming the former boundary condition. For these two soil types, shallow WTs within 1.0-1.2 m below the soil surface influenced infiltration. Existing models will suggest a more protective vegetative filter strip than what actually exists if shallow water table conditions are not considered.

  5. Minimization of Decision Tree Average Depth for Decision Tables with Many-valued Decisions

    KAUST Repository

    Azad, Mohammad

    2014-09-13

    The paper is devoted to the analysis of greedy algorithms for the minimization of average depth of decision trees for decision tables such that each row is labeled with a set of decisions. The goal is to find one decision from the set of decisions. When we compare with the optimal result obtained from dynamic programming algorithm, we found some greedy algorithms produces results which are close to the optimal result for the minimization of average depth of decision trees.

  6. Minimization of Decision Tree Average Depth for Decision Tables with Many-valued Decisions

    KAUST Repository

    Azad, Mohammad; Moshkov, Mikhail

    2014-01-01

    The paper is devoted to the analysis of greedy algorithms for the minimization of average depth of decision trees for decision tables such that each row is labeled with a set of decisions. The goal is to find one decision from the set of decisions. When we compare with the optimal result obtained from dynamic programming algorithm, we found some greedy algorithms produces results which are close to the optimal result for the minimization of average depth of decision trees.

  7. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Science.gov (United States)

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional

  8. The reconstruction of late Holocene depth-to-water-table based on testate amoebae in an eastern Australian mire

    Science.gov (United States)

    Zheng, X.; Money, S.; Hope, G.

    2017-12-01

    There are relatively few quantitative palaeo-hydrological records available in eastern Australia, and those that are available, for example from dendroclimatology and the reconstruction of lake level, are often relatively short or have a relatively coarse temporal resolution (e.g. Wilkins et al. 2013; Palmer et al. 2015). Testate amoebae, a widely used hydrological proxy in the Northern Hemisphere, were used here to reconstruct depth to water table (DWT) at Snowy Flat, which is a Sphagnum-Richea-Empodismahigh altitude (1618 m asl) shrub bog in the Australian Capital Territory, Australia. Testate amoebae were quantified in a Snowy Flat core representing 4,200 cal Y BP and the community composition was used to reconstruct DWT based on our recently established transfer functions. Results from three different types of transfer functions (Fig. 1) consistently show there was a decreasing DWT (wetter) period centred on about 3350 cal Y BP, a trend towards increased dryness from about 3300 to 2200 cal Y BP and a distinctly drier period 850 to 700 cal Y BP which was immediately followed by a wetter period from 700 to 500 cal Y BP. We discuss these episodes and trends in relation to the drivers of climatic variability in this region and in particular, by comparing our results with other south-eastern Australia records, comment on the history of the southern annular mode.

  9. Hydrologic regulation of plant rooting depth.

    Science.gov (United States)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G; Jackson, Robert B; Otero-Casal, Carlos

    2017-10-03

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (∼1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  10. Hydrologic regulation of plant rooting depth

    Science.gov (United States)

    Fan, Ying; Miguez-Macho, Gonzalo; Jobbágy, Esteban G.; Jackson, Robert B.; Otero-Casal, Carlos

    2017-10-01

    Plant rooting depth affects ecosystem resilience to environmental stress such as drought. Deep roots connect deep soil/groundwater to the atmosphere, thus influencing the hydrologic cycle and climate. Deep roots enhance bedrock weathering, thus regulating the long-term carbon cycle. However, we know little about how deep roots go and why. Here, we present a global synthesis of 2,200 root observations of >1,000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients. Results reveal strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow, avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to the groundwater capillary fringe. This framework explains the contrasting rooting depths observed under the same climate for the same species but at distinct topographic positions. We assess the global significance of these hydrologic mechanisms by estimating root water-uptake depths using an inverse model, based on observed productivity and atmosphere, at 30″ (˜1-km) global grids to capture the topography critical to soil hydrology. The resulting patterns of plant rooting depth bear a strong topographic and hydrologic signature at landscape to global scales. They underscore a fundamental plant-water feedback pathway that may be critical to understanding plant-mediated global change.

  11. Manipulative lowering of the water table during summer does not affect CO2 emissions and uptake in a fen in Germany.

    Science.gov (United States)

    Muhr, Jan; Höhle, Juliane; Otieno, Dennis O; Borken, Werner

    2011-03-01

    We simulated the effect of prolonged dry summer periods by lowering the water table on three manipulation plots (D(1-3)) in a minerotrophic fen in southeastern Germany in three years (2006-2008). The water table at this site was lowered by drainage and by excluding precipitation; three nonmanipulated control plots (C(1-3)) served as a reference. We found no significant differences in soil respiration (R(Soil)), gross primary production (GPP), or aboveground respiration (R(AG)) between the C(1-3) and D(1-3) plots in any of the measurement years. The water table on the control plots was naturally low, with a median water table (2006-2008) of 8 cm below the surface, and even lower during summer when respiratory activity was highest, with median values (C(1-3)) between 11 and 19 cm below the surface. If it is assumed that oxygen availability in the uppermost 10 cm was not limited by the location of the water table, manipulative lowering of the water table most likely increased oxygen availability only in deeper peat layers where we expect R(Soil) to be limited by poor substrate quality rather than anoxia. This could explain the lack of a manipulation effect. In a second approach, we estimated the influence of the water table on R(Soil) irrespective of treatment. The results showed a significant correlation between R(Soil) and water table, but with R(Soil) decreasing at lower water tables rather than increasing. We thus conclude that decomposition in the litter layer is not limited by waterlogging in summer, and deeper peat layers bear no significant decomposition potential due to poor substrate quality. Consequently, we do not expect enhanced C losses from this site due to increasing frequency of dry summers. Assimilation and respiration of aboveground vegetation were not affected by water table fluctuations between 10 and >60 cm depth, indicating the lack of stress resulting from either anoxia (high water table) or drought (low water table).

  12. Calculated depth-dose distributions for H+ and He+ beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2009-01-01

    We have calculated the dose distribution delivered by proton and helium beams in liquid water as a function of the target-depth, for incident energies in the range 0.5-10 MeV/u. The motion of the projectiles through the stopping medium is simulated by a code that combines Monte Carlo and a finite differences algorithm to consider the electronic stopping power, evaluated in the dielectric framework, and the multiple nuclear scattering with the target nuclei. Changes in projectile charge-state are taken into account dynamically as it moves through the target. We use the MELF-GOS model to describe the energy loss function of liquid water, obtaining a value of 79.4 eV for its mean excitation energy. Our calculated stopping powers and depth-dose distributions are compared with those obtained using other methods to describe the energy loss function of liquid water, such as the extended Drude and the Penn models, as well as with the prediction of the SRIM code and the tables of ICRU.

  13. Water table and overbank flow frequency changes due to suburbanization-induced channel incision, Virginia Coastal Plain, USA

    Science.gov (United States)

    Hancock, G.; Mattell, N.; Christianson, E.; Wacksman, J.

    2004-12-01

    Channel incision is a widely observed response to increased flow in urbanized watersheds, but the effects of channel lowering on riparian water tables is not well documented. In a rapidly incising suburban stream in the Virginia Coastal Plain, we hypothesize that incision has lowered floodplain water tables and decreased the overbank flow frequency, and suggest these changes impact vegetation distribution in a diverse, protected riparian habitat. The monitored stream is a tributary to the James River draining 1.3 km2, of which 15% is impervious cover. Incision has occurred largely through upstream migration of a one m high knickpoint at a rate of 1-2 m/yr, primarily during high flow events. We installed 33 wells in six floodplain transects to assess water table elevations beneath the floodplain adjacent to the incising stream. To document the impacts of incision, two transects are located 30 and 50 m upstream of the knickpoint in unincised floodplain, and the remainder are 5, 30, 70, and 100 m downstream of the knickpoint in incised floodplain. In one transect above and two below, pressure transducers attached to dataloggers provide a high-resolution record of water table response to storm events. Significant differences have been observed in the water table above and below the knickpoint. Above the knickpoint, the water table is relatively flat and is 0.2-0.4 m below the floodplain surface. Water table response to precipitation events is nearly immediate, with the water table rising to the floodplain surface in significant rainfall events. In the transect immediately downstream of the knickpoint, the water table possesses a steep gradient, rising from ~1 m below the floodplain at the stream to 0.3 m below the surface within 20 m. In the most downstream transects, the water table is relatively flat, but is one m below the floodplain surface, equivalent to the depth of incision generated by knickpoint passage. Upstream of the knickpoint, overbank flooding occurs

  14. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China

    Science.gov (United States)

    Chen, Li; Wang, Wenke; Zhang, Zaiyong; Wang, Zhoufeng; Wang, Qiangmin; Zhao, Ming; Gong, Chengcheng

    2018-04-01

    Soil surface evaporation is a significant component of the hydrological cycle, occurring at the interface between the atmosphere and vadose zone, but it is affected by factors such as groundwater level, soil properties, solar radiation and others. In order to understand the soil evaporation characteristics in arid regions, a field experiment was conducted in the Ordos Basin, central China, and high accuracy sensors of soil moisture, moisture potential and temperature were installed in three field soil profiles with water-table depths (WTDs) of about 0.4, 1.4 and 2.2 m. Soil-surface-evaporation values were estimated by observed data combined with Darcy's law. Results showed that: (1) soil-surface-evaporation rate is linked to moisture content and it is also affected by air temperature. When there is sufficient moisture in the soil profile, soil evaporation increases with rising air temperature. For a WTD larger than the height of capillary rise, the soil evaporation is related to soil moisture content, and when air temperature is above 25 °C, the soil moisture content reduces quickly and the evaporation rate lowers; (2) phreatic water contributes to soil surface evaporation under conditions in which the WTD is within the capillary fringe. This indicates that phreatic water would not participate in soil evaporation for a WTD larger than the height of capillary rise. This finding developed further the understanding of phreatic evaporation, and this study provides valuable information on recognized soil evaporation processes in the arid environment.

  15. A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site

    Science.gov (United States)

    Mellon, M.T.; Boynton, W.V.; Feldman, W.C.; Arvidson, R. E.; Titus, Joshua T.N.; Bandfield, L.; Putzig, N.E.; Sizemore, H.G.

    2009-01-01

    We review multiple estimates of the ice table depth at potential Phoenix landing sites and consider the possible state and distribution of subsurface ice. A two-layer model of ice-rich material overlain by ice-free material is consistent with both the observational and theoretical lines of evidence. Results indicate ground ice to be shallow and ubiquitous, 2-6 cm below the surface. Undulations in the ice table depth are expected because of the thermodynamic effects of rocks, slopes, and soil variations on the scale of the Phoenix Lander and within the digging area, which can be advantageous for analysis of both dry surficial soils and buried ice-rich materials. The ground ice at the ice table to be sampled by the Phoenix Lander is expected to be geologically young because of recent climate oscillations. However, estimates of the ratio of soil to ice in the ice-rich subsurface layer suggest that that the ice content exceeds the available pore space, which is difficult to reconcile with existing ground ice stability and dynamics models. These high concentrations of ice may be the result of either the burial of surface snow during times of higher obliquity, initially high-porosity soils, or the migration of water along thin films. Measurement of the D/H ratio within the ice at the ice table and of the soil-to-ice ratio, as well as imaging ice-soil textures, will help determine if the ice is indeed young and if the models of the effects of climate change on the ground ice are reasonable. Copyright 2008 by the American Geophysical Union.

  16. Empirical method for simulation of water tables by digital computers

    International Nuclear Information System (INIS)

    Carnahan, C.L.; Fenske, P.R.

    1975-09-01

    An empirical method is described for computing a matrix of water-table elevations from a matrix of topographic elevations and a set of observed water-elevation control points which may be distributed randomly over the area of interest. The method is applicable to regions, such as the Great Basin, where the water table can be assumed to conform to a subdued image of overlying topography. A first approximation to the water table is computed by smoothing a matrix of topographic elevations and adjusting each node of the smoothed matrix according to a linear regression between observed water elevations and smoothed topographic elevations. Each observed control point is assumed to exert a radially decreasing influence on the first approximation surface. The first approximation is then adjusted further to conform to observed water-table elevations near control points. Outside the domain of control, the first approximation is assumed to represent the most probable configuration of the water table. The method has been applied to the Nevada Test Site and the Hot Creek Valley areas in Nevada

  17. Use of geospatial technology for delineating groundwater potential zones with an emphasis on water-table analysis in Dwarka River basin, Birbhum, India

    Science.gov (United States)

    Thapa, Raju; Gupta, Srimanta; Gupta, Arindam; Reddy, D. V.; Kaur, Harjeet

    2018-05-01

    Dwarka River basin in Birbhum, West Bengal (India), is an agriculture-dominated area where groundwater plays a crucial role. The basin experiences seasonal water stress conditions with a scarcity of surface water. In the presented study, delineation of groundwater potential zones (GWPZs) is carried out using a geospatial multi-influencing factor technique. Geology, geomorphology, soil type, land use/land cover, rainfall, lineament and fault density, drainage density, slope, and elevation of the study area were considered for the delineation of GWPZs in the study area. About 9.3, 71.9 and 18.8% of the study area falls within good, moderate and poor groundwater potential zones, respectively. The potential groundwater yield data corroborate the outcome of the model, with maximum yield in the older floodplain and minimum yield in the hard-rock terrains in the western and south-western regions. Validation of the GWPZs using the yield of 148 wells shows very high accuracy of the model prediction, i.e., 89.1% on superimposition and 85.1 and 81.3% on success and prediction rates, respectively. Measurement of the seasonal water-table fluctuation with a multiplicative model of time series for predicting the short-term trend of the water table, followed by chi-square analysis between the predicted and observed water-table depth, indicates a trend of falling groundwater levels, with a 5% level of significance and a p-value of 0.233. The rainfall pattern for the last 3 years of the study shows a moderately positive correlation ( R 2 = 0.308) with the average water-table depth in the study area.

  18. Assessment of denitrification gaseous end-products in the soil profile under two water table management practices using repeated measures analysis.

    Science.gov (United States)

    Elmi, Abdirashid A; Astatkie, Tess; Madramootoo, Chandra; Gordon, Robert; Burton, David

    2005-01-01

    The denitrification process and nitrous oxide (N2O) production in the soil profile are poorly documented because most research into denitrification has concentrated on the upper soil layer (0-0.15 m). This study, undertaken during the 1999 and 2000 growing seasons, was designed to examine the effects of water table management (WTM), nitrogen (N) application rate, and depth (0.15, 0.30, and 0.45 m) on soil denitrification end-products (N2O and N2) from a corn (Zea mays L.) field. Water table management treatments were free drainage (FD) with open drains and subirrigation (SI) with a target water table depth of 0.6 m. Fertility treatments (ammonium nitrate) were 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). During both growing seasons greater denitrification rates were measured in SI than in FD, particularly in the surface soil (0-0.15 m) and at the intermediate (0.15-0.30 m) soil depths under N200 treatment. Greater denitrification rates under the SI treatment, however, were not accompanied with greater N2O production. The decrease in N2O production under SI was probably caused by a more complete reduction of N2O to N2, which resulted in lower N2O to (N2O + N2) ratios. Denitrification rate, N2O production and N2O to (N2O + N2) ratios were only minimally affected by N treatments, irrespective of sampling date and soil depth. Overall, half of the denitrification occurred at the 0.15- to 0.30- and 0.30- to 0.45-m soil layers, and under SI, regardless of fertility treatment level. Consequently, sampling of the 0- to 0.15-m soil layer alone may not give an accurate estimation of denitrification losses under SI practice.

  19. The effects of groundwater depth on water uptake of Populus euphratica and Tamarix ramosissima in the hyperarid region of Northwestern China.

    Science.gov (United States)

    Chen, Yapeng; Chen, Yaning; Xu, Changchun; Li, Weihong

    2016-09-01

    Knowledge of the water sources used by desert trees and shrubs is critical for understanding how they function and respond to groundwater decline and predicting the influence of water table changes on riparian plants. In this paper, we test whether increased depth to groundwater changed the water uptake pattern of desert riparian species and whether competition for water resources between trees and shrubs became more intense with a groundwater depth gradient. The water sources used by plants were calculated using the IsoSource model, and the results suggested differences in water uptake patterns with varying groundwater depths. At the river bank (groundwater depth = 1.8 m), Populus euphratica and Tamarix ramosissima both used a mixture of river water, groundwater, and deeper soil water (>75 cm). When groundwater depth was 3.8 m, trees and shrubs both depended predominantly on soil water stored at 150-375 cm depth. When the groundwater depth was 7.2 m, plant species switched to predominantly use both groundwater and deeper soil water (>375 cm). However, differences in water acquisition patterns between species were not found. The proportional similarity index (PSI) of proportional contribution to water uptake of different water resources between P. euphratica and T. ramosissima was calculated, and results showed that there was intense water resource competition between P. euphratica and T. ramosissima when grown at shallow groundwater depth (not more than 3.8 m), and the competition weakened when the groundwater depth increased to 7.2 m.

  20. Free product recovery at spill sites with fluctuating water tables

    International Nuclear Information System (INIS)

    Parker, J.C.; Katyal, A.K.; Zhu, J.L.; Kremesec, V.J.; Hockman, E.L.

    1992-01-01

    Spills and leaks of hydrocarbons from underground storage tanks, pipelines and other facilities pose a serious potential for groundwater contamination which can be very costly to remediate. The severity of the impacts and the cost of remediation can be reduced by various means. Lateral spreading of free phase hydrocarbons on the groundwater table can be prevented by pumping water to control the hydraulic gradient. Recovery of floating product may be performed by skimming hydrocarbons from wells, usually in combination with water pumping to increase the gradient. The environmental variables (water table gradient, water table fluctuations due to regional recovery wells, rates of water pumping)

  1. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    Science.gov (United States)

    Muñoz-Carpena, Rafael; Lauvernet, Claire; Carluer, Nadia

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO) based on a combination of approaches by Salvucci and Entekhabi (1995) and Chu (1997) with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation). The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure) exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes. SWINGO is

  2. Hydrologic Regulation of Plant Rooting Depth and Vice Versa

    Science.gov (United States)

    Fan, Y.; Miguez-Macho, G.

    2017-12-01

    How deep plant roots go and why may hold the answer to several questions regarding the co-evolution of terrestrial life and its environment. In this talk we explore how plant rooting depth responds to the hydrologic plumbing system in the soil/regolith/bedrocks, and vice versa. Through analyzing 2200 root observations of >1000 species along biotic (life form, genus) and abiotic (precipitation, soil, drainage) gradients, we found strong sensitivities of rooting depth to local soil water profiles determined by precipitation infiltration depth from the top (reflecting climate and soil), and groundwater table depth from below (reflecting topography-driven land drainage). In well-drained uplands, rooting depth follows infiltration depth; in waterlogged lowlands, roots stay shallow avoiding oxygen stress below the water table; in between, high productivity and drought can send roots many meters down to groundwater capillary fringe. We explore the global significance of this framework using an inverse model, and the implications to the coevolution of deep roots and the CZ in the Early-Mid Devonian when plants colonized the upland environments.

  3. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 1: nonuniform infiltration and soil water redistribution

    Directory of Open Access Journals (Sweden)

    R. Muñoz-Carpena

    2018-01-01

    Full Text Available Vegetation buffers like vegetative filter strips (VFSs are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To simulate VFS infiltration under realistic rainfall conditions with WT, we propose a generic infiltration solution (Shallow Water table INfiltration algorithm: SWINGO based on a combination of approaches by Salvucci and Entekhabi (1995 and Chu (1997 with new integral formulae to calculate singular times (time of ponding, shift time, and time to soil profile saturation. The algorithm was tested successfully on five distinct soils, both against Richards's numerical solution and experimental data in terms of infiltration and soil moisture redistribution predictions, and applied to study the combined effects of varying WT depth, soil type, and rainfall intensity and duration. The results show the robustness of the algorithm and its ability to handle various soil hydraulic functions and initial nonponding conditions under unsteady rainfall. The effect of a WT on infiltration under ponded conditions was found to be effectively decoupled from surface infiltration and excess runoff processes for depths larger than 1.2 to 2 m, being shallower for fine soils and shorter events. For nonponded initial conditions, the influence of WT depth also varies with rainfall intensity. Also, we observed that soils with a marked air entry (bubbling pressure exhibit a distinct behavior with WT near the surface. The good performance, robustness, and flexibility of SWINGO supports its broader use to study WT effects on surface runoff, infiltration, flooding, transport, ecological, and land use processes

  4. Effect of water table dynamics on land surface hydrologic memory

    Science.gov (United States)

    Lo, Min-Hui; Famiglietti, James S.

    2010-11-01

    The representation of groundwater dynamics in land surface models has received considerable attention in recent years. Most studies have found that soil moisture increases after adding a groundwater component because of the additional supply of water to the root zone. However, the effect of groundwater on land surface hydrologic memory (persistence) has not been explored thoroughly. In this study we investigate the effect of water table dynamics on National Center for Atmospheric Research Community Land Model hydrologic simulations in terms of land surface hydrologic memory. Unlike soil water or evapotranspiration, results show that land surface hydrologic memory does not always increase after adding a groundwater component. In regions where the water table level is intermediate, land surface hydrologic memory can even decrease, which occurs when soil moisture and capillary rise from groundwater are not in phase with each other. Further, we explore the hypothesis that in addition to atmospheric forcing, groundwater variations may also play an important role in affecting land surface hydrologic memory. Analyses show that feedbacks of groundwater on land surface hydrologic memory can be positive, negative, or neutral, depending on water table dynamics. In regions where the water table is shallow, the damping process of soil moisture variations by groundwater is not significant, and soil moisture variations are mostly controlled by random noise from atmospheric forcing. In contrast, in regions where the water table is very deep, capillary fluxes from groundwater are small, having limited potential to affect soil moisture variations. Therefore, a positive feedback of groundwater to land surface hydrologic memory is observed in a transition zone between deep and shallow water tables, where capillary fluxes act as a buffer by reducing high-frequency soil moisture variations resulting in longer land surface hydrologic memory.

  5. Water tables constrain height recovery of willow on Yellowstone's northern range.

    Science.gov (United States)

    Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson

    2008-01-01

    Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery

  6. Tables of the velocity of sound in sea water

    CERN Document Server

    Bark, L S; Meister, N A

    1964-01-01

    Tables of the Velocity of Sound in Sea Water contains tables of the velocity of sound in sea water computed on a ""Strela-3"" high-speed electronic computer and a T-5 tabulator at the Computational Center of the Academy of Sciences. Knowledge of the precise velocity of sound in sea water is of great importance when investigating sound propagations in the ocean and when solving practical problems involving the use of hydro-acoustic devices. This book demonstrates the computations made for the velocity of sound in sea water, which can be found in two ways: by direct measurement with the aid of s

  7. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Science.gov (United States)

    Mezbahuddin, Mohammad; Grant, Robert F.; Flanagan, Lawrence B.

    2017-12-01

    Water table depth (WTD) effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1) oxygen transport, which controls energy yields from microbial and root oxidation-reduction reactions, and (2) vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May-October WTD drawdown of ˜ 0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re) by 0.26 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen) status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP) and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss) GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m-2 s-1 per 0.1 m of WTD drawdown. Similar increases in GPP and Re caused no significant WTD effects on modeled

  8. Photonic crystal fiber coil sensor for water-depth sensing

    Science.gov (United States)

    Fan, Chen-Feng; Yu, Chin-Ping

    2013-05-01

    We fabricate a PCF coil sensor for water-depth sensing by winding a PCF on a plastic straw. Due to the bending-induced birefringence along the PCF, we can observe clear interference pattern in the output spectrum by placing the PCF coil into a Sagnac fiber loop. As we horizontally immerse the fabricated PCF coil into water, a nonlinear relationship between the water depth and the wavelength shift can be obtained. We have also measured the interference spectrum by vertically immersing the PCF coil into water. We can observe a linear relationship between the water depth and the wavelength shift, and the measured water-depth sensitivity for vertical immersion is -1.17 nm/mm.

  9. A Water Temperature Simulation Model for Rice Paddies With Variable Water Depths

    Science.gov (United States)

    Maruyama, Atsushi; Nemoto, Manabu; Hamasaki, Takahiro; Ishida, Sachinobu; Kuwagata, Tsuneo

    2017-12-01

    A water temperature simulation model was developed to estimate the effects of water management on the thermal environment in rice paddies. The model was based on two energy balance equations: for the ground and for the vegetation, and considered the water layer and changes in the aerodynamic properties of its surface with water depth. The model was examined with field experiments for water depths of 0 mm (drained conditions) and 100 mm (flooded condition) at two locations. Daily mean water temperatures in the flooded condition were mostly higher than in the drained condition in both locations, and the maximum difference reached 2.6°C. This difference was mainly caused by the difference in surface roughness of the ground. Heat exchange by free convection played an important role in determining water temperature. From the model simulation, the temperature difference between drained and flooded conditions was more apparent under low air temperature and small leaf area index conditions; the maximum difference reached 3°C. Most of this difference occurred when the range of water depth was lower than 50 mm. The season-long variation in modeled water temperature showed good agreement with an observation data set from rice paddies with various rice-growing seasons, for a diverse range of water depths (root mean square error of 0.8-1.0°C). The proposed model can estimate water temperature for a given water depth, irrigation, and drainage conditions, which will improve our understanding of the effect of water management on plant growth and greenhouse gas emissions through the thermal environment of rice paddies.

  10. Potential effects of sea-level rise on the depth to saturated sediments of the Sagamore and Monomoy flow lenses on Cape Cod, Massachusetts

    Science.gov (United States)

    Walter, Donald A.; McCobb, Timothy D.; Masterson, John P.; Fienen, Michael N.

    2016-05-25

    In 2014, the U.S. Geological Survey, in cooperation with the Association to Preserve Cape Cod, the Cape Cod Commission, and the Massachusetts Environmental Trust, began an evaluation of the potential effects of sea-level rise on water table altitudes and depths to water on central and western Cape Cod, Massachusetts. Increases in atmospheric and oceanic temperatures arising, in part, from the release of greenhouse gases likely will result in higher sea levels globally. Increasing water table altitudes in shallow, unconfined coastal aquifer systems could adversely affect infrastructure—roads, utilities, basements, and septic systems—particularly in low-lying urbanized areas. The Sagamore and Monomoy flow lenses on Cape Cod are the largest and most populous of the six flow lenses that comprise the region’s aquifer system, the Cape Cod glacial aquifer. The potential effects of sea-level rise on water table altitude and depths to water were evaluated by use of numerical models of the region. The Sagamore and Monomoy flow lenses have a number of large surface water drainages that receive a substantial amount of groundwater discharge, 47 and 29 percent of the total, respectively. The median increase in the simulated water table altitude following a 6-foot sea-level rise across both flow lenses was 2.11 feet, or 35 percent when expressed as a percentage of the total sea-level rise. The response is nearly the same as the sea-level rise (6 feet) in some coastal areas and less than 0.1 foot near some large inland streams. Median water table responses differ substantially between the Sagamore and Monomoy flow lenses—at 29 and 49 percent, respectively—because larger surface water discharge on the Sagamore flow lens results in increased dampening of the water table response than in the Monomoy flow lens. Surface waters dampen water table altitude increases because streams are fixed-altitude boundaries that cause hydraulic gradients and streamflow to increase as sea

  11. Patterns and drivers of fungal community depth stratification in Sphagnum peat.

    Science.gov (United States)

    Lamit, Louis J; Romanowicz, Karl J; Potvin, Lynette R; Rivers, Adam R; Singh, Kanwar; Lennon, Jay T; Tringe, Susannah G; Kane, Evan S; Lilleskov, Erik A

    2017-07-01

    Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought and intentional draining. We used amplicon sequencing and quantitative PCR to (i) examine how fungi are influenced by depth in the peat profile, water table and plant functional group at the onset of a multiyear mesocosm experiment, and (ii) test if fungi are correlated with abiotic variables of peat and pore water. We hypothesized that each factor influenced fungi, but that depth would have the strongest effect early in the experiment. We found that (i) communities were strongly depth stratified; fungi were four times more abundant in the upper (10-20 cm) than the lower (30-40 cm) depth, and dominance shifted from ericoid mycorrhizal fungi to saprotrophs and endophytes with increasing depth; (ii) the influence of plant functional group was depth dependent, with Ericaceae structuring the community in the upper peat only; (iii) water table had minor influences; and (iv) communities strongly covaried with abiotic variables, including indices of peat and pore water carbon quality. Our results highlight the importance of vertical stratification to peatland fungi, and the depth dependency of plant functional group effects, which must be considered when elucidating the role of fungi in peatland carbon dynamics. Published by Oxford University Press on behalf of FEMS 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  12. A time series approach to inferring groundwater recharge using the water table fluctuation method

    Science.gov (United States)

    Crosbie, Russell S.; Binning, Philip; Kalma, Jetse D.

    2005-01-01

    The water table fluctuation method for determining recharge from precipitation and water table measurements was originally developed on an event basis. Here a new multievent time series approach is presented for inferring groundwater recharge from long-term water table and precipitation records. Additional new features are the incorporation of a variable specific yield based upon the soil moisture retention curve, proper accounting for the Lisse effect on the water table, and the incorporation of aquifer drainage so that recharge can be detected even if the water table does not rise. A methodology for filtering noise and non-rainfall-related water table fluctuations is also presented. The model has been applied to 2 years of field data collected in the Tomago sand beds near Newcastle, Australia. It is shown that gross recharge estimates are very sensitive to time step size and specific yield. Properly accounting for the Lisse effect is also important to determining recharge.

  13. The justification for the use of table of equivalent squares with respect to reference depth total scatter factor, and phantom scatter factor, for cobalt-60 teletherapy

    International Nuclear Information System (INIS)

    Afari, F.

    2011-01-01

    The use of equivalent squares is of great value and importance when determining output and depth dose data for rectangular fields. The variation with field shape of collimator scatter factors (S c ), phantom scatter factors (S c,p ) were studied using measurements on GWGP 80 cobalt - 60 teletherapy machine at the National Centre of Radiotherapy and Nuclear Medicine in the Korle-Bu Teaching Hospital. Measurements of the collimator scatter factors (S c ), phantom scatter factors (S p ) and total scatter factors (S c, p) were made at the depth of 5 cm, 10 cm, 15 cm and 20 cm in full scatter water phantom for square field side and rectangular fields of varying dimensions. The measurements were done using the source - axis distance (Sad) technique. The values of total scatter factor (S c,p ), phantom scatter factor and collimator scatter factor (S c ) obtained were used to estimate equivalent squares for the rectangular fields at the various depths. The equivalent squares were computed using the method of interpolation which is based on the scatter analysis of these scatter factors and these estimated equivalent squares were then compared with equivalent squares were then compared with equivalent square fields from BJR (supplement 21) tables of equivalent squares. The research revealed that there were average deviation of 1.5% for smaller rectangular field sizes and 8.8% for elongated rectangular field sizes between the estimated square field sizes and the equivalent square field from BJR (supplement 21) Table of equivalent square fields. The 8.8% for the elongated rectangular fields is not accepted, though such fields are rarely used in our Hospitals. It was found that the values of the equivalent square at the various depth were very consistent and do not vary with reference depth. These findings confirm that the clinical use of the BJR (supplement 21) Table of equivalent squares for total scatter factors and phantom scatter related quantities of rectangular fields is

  14. Coupled eco-hydrology and biogeochemistry algorithms enable the simulation of water table depth effects on boreal peatland net CO2 exchange

    Directory of Open Access Journals (Sweden)

    M. Mezbahuddin

    2017-12-01

    Full Text Available Water table depth (WTD effects on net ecosystem CO2 exchange of boreal peatlands are largely mediated by hydrological effects on peat biogeochemistry and the ecophysiology of peatland vegetation. The lack of representation of these effects in carbon models currently limits our predictive capacity for changes in boreal peatland carbon deposits under potential future drier and warmer climates. We examined whether a process-level coupling of a prognostic WTD with (1 oxygen transport, which controls energy yields from microbial and root oxidation–reduction reactions, and (2 vascular and nonvascular plant water relations could explain mechanisms that control variations in net CO2 exchange of a boreal fen under contrasting WTD conditions, i.e., shallow vs. deep WTD. Such coupling of eco-hydrology and biogeochemistry algorithms in a process-based ecosystem model, ecosys, was tested against net ecosystem CO2 exchange measurements in a western Canadian boreal fen peatland over a period of drier-weather-driven gradual WTD drawdown. A May–October WTD drawdown of  ∼  0.25 m from 2004 to 2009 hastened oxygen transport to microbial and root surfaces, enabling greater microbial and root energy yields and peat and litter decomposition, which raised modeled ecosystem respiration (Re by 0.26 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. It also augmented nutrient mineralization, and hence root nutrient availability and uptake, which resulted in improved leaf nutrient (nitrogen status that facilitated carboxylation and raised modeled vascular gross primary productivity (GPP and plant growth. The increase in modeled vascular GPP exceeded declines in modeled nonvascular (moss GPP due to greater shading from increased vascular plant growth and moss drying from near-surface peat desiccation, thereby causing a net increase in modeled growing season GPP by 0.39 µmol CO2 m−2 s−1 per 0.1 m of WTD drawdown. Similar increases in

  15. Multiple Depth DB Tables Indexing on the Sphere

    Directory of Open Access Journals (Sweden)

    Luciano Nicastro

    2010-01-01

    Full Text Available Any project dealing with large astronomical datasets should consider the use of a relational database server (RDBS. Queries requiring quick selections on sky regions, objects cross-matching and other high-level data investigations involving sky coordinates could be unfeasible if tables are missing an effective indexing scheme. In this paper we present the Dynamic Index Facility (DIF software package. By using the HTM and HEALPix sky pixelization schema, it allows a very efficient indexing and management of spherical data stored into MySQL tables. Any table hosting spherical coordinates can be automatically managed by DIF using any number of sky resolutions at the same time. DIF comprises a set of facilities among which SQL callable functions to perform queries on circular and rectangular regions. Moreover, by removing the limitations and difficulties of 2-d data indexing, DIF allows the full exploitation of the RDBS capabilities. Performance tests on Giga-entries tables are reported together with some practical usage of the package.

  16. Distribution Channel Intensity among Table Water Producers in Nigeria

    Directory of Open Access Journals (Sweden)

    Joseph Edewor Agbadudu

    2017-09-01

    Full Text Available Planning for and making reasonable decisions regarding reaching the target market with an organization’s product is a critical task on the part of management, which involves a careful evaluation and selection of its channel structure and intensity.This study therefore examines distribution channel intensity among table water producers in Edo State, Nigeria. The focus of the study is to ascertain the variables that significantly predict distribution intensity among the firms in the table water industry in Edo State. The study seeks to proffer answer to fundamental question of why brands within a single category of a given consumer good differ significantly in their distribution intensity. Using a survey research design, the data used for this study were obtained by taking a sample of 110 table water firms within the three senatorial districts in the State. The data obtained were presented and analyzed using different statistical tools such as mean and multiple regression through Statistical Packages for Social Sciences (SPSS version 22 software. Findings revealed that manufacturers’ target focus, manufacturers’ support program, brand quality and level of firm’s technological advancement were significant predictors of distribution channel intensity among the industrial players in table water industry in the State. Based on the findings, the study recommended that table water firms within the State can secure a competitive edge over their fellow counterpart in the industry by designing an optimal distribution intensity that will meet up their marketing objectives. It is also recommended that the adoption of modern technology in form of online sales is an efficient way of sales and distribution which could be used to enhance their distribution techniques if there is a need to cut down on middle men due to increased cost. The study concluded that optimal distribution intensity could be achieved not by mere imitation of competitors but through

  17. Relationships between water table and model simulated ET

    Science.gov (United States)

    Prem B. Parajuli; Gretchen F. Sassenrath; Ying Ouyang

    2013-01-01

    This research was conducted to develop relationships among evapotranspiration (ET), percolation (PERC), groundwater discharge to the stream (GWQ), and water table fluctuations through a modeling approach. The Soil and Water Assessment Tool (SWAT) hydrologic and crop models were applied in the Big Sunflower River watershed (BSRW; 7660 km2) within the Yazoo River Basin...

  18. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated‐unsaturated flow assessment

    Science.gov (United States)

    Loheide, Steven P.; Butler, James J.; Gorelick, Steven M.

    2005-01-01

    Groundwater consumption by phreatophytes is a difficult‐to‐measure but important component of the water budget in many arid and semiarid environments. Over the past 70 years the consumptive use of groundwater by phreatophytes has been estimated using a method that analyzes diurnal trends in hydrographs from wells that are screened across the water table (White, 1932). The reliability of estimates obtained with this approach has never been rigorously evaluated using saturated‐unsaturated flow simulation. We present such an evaluation for common flow geometries and a range of hydraulic properties. Results indicate that the major source of error in the White method is the uncertainty in the estimate of specific yield. Evapotranspirative consumption of groundwater will often be significantly overpredicted with the White method if the effects of drainage time and the depth to the water table on specific yield are ignored. We utilize the concept of readily available specific yield as the basis for estimation of the specific yield value appropriate for use with the White method. Guidelines are defined for estimating readily available specific yield based on sediment texture. Use of these guidelines with the White method should enable the evapotranspirative consumption of groundwater to be more accurately quantified.

  19. An empirical table of equivalent squares of rectangular fields for the Theratron 780

    International Nuclear Information System (INIS)

    Marbach, J.R.; Hudgins, P.T.

    1977-01-01

    Tables of equivalent squares are used to calculate percentage depth-dose values for non-square fields in cobalt teletherapy. The table in The British Journal of Radiology (Supplements 10, 11) has been in use for a number of years, and the design of cobalt irradiators has developed during this period. Sources are now of much higher activity, collimators and trimmers have been redesigned and larger field sizes (up to 35 x 35 cm at 80 cm SSD) are obtainable. Measurements were therefore made in a water phantom to provide data to re-test the validity of the table, and to add the larger field sizes. Results given in the new table of equivalent squares of rectangular fields for cobalt 60 radiotherapy are compared with values from Supplement 11. There were no clinically significant differences in the central axis depth-dose values at 5 cm depth for two equivalent squares, although the measured values appeared to be consistently larger. (U.K.)

  20. Soil-water content characterisation in a modified Jarvis-Stewart model: A case study of a conifer forest on a shallow unconfined aquifer

    Science.gov (United States)

    Guyot, Adrien; Fan, Junliang; Oestergaard, Kasper T.; Whitley, Rhys; Gibbes, Badin; Arsac, Margaux; Lockington, David A.

    2017-01-01

    Groundwater-vegetation-atmosphere fluxes were monitored for a subtropical coastal conifer forest in South-East Queensland, Australia. Observations were used to quantify seasonal changes in transpiration rates with respect to temporal fluctuations of the local water table depth. The applicability of a Modified Jarvis-Stewart transpiration model (MJS), which requires soil-water content data, was assessed for this system. The influence of single depth values compared to use of vertically averaged soil-water content data on MJS-modelled transpiration was assessed over both a wet and a dry season, where the water table depth varied from the surface to a depth of 1.4 m below the surface. Data for tree transpiration rates relative to water table depth showed that trees transpire when the water table was above a threshold depth of 0.8 m below the ground surface (water availability is non-limiting). When the water table reached the ground surface (i.e., surface flooding) transpiration was found to be limited. When the water table is below this threshold depth, a linear relationship between water table depth and the transpiration rate was observed. MJS modelling results show that the influence of different choices for soil-water content on transpiration predictions was insignificant in the wet season. However, during the dry season, inclusion of deeper soil-water content data improved the model performance (except for days after isolated rainfall events, here a shallower soil-water representation was better). This study demonstrated that, to improve MJS simulation results, appropriate selection of soil water measurement depths based on the dynamic behaviour of soil water profiles through the root zone was required in a shallow unconfined aquifer system.

  1. Evaluation of dosimetric effects caused by the table top of therapy

    International Nuclear Information System (INIS)

    Camargo, Andre Vinicius de; Alvares, Bruno; Fioravante, Gustavo Donisete; Silva, Diego da Cunha Silveira Alves da; Giglioli, Milena; Batista, Felipe Placido; Silva, Lais Bueno da; Radicchi, Lucas Augusto

    2016-01-01

    The attenuation and bolus effect for two tables top from different manufacturers were investigated for 6MV photons. The bolus effect of couch was compared with 0,5cm bolus (water equivalent). Maximum attenuation found in Exact Couch table was 6,9% and the minimum was 0,63%. The rail of Exact Couch, for beam in 180 deg, was observed attenuation of 13,61%. The same way that for attenuation, the surface dose was different for each region of couch Exact Couch and for different components of iBeam evo. The percentage of the dose in the depth of 1,8 mm was greater for table top of Exact Couch (66,2%). The extender of table iBeam evo offered increase dose of 38,3% and it table top of 51,9% in the same depth. The bolus increased surface dose in 61,1%. The results of this study showed that table tops when in contact with surface of the patient may significantly increase surface dose and beam attenuation. (author)

  2. Precipitation patterns and moisture fluxes in a sandy, tropical environment with a shallow water table

    Science.gov (United States)

    Minihane, M. R.; Freyberg, D. L.

    2011-08-01

    Identifying the dominant mechanisms controlling recharge in shallow sandy soils in tropical climates has received relatively little attention. Given the expansion of coastal fill using marine sands and the growth of coastal populations throughout the tropics, there is a need to better understand the nature of water balances in these settings. We use time series of field observations at a coastal landfill in Singapore coupled with numerical modeling using the Richards' equation to examine the impact of precipitation patterns on soil moisture dynamics, including percolation past the root zone and recharge, in such an environment. A threshold in total precipitation event depth, much more so than peak precipitation intensity, is the strongest event control on recharge. However, shallow antecedent moisture, and therefore the timing between events along with the seasonal depth to water table, also play significant roles in determining recharge amounts. For example, at our field site, precipitation events of less than 3 mm per event yield little to no direct recharge, but for larger events, moisture content changes below the root zone are linearly correlated to the product of the average antecedent moisture content and the total event precipitation. Therefore, water resources planners need to consider identifying threshold precipitation volumes, along with the multiple time scales that capture variability in event antecedent conditions and storm frequency in assessing the role of recharge in coastal water balances in tropical settings.

  3. Changes in vegetative communities and water table dynamics following timber harvesting in small headwater streams

    Science.gov (United States)

    B. Choi; J.C. Dewey; J. A. Hatten; A.W. Ezell; Z. Fan

    2012-01-01

    In order to better understand the relationship between vegetation communities and water table in the uppermost portions (ephemeral–intermittent streams) of headwater systems, seasonal plot-based field characterizations of vegetation were used in conjunction with monthly water table measurements. Vegetation, soils, and water table data were examined to determine...

  4. An analytical study on nested flow systems in a Tóthian basin with a periodically changing water table

    Science.gov (United States)

    Zhao, Ke-Yu; Jiang, Xiao-Wei; Wang, Xu-Sheng; Wan, Li; Wang, Jun-Zhi; Wang, Heng; Li, Hailong

    2018-01-01

    Classical understanding on basin-scale groundwater flow patterns is based on Tóth's findings of a single flow system in a unit basin (Tóth, 1962) and nested flow systems in a complex basin (Tóth, 1963), both of which were based on steady state models. Vandenberg (1980) extended Tóth (1962) by deriving a transient solution under a periodically changing water table in a unit basin and examined the flow field distortion under different dimensionless response time, τ∗. Following Vandenberg's (1980) approach, we extended Tóth (1963) by deriving the transient solution under a periodically changing water table in a complex basin and examined the transient behavior of nested flow systems. Due to the effect of specific storage, the flow field is asymmetric with respect to the midline, and the trajectory of internal stagnation points constitutes a non-enclosed loop, whose width decreases when τ∗ decreases. The distribution of the relative magnitude of hydraulic head fluctuation, Δh∗ , is dependent on the horizontal distance away from a divide and the depth below the land surface. In the shallow part, Δh∗ decreases from 1 at the divide to 0 at its neighboring valley under all τ∗, while in the deep part, Δh∗ reaches a threshold, whose value decreases when τ∗ increases. The zones with flowing wells are also found to change periodically. As water table falls, there is a general trend of shrinkage in the area of zones with flowing wells, which has a lag to the declining water table under a large τ∗. Although fluxes have not been assigned in our model, the recharge/discharge flux across the top boundary can be obtained. This study is critical to understand a series of periodically changing hydrogeological phenomena in large-scale basins.

  5. Changes in water table elevation at Yucca Mountain in response to seismic events

    International Nuclear Information System (INIS)

    Arnold, B.W.

    1996-01-01

    Investigation of mechanisms which could significantly alter the elevation of the water table at Yucca Mountain are motivated by the potential impacts such an occurrence would have on the performance of a high-level radioactive waste repository. In particular, we would like to evaluate the possibility of flooding a repository by water-table excursions. Changes in the water table could occur as relatively transient phenomena in response to seismic events by the seismic pumping mechanism. Quantitative evaluation of possible fluctuations of groundwater following earthquakes was undertaken in support of performance assessment calculations including seismicity

  6. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 2: model coupling, application, factor importance, and uncertainty

    Science.gov (United States)

    Lauvernet, Claire; Muñoz-Carpena, Rafael

    2018-01-01

    Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in

  7. A depth-dependent formula for shallow water propagation

    NARCIS (Netherlands)

    Sertlek, H.O.; Ainslie, M.A.

    2014-01-01

    In shallow water propagation, the sound field depends on the proximity of the receiver to the sea surface, the seabed, the source depth, and the complementary source depth. While normal mode theory can predict this depth dependence, it can be computationally intensive. In this work, an analytical

  8. Stochastic analysis of unsaturated steady flows above the water table

    Science.gov (United States)

    Severino, Gerardo; Scarfato, Maddalena; Comegna, Alessandro

    2017-08-01

    Steady flow takes place into a three-dimensional partially saturated porous medium where, due to their spatial variability, the saturated conductivity Ks, and the relative conductivity Kr are modeled as random space functions (RSF)s. As a consequence, the flow variables (FVs), i.e., pressure-head and specific flux, are also RSFs. The focus of the present paper consists into quantifying the uncertainty of the FVs above the water table. The simple expressions (most of which in closed form) of the second-order moments pertaining to the FVs allow one to follow the transitional behavior from the zone close to the water table (where the FVs are nonstationary), till to their far-field limit (where the FVs become stationary RSFs). In particular, it is shown how the stationary limits (and the distance from the water table at which stationarity is attained) depend upon the statistical structure of the RSFs Ks, Kr, and the infiltrating rate. The mean pressure head >> has been also computed, and it is expressed as =Ψ0>(1+ψ>), being ψ a characteristic heterogeneity function which modifies the zero-order approximation Ψ0 of the pressure head (valid for a vadose zone of uniform soil properties) to account for the spatial variability of Ks and Kr. Two asymptotic limits, i.e., close (near field) and away (far field) from the water table, are derived into a very general manner, whereas the transitional behavior of ψ between the near/far field can be determined after specifying the shape of the various input soil properties. Besides the theoretical interest, results of the present paper are useful for practical purposes, as well. Indeed, the model is tested against to real data, and in particular it is shown how it is possible for the specific case study to grasp the behavior of the FVs within an environment (i.e., the vadose zone close to the water table) which is generally very difficult to access by direct inspection.

  9. The application of the central limit theorem and the law of large numbers to facial soft tissue depths: T-Table robustness and trends since 2008.

    Science.gov (United States)

    Stephan, Carl N

    2014-03-01

    By pooling independent study means (x¯), the T-Tables use the central limit theorem and law of large numbers to average out study-specific sampling bias and instrument errors and, in turn, triangulate upon human population means (μ). Since their first publication in 2008, new data from >2660 adults have been collected (c.30% of the original sample) making a review of the T-Table's robustness timely. Updated grand means show that the new data have negligible impact on the previously published statistics: maximum change = 1.7 mm at gonion; and ≤1 mm at 93% of all landmarks measured. This confirms the utility of the 2008 T-Table as a proxy to soft tissue depth population means and, together with updated sample sizes (8851 individuals at pogonion), earmarks the 2013 T-Table as the premier mean facial soft tissue depth standard for craniofacial identification casework. The utility of the T-Table, in comparison with shorths and 75-shormaxes, is also discussed. © 2013 American Academy of Forensic Sciences.

  10. Use of well points to determine the thickness and extent of floating product atop the water table

    International Nuclear Information System (INIS)

    Liikala, T.L.; Lewis, R.; Gilmore, T.; Hoffmann, H.

    1994-01-01

    The release of petroleum products to the ground water is a widespread problem. Conventional plume tracking techniques are to drill wells and measure product thickness and extent. In this study, well points were installed to rapidly and inexpensively determine the thickness and extent of floating product atop the water table. Spills and leaks of JP-4 have produced a discrete full layer atop the water table at one site at Eielson Air Force Base near Fairbanks, Alaska. The 0.2- to 1.3-foot-thick layer was identified in two ground water monitoring wells at a depth of approximately 10 feet. The layer is contained within unconsolidated glaciofluvial sands and gravels. A comprehensive assessment of the product thickness and extent was necessary for the site remedial investigation/feasibility study. The emplacement of additional monitoring wells was discouraged because of time and budget constraints. The fuel layer was delineated with 18 screened well points. The points consist of 2-inch-diameter galvanized steel pipe. The points were driven into the floating products with a hollow-stem auger rig sampling hammer. The product thickness was measured with an interface probe. The presence of floating product could be measured immediately after emplacement; the product thickness measurements typically stabilized within three days. The product thickness compared favorably with those measured in adjacent monitoring wells

  11. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 2: model coupling, application, factor importance, and uncertainty

    Directory of Open Access Journals (Sweden)

    C. Lauvernet

    2018-01-01

    Full Text Available Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018, we developed a physically based numerical algorithm (SWINGO that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate, where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil and hydraulic loading (rainfall + incoming runoff at each site. The presence of WT introduced more complex responses dominated by strong

  12. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Directory of Open Access Journals (Sweden)

    Mugisidi Dan

    2018-01-01

    Full Text Available Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3, chloride, sodium, sulphate, and (KMnO4. In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  13. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Science.gov (United States)

    Mugisidi, Dan; Heriyani, Okatrina

    2018-02-01

    Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  14. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    Science.gov (United States)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  15. Water table tests of proposed heat transfer tunnels for small turbine vanes

    Science.gov (United States)

    Meitner, P. L.

    1974-01-01

    Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.

  16. Numerical tables on physical and chemical analyses of Rhine water 1983

    International Nuclear Information System (INIS)

    1984-01-01

    The numerical tables contain the measuring results of the physical-chemical studies on the Rhine water for the year 1983. The tables are arranged by general parameters, organic matter, eutrophicating substances, anorganic matter, metals, organic micropollution as well as by radioactivity (total alpha- or beta- and T-activity). (MM) [de

  17. Accounting for intracell flow in models with emphasis on water table recharge and stream-aquifer interaction: 1. Problems and concepts

    Science.gov (United States)

    Jorgensen, Donald G.; Signor, Donald C.; Imes, Jeffrey L.

    1989-01-01

    Intracell flow is important in modeling cells that contain both sources and sinks. Special attention is needed if recharge through the water table is a source. One method of modeling multiple sources and sinks is to determine the net recharge per cell. For example, for a model cell containing both a sink and recharge through the water table, the amount of recharge should be reduced by the ratio of the area of influence of the sink within the cell to the area of the cell. The reduction is the intercepted portion of the recharge. In a multilayer model this amount is further reduced by a proportion factor, which is a function of the depth of the flow lines from the water table boundary to the internal sink. A gaining section of a stream is a typical sink. The aquifer contribution to a gaining stream can be conceptualized as having two parts; the first part is the intercepted lateral flow from the water table and the second is the flow across the streambed due to differences in head between the water level in the stream and the aquifer below. The amount intercepted is a function of the geometry of the cell, but the amount due to difference in head across the stream bed is largely independent of cell geometry. A discharging well can intercept recharge through the water table within a model cell. The net recharge to the cell would be reduced in proportion to the area of influence of the well within the cell. The area of influence generally changes with time. Thus the amount of intercepted recharge and net recharge may not be constant with time. During periods when the well is not discharging there will be no intercepted recharge even though the area of influence from previous pumping may still exist. The reduction of net recharge per cell due to internal interception of flow will result in a model-calculated mass balance less than the prototype. Additionally the “effective transmissivity” along the intercell flow paths may be altered when flow paths are occupied by

  18. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    Science.gov (United States)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  19. A boundary element model for diffraction of water waves on varying water depth

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Sanne

    1997-12-31

    In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)

  20. Climate change and water table fluctuation: Implications for raised bog surface variability

    Science.gov (United States)

    Taminskas, Julius; Linkevičienė, Rita; Šimanauskienė, Rasa; Jukna, Laurynas; Kibirkštis, Gintautas; Tamkevičiūtė, Marija

    2018-03-01

    Cyclic peatland surface variability is influenced by hydrological conditions that highly depend on climate and/or anthropogenic activities. A low water level leads to a decrease of peatland surface and an increase of C emissions into the atmosphere, whereas a high water level leads to an increase of peatland surface and carbon sequestration in peatlands. The main aim of this article is to evaluate the influence of hydrometeorological conditions toward the peatland surface and its feedback toward the water regime. A regional survey of the raised bog water table fluctuation and surface variability was made in one of the largest peatlands in Lithuania. Two appropriate indicators for different peatland surface variability periods (increase and decrease) were detected. The first one is an 200 mm y- 1 average net rainfall over a three-year range. The second one is an average annual water depth of 25-30 cm. The application of these indicators enabled the reconstruction of Čepkeliai peatland surface variability during a 100 year period. Processes of peatland surface variability differ in time and in separate parts of peatland. Therefore, internal subbasins in peatland are formed. Subbasins involve autogenic processes that can later affect their internal hydrology, nutrient status, and vegetation succession. Internal hydrological conditions, surface fluctuation, and vegetation succession in peatland subbasins should be taken into account during evaluation of their state, nature management projects, and other peatland research works.

  1. Water table lowering to improve excavation performance and to reduce acid mine drainage

    International Nuclear Information System (INIS)

    Koppe, J.C.; Costa, J.F.; Laurent, O. Jr.

    1995-01-01

    This paper analyses the water table level fluctuations using wells located adjacent to the stripping cuts at the Butia-Leste coal mine, southernmost of Brazil. Piezometers monitored the water table fluctuations. Geological mapping provided additional information aiding the interpretation of the results. A contouring software was also used as tool to aid the interpretation of the data and the results visualisation. The parameters necessary in selecting the location of the wells and pumping volumes were calculated from the data obtained in the water table lowering tests. The results were used to minimise two main problems: the generation of acid mine drainage and the reduction of the excavation performance of the fleet used in overburden removal. 7 refs., 5 figs., 3 tabs

  2. Effect of water depth on wind-wave frequency spectrum I. Spectral form

    Science.gov (United States)

    Wen, Sheng-Chang; Guan, Chang-Long; Sun, Shi-Cai; Wu, Ke-Jian; Zhang, Da-Cuo

    1996-06-01

    Wen et al's method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m 0 and peak frequency {ie97-1}, contains in addition to the peakness factor {ie97-2} a depth parameter η=(2π m o)1/2/ d ( d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.

  3. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Science.gov (United States)

    E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...

  4. Diffusive-dispersive mass transfer in the capillary fringe: Impact of water table fluctuations and heterogeneities

    DEFF Research Database (Denmark)

    Grathwohl, Peter; Haberer, Cristina; Ye, Yu

    Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...

  5. Simulation of upward flux from shallow water-table using UPFLOW model

    Directory of Open Access Journals (Sweden)

    M. H. Ali

    2013-11-01

    Full Text Available The upward movement of water by capillary rise from shallow water-table to the root zone is an important incoming flux. For determining exact amount of irrigation requirement, estimation of capillary flux or upward flux is essential. Simulation model can provide a reliable estimate of upward flux under variable soil and climatic conditions. In this study, the performance of model UPFLOW to estimate upward flux was evaluated. Evaluation of model performance was performed with both graphical display and statistical criteria. In distribution of simulated capillary rise values against observed field data, maximum data points lie around the 1:1 line, which means that the model output is reliable and reasonable. The coefficient of determination between observed and simulated values was 0.806 (r = 0.93, which indicates a good inter-relation between observed and simulated values. The relative error, model efficiency, and index of agreement were found as 27.91%, 85.93% and 0.96, respectively. Considering the graphical display of observed and simulated upward flux and statistical indicators, it can be concluded that the overall performance of the UPFLOW model in simulating actual upward flux from a crop field under variable water-table condition is satisfactory. Thus, the model can be used to estimate capillary rise from shallow water-table for proper estimation of irrigation requirement, which would save valuable water from over-irrigation.

  6. Optimum water depth ranges of dominant submersed macrophytes in a natural freshwater lake.

    Science.gov (United States)

    Ye, Bibi; Chu, Zhaosheng; Wu, Aiping; Hou, Zeying; Wang, Shengrui

    2018-01-01

    Macrophytes show a zonal distribution along the lake littoral zone because of their specific preferred water depths while the optimum growth water depths of dominant submersed macrophytes in natural lakes are not well known. We studied the seasonal biomass and frequency patterns of dominant and companion submersed macrophytes along the water depth gradient in Lake Erhai in 2013. The results showed that the species richness and community biomass showed hump-back shaped patterns along the water depth gradient both in polydominant and monodominant communities. Biomass percentage of Potamogenton maackianus showed a hump-back pattern while biomass percentages of Ceratophyllum demersum and Vallisneria natans appeared U-shaped patterns across the water depth gradient in polydominant communities whereas biomass percentage of V. natans increased with the water depth in monodominant communities. Dominant species demonstrated a broader distribution range of water depth than companion species. Frequency and biomass of companion species declined drastically with the water depth whereas those of dominant species showed non-linear patterns across the water depth gradient. Namely, along the water depth gradient, biomass of P. maackianus and V. natans showed hump-back patterns and biomasses of C. demersum displayed a U-shaped pattern in the polydominant communities but biomass of V. natans demonstrated a hump-back pattern in the monodominant communities; frequency of P. maackianus showed a hump-back pattern and C. demersum and V. natans maintained high frequencies in the two types of communities. We can speculate that in Lake Erhai the optimum growth water depths of P. maackianus and C. demersum in the polydominant communities are 2.5-4.5 m and 1-2 m or 5-6 m, respectively and that of V. natans is 3-5 m in the polydominant communities and 2.5-5 m in the monodominant communities. This is the first report that the optimum water depth ranges in the horizontal direction of three

  7. Model evaluation of seepage from uranium tailings disposal above and below the water table

    International Nuclear Information System (INIS)

    Nelson, R.W.; Meyer, P.R.; Oberlander, P.L.; Sneider, S.C.; Mayer, D.W.; Reisenauer, A.E.

    1983-03-01

    Model simulations identify the rate and amount of leachate released to the environment if disposed uranium mill tailings come into contact with ground water or if seepage from tailings reaches ground water. In this study, simulations of disposal above and below the water table, with various methods of leachate control, were compared. Three leachate control methods were used in the comparisons: clay bottom liners; stub-sidewall clay liners; and tailings drains with sumps, with the effluent pumped back from the sumps. The best leachate control for both above and below the water table is a combination of the three methods. The combined methods intercept up to 80% of the leachate volume in pits above the water table and intercept essentially all of the leachate in pits below the water table. Effluent pumping, however, requires continuous energy costs and an alternative method of disposal for the leachate that cannot be reused as makeup water in the mill process. Without the drains or effluent pumping, the clay bottom liners have little advantage in terms of the total volume of leachate lost. The clay liners do reduce the rate of leachate flow to the ground water, but the flow continues for a longer time. The buffering, sorption, and chemical reactions of the leachate passing directly through the liner are also advantages of the liner

  8. Dimensioning the Irrigation Variables for Table Grape Vineyards in Litho-soils

    Directory of Open Access Journals (Sweden)

    Pasquale Campi

    2010-10-01

    Full Text Available The pedo-climatic and farm characteristics of Bari’s hinterland have allowed for the diffusion of prestigious table viticulture. The typical “tendone” vineyard structure is set up after managing the surface of the soil. The karstic nature of the region and the thermo-rainfall trend during the vegetative season impede the vineyard from producing adequately without irrigation. Given the importance of water contributions to table grapes, it is necessary to correctly measure the water variables for economic and environmental reasons. Farmers often irrigate according to “fixed” turns and volumes, against the rules of “good irrigation practice” which consider monitoring the water status of the soil or plant as a prerequisite of irrigation scheduling. During this experiment, two methods of irrigation management were compared: “fixed-turn” and “on demand”. For “on demand” irrigation, the irrigation volume is calculated on the basis of the soil water status (estimated according to the “water balance” method described in the “Paper n. 56 FAO” and the irrigation is scheduled on the basis of the experimental relationship between “pre-dawn” leaf water potential and the water available in the soil. For this comparison, data from a 2-year “on farm” experimentation, in an area typical of table grape cultivation in Southern Italy, have been used. The results obtained show that, in respect to the “fixed-turn” management, the “on demand” management allows for a 20% reduction in water volumes, without compromising production. The water balance method proved to be a promising criterion for irrigation scheduling in these shallow soils, rich in stones (litho-soils. This only held true when the depth of the soil layer explored by the root system was defined by the “equivalent depth” and not by the actual soil’s depth.

  9. Carbonate compensation depth: relation to carbonate solubility in ocean waters.

    Science.gov (United States)

    Ben-Yaakov, S; Ruth, E; Kaplan, I R

    1974-05-31

    In situ calcium carbonate saturometry measurements suggest that the intermediate water masses of the central Pacific Ocean are close to saturation with resppect to both calcite and local carbonate sediment. The carbonate compensation depth, located at about 3700 meters in this area, appears to represent a depth above which waters are essentially saturated with respect to calcite and below which waters deviate toward undersaturation with respect to calcite.

  10. A holistic water depth simulation model for small ponds

    Science.gov (United States)

    Ali, Shakir; Ghosh, Narayan C.; Mishra, P. K.; Singh, R. K.

    2015-10-01

    Estimation of time varying water depth and time to empty of a pond is prerequisite for comprehensive and coordinated planning of water resource for its effective utilization. A holistic water depth simulation (HWDS) and time to empty (TE) model for small, shallow ephemeral ponds have been derived by employing the generalized model based on the Green-Ampt equation in the basic water balance equation. The HWDS model includes time varying rainfall, runoff, surface water evaporation, outflow and advancement of wetting front length as external inputs. The TE model includes two external inputs; surface water evaporation and advancement of wetting front length. Both the models also consider saturated hydraulic conductivity and fillable porosity of the pond's bed material as their parameters. The solution of the HWDS model involved numerical iteration in successive time intervals. The HWDS model has successfully evaluated with 3 years of field data from two small ponds located within a watershed in a semi-arid region in western India. The HWDS model simulated time varying water depth in the ponds with high accuracy as shown by correlation coefficient (R2 ⩾ 0.9765), index of agreement (d ⩾ 0.9878), root mean square errors (RMSE ⩽ 0.20 m) and percent bias (PB ⩽ 6.23%) for the pooled data sets of the measured and simulated water depth. The statistical F and t-tests also confirmed the reliability of the HWDS model at probability level, p ⩽ 0.0001. The response of the TE model showed its ability to estimate the time to empty the ponds. An additional field calibration and validation of the HWDS and TE models with observed field data in varied hydro-climatic conditions could be conducted to increase the applicability and credibility of the models.

  11. [Contribution of soil water at various depths to water consumption of rainfed winter wheat in the Loess tableland, China].

    Science.gov (United States)

    Cheng, Li Ping; Liu, Wen Zhao

    2017-07-18

    Soil water and stem water were collected in jointing and heading stages of the rainfed winter wheat in the Changwu Loess tableland, and the stable isotopic compositions of hydrogen and oxygen in water samples were measured to analyze the contribution of soil water at various depths to water consumption of winter wheat. The results showed that the isotopes were enriched in soil and wheat stem water in comparison with that in precipitation. Under the condition of no dry layer in soil profile, the contributions to wheat water consumption in jointing and heading stages were 5.4% and 2.6% from soil water at 0-30 cm depth, 73.4% and 67.3% at 60-90 cm depth (the main water source for winter wheat), and 7.9% and 13.5% below 120 cm depth, respectively. With the wheat growth, the contribution of soil water below the depth of 90 cm increased. It was concluded that soil evaporation mainly consumed soil water in 0-30 cm depth and wheat transpiration mainly consumed soil water below 60 cm depth in the experimental period. In the production practice, it is necessary to increase rainwater storage ratio during the summer fallow period, and apply reasonable combination of nitrogen and phosphorus fertilizers in order to increase soil moisture before wheat sowing, promote the wheat root developing deep downwards and raise the deep soil water utilization ratio.

  12. Numerical tables. Physical and chemical analyses of Rhine water 1984

    International Nuclear Information System (INIS)

    1984-01-01

    Tables present the methods of analysis and the data obtained on inorganic, organic, and radioactive impurities in Rhine water. The measuring stations were located in Switzerland, France, West Germany, and the Netherlands. (HP) [de

  13. Evaluation of a mechanistic algorithm to calculate the influence of a shallow water table on hydrology sediment and pesticide transport through vegetative filter strips

    Science.gov (United States)

    Lauvernet, C.; Munoz-Carpena, R.; Carluer, N.

    2012-04-01

    Natural or introduced areas of vegetation, also known as vegetative filter strips (VFS), are a common environmental control practice to protect surface water bodies from human influence. In Europe, VFS are placed along the water network to protect from agrochemical drift during applications, in addition to runoff control. Their bottomland placement next to the streams often implies the presence of a seasonal shallow water table which can have a profound impact on the efficiency of the buffer zone (Lacas et al. 2005). A physically-based algorithm describing ponded infiltration into soils bounded by a water table, proposed by Salvucci and Enthekabi (1995), was further developed to simulate VFS dynamics by making it explicit in time, account for unsteady rainfall conditions, and by coupling to a numerical overland flow and transport model (VFSMOD) (Munoz-Carpena et al., submitted). In this study, we evaluate the importance of the presence of a shallow water table on filter efficiency (reductions in runoff, sediment and pesticide mass), in the context of all other input factors used to describe the system. Global sensitivity analysis (GSA) was used to rank the important input factors and the presence of interactions, as well as the contribution of the important factors to the output variance. GSA of VSFMOD modified for shallow water table was implemented on 2 sites selected in France because they represent different agro-pedo-climatic conditions for which we can compare the role of the factors influencing the performance of grassed buffer strips for surface runoff, sediment and pesticide removal. The first site at Morcille watershed in the Beaujolais wineyard (Rhône-Alpes) contains a very permeable sandy-clay with water table depth varying with the season (very deep in summer and shallow in winter), with a high slope (20 to 30%), and subject to strong seasonal storms (semi-continental, Mediterranean climate). The second site at La Jailliere (Loire-Atlantique, ARVALIS

  14. Influence of water depth on energy expenditure during aquatic walking in people post stroke.

    Science.gov (United States)

    Lim, Hyosok; Azurdia, Daniel; Jeng, Brenda; Jung, Taeyou

    2018-05-11

    This study aimed to investigate the metabolic cost during aquatic walking at various depths in people post stroke. The secondary purpose was to examine the differences in metabolic cost between aquatic walking and land walking among individuals post stroke. A cross-sectional research design is used. Twelve participants post stroke (aged 55.5 ± 13.3 years) completed 6 min of walking in 4 different conditions: chest-depth, waist-depth, and thigh-depth water, and land. Data were collected on 4 separate visits with at least 48 hr in between. On the first visit, all participants were asked to walk in chest-depth water at their fastest speed. The walking speed was used as a reference speed, which was applied to the remaining 3 walking conditions. The order of remaining walking conditions was randomized. Energy expenditure (EE), oxygen consumption (VO 2 ), and minute ventilation (V E ) were measured with a telemetric metabolic system. Our findings showed statistically significant differences in EE, VO 2 , and V E among the 4 different walking conditions: chest-depth, waist-depth, and thigh-depth water, and land (all p stroke consume less energy in chest-depth water, which may allow them to perform prolonged duration of training. Thigh-depth water demonstrated greater EE compared with other water depths; thus, it can be recommended for time-efficient cardiovascular exercise. Waist-depth water showed similar EE to land walking, which may have been contributed by the countervailing effects of buoyancy and water resistance. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Influence of the tension-saturated zone on contaminant migration in shallow water-table regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.

    1982-01-01

    Groundwater discharge represents a major pathway for the return to the biosphere of contaminants that are released to the subsurface environment. An understanding of the transport processes in groundwater discharge zones is therefore an important consideration in pathway analyses associated with the environmental assessment of proposed waste-management facilities. Shallow water tables are a common characteristic of groundwater discharge zones, particularly in humid climatic regions. In this paper, the results of field tests, laboratory tests and numerical simulations are used to show that under shallow water-table conditions, the zone of tension saturation can result in a rapid and highly disproportionate water-table response to precipitation. It is further shown that this response can result in complex migration patterns that would not be predicted by the classical approaches to solute transport modelling and that the response could result in large and highly transient inputs to surface water

  16. Patterns of Tamarix water use during a record drought.

    Science.gov (United States)

    Nippert, Jesse B; Butler, James J; Kluitenberg, Gerard J; Whittemore, Donald O; Arnold, Dave; Spal, Scott E; Ward, Joy K

    2010-02-01

    During a record drought (2006) in southwest Kansas, USA, we assessed groundwater dynamics in a shallow, unconfined aquifer, along with plant water sources and physiological responses of the invasive riparian shrub Tamarix ramosissima. In early May, diel water table fluctuations indicated evapotranspirative consumption of groundwater by vegetation. During the summer drought, the water table elevation dropped past the lowest position previously recorded. Concurrent with this drop, water table fluctuations abruptly diminished at all wells at which they had previously been observed despite increasing evapotranspirative demand. Following reductions in groundwater fluctuations, volumetric water content declined corresponding to the well-specific depths of the capillary fringe in early May, suggesting a switch from primary dependence on groundwater to vadose-zone water. In at least one well, the fluctuations appear to re-intensify in August, suggesting increased groundwater uptake by Tamarix or other non-senesced species from a deeper water table later in the growing season. Our data suggest that Tamarix can rapidly shift water sources in response to declines in the water table. The use of multiple water sources by Tamarix minimized leaf-level water stress during drought periods. This study illustrates the importance of the previous hydrologic conditions experienced by site vegetation for controlling root establishment at depth and demonstrates the utility of data from high-frequency hydrologic monitoring in the interpretation of plant water sources using isotopic methods.

  17. Compact water depth sensor with LPFG using the photoelastic effect and heat-shrinkable tube

    Science.gov (United States)

    Takama, Shinya; Kudomi, Takamasa; Ohashi, Masaharu; Miyoshi, Yuji

    2011-12-01

    We propose a compact water depth sensor with a long period fiber grating (LPFG) using a heat-shrinkable tube. The pressure property of the LPFG is investigated experimentally to confirm the feasibility of the water depth sensor. Moreover, the water depth in the 2m long water-filled pipe is successfully estimated by the proposed water sensors.

  18. Design of monopiles for multi-megawatt wind turbines at 50 m water depth

    DEFF Research Database (Denmark)

    Njomo Wandji, Wilfried; Natarajan, Anand; Dimitrov, Nikolay Krasimirov

    2015-01-01

    The design of a monopile substructure for wind turbines of 10 MW capacity installed at 50 m water depth is presented. The design process starts with the design of a monopile at a moderate water depth of 26 m and is then up scaled to a 50 m water depth. The baseline geometry is then modified...

  19. Peatland pines as a proxy for water table fluctuations: disentangling tree growth, hydrology and possible human influence.

    Science.gov (United States)

    Smiljanić, Marko; Seo, Jeong-Wook; Läänelaid, Alar; van der Maaten-Theunissen, Marieke; Stajić, Branko; Wilmking, Martin

    2014-12-01

    Dendrochronological investigations of Scots pine (Pinus sylvestris L.) growing on Männikjärve peatland in central Estonia showed that annual tree growth of peatland pines can be used as a proxy for past variations of water table levels. Reconstruction of past water table levels can help us to better understand the dynamics of various ecological processes in peatlands, e.g. the formation of vegetation patterns or carbon and nitrogen cycling. Männikjärve bog has one of the longest water table records in the boreal zone, continuously monitored since 1956. Common uncertainties encountered while working with peatland trees (e.g. narrow, missing and wedging rings) were in our case exacerbated with difficulties related to the instability of the relationship between tree growth and peatland environment. We hypothesized that the instable relationship was mainly due to a significant change of the limiting factor, i.e. the rise of the water table level due to human activity. To test our hypothesis we had to use several novel methods of tree-ring chronology analysis as well as to test explicitly whether undetected missing rings biased our results. Since the hypothesis that the instable relationship between tree growth and environment was caused by a change in limiting factor could not be rejected, we proceeded to find possible significant changes of past water table levels using structural analysis of the tree-ring chronologies. Our main conclusions were that peatland pines can be proxies to water table levels and that there were several shifting periods of high and low water table levels in the past 200 years. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Water depth effects on impact loading, kinematic and physiological variables during water treadmill running.

    Science.gov (United States)

    Macdermid, Paul W; Wharton, Josh; Schill, Carina; Fink, Philip W

    2017-07-01

    The purpose of this study was to compare impact loading, kinematic and physiological responses to three different immersion depths (mid-shin, mid-thigh, and xiphoid process) while running at the same speed on a water based treadmill. Participants (N=8) ran on a water treadmill at three depths for 3min. Tri-axial accelerometers were used to identify running dynamics plus measures associated with impact loading rates, while heart rate data were logged to indicate physiological demand. Participants had greater peak impact accelerations (prunning immersed to the xiphoid process. Physiological effort determined by heart rate was also significantly less (prunning immersed to the xiphoid process. Water immersed treadmill running above the waistline alters kinematics of gait, reduces variables associated with impact, while decreasing physiological demand compared to depths below the waistline. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    Science.gov (United States)

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  2. Monitoring waterbird abundance in wetlands: The importance of controlling results for variation in water depth

    Science.gov (United States)

    Bolduc, F.; Afton, A.D.

    2008-01-01

    Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.

  3. VIDENTE: a graphical user interface and decision support system for stochastic modelling of water table fluctuations at a single location; includes documentation of the programs KALMAX, KALTFN, SSD and EMERALD and introductions to stochastic modellin

    NARCIS (Netherlands)

    Bierkens, M.F.P.; Bron, W.A.

    2000-01-01

    The VIDENTE program contains a decision support system (DSS) to choose between different models for stochastic modelling of water-table depths, and a graphical user interface to facilitate operating and running four implemented models: KALMAX, KALTFN,SSDS and EMERALD. In self-contained parts each of

  4. Area- and depth- weighted averages of selected SSURGO variables for the conterminous United States and District of Columbia

    Science.gov (United States)

    Wieczorek, Michael

    2014-01-01

    This digital data release consists of seven data files of soil attributes for the United States and the District of Columbia. The files are derived from National Resources Conservations Service’s (NRCS) Soil Survey Geographic database (SSURGO). The data files can be linked to the raster datasets of soil mapping unit identifiers (MUKEY) available through the NRCS’s Gridded Soil Survey Geographic (gSSURGO) database (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628). The associated files, named DRAINAGECLASS, HYDRATING, HYDGRP, HYDRICCONDITION, LAYER, TEXT, and WTDEP are area- and depth-weighted average values for selected soil characteristics from the SSURGO database for the conterminous United States and the District of Columbia. The SSURGO tables were acquired from the NRCS on March 5, 2014. The soil characteristics in the DRAINAGE table are drainage class (DRNCLASS), which identifies the natural drainage conditions of the soil and refers to the frequency and duration of wet periods. The soil characteristics in the HYDRATING table are hydric rating (HYDRATE), a yes/no field that indicates whether or not a map unit component is classified as a "hydric soil". The soil characteristics in the HYDGRP table are the percentages for each hydrologic group per MUKEY. The soil characteristics in the HYDRICCONDITION table are hydric condition (HYDCON), which describes the natural condition of the soil component. The soil characteristics in the LAYER table are available water capacity (AVG_AWC), bulk density (AVG_BD), saturated hydraulic conductivity (AVG_KSAT), vertical saturated hydraulic conductivity (AVG_KV), soil erodibility factor (AVG_KFACT), porosity (AVG_POR), field capacity (AVG_FC), the soil fraction passing a number 4 sieve (AVG_NO4), the soil fraction passing a number 10 sieve (AVG_NO10), the soil fraction passing a number 200 sieve (AVG_NO200), and organic matter (AVG_OM). The soil characteristics in the TEXT table are

  5. Water property lookup table (sanwat) for use with the two-phase computational code shaft

    International Nuclear Information System (INIS)

    Sherman, M.P.; Eaton, R.R.

    1980-10-01

    A lookup table for water thermodynamic and transport properties (SANWAT) has been constructed for use with the two-phase computational code, SHAFT. The table, which uses density and specific internal energy as independent variables, covers the liquid, two-phase, and vapor regions. The liquid properties of water are contained in a separate subtable in order to obtain high accuracy for this nearly incompressible region that is frequently encountered in studies of the characteristics of nuclear-waste repositories

  6. The Everglades Depth Estimation Network (EDEN) surface-water model, version 2

    Science.gov (United States)

    Telis, Pamela A.; Xie, Zhixiao; Liu, Zhongwei; Li, Yingru; Conrads, Paul

    2015-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated network of water-level gages, interpolation models that generate daily water-level and water-depth data, and applications that compute derived hydrologic data across the freshwater part of the greater Everglades landscape. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN in order for EDEN to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan.

  7. Microtropography and water table fluctuation in a sphagnum mire

    Science.gov (United States)

    E.S. Verry

    1984-01-01

    A detailed organic soil profile description, 22 years of continuous water table records, and a hummock-hollow level survey were examined at a small Minnesota mire (a bog with remnants of poor fen vegetation). Variation in the level survey suggests that hollows be used to minimize variation when detailed topographic information is needed and to match profile...

  8. Exploring the ground ice recharge near permafrost table on the central Qinghai-Tibet Plateau using chemical and isotopic data

    Science.gov (United States)

    Wang, Weihua; Wu, Tonghua; Zhao, Lin; Li, Ren; Zhu, Xiaofan; Wang, Wanrui; Yang, Shuhua; Qin, Yanhui; Hao, Junmin

    2018-05-01

    Thawing permafrost on the Qinghai-Tibet Plateau (QTP) has great impacts on the local hydrological process by way of causing ground ice to thaw. Until now there is little knowledge on ground ice hydrology near permafrost table under a warming climate. This study applied stable tracers (isotopes and chloride) and hydrograph separation model to quantify the sources of ground ice near permafrost table in continuous permafrost regions of the central QTP. The results indicated that the ground ice near permafrost table was mainly supplied by active layer water and permafrost water, accounting for 58.9 to 87.0% and 13.0 to 41.1%, respectively, which implying that the active layer was the dominant source. The contribution rates from the active layer to the ground ice in alpine meadow (59 to 69%) was less than that in alpine steppe (70 to 87%). It showed well-developed hydrogeochemical depth gradients, presenting depleted isotopes and positive chemical gradients with depth within the soil layer. The effects of evaporation and freeze-out fractionation on the soil water and ground ice were evident. The results provide additional insights into ground ice sources and cycling near permafrost table in permafrost terrain, and would be helpful for improving process-based detailed hydrologic models under the occurring global warming.

  9. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    Science.gov (United States)

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  10. The Antiproton Depth-Dose Curve in Water

    DEFF Research Database (Denmark)

    Bassler, Niels; Holzscheiter, Michael; Jäkel, Oliver

    2008-01-01

    We have measured the depth-dose curve of 126 MeV antiprotons in a water phantom using ionization chambers. Since the antiproton beam provided by CERN has a pulsed structure and possibly carries a high-LET component from the antiproton annihilation, it is necessary to correct the acquired charge...

  11. Future water table rise at Yucca Mountain: A regulatory perspective

    International Nuclear Information System (INIS)

    Coleman, N.M.

    1995-01-01

    The U.S. Nuclear Regulatory Commission staff has developed a program of Systematic Regulatory Analysis (SRA). The purpose of this program is to ensure that important technical issues related to compliance with 10 CFR Part 60 will be identified before receipt of a license application. A plan is being developed to review the U.S. Department of Energy's (DOE's) demonstration of compliance in the license application for each part of the regulation. Under the siting criteria of NRC's Part 60, one of the potentially adverse conditions is the possibility that the water table may rise high enough to saturate a repository in the unsaturated zone. DOE must evaluate this and other conditions in a license application for a geologic repository site. DOE's evaluation must show compliance with the requirements of Part 60 with reasonable assurance. This paper describes the NRC staff's preliminary plans to review DOE's demonstration of compliance, including assumptions about a future rise of the water table

  12. Patterns and drivers of fungal community depth stratification in Sphagnum peat

    Science.gov (United States)

    Louis J. Lamit; Karl J. Romanowicz; Lynette R. Potvin; Adam R. Rivers; Kanwar Singh; Jay T. Lennon; Susannah G. Tringe; Evan S. Kane; Erik A. Lilleskov

    2017-01-01

    Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought and intentional draining. We used amplicon sequencing and quantitative PCR to (i) examine how fungi are influenced by depth in the peat profile, water table and plant functional group at the onset of a multiyear mesocosm experiment, and (ii) test if fungi are correlated with...

  13. WATER DEPTH and Other Data (NCEI Accession 9400181)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NIRO-MET data set containing water depth and other data in this accession was sent by Borris Trotsenko from Southern Scientific Research Institute of Marine...

  14. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species

    Science.gov (United States)

    Sandra J. Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer; Maria E. Arce

    2009-01-01

    We studied the water economy of nine woody species differing in rooting depth in a Patagonian shrub steppe from southern Argentina to understand how soil water availability and rooting depth determine their hydraulic architecture. Soil water content and potentials, leaf water potentials (Leaf) hydraulic conductivity, wood density (Pw), rooting depth, and specific leaf...

  15. Effect of water table fluctuations on phreatophytic root distribution.

    Science.gov (United States)

    Tron, Stefania; Laio, Francesco; Ridolfi, Luca

    2014-11-07

    The vertical root distribution of riparian vegetation plays a relevant role in soil water balance, in the partition of water fluxes into evaporation and transpiration, in the biogeochemistry of hyporheic corridors, in river morphodynamics evolution, and in bioengineering applications. The aim of this work is to assess the effect of the stochastic variability of the river level on the root distribution of phreatophytic plants. A function describing the vertical root profile has been analytically obtained by coupling a white shot noise representation of the river level variability to a description of the dynamics of root growth and decay. The root profile depends on easily determined parameters, linked to stream dynamics, vegetation and soil characteristics. The riparian vegetation of a river characterized by a high variability turns out to have a rooting system spread over larger depths, but with shallower mean root depths. In contrast, a lower river variability determines root profiles with higher mean root depths. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Constraining water uptake depths in semiarid environments using water stable isotopes

    Science.gov (United States)

    Beyer, Matthias; Königer, Paul; Himmelsbach, Thomas

    2017-04-01

    The biophysical process of transpiration recently received increased attention by ecohydrologists as it has been proven the largest flux of the global water balance. However, fundamental aspects related to the questions how and from which sources plants receive their water are not fully understood. Especially the process of plant water uptake from deeper soil and its impact on the water balance requires increased scientific effort. In this study we combined tracer experiments with the analysis of natural isotopic compositions in order to: i) derive a suitable site-specific root water uptake distribution for hydrological modeling; ii) find indicators for groundwater use by specific plants; and iii) evaluate the importance of deep unsaturated zone water uptake using HYDRUS 1D. The bayesian mixing model MixSIAR was applied at a semiarid site with a deep unsaturated zone in northern Namibia in order to identify source water contributions of the most abundant species (A.erioloba, B.plurijuga, C.collinum, S.luebertii and T.sericea). In addition, a previously developed method for the investigation of root water uptake depths based on deuterium labeling (2H2O) at specific depths (0.5 to 4 m) and monitoring of tracer uptake by plants was carried out with a focus on the deeper unsaturated zone. With the experimental results a root water uptake distribution for the lateral root zone was derived which allows to constrain the source water contributions estimated with MixSIAR. Finally, a HYDRUS 1D model was established and unsaturated zone water transport was evaluated. The analysis of the natural isotopic compositions reveals a significant contribution of groundwater (median: 48%) to the isotopic composition of A.erioloba at the end of the dry season indicating the presence of deep tap roots for a number of individuals. All other investigated species obtain their water from the shallow (median: 22%) or deeper (median: 62%) unsaturated zone at this time of the year. The water

  17. Physiological and morphological effects of high water tables on early growth of giant reed (Arundo donax), elephant grass (Pennisetum purpureum), energycane and sugarcane (Saccharum spp.)

    Energy Technology Data Exchange (ETDEWEB)

    Jennewein, Stephen Peter [Univ. of Florida, Gainesville, FL (United States)

    2013-01-01

    Here, an increasing demand for renewable energy sources has spurred interest in high-biomass crops used for energy production. Species potentially well-suited for biofuel production in the seasonally wet organic Everglades Agricultural Area (EAA) of Florida include giant reed (Arundo donax), elephant grass (Pennisetum Purpureum), energycane (Saccharum spp.), and sugarcane (Saccharum spp.). The objectives in this study were to evaluate the role of fluctuating water tables on the morphology, physiology, and early season growth of these four genotypes. The candidate genotypes were grown in a greenhouse under three water table depths, defined by distance of the water table from the soil surface: two constant water tables (-16 cm and -40 cm) along with a flood cycle (2 weeks of flood to the soil level followed by 2 weeks at -40 cm from the soil level). The genotypes included CP 89-2143 (sugarcane), L 79-1002 (energycane), Merkeron (elephant grass), and wild type (giant reed). The experiment was repeated for plant cane, first ratoon, and successive plant cane crop cycles. Reductions in dry matter yield were observed among genotypes subjected to the -40 cm drained, periodically flooded (40F) water table relative to the -40 cm constant (40C) or -16 cm constant (16C). Plant cane dry weights were reduced by 37% in giant reed, 52% in elephant grass, 42% in energycane, and 34% in sugarcane in the 40F compared to 40C water table treatments. Similarly, in the first ratoon crop dry weights were reduced by 29% in giant reed, 42% in elephant grass, 27% in energycane, and 62% in sugarcane. In plant cane and successive plant cane, average total dry weight was greatest for elephant grass whereas ratoon total dry weight was greatest for energycane. Genotype had more pronounced effects on physiological attributes than water table including the highest stomatal conductance and SPAD values in giant reed, and the highest stalk populations in elephant grass and

  18. Electroacoustic Process Study of Plasma Sparker Under Different Water Depth

    KAUST Repository

    Huang, Yifan

    2015-01-05

    The plasma sparker has been applied in oceanic high-resolution seismic exploration for decades. Normally it is towed on the water surface. This is suitable for shallow water, but if the water depth is great, the resolution will decrease dramatically, especially in the horizontal direction. This paper proposes the concept of a deep-towed plasma sparker and presents an experimental study of plasma sparker performance in terms of electric parameters, bubble behavior, and acoustic characteristics. The results show that hydrostatic pressure at a source depth ranging from 1 to 2000 m has a negligible influence on the electric parameters but a strong influence on bubble behavior, wherein both the maximum bubble radius and oscillation period are decreased. The collapse pulse vanishes when the source depth reaches 1000 m or deeper, and no bubble oscillation can be distinguished. The source level (evaluated by the expansion pulse) is also decreased as the source depth increases; moreover, the greater the discharge energy, the smaller the source level loss. The discharge energy per electrode should be greater than 20 J for the deep-towed plasma sparker, which can make the source level loss induced by hydrostatic pressure smaller than the transmission loss. The fast Fourier transform (FFT) results show that the dominant energy is around 20 kHz, which is mainly induced by the expansion pulse and its oscillation. According to the simulation results, the fundamental frequency of the acoustic waveform increases with source depth in accord with a log linear trend, and also reaches tens of kilohertz in deep water. So, before the development of deep-towed plasma sparker, a new technical solution will need to be developed to solve this problem. © 1976-2012 IEEE.

  19. A study on the influence of tides on the water table conditions of the shallow coastal aquifers

    Science.gov (United States)

    Singaraja, C.; Chidambaram, S.; Jacob, Noble

    2018-03-01

    Tidal variation and water level in aquifer is an important function in the coastal environment, this study attempts to find the relationship between water table fluctuation and tides in the shallow coastal aquifers. The study was conducted by selecting three coastal sites and by monitoring the water level for every 2-h interval in 24 h of observation. The study was done during two periods of full moon and new moon along the Cuddalore coastal region of southern part of Tamil Nadu, India. The study shows the relationship between tidal variation, water table fluctuations, dissolved oxygen, and electrical conductivity. An attempt has also been made in this study to approximate the rate of flow of water. Anyhow, the differences are site specific and the angle of inclination of the water table shows a significant relation to the mean sea level, with respect to the distance of the point of observation from the sea and elevation above mean sea level.

  20. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil.

    Science.gov (United States)

    Silva, A C; Higuchi, P; van den Berg, E

    2010-08-01

    In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  1. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil

    Directory of Open Access Journals (Sweden)

    AC. Silva

    Full Text Available In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh, total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  2. The influence of water depth on kinematic and spatiotemporal gait parameters during aquatic treadmill walking.

    Science.gov (United States)

    Jung, Taeyou; Kim, Yumi; Lim, Hyosok; Vrongistinos, Konstantinos

    2018-01-16

    The purpose of this study was to investigate kinematic and spatiotemporal variables of aquatic treadmill walking at three different water depths. A total of 15 healthy individuals completed three two-minute walking trials at three different water depths. The aquatic treadmill walking was conducted at waist-depth, chest-depth and neck-depth, while a customised 3-D underwater motion analysis system captured their walking. Each participant's self-selected walking speed at the waist level was used as a reference speed, which was applied to the remaining two test conditions. A repeated measures ANOVA showed statistically significant differences among the three walking conditions in stride length, cadence, peak hip extension, hip range of motion (ROM), peak ankle plantar flexion and ankle ROM (All p values hip ROM as the water depth rose from waist and chest to the neck level. However, our study found no significant difference between waist and chest level water in all variables. Hydrodynamics, such as buoyancy and drag force, in response to changes in water depths, can affect gait patterns during aquatic treadmill walking.

  3. Hydrologic record extension of water-level data in the Everglades Depth Estimation Network (EDEN), 1991-99

    Science.gov (United States)

    Conrads, Paul; Petkewich, Matthew D.; O'Reilly, Andrew M.; Telis, Pamela A.

    2015-01-01

    The real-time Everglades Depth Estimation Network (EDEN) has been established to support a variety of scientific and water management purposes. The expansiveness of the Everglades, limited number of gaging stations, and extreme sensitivity of the ecosystem to small changes in water depth have created a need for accurate water-level and water-depth maps. The EDEN water-surface elevation model uses data from approximately 240 gages in the Everglades to create daily continuous interpolations of the water-surface elevation and water depth for the freshwater portion of the Everglades from 2000 to the present (2014). These maps provide hydrologic data previously unavailable for assessing biological and ecological studies.

  4. Development of Historical Water Table Maps of the 200 West Area of the Hanford Site (1950-1970)

    International Nuclear Information System (INIS)

    Kinney, Teena M.; McDonald, John P.

    2006-01-01

    A series of detailed historical water-table maps for the 200-West Area of the Hanford Site was made to aid interpretation of contaminant distribution in the upper aquifer. The contaminants are the result of disposal of large volumes of waste to the ground during Hanford Site operations, which began in 1944 and continued into the mid-1990s. Examination of the contaminant plumes that currently exist on site shows that the groundwater beneath the 200-West Area has deviated from its pre-Hanford west-to-east flow direction during the past 50 years. By using historical water-level measurements from wells around the 200-West Area, it was possible to create water-table contour maps that show probable historic flow directions. These maps are more detailed than previously published water-table maps that encompass the entire Hanford Site.

  5. Use of nuclear techniques in the study of artificial recharge of groundwater: case of groundwater table in Kairouan plane in Tunisia

    International Nuclear Information System (INIS)

    Benhamouda, M.F.

    1997-01-01

    The groundwater table studied here is located in the plain of Kairouan and it is one of the main underground resources in the Centre of Tunisia. This region is characterized by a semi arid climate with high intensity of rain that causes flooding of Kairouan City. This study has two objectives namely: 1- To develop a technical process of this recharge. The experiment was realized at two sites. In each site were installed 3 neutron probe access tubes to the depth of the level of the ground water table.Successive measurements were taken in each tube in function of depth and time to follow up the hydrodynamics of the recharge of the water table. Neutron and gamma probes were used and compared with respect to measured water content.Each access tube for a fixed time give a water content profile which shows the dynamics of actual recharge and the previous recharge. this technique can help the developer to make decision concerning the recharge parameters and, particularly, the flow rate and the opportunity time to get the best recharge water efficiency. 2- To analyse the concentration of stable and radioactive isotopes in the water of the plain of kairouan. Samples were taken from the shallow and deep water table. The obtained results are helpful to specify the origin of the water. Geochemical analysis were also done to clear the spatial variability of the quality of water. To reach the fore mentioned objectives, a survey of wells using those resources was made. Samples were taken from all surveilled wells in this investigation. water samples were taken from the deep and shallow aquifers and to determine salt concentration as well as stable and radioactive element (O18, H2, C13, C14, H3). The results obtained from chemical analysis showed no clear spatial variability of water quality between the two aquifers. However the isotopic study gave two types of results: First: A significant difference between ages of the water coming from the shallow and the deep ground water

  6. HCMM energy budget data as a model input for assessing regions of high potential ground-water pollution

    Science.gov (United States)

    Moore, D. G. (Principal Investigator); Heilman, J.; Tunheim, J.

    1978-01-01

    The author has identified the following significant results. Analysis of soil temperature and water table data indicated that shallow aquifers appear to produce a heat sink effect when the depth to water table is approximately four meters or less.

  7. A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability

    Science.gov (United States)

    Olefeldt, David; Euskirchen, Eugénie S.; Harden, Jennifer W.; Kane, Evan S.; McGuire, A. David; Waldrop, Mark P.; Turetsky, Merritt R.

    2017-01-01

    Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9-years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing season FCH4, GPP and NEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing season GPP in subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence on ER, but dominant contribution to ER switched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter-annual lag effects on ER in this rich fen, as has been observed in several nutrient-poor peatlands. While ER was dependent on soil temperatures at 2 cm depth, FCH4 was linked to soil temperatures at 25 cm. Inter-annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higher FCH4 in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short-term fluctuations in wetness caused significant lag effects on FCH4, but droughts caused no inter-annual lag effects on FCH4. Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens.

  8. Hanford site water table changes 1950-1980: data observations and evaluation

    International Nuclear Information System (INIS)

    Zimmerman, D.A.; Reisenauer, A.E.; Black, G.D.; Young, M.A.

    1986-04-01

    The basalt formations underlying the Hanford site are being considered for characterization and evaluation as a deep geologic repository for defense and commercial radioactive wastes. To understand the hydrology of the Hanford area, we need to know if the ground-water system is in steady state and what impact a change in surface stress from artificial recharge may have on the underlying basalt aquifers. Researchers at Pacific Northwest Laboratory are supporting efforts to understand these issues by illustrating how changes in wastewater disposal activities at the Hanford site have altered the configuration of the water table surface with time. The objective of this work was to determine the magnitude and direction of changes in the elevation of the water table across the Hanford site from 1950 to 1980. Plots of the magnitudes of water-level changes occurring over 5-year intervals from 1950 through 1980 are presented. The water-level changes that occurred during each 5-year interval are related to water discharges from nuclear fuel reprocessing facilities or other discharge sources. The plots of water-level changes show large water-level increases in the vicinity of the Separations Area (200 East and 200 West) from 1950 to 1960; the rate of increase of water-level changes grows more slowly from 1960 to 1970, while the areal extent of the mounding continues to expand. Only small changes occur from 1970 to 1980; during this time period, the unconfined system appears to be in approximate equilibrium with the sources. Based on previous experience, it is believed that an increase in ground-water mounding will begin to appear near the 200 East Area B Pond as a result of the increased discharges from the restart of PUREX in 1983

  9. Executive Functions of Divers Are Selectively Impaired at 20-Meter Water Depth

    Directory of Open Access Journals (Sweden)

    Fabian Steinberg

    2017-06-01

    Full Text Available Moving and acting underwater within recreational or occupational activities require intact executive functions, since they subserve higher cognitive functions such as successful self-regulation, coping with novel situations, and decision making; all of which could be influenced by nitrogen narcosis due to elevated partial pressure under water. However, specific executive functions that could provide a differentiated view on humans’ cognitive performance ability have not yet been systematically analyzed in full-water immersion, which is a research gap addressed within this approach to contribute to a better understanding of nitrogen narcosis. In this study, 20 young, healthy, and certified recreational divers participated and performed three different executive-function tests: the Stroop test (Inhibition, the Number/Letter test (Task switching, the 2-back test (Updating/Working memory, and a simple reaction time test (Psychomotor performance. These tests were performed once on land, at 5-meter (m water depth, and at 20-meter (m water depth of an indoor diving facility in standardized test conditions (26°C in all water depths. A water-proofed and fully operational tablet computer was used to present visual stimuli and to register reaction times. Performance of the simple reaction time test was not different between underwater and land testing, suggesting that reaction times were not biased by the utilization of the tablet in water immersion. Executive functions were not affected by the shallow water immersion of 5-m water depth. However, performance scores in 20-m water depth revealed a decreased performance in the incongruent test condition (i.e., an index of inhibitory control ability of the Stroop test, while all other tests were unaffected. Even though only one out of the three tested cognitive domains was affected, the impairment of inhibitory control ability even in relatively shallow water of 20-m is a critical component that should be

  10. Executive Functions of Divers Are Selectively Impaired at 20-Meter Water Depth.

    Science.gov (United States)

    Steinberg, Fabian; Doppelmayr, Michael

    2017-01-01

    Moving and acting underwater within recreational or occupational activities require intact executive functions, since they subserve higher cognitive functions such as successful self-regulation, coping with novel situations, and decision making; all of which could be influenced by nitrogen narcosis due to elevated partial pressure under water. However, specific executive functions that could provide a differentiated view on humans' cognitive performance ability have not yet been systematically analyzed in full-water immersion, which is a research gap addressed within this approach to contribute to a better understanding of nitrogen narcosis. In this study, 20 young, healthy, and certified recreational divers participated and performed three different executive-function tests: the Stroop test (Inhibition), the Number/Letter test (Task switching), the 2-back test (Updating/Working memory), and a simple reaction time test (Psychomotor performance). These tests were performed once on land, at 5-meter (m) water depth, and at 20-meter (m) water depth of an indoor diving facility in standardized test conditions (26°C in all water depths). A water-proofed and fully operational tablet computer was used to present visual stimuli and to register reaction times. Performance of the simple reaction time test was not different between underwater and land testing, suggesting that reaction times were not biased by the utilization of the tablet in water immersion. Executive functions were not affected by the shallow water immersion of 5-m water depth. However, performance scores in 20-m water depth revealed a decreased performance in the incongruent test condition (i.e., an index of inhibitory control ability) of the Stroop test, while all other tests were unaffected. Even though only one out of the three tested cognitive domains was affected, the impairment of inhibitory control ability even in relatively shallow water of 20-m is a critical component that should be considered for

  11. VIDENTE 1.1: a graphical user interface and decision support system for stochastic modelling of water table fluctuations at a single location; includes documentation of the programs KALMAX, KALTFN, SSD and EMERALD and introductions to stochastic modelling; 2nd rev. ed

    NARCIS (Netherlands)

    Bierkens, M.F.P.; Bron, W.A.; Knotters, M.

    2002-01-01

    A description is given of the program VIDENTE. VIDENTE contains a decision support system to choose between different models for stochastic modelling of water-table depths and a graphical user interface to facilitate operating and running four implemented models: KALMAX, KALTFN, SSD and EMERALD. In

  12. Effects of leaf area index on the coupling between water table, land surface energy fluxes, and planetary boundary layer at the regional scale

    Science.gov (United States)

    Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.

    2013-12-01

    Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.

  13. Holes in the Bathtub: Water Table Dependent Services and Threshold Behavior in an Economic Model of Groundwater Extraction

    Science.gov (United States)

    Kirk-lawlor, N. E.; Edwards, E. C.

    2012-12-01

    In many groundwater systems, the height of the water table must be above certain thresholds for some types of surface flow to exist. Examples of flows that depend on water table elevation include groundwater baseflow to river systems, groundwater flow to wetland systems, and flow to springs. Meeting many of the goals of sustainable water resource management requires maintaining these flows at certain rates. Water resource management decisions invariably involve weighing tradeoffs between different possible usage regimes and the economic consequences of potential management choices are an important factor in these tradeoffs. Policies based on sustainability may have a social cost from forgoing present income. This loss of income may be worth bearing, but should be well understood and carefully considered. Traditionally, the economic theory of groundwater exploitation has relied on the assumption of a single-cell or "bathtub" aquifer model, which offers a simple means to examine complex interactions between water user and hydrologic system behavior. However, such a model assumes a closed system and does not allow for the simulation of groundwater outflows that depend on water table elevation (e.g. baseflow, springs, wetlands), even though those outflows have value. We modify the traditional single-cell aquifer model by allowing for outflows when the water table is above certain threshold elevations. These thresholds behave similarly to holes in a bathtub, where the outflow is a positive function of the height of the water table above the threshold and the outflow is lost when the water table drops below the threshold. We find important economic consequences to this representation of the groundwater system. The economic value of services provided by threshold-dependent outflows (including non-market value), such as ecosystem services, can be incorporated. The value of services provided by these flows may warrant maintaining the water table at higher levels than would

  14. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Science.gov (United States)

    Zhu, Jie; Sun, Ge; Li, Wenhong; Zhang, Yu; Miao, Guofang; Noormets, Asko; McNulty, Steve G.; King, John S.; Kumar, Mukesh; Wang, Xuan

    2017-12-01

    The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs) participating in Coupled Model Inter-comparison Project 5 (CMIP5) under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration) by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  15. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States

    Directory of Open Access Journals (Sweden)

    J. Zhu

    2017-12-01

    Full Text Available The southeastern United States hosts extensive forested wetlands, providing ecosystem services including carbon sequestration, water quality improvement, groundwater recharge, and wildlife habitat. However, these wetland ecosystems are dependent on local climate and hydrology, and are therefore at risk due to climate and land use change. This study develops site-specific empirical hydrologic models for five forested wetlands with different characteristics by analyzing long-term observed meteorological and hydrological data. These wetlands represent typical cypress ponds/swamps, Carolina bays, pine flatwoods, drained pocosins, and natural bottomland hardwood ecosystems. The validated empirical models are then applied at each wetland to predict future water table changes using climate projections from 20 general circulation models (GCMs participating in Coupled Model Inter-comparison Project 5 (CMIP5 under the Representative Concentration Pathways (RCPs 4.5 and 8.5 scenarios. We show that combined future changes in precipitation and potential evapotranspiration would significantly alter wetland hydrology including groundwater dynamics by the end of the 21st century. Compared to the historical period, all five wetlands are predicted to become drier over time. The mean water table depth is predicted to drop by 4 to 22 cm in response to the decrease in water availability (i.e., precipitation minus potential evapotranspiration by the year 2100. Among the five examined wetlands, the depressional wetland in hot and humid Florida appears to be most vulnerable to future climate change. This study provides quantitative information on the potential magnitude of wetland hydrological response to future climate change in typical forested wetlands in the southeastern US.

  16. Risk evaluation of ground water table decline as a type of desertification. A case study are: Southern Iran

    Energy Technology Data Exchange (ETDEWEB)

    Asrari, E.; Masoudi, M.

    2009-07-01

    This paper presents a model to assess risk of ground water table decline. Taking into consideration eleven indicators of lowering of ground water table the model identifies areas with Potential Risk (risky zones) and areas of Actual risk as well as projects the probability of the worse degradation in future. (Author) 7 refs.

  17. Risk evaluation of ground water table decline as a type of desertification. A case study are: Southern Iran

    International Nuclear Information System (INIS)

    Asrari, E.; Masoudi, M.

    2009-01-01

    This paper presents a model to assess risk of ground water table decline. Taking into consideration eleven indicators of lowering of ground water table the model identifies areas with Potential Risk (risky zones) and areas of Actual risk as well as projects the probability of the worse degradation in future. (Author) 7 refs.

  18. Groundwater table rise in northwest Nile Delta:Problems and Recommendations

    International Nuclear Information System (INIS)

    El-Sayed, S. A.; Atta, E. R.; Al-Ashri, K. M.

    2012-01-01

    The present research work is devoted to evaluate the surrounding zones of a site which could be selected for construction of radiation facility. It is a model study to investigate the factors that protect sites from the risks of groundwater rising. The study area (village 17 and the related cultivated lands) lies in Bangar El Sukar area, south Alexandria Governorate. The area is suffering from the groundwater table rise phenomenon and its relevant problems (water logging, soil salinization and degradation of buildings). This water table rise is investigated using the hydrogeological, hydrogeochemical and isotopic approaches. The groundwater table of the Pleistocene-Holocene aquifer rises due to uncontrolled irrigation and drainage systems and the lack of municipal sewage system as well as soil and aquifer characteristics. The aquifer is being shallow and exists under semi-confined conditions. It consists of heterogeneous deposits (very fine to coarse grained sand, clay and calcareous rock fragments). Depths to water vary between 0.85 m and 1.44 m from ground surface. The groundwater (TDS 3331 mg/l, averagely) is a mixture of both the fresh water of the irrigation canals (TDS = 544.2 mg/l) and the more saline water (TDS = 5505 mg/l, averagely) of the drains used in irrigation. Nile water is considered the main recharge source to these types of waters. The recharge to the aquifer occurs by seepage from the canals and/or by the infiltration of the return flow after irrigation. The infiltration rate is moderately rapid (ranging from 1.8 mm/min to 2.6 mm/min). The groundwater moves from south to north with an average hydraulic gradient reaching about 1.7 x 10-3. The average rate of groundwater flow through the aquifer varies between 1799 m2/day and 543.65 m2/day. In order to avoid the risks related to the problem and its environmental impacts, proper recommendations are presented. Suggested design for a constructed net of drainage system and pumped well is presented in

  19. Evaluation of dosimetric effects caused by the table top of therapy; Avaliacao dos efeitos dosimetricos causados pelo tampo da mesa de tratamento

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Andre Vinicius de; Alvares, Bruno; Fioravante, Gustavo Donisete; Silva, Diego da Cunha Silveira Alves da; Giglioli, Milena; Batista, Felipe Placido; Silva, Lais Bueno da; Radicchi, Lucas Augusto [Hospital de Cancer de Barretos, SP (Brazil)

    2016-07-01

    The attenuation and bolus effect for two tables top from different manufacturers were investigated for 6MV photons. The bolus effect of couch was compared with 0,5cm bolus (water equivalent). Maximum attenuation found in Exact Couch table was 6,9% and the minimum was 0,63%. The rail of Exact Couch, for beam in 180 deg, was observed attenuation of 13,61%. The same way that for attenuation, the surface dose was different for each region of couch Exact Couch and for different components of iBeam evo. The percentage of the dose in the depth of 1,8 mm was greater for table top of Exact Couch (66,2%). The extender of table iBeam evo offered increase dose of 38,3% and it table top of 51,9% in the same depth. The bolus increased surface dose in 61,1%. The results of this study showed that table tops when in contact with surface of the patient may significantly increase surface dose and beam attenuation. (author)

  20. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    Science.gov (United States)

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  1. Interaction between litter quality and simulated water depth on decomposition of two emergent macrophytes

    Directory of Open Access Journals (Sweden)

    Yajun Xie

    2015-07-01

    Full Text Available Both water depth and litter quality are important factors influencing litter decomposition in wetlands, but the interactive role of these factors in regulating mass loss and nutrient dynamics is far from clear. The responses of mass loss and nutrient dynamics to simulated water depths and litter quality are investigated in leaves of Carex brevicuspis and leaves and stems of Miscanthus sacchariflorus from the Dongting Lake, China. Three litter types differing in litter quality were incubated for 210 days at three water depths (0 cm, 5 cm, and 80 cm, relative to the water surface in a pond near the Dongting Lake. The litter mass remaining, nitrogen (N, phosphorus (P, organic carbon (organic C, cellulose, and lignin contents were analyzed during the controlled decomposition experiment. Moreover, water properties (temperature, dissolved oxygen content, and conductivity and fungal biomass were also characterized. Initial N and P contents were highest in C. brevicuspis leaves, intermediate in M. sacchariflorus leaves and lowest in M. sacchariflorus stems, whereas the organic C, cellulose, and lignin contents exhibited an opposite trend. After a 210 days incubation, decomposition rate was highest in M. sacchariflorus leaves (0.0034–0.0090 g g-1 DW day-1, in exponential decay model, intermediate in C. brevicuspis leaves (0.0019–0.0041 g g-1 DW day-1, and lowest in M. sacchariflorus stems (0.0005–0.0011 g g-1DW day-1. Decomposition rate of C. brevicuspis leaves was highest at 5 cm water depth, intermediate at 80 cm, and lowest at 0 cm. Decomposition rate of M. sacchariflorus leaves was higher at 5 cm, and 80 cm than at 0 cm water depths. Water depth had no effect on decomposition of M. sacchariflorus stems. At the end of incubation, N and P mineralization was completely in leaf litters with increasing rates along with increasing water depth, while nutrients were accumulated in M. sacchariflorus stem. Organic C, cellulose, and lignin decayed quickly

  2. CORRELATION BETWEEN RAINFALL PATTERNS AND THE WATER TABLE IN THE GENERAL SEPARATIONS AREA OF THE SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    Smith, C.

    2009-01-01

    The objective of the study was to evaluate rainfall and water table elevation data in search of a correlation that could be used to understand and predict water elevation changes. This information will be useful in placing screen zones for future monitoring wells and operations of groundwater treatment units. Fifteen wells in the General Separations Area (GSA) at Savannah River Site were evaluated from 1986 through 2001. The study revealed that the water table does respond to rainfall with minimal delay. (Water level information was available monthly, which restricted the ability to evaluate a shorter delay period.) Water elevations were found to be related to the cumulative sum (Q-Delta Sum) of the difference between the average rainfall for a specific month and the actual rainfall for that month, calculated from an arbitrary starting point. Water table elevations could also be correlated between wells, but using the right well for correlation was very important. The strongest correlation utilized a quadratic equation that takes into account the rainfall in a specific area and the rainfall from an adjacent area that contributes through a horizontal flow. Specific values vary from well to well as a result of geometry and underground variations. R2's for the best models ranged up to 0.96. The data in the report references only GSA wells but other wells (including confined water tables) on the site have been observed to return similar water level fluctuation patterns

  3. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms

    Science.gov (United States)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka

    2010-11-01

    Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.

  4. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site: The Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, F.T.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    To adequately manage the low level nuclear waste (LLW) repository in Area 5 of the Nevada Test Site (NTS), a knowledge of the water table under the site is paramount. The estimated thickness of the arid intermountain basin alluvium is roughly 900 feet. Very little reliable water table data for Area 5 currently exists. The Special Projects Section of the Reynolds Electrical ampersand Engineering Co., Inc. Waste Management Department is currently formulating a long-range drilling and sampling plan in support of a Resource Conservation Recovery Act (RCRA) Part B permit waiver for groundwater monitoring and liner systems. An estimate of the water table under the LLW repository, called the Radioactive Waste Management Site (RWMS) in Area 5, is needed for the drilling and sampling plan. Very old water table elevation estimates at about a dozen widely scattered test drill holes, as well as water wells, are available from declassified US Geological Survey, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory drilling logs. A three-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed using the Dupuit assumption. A prescribed positive vertical downward infiltration/evaporation condition is assumed at the atmosphere/soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximate is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary point.'' Several realistic scenarios approximating the water table under the RWMS in Area 5 of the NTS are discussed

  5. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Science.gov (United States)

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  6. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Directory of Open Access Journals (Sweden)

    Xue-Dong Lou

    Full Text Available A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm, SUVA(254 nm, Abs(400 nm, and SUVA(400 nm were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  7. Effect of agroforestry system on yield attributes of wheat (Triticum Aestivum l.) under shallow water table conditions

    International Nuclear Information System (INIS)

    Kiran, R.; Agnihotri, A.K.

    2001-01-01

    Fifteen tree rows of Eucalyptus tereticornis were planted at G.B.Pant University of Agriculture and Technology, Pant Nagar, located in tarai region of Uttaranchal in a Nelder fan design in March 1989 at the angle of 24øN' from each other starting from north in anticlockwise direction. Area per tree was 30 m 2 . Wheat was intercropped with Eucalyptus tereticornis of 21st November, 1996. Each row of trees was one treatment. There were 15 treatments with control as sole crop. Various yield attributes, net radiation and water table depth were measured below trees and in control, simultaneously. In treatments 7, 8, 9, 10 and 12 early vegetative growth was observed below trees. Higher yield attributing characters were also observed in some of the treatments below trees. In general, treatment 9 (192-216ø) gave better yield attributes than that of control

  8. Nest survival of American Coots relative to grazing, burning, and water depths

    Science.gov (United States)

    Austin, Jane E.; Buhl, Deborah A.

    2011-01-01

    Water and emergent vegetation are key features influencing nest site selection and success for many marsh-nesting waterbirds. Wetland management practices such as grazing, burning, and water-level manipulations directly affect these features and can influence nest survival. We used model selection and before-after-control-impact approaches to evaluate the effects of water depth and four common land-management practices or treatments, i.e., summer grazing, fall grazing, fall burning, and idle (no active treatment) on nest survival of American coots (Fulica americana) nesting at Grays Lake, a large montane wetland in southeast Idaho. The best model included the variables year × treatment, and quadratic functions of date, water depth, and nest age; height of vegetation at the nest did not improve the best model. However, results from the before-after-control-impact analysis indicate that management practices affected nest success via vegetation and involved interactions of hydrology, residual vegetation, and habitat composition. Nest success in idled fields changed little between pre- and post-treatment periods, whereas nest success declined in fields that were grazed or burned, with the most dramatic declines the year following treatments. The importance of water depth may be amplified in this wetland system because of rapid water-level withdrawal during the nesting season. Water and land-use values for area ranchers, management for nesting waterbirds, and long-term wetland function are important considerations in management of water levels and vegetation.

  9. Nest Survival of American Coots Relative to Grazing, Burning, and Water Depths

    Directory of Open Access Journals (Sweden)

    Jane E. Austin

    2011-12-01

    Full Text Available Water and emergent vegetation are key features influencing nest site selection and success for many marsh-nesting waterbirds. Wetland management practices such as grazing, burning, and water-level manipulations directly affect these features and can influence nest survival. We used model selection and before-after-control-impact approaches to evaluate the effects of water depth and four common land-management practices or treatments, i.e., summer grazing, fall grazing, fall burning, and idle (no active treatment on nest survival of American coots (Fulica americana nesting at Grays Lake, a large montane wetland in southeast Idaho. The best model included the variables year × treatment, and quadratic functions of date, water depth, and nest age; height of vegetation at the nest did not improve the best model. However, results from the before-after-control-impact analysis indicate that management practices affected nest success via vegetation and involved interactions of hydrology, residual vegetation, and habitat composition. Nest success in idled fields changed little between pre- and post-treatment periods, whereas nest success declined in fields that were grazed or burned, with the most dramatic declines the year following treatments. The importance of water depth may be amplified in this wetland system because of rapid water-level withdrawal during the nesting season. Water and land-use values for area ranchers, management for nesting waterbirds, and long-term wetland function are important considerations in management of water levels and vegetation.

  10. Wave Loads on Ships Sailing in Restricted Water Depth

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher

    2003-01-01

    depth for a container vessel. The results show that if the water depth is less than two times the draft of the vessel, the wave-induced bending moment becomes significant larger than in deep water with the same sea state description. The peak in the frequency response function for the wave bending......The wave-induced bending moment in ships is the most important sea load parameter for ships larger than 100m in length. Hence, any rational ship design procedure must include a reasonable accurate determination of this load and a large amount of various hydrodynamic formulations have been published......, ranging from semi-empirical formulas to three-dimensional non-linear procedures. A review of the state-of-the art can be found in ISSC.VI.1 (2000). These procedures must be combined with operational and sea state information to predict the probability distribution of the maximum wave-induced bending...

  11. Groundwater in the Boreal Plains: How Climate and Geology Interact to Control Water Table Configurations in a Sub-Humid, Low-Relief Region

    Science.gov (United States)

    Hokanson, K. J.; Devito, K.; Mendoza, C. A.

    2017-12-01

    The Boreal Plain (BP) region of Canada, a landscape characterized by low-relief, a sub-humid climate and heterogeneous glacial landforms, is experiencing unprecedented anthropogenic and natural disturbance, including climate change and oil & gas operations. Understanding the controls on and the natural variability of water table position, and subsequently predicting changes in water table position under varying physical and climatic scenarios will become important as water security becomes increasingly threatened. The BP is composed of a mosaic of forestland, wetland, and aquatic land covers that contrast in dominant vegetation cover, evapotranspiration, and soil storage that, in turn, influence water table configurations. Additionally, these land-covers overlie heterogeneous glacial landforms with large contrasts in storage and hydraulic properties which, when coupled with wet-dry climate cycles, result in complex water table distributions in time and space. Several forestland-wetland-pond complexes were selected at the Utikuma Research Study Area (URSA) over three distinct surficial geologic materials (glacial fluvial outwash, stagnant ice moraine, lacustrine clay plain) to explore the roles of climate (cumulative departure from the long term yearly mean precipitation), geology, topographic position, and land cover on water table configurations over 15 years (2002 - 2016). In the absence of large groundwater flow systems, local relief and shallow low conductivity substrates promote the formation of near-surface water tables that are less susceptible to climate variation, regardless of topography. Furthermore, in areas of increased storage, wet and dry climate conditions can result in appreciably different water table configurations over time, ranging from mounds to hydraulic depressions, depending on the arrangement of land-covers, dominant surficial geology, and substrate layering.

  12. Changes in Uranium Speciation through a Depth Sequence of Contaminated Hanford Sediments

    International Nuclear Information System (INIS)

    Catalano, Jeffrey G.; McKinley, James P.; Zachara, John M.; Heald, Steve M.; Smith, Steven C.; Brown, Gordon E.

    2006-01-01

    The disposal of basic sodium-aluminate and acidic U(VI)-Cu(II) wastes into the now-dry North and South 300 A Process Ponds at the Hanford site resulted in U(VI) groundwater plume. To gain insight into the geochemical processes that occurred during waste disposal and that will affect the future fate and transport of this uranium plume, the solid-phase speciation of uranium in a depth sequence from the base of the North Process Pond through the vadose zone to the water table was investigated using electron microprobe measurements and x-ray absorption fine structure spectroscopy. Uranium in sediments from the base of the pond was predominantly coprecipitated with calcite. From ∼2 m below the pond base to the water table uranium occurred dominantly in a sorbed form, likely on the surface aluminosilicate clay minerals. The presence of a U(VI)-phosphate phase was also observed in this region, but it only occurred as a major uranium species at one depth. The initial sequestration of U(VI) in these sediments likely occurred through coprecipitation with calcite as conditions did not favor adsorption. As the calcite-bearing pond sediments have been removed as part of a remediation effort, future uranium fate and transport will likely be controlled primarily by adsorption/desorption phenomena

  13. The impact of long-term changes in water table height on carbon cycling in sub-boreal peatlands

    Science.gov (United States)

    Pypker, T. G.; Moore, P. A.; Waddington, J. M.; Hribljan, J. A.; Ballantyne, D.; Chimner, R. A.

    2011-12-01

    Peatlands are a critical component in the global carbon (C) cycle because they have been slowly sequestering atmospheric greenhouse gases as peat since the last glaciation. Today, soil C stocks in peatlands are estimated to represent 224 to 455 Pg, equal to 12-30% of the global soil C pool. At present, peatlands are estimated to sequester 76 Tg C yr-1. The flux of C to and from peatlands is likely to respond to climate change, thereby influencing atmospheric C concentrations. Peatland C budgets are tightly linked to their hydrology, hence, it is critical we understand how changes in hydrology will affect the C budgets of peatlands. The main objective of the project was to determine how long-term changes in water table height affect CO2 and CH4 fluxes from three adjacent peatlands. This study took place in the Seney National Wildlife Refuge (SNWR) in the Upper Peninsula of Michigan. SNWR is home to the largest wetland drainage project in Michigan. In 1912, ditches and dikes were created in an effort to convert approximately 20,000 ha of peatland to agriculture. The ditches and dikes were unsuccessful in creating agricultural land, but they are still in place. The manipulation of water table heights provides an opportunity to research how long-term peat drying or wetting alters C cycling in peatlands. From May to November in 2009, 2010 and 2011, we monitored CO2 fluxes using eddy covariance and chamber techniques in three adjacent peatlands with lowered, relatively unaltered ("control") and raised water table heights. In 2011, we installed CH4 analyzers to continuously monitor CH4 fluxes at the sites with high and relatively unaltered water table heights. The results are compared across sites to determine how changes in water table height might affect C fluxes sub-boreal peatlands.

  14. Spar-Type Vertical-Axis Wind Turbines in Moderate Water Depth: A Feasibility Study

    Directory of Open Access Journals (Sweden)

    Ting Rui Wen

    2018-03-01

    Full Text Available The applications of floating vertical-axis wind turbines (VAWTs in deep water have been proposed and studied by several researchers recently. However, the feasibility of deploying a floating VAWT at a moderate water depth has not yet been studied. In this paper, this feasibility is thoroughly addressed by comparing the dynamic responses of spar-type VAWTs in deep water and moderate water depth. A short spar VAWT supporting a 5 MW Darrieus rotor at moderate water depth is proposed by following the deep spar concept in deep water. A fully coupled simulation tool, SIMO-RIFLEX-DMS code, is utilized to carry out time domain simulations under turbulent wind and irregular waves. Dynamic responses of the short spar and deep spar VAWTs are analyzed and compared, including the natural periods, wind turbine performance, platform motions, tower base bending moments, and tension of mooring lines. The statistical characteristics of the thrust and power production for both spars are similar. The comparison of platform motions and tower base bending moments demonstrate a good agreement for both spars, but the short spar has better performance in surge/sway motions and side–side bending moments. The 2P response dominates the bending moment spectra for both spars. A significant variation in tension of Mooring Line 1 and a larger corresponding spectrum value are found in the short spar concept. The results indicate that the application of short spar VAWTs is feasible and could become an alternative concept at moderate water depth.

  15. Studying unsaturated epikarst water storage properties by time lapse surface to depth gravity measurements

    Science.gov (United States)

    Deville, S.; Champollion, C.; chery, J.; Doerflinger, E.; Le Moigne, N.; Bayer, R.; Vernant, P.

    2011-12-01

    The assessment of water storage in the unsaturated zone in karstic areas is particularly challenging. Indeed, water flow path and water storage occur in quite heterogeneous ways through small scale porosity, fractures, joints and large voids. Due to this large heterogeneity, it is therefore difficult to estimate the amount of water circulating in the vadose zone by hydrological means. One indirect method consists to measure the gravity variation associated to water storage and withdrawal. Here, we apply a gravimetric method in which the gravity is measured at the surface and at depth on different sites. Then the time variations of the surface to depth (STD) gravity differences are compared for each site. In this study we attempt to evaluate the magnitude of epikarstic water storage variation in various karst settings using a CG5 portable gravimeter. Surface to depth gravity measurements are performed two times a year since 2009 at the surface an inside caves at different depths on three karst aquifers in southern France : 1. A limestone site on the Larzac plateau with a vadose zone thickness of 300m On this site measurements are done on five locations at different depths going from 0 to 50 m; 2. A dolomitic site on the Larzac plateau (Durzon karst aquifer) with a vadose zone thickness of 200m; Measurements are taken at the surface and at 60m depth 3. A limestone site on the Hortus karst aquifer and "Larzac Septentrional karst aquifer") with a vadose zone thickness of only 35m. Measurements are taken at the surface and at 30m depth Therefore, our measurements are used in two ways : First, the STD differences between dry and wet seasons are used to estimate the capacity of differential storage of each aquifer. Surprisingly, the differential storage capacity of all the sites is relatively invariant despite their variable geological of hydrological contexts. Moreover, the STD gravity variations on site 1 show that no water storage variation occurs beneath 10m depth

  16. Measurement of underground water-soil radioactivity at different depths in arsenic prone areas

    International Nuclear Information System (INIS)

    Ghosh, D.; Deb, A.; Patra, K.K.; Sengupta, R.; Nag, S.K.

    2007-01-01

    Studies on the presence of alpha emitting nuclides in the environment assume importance since they are found to be carcinogenic. Measurement of radioactivity in arsenic contaminated drinking water has already been reported. To perform a detail study we have undertaken a programme to measure radioactivity in drinking water and soil samples in three different places of North 24 Parganas in West Bengal, India, where arsenic contamination is severe. A detail investigation on soil samples at different depths and soil-water samples at same depth have been made with CR-39 plates -a Solid State Nuclear Track Detector (SSNTD) -a commonly used detector for alpha radiation. The data indicates high alpha activity in soil than water and this ratio is different at different places varying from 1.22 to 2.63. The dependence of the alpha activity in soil on depth is also different at different sites. The data shows some interesting results. (author)

  17. New formula for calculation of cobalt-60 percent depth dose

    International Nuclear Information System (INIS)

    Tahmasebi Birgani, M. J.; Ghorbani, M.

    2005-01-01

    On the basis of percent depth dose calculation, the application of - dosimetry in radiotherapy has an important role to play in reducing the chance of tumor recurrence. The aim of this study is to introduce a new formula for calculating the central axis percent depth doses of Cobalt-60 beam. Materials and Methods: In the present study, based on the British Journal of Radiology table, nine new formulas are developed and evaluated for depths of 0.5 - 30 cm and fields of (4*4) - (45*45) cm 2 . To evaluate the agreement between the formulas and the table, the average of the absolute differences between the values was used and the formula with the least average was selected as the best fitted formula. The Microsoft Excel 2000 and the Data fit 8.0 soft wares were used to perform the calculations. Results: The results of this study indicated that one amongst the nine formulas gave a better agreement with the percent depth doses listed in the table of British Journal of Radiology . The new formula has two parts in terms of log (A/P). The first part as a linear function with the depth in the range of 0.5 to 5 cm and the other one as a second order polynomial with the depth in the range of 6 to 30 cm. The average of - the differences between the tabulated and the calculated data using the formula (Δ) is equal to 0.3 152. Discussion and Conclusion: Therefore, the calculated percent depth dose data based on this formula has a better agreement with the published data for Cobalt-60 source. This formula could be used to calculate the percent depth dose for the depths and the field sizes not listed in the British Journal of Radiology table

  18. Estimating water equivalent snow depth from related meteorological variables

    International Nuclear Information System (INIS)

    Steyaert, L.T.; LeDuc, S.K.; Strommen, N.D.; Nicodemus, M.L.; Guttman, N.B.

    1980-05-01

    Engineering design must take into consideration natural loads and stresses caused by meteorological elements, such as, wind, snow, precipitation and temperature. The purpose of this study was to determine a relationship of water equivalent snow depth measurements to meteorological variables. Several predictor models were evaluated for use in estimating water equivalent values. These models include linear regression, principal component regression, and non-linear regression models. Linear, non-linear and Scandanavian models are used to generate annual water equivalent estimates for approximately 1100 cooperative data stations where predictor variables are available, but which have no water equivalent measurements. These estimates are used to develop probability estimates of snow load for each station. Map analyses for 3 probability levels are presented

  19. Bottom depth and type for shallow waters: Hyperspectral observations from a blimp

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ZhongPing; Carder, K.; Steward, R. [Univ. of South Florida, St. Petersburg, FL (United States)] [and others

    1997-08-01

    In a study of a blimp transect over Tampa Bay (Florida), hyperspectral upwelling radiance over the sand and seagrass bottoms was measured. These measurements were converted to hyperspectral remote-sensing reflectances. Using a shallow-water remote-sensing-reflectance model, in-water optical properties, bottom depths and bottom albedos were derived analytically and simultaneously by an optimization procedure. In the process, curvatures of sand and seagrass albedos were used. Also used was a model of absorption spectrum of phytoplankton pigments. The derived bottom depths were compared with bathymetry charts and found to agree well. This study suggests that a low-flying blimp is a useful platform for the study and mapping of coastal water environments. The optical model as well as the data-reduction procedure used are practical for the retrieval of shallow water optical properties.

  20. Bathymetric maps and water-quality profiles of Table Rock and North Saluda Reservoirs, Greenville County, South Carolina

    Science.gov (United States)

    Clark, Jimmy M.; Journey, Celeste A.; Nagle, Doug D.; Lanier, Timothy H.

    2014-01-01

    Lakes and reservoirs are the water-supply source for many communities. As such, water-resource managers that oversee these water supplies require monitoring of the quantity and quality of the resource. Monitoring information can be used to assess the basic conditions within the reservoir and to establish a reliable estimate of storage capacity. In April and May 2013, a global navigation satellite system receiver and fathometer were used to collect bathymetric data, and an autonomous underwater vehicle was used to collect water-quality and bathymetric data at Table Rock Reservoir and North Saluda Reservoir in Greenville County, South Carolina. These bathymetric data were used to create a bathymetric contour map and stage-area and stage-volume relation tables for each reservoir. Additionally, statistical summaries of the water-quality data were used to provide a general description of water-quality conditions in the reservoirs.

  1. Chironomid-based water depth reconstructions: an independent evaluation of site-specific and local inference models

    NARCIS (Netherlands)

    Engels, S.; Cwynar, L.C.; Rees, A.B.H.; Shuman, B.N.

    2012-01-01

    Water depth is an important environmental variable that explains a significant portion of the variation in the chironomid fauna of shallow lakes. We developed site-specific and local chironomid water-depth inference models using 26 and 104 surface-sediment samples, respectively, from seven

  2. [Effects of water table manipulation on leaf photosynthesis, morphology and growth of Phragmites australis and Imperata cylindrica in the reclaimed tidal wetland at Dongtan of Chongming Island, China].

    Science.gov (United States)

    Zhong, Qi-Cheng; Wang, Jiang-Tao; Zhou, Jian-Hong; Ou, Qiang; Wang, Kai-Yun

    2014-02-01

    During the growing season of 2011, the leaf photosynthesis, morphological and growth traits of Phragmites australis and Imperata cylindrica were investigated along a gradient of water table (low, medium and high) in the reclaimed tidal wetland at the Dongtan of Chongming Island in the Yangtze Estuary of China. A series of soil factors, i. e., soil temperature, moisture, salinity and inorganic nitrogen content, were also measured. During the peak growing season, leaf photosynthetic capacity of P. australis in the wetland with high water table was significantly lower than those in the wetland with low and medium water tables, and no difference was observed in leaf photosynthetic capacity of I. cylindrica at the three water tables. During the entire growing season, at the shoot level, the morphological and growth traits of P. australis got the optimum in the wetland with medium water table, but most of the morphological and growth traits of I. cylindrica had no significant differences at the three water tables. At the population level, the shoot density, leaf area index and aboveground biomass per unit area were the highest in the wetland with high water table for P. australis, but all of the three traits were the highest in the wetland with low water table for I. cylindrica. At the early growing season, the rhizome biomass of P. australis in the 0-20 cm soil layer had no difference at the three water tables, and the rhizome biomass of I. cylindrica in the 0-20 cm soil layer in the wetland with high water table was significantly lower than those in the wetland with low and medium water table. As a native hygrophyte before the reclamation, the variations of performances of P. australis at the three water tables were probably attributed to the differences in the soil factors as well as the intensity of competition from I. cylindrica. To appropriately manipulate water table in the reclaimed tidal wetland may restrict the growth and propagation of the mesophyte I

  3. Report on computation of repetitive hyperbaric-hypobaric decompression tables

    Science.gov (United States)

    Edel, P. O.

    1975-01-01

    The tables were constructed specifically for NASA's simulated weightlessness training program; they provide for 8 depth ranges covering depths from 7 to 47 FSW, with exposure times of 15 to 360 minutes. These tables were based up on an 8 compartment model using tissue half-time values of 5 to 360 minutes and Workmanline M-values for control of the decompression obligation resulting from hyperbaric exposures. Supersaturation ratios of 1.55:1 to 2:1 were used for control of ascents to altitude following such repetitive dives. Adequacy of the method and the resultant tables were determined in light of past experience with decompression involving hyperbaric-hypobaric interfaces in human exposures. Using these criteria, the method showed conformity with empirically determined values. In areas where a discrepancy existed, the tables would err in the direction of safety.

  4. Effects of high-rate wastewater spray disposal on the water-table aquifer, Hilton Head Island, South Carolina

    Science.gov (United States)

    Speiran, G.K.

    1985-01-01

    A study by the U.S. Geological Survey from April 1982 through December 1983 evaluated the effects of high-rate disposal of treated wastewater on the water table aquifer, Hilton Head Island, South Carolina. Flooding of topographically low areas resulted from the application of 10.8 inches of wastewater in 10 days in January 1983. The water table remained 2-1/2 to 5-1/2 feet below land surface when wastewater was applied at rates of 5 inches per week in August and December 1983. (USGS)

  5. Effect of growing media, sowing depth, and hot water treatment on ...

    African Journals Online (AJOL)

    To optimize seedling production for reforestation of degraded dryland with A. senegal seeds, a study was conducted on the effect of boiled water treatment, growing media, sowing depth on seed germination and seedling growth of A. senegal. Three different growing media (farm soil, forest soil and sand soil), boiled water ...

  6. The impact of water depth on safety and environmental performance in offshore oil and gas production

    International Nuclear Information System (INIS)

    Muehlenbachs, Lucija; Cohen, Mark A.; Gerarden, Todd

    2013-01-01

    This paper reports on an empirical analysis of company-reported incidents on oil and gas production platforms in the Gulf of Mexico between 1996 and 2010. During these years, there was a dramatic increase in the water depths at which offshore oil and gas is extracted. Controlling for platform characteristics such as age, quantity of oil and gas produced, and number of producing wells, we find that incidents (such as blowouts, injuries, and oil spills) are positively correlated with deeper water. Controlling for these and other characteristics, for an average platform, each 100 feet of added depth increases the probability of a company-reported incident by 8.5%. While further research into the causal connections between water depth and platform risks is warranted, this study highlights the potential value of increased monitoring of deeper water platforms. - Highlights: ► Analysis of performance indicators for oil production platforms in Gulf of Mexico. ► In recent years there have been dramatic increases in the water depths at which offshore oil and gas is extracted. ► Self-reported incidents (e.g. blowouts, injuries, spills) increase with water depth

  7. Increasing the utility of regional water table maps: a new method for estimating groundwater recharge

    Science.gov (United States)

    Gilmore, T. E.; Zlotnik, V. A.; Johnson, M.

    2017-12-01

    Groundwater table elevations are one of the most fundamental measurements used to characterize unconfined aquifers, groundwater flow patterns, and aquifer sustainability over time. In this study, we developed an analytical model that relies on analysis of groundwater elevation contour (equipotential) shape, aquifer transmissivity, and streambed gradient between two parallel, perennial streams. Using two existing regional water table maps, created at different times using different methods, our analysis of groundwater elevation contours, transmissivity and streambed gradient produced groundwater recharge rates (42-218 mm yr-1) that were consistent with previous independent recharge estimates from different methods. The three regions we investigated overly the High Plains Aquifer in Nebraska and included some areas where groundwater is used for irrigation. The three regions ranged from 1,500 to 3,300 km2, with either Sand Hills surficial geology, or Sand Hills transitioning to loess. Based on our results, the approach may be used to increase the value of existing water table maps, and may be useful as a diagnostic tool to evaluate the quality of groundwater table maps, identify areas in need of detailed aquifer characterization and expansion of groundwater monitoring networks, and/or as a first approximation before investing in more complex approaches to groundwater recharge estimation.

  8. Directional spread parameter at intermediate water depth

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C.; Anand, N.M.; AshokKumar, K.

    ’ involves only the significant wave height, zero crossing wave period and water depth, the spreading function based on ‘s 3 ’ can be used for practical appli- cation. In the model based on ‘s 3 ’ the mean wave direction is an input and this has...-linearity parameter can be recommended for practical use as it provides an averaged distribution. Acknowledgements The authors would like to thank the Department of Science and Technology, New Delhi, for funding the project titled “Directional wave modelling...

  9. An efficient parallel algorithm: Poststack and prestack Kirchhoff 3D depth migration using flexi-depth iterations

    Science.gov (United States)

    Rastogi, Richa; Srivastava, Abhishek; Khonde, Kiran; Sirasala, Kirannmayi M.; Londhe, Ashutosh; Chavhan, Hitesh

    2015-07-01

    This paper presents an efficient parallel 3D Kirchhoff depth migration algorithm suitable for current class of multicore architecture. The fundamental Kirchhoff depth migration algorithm exhibits inherent parallelism however, when it comes to 3D data migration, as the data size increases the resource requirement of the algorithm also increases. This challenges its practical implementation even on current generation high performance computing systems. Therefore a smart parallelization approach is essential to handle 3D data for migration. The most compute intensive part of Kirchhoff depth migration algorithm is the calculation of traveltime tables due to its resource requirements such as memory/storage and I/O. In the current research work, we target this area and develop a competent parallel algorithm for post and prestack 3D Kirchhoff depth migration, using hybrid MPI+OpenMP programming techniques. We introduce a concept of flexi-depth iterations while depth migrating data in parallel imaging space, using optimized traveltime table computations. This concept provides flexibility to the algorithm by migrating data in a number of depth iterations, which depends upon the available node memory and the size of data to be migrated during runtime. Furthermore, it minimizes the requirements of storage, I/O and inter-node communication, thus making it advantageous over the conventional parallelization approaches. The developed parallel algorithm is demonstrated and analysed on Yuva II, a PARAM series of supercomputers. Optimization, performance and scalability experiment results along with the migration outcome show the effectiveness of the parallel algorithm.

  10. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Science.gov (United States)

    Li, Hong-Li; Wang, Yong-Yang; Zhang, Qian; Wang, Pu; Zhang, Ming-Xiang; Yu, Fei-Hai

    2015-01-01

    Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  11. Isotopic fractionation of soil water during the evaporation process in the presence of a phreatic water table

    International Nuclear Information System (INIS)

    Leopoldo, P.R.; Stolf, R.

    1979-01-01

    This experiment was conducted with columns of soil, constitued by alluvion sediment keeping a phreatic watertable at a depth of 40 cm and constant water supply, and its objective was to check the water behaviour as to its deuterium and oxigen content when moving from the lower layers to the upper layers, and consequent loss to the atmosphere through evaporation. It was noted that the existing D and 18 O content in the water forming the phreativ watertable practivally does not vary with this process. In addition to the observations on soil columns, soil water from the Brasilian northeastern region was collected and analysed. The phreatic watertable at the collecting site lay at a depth of about 40-50 cm. Preliminarily, it was noted that these results apparently indicate an excess evaporation, and are also consistent with those obtained by other investigators, who proposed the use of stable isotopes to study problems related to salinization of water in this region. (Author) [pt

  12. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 1: nonuniform infiltration and soil water redistribution

    OpenAIRE

    Munoz Carpena, R.; Lauvernet, C.; Carluer, N.

    2018-01-01

    Vegetation buffers like vegetative filter strips (VFSs) are often used to protect water bodies from surface runoff pollution from disturbed areas. Their typical placement in floodplains often results in the presence of a seasonal shallow water table (WT) that can decrease soil infiltration and increase surface pollutant transport during a rainfall-runoff event. Simple and robust components of hydrological models are needed to analyze the impacts of WT in the landscape. To si...

  13. Numerical Investigation on Effect of Immersed Blade Depth on the Performance of Undershot Water Turbines

    Directory of Open Access Journals (Sweden)

    Yah Nor Fadilah

    2016-01-01

    Full Text Available Energy, especially electricity, plays a vital role in global social and economic development. High annual rain rate in Malaysia seems a good potential for electricity generation especially through small hydro powers. Undershot water turbines are one of the hydropower turbines used for many years. However, the effect of blade depth immersed in the flowing water is not fully investigated. Therefore, the purpose of this paper is to study the effect of immersed blade depth for straight blade undershot water turbine in power generation by using Computational Fluid Dynamics (CFD method. ANSYS CFX 15.0 was used to perform three dimensional analysis under steady state, incompressible, and non-isothermal conditions. The water wheel with number of blades of 6 and four different immersed depth was applied for each simulation. There are four different immersed depth was applied to each simulation, which are 20 mm, 40 mm, 60 mm and 80 mm. From the simulation result, it was found that the optimum immersed depth is 40 mm where the torque load and power generated were 0.264 N.m and 1.318 Watt respectively.

  14. "Periodic-table-style" paper device for monitoring heavy metals in water.

    Science.gov (United States)

    Li, Miaosi; Cao, Rong; Nilghaz, Azadeh; Guan, Liyun; Zhang, Xiwang; Shen, Wei

    2015-03-03

    If a paper-based analytical device (μ-PAD) could be made by printing indicators for detection of heavy metals in chemical symbols of the metals in a style of the periodic table of elements, it could be possible for such μ-PAD to report the presence and the safety level of heavy metal ions in water simultaneously and by text message. This device would be able to provide easy solutions to field-based monitoring of heavy metals in industrial wastewater discharges and in irrigating and drinking water. Text-reporting could promptly inform even nonprofessional users of the water quality. This work presents a proof of concept study of this idea. Cu(II), Ni(II), and Cr(VI) were chosen to demonstrate the feasibility, specificity, and reliability of paper-based text-reporting devices for monitoring heavy metals in water.

  15. Fluctuating water depths affect American alligator (Alligator mississippiensis) body condition in the Everglades, Florida, USA

    Science.gov (United States)

    Brandt, Laura A.; Beauchamp, Jeffrey S.; Jeffery, Brian M.; Cherkiss, Michael S.; Mazzotti, Frank J.

    2016-01-01

    Successful restoration of wetland ecosystems requires knowledge of wetland hydrologic patterns and an understanding of how those patterns affect wetland plant and animal populations.Within the Everglades, Florida, USA restoration, an applied science strategy including conceptual ecological models linking drivers to indicators is being used to organize current scientific understanding to support restoration efforts. A key driver of the ecosystem affecting the distribution and abundance of organisms is the timing, distribution, and volume of water flows that result in water depth patterns across the landscape. American alligators (Alligator mississippiensis) are one of the ecological indicators being used to assess Everglades restoration because they are a keystone species and integrate biological impacts of hydrological operations through all life stages. Alligator body condition (the relative fatness of an animal) is one of the metrics being used and targets have been set to allow us to track progress. We examined trends in alligator body condition using Fulton’s K over a 15 year period (2000–2014) at seven different wetland areas within the Everglades ecosystem, assessed patterns and trends relative to restoration targets, and related those trends to hydrologic variables. We developed a series of 17 a priori hypotheses that we tested with an information theoretic approach to identify which hydrologic factors affect alligator body condition. Alligator body condition was highest throughout the Everglades during the early 2000s and is approximately 5–10% lower now (2014). Values have varied by year, area, and hydrology. Body condition was positively correlated with range in water depth and fall water depth. Our top model was the “Current” model and included variables that describe current year hydrology (spring depth, fall depth, hydroperiod, range, interaction of range and fall depth, interaction of range and hydroperiod). Across all models, interaction

  16. Evaluation of shallow ground water use in command area of Dhoro Naro minor, Nawabshah

    International Nuclear Information System (INIS)

    Lashari, B.K.

    2002-01-01

    Water supply data shows that the average supply of canal water to minor has been reduced to 30.9 cusecs (1.5 mm/day), which is about 41% (1.19mm/day) short of design supply due to water shortage in the system. To deal with water-short period and increase cultivation, the farmers (water users) have installed around 100 tube wells (from which 90 are functioning) to extract shallow ground water up to a depth of 40-50 feet (12.2-15.24m) having average discharge of tube well is 0.78 cusees (22 litres/sec). The water quality measured of these tube wells ranges between 371-8,858 PPM (0.58-13.9 dS/m). On average 3 hours/acre/week running of private tube wells contributes 0.5 mm/day to over come the shortage of water, which has resulted in 32% cropping intensity against 38% of design cropping intensity in spite of 41% short of designed supply of surface water. Moreover, the water table depth has gone down to an average depth of about 9.5 feet from the ground surface. Study has suggested that the pumping of these tube wells needs to be optimized to keep to water table depth up to 6 feet so as deterioration of shallow ground water be minimized and land be protected from secondary soil salinization. (author)

  17. Worldwide Echo-Sounding Correction Tables to Convert to Standard Velocity Depths

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Echo-sounding tables (3rd Edition) were prepared by D.J.T. Carter of the Marine Information and Advisory Service (United Kingdom) for the conversion of raw...

  18. Water masses transform at mid-depths over the Antarctic Continental Slope

    Science.gov (United States)

    Mead Silvester, Jess; Lenn, Yueng-Djern; Polton, Jeffrey; Phillips, Helen E.; Morales Maqueda, Miguel

    2017-04-01

    The Meridional Overturning Circulation (MOC) controls the oceans' latitudinal heat distribution, helping to regulate the Earth's climate. The Southern Ocean is the primary place where cool, deep waters return to the surface to complete this global circulation. While water mass transformations intrinsic to this process predominantly take place at the surface following upwelling, recent studies implicate vertical mixing in allowing transformation at mid-depths over the Antarctic continental slope. We deployed an EM-Apex float near Elephant Island, north of the Antarctic Peninsula's tip, to profile along the slope and use potential vorticity to diagnose observed instabilities. The float captures direct heat exchange between a lens of Upper Circumpolar Deep Water (UCDW) and surrounding Lower Circumpolar Deep Waters (LCDW) at mid-depths and over the course of several days. Heat fluxes peak across the top and bottom boundaries of the UCDW lens and peak diffusivities across the bottom boundary are associated with shear instability. Estimates of diffusivity from shear-strain finestructure parameterisation and heat fluxes are found to be in reasonable agreement. The two-dimensional Ertel potential vorticity is elevated both inside the UCDW lens and along its bottom boundary, with a strong contribution from the shear term in these regions and instabilities are associated with gravitational and symmetric forcing. Thus, shear instabilities are driving turbulent mixing across the lower boundary between these two water masses, leading to the observed heat exchange and transformation at mid-depths over the Antarctic continental slope. This has implications for our understanding of the rates of upwelling and ocean-atmosphere exchanges of heat and carbon at this critical location.

  19. Water loss in table grapes: model development and validation under dynamic storage conditions

    Directory of Open Access Journals (Sweden)

    Ericsem PEREIRA

    2017-09-01

    Full Text Available Abstract Water loss is a critical problem affecting the quality of table grapes. Temperature and relative humidity (RH are essential in this process. Although mathematical modelling can be applied to measure constant temperature and RH impacts, it is proved that variations in storage conditions are normally encountered in the cold chain. This study proposed a methodology to develop a weight loss model for table grapes and validate its predictions in non-constant conditions of a domestic refrigerator. Grapes were maintained under controlled conditions and the weight loss was measured to calibrate the model. The model described the water loss process adequately and the validation tests confirmed its predictive ability. Delayed cooling tests showed that estimated transpiration rates in subsequent continuous temperature treatment was not significantly influenced by prior exposure conditions, suggesting that this model may be useful to estimate the weight loss consequences of interruptions in the cold chain.

  20. [The marketing evaluation of the consumers' preference as regards the use of medicinal and medicinal table mineral waters].

    Science.gov (United States)

    Babaskin, D V; Babaskina, L I; Pavlova, A V

    2017-12-28

    The development of modern technologies in physiotherapy with the use of mineral waters, the expansion of the assortment of the medicinal and medicinal table waters as well as increasing the competitive advantages of domestic products require the more extensive marketing survey of the consumers' preferences in the market of mineral waters. The objective of the present study was the marketing evaluation of the consumers' preference in the segment of medicinal and medicinal table mineral waters in the city of Moscow. The survey involved 697 consumers of medicinal and medicinal table mineral waters. The sampling was carried out by the deterministic quota method. The field research was conducted by means of personal verbal interviews (32%) and the CATI to Web method (phone recruiting and on-line questioning) (68%) with the use of the structured questionnaire. Positioning was carried out making use of the two-dimensional schematic map and scoring assessment on an individual basis with calculation of integrated indicators. The marketing evaluation has demonstrated that the principal motive for purchasing mineral waters in more than 40% of respondents was the treatment and prevention of various diseases including disturbances in the urogenital system as well as digestive and respiratory disorders that appear to be the most frequent reasons for the consumption of mineral waters. The main factors that form the preferences of the consumers as regards the use of a concrete variety of mineral waters were elucidated. Of crucial importance for approximately 40% of the consumers (p<0.01) proved to be their health condition, the medical indications, and the available information about the therapeutic effectiveness of one or another type of mineral waters. Other factors were the quality of mineral water, its cost, the manufacturer and/or place of production, the attractiveness of the packaging, etc. The evaluation of the positioning of the mineral water consumers' preferences made

  1. Vegetative Propagule Pressure and Water Depth Affect Biomass and Evenness of Submerged Macrophyte Communities.

    Directory of Open Access Journals (Sweden)

    Hong-Li Li

    Full Text Available Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot and two levels of water depth (30 cm and 70 cm. Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.

  2. Estimating the water table under the Radioactive Waste Management Site in Area 5 of the Nevada Test Site the Dupuit-Forcheimer approximation

    International Nuclear Information System (INIS)

    Lindstrom, T.F.; Barker, L.E.; Cawlfield, D.E.; Daffern, D.D.; Dozier, B.L.; Emer, D.F.; Strong, W.R.

    1992-01-01

    A two-dimensional steady-state water-flow equation for estimating the water table elevation under a thick, very dry vadose zone is developed and discussed. The Dupuit assumption is made. A prescribed downward vertical infiltration/evaporation condition is assumed at the atmosphere-soil interface. An approximation to the square of the elevation head, based upon multivariate cubic interpolation methods, is introduced. The approximation is forced to satisfy the governing elliptic (Poisson) partial differential equation over the domain of definition. The remaining coefficients are determined by interpolating the water table at eight ''boundary points.'' Several realistic scenarios approximating the water table under the Radioactive Waste Management Site (RWMS) in Area 5 of the Nevada Test Site (NTS) are discussed

  3. Compensating for geographic variation in detection probability with water depth improves abundance estimates of coastal marine megafauna.

    Science.gov (United States)

    Hagihara, Rie; Jones, Rhondda E; Sobtzick, Susan; Cleguer, Christophe; Garrigue, Claire; Marsh, Helene

    2018-01-01

    The probability of an aquatic animal being available for detection is typically probability of detection is important for obtaining robust estimates of the population abundance and determining its status and trends. The dugong (Dugong dugon) is a bottom-feeding marine mammal and a seagrass community specialist. We hypothesized that the probability of a dugong being available for detection is dependent on water depth and that dugongs spend more time underwater in deep-water seagrass habitats than in shallow-water seagrass habitats. We tested this hypothesis by quantifying the depth use of 28 wild dugongs fitted with GPS satellite transmitters and time-depth recorders (TDRs) at three sites with distinct seagrass depth distributions: 1) open waters supporting extensive seagrass meadows to 40 m deep (Torres Strait, 6 dugongs, 2015); 2) a protected bay (average water depth 6.8 m) with extensive shallow seagrass beds (Moreton Bay, 13 dugongs, 2011 and 2012); and 3) a mixture of lagoon, coral and seagrass habitats to 60 m deep (New Caledonia, 9 dugongs, 2013). The fitted instruments were used to measure the times the dugongs spent in the experimentally determined detection zones under various environmental conditions. The estimated probability of detection was applied to aerial survey data previously collected at each location. In general, dugongs were least available for detection in Torres Strait, and the population estimates increased 6-7 fold using depth-specific availability correction factors compared with earlier estimates that assumed homogeneous detection probability across water depth and location. Detection probabilities were higher in Moreton Bay and New Caledonia than Torres Strait because the water transparency in these two locations was much greater than in Torres Strait and the effect of correcting for depth-specific detection probability much less. The methodology has application to visual survey of coastal megafauna including surveys using Unmanned

  4. On the variability of sea drag in finite water depth

    Science.gov (United States)

    Toffoli, A.; Loffredo, L.; Le Roy, P.; LefèVre, J.-M.; Babanin, A. V.

    2012-11-01

    The coupling between the atmospheric boundary layer and the ocean surface in large-scale models is usually parameterized in terms of the sea drag coefficient, which is routinely estimated as a function of mean wind speed. The scatter of data around such parametric dependencies, however, is very significant and imposes a serious limitation on the forecasts and predictions that make use of sea surface drag parameterizations. The analysis of an atmospheric and wave data set collected in finite water depth at the Lake George measurement site (Australia) suggests that this variability relates to a number of parameters at the air-sea interface other than wind speed alone. In particular, results indicate that the sea drag depends on water depth and wave steepness, which make the wave profile more vertically asymmetric, and the concentration of water vapor in the air, which modifies air density and friction velocity. These dependencies are used to derive parametric functions based on the combined contribution of wind, waves and relative humidity. A standard statistical analysis confirms a substantial improvement in the prediction of the drag coefficient and sea surface roughness when additional parameters are taken into account.

  5. Study on soil-water retention curves for loess aerated zone

    International Nuclear Information System (INIS)

    Guo Zede; Cheng Jinru; Deng An; Masayuki Mukai; Hideo Kamiyama

    2000-01-01

    The author introduces the measuring method and results of soil-water retention curves of 46 samples taken from ground surface to water table of 28 m depth at CIRP's Field Test Site. The results indicate that the soil-water retention characteristics vary significantly with depth, and the loess-aerated zone at the site can be divided into five layers. From the results, unsaturated hydraulic parameters are deduced, such as conductivity, specific water capacity and equivalent pore diameter. The water velocity calculated from these parameters is satisfactorily consistent with that one obtained from 3 H tracing test carried out at the site

  6. Environmental impact assessment of quarries under water table: state of the art

    International Nuclear Information System (INIS)

    Menatti, M.; Vismara, R.

    2009-01-01

    After an overview of environmental problems concerning pits under water table, data and results showed in a few examples of literature and in some Environmental Impact Study are summarized. A close examination about sector normative instruments, in the field of E.I.A. (Environmental Impact Assessment) and S.E.A. (Strategic Environmental Assessment) is showed, through some key elements obtained from a few guidelines expressed by control and authorization governmental authority.In addition, the paper deals with a specific problem about wash water management and, in particular, silt material management; the possible impacts derived from the directly wash water introduction in the pit lake and from the use of settling lagoon are analyzed. [it

  7. Similar mid-depth Atlantic water mass provenance during the Last Glacial Maximum and Heinrich Stadial 1

    Science.gov (United States)

    Howe, Jacob N. W.; Huang, Kuo-Fang; Oppo, Delia W.; Chiessi, Cristiano M.; Mulitza, Stefan; Blusztajn, Jurek; Piotrowski, Alexander M.

    2018-05-01

    The delivery of freshwater to the North Atlantic during Heinrich Stadial 1 (HS1) is thought to have fundamentally altered the operation of Atlantic meridional overturning circulation (AMOC). Although benthic foraminiferal carbon isotope records from the mid-depth Atlantic show a pronounced excursion to lower values during HS1, whether these shifts correspond to changes in water mass proportions, advection, or shifts in the carbon cycle remains unclear. Here we present new deglacial records of authigenic neodymium isotopes - a water mass tracer that is independent of the carbon cycle - from two cores in the mid-depth South Atlantic. We find no change in neodymium isotopic composition, and thus water mass proportions, between the Last Glacial Maximum (LGM) and HS1, despite large decreases in carbon isotope values at the onset of HS1 in the same cores. We suggest that the excursions of carbon isotopes to lower values were likely caused by the accumulation of respired organic matter due to slow overturning circulation, rather than to increased southern-sourced water, as typically assumed. The finding that there was little change in water mass provenance in the mid-depth South Atlantic between the LGM and HS1, despite decreased overturning, suggests that the rate of production of mid-depth southern-sourced water mass decreased in concert with decreased production of northern-sourced intermediate water at the onset of HS1. Consequently, we propose that even drastic changes in the strength of AMOC need not cause a significant change in South Atlantic mid-depth water mass proportions.

  8. The Effect of Different Subsurface Drainage Systems on Improvement of Water Flow in Paddy fields

    Directory of Open Access Journals (Sweden)

    ghassem aghajani mazandarani

    2017-03-01

    Full Text Available Introduction: Better use of water and soil resources in paddy fields, increase in rice production and farmer's income, installation of subsurface drainage system is necessary. The main goalof these systems, are aeration conditions improvement prevention of water logging, yield increase, land use increase and multiuse of the land. In different countries, installation of subsurface drainage cause yield increase and working condition on the land, but no research has been conducted in different depths and spacing. On the other hand, spacing and depth are the most important parameters in the installation of drainage systems, have a direct effect on incoming water into the drains. The aim of this research, is an investigation of the effect of subsurface drainage with different depths and spacing on discharge rate variation and water table fall, in order to analyze the improvement of water flow movement in the soil. Also, study the effect of different drainage systems on the increase of the canola yield as the second cultivation in these treatments have been compared. Materials and Methods: To measure hydraulic conductivity in different depths, the auger holes have been dug (excavated. The saturated hydraulic conductivity in these holes wasdetermined using Ernst method (1950 before installation of drainage systems. In the drainage pilot plot of Sari Agricultural Sciences and Natural Resources University three subsurface drainage systems with mineral envelope have been installed. 1- The first one with the 0.9 m depth and 30 m spacing (D90 L30, 2- The second one with 0.65 m depth and 15 m spacing (D0.65 L15 and 3- The third one with 0.65 m depth and spacing (D0.65 L30 and one bi-level system with mineral envelope including four drains of 15 m spacing with 0.9 m and 0.65 m depths were installed alternatively. After auger hole equipment installations, in the middle spacing of two subsurface and water table reading possible, the water table fluctuation and

  9. An analysis of depth dose characteristics of photon in water

    International Nuclear Information System (INIS)

    Buzdar, S.A.; Rao, M.A.; Nazir, A.

    2009-01-01

    Photon beam is most widely being used for radiation therapy. Biological effect of radiation is concerned with the evaluation of energy absorbed in the tissues. It was aimed to analyse the depth dose characteristics of x-ray beams of diverse energies to enhance the quality of radiotherapy treatment planning. Depth dose characteristics of different energy photon beams in water have been analysed. Photon beam is attenuated by the medium and the transmitted beam with less intensity causes lesser absorbed dose as depth increases. Relative attenuation on certain points on the beam axis and certain percentage of doses on different depths for available energies has been investigated. Photon beam depth dose characteristics do not show identical attributes as interaction of x-ray with matter is mainly governed by beam quality. Attenuation and penetration parameters of photon show variation with dosimetric parameters like field size due to scattering and Source to Surface Distance due to inverse square law, but the major parameter in photon interactions is its energy. Detailed analysis of photon Depth Dose characteristics helps to select appropriate beam for radiotherapy treatment when variety of beam energies available. Evaluation of this type of characteristics will help to establish theoretical relationships between dosimetric parameters to confirm measured values of dosimetric quantities, and hence to increase accuracy in radiotherapy treatment. (author)

  10. Optimization of irrigation water in stone fruit and table grapes

    Science.gov (United States)

    de la Rosa, Jose Mª; Castillo, Cristina; Temnani, Abdel; Pérez-Pastor, Alejandro

    2017-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. The main objective of this experiment was to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. Five demonstration plots were established in representative crops of the irrigating community of Campotejar (Murcia, Spain): i) Peach trees, cv. catherina in the "Periquitos" farm; ii) Apricot trees, cv. "Red Carlet" in "La Hoya del Fenazar" farm; iii) Nectarine trees, cv. Viowhite in "Agrícola Don Fernando" farm; iv) Table grape, cv "Crimson Seedless" in "La Hornera" farm; and v) Paraguayan cv. carioca in "The Hornera" farm. In each demonstration plot, at least two irrigation treatments were established: i) Control (CTL), irrigated to ensure non-limiting water conditions (120% of crop evapotranspiration) and ii) Regulated deficit irrigation (RDI) irrigated as CTL during critical periods and decreasing irrigation in non-critical periods. The plant water status indicators evaluated were midday stem water potential and Trunk Diameter Fluctuation derived indices: maximum daily shrinkage (MDS) and trunk daily growth rate (TGR); vegetative growth of the different crops from trunk diameter and pruning dry weight, fruit growth and fruit

  11. Spatio-temporal patterns of groundwater depths and soil nutrients in a small watershed in the Ethiopian highlands: Topographic and land-use controls

    Science.gov (United States)

    Guzman, Christian D.; Tilahun, Seifu A.; Dagnew, Dessalegn C.; Zimale, Fasikaw A.; Zegeye, Assefa D.; Boll, Jan; Parlange, Jean-Yves; Steenhuis, Tammo S.

    2017-12-01

    Soil and water conservation structures, promoted by local and international development organizations throughout rural landscapes, aim to increase recharge and prevent degradation of soil surface characteristics. This study investigates this unexamined relationship between recharge, water table depths, and soil surface characteristics (nutrients) in a small sub-watershed in the northwestern Ethiopian highlands. These highland watersheds have high infiltration rates (mean 70 mm hr-1, median 33 mm hr-1), recharging the shallow unconfined hillslope aquifer with water transport occurring via subsurface pathways down the slope. The perched water tables reflect the subsurface flux and are deep where this flux is rapid in the upland areas (138 cm below surface). Soil saturation and overland flow occur when the subsurface flux exceeds the transport capacity of the soil in the lower downslope areas near the ephemeral stream (19 cm below surface). Land use is directly related to the water table depth, corresponding to grazing and fallowed (saturated) land in the downslope areas and cultivated (unsaturated) land in the middle and upper parts where the water table is deeper. Kjeldahl Total Nitrogen (TN), Bray II available phosphorus (AP), and exchangeable potassium (K+) averages exhibit different behaviors across slope, land use transects, or saturation conditions. TN was moderate to low (0.07% ± 0.04) in various land uses and slope regions. Bray II AP had very low concentrations (0.25 mg kg-1 ± 0.26) among the different slope regions with no significant differences throughout (p > .05). The exchangeable cation (K+, Ca2+, Mg2+) concentrations and pH, however, were greater in non-cultivated (seasonally saturated) lands and in a downslope direction (p < .001, p < .005, p < .05, and p < .005, respectively). These results show that the perched groundwater plays an important role in influencing land use, the amount of water seasonally available for crop growth, and exchangeable

  12. Evaluation of mercury and physicochemical parameters in different depths of aquifer water of Thar coalfield, Pakistan.

    Science.gov (United States)

    Ali, Jamshed; Kazi, Tasneem G; Tuzen, Mustafa; Ullah, Naeem

    2017-07-01

    In the current study, mercury (Hg) and physicochemical parameters have been evaluated in aquifer water at different depths of Thar coal field. The water samples were collected from first aquifer (AQ 1 ), second aquifer (AQ 2 ), and third aquifer (AQ 3 ) at three depths, 50-60, 100-120, and 200-250 m, respectively. The results of aquifer water of three depths were interpreted by using different multivariate statistical techniques. Validation of desired method was checked by spiking standard addition method in studied aquifer water samples. The content of Hg in aquifer water samples was measured by cold vapor atomic absorption spectrometer (CV-AAS). These determined values illustrate that the levels of Hg were higher than WHO recommended values for drinking water. All physicochemical parameters were higher than WHO permissible limits for drinking water except pH and SO 4 2- in aquifer water. The positive correlation of Hg with other metals in aquifer water samples of AQ 1 , AQ 2 , and AQ 3 of Thar coalfield except HCO 3 - was observed which might be caused by geochemical minerals. The interpretation of determined values by the cluster technique point out the variations within the water quality parameter as well as sampling location of studied field. The aquifer water AQ 2 was more contaminated with Hg as compared to AQ 1 and AQ 3 ; it may be due to leaching of Hg from coal zone. The concentration of Hg in aquifer water obtained from different depths was found in the following decreasing order: AQ 2  < AQ 1  < AQ 3 .

  13. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in a Dune Sand Aquifer in Western Saudi Arabia: Assessment of Evaporation Loss for Design of an MAR System

    KAUST Repository

    Mughal, Iqra; Jadoon, Khan; Mai, Paul Martin; Al-Mashharawi, Samir; Missimer, Thomas

    2015-01-01

    A component of designing a managed aquifer recharge system in a dune aquifer is the control of diffusive evaporative loss of water which is governed by the physical properties of the sediments and the position of the water table. A critical water table position is the “extinction depth”, below which no further loss of water occurs via diffusion. Field experiments were conducted to measure the extinction depth of sediments taken from a typical dune field in the region. The soil grain size characteristics, laboratory porosity, and saturated hydraulic conductivity were measured. The sand is classified as well-sorted, very fine sand with a mean grain diameter of 0.15 mm. Soil moisture gradients and diffusion loss rates were measured using sensors in a non-weighing lysimeter that was placed below land surface. The sand was saturated carefully with water from the bottom to the top and was exposed to the natural climate for a period of about two months. The moisture gradient showed a gradual decline during measurement until extinction depth was reached at about 100 cm below surface after 56 days. Diurnal temperature changes were observed in the upper 75 cm of the column and were negligible at greater depth.

  14. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in a Dune Sand Aquifer in Western Saudi Arabia: Assessment of Evaporation Loss for Design of an MAR System

    KAUST Repository

    Mughal, Iqra

    2015-12-10

    A component of designing a managed aquifer recharge system in a dune aquifer is the control of diffusive evaporative loss of water which is governed by the physical properties of the sediments and the position of the water table. A critical water table position is the “extinction depth”, below which no further loss of water occurs via diffusion. Field experiments were conducted to measure the extinction depth of sediments taken from a typical dune field in the region. The soil grain size characteristics, laboratory porosity, and saturated hydraulic conductivity were measured. The sand is classified as well-sorted, very fine sand with a mean grain diameter of 0.15 mm. Soil moisture gradients and diffusion loss rates were measured using sensors in a non-weighing lysimeter that was placed below land surface. The sand was saturated carefully with water from the bottom to the top and was exposed to the natural climate for a period of about two months. The moisture gradient showed a gradual decline during measurement until extinction depth was reached at about 100 cm below surface after 56 days. Diurnal temperature changes were observed in the upper 75 cm of the column and were negligible at greater depth.

  15. Experimental Measurement of Diffusive Extinction Depth and Soil Moisture Gradients in a Dune Sand Aquifer in Western Saudi Arabia: Assessment of Evaporation Loss for Design of an MAR System

    Directory of Open Access Journals (Sweden)

    Iqra Mughal

    2015-12-01

    Full Text Available A component of designing a managed aquifer recharge system in a dune aquifer is the control of diffusive evaporative loss of water which is governed by the physical properties of the sediments and the position of the water table. A critical water table position is the “extinction depth”, below which no further loss of water occurs via diffusion. Field experiments were conducted to measure the extinction depth of sediments taken from a typical dune field in the region. The soil grain size characteristics, laboratory porosity, and saturated hydraulic conductivity were measured. The sand is classified as well-sorted, very fine sand with a mean grain diameter of 0.15 mm. Soil moisture gradients and diffusion loss rates were measured using sensors in a non-weighing lysimeter that was placed below land surface. The sand was saturated carefully with water from the bottom to the top and was exposed to the natural climate for a period of about two months. The moisture gradient showed a gradual decline during measurement until extinction depth was reached at about 100 cm below surface after 56 days. Diurnal temperature changes were observed in the upper 75 cm of the column and were negligible at greater depth.

  16. A New Approach to Simulate Groundwater Table Dynamics and Its Validation in China

    Science.gov (United States)

    Lv, M.; Lu, H.; Dan, L.; Yang, K.

    2017-12-01

    The groundwater has very important role in hydrology-climate-human activity interaction. But the groundwater table dynamics currently is not well simulated in global-scale land surface models. Meanwhile, almost all groundwater schemes are adopting a specific yield method to estimate groundwater table, in which how to determine the proper specific yield value remains a big challenge. In this study, we developed a Soil Moisture Correlation (SMC) method to simulate groundwater table dynamics. We coupled SMC with a hydrological model (named as NEW) and compared it with the original model in which a specific yield method is used (named as CTL). Both NEW and CTL were tested in Tangnaihai Subbasin of Yellow River and Jialingjiang Subbasin along Yangtze River, where underground water is less impacted by human activities. The simulated discharges by NEW and CTL are compared against gauge observations. The comparison results reveal that after calibration both models are able to reproduce the discharge well. However, there is no parameter needed to be calibrated for SMC. It indicates that SMC method is more efficient and easy-to-use than the specific yield method. Since there is no direct groundwater table observation in these two basins, simulated groundwater table were compared with a global data set provided by Fan et al. (2013). Both NEW and CTL estimate lower depths than Fan does. Moreover, when comparing the variation of terrestrial water storage (TWS) derived from NEW with that observed by GRACE, good agreements were confirmed. It demonstrated that SMC method is able to reproduce groundwater level dynamics reliably.

  17. Trophic-functional patterns of biofilm-dwelling ciliates at different water depths in coastal waters of the Yellow Sea, northern China.

    Science.gov (United States)

    Abdullah Al, Mamun; Gao, Yangyang; Xu, Guangjian; Wang, Zheng; Warren, Alan; Xu, Henglong

    2018-04-01

    Vertical variations in trophic-functional patterns of biofilm-dwelling ciliates were studied in coastal waters of the Yellow Sea, northern China. A total of 50 species were identified and assigned to four trophic-functional groups (TFgrs): algivores (A), bacterivorous (B), non-selective (N) and raptors (R). The trophic-functional structures of the ciliate communities showed significant variability among different water depths: (1) with increasing water depth, relative species numbers and relative abundances of groups A and R decreased sharply whereas those of groups B and N increased gradually; (2) in terms of the frequency of occurrences, group A dominated at depths of 1-3.5 m whereas group B dominated at 5 m, while in terms of the probability density function of the trophic-functional spectrum, group A was the highest contributor at 1 m and group B was highest at the other three depths; (3) distance-based redundancy analyses revealed significant differences in trophic-functional patterns among the four depths, except between 2 and 3.5 m (P > 0.05); and (4) the trophic-functional trait diversity increased from 1 to 3.5 m and decreased sharply at 5 m. Our results suggest that the biofilm-dwelling ciliates maintain a stable trophic-functional pattern and high biodiversity at depths of 1-3.5 m. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Simulation of the water-table altitude in the Biscayne Aquifer, southern Dade County, Florida, water years 1945-89

    Science.gov (United States)

    Merritt, M.L.

    1995-01-01

    A digital model of the flow system in the highly permeable surficial aquifer of southern Dade County, Florida, was constructed for the purposes of better understanding processes that influence the flow system and of supporting the construction of a subregional model of the transport of brackish water from a flowing artesian well. Problems that needed resolution in this endeavor included the development of methods to represent the influence of flowing surface water in seasonally inundated wetlands and the influence of a network of controlled canals developed in stages during the simulation time period (water years 1945-89). An additional problem was the general lack of natural aquifer boundaries near the boundaries of the study area. The model construction was based on a conceptual description of the Biscayne aquifer developed from the results of previous U.S. Geological Survey investigations. Modifications were made to an existing three- dimensional finite-difference simulator of ground- water flow to enable an upper layer of the grid to represent seasonally occurring overland sheetflow in a series of transient simulations of water levels from 1945 to 1989. A rewetting procedure was developed for the simulator that permitted resaturation of cells in this layer when the wet season recurred. An "equivalent hydraulic conductivity" coefficient was assigned to the overland flow layer that was analogous, subject to various approximations, to the use of the Manning equation. The surficial semiconfining peat and marl layers, levees, canals, and control structures were also represented as part of the model grid with the appropriate choices of hydraulic coefficient values. For most of the Biscayne aquifer grid cells, the value assigned to hydraulic conductivity for model calibration was 30,000 feet per day and the value assigned to porosity was 20 percent. Boundary conditions were specified near data sites having long-term records of surface-water stages or water-table

  19. African Mahogany transpiration with Granier method and water table lysimeter

    Directory of Open Access Journals (Sweden)

    Ana C. O. Sérvulo

    Full Text Available ABSTRACT The thermal dissipation probe (Granier method is useful in the water deficit monitoring and irrigation management of African Mahogany, but its model needs proper adjustment. This paper aimed to adjust and validate the Granier sap flux model to estimate African Mahogany transpiration, measure transpiration using lysimeter and relate it to atmospheric water demand. Weather conditions, transpiration and sap flux were monitored in three units of 2.5-year-old African Mahogany trees in constant water table lysimeter, in Goiânia, GO. Sapwood area (SA, leaf area (LA, transpiration measured by lysimeter (TLYS and estimated by sap flux (TSF were evaluated. The SA comprised 55.24% of the trunk’s transversal section. The LA varied from 11.95 to 10.66 m2. TLYS and TSF varied from 2.94 to 29.31 and from 0.94 to 15.45 L d-1, respectively. The original model underestimated transpiration by 44.4%, being the adjusted equation F = 268.25 . k1.231. SA was significant (F < 0.05. Due the root confinement, the transpiration showed low correlation, but positive, with the atmospheric water demand.

  20. Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm)

    Science.gov (United States)

    Lynette R. Potvin; Evan S. Kane; Rodney A. Chimner; Randall K. Kolka; Erik A. Lilleskov

    2015-01-01

    Aims Our objective was to assess the impacts of water table position and plant functional type on peat structure, plant community composition and aboveground plant production. Methods We initiated a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional groups (PFG: sedge, Ericaceae,...

  1. Water flow in Sphagnum hummocks: Mesocosm measurements and modelling

    Science.gov (United States)

    Price, Jonathan S.; Whittington, Peter N.

    2010-02-01

    SummaryThe internal water fluxes within Sphagnum mosses critically affect the rate of evaporation and the wetness of the living upper few centimetres of moss (capitula) and the physiological processes (e.g. photosynthesis) that support them. To quantify water fluxes and stores in Sphagnum rubellum hummocks we used a 30 cm high column (mesocosm) of undisturbed hummock moss including the capitula, and applied a number of experiments to investigate (1) staged lowering (and raising) of the water table ( wt) with a manometer tube; (2) pumped seepage of about 0.7 cm d -1 to produce a wt drop of 1.5 cm day -1; and (3) evaporation averaging 3.2 mm d -1. Water content ( θ) at saturation ( θ s) was ˜0.9 cm 3 cm -3 for all depths. Residual water content ( θ r) was 0.2 cm 3 cm -3 at 5 cm depth, increasing to 0.47 cm 3 cm -3 at 25 cm depth. Hydraulic conductivity ( K) of the same top 5 cm layer ranged from 1.8 × 10 -3 m s -1 at θ s to 4 × 10 -8 m s -1 at θ r. By comparison K at 25 cm depth had a much more limited range from 2.3 × 10 -4 m s -1 at θ s to 1.1 × 10 -5 m s -1 at θ r. Staged wt lowering from -10 cm to -30 cm (no evaporation allowed) resulted in an abrupt change in θ that reached a stable value generally within an hour, indicating the responsiveness of moss to drainage. Staged increases also resulted in an abrupt rise in θ, but in some cases several days were required for θ to equilibrate. Pumped seepage resulted in a sequential decline of θ, requiring about 10 days for each layer to reach θ r after the water table dropped below the sensor at the respective depths. Evaporation resulted in a similar pattern of decline but took almost three times as long. The computer simulation Hydrus 1D was used to model the fluxes and provided a good fit for the staged lowering and pumped seepage experiments, but overestimated the water loss by evaporation. We believe the reason for this is that over the longer evaporation experiment, the monolith underwent

  2. Cylindrical solitons in shallow water of variable depth

    International Nuclear Information System (INIS)

    Carbonaro, P.; Floris, R.; Pantano, P.

    1983-01-01

    The propagation and the interaction of cylindrical solitons in shallow water of variable depth are studied. Starting from the cylindrically symmetric version of the equations describing long waves in a beach, a Korteweg-de Vries equation is derived. Since no exact analytical solution has been found to date for this equation, some remarkable cases in which the equation takes up a tractable form are analyzed. Finally the intercation between cylindrical imploding and expanding waves is considered and the phase shifts caused by the head-on collision are given

  3. Measurement of the 226Ra-concentration in bottled Austrian mineral waters and table beverages

    International Nuclear Information System (INIS)

    Friedmann, H.; Hernegger, F.

    1978-01-01

    226 Ra being regarded nowadays as a toxic trace element, a systementic examination of bottled Austrian mineral waters and table beverages has been carried out. Only in one case was the maximum allowable concentration of 3.3 pCi/l, a value set up by the WHO, clearly exceeded. (orig.) [de

  4. Multiple kernel SVR based on the MRE for remote sensing water depth fusion detection

    Science.gov (United States)

    Wang, Jinjin; Ma, Yi; Zhang, Jingyu

    2018-03-01

    Remote sensing has an important means of water depth detection in coastal shallow waters and reefs. Support vector regression (SVR) is a machine learning method which is widely used in data regression. In this paper, SVR is used to remote sensing multispectral bathymetry. Aiming at the problem that the single-kernel SVR method has a large error in shallow water depth inversion, the mean relative error (MRE) of different water depth is retrieved as a decision fusion factor with single kernel SVR method, a multi kernel SVR fusion method based on the MRE is put forward. And taking the North Island of the Xisha Islands in China as an experimentation area, the comparison experiments with the single kernel SVR method and the traditional multi-bands bathymetric method are carried out. The results show that: 1) In range of 0 to 25 meters, the mean absolute error(MAE)of the multi kernel SVR fusion method is 1.5m,the MRE is 13.2%; 2) Compared to the 4 single kernel SVR method, the MRE of the fusion method reduced 1.2% (1.9%) 3.4% (1.8%), and compared to traditional multi-bands method, the MRE reduced 1.9%; 3) In 0-5m depth section, compared to the single kernel method and the multi-bands method, the MRE of fusion method reduced 13.5% to 44.4%, and the distribution of points is more concentrated relative to y=x.

  5. Multi-stage optimization of decision and inhibitory trees for decision tables with many-valued decisions

    KAUST Repository

    Azad, Mohammad

    2017-06-16

    We study problems of optimization of decision and inhibitory trees for decision tables with many-valued decisions. As cost functions, we consider depth, average depth, number of nodes, and number of terminal/nonterminal nodes in trees. Decision tables with many-valued decisions (multi-label decision tables) are often more accurate models for real-life data sets than usual decision tables with single-valued decisions. Inhibitory trees can sometimes capture more information from decision tables than decision trees. In this paper, we create dynamic programming algorithms for multi-stage optimization of trees relative to a sequence of cost functions. We apply these algorithms to prove the existence of totally optimal (simultaneously optimal relative to a number of cost functions) decision and inhibitory trees for some modified decision tables from the UCI Machine Learning Repository.

  6. Multi-stage optimization of decision and inhibitory trees for decision tables with many-valued decisions

    KAUST Repository

    Azad, Mohammad; Moshkov, Mikhail

    2017-01-01

    We study problems of optimization of decision and inhibitory trees for decision tables with many-valued decisions. As cost functions, we consider depth, average depth, number of nodes, and number of terminal/nonterminal nodes in trees. Decision tables with many-valued decisions (multi-label decision tables) are often more accurate models for real-life data sets than usual decision tables with single-valued decisions. Inhibitory trees can sometimes capture more information from decision tables than decision trees. In this paper, we create dynamic programming algorithms for multi-stage optimization of trees relative to a sequence of cost functions. We apply these algorithms to prove the existence of totally optimal (simultaneously optimal relative to a number of cost functions) decision and inhibitory trees for some modified decision tables from the UCI Machine Learning Repository.

  7. Satellite-Derived Photic Depth on the Great Barrier Reef: Spatio-Temporal Patterns of Water Clarity

    Directory of Open Access Journals (Sweden)

    Scarla Weeks

    2012-11-01

    Full Text Available Detecting changes to the transparency of the water column is critical for understanding the responses of marine organisms, such as corals, to light availability. Long-term patterns in water transparency determine geographical and depth distributions, while acute reductions cause short-term stress, potentially mortality and may increase the organisms’ vulnerability to other environmental stressors. Here, we investigated the optimal, operational algorithm for light attenuation through the water column across the scale of the Great Barrier Reef (GBR, Australia. We implemented and tested a quasi-analytical algorithm to determine the photic depth in GBR waters and matched regional Secchi depth (ZSD data to MODIS-Aqua (2002–2010 and SeaWiFS (1997–2010 satellite data. The results of the in situ ZSD/satellite data matchup showed a simple bias offset between the in situ and satellite retrievals. Using a Type II linear regression of log-transformed satellite and in situ data, we estimated ZSD and implemented the validated ZSD algorithm to generate a decadal satellite time series (2002–2012 for the GBR. Water clarity varied significantly in space and time. Seasonal effects were distinct, with lower values during the austral summer, most likely due to river runoff and increased vertical mixing, and a decline in water clarity between 2008–2012, reflecting a prevailing La Niña weather pattern. The decline in water clarity was most pronounced in the inshore area, where a significant decrease in mean inner shelf ZSD of 2.1 m (from 8.3 m to 6.2 m occurred over the decade. Empirical Orthogonal Function Analysis determined the dominance of Mode 1 (51.3%, with the greatest variation in water clarity along the mid-shelf, reflecting the strong influence of oceanic intrusions on the spatio-temporal patterns of water clarity. The newly developed photic depth product has many potential applications for the GBR from water quality monitoring to analyses of

  8. Creation of Soil Water and Physical data base and its inclusion in a new version of GIS of Soil Resources Attributive Table

    International Nuclear Information System (INIS)

    Kolev, Boyko

    2013-01-01

    For better using of GIS of Soil Resources a new version of the attributive table formation was created. This makes possible soil, physical, and water properties to be included into the table. The simulation procedure for soil hydro-physical properties determination was realized by using the soil particle size distribution data only. This develops a calculation algorithm for soil water content dynamic monitoring, which was realized for some of Bulgarian soils. The main aims of the study are: To demonstrate the usefulness of the new version of the attributive table formation. To show how the simulation model can be applied for environment conditions monitoring and agricultural production management. Keywords: environment conditions, simulation model, soil moisture at field capacity, wilting point, effective soil water content, particle size distribution

  9. Long-term Water Table Monitoring of Rio Grande Riparian Ecosystems for Restoration Potential Amid Hydroclimatic Challenges

    Science.gov (United States)

    Thibault, James R.; Cleverly, James R.; Dahm, Clifford N.

    2017-12-01

    Hydrological processes drive the ecological functioning and sustainability of cottonwood-dominated riparian ecosystems in the arid southwestern USA. Snowmelt runoff elevates groundwater levels and inundates floodplains, which promotes cottonwood germination. Once established, these phreatophytes rely on accessible water tables (WTs). In New Mexico's Middle Rio Grande corridor diminished flooding and deepening WTs threaten native riparian communities. We monitored surface flows and riparian WTs for up to 14 years, which revealed that WTs and surface flows, including peak snowmelt discharge, respond to basin climate conditions and resource management. WT hydrographs influence the composition of riparian communities and can be used to assess if potential restoration sites meet native vegetation tolerances for WT depths, rates of recession, and variability throughout their life stages. WTs were highly variable in some sites, which can preclude native vegetation less adapted to deep drawdowns during extended droughts. Rates of WT recession varied between sites and should be assessed in regard to recruitment potential. Locations with relatively shallow WTs and limited variability are likely to be more viable for successful restoration. Suitable sites have diminished greatly as the once meandering Rio Grande has been constrained and depleted. Increasing demands on water and the presence of invasive vegetation better adapted to the altered hydrologic regime further impact native riparian communities. Long-term monitoring over a range of sites and hydroclimatic extremes reveals attributes that can be evaluated for restoration potential.

  10. Impact of intra- versus inter-annual snow depth variation on water relations and photosynthesis for two Great Basin Desert shrubs.

    Science.gov (United States)

    Loik, Michael E; Griffith, Alden B; Alpert, Holly; Concilio, Amy L; Wade, Catherine E; Martinson, Sharon J

    2015-06-01

    Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert.

  11. The effect of changing water table on methane fluxes at two Finnish mire sites

    International Nuclear Information System (INIS)

    Martikainen, P.J.; Nykaenen, H.; Crill, P.; Silvola, J.

    1992-01-01

    Methane fluxes were measured using static chamber technique on a minerotrophic fen and an ombrotrophic peat bog site located in the Lakkasuo mire complex in central Finland. Both sites consisted of a virgin area and an area drained in 1961 by ditching. The measurements in 1991 were made biweekly from spring thaw to winter freezing. During this period, the mean CH4 emission from the virgin minerotrophic site and virgin ombrotrophic site was 98 mg/m -2 d -1 and 40 mg/m -2 d -1 , respectively. The mean emission of CH 4 from the drained ombrotrophic site was 18 mg/m -2 d -1 . The drained minerotrophic site consumed methane during most of the measuring period, the average uptake was 0.13 mg/m2d. Draining had lowered the average water table by 4 cm at the ombrotrophic site and by 20 cm at minerotrophic site. The possible reasons for the different development of the water table and methane fluxes at ombrotrophic and minerotrophic sites after drainer are discussed

  12. Ground water conditions and the relation to uranium deposits in the Gas Hills area, Fremont and Natrona Counties, Wyoming

    International Nuclear Information System (INIS)

    Marks, L.Y.

    1978-03-01

    As ground water apparently leaches, transports, and deposits uranium in the Gas Hills area, central Wyoming, it is important to understand its distribution, movement, and relation to geology and ore bodies. Water table maps were prepared of the Wind River Basin; the most detailed work was in the Gas Hills area. The water table in the Gas Hills area slopes downward to the northwest, ranges in depth from near the ground surface to more than 200 feet, and has seasonal fluctuation of about five feet. Perched water tables and artesian conditions occur locally. The oxidized-unoxidized rock contact is probably roughly parallel to the water table, and averages about 25 feet above it; although locally the two surfaces are considerably farther apart and the oxidized-unoxidized contact may be below the water table. In many places the gradient of the water table changes near the contact between rocks of different permeability. It is conformable with the structure at some anticlines and its gradient changes abruptly near some faults. Most above-normal concentrations of uranium occur at local water table depressions or at water table terraces where the gradient of the water table flattens. At these places, the uraniferous ground water is slowed and is in contact with the reducing agents in the rocks for a relatively long time. This may allow reduction of soluble transported uranium (U +6 ) to insoluble U +4 ) so that uranium is precipitated

  13. Relationship between Pipeline Wall Thickness (Gr. X60) and Water Depth towards Avoiding Failure during Installation

    Science.gov (United States)

    Razak, K. Abdul; Othman, M. I. H.; Mat Yusuf, S.; Fuad, M. F. I. Ahmad; yahaya, Effah

    2018-05-01

    Oil and gas today being developed at different water depth characterized as shallow, deep and ultra-deep waters. Among the major components involved during the offshore installation is pipelines. Pipelines are a transportation method of material through a pipe. In oil and gas industry, pipeline come from a bunch of line pipe that welded together to become a long pipeline and can be divided into two which is gas pipeline and oil pipeline. In order to perform pipeline installation, we need pipe laying barge or pipe laying vessel. However, pipe laying vessel can be divided into two types: S-lay vessel and J-lay vessel. The function of pipe lay vessel is not only to perform pipeline installation. It also performed installation of umbilical or electrical cables. In the simple words, pipe lay vessel is performing the installation of subsea in all the connecting infrastructures. Besides that, the installation processes of pipelines require special focus to make the installation succeed. For instance, the heavy pipelines may exceed the lay vessel’s tension capacities in certain kind of water depth. Pipeline have their own characteristic and we can group it or differentiate it by certain parameters such as grade of material, type of material, size of diameter, size of wall thickness and the strength. For instances, wall thickness parameter studies indicate that if use the higher steel grade of the pipelines will have a significant contribution in pipeline wall thickness reduction. When running the process of pipe lay, water depth is the most critical thing that we need to monitor and concern about because of course we cannot control the water depth but we can control the characteristic of the pipe like apply line pipe that have wall thickness suitable with current water depth in order to avoid failure during the installation. This research will analyse whether the pipeline parameter meet the requirements limit and minimum yield stress. It will overlook to simulate pipe

  14. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    Science.gov (United States)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers

  15. Using inferential sensors for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The Everglades Depth Estimation Network (EDEN), with over 240 real-time gaging stations, provides hydrologic data for freshwater and tidal areas of the Everglades. These data are used to generate daily water-level and water-depth maps of the Everglades that are used to assess biotic responses to hydrologic change resulting from the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. The generation of EDEN daily water-level and water-depth maps is dependent on high quality real-time data from water-level stations. Real-time data are automatically checked for outliers by assigning minimum and maximum thresholds for each station. Small errors in the real-time data, such as gradual drift of malfunctioning pressure transducers, are more difficult to immediately identify with visual inspection of time-series plots and may only be identified during on-site inspections of the stations. Correcting these small errors in the data often is time consuming and water-level data may not be finalized for several months. To provide daily water-level and water-depth maps on a near real-time basis, EDEN needed an automated process to identify errors in water-level data and to provide estimates for missing or erroneous water-level data.The Automated Data Assurance and Management (ADAM) software uses inferential sensor technology often used in industrial applications. Rather than installing a redundant sensor to measure a process, such as an additional water-level station, inferential sensors, or virtual sensors, were developed for each station that make accurate estimates of the process measured by the hard sensor (water-level gaging station). The inferential sensors in the ADAM software are empirical models that use inputs from one or more proximal stations. The advantage of ADAM is that it provides a redundant signal to the sensor in the field without the environmental threats associated with field conditions at stations (flood or hurricane, for example). In the

  16. Photocatalytic degradation trichloroethylene: influence of type of TiO/sub 2/ and water depth

    International Nuclear Information System (INIS)

    Farooq, M.; Raja, I.A.

    2005-01-01

    Wastewater is frequently released untreated into the rivers and streams in developing countries, contaminating the major sources of freshwater. There is a need to find an economical solution to clean these essential water supplies. This paper describes the photo catalytic degradation of trichloroethylene (TCE) using three types of TiO/sub 2/. The performance of scientific grade (P25) and commercial grade TiO/sub 2/ was compared. The powder TiO/sub 2/ was found more effective than the sand TiO/sub 2/ for decomposing TCE. The effect of sand TiO/sub 2/ as photo catalyst was investigated at various water depths. It was observed that up to 45 mm water depth, sand TiO/sub 2/ showed photodegradation of TCE. The degradation rates of sand decreased. (author)

  17. Modeling of Soil Water and Salt Dynamics and Its Effects on Root Water Uptake in Heihe Arid Wetland, Gansu, China

    Directory of Open Access Journals (Sweden)

    Huijie Li

    2015-05-01

    Full Text Available In the Heihe River basin, China, increased salinity and water shortages present serious threats to the sustainability of arid wetlands. It is critical to understand the interactions between soil water and salts (from saline shallow groundwater and the river and their effects on plant growth under the influence of shallow groundwater and irrigation. In this study, the Hydrus-1D model was used in an arid wetland of the Middle Heihe River to investigate the effects of the dynamics of soil water, soil salinization, and depth to water table (DWT as well as groundwater salinity on Chinese tamarisk root water uptake. The modeled soil water and electrical conductivity of soil solution (ECsw are in good agreement with the observations, as indicated by RMSE values (0.031 and 0.046 cm3·cm−3 for soil water content, 0.037 and 0.035 dS·m−1 for ECsw, during the model calibration and validation periods, respectively. The calibrated model was used in scenario analyses considering different DWTs, salinity levels and the introduction of preseason irrigation. The results showed that (I Chinese tamarisk root distribution was greatly affected by soil water and salt distribution in the soil profile, with about 73.8% of the roots being distributed in the 20–60 cm layer; (II root water uptake accounted for 91.0% of the potential maximal value when water stress was considered, and for 41.6% when both water and salt stress were considered; (III root water uptake was very sensitive to fluctuations of the water table, and was greatly reduced when the DWT was either dropped or raised 60% of the 2012 reference depth; (IV arid wetland vegetation exhibited a high level of groundwater dependence even though shallow groundwater resulted in increased soil salinization and (V preseason irrigation could effectively increase root water uptake by leaching salts from the root zone. We concluded that a suitable water table and groundwater salinity coupled with proper irrigation

  18. Measuring the Change in Water Table with Gravity Methods - a Controlled Experiment

    DEFF Research Database (Denmark)

    Lund, S; Christiansen, Lars; Andersen, O. B.

    2009-01-01

    Gravity changes linearly with the change in soil water content. With the GRACE satellite mission the interest for ground-based gravity methods in hydrology has gained new attention. Time-lapse gravity data have the potential to constrain hydrological model parameters in a calibration scheme....... The greatest potential is seen for specific yield. The gravity signal from hydrology is small (10^-8 m/s^2 level) and the application of ground-based methods is mainly limited by the sensitivity of available instruments. In order to demonstrate the ability of the Scintrex CG-5 gravity meter to detect a change...... in water content, a controlled experiment was set up in 30 m by 20 m basin. The water table was lowered 0.69 m within 1½ hours and the corresponding gravity signal measured using two different approaches: a time series measurements at one location and a gravity network measurement including four points...

  19. Quality evaluation of commercially sold table water samples in Michael Okpara University of Agriculture, Umudike, Nigeria and surrounding environments

    Directory of Open Access Journals (Sweden)

    D.O. Okorie

    2015-01-01

    Full Text Available In Michael Okpara University of Agriculture, Umudike, Nigeria (MOUAU and surrounding environments, table water of different brands is commercially hawked by vendors. To the best of our knowledge, there is no scientific documentation on the quality of these water samples. Hence this study which evaluated the quality of different brands of water samples commercially sold in MOUAU and surrounding environments. The physicochemical properties (pH, total dissolved solids (TDS, biochemical oxygen demand (BOD, total hardness, dissolved oxygen, Cl, NO3, ammonium nitrogen (NH3N, turbidity, total suspended solids (TSS, Ca, Mg, Na and K of the water samples as indices of their quality were carried out using standard techniques. Results obtained from this study indicated that most of the chemical constituents of these table water samples commercially sold in Umudike environment conformed to the standards given by the Nigerian Industrial Standard (NIS, World Health Organization (WHO and American Public Health Association (APHA, respectively, while values obtained for ammonium nitrogen in these water samples calls for serious checks on methods of their production and delivery to the end users.

  20. Plant Water Use in Owens Valley, CA: Understanding the Influence of Climate and Depth to Groundwater

    OpenAIRE

    Pataki, Diane E

    2008-01-01

    There is a long-standing controversy in Owens Valley, California about the potential impacts of water exports on the local ecosystem. It is currently extremely difficult to attribute changes in plant cover and community composition to hydrologic change, as the interactions between ecological and hydrologic processes are relatively poorly understood. Underlying predictions about losses of grasslands and expansion of shrublands in response to declining water tables in Owens Valley are assumptio...

  1. Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter

    Science.gov (United States)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne laser-induced, depth-resolved water Raman backscatter is useful in the detection and mapping of water optical transmission variations. This test, together with other field experiments, has identified the need for additional field experiments to resolve the degree of the contribution to the depth-resolved, Raman-backscattered signal waveform that is due to (1) sea surface height or elevation probability density; (2) off-nadir laser beam angle relative to the mean sea surface; and (3) the Gelbstoff fluorescence background, and the analytical techniques required to remove it. When converted to along-track profiles, the waveforms obtained reveal cells of a decreased Raman backscatter superimposed on an overall trend of monotonically decreasing water column optical transmission.

  2. Culture of microalgae biomass for valorization of table olive processing water

    International Nuclear Information System (INIS)

    Contreras, C.G.; Serrano, A.; Ruiz-Filippi, G.; Borja, R.; Fermoso, F.G.

    2016-01-01

    Table olive processing water (TOPW) contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80%) in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS)/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%). Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS). Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment. [es

  3. Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems

    Science.gov (United States)

    Karl M. Meingast; Michael J. Falkowski; Evan S. Kane; Lynette R. Potvin; Brian W. Benscoter; Alistair M.S. Smith; Laura L. Bourgeau-Chavez; Mary Ellen. Miller

    2014-01-01

    Wildland fire occurrence has been increasing in peatland ecosystems during recent decades. As such, there is a need for broadly applicable tools to detect and monitor controls on combustion such as surface peat moisture and water-table position. A field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss-dominated...

  4. Seed Burial Depth and Soil Water Content Affect Seedling Emergence and Growth of Ulmus pumila var. sabulosa in the Horqin Sandy Land

    Directory of Open Access Journals (Sweden)

    Jiao Tang

    2016-01-01

    Full Text Available We investigated the effects of seed burial depth and soil water content on seedling emergence and growth of Ulmus pumila var. sabulosa (sandy elm, an important native tree species distributed over the European-Asian steppe. Experimental sand burial depths in the soil were 0.5, 1.0, 1.5, 2.0 and 2.5 cm, and soil water contents were 4%, 8%, 12% and 16% of field capacity. All two-way ANOVA (five sand burial depths and four soil water contents results showed that seed burial depths, soil water content and their interactions significantly affected all the studied plant variables. Most of the times, seedling emergence conditions were greater at the lower sand burial depths (less than 1.0 cm than at the higher (more than 1.0 cm seed burial depths, and at the lower water content (less than 12% than at the higher soil water content. However, high seed burial depths (more than 1.5 cm or low soil water content (less than 12% reduced seedling growth or change in the root/shoot biomass ratios. In conclusion, the most suitable range of sand burial was from 0.5 to 1.0 cm soil depth and soil water content was about 12%, respectively, for the processes of seedling emergence and growth. These findings indicate that seeds of the sandy elm should be kept at rather shallow soil depths, and water should be added up to 12% of soil capacity when conducting elm planting and management. Our findings could help to create a more appropriate sandy elm cultivation and understand sparse elm woodland recruitment failures in arid and semi-arid regions.

  5. Elemental Water Impact Test: Phase 3 Plunge Depth of a 36-Inch Aluminum Tank Head

    Science.gov (United States)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA water landing simulations. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. Phase 3 featured a composite tank head that was tested at a range of heights to verify the ability to predict structural failure of composites. To support planning for Phase 3, a test series was conducted with an aluminum tank head dropped from heights of 2, 6, 10, and 12 feet to verify that the test article would not impact the bottom of the test pool. This report focuses on the comparisons of the measured plunge depths to LS-DYNA predictions. The results for the tank head model demonstrated the following. 1. LS-DYNA provides accurate predictions for peak accelerations. 2. LS-DYNA consistently under-predicts plunge depth. An allowance of at least 20% should be added to the LS-DYNA predictions. 3. The LS-DYNA predictions for plunge depth are relatively insensitive to the fluid-structure coupling stiffness.

  6. Calculation of intercepted runoff depth based on stormwater quality and environmental capacity of receiving waters for initial stormwater pollution management.

    Science.gov (United States)

    Peng, Hai-Qin; Liu, Yan; Gao, Xue-Long; Wang, Hong-Wu; Chen, Yi; Cai, Hui-Yi

    2017-11-01

    While point source pollutions have gradually been controlled in recent years, the non-point source pollution problem has become increasingly prominent. The receiving waters are frequently polluted by the initial stormwater from the separate stormwater system and the wastewater from sewage pipes through stormwater pipes. Consequently, calculating the intercepted runoff depth has become a problem that must be resolved immediately for initial stormwater pollution management. The accurate calculation of intercepted runoff depth provides a solid foundation for selecting the appropriate size of intercepting facilities in drainage and interception projects. This study establishes a separate stormwater system for the Yishan Building watershed of Fuzhou City using the InfoWorks Integrated Catchment Management (InfoWorks ICM), which can predict the stormwater flow velocity and the flow of discharge outlet after each rainfall. The intercepted runoff depth is calculated from the stormwater quality and environmental capacity of the receiving waters. The average intercepted runoff depth from six rainfall events is calculated as 4.1 mm based on stormwater quality. The average intercepted runoff depth from six rainfall events is calculated as 4.4 mm based on the environmental capacity of the receiving waters. The intercepted runoff depth differs when calculated from various aspects. The selection of the intercepted runoff depth depends on the goal of water quality control, the self-purification capacity of the water bodies, and other factors of the region.

  7. [Effects of submarine topography and water depth on distribution of pelagic fish community in minnan-taiwan bank fishing ground].

    Science.gov (United States)

    Fang, Shuimei; Yang, Shengyun; Zhang, Chengmao; Zhu, Jinfu

    2002-11-01

    According to the fishing record of the light-seine information vessel in Minnan-Taiwan bank ground during 1989 to 1999, the effects of submarine topography and water depth on distribution of pelagic fish community in Minnan-Taiwan bank fishing ground was studied. The results showed that the pelagic fish distributed concentratively, while the submarine topography and water depth varied widely, but in different fishing regions, the distribution of pelagic fishes was uneven. The distribution of fishing yield increased from north to south, and closed up from sides of the bank to south or north in the regions. Pelagic fish distributed mainly in mixed water in the southern Taiwan Strait, and in warm water in the Taiwan Strait. The central fishing grounds were at high salt regions. Close gathering regions of pelagic fish or central fishing ground would be varied with the seasonal variation of mixed water in the southern Taiwan Strait and warm water in the Taiwan Strait. Central fishing ground was not only related to submarine topography and water depth, but also related to wind direction, wind-power and various water systems. In the fishing ground, the gathering depth of pelagic fish was 30-60 m in spring and summer, and 40-80 m in autumn and winter.

  8. Nitrogen Release in Pristine and Drained Peat Profiles in Response to Water Table Fluctuations: A Mesocosm Experiment

    Directory of Open Access Journals (Sweden)

    Merjo P. P. Laine

    2013-01-01

    Full Text Available In the northern hemisphere, variability in hydrological conditions was suggested to increase as a consequence of climate warming, which may result in longer droughts than the area has experienced before. Due to their predominately anoxic conditions, peatlands are expected to respond to changes in hydrological conditions, such as successive drying and rewetting periods. As peatlands are rich in organic matter, any major changes in water table may influence the decomposition of it. The hydrological conditions may also influence release of nutrients from peat profiles as well as affect their transport to downstream ecosystems. In our mesocosm experiment, artificial water table fluctuations in pristine peat profiles caused an increase in dissolved organic nitrogen (DON and ammonium (NH4+-N concentrations, while no response was found in drained peat profiles, although originating from the same peatland complex.

  9. Saline-water intrusion related to well construction in Lee County, Florida

    Science.gov (United States)

    Boggess, Durward Hoye; Missimer, T.M.; O'Donnell, T. H.

    1977-01-01

    Ground water is the principle source of water supply in Lee County, Florida where an estimated 30,000 wells have been drilled since 1990. These wells ranges in depth from about 10 to 1,240 feet and tap the water table aquifer or one or more of the artesian water-bearing units or zones in the Tamiami Formation, the upper part of the Hawthorn Formation, the lower part of the Hawthorn Formation and the Tampa Limestone and the Suwannee Limestone. Before 1968, nearly all wells were constructed with galvanized or black iron pipe. Many of these wells are sources of saline-water intrusion into freshwater-bearing zones. The water-bearing zones in the lower part of the Hawthorn Formation, Tampa Limestone, and Suwannee Limestone are artesian-they have higher water levels and usually contain water with a higher concentration of dissolved solids than do the aquifers occurring at shallower depths. The water from these deeper aquifers generally range in dissolved solids concentration from about 1,500 to 2,400 mg/L, and in chloride from about 500 to 1,00 mg/L. A maximum chloride concentration of 15,200 mg/L has been determined. Few of the 3,00 wells estimated to have been drilled to these zones contain sufficient casing to prevent upward flow into overlaying water-bearing zones. Because of water-level differentials, upward movement and lateral intrusion of saline water occurs principally into the upper part of the Hawthorn Formation where the chloride concentrations in water unaffected by saline-water intrusion ranges from about 80 to 150 mg/L. Where intrusion from deep artesian zones has occurred, the chloride concentration in water from the upper part of the Hawthorn Formation ranges from about 300 to more than 2,100 mg/L Surface discharges of the saline water from wells tapping the lower part of the Hawthorn Formation and the Suwannee Limestone also had affected the water-table aquifer which normally contains water with 10 to 50 mg/L of chloride. In one area, the chloride

  10. Long-term Effects of Hydrologic Manipulations on Pore Water Dissolved Organic Carbon in an Alaskan Rich Fen

    Science.gov (United States)

    Rupp, D.; Kane, E. S.; Keller, J.; Turetsky, M. R.; Meingast, K. M.

    2016-12-01

    Boreal peatlands are experiencing rapid changes due to temperature and precipitation regime shifts in northern latitudes. In areas near Fairbanks, Alaska, thawing permafrost due to climatic changes alters peatland hydrology and thus the biogeochemical cycles within. Pore water chemistry reflects the biological and chemical processes occurring in boreal wetlands. The characterization of dissolved organic carbon (DOC) within pore water offers clues into the nature of microbially-driven biogeochemical shifts due to changing hydrology. There is mounting evidence that organic substances play an important role in oxidation-reduction (redox) reactivity of peat at northern latitudes, which is closely linked to carbon cycling. However, the redox dynamics of DOC are complex and have not been examined in depth in boreal peatlands. Here, we examine changes in organic substances and their influences on redox activity at the Alaska Peatland Experiment (APEX) site near Fairbanks, Alaska, where water table manipulation treatments have been in place since 2005 (control, raised water table, and lowered water table). With time, the altered hydrology has led to a shift in the plant community to favor sedge species in the raised water table treatment and more shrubs and non-aerenchymous plants in the lowered water table treatment. The litter from different plant functional types alters the character of the dissolved organic carbon, with more recalcitrant material containing lignin in the lowered water table plot due to the greater abundance of shrubs. A greater fraction of labile DOC in the raised treatment plot likely results from more easily decomposed sedge litter, root exudates at depth, and more frequently waterlogged conditions, which are antagonistic to aerobic microbial decomposition. We hypothesize that a greater fraction of phenolic carbon compounds supports higher redox activity. However, we note that not all "phenolic" compounds, as assayed by spectrophotometry, have the

  11. Empirical water depth predictions in Dublin Bay based on satellite EO multispectral imagery and multibeam data using spatially weighted geographical analysis

    Science.gov (United States)

    Monteys, Xavier; Harris, Paul; Caloca, Silvia

    2014-05-01

    The coastal shallow water zone can be a challenging and expensive environment within which to acquire bathymetry and other oceanographic data using traditional survey methods. Dangers and limited swath coverage make some of these areas unfeasible to survey using ship borne systems, and turbidity can preclude marine LIDAR. As a result, an extensive part of the coastline worldwide remains completely unmapped. Satellite EO multispectral data, after processing, allows timely, cost efficient and quality controlled information to be used for planning, monitoring, and regulating coastal environments. It has the potential to deliver repetitive derivation of medium resolution bathymetry, coastal water properties and seafloor characteristics in shallow waters. Over the last 30 years satellite passive imaging methods for bathymetry extraction, implementing analytical or empirical methods, have had a limited success predicting water depths. Different wavelengths of the solar light penetrate the water column to varying depths. They can provide acceptable results up to 20 m but become less accurate in deeper waters. The study area is located in the inner part of Dublin Bay, on the East coast of Ireland. The region investigated is a C-shaped inlet covering an area of 10 km long and 5 km wide with water depths ranging from 0 to 10 m. The methodology employed on this research uses a ratio of reflectance from SPOT 5 satellite bands, differing to standard linear transform algorithms. High accuracy water depths were derived using multibeam data. The final empirical model uses spatially weighted geographical tools to retrieve predicted depths. The results of this paper confirm that SPOT satellite scenes are suitable to predict depths using empirical models in very shallow embayments. Spatial regression models show better adjustments in the predictions over non-spatial models. The spatial regression equation used provides realistic results down to 6 m below the water surface, with

  12. The 2005 CHF look-up table

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Vasic, A.Z.; Leung, L.K.H.; Durmayaz, A.; Shan, J.Q.; Yang, J.; Cheng, S.C.

    2005-01-01

    Full text of publication follows: CHF Look-up tables have been used widely for the prediction of the Critical Heat Flux (CHF) The CHF look-up table is basically a normalized data bank. The first CHF look-up table was constructed by Doroshchuk et al. (1975), using a limited database of 5 000 data points. This table, and all subsequent tables, contain normalized CHF values for a vertical 8 mm water-cooled tube for various pressures, mass fluxes and qualities. The CHF table development work has since been in progress at various institutions (e.g. CENG-Grenoble, University of Ottawa (UO), Ottawa, IPPE, Obninsk, and AECL, Chalk River) using an ever increasing data base. The 1995 CHF look-up table employs a data base containing about 30 000 CHF points and provides CHF values for an 8 mm ID, water-cooled tube, for 19 pressures, 20 mass fluxes, and 23 qualities. covering the full range of conditions of practical interest. The 2005 CHF LUT is an update to the 1995 LUT and addresses several concerns raised in the literature. The major improvements made are: - enhancement of the quality of the data base of the CHF look-up table (identify outliers, improve screening procedures); - increase in the data base by adding recently obtained data; - employment of greater subdivision of the look-up table by using smaller intervals in the independent parameters (pressure, mass flux and quality) at conditions where the variation in CHF is significant; - improvement of the smoothness of the CHF look-up table. This was done by the use of logarithmic functions for CHF, using optimum Spline functions etc. A discussion of the impact of these changes on the prediction accuracy and table smoothness is presented. It will be shown that the 2005 CHF look-up table is characterized by a significant improvement in accuracy and smoothness. [1] D. Groeneveld is the corresponding author. He is an Adjunct Professor at the University of Ottawa. (authors)

  13. Hydrogeologic characteristics and geospatial analysis of water-table changes in the alluvium of the lower Arkansas River Valley, southeastern Colorado, 2002, 2008, and 2015

    Science.gov (United States)

    Holmberg, Michael J.

    2017-05-15

    The U.S. Geological Survey in cooperation with the Lower Arkansas Valley Water Conservancy District measures groundwater levels periodically in about 100 wells completed in the alluvial material of the Arkansas River Valley in Pueblo, Crowley, Otero, Bent, and Prowers Counties in southeastern Colorado, of which 95 are used for the analysis in this report. The purpose of this report is to provide information to water-resource administrators, managers, planners, and users about groundwater characteristics in the alluvium of the lower Arkansas Valley extending roughly 150 miles between Pueblo Reservoir and the Colorado-Kansas State line. This report includes three map sheets showing (1) bedrock altitude at the base of the alluvium of the lower Arkansas Valley; (2) estimated spring-to-spring and fall-to-fall changes in water-table altitude between 2002, 2008, and 2015; and (3) estimated saturated thickness in the alluvium during spring and fall of 2002, 2008, and 2015, and thickness of the alluvium in the lower Arkansas Valley. Water-level changes were analyzed by geospatial interpolation methods.Available data included all water-level measurements made between January 1, 2001, and December 31, 2015; however, only data from fall and spring of 2002, 2008, and 2015 are mapped in this report. To account for the effect of John Martin Reservoir in Bent County, Colorado, lake levels at the reservoir were assigned to points along the approximate shoreline and were included in the water-level dataset. After combining the water-level measurements and lake levels, inverse distance weighting was used to interpolate between points and calculate the altitude of the water table for fall and spring of each year for comparisons. Saturated thickness was calculated by subtracting the bedrock surface from the water-table surface. Thickness of the alluvium was calculated by subtracting the bedrock surface from land surface using a digital elevation model.In order to analyze the response

  14. The effect of urbanization in an arid region: Formation of a perched water table that causes environmental damages

    Science.gov (United States)

    Karnieli, A.; Issar, A.; Wolf, M.

    1984-03-01

    Construction in a new neighborhood in the israeli town of Dimona, situated in an arid region in the south of the country (150 mm average annual rainfall), resulted in a rise in groundwater levels during the subsequent rainy seasons This caused flooding of shelter basements, soil sliding, and sagging which permanently damaged walls and buildings The neighborhood had been built on continental sands and marls blanketed by loess, on a valley slope near a rocky anticlinal dip-slope Subsurface studies, using piezometer holes and groundwater analyses, revealed the presence of sand lenses alternating with plastic marls, which act as seasonal aquifers with perched water tables Groundwaters obtain high SO{4/-2} and Cl- corrosivity through contact with these nonflushed marls of the Neogene valley fill (Hazeva Formation) The reasons for the rising of groundwater were found to be (a) artificial interference with the natural (pre-construction) drainage system—interception of the hillside runoff by building plots, roads, etc, (b) partial denudation of the loess blanket, increasing the local infiltration and the build-up of local, perched water tables, and (c) corrosion of concrete and steel pipelines, as well as foundations, by prolonged contact with corrosive groundwater, resulting in haphazard but massive leakage Guidelines are proposed for an environmental improvement plan, which would include terracing and planting of the watershed above town to increase evapotranspiration, lowering of the water table by pumping, and diverting the water to suburban parks (groves of saltresistant trees), and replacement of steel and cement pipes by a non-corrodable plastic pipe system

  15. Effects of Permanently Raised Water Tables on Forest Overstory Vegetation in the Vicinity of the Tennessee-Tombigbee Waterway.

    Science.gov (United States)

    1982-08-01

    Mississippi Valley* Common Name Scientific Name Very Tolerant** Water hickory Carya aquatica Pecan C. illinoensis Buttonbush Cephalanthus occidentalis...Table I (Concluded) Common Name Scientific Name Intolerant* Ironwood Carpinus caroliniana Bitternut hickory Carya cordiformis Shellbark

  16. Condition and biochemical profile of blue mussels (Mytilus edulis L.) cultured at different depths in a cold water coastal environment

    Science.gov (United States)

    Gallardi, Daria; Mills, Terry; Donnet, Sebastien; Parrish, Christopher C.; Murray, Harry M.

    2017-08-01

    The growth and health of cultured blue mussels (Mytilus edulis) are affected by environmental conditions. Typically, culture sites are situated in sheltered areas near shore (i.e., 20 m depth) mussel culture has been growing. This study evaluated the effect of culture depth on blue mussels in a cold water coastal environment (Newfoundland, Canada). Culture depth was examined over two years from September 2012 to September 2014; mussels from three shallow water (5 m) and three deep water (15 m) sites were compared for growth and biochemical composition; culture depths were compared for temperature and chlorophyll a. Differences between the two years examined were noted, possibly due to harsh winter conditions in the second year of the experiment. In both years shallow and deep water mussels presented similar condition; in year 2 deep water mussels had a significantly better biochemical profile. Lipid and glycogen analyses showed seasonal variations, but no significant differences between shallow and deep water were noted. Fatty acid profiles showed a significantly higher content of omega-3 s (20:5ω3; EPA) and lower content of bacterial fatty acids in deep water sites in year 2. Everything considered, deep water appeared to provide a more favorable environment for mussel growth than shallow water under harsher weather conditions.

  17. Development of new precipitation frequency tables for counties in Kansas using NOAA Atlas 14.

    Science.gov (United States)

    2014-12-01

    This report documents the development of KDOTs new rainfall tables for counties in Kansas based on : NOAA Atlas 14 Volume 8. These new tables provide rainfall depths and intensities for durations from 5 : minutes to 24 hours and recurrence interva...

  18. Evaluation of the depth-integration method of measuring water discharge in large rivers

    Science.gov (United States)

    Moody, J.A.; Troutman, B.M.

    1992-01-01

    The depth-integration method oor measuring water discharge makes a continuos measurement of the water velocity from the water surface to the bottom at 20 to 40 locations or verticals across a river. It is especially practical for large rivers where river traffic makes it impractical to use boats attached to taglines strung across the river or to use current meters suspended from bridges. This method has the additional advantage over the standard two- and eight-tenths method in that a discharge-weighted suspended-sediment sample can be collected at the same time. When this method is used in large rivers such as the Missouri, Mississippi and Ohio, a microwave navigation system is used to determine the ship's position at each vertical sampling location across the river, and to make accurate velocity corrections to compensate for shift drift. An essential feature is a hydraulic winch that can lower and raise the current meter at a constant transit velocity so that the velocities at all depths are measured for equal lengths of time. Field calibration measurements show that: (1) the mean velocity measured on the upcast (bottom to surface) is within 1% of the standard mean velocity determined by 9-11 point measurements; (2) if the transit velocity is less than 25% of the mean velocity, then average error in the mean velocity is 4% or less. The major source of bias error is a result of mounting the current meter above a sounding weight and sometimes above a suspended-sediment sampling bottle, which prevents measurement of the velocity all the way to the bottom. The measured mean velocity is slightly larger than the true mean velocity. This bias error in the discharge is largest in shallow water (approximately 8% for the Missouri River at Hermann, MO, where the mean depth was 4.3 m) and smallest in deeper water (approximately 3% for the Mississippi River at Vickbsurg, MS, where the mean depth was 14.5 m). The major source of random error in the discharge is the natural

  19. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer

  20. Effect of higher order nonlinearity, directionality and finite water depth on wave statistics: Comparison of field data and numerical simulations

    Science.gov (United States)

    Fernández, Leandro; Monbaliu, Jaak; Onorato, Miguel; Toffoli, Alessandro

    2014-05-01

    This research is focused on the study of nonlinear evolution of irregular wave fields in water of arbitrary depth by comparing field measurements and numerical simulations.It is now well accepted that modulational instability, known as one of the main mechanisms for the formation of rogue waves, induces strong departures from Gaussian statistics. However, whereas non-Gaussian properties are remarkable when wave fields follow one direction of propagation over an infinite water depth, wave statistics only weakly deviate from Gaussianity when waves spread over a range of different directions. Over finite water depth, furthermore, wave instability attenuates overall and eventually vanishes for relative water depths as low as kh=1.36 (where k is the wavenumber of the dominant waves and h the water depth). Recent experimental results, nonetheless, seem to indicate that oblique perturbations are capable of triggering and sustaining modulational instability even if khthe aim of this research is to understand whether the combined effect of directionality and finite water depth has a significant effect on wave statistics and particularly on the occurrence of extremes. For this purpose, numerical experiments have been performed solving the Euler equation of motion with the Higher Order Spectral Method (HOSM) and compared with data of short crested wave fields for different sea states observed at the Lake George (Australia). A comparative analysis of the statistical properties (i.e. density function of the surface elevation and its statistical moments skewness and kurtosis) between simulations and in-situ data provides a confrontation between the numerical developments and real observations in field conditions.

  1. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images.

    Science.gov (United States)

    Bustamante, Javier; Pacios, Fernando; Díaz-Delgado, Ricardo; Aragonés, David

    2009-05-01

    We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630-690 nm), band 5 (1550-1750 nm) and the ratio between bands 1 (450-520 nm) and 4 (760-900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520-600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.

  2. Water movement through a shallow unsaturated zone in an inland arid region: Field drip irrigation experiment under matrix potential control

    Science.gov (United States)

    Zhou, T.; Han, D.; Song, X.

    2017-12-01

    It is vital to study soil water movement in unsaturated zone for evaluating and improving current irrigation mode for prevention and control of soil secondary salinization, especially in inland arid area, where is characterized by strong evaporation, poor drainage system and shallow water table depth. In this study, we investigated the applicability of drip irrigation under matrix potential control during cotton growth seasons in an inland arid region of northwest China. Combined physical observation with stable isotopes tracing method, we studied soil water flow system and recharge sources of shallow groundwater in heavy (Pilot 1) and light (Pilot 2) saline-alkali cotton fields. Evaporation depths (about 50-60 cm) are about the same for both pilots, but infiltration depths (about 60 cm for Pilot 1 and 150 cm for Pilot 2) are very different due to different soil texture, soil structure and soil salt content. Middle layer (about 100 cm thick) is a critical barrier for water exchange between surface and deep layer. Irrigation water is the major source (about 79.6% for Pilot 1 and 81.6% for Pilot 2), while evapotranspiration is the major sink (about 80.7% for Pilot 1 and 83.1% for Pilot 2) of unsaturated zone. The increase of soil water storage is not enough to make up the water shortage of middle layer and thus drip irrigation water doesn't recharge into groundwater for both pilots. Water table rise (about 60 cm for Pilot 1 and 50 cm for Pilot 2) could be caused by lateral groundwater flow instead of vertical infiltration. This irrigation mode could retard the water table rise in this region. However, improving horizontal drainage system may be indispensable for sustainable agriculture development. The study can provide important basis for soil secondary salinization prevention and agricultural water management in inland arid areas.

  3. Dosimetric Effects Of Different Treatment Tables During Radiotherapy

    International Nuclear Information System (INIS)

    Murkovic, M.; Grego, T.; Bibic, J.

    2015-01-01

    The aim of our study was to measure the effect of mega-voltage photon beam attenuation when treating patients through carbon fibre treatment table with and without the carbon laminate base plate on it. We also examined the ability of XiO treatment planning system in modelling this effect. Direct attenuation measurements were made for two treatment tables, Siemens TxT 550 treatment table with TT-A table top and Elekta Precise table with iBEAM evo table top. On both treatment tables we used Orfit Base Plate (32301). Measurements were taken for two photon energies (6 MV and 18 MV), at two different field sizes (5 x 5 cm 2 and 10 x 10 cm 2 ) and different gantry angles in 50 intervals using stationary water phantom and Farmer type ionization chamber. These values were compared to values calculated in XiO. In order to account for the effect of table and base plate during treatment planning in XiO, customized table and base plate templates were develop in Focal planning system. To construct these customized templates, table and base plate contours as well as respective relative electron density's to water were obtained on CT scanner. The largest attenuation effect was seen for oblique treatment angles using low energy and small field sizes, 6.6 percent for the Elekta table top and 8.4 percent for Siemens table top. In this paper we show that customized table and base plate templates introduced in the patient treatment plan can accurately model the attenuation due to their presence to within 0.3 percent. Since dose modifications due to such carbon fiber accessories can be significant, it can be concluded that introduction of customized table and base plate templates into TPS brings an important improvement to patient treatment planning, and should be included in dose calculations whenever possible. (author).

  4. Non-methane biogenic volatile organic compound emissions from boreal peatland microcosms under warming and water table drawdown

    DEFF Research Database (Denmark)

    Faubert, P; Tiiva, P; Nakam, TA

    2011-01-01

    assessed the combined effect of warming and water table drawdown on the BVOC emissions from boreal peatland microcosms. We also assessed the treatment effects on the BVOC emissions from the peat soil after the 7-week long experiment. Emissions of isoprene, monoterpenes, sesquiterpenes, other reactive VOCs...

  5. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1931 to 1955

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1931 to 1955 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  6. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1912 to 1930

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1912 to 1930 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  7. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1956 to 1980

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1956 to 1980 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  8. Gulf of Maine - Water Salinity, Temperature and Sigma t (density) data from 1981 to 2005

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table contains water salinity, temperature and sigma t (density) data from 1981 to 2005 binned at 10 meter depth intervals (from 300 meters up to 0 meters) for...

  9. Numerical tables on physical and chemical analyses of Rhine water

    International Nuclear Information System (INIS)

    1982-01-01

    Tables on the places of measurement, the sampling methods and the methods of analysis used. The numerical tables of the measurement results are broken down in general parameters, organic, entrophicating and anorganic substances, orgnic micro-pollutants and radioactivity. (GG) [de

  10. Regional water table (2016) in the Mojave River and Morongo groundwater basins, southwestern Mojave Desert, California

    Science.gov (United States)

    Dick, Meghan; Kjos, Adam

    2017-12-07

    From January to April 2016, the U.S. Geological Survey (USGS), the Mojave Water Agency, and other local water districts made approximately 1,200 water-level measurements in about 645 wells located within 15 separate groundwater basins, collectively referred to as the Mojave River and Morongo groundwater basins. These data document recent conditions and, when compared with older data, changes in groundwater levels. A water-level contour map was drawn using data measured in 2016 that shows the elevation of the water table and general direction of groundwater movement for most of the groundwater basins. Historical water-level data stored in the USGS National Water Information System (https://waterdata.usgs.gov/nwis/) database were used in conjunction with data collected for this study to construct 37 hydrographs to show long-term (1930–2016) and short-term (1990–2016) water-level changes in the study area.

  11. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands.

    Science.gov (United States)

    Nosetto, Marcelo D; Jobbágy, Esteban G; Tóth, Tibor; Di Bella, Carlos M

    2007-07-01

    Plants, by influencing water fluxes across the ecosystem-vadose zone-aquifer continuum, can leave an imprint on salt accumulation and distribution patterns. We explored how the conversion of native grasslands to oak plantations affected the abundance and distribution of salts on soils and groundwater through changes in the water balance in naturally salt-affected landscapes of Hortobagy (Hungary), a region where artificial drainage performed approximately 150 years ago lowered the water table (from -2 to -5 m) decoupling it from the surface ecosystem. Paired soil sampling and detailed soil conductivity transects revealed consistently different salt distribution patterns between grasslands and plantations, with shallow salinity losses and deep salinity gains accompanying tree establishment. Salts accumulated in the upper soil layers during pre-drainage times have remained in drained grasslands but have been flushed away under tree plantations (65 and 83% loss of chloride and sodium, respectively, in the 0 to -0.5 m depth range) as a result of a five- to 25-fold increase in infiltration rates detected under plantations. At greater depth, closer to the current water table level, the salt balance was reversed, with tree plantations gaining 2.5 kg sodium chloride m(-2) down to 6 m depth, resulting from groundwater uptake and salt exclusion by tree roots in the capillary fringe. Diurnal water table fluctuations, detected in a plantation stand but not in the neighbouring grasslands, together with salt mass balances suggest that trees consumed approximately 380 mm groundwater per year, re-establishing the discharge regime and leading to higher salt accumulation rates than those interrupted by regional drainage practices more than a century ago. The strong influences of vegetation changes on water dynamics can have cascading consequences on salt accumulation and distribution, and a broad ecohydrological perspective that explicitly considers vegetation-groundwater links is

  12. Monitoring of water movement in paddy field's soil using a bromide tracer

    International Nuclear Information System (INIS)

    Asiah Ahmad; Kouichi Yuita

    1994-01-01

    Water movement in soils at the lower course and the middle course of Sakawa River's paddy field was monitored over an 8 week period using a bromide tracer. The water of soil samples taken one day after bromide application contained high concentrations of bromide at 50 to 60 cm soil depth at lower course. The bromide was concentrated promarily within 20 to 80 cm depth. No downward movement below 80 cm depth was detected six weeks afetr the application. This might indicate the high water table of this area. On the other hand, bromide concentrations were high at 50 cm depth in water of the soils sample taken one day after application from the middle course of Sakawa River plot. However, the concentrations were nearly at background level in all samples taken from the middle course of sakawa River 3 weeks after application. The evidence from bromide's movement shows that water readily penetrate the soils at the middle course of Sakawa River. The downward movement was faster compared to that at lower course

  13. Benthic Habitat Mapping by Combining Lyzenga’s Optical Model and Relative Water Depth Model in Lintea Island, Southeast Sulawesi

    Science.gov (United States)

    Hafizt, M.; Manessa, M. D. M.; Adi, N. S.; Prayudha, B.

    2017-12-01

    Benthic habitat mapping using satellite data is one challenging task for practitioners and academician as benthic objects are covered by light-attenuating water column obscuring object discrimination. One common method to reduce this water-column effect is by using depth-invariant index (DII) image. However, the application of the correction in shallow coastal areas is challenging as a dark object such as seagrass could have a very low pixel value, preventing its reliable identification and classification. This limitation can be solved by specifically applying a classification process to areas with different water depth levels. The water depth level can be extracted from satellite imagery using Relative Water Depth Index (RWDI). This study proposed a new approach to improve the mapping accuracy, particularly for benthic dark objects by combining the DII of Lyzenga’s water column correction method and the RWDI of Stumpt’s method. This research was conducted in Lintea Island which has a high variation of benthic cover using Sentinel-2A imagery. To assess the effectiveness of the proposed new approach for benthic habitat mapping two different classification procedures are implemented. The first procedure is the commonly applied method in benthic habitat mapping where DII image is used as input data to all coastal area for image classification process regardless of depth variation. The second procedure is the proposed new approach where its initial step begins with the separation of the study area into shallow and deep waters using the RWDI image. Shallow area was then classified using the sunglint-corrected image as input data and the deep area was classified using DII image as input data. The final classification maps of those two areas were merged as a single benthic habitat map. A confusion matrix was then applied to evaluate the mapping accuracy of the final map. The result shows that the new proposed mapping approach can be used to map all benthic objects in

  14. Depth Estimation of Submerged Aquatic Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing.

    Science.gov (United States)

    Visser, Fleur; Buis, Kerst; Verschoren, Veerle; Meire, Patrick

    2015-09-30

    UAVs and other low-altitude remote sensing platforms are proving very useful tools for remote sensing of river systems. Currently consumer grade cameras are still the most commonly used sensors for this purpose. In particular, progress is being made to obtain river bathymetry from the optical image data collected with such cameras, using the strong attenuation of light in water. No studies have yet applied this method to map submergence depth of aquatic vegetation, which has rather different reflectance characteristics from river bed substrate. This study therefore looked at the possibilities to use the optical image data to map submerged aquatic vegetation (SAV) depth in shallow clear water streams. We first applied the Optimal Band Ratio Analysis method (OBRA) of Legleiter et al. (2009) to a dataset of spectral signatures from three macrophyte species in a clear water stream. The results showed that for each species the ratio of certain wavelengths were strongly associated with depth. A combined assessment of all species resulted in equally strong associations, indicating that the effect of spectral variation in vegetation is subsidiary to spectral variation due to depth changes. Strongest associations (R²-values ranging from 0.67 to 0.90 for different species) were found for combinations including one band in the near infrared (NIR) region between 825 and 925 nm and one band in the visible light region. Currently data of both high spatial and spectral resolution is not commonly available to apply the OBRA results directly to image data for SAV depth mapping. Instead a novel, low-cost data acquisition method was used to obtain six-band high spatial resolution image composites using a NIR sensitive DSLR camera. A field dataset of SAV submergence depths was used to develop regression models for the mapping of submergence depth from image pixel values. Band (combinations) providing the best performing models (R²-values up to 0.77) corresponded with the OBRA

  15. Supplemental materials for the ICDP-USGS Eyreville A, B, and C core holes, Chesapeake Bay impact structure: Core-box photographs, coring-run tables, and depth-conversion files

    Science.gov (United States)

    Durand, C.T.; Edwards, L.E.; Malinconico, M.L.; Powars, D.S.

    2009-01-01

    During 2005-2006, the International Continental Scientific Drilling Program and the U.S. Geological Survey drilled three continuous core holes into the Chesapeake Bay impact structure to a total depth of 1766.3 m. A collection of supplemental materials that presents a record of the core recovery and measurement data for the Eyreville cores is available on CD-ROM at the end of this volume and in the GSA Data Repository. The supplemental materials on the CD-ROM include digital photographs of each core box from the three core holes, tables of the three coring-run logs, as recorded on site, and a set of depth-conversion programs. In this chapter, the contents, purposes, and basic applications of the supplemental materials are briefly described. With this information, users can quickly decide if the materials will apply to their specific research needs. ?? 2009 The Geological Society of America.

  16. Evaluation of a computer model to simulate water table response to subirrigation Avaliação de um modelo computacional para simular a resposta do lençol freático à subirrigação

    Directory of Open Access Journals (Sweden)

    Jadir Aparecido Rosa

    2002-12-01

    Full Text Available The objective of this work was to evaluate the water flow computer model, WATABLE, using experimental field observations on water table management plots from a site located near Hastings, FL, USA. The experimental field had scale drainage systems with provisions for subirrigation with buried microirrigation and conventional seepage irrigation systems. Potato (Solanum tuberosum L. growing seasons from years 1996 and 1997 were used to simulate the hydrology of the area. Water table levels, precipitation, irrigation and runoff volumes were continuously monitored. The model simulated the water movement from a buried microirrigation line source and the response of the water table to irrigation, precipitation, evapotranspiration, and deep percolation. The model was calibrated and verified by comparing simulated results with experimental field observations. The model performed very well in simulating seasonal runoff, irrigation volumes, and water table levels during crop growth. The two-dimensional model can be used to investigate different irrigation strategies involving water table management control. Applications of the model include optimization of the water table depth for each growth stage, and duration, frequency, and rate of irrigation.O objetivo deste trabalho foi avaliar o modelo computacional WATABLE usando-se dados de campo obtidos em uma área experimental em manejo de lençol freático, localizada em Hastings, FL, EUA. Na área experimental, estavam instalados um sistema de drenagem e sistemas de irrigação por subsuperfície com irrigação localizada e por canais. Ciclos de cultivo de batata (Solanum tuberosum L., nos anos de 1996 e 1997, foram usados para a simulação da hidrologia da área. Profundidades do lençol freático, chuvas, irrigação e escorrimento superficial foram monitorados constantemente. O modelo simulou o movimento da água a partir de uma linha de irrigação localizada enterrada, e a resposta do nível do len

  17. Monthly tables of measurements. October 2000

    International Nuclear Information System (INIS)

    2000-10-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  18. Retrieval of canopy water content of different crop types with two new hyperspectral indices: Water Absorption Area Index and Depth Water Index

    Science.gov (United States)

    Pasqualotto, Nieves; Delegido, Jesús; Van Wittenberghe, Shari; Verrelst, Jochem; Rivera, Juan Pablo; Moreno, José

    2018-05-01

    Crop canopy water content (CWC) is an essential indicator of the crop's physiological state. While a diverse range of vegetation indices have earlier been developed for the remote estimation of CWC, most of them are defined for specific crop types and areas, making them less universally applicable. We propose two new water content indices applicable to a wide variety of crop types, allowing to derive CWC maps at a large spatial scale. These indices were developed based on PROSAIL simulations and then optimized with an experimental dataset (SPARC03; Barrax, Spain). This dataset consists of water content and other biophysical variables for five common crop types (lucerne, corn, potato, sugar beet and onion) and corresponding top-of-canopy (TOC) reflectance spectra acquired by the hyperspectral HyMap airborne sensor. First, commonly used water content index formulations were analysed and validated for the variety of crops, overall resulting in a R2 lower than 0.6. In an attempt to move towards more generically applicable indices, the two new CWC indices exploit the principal water absorption features in the near-infrared by using multiple bands sensitive to water content. We propose the Water Absorption Area Index (WAAI) as the difference between the area under the null water content of TOC reflectance (reference line) simulated with PROSAIL and the area under measured TOC reflectance between 911 and 1271 nm. We also propose the Depth Water Index (DWI), a simplified four-band index based on the spectral depths produced by the water absorption at 970 and 1200 nm and two reference bands. Both the WAAI and DWI outperform established indices in predicting CWC when applied to heterogeneous croplands, with a R2 of 0.8 and 0.7, respectively, using an exponential fit. However, these indices did not perform well for species with a low fractional vegetation cover (<30%). HyMap CWC maps calculated with both indices are shown for the Barrax region. The results confirmed the

  19. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Energy Technology Data Exchange (ETDEWEB)

    Bern, C. R.; Boehlke, A. R.; Engle, M. A.; Geboy, N. J.; Schroeder, K. T.; Zupancic, J. W.

    2013-10-04

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (~3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO{sub 4} salts more soluble than gypsum. Irrigation with high SAR (24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  20. Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water

    Science.gov (United States)

    Bern, Carleton R.; Boehlke, Adam R.; Engle, Mark A.; Geboy, Nicholas J.; Schroeder, K.T.; Zupancic, J.W.

    2013-01-01

    Disposal of produced waters, pumped to the surface as part of coalbed methane (CBM) development, is a significant environmental issue in the Wyoming portion of the Powder River Basin, USA. High sodium adsorption ratios (SAR) of the waters could degrade agricultural land, especially if directly applied to the soil surface. One method of disposing of CBM water, while deriving beneficial use, is subsurface drip irrigation (SDI), where acidified CBM waters are applied to alfalfa fields year-round via tubing buried 0.92 m deep. Effects of the method were studied on an alluvial terrace with a relatively shallow depth to water table (∼3 m). Excess irrigation water caused the water table to rise, even temporarily reaching the depth of drip tubing. The rise corresponded to increased salinity in some monitoring wells. Three factors appeared to drive increased groundwater salinity: (1) CBM solutes, concentrated by evapotranspiration; (2) gypsum dissolution, apparently enhanced by cation exchange; and (3) dissolution of native Na–Mg–SO4 salts more soluble than gypsum. Irrigation with high SAR (∼24) water has increased soil saturated paste SAR up to 15 near the drip tubing. Importantly though, little change in SAR has occurred at the surface.

  1. Study of energy transfer in table-top X-pinch driven by a water line

    International Nuclear Information System (INIS)

    Beg, F N; Zhang, T; Fedin, D; Beagen, B; Chua, E; Lee, J Y; Rawat, R S; Lee, P

    2007-01-01

    The current passing through X-pinches and the energy transferring from the pulse forming line to the load are modelled using a simple LCR circuit. A comparison of the electrical properties of two table-top X-pinch devices is made. It was found that up to 25% of the stored energy is transferred from the water transmission line to the load in the University of California,San Diego (UCSD) table-top X-pinch before x-ray emission starts. The highest energy transmitted (75%) is found after the current peak. In comparison, only 3% of the energy is transferred to the load in the National Institute of Education (NIE) X-pinch device just after the maximum current peak. The highest energy (25%) transmitted to the plasma occurs long after the current peak. The plasma in both devices is visually and qualitatively similar. However, the UCSD device emits intense x-rays with no x-rays observed in the NIE device. This observation is consistent with the electrical circuit analysis

  2. A Modified Water-Table Fluctuation Method to Characterize Regional Groundwater Discharge

    Directory of Open Access Journals (Sweden)

    Lihong Yang

    2018-04-01

    Full Text Available A modified Water-Table Fluctuation (WTF method is developed to quantitatively characterize the regional groundwater discharge patterns in stressed aquifers caused by intensive agricultural pumping. Two new parameters are defined to express the secondary information in the observed data. One is infiltration efficiency and the other is discharge modulus (recurring head loss due to aquifer discharge. An optimization procedure is involved to estimate these parameters, based on continuous groundwater head measurements and precipitation records. Using the defined parameters and precipitation time series, water level changes are calculated for individual wells with fidelity. The estimated parameters are then used to further address the characterization of infiltration and to better quantify the discharge at the regional scale. The advantage of this method is that it considers recharge and discharge simultaneously, whereas the general WTF methods mostly focus on recharge. In the case study, the infiltration efficiency reveals that the infiltration is regionally controlled by the intrinsic characteristics of the aquifer, and locally distorted by engineered hydraulic structures that alter surface water-groundwater interactions. The seasonality of groundwater discharge is characterized by the monthly discharge modulus. These results from individual wells are clustered into groups that are consistent with the local land use pattern and cropping structures.

  3. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  4. Neutron activation and PIXE analysis of oyster tissues cultivated at different ocean depths for trace elements

    International Nuclear Information System (INIS)

    Fukushima, M.; Nakano, Y.; Chatt, A.

    2005-01-01

    Difference in trace element concentrations in oyster tissues cultivated in Japan on hanging ropes at different sea depths were investigated using INAA and PIXE. Three groups of oyster were collected from a single rope at 1 m, 6 m, and 11 m depths. From each group, five oysters were chosen and removed from the shell after washing in tap water. Two groups of organ, namely hepatopancreas and muscle, and gill and mantle were separated from soft tissues, freeze-dried, and pulverized. One portion of the powdered samples was irradiated for a short time at the Dalhousie University SLOWPOKE-2 reactor in Canada for Ag and Se analysis. Another portion was irradiated for one hour in Kyoto University Reactor in Osaka, Japan for Fe, Rb, Sc, and Zn analysis. The third portion was digested in a microwave oven after the addition of an indium solution (as an internal standard) and concentrated nitric acid for analysis by PIXE. More than twenty elements were determined by PIXE. The organs in oysters have different roles. For example, hepatopancreas and muscle are thought to accumulate elements after ingestion of plankton from sea water while gill and mantle are always in contact with sea water. As a result, there were differences in levels of some elements between the two groups of organ. In addition, levels of most elements were found to be depth dependent. The variations in Fe and Zn concentrations of the two organ groups at 3 different depths are shown in Table 1. Details of the method and results will be presented.

  5. Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation

    Directory of Open Access Journals (Sweden)

    Y. Miao

    2012-11-01

    Full Text Available Boreal peatlands are significant natural sources of methane and especially vulnerable to abrupt climate change. However, the controlling factors of CH4 emission in boreal peatlands are still unclear. In this study, we investigated CH4 fluxes and abiotic factors (temperature, water table depth, active layer depth, and dissolved CH4 concentrations in pore water during the growing seasons in 2010 and 2011 in both shrub-sphagnum- and sedge-dominated plant communities in the continuous permafrost zone of Northeast China. The objective of our study was to examine the effects of vegetation types and abiotic factors on CH4 fluxes from a boreal peatland. In an Eriophorum-dominated community, mean CH4 emissions were 1.02 and 0.80 mg m−2 h−1 in 2010 and 2011, respectively. CH4 fluxes (0.38 mg m−2 h−1 released from the shrub-mosses-dominated community were lower than that from Eriophorum-dominated community. Moreover, in the Eriophorum-dominated community, CH4 fluxes showed a significant temporal pattern with a peak value in late August in both 2010 and 2011. However, no distinct seasonal variation was observed in the CH4 flux in the shrub-mosses-dominated community. Interestingly, in both Eriophorum- and shrub-sphagnum-dominated communities, CH4 fluxes did not show close correlation with air or soil temperature and water table depth, whereas CH4 emissions correlated well to active layer depth and CH4 concentration in soil pore water, especially in the Eriophorum-dominated community. Our results suggest that CH4 released from the thawed CH4-rich permafrost layer may be a key factor controlling CH4 emissions in boreal peatlands, and highlight that CH4 fluxes vary with vegetation type in boreal peatlands. With

  6. Effects of water depth, seasonal exposure, and substrate orientation on microbial bioerosion in the Ionian Sea (Eastern Mediterranean.

    Directory of Open Access Journals (Sweden)

    Claudia Färber

    Full Text Available The effects of water depth, seasonal exposure, and substrate orientation on microbioerosion were studied by means of a settlement experiment deployed in 15, 50, 100, and 250 m water depth south-west of the Peloponnese Peninsula (Greece. At each depth, an experimental platform was exposed for a summer period, a winter period, and about an entire year. On the up- and down-facing side of each platform, substrates were fixed to document the succession of bioerosion traces, and to measure variations in bioerosion and accretion rates. In total, 29 different bioerosion traces were recorded revealing a dominance of microborings produced by phototrophic and organotrophic microendoliths, complemented by few macroborings, attachment scars, and grazing traces. The highest bioerosion activity was recorded in 15 m up-facing substrates in the shallow euphotic zone, largely driven by phototrophic cyanobacteria. Towards the chlorophyte-dominated deep euphotic to dysphotic zones and the organotroph-dominated aphotic zone the intensity of bioerosion and the diversity of bioerosion traces strongly decreased. During summer the activity of phototrophs was higher than during winter, which was likely stimulated by enhanced light availability due to more hours of daylight and increased irradiance angles. Stable water column stratification and a resulting nutrient depletion in shallow water led to lower turbidity levels and caused a shift in the photic zonation that was reflected by more phototrophs being active at greater depth. With respect to the subordinate bioerosion activity of organotrophs, fluctuations in temperature and the trophic regime were assumed to be the main seasonal controls. The observed patterns in overall bioeroder distribution and abundance were mirrored by the calculated carbonate budget with bioerosion rates exceeding carbonate accretion rates in shallow water and distinctly higher bioerosion rates at all depths during summer. These findings

  7. Interactive plant functional group and water table effects on decomposition and extracellular enzyme activity in Sphagnum peatlands

    Science.gov (United States)

    Magdalena M. Wiedermann; Evan S. Kane; Lynette R. Potvin; Erik A. Lilleskov

    2017-01-01

    Peatland decomposition may be altered by hydrology and plant functional groups (PFGs), but exactly how the latter influences decomposition is unclear, as are potential interactions of these factors.We used a factorial mesocosm experiment with intact 1 m3 peat monoliths to explore how PFGs (sedges vs Ericaceae) and water table level individually...

  8. Use of Decision Tables to Simulate Management in SWAT+

    Directory of Open Access Journals (Sweden)

    Jeffrey G. Arnold

    2018-05-01

    Full Text Available Decision tables have been used for many years in data processing and business applications to simulate complex rule sets. Several computer languages have been developed based on rule systems and they are easily programmed in several current languages. Land management and river–reservoir models simulate complex land management operations and reservoir management in highly regulated river systems. Decision tables are a precise yet compact way to model the rule sets and corresponding actions found in these models. In this study, we discuss the suitability of decision tables to simulate management in the river basin scale Soil and Water Assessment Tool (SWAT+ model. Decision tables are developed to simulate automated irrigation and reservoir releases. A simple auto irrigation application of decision tables was developed using plant water stress as a condition for irrigating corn in Texas. Sensitivity of the water stress trigger and irrigation application amounts were shown on soil moisture and corn yields. In addition, the Grapevine Reservoir near Dallas, Texas was used to illustrate the use of decision tables to simulate reservoir releases. The releases were conditioned on reservoir volumes and flood season. The release rules as implemented by the decision table realistically simulated flood releases as evidenced by a daily Nash–Sutcliffe Efficiency (NSE of 0.52 and a percent bias of −1.1%. Using decision tables to simulate management in land, river, and reservoir models was shown to have several advantages over current approaches, including: (1 mature technology with considerable literature and applications; (2 ability to accurately represent complex, real world decision-making; (3 code that is efficient, modular, and easy to maintain; and (4 tables that are easy to maintain, support, and modify.

  9. Development of new precipitation frequency tables for counties in Kansas using NOAA Atlas 14 : [technical summary].

    Science.gov (United States)

    2014-12-01

    This report documents the development of KDOTs new rainfall tables for counties in : Kansas based on NOAA Atlas 14 Volume 8. These new tables provide rainfall depths : and intensities for durations from 5 minutes to 24 hours and recurrence interva...

  10. Experimental study on depth of paraffin wax over floating absorber plate in built-in storage solar water heater

    Directory of Open Access Journals (Sweden)

    R Sivakumar

    2015-11-01

    Full Text Available The aim of this article is to study the effect of depth of phase change material over the absorber surface of an integrated collector-storage type flat plate solar water heater. Flat plate solar water heaters are extensively used all over the world to utilize the natural source of solar energy. In order to utilize the solar energy during off-sunshine hours, it is inevitable to store and retain solar thermal energy as long as possible. Here, phase change material is not used for heat storage, but to minimize losses during day and night time only. The depth of phase change material over a fixed depth of water in a solar thermal collector is an important geometric parameter that influences the maximum temperature rise during peak solar irradiation and hence the losses. From the results of the studies for different masses of paraffin wax phase change material layers, the optimum depth corresponding to the maximum heat gain till evening is found to be 2 mm, and the heat retention till the next day morning is found to be 4 mm.

  11. Detour factors in water and plastic phantoms and their use for range and depth scaling in electron-beam dosimetry

    International Nuclear Information System (INIS)

    Fernandez-Varea, J.M.; Andreo, P.; Tabata, T.

    1996-01-01

    Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth - dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies. (author)

  12. Fish depth distributions in the Lower Mississippi River

    Science.gov (United States)

    Killgore, K. J.; Miranda, Leandro E.

    2014-01-01

    A substantial body of literature exists about depth distribution of fish in oceans, lakes and reservoirs, but less is known about fish depth distribution in large rivers. Most of the emphasis on fish distributions in rivers has focused on longitudinal and latitudinal spatial distributions. Knowledge on depth distribution is necessary to understand species and community habitat needs. Considering this void, our goal was to identify patterns in fish benthic distribution along depth gradients in the Lower Mississippi River. Fish were collected over 14 years in depths down to 27 m. Fish exhibited non-random depth distributions that varied seasonally and according to species. Species richness was highest in shallow water, with about 50% of the 62 species detected no longer collected in water deeper than 8 m and about 75% no longer collected in water deeper than 12 m. Although richness was highest in shallow water, most species were not restricted to shallow water. Rather, most species used a wide range of depths. A weak depth zonation occurred, not as strong as that reported for deep oceans and lakes. Larger fish tended to occur in deeper water during the high-water period of an annual cycle, but no correlation was evident during the low-water period. The advent of landscape ecology has guided river research to search for spatial patterns along the length of the river and associated floodplains. Our results suggest that fish assemblages in large rivers are also structured vertically. 

  13. Hydrogeochemistry of karst underground waters at shallow depth in Guiyang City, Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    DONG Zhifen; ZHU Lijun; WU Pan; SHEN Zheng; FENG Zhiyong

    2005-01-01

    The aim of this study is to shed light on the hydrogeochemical characteristics of karst underground waters at shallow depth in Guiyang City, Guizhou Province with an emphasis on the geochemistry of major elements. Guiyang City bears abundant underground waters and it is also an important representative of the karst areas throughout the world. Ca 2+ and Mg 2+ are the dominant cations, accounting for 81%- 99.7% of the total, and HCO -3 and SO 2- 4 are the dominant anions. Weathering of limestones and dolostones is the most important factor controlling the hydrogeochemistry of underground waters, and weathering of sulfate and evaporite rocks is less important. Moreover, the precipitation and human activities also have a definite influence on the hydrogeochemistry of underground waters in the region studied.

  14. Three dimensional live-cell STED microscopy at increased depth using a water immersion objective

    Science.gov (United States)

    Heine, Jörn; Wurm, Christian A.; Keller-Findeisen, Jan; Schönle, Andreas; Harke, Benjamin; Reuss, Matthias; Winter, Franziska R.; Donnert, Gerald

    2018-05-01

    Modern fluorescence superresolution microscopes are capable of imaging living cells on the nanometer scale. One of those techniques is stimulated emission depletion (STED) which increases the microscope's resolution many times in the lateral and the axial directions. To achieve these high resolutions not only close to the coverslip but also at greater depths, the choice of objective becomes crucial. Oil immersion objectives have frequently been used for STED imaging since their high numerical aperture (NA) leads to high spatial resolutions. But during live-cell imaging, especially at great penetration depths, these objectives have a distinct disadvantage. The refractive index mismatch between the immersion oil and the usually aqueous embedding media of living specimens results in unwanted spherical aberrations. These aberrations distort the point spread functions (PSFs). Notably, during z- and 3D-STED imaging, the resolution increase along the optical axis is majorly hampered if at all possible. To overcome this limitation, we here use a water immersion objective in combination with a spatial light modulator for z-STED measurements of living samples at great depths. This compact design allows for switching between objectives without having to adapt the STED beam path and enables on the fly alterations of the STED PSF to correct for aberrations. Furthermore, we derive the influence of the NA on the axial STED resolution theoretically and experimentally. We show under live-cell imaging conditions that a water immersion objective leads to far superior results than an oil immersion objective at penetration depths of 5-180 μm.

  15. Map showing minimum depth to water in shallow aquifers (1963-72) in the Sugar House quadrangle, Salt Lake County, Utah

    Science.gov (United States)

    Mower, R.W.; Van Horn, Richard

    1973-01-01

    The depth to ground water in shallow aquifers in the Sugar Horse quadrangle ranges from zero in areas of springs and seeps to more than 10 feet beneath most of the area shown on the map. The depth to water differs from place to place because of irregular topography, and the varying capability of different rock materials to transmit water. Ground water also occurs under unconfined and confined conditions in deep aquifers beneath the Sugar Horse quadrangle, as shown by the block diagram and as described by Hely, Mower, and Harr (1971a, p. 17-111).

  16. Brackish groundwater as an alternative source of cooling water for nuclear power plants in Israel

    International Nuclear Information System (INIS)

    Arad, A.; Olshina, A.

    1984-01-01

    The western Negev is being considered as a potential site for the location of a nuclear powerplant. Since this part of Israel has no surface water, the only alternatives for cooling water are piped-in water, Mediterranean water and local, brackish groundwater. The Judea Group aquifer was examined for its potential to provide the required amount of cooling water over the lifetime of the plant, without causing a drastic lowering of the regional water table. The salinity of the water tends to increase from east to west. Flow within the aquifer is in the direction of Beer Sheva, where the extraction rate is 32 to 35 million cu m/yr. This has resulted in a salinity creep of 5-10 mg Cl per year in the Beer Sheva area, which poses a danger of deterioration of its water supply in the long term. Given the assumed range of aquifer properties, extraction of brackish water for cooling purposes will not result in large changes in the regional water table. Exploitation of the more saline water to the southwest of Beer Sheva could preserve the quality of Beer Sheva's water supply, at the expense of an increase in the depth from which it must be pumped. 2 references, 7 figures, 2 tables

  17. Investigation of Flooding Water Depth Management on Yield and Quality Indices of Rice Production

    Directory of Open Access Journals (Sweden)

    Hamid Reza Salemi

    2017-03-01

    Full Text Available Introduction: Water crisis as a majorlimitation factor for agriculture, like other arid and semiarid regions exists in Isfahan province which is located in the central part of the Zayandehrud River Basin (ZRB. Rice appears to be the far-most profitable crop but at the same time it has a major impact on basin scale water resources, especially affecting downstream farmers. In the study area (ShahidFozveh Research Station, the water resources for agricultural production face heightened competition from other sectors like industry and domestic use. This necessitates considering different crops, altered agricultural systems and innovative methods that can reduce the water requirements for the irrigation of rice. The Alternative Wetting and Drying (AWD seems to be an effective method reducing water use for rice crops and possibly save the water for downstream users. There have been no qualitative evaluations of rice production under deficit irrigation practices in Isfahan area. This study sought to determine, under study area conditions, the quantities of water irrigation used with AWD practices, the resulting water productivity (WP and the effects of alternative irrigation management on yield, quality indices and rice production performance. Materials and Methods: The ZRB (41,500 km2 is a closed basin with no outlet to the sea. The research was conducted in the Qahderijan region of Isfahan province, which is located in the central part of the ZRB. The ShahidFozveh Agricultural Research Station (32°, 36’ N, 51°, 36’ E is located at the altitude of 1612 m above the sea level. In order to improve WP and illustration of the impact of various levels of flooding depth on grain yield and quality indices at rice production, a field experiment (3000 m2 was conducted at ShahidFozveh Research Station for 2 years arranged in a split plot design with three replications. It will be necessary to use different scenario of water flooding depth management to

  18. Impacts of the 2013 Extreme Flood in Northeast China on Regional Groundwater Depth and Quality

    Directory of Open Access Journals (Sweden)

    Xihua Wang

    2015-08-01

    Full Text Available Flooding’s impact on shallow groundwater is not well investigated. In this study, we analyzed changes in the depth and quality of a regional shallow aquifer in the 10.9 × 104 km2 Sanjiang Plain, Northeast China, following a large flood in the summer of 2013. Pre- (2008–2012 and post-flood records on groundwater table depth and groundwater chemistry were gathered from 20 wells across the region. Spatial variability of groundwater recharge after the flood was assessed and the changes in groundwater quality in the post-flood period were determined. The study found a considerable increase in the groundwater table after the 2013 summer flood across the region, with the largest (3.20 m and fastest (0.80 m·s−1 rising height occurring in western Sanjiang Plain. The rising height and velocity gradually declined from the west to the east of the plain. For the entire region, we estimated an average recharge height of 1.24 m for the four flood months (June to September of 2013. Furthermore, we found that the extreme flood reduced nitrate (NO3− and chloride (Cl− concentrations and electrical conductivity (EC in shallow groundwater in the areas that were close to rivers, but increased NO3− and Cl− concentrations and EC in the areas that were under intensive agricultural practices. As the region’s groundwater storage and quality have been declining due to the rapidly increasing rice cultivation, this study shows that floods should be managed as water resources to ease the local water shortage as well as shallow groundwater pollution.

  19. Miocene isotope zones, paleotemperatures, and carbon maxima events at intermediate water-depth, Site 593, Southwest Pacific

    International Nuclear Information System (INIS)

    Cooke, P.J.; Nelson, C.S.; Crundwell, M.P.

    2008-01-01

    Oxygen and carbon isotopic stratigraphies are presented from both benthic and planktic foraminifera for the late early Miocene to earliest Pliocene interval (c. 19-5 Ma) of intermediate water-depth DSDP Site 593 in the southern Tasman Sea. The benthic values are interpreted as recording Miocene Southern Component Intermediate Water, while the planktic species record the Miocene mode and surface water signals. Comparisons are made between temperate Site 593 and the intermediate-depth polar Site 747 in the southern Indian Ocean. Glacial Mi zones Mi1b-Mi6, representing extreme glacial events, are evident in both the Site 593 intermediate and surface water records. Miocene Southern Component Intermediate Water δ 18 O values are generally lighter than the Holocene equivalent (Antarctic Intermediate Water), indicating slightly warmer intermediate waters and/ or less global ice volume. The benthic-planktic gradient is interpreted as indicating a less stratified Tasman Sea during the Miocene. The benthic δ 13 C record contains most of the global carbon maxima (CM) events, CM1-7 (CM1-6 = the Monterey Excursion). Like global deep-water records, the Tasman Sea intermediate water δ 13 C values indicate that most CM events correspond with Mi glacials, including Mi4 at Site 593, not reported previously. Intermediate waters play an important role in propagating climatic changes from the polar regions to the tropics, and the Site 593 dataset provides a full water column record of the structure of Miocene intermediate to surface watermasses prior to the modern situation. (author). 132 refs., 8 figs., 4 tabs

  20. Ammonia volatilization losses from paddy fields under controlled irrigation with different drainage treatments.

    Science.gov (United States)

    He, Yupu; Yang, Shihong; Xu, Junzeng; Wang, Yijiang; Peng, Shizhang

    2014-01-01

    The effect of controlled drainage (CD) on ammonia volatilization (AV) losses from paddy fields under controlled irrigation (CI) was investigated by managing water table control levels using a lysimeter. Three drainage treatments were implemented, namely, controlled water table depth 1 (CWT1), controlled water table depth 2 (CWT2), and controlled water table depth 3 (CWT3). As the water table control levels increased, irrigation water volumes in the CI paddy fields decreased. AV losses from paddy fields reduced due to the increases in water table control levels. Seasonal AV losses from CWT1, CWT2, and CWT3 were 59.8, 56.7, and 53.0 kg N ha(-1), respectively. AV losses from CWT3 were 13.1% and 8.4% lower than those from CWT1 and CWT2, respectively. A significant difference in the seasonal AV losses was confirmed between CWT1 and CWT3. Less weekly AV losses followed by TF and PF were also observed as the water table control levels increased. The application of CD by increasing water table control levels to a suitable level could effectively reduce irrigation water volumes and AV losses from CI paddy fields. The combination of CI and CD may be a feasible water management method of reducing AV losses from paddy fields.

  1. Efficient Deterministic Finite Automata Minimization Based on Backward Depth Information.

    Science.gov (United States)

    Liu, Desheng; Huang, Zhiping; Zhang, Yimeng; Guo, Xiaojun; Su, Shaojing

    2016-01-01

    Obtaining a minimal automaton is a fundamental issue in the theory and practical implementation of deterministic finite automatons (DFAs). A minimization algorithm is presented in this paper that consists of two main phases. In the first phase, the backward depth information is built, and the state set of the DFA is partitioned into many blocks. In the second phase, the state set is refined using a hash table. The minimization algorithm has a lower time complexity O(n) than a naive comparison of transitions O(n2). Few states need to be refined by the hash table, because most states have been partitioned by the backward depth information in the coarse partition. This method achieves greater generality than previous methods because building the backward depth information is independent of the topological complexity of the DFA. The proposed algorithm can be applied not only to the minimization of acyclic automata or simple cyclic automata, but also to automata with high topological complexity. Overall, the proposal has three advantages: lower time complexity, greater generality, and scalability. A comparison to Hopcroft's algorithm demonstrates experimentally that the algorithm runs faster than traditional algorithms.

  2. Procedural Documentation and Accuracy Assessment of Bathymetric Maps and Area/Capacity Tables for Small Reservoirs

    Science.gov (United States)

    Wilson, Gary L.; Richards, Joseph M.

    2006-01-01

    Because of the increasing use and importance of lakes for water supply to communities, a repeatable and reliable procedure to determine lake bathymetry and capacity is needed. A method to determine the accuracy of the procedure will help ensure proper collection and use of the data and resulting products. It is important to clearly define the intended products and desired accuracy before conducting the bathymetric survey to ensure proper data collection. A survey-grade echo sounder and differential global positioning system receivers were used to collect water-depth and position data in December 2003 at Sugar Creek Lake near Moberly, Missouri. Data were collected along planned transects, with an additional set of quality-assurance data collected for use in accuracy computations. All collected data were imported into a geographic information system database. A bathymetric surface model, contour map, and area/capacity tables were created from the geographic information system database. An accuracy assessment was completed on the collected data, bathymetric surface model, area/capacity table, and contour map products. Using established vertical accuracy standards, the accuracy of the collected data, bathymetric surface model, and contour map product was 0.67 foot, 0.91 foot, and 1.51 feet at the 95 percent confidence level. By comparing results from different transect intervals with the quality-assurance transect data, it was determined that a transect interval of 1 percent of the longitudinal length of Sugar Creek Lake produced nearly as good results as 0.5 percent transect interval for the bathymetric surface model, area/capacity table, and contour map products.

  3. Long-term rise of the Water Table in the Northeast US: Climate Variability, Land-Use Change, or Angry Beavers?

    Science.gov (United States)

    Boutt, D. F.

    2011-12-01

    The scientific evidence that humans are directly influencing the Earth's natural climate is increasingly compelling. Numerous studies suggest that climate change will lead to changes in the seasonality of surface water availability thereby increasing the need for groundwater development to offset those shortages. Research suggests that the Northeast region of the U.S. is experiencing significant changes to its' natural climate and hydrologic systems. Previous analysis of a long-term regional compilation of the water table response to the last 60 years of climate variability in New England documented a wide range of variability. The investigation evaluated the physical mechanisms, natural variability and response of aquifers in New England using 100 long term groundwater monitoring stations with 20 or more years of data coupled with 67 stream gages, 75 precipitation stations, and 43 temperature stations. Groundwater trends were calculated as normalized anomalies and analyzed with respect to regional compiled precipitation, temperature, and streamflow anomalies to understand the sensitivity of the aquifer systems to change. Interestingly, a trend and regression analysis demonstrate that water level fluctuations are producing statistically significant results with increasing water levels over at least the past thirty years at most (80 out of 100) well sites. In this contribution we investigate the causal mechanisms behind the observed ground water level trends using site-by-site land-use change assessments, cluster analysis, and spatial analysis of beaver populations (a possible proxy for beaver activity). Regionally, average annual precipitation has been slightly increasing since 1900, with 95% of the stations having statistically significant positive trends. Despite this, no correlation is observed between the magnitude of the annual precipitation trends and the magnitude of the groundwater level changes. Land-use change throughout the region has primarily taken

  4. Experimental Study of the Effect for Water Depth on the Mass Transfer of Passive Solar Still Chemical Solutions

    Directory of Open Access Journals (Sweden)

    Fayadh M. Abed

    2018-01-01

    Full Text Available An experimental study on a passive solar distiller in the Tikrit city on (latitude line"34 36o north, longitude line "45 43o east, and purpose of that study to raise the efficiency and productivity of the solar distiller. And then design the monoclinic solar distiller and add reflector plate and a solar concentrate. The Practical tests were conducted at a rate of every half-hour from the beginning of February to the beginning of the month of June. The study began by comparing the solar distiller that contain the concentrates and without contain it. Then study the influence of adding coal and chemical solutions, like blue Thymol solution and blue bromophenol solution to see the additions effect on the productivity and efficiency of distiller, and also The study was conducted to see the effect of the water depth on the productivity of distiller with take four water depths within the basin are (2,1.5,1,0.5 cm of water. The tests were conducted in weather conditions close. and the results of the study, That distilled added his concentrates improved its productivity by 46% and efficiency increases 43% with non-use of concentrates, and coal increased efficiency by 36% and productivity improved up to 38%, the addition of  blue Thymol solution increases the efficiency by 19% and productivity by 16%, as well as bromophenol solution  increase productivity by 23% and improve efficiency by 25%, when comparing the additions found that the best one is coal. Through the study of the depth of the water show that increases productivity and efficiency by reducing the depth of the water in the basin distiller. DOI: http://dx.doi.org/10.25130/tjes.24.2017.13

  5. Water table response to harvesting and simulated emerald ash borer mortality in black ash wetlands in Minnesota, USA

    Science.gov (United States)

    Robert A. Slesak; Christian F. Lenhart; Kenneth N. Brooks; Anthony W. D' Amato; Brian J. Palik

    2014-01-01

    Black ash wetlands are seriously threatened because of the invasive emerald ash borer (EAB). Wetland hydrology is likely to be modified following ash mortality, but the magnitude of hydrological impact following loss via EAB and alternative mitigation harvests is not clear. Our objective was to assess the water table response to simulated EAB and harvesting to...

  6. Understanding and quantifying focused, indirect groundwater recharge from ephemeral streams using water table fluctuations

    Science.gov (United States)

    Cuthbert, M. O.; Acworth, R. I.; Andersen, M. S.; Larsen, J. R.; McCallum, A. M.; Rau, G. C.; Tellam, J. H.

    2016-02-01

    Understanding and managing groundwater resources in drylands is a challenging task, but one that is globally important. The dominant process for dryland groundwater recharge is thought to be as focused, indirect recharge from ephemeral stream losses. However, there is a global paucity of data for understanding and quantifying this process and transferable techniques for quantifying groundwater recharge in such contexts are lacking. Here we develop a generalized conceptual model for understanding water table and groundwater head fluctuations due to recharge from episodic events within ephemeral streams. By accounting for the recession characteristics of a groundwater hydrograph, we present a simple but powerful new water table fluctuation approach to quantify focused, indirect recharge over both long term and event time scales. The technique is demonstrated using a new, and globally unparalleled, set of groundwater observations from an ephemeral stream catchment located in NSW, Australia. We find that, following episodic streamflow events down a predominantly dry channel system, groundwater head fluctuations are controlled by pressure redistribution operating at three time scales from vertical flow (days to weeks), transverse flow perpendicular to the stream (weeks to months), and longitudinal flow parallel to the stream (years to decades). In relative terms, indirect recharge decreases almost linearly away from the mountain front, both in discrete monitored events as well as in the long-term average. In absolute terms, the estimated indirect recharge varies from 80 to 30 mm/a with the main uncertainty in these values stemming from uncertainty in the catchment-scale hydraulic properties.

  7. Impacts of soil conditioners and water table management on phosphorus loss in tile drainage from a clay loam soil.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T W; Reynolds, W D

    2015-03-01

    Adoption of waste-derived soil conditioners and refined water management can improve soil physical quality and crop productivity of fine-textured soils. However, the impacts of these practices on water quality must be assessed to ensure environmental sustainability. We conducted a study to determine phosphorus (P) loss in tile drainage as affected by two types of soil conditioners (yard waste compost and swine manure compost) and water table management (free drainage and controlled drainage with subirrigation) in a clay loam soil under corn-soybean rotation in a 4-yr period from 1999 to 2003. Tile drainage flows were monitored and sampled on a year-round continuous basis using on-site auto-sampling systems. Water samples were analyzed for dissolved reactive P (DRP), particulate P (PP), and total P (TP). Substantially greater concentrations and losses of DRP, PP, and TP occurred with swine manure compost than with control and yard waste compost regardless of water table management. Compared with free drainage, controlled drainage with subirrigation was an effective way to reduce annual and cumulative losses of DRP, PP, and TP in tile drainage through reductions in flow volume and P concentration with control and yard waste compost but not with swine manure compost. Both DRP and TP concentrations in tile drainage were well above the water quality guideline for P, affirming that subsurface loss of P from fine-textured soils can be one critical source for freshwater eutrophication. Swine manure compost applied as a soil conditioner must be optimized by taking water quality impacts into consideration. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Modelo de simulación del balance hídrico en suelos con freática poco profunda Water balance simulation model in shallow watertable soils

    Directory of Open Access Journals (Sweden)

    Américo Degioanni

    2006-07-01

    Full Text Available Los suelos con capa freática poco profunda poseen mayor probabilidad de ser afectados por anegamiento. La predicción de la oscilación temporal del nivel freático constituye una importante herramienta para valorar el riesgo de ocurrencia de tal proceso. El objetivo de este trabajo es presentar los fundamentos teóricos, la estructura operativa y la capacidad predictiva del modelo de simulación del balance hídrico Freat.1. El modelo se fundamenta en el cálculo de la transferencia de agua entre la atmósfera, el perfil del suelo, la vegetación y la capa freática. Los procesos de transferencia simulados son: escurrimiento superficial saliente, ascenso del nivel freático por efecto de la lluvia neta y del escurrimiento subterráneo entrante y descenso del nivel freático por efectos del escurrimiento subterráneo saliente, evaporación, ascenso capilar desde la capa freática y transpiración de la vegetación. Se evalúan los resultados de su aplicación en un Haplustol udorténtico y en un Natralbol típico ambos con freática oscilando a menos de tres metros de profundidad. El error de predicción estimado como la raíz del error cuadrático medio entre registros freáticos observados y simulados es menor de 15 cm para ambos suelos. Se concluye que el modelo resulta apropiado para predecir oscilaciones temporales de capa freática y evaluar el riesgo de inundación por anegamiento en suelos con capa freática cercana a la superficie.Soils with shallow water table have greater probability of being affected by waterlogging. The prediction of the water table depth temporal oscillation is an important tool to assess the risk of occurrence of such processes. The goal of this paper is to present the theoretical foundations, operative structure and predictive capacity of the water balance simulation model Freat.1. This model is based on the calculus of water transference between atmosphere, soil profile, vegetation and water table. The

  9. Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia

    Science.gov (United States)

    González-Márquez, Luis Carlos; Torres-Bejarano, Franklin M.; Torregroza-Espinosa, Ana Carolina; Hansen-Rodríguez, Ivette Renée; Rodríguez-Gallegos, Hugo B.

    2018-03-01

    The aim of this study was to evaluate the viability of using Landsat 8 spectral images to estimate water quality parameters and depth in El Guájaro Reservoir. On February and March 2015, two samplings were carried out in the reservoir, coinciding with the Landsat 8 images. Turbidity, dissolved oxygen, electrical conductivity, pH and depth were evaluated. Through multiple regression analysis between measured water quality parameters and the reflectance of the pixels corresponding to the sampling stations, statistical models with determination coefficients between 0.6249 and 0.9300 were generated. Results indicate that from a small number of measured parameters we can generate reliable models to estimate the spatial variation of turbidity, dissolved oxygen, pH and depth, as well the temporal variation of electrical conductivity, so models generated from Landsat 8 can be used as a tool to facilitate the environmental, economic and social management of the reservoir.

  10. Modelling shallow landslide susceptibility by means of a subsurface flow path connectivity index and estimates of soil depth spatial distribution

    Directory of Open Access Journals (Sweden)

    C. Lanni

    2012-11-01

    Full Text Available Topographic index-based hydrological models have gained wide use to describe the hydrological control on the triggering of rainfall-induced shallow landslides at the catchment scale. A common assumption in these models is that a spatially continuous water table occurs simultaneously across the catchment. However, during a rainfall event isolated patches of subsurface saturation form above an impeding layer and their hydrological connectivity is a necessary condition for lateral flow initiation at a point on the hillslope.

    Here, a new hydrological model is presented, which allows us to account for the concept of hydrological connectivity while keeping the simplicity of the topographic index approach. A dynamic topographic index is used to describe the transient lateral flow that is established at a hillslope element when the rainfall amount exceeds a threshold value allowing for (a development of a perched water table above an impeding layer, and (b hydrological connectivity between the hillslope element and its own upslope contributing area. A spatially variable soil depth is the main control of hydrological connectivity in the model. The hydrological model is coupled with the infinite slope stability model and with a scaling model for the rainfall frequency–duration relationship to determine the return period of the critical rainfall needed to cause instability on three catchments located in the Italian Alps, where a survey of soil depth spatial distribution is available. The model is compared with a quasi-dynamic model in which the dynamic nature of the hydrological connectivity is neglected. The results show a better performance of the new model in predicting observed shallow landslides, implying that soil depth spatial variability and connectivity bear a significant control on shallow landsliding.

  11. Study the Effect of Intermittent and Continuous Ponding Depths by Using Different Heads to Leach Water

    OpenAIRE

    Nesrin J. AL-Mansori

    2018-01-01

    As results of using water for irrigated lands in a random manner in a time of shortage main water resources, Experimental work carried out to study the effect of continuous and intermittent ponding depth on the leaching processes. Sandy soil used, sourced from Hilla / Al-Jameeya, at Hilla city. Sieve analysis and hydrometer testing used to identify the properties of the soil. A model used with dimensions of 30, 30 and, 70 cm, with two different heads of water. Shatt-Al-Hilla River samples use...

  12. Halite depositional facies in a solar salt pond: A key to interpreting physical energy and water depth in ancient deposits?

    Science.gov (United States)

    Robertson Handford, C.

    1990-08-01

    Subaqueous deposits of aragonite, gypsum, and halite are accumulating in shallow solar salt ponds constructed in the Pekelmeer, a sea-level sauna on Bonaire, Netherlands Antilles. Several halite facies are deposited in the crystallizer ponds in response to differences in water depth and wave energy. Cumulate halite, which originates as floating rafts, is present only along the protected, upwind margins of ponds where low-energy conditions foster their formation and preservation. Cornet crystals with peculiar mushroom- and mortarboard-shaped caps precipitate in centimetre-deep brine sheets within a couple of metres of the upwind or low-energy margins. Downwind from these margins, cornet and chevron halite precipitate on the pond floors in water depths ranging from a few centimetres to ˜60 cm. Halite pisoids with radial-concentric structure are precipitated in the swash zone along downwind high-energy shorelines where they form pebbly beaches. This study suggests that primary halite facies are energy and/or depth dependent and that some primary features, if preserved in ancient halite deposits, can be used to infer physical energy conditions, subenvironments such as low- to high-energy shorelines, and extremely shallow water depths in ancient evaporite basins.

  13. The leaching of radioactivity from highly radioactive glass blocks buried below the water table: fifteen years of results

    International Nuclear Information System (INIS)

    Merritt, W.F.

    1976-03-01

    The results from two test burials of high-level fission products incorporated into nepheline syenite glass indicate that the nuclear wastes from fuel processing for a 30,000 MWe nuclear power industry could be incorporated into such glass and stored beneath the water table in the waste management area of Chalk River Nuclear Laboratories (CRNL) without harm to the environment. (author)

  14. Electrical Resistivity Imaging of Tidal Fluctuations in the Water Table at Inwood Hill Park, Manhattan

    Science.gov (United States)

    Kenyon, P. M.; Kassem, D.; Olin, A.; Nunez, J.; Smalling, A.

    2005-05-01

    Inwood Hill Park is located on the northern tip of Manhattan and has been extensively modified over the years by human activities. In its current form, it has a backbone of exposed or lightly covered bedrock along the Hudson River, adjacent to a flat area with two tidal inlets along the northern shore of Manhattan. The tidal motions in the inlets are expected to drive corresponding fluctuations in the water table along the borders of the inlets. In the Fall of 2002, a group of students from the Department of Earth and Atmospheric Sciences at the City College of New York studied these fluctuations. Electrical resistivity cross sections were obtained with a Syscal Kid Switch 24 resistivity meter during the course of a tidal cycle at three locations surrounding the westernmost inlet in the park. No change was seen over a tidal cycle at Site 1, possibly due to the effect of concrete erosion barriers which were located between the land and the water surrounding this site. Measurements at Site 2 revealed a small, regular change in the water table elevation of approximately 5 cm over the course of a tidal cycle. This site is inferred to rest on alluvial sediments deposited by a small creek. The cross sections taken at different times during a tidal cycle at Site 3 were the most interesting. They show a very heterogeneous subsurface, with water spurting between blocks of high resistivity materials during the rising portion of the cycle. A small sinkhole was observed on the surface of the ground directly above an obvious plume of water in the cross section. Park personnel confirmed that this sinkhole, like others scattered around this site, is natural and not due to recent construction activity. They also indicated that debris from the construction of the New York City subways may have been dumped in the area in the past. Our conclusion is that the tidal fluctuations at Site 3 are being channeled by solid blocks in the construction debris, and that the sinkholes currently

  15. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones are often overlooked in monitoring plans, but they can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. Perched water has been detected at depths of 90 and 210 ft below land surface, approximately 370 ft above the regional water table. Eighteen years of water level measurements from one well at a depth of 210 ft indicate a consistent source of water. Water level data indicate a seasonal fluctuation. The maximum water level in this well varies within a 0.5 ft interval, suggesting the water level reaches equilibrium with the inflow to the well at this height. Volatile organic constituents have been detected in concentrations from 1.2 to 1.4 mg/L of carbon tetrachloride. Eight other volatile organics have been detected. The concentrations of organics are consistent with the prevailing theory of movement by diffusion in the gaseous phase. Results of tritium analyses indicate water has moved to a depth of 86 ft in 17 yr. Results of well sampling analyses indicate monitoring and sampling of perched water can be a valuable resource for understanding the hydrogeologic environment of the vadose zone at disposal sites

  16. Changes in late-winter snowpack depth, water equivalent, and density in Maine, 1926-2004

    Science.gov (United States)

    Hodgkins, Glenn A.; Dudley, Robert W.

    2006-03-01

    Twenty-three snow-course sites in and near Maine, USA, with records spanning at least 50 years through to 2004 were tested for changes over time in snowpack depth, water equivalent, and density in March and April. Of the 23 sites, 18 had a significant decrease (Mann-Kendall test, p 1950s and 1960s, and densities peaked in the most recent decade. Previous studies in western North America also found a water-equivalent peak in the third quarter of the 20th century. Published in 2006 by John Wiley & Sons, Ltd.Received: 14 June 2005; Accepted: 7 October 2005

  17. A practical block detector for a depth encoding PET camera

    International Nuclear Information System (INIS)

    Rogers, J.G.; Moisan, C.; Hoskinson, E.M.

    1995-10-01

    The depth-of-interaction effect in block detectors degrades the image resolution in commercial PET cameras and impedes the natural evolution of smaller, less expensive cameras. A method for correcting the measured position of each detected gamma ray by measuring its depth-of-interaction was tested and found to recover 38% of the lost resolution in a table-top 50 cm diameter camera. To obtain the desired depth sensitivity, standard commercial detectors were modified by a simple and practical process, which is suitable for mass production of the detectors. The impact of the detectors modifications on central image resolution and on the ability of the camera to correct for object scatter were also measured. (authors)

  18. The calculation of relative output factor and depth dose for irregular electron fields in water

    International Nuclear Information System (INIS)

    Dunscombe, Peter; McGhee, Peter; Chu, Terence

    1996-01-01

    Purpose: A technique, based on sector integration and interpolation, has been developed for the computation of both relative output factor and depth dose of irregular electron fields in water. The purpose of this study was to determine the minimum experimental data set required for the technique to yield results within accepted dosimetric tolerances. Materials and Methods: PC based software has been written to perform the calculations necessary to dosimetrically characterize irregular shaped electron fields. The field outline is entered via digitiser and the SSD and energy via the keyboard. The irregular field is segmented into sectors of specified angle (2 deg. was used for this study) and the radius of each sector computed. The central ray depth dose is reconstructed by summing the contributions from each sector deduced from calibration depth doses measured for circular fields. Relative output factors and depth doses at SSDs at which calibrations were not performed are found by interpolation. Calibration data were measured for circular fields from 2 to 9 cm diameter at 100, 105, 110, and 115 cm SSD. A clinical cut out can be characterized in less than 2 minutes including entry of the outline using this software. The performance of the technique was evaluated by comparing calculated relative output factors, surface dose and the locations of d 80 , d 50 and d 20 with experimental measurements on a variety of cut out shapes at 9 and 18 MeV. The calibration data set (derived from circular cut outs) was systematically reduced to identify the minimum required to yield an accuracy consistent with current recommendations. Results: The figure illustrates the ability of the technique to calculate the depth dose for an irregular field (shown in the insert). It was found that to achieve an accuracy of 2% in relative output factor and 2% or 2 mm (our criterion) in percentage depth dose, calibration data from five circular fields at the four SSDs spanning the range 100-115 cm

  19. Ground Water Recharge Estimation Using Water Table Fluctuation Method And By GIS Applications

    Science.gov (United States)

    Vajja, V.; Bekkam, V.; Nune, R.; M. v. S, R.

    2007-05-01

    Quite often it has become a debating point that how much recharge is occurring to the groundwater table through rainfall on one hand and through recharge structures such as percolation ponds and checkdams on the other. In the present investigations Musi basin of Andhra Pradesh, India is selected for study during the period 2005-06. Pre-monsoon and Post-monsoon groundwater levels are collected through out the Musi basin at 89 locations covering an area11, 291.69 km2. Geology of the study area and rainfall data during the study period has been collected. The contour maps of rainfall and the change in groundwater level between Pre-monsoon and Post- monsoon have been prepared. First the change in groundwater storage is estimated for each successive strips of areas enclosed between two contours of groundwater level fluctuations. In this calculation Specific yield (Sy) values are adopted based on the local Geology. Areas between the contours are estimated through Arc GIS software package. All such storages are added to compute the total storage for the entire basin. In order to find out the percent of rainfall converted into groundwater storage as well as to find out the ground water recharge due to storageponds, a contour map of rainfall for the study area is prepared and areas between successive contours have been calculated. Based on the Geology map, Infiltration values are adopted for each successive strip of the contour area. Then the amount of water infiltrated into the ground is calculated by adjusting the infiltration values for each strip, so that the total infiltrated water for the entire basin is matched with change in Ground water storage, which is 1314.37 MCM for the upper Musi basin while it is 2827.29 MCM for entire Musi basin. With this procedure on an average 29.68 and 30.66 percent of Rainfall is converted into Groundwater recharge for Upper Musi and for entire Musi basin respectively. In the total recharge, the contribution of rainfall directly to

  20. Untangling the effects of shallow groundwater and deficit irrigation on irrigation water productivity in arid region: New conceptual model.

    Science.gov (United States)

    Xue, Jingyuan; Huo, Zailin; Wang, Fengxin; Kang, Shaozhong; Huang, Guanhua

    2018-04-01

    Water scarcity and salt stress are two main limitations for agricultural production. Groundwater evapotranspiration (ET g ) with upward salt movement plays an important role in crop water use and water productivity in arid regions, and it can compensate the impact of deficit irrigation on crop production. Thus, comprehensive impacts of shallow groundwater and deficit irrigation on crop water use results in an improvement of irrigation water productivity (IWP). However, it is difficult to quantify the effects of groundwater and deficit irrigation on IWP. In this study, we built an IWP evaluation model coupled with a water and salt balance model and a crop yield estimation model. As a valuable tool of IWP simulation, the calibrated model was used to investigate the coupling response of sunflower IWP to irrigation water depths (IWDs), groundwater table depth (GTDs) and groundwater salinities (GSs). A total of 210 scenarios were run in which five irrigation water depths (IWDs) and seven groundwater table depths (GTDs) and six groundwater salinities (GSs) were used. Results indicate that increasing GS clearly increases the negative effect on a crop's actual evapotranspiration (ET a ) as salt accumulation in root zone. When GS is low (0.5-1g/L), increasing GTD produces more positive effect than negative effect. In regard to relatively high GS (2-5g/L), the negative effect of shallow-saline groundwater reaches a maximum at 2m GTD. Additionally, the salt concentration in the root zone maximizes its value at 2.0m GTD. In most cases, increasing GTD and GS reduces the benefits of irrigation water and IWP. The IWP increases with decreasing irrigation water. Overall, in arid regions, capillary rise of shallow groundwater can compensate for the lack of irrigation water and improve IWP. By improving irrigation schedules and taking advantages of shallow saline groundwater, we can obtain higher IWP. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Stochastic simulation of time-series models combined with geostatistics to predict water-table scenarios in a Guarani Aquifer System outcrop area, Brazil

    Science.gov (United States)

    Manzione, Rodrigo L.; Wendland, Edson; Tanikawa, Diego H.

    2012-11-01

    Stochastic methods based on time-series modeling combined with geostatistics can be useful tools to describe the variability of water-table levels in time and space and to account for uncertainty. Monitoring water-level networks can give information about the dynamic of the aquifer domain in both dimensions. Time-series modeling is an elegant way to treat monitoring data without the complexity of physical mechanistic models. Time-series model predictions can be interpolated spatially, with the spatial differences in water-table dynamics determined by the spatial variation in the system properties and the temporal variation driven by the dynamics of the inputs into the system. An integration of stochastic methods is presented, based on time-series modeling and geostatistics as a framework to predict water levels for decision making in groundwater management and land-use planning. The methodology is applied in a case study in a Guarani Aquifer System (GAS) outcrop area located in the southeastern part of Brazil. Communication of results in a clear and understandable form, via simulated scenarios, is discussed as an alternative, when translating scientific knowledge into applications of stochastic hydrogeology in large aquifers with limited monitoring network coverage like the GAS.

  2. Calculation of absorbed dose at 0.07, 3.0 and 10.0 mm depths in a slab phantom for monoenergetic electrons

    International Nuclear Information System (INIS)

    Hirayama, H.

    1994-01-01

    The general-purpose electron gamma shower Monte Carlo code EGS4 has been used to calculate absorbed doses at 0.07, 3.0 and 10.0 mm depths per unit fluence for broad parallel beams of monoenergetic electrons impinging at an incident angle α on a slab phantom (30 cm x 30 cm x 15 cm) of polymethyl methacrylate (PMMA), water and ICRU 4-element tissue required by EURADOS WG4 for a revision of ICRP Publication 51. Absorbed doses at 7, 300 and 1000 mg.cm -2 were also calculated for PMMA. The electron kinetic energy range covered is 50 keV to 10 MeV. The incident angle (α) varies from 0 o to 75 o with an increment of 15 o . The calculated results are presented as tables. The depth against absorbed dose curves and dependence of the absorbed dose at each depth on the incident electron energy, incident angle and phantom material are also presented and discussed. (author)

  3. The Incredible Shrinking Cup Lab: Connecting with Ocean and Great Lakes Scientists to Investigate the Effect of Depth and Water Pressure on Polystyrene

    Science.gov (United States)

    Rose, Chantelle M.; Adams, Jacqueline M.; Hinchey, Elizabeth K.; Nestlerode, Janet A.; Patterson, Mark R.

    2013-01-01

    Pressure increases rapidly with depth in a water body. Ocean and Great Lakes scientists often use this physical feature of water as the basis of a fun pastime performed aboard research vessels around the world: the shrinking of polystyrene cups. Depending on the depth to which the cups are deployed, the results can be quite striking! Capitalizing…

  4. Comparison of dose measurements in water versus in air for therapy

    International Nuclear Information System (INIS)

    Nasukha

    1987-01-01

    Comparison of dose measurements in water versus in air for therapy. Dose measurements in water and in the air had been done by teletherapy unit Co-60 Picker Model V 4m/60 with Farmer dosimeter. The result of inverse square law, TAR, PDD, and PSF compared to BJR No. 17 produced a difference of more than 4,65% with SSD 80 cm. Doses in water calculated from the result of dose measurement in air using BJR tables given, was compared with direct dose measurement in water. Values of 0,9850 to 1,0302 were obtained if using inverse square law, PDD and PSF formula. Using inverse square law and TAR, values of 0,9474 to 1,0197 were obtained for 4 depths and 5 field sizes. Measurements done in 5 cm depth and 10 cm x 10 cm field size using both methods, were still good. (author). 7 figs, 8 refs

  5. Secondary mineral evidence of large-scale water table fluctuations at Yucca Mountain, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whelan, J.F.; Moscati, R.J.; Marshall, B.D

    1997-12-01

    At Yucca Mountain, currently under consideration as a potential permanent underground repository for high-level radioactive wastes, the present-day water table is 500 to 700 m deep. This thick unsaturated zone (UZ) is part of the natural barrier system and is regarded as a positive attribute of the potential site. The USGS has studied the stable isotopes and petrography of secondary calcite and silica minerals that coat open spaces in the UZ and form irregular veins and masses in the saturated zone (SZ). This paper reviews the findings from the several studies undertaken at Yucca Mountain on its mineralogy

  6. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. 1000 meters water depth rigid TLP riser; Riser rigido de plataforma de pernas atirantadas para lamina d'agua de 1000 metros

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Mauro Jacinto Pastor

    1990-07-01

    A procedure to estimate the fatigue life of a TLP riser in 1000 meters water depth based on a hydro-elastic analysis of an integrated riser-TLP model in the time domain is presented . The computational architecture is shown that makes it feasible to process and store the great amount of data involved. The procedure is applied to a 1000 meters water depth TLP with a set of 40 risers 8 inches in diameter equipped with a floatation layer. (author)

  8. Depth to water in the western Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    Science.gov (United States)

    Maupin, Molly A.

    1991-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the ISHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Protection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability of ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantham, Idaho Department of Health and Welfare, written commun., 1989). Digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a soils data set developed by the SCS (Soul Conservation Service) and the IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) has developed digital depth-to-water values for eleven 1:100,00-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  9. Depth to water in the eastern Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    Science.gov (United States)

    Maupin, Molly A.

    1992-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the IDHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Orotection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability or ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantha,, Idaho Department of Health and Welfare, written commun., 1989). A digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a sols data set developed by the SCS (Soil Conservation Service) and IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (Idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) developed digital depth-to-water values for eleven 1:100,000-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  10. Three approaches to deal with inconsistent decision tables - Comparison of decision tree complexity

    KAUST Repository

    Azad, Mohammad; Chikalov, Igor; Moshkov, Mikhail

    2013-01-01

    In inconsistent decision tables, there are groups of rows with equal values of conditional attributes and different decisions (values of the decision attribute). We study three approaches to deal with such tables. Instead of a group of equal rows, we consider one row given by values of conditional attributes and we attach to this row: (i) the set of all decisions for rows from the group (many-valued decision approach); (ii) the most common decision for rows from the group (most common decision approach); and (iii) the unique code of the set of all decisions for rows from the group (generalized decision approach). We present experimental results and compare the depth, average depth and number of nodes of decision trees constructed by a greedy algorithm in the framework of each of the three approaches. © 2013 Springer-Verlag.

  11. Water-Depth-Based Prediction Formula for the Blasting Vibration Velocity of Lighthouse Caused by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Wenbin Gu

    2017-01-01

    Full Text Available Lighthouses are the most important hydraulic structures that should be protected during underwater drilling blasting. Thus, the effect of blasting vibration on lighthouse should be studied. On the basis of the dimensional analysis, we deduced a revised formula for water depth based on Sodev’s empirical formula and established the linear fitting model. During the underwater reef project in the main channel of Shipu Harbor in the Ningbo–Zhoushan Port, the blasting vibration data of the lighthouse near the underwater blasting area were monitored. The undetermined coefficient, resolvable coefficient, and F value of the two formulas were then obtained. The comparison of the data obtained from the two formulas showed that they can effectively predict the blasting vibration on the lighthouse. The correction formula that considers water depth can obviously reduce prediction errors and accurately predict blasting vibration.

  12. Spatial variation of nitrogen pollution of the water table at Oued M'Zab (Northern Algerian Sahara)

    Science.gov (United States)

    Benhedid, H.; Bouhoun, M. Daddi

    2018-05-01

    The aim of our work is the study of spatial variations of the water table pollution of Oued M'Zab, in order to determine their abilities of use and the posed problems of degradation. The methodological approach we adopted is to make a spatial study of the variability of nitrogen pollution, as well as to classify water quality according to international standards. The main results obtained in this research show that NH4+ range from 0 to 0,143 mg.l-1 with an average of 0,048 ± 0,039 mg.l-1, the NO2- from 0 to 0,209 mg.l-1 give an average of 0,007 ± 0,033 mg.l-1, and the NO3- vary between 14,264 and 143,465 mg.l-1, with a mean value 54,594 ± 30,503 mg.l-1. According to W.H.O. standards, the majority of these waters are classified as polluted and not drinkable. Our research shows a degradation of the underground water resources in M'Zab Valley. It resulted that it is essential to regulate the use of water and set out other adjustments in order to safeguard the underground water resources so as to promote sustainable development in the valley of M'Zab.

  13. Experimental study and calculation of boiling heat transfer on steel plates during runout table operation

    International Nuclear Information System (INIS)

    Liu, Z.D.; Fraser, D.; Samarasekera, I.V.

    2002-01-01

    Within a hot strip steel mill, red hot steel is hot rolled into a long continuous slab that is led onto what is called the runout table. Temperatures of the steel at the beginning of this table are around 900 o C. Above and below the runout table are banks of water jets, sprays or water curtains that rapidly cool the steel slab. The heat transfer process itself may be considered one of the most complicated in the industrial world. The cooling process that occurs on the runout table is crucial and governs the final mechanical properties and flatness of a steel strip. However, very limited data of industrial conditions has been available and that which is available is poorly understood. To study heat transfer during runout table cooling, an industrial scale pilot runout table facility was constructed at the University of British Columbia (UBC). This paper describes the experimental details, data acquisition and data handling techniques for steel plates during water jet impingement cooling by one circular water jet from industrial headers. The effect of cooling water temperature and initial steel plate temperature as well as varying water jet diameters on heat transfer was systematically investigated. A two-dimensional finite element scheme based inverse heat conduction model was developed to calculate surface heat transfer coefficients along the impinging surface. Heat flux curves at the stagnation area were obtained for selected tests. A quantitative relationship between adjustable processing parameters and heat transfer coefficients along the impinging surface during runout table operation is discussed. The results of the study were used to upgrade an extensive process model developed at UBC. The model ties in the cooling rate and hence two dimensional temperature gradients to the resulting microstructure and final mechanical properties of the steel. This process model is widely used by major steel industries in Canada and the United States. (author)

  14. The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands.

    Science.gov (United States)

    Mander, Ülo; Maddison, Martin; Soosaar, Kaido; Teemusk, Alar; Kanal, Arno; Uri, Veiko; Truu, Jaak

    2015-02-01

    Floods control greenhouse gas (GHG) emissions in floodplains; however, there is a lack of data on the impact of short-term events on emissions. We studied the short-term effect of changing groundwater (GW) depth on the emission of (GHG) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in two riparian grey alder (Alnus incana) stands of different age in Kambja, southern Estonia, using the opaque static chamber (five replicates in each site) and gas chromatography methods. The average carbon and total nitrogen content in the soil of the old alder (OA) stand was significantly higher than in the young alder (YA) stand. In both stands, one part was chosen for water table manipulation (Manip) and another remained unchanged with a stable and deeper GW table. Groundwater table manipulation (flooding) significantly increases CH4 emission (average: YA-Dry 468, YA-Manip 8,374, OA-Dry 468, OA-Manip 4,187 μg C m(-2) h(-1)) and decreases both CO2 (average: OA-Dry 138, OA-Manip 80 mg C m(-2) h(-1)) and N2O emissions (average: OA-Dry 23.1, OA-Manip 11.8 μg N m(-2) h(-1)) in OA sites. There was no significant difference in CO2 and CH4 emissions between the OA and YA sites, whereas in OA sites with higher N concentration in the soil, the N2O emission was significantly higher than at the YA sites. The relative CO2 and CH4 emissions (the soil C stock-related share of gaseous losses) were higher in manipulated plots showing the highest values in the YA-Manip plot (0.03 and 0.0030 % C day(-1), respectively). The soil N stock-related N2O emission was very low achieving 0.000019 % N day(-1) in the OA-Dry plot. Methane emission shows a negative correlation with GW, whereas the 20 cm depth is a significant limit below which most of the produced CH4 is oxidized. In terms of CO2 and N2O, the deeper GW table significantly increases emission. In riparian zones of headwater streams, the short-term floods (e.g. those driven by extreme climate events) may significantly enhance

  15. Groundwater suppression and surface water diversion structures applied to closed shallow land burial trenches

    International Nuclear Information System (INIS)

    Davis, E.C.; Stansfield, R.G.; Melroy, L.A.; Huff, D.D.

    1984-01-01

    Shallow depth to groundwater, surface drainage, and subsurface flow during storm events are major environmental concerns of low-level radioactive waste management operations in humid regions. At two waste disposal sites within the Oak Ridge National Laboratory (ORNL), groups of closed trenches have experienced these problems and have been shown to collect and hold water with seasonal fluctuations ranging from 1 to 2 m. In an attempt to correct these water-related problems, the older of the two sites [Solid Waste Storage Area Four (SWSA 4)] was equipped in September 1975 with asphalt lined drainage-ways designed to prevent infiltration of storm drainage from a 13.8-ha upslope catchment. At the second site (49-Trench area of SWSA 6), the entire 0.44-ha trench area was capped with a bentonite clay cover in 1976. These attempts have not corrected the water problems. In September 1983, engineered drainage projects were initiated at both the disposal sites. The SWSA 4 project was designed to divert surface runoff and shallow subsurface flow which originates upslope of the site away from the disposal area. The second project, a passive French drain constructed in SWSA 6, was aimed strictly at suppressing the site water table, thus preventing its intersection with the bottoms of disposal trenches. Postconstruction monitoring for performance evaluation has shown that the water table in the 49-Trench area has been suppressed to a depth > 4.9 m below the ground surface over 50% of the site as compared to a depth of only 2.1 m for certain parts of the same area observed during seasonally wet months prior to drain construction. The SWSA 4 project evaluation indicates that 56% of the Winter-Spring 1984 runoff was diverted around SWSA 4 via the drainage system

  16. A multiproxy study of Holocene water-depth and environmental changes in Lake St Ana, Eastern Carpathian Mountains, Romania

    Science.gov (United States)

    Magyari, E. K.; Buczkó, K.; Braun, M.; Jakab, G.

    2009-04-01

    This study presents the results of a multi-disciplinary investigation carried out on the sediment of a crater lake (Lake Saint Ana, 950 m a.s.l.) from the Eastern Carpathian Mountains. The lake is set in a base-poor volcanic environment with oligotrophic and slightly acidic water. Loss-on-ignition, major and trace element, pollen, plant macrofossil and siliceous algae analyses were used to reconstruct Holocene environmental and water-depth changes. Diatom-based transfer functions were applied to estimate the lake's trophic status and pH, while reconstruction of the water-depth changes was based on the plant macrofossil and diatom records. The lowest Holocene water-depths were found between 9,000 and 7,400 calibrated BP years, when the crater was occupied by Sphagnum-bog and bog-pools. The major trend from 7,400 years BP was a gradual increase, but the basin was still dominated by poor-fen and poor fen-pools. Significant increases in water-depth, and meso/oligotrophic lake conditions were found from 5,350(1), 3,300(2) and 2,700 years BP. Of these, the first two coincided with major terrestrial vegetation changes, namely the establishment of Carpinus betulus on the crater slope (1), and the replacement of the lakeshore Picea abies forest by Fagus sylvatica (2). The chemical record clearly indicated significant soil changes along with the canopy changes (from coniferous to deciduous), that in turn led to increased in-lake productivity and pH. A further increase in water-depth around 2,700 years BP resulted in stable thermal stratification and hypolimnetic anoxia that via P-release further increased in-lake productivity and eventually led to phytoplankton blooms with large populations of Scenedesmus cf. S. brasiliensis. High productivity was depressed by anthropogenic lakeshore forest clearances commencing from ca. 1,000 years BP that led to the re-establishment of Picea abies on the lakeshore and consequent acidification of the lake-water. On the whole, these data

  17. Table Tennis Club

    CERN Multimedia

    Table Tennis Club

    2013-01-01

    Apparently table tennis plays an important role in physics, not so much because physicists are interested in the theory of table tennis ball scattering, but probably because it provides useful breaks from their deep intellectual occupation. It seems that many of the greatest physicists took table tennis very seriously. For instance, Heisenberg could not even bear to lose a game of table tennis, Otto Frisch played a lot of table tennis, and had a table set up in his library, and Niels Bohr apparently beat everybody at table tennis. Therefore, as the CERN Table Tennis Club advertises on a poster for the next CERN Table Tennis Tournament: “if you want to be a great physicist, perhaps you should play table tennis”. Outdoor table at restaurant n° 1 For this reason, and also as part of the campaign launched by the CERN medical service “Move! & Eat better”, to encourage everyone at CERN to take regular exercise, the CERN Table Tennis Club, with the supp...

  18. Filling the gap: using non-invasive geophysical methods to monitor the processes leading to enhanced carbon turnover induced by periodic water table fluctuations

    Science.gov (United States)

    Mellage, A.; Pronk, G.; Atekwana, E. A.; Furman, A.; Rezanezhad, F.; Van Cappellen, P.

    2017-12-01

    Subsurface transition environments such as the capillary fringe are characterized by steep gradients in redox conditions. Spatial and temporal variations in electron acceptor and donor availability - driven by hydrological changes - may enhance carbon turnover, in some cases resulting in pulses of CO2-respiration. Filling the mechanistic knowledge gap between the hydrological driver and its biogeochemical effects hinges on our ability to monitor microbial activity and key geochemical markers at a high spatial and temporal resolution. However, direct access to subsurface biogeochemical processes is logistically difficult, invasive and usually expensive. In-line, non-invasive geophysical techniques - Spectral Induced Polarization (SIP) and Electrodic Potential (EP), specifically - offer a comparatively inexpensive alternative and can provide data with high spatial and temporal resolution. The challenge lies in linking electrical responses to specific changes in biogeochemical processes. We conducted SIP and EP measurements on a soil column experiment where an artificial soil mixture was subjected to monthly drainage and imbibition cycles. SIP responses showed a clear dependence on redox zonation and microbial abundance. Temporally variable responses exhibited no direct moisture dependence suggesting that the measured responses recorded changes in microbial activity and coincided with the depth interval over which enhanced carbon turnover was observed. EP measurements detected the onset of sulfate mineralization and mapped its depth zonation. SIP and EP signals thus detected enhanced microbial activity within the water table fluctuation zone as well as the timing of the development of specific reactive processes. These findings can be used to relate measured electrical signals to specific reaction pathways and help inform reactive transport models, increasing their predictive capabilities.

  19. Analysis of Tide and Offshore Storm-Induced Water Table Fluctuations for Structural Characterization of a Coastal Island Aquifer

    Science.gov (United States)

    Trglavcnik, Victoria; Morrow, Dean; Weber, Kela P.; Li, Ling; Robinson, Clare E.

    2018-04-01

    Analysis of water table fluctuations can provide important insight into the hydraulic properties and structure of a coastal aquifer system including the connectivity between the aquifer and ocean. This study presents an improved approach for characterizing a permeable heterogeneous coastal aquifer system through analysis of the propagation of the tidal signal, as well as offshore storm pulse signals through a coastal aquifer. Offshore storms produce high wave activity, but are not necessarily linked to significant onshore precipitation. In this study, we focused on offshore storm events during which no onshore precipitation occurred. Extensive groundwater level data collected on a sand barrier island (Sable Island, NS, Canada) show nonuniform discontinuous propagation of the tide and offshore storm pulse signals through the aquifer with isolated inland areas showing enhanced response to both oceanic forcing signals. Propagation analysis suggests that isolated inland water table fluctuations may be caused by localized leakage from a confined aquifer that is connected to the ocean offshore but within the wave setup zone. Two-dimensional groundwater flow simulations were conducted to test the leaky confined-unconfined aquifer conceptualization and to identify the effect of key parameters on tidal signal propagation in leaky confined-unconfined coastal aquifers. This study illustrates that analysis of offshore storm signal propagation, in addition to tidal signal propagation, provides a valuable and low resource approach for large-scale characterization of permeable heterogeneous coastal aquifers. Such an approach is needed for the effective management of coastal environments where water resources are threatened by human activities and the changing climate.

  20. Monitoring plant water status and rooting depth for precision irrigation in the vineyards of Classic Karst

    Science.gov (United States)

    Savi, Tadeja; Moretti, Elisa; Dal Borgo, Anna; Petruzzellis, Francesco; Stenni, Barbara; Bertoncin, Paolo; Dreossi, Giuliano; Zini, Luca; Martellos, Stefano; Nardini, Andrea

    2017-04-01

    The extreme summer drought and heat waves that occurred in South-Europe in 2003 and 2012 have led to the loss of more than 50% of winery production in the Classic Karst (NE Italy). The irrigation of vineyards in this area is not appropriately developed and, when used, it does not consider the actual water status and needs of plants, posing risks of inappropriate or useless usage of large water volumes. The predicted future increase in frequency and severity of extreme climate events poses at serious risk the local agriculture based on wine business. We monitored seasonal trends of pre-dawn (Ψpd) and minimum (Ψmin) leaf water potential, and stomatal conductance (gL) of 'Malvasia' grapevine in one mature (MV, both in 2015 and 2016) and one young vineyard (YV, in 2016). Moreover, we extracted xylem sap form plant stems and soil water from samples collected in nearby caves, by cryo-vacuum distillation. We also collected precipitation and irrigation water in different months. Oxygen isotope composition (δ18O) of atmospheric, plant, soil and irrigation water was analyzed to get information about rooting depth. In 2015, at the peak of summer aridity, two irrigation treatments were applied according to traditional management practices. The treatments were performed in a sub-area of the MV, followed by physiological analysis and yield measurements at grape harvest. In 2016, the soil water potential (Ψsoil) at 50 cm depth was also monitored throughout the season. Under harsh environmental conditions the apparently deep root system ensured relatively favorable plant water status in both MV and YV and during both growing seasons. The Ψsoil at 50 cm depth gradually decreased as drought progressed, reaching a minimum value of about -1.7 MPa, far more negative than Ψpd recorded in plants (about -0.5 MPa). In July, significant stomatal closure was observed, but Ψmin never surpassed the critical threshold of -1.3 MPa, indicating that irrigation was not needed. The xylem sap

  1. Chemical composition of selected Kansas brines as an aid to interpreting change in water chemistry with depth

    Science.gov (United States)

    Dingman, R.J.; Angino, E.E.

    1969-01-01

    Chemical analyses of approximately 1,881 samples of water from selected Kansas brines define the variations of water chemistry with depth and aquifer age. The most concentrated brines are found in the Permian rocks which occupy the intermediate section of the geologic column of this area. Salinity decreases below the Permian until the Ordovician (Arbuckle) horizon is reached and then increases until the Precambrian basement rocks are reached. Chemically, the petroleum brines studied in this small area fit the generally accepted pattern of an increase in calcium, sodium and chloride content with increasing salinity. They do not fit the often-predicted trend of increases in the calcium to chloride ratio, calcium content and salinity with depth and geologic age. The calcium to chloride ratio tends to be asymptotic to about 0.2 with increasing chloride content. Sulfate tends to decrease with increasing calcium content. Bicarbonate content is relatively constant with depth. If many of the hypotheses concerning the chemistry of petroleum brines are valid, then the brines studied are anomolous. An alternative lies in accepting the thesis that exceptions to these hypotheses are rapidly becoming the rule and that indeed we still do not have a valid and general hypothesis to explain the origin and chemistry of petroleum brines. ?? 1969.

  2. Upper Bound Solution for the Face Stability of Shield Tunnel below the Water Table

    Directory of Open Access Journals (Sweden)

    Xilin Lu

    2014-01-01

    Full Text Available By FE simulation with Mohr-Coulomb perfect elastoplasticity model, the relationship between the support pressure and displacement of the shield tunnel face was obtained. According to the plastic strain distribution at collapse state, an appropriate failure mechanism was proposed for upper bound limit analysis, and the formula to calculate the limit support pressure was deduced. The limit support pressure was rearranged to be the summation of soil cohesion c, surcharge load q, and soil gravity γ multiplied by their corresponding coefficients Nc, Nq, and Nγ, and parametric studies were carried out on these coefficients. In order to consider the influence of seepage on the face stability, the pore water pressure distribution and the seepage force on the tunnel face were obtained by FE simulation. After adding the power of seepage force into the equation of the upper bound limit analysis, the total limit support pressure for stabilizing the tunnel face under seepage condition was obtained. The total limit support pressure was shown to increase almost linearly with the water table.

  3. A greedy algorithm for construction of decision trees for tables with many-valued decisions - A comparative study

    KAUST Repository

    Azad, Mohammad

    2013-11-25

    In the paper, we study a greedy algorithm for construction of decision trees. This algorithm is applicable to decision tables with many-valued decisions where each row is labeled with a set of decisions. For a given row, we should find a decision from the set attached to this row. Experimental results for data sets from UCI Machine Learning Repository and randomly generated tables are presented. We make a comparative study of the depth and average depth of the constructed decision trees for proposed approach and approach based on generalized decision. The obtained results show that the proposed approach can be useful from the point of view of knowledge representation and algorithm construction.

  4. A greedy algorithm for construction of decision trees for tables with many-valued decisions - A comparative study

    KAUST Repository

    Azad, Mohammad; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2013-01-01

    In the paper, we study a greedy algorithm for construction of decision trees. This algorithm is applicable to decision tables with many-valued decisions where each row is labeled with a set of decisions. For a given row, we should find a decision from the set attached to this row. Experimental results for data sets from UCI Machine Learning Repository and randomly generated tables are presented. We make a comparative study of the depth and average depth of the constructed decision trees for proposed approach and approach based on generalized decision. The obtained results show that the proposed approach can be useful from the point of view of knowledge representation and algorithm construction.

  5. Soil chemistry and ground-water quality of the water-table zone of the surficial aquifer, Naval Submarine Base Kings Bay, Camden County, Georgia, 1998 and 1999

    Science.gov (United States)

    Leeth, David C.

    2002-01-01

    In 1998, the U.S. Geological Survey, in cooperation with the U.S. Department of the Navy, began an investigation to determine background ground-water quality of the water-table zone of the surficial aquifer and soil chemistry at Naval Submarine Base Kings Bay, Camden County, Georgia, and to compare these data to two abandoned solid- waste disposal areas (referred to by the U.S. Navy as Sites 5 and 16). The quality of water in the water-table zone generally is within the U.S. Environmental Protection Agency (USEPA) drinking-water regulation. The pH of ground water in the study area ranged from 4.0 to 7.6 standard units, with a median value of 5.4. Water from 29 wells is above the pH range and 3 wells are within the range of the USEPA secondary drinking-water regulation (formerly known as the Secondary Maximum Contaminant Level or SMCL) of 6.5 to 8.5 standard units. Also, water from one well at Site 5 had a chloride concentration of 570 milligrams per liter (mg/L,), which is above the USEPA secondary drinking-water regulation of 250 mg/L. Sulfate concentrations in water from two wells at Site 5 are above the USEPA secondary drinking-water regulation of 250 mg/L. Of 22 soil-sampling locations for this study, 4 locations had concentrations above the detection limit for either volatile organic compounds (VOCs), base-neutral acids (BNAs), or pesticides. VOCs detected in the study area include toluene in one background sample; and acetone in one background sample and one sample from Site 16--however, detection of these two compounds may be a laboratory artifact. Pesticides detected in soil at the Submarine Base include two degradates of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT): 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (4,4'-DDD) in one background sample, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (4,4'-DDE) in one background sample and one sample from Site 16; and dibenzofuran in one sample from Site 16. BNAs were detected in one background sample and in two

  6. Incidence of marine debris in seabirds feeding at different water depths.

    Science.gov (United States)

    Tavares, D C; de Moura, J F; Merico, A; Siciliano, S

    2017-06-30

    Marine debris such as plastic fragments and fishing gears are accumulating in the ocean at alarming rates. This study assesses the incidence of debris in the gastrointestinal tracts of seabirds feeding at different depths and found stranded along the Brazilian coast in the period 2010-2013. More than half (55%) of the species analysed, corresponding to 16% of the total number of individuals, presented plastic particles in their gastrointestinal tracts. The incidence of debris was higher in birds feeding predominantly at intermediate (3-6m) and deep (20-100m) waters than those feeding at surface (pollution has on marine life and highlight the ubiquitous and three-dimensional distribution of plastic in the oceans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Seasonal changes in depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland.

    Science.gov (United States)

    Eggemeyer, Kathleen D; Awada, Tala; Harvey, F Edwin; Wedin, David A; Zhou, Xinhua; Zanner, C William

    2009-02-01

    We used the natural abundance of stable isotopic ratios of hydrogen and oxygen in soil (0.05-3 m depth), plant xylem and precipitation to determine the seasonal changes in sources of soil water uptake by two native encroaching woody species (Pinus ponderosa P. & C. Lawson, Juniperus virginiana L.), and two C(4) grasses (Schizachyrium scoparium (Michx.) Nash, Panicum virgatum L.), in the semiarid Sandhills grasslands of Nebraska. Grass species extracted most of their water from the upper soil profile (0.05-0.5 m). Soil water uptake from below 0.5 m depth increased under drought, but appeared to be minimal in relation to the total water use of these species. The grasses senesced in late August in response to drought conditions. In contrast to grasses, P. ponderosa and J. virginiana trees exhibited significant plasticity in sources of water uptake. In winter, tree species extracted a large fraction of their soil water from below 0.9 m depth. In spring when shallow soil water was available, tree species used water from the upper soil profile (0.05-0.5 m) and relied little on water from below 0.5 m depth. During the growing season (May-August) significant differences between the patterns of tree species water uptake emerged. Pinus ponderosa acquired a large fraction of its water from the 0.05-0.5 and 0.5-0.9 m soil profiles. Compared with P. ponderosa, J. virginiana acquired water from the 0.05-0.5 m profile during the early growing season but the amount extracted from this profile progressively declined between May and August and was mirrored by a progressive increase in the fraction taken up from 0.5-0.9 m depth, showing plasticity in tracking the general increase in soil water content within the 0.5-0.9 m profile, and being less responsive to growing season precipitation events. In September, soil water content declined to its minimum, and both tree species shifted soil water uptake to below 0.9 m. Tree transpiration rates (E) and water potentials (Psi) indicated

  8. Decision and Inhibitory Trees for Decision Tables with Many-Valued Decisions

    KAUST Repository

    Azad, Mohammad

    2018-06-06

    Decision trees are one of the most commonly used tools in decision analysis, knowledge representation, machine learning, etc., for its simplicity and interpretability. We consider an extension of dynamic programming approach to process the whole set of decision trees for the given decision table which was previously only attainable by brute-force algorithms. We study decision tables with many-valued decisions (each row may contain multiple decisions) because they are more reasonable models of data in many cases. To address this problem in a broad sense, we consider not only decision trees but also inhibitory trees where terminal nodes are labeled with “̸= decision”. Inhibitory trees can sometimes describe more knowledge from datasets than decision trees. As for cost functions, we consider depth or average depth to minimize time complexity of trees, and the number of nodes or the number of the terminal, or nonterminal nodes to minimize the space complexity of trees. We investigate the multi-stage optimization of trees relative to some cost functions, and also the possibility to describe the whole set of strictly optimal trees. Furthermore, we study the bi-criteria optimization cost vs. cost and cost vs. uncertainty for decision trees, and cost vs. cost and cost vs. completeness for inhibitory trees. The most interesting application of the developed technique is the creation of multi-pruning and restricted multi-pruning approaches which are useful for knowledge representation and prediction. The experimental results show that decision trees constructed by these approaches can often outperform the decision trees constructed by the CART algorithm. Another application includes the comparison of 12 greedy heuristics for single- and bi-criteria optimization (cost vs. cost) of trees. We also study the three approaches (decision tables with many-valued decisions, decision tables with most common decisions, and decision tables with generalized decisions) to handle

  9. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    International Nuclear Information System (INIS)

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs

  10. User’s manual for the Automated Data Assurance and Management application developed for quality control of Everglades Depth Estimation Network water-level data

    Science.gov (United States)

    Petkewich, Matthew D.; Daamen, Ruby C.; Roehl, Edwin A.; Conrads, Paul

    2016-09-29

    The generation of Everglades Depth Estimation Network (EDEN) daily water-level and water-depth maps is dependent on high quality real-time data from over 240 water-level stations. To increase the accuracy of the daily water-surface maps, the Automated Data Assurance and Management (ADAM) tool was created by the U.S. Geological Survey as part of Greater Everglades Priority Ecosystems Science. The ADAM tool is used to provide accurate quality-assurance review of the real-time data from the EDEN network and allows estimation or replacement of missing or erroneous data. This user’s manual describes how to install and operate the ADAM software. File structure and operation of the ADAM software is explained using examples.

  11. Study of downward movement of soil water in unsaturated zones using isotopic techniques. Part of a coordinated programme on studying physical and isotopic behaviour of soil moisture in the zones of aeration

    International Nuclear Information System (INIS)

    Sajjad, M.I.

    1984-08-01

    Experiments carried out to study the relative contribution from canal system, precipitation and irrigated fields to water table are described. The normal delta of irrigation water does not seem to have any appreciable effect on the water table through heavy textured soil. The contribution from irrigated fields and rains through sandy soils is significant. However, the groundwater rise (water logging) is mainly due to the infiltration from the canal system. Flow velocities at 1 m depth and 20 vol. % moisture are of the order of 16 m/a and 1.6 m/a for sandy and loamy soils respectively. The contribution from irrigated fields and rains to groundwater recharge is considered to be less than 30%

  12. Role of the interaction processes in the depth-dose distribution of proton beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; De Vera, Pablo; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2012-01-01

    We use a simulation code, based on Molecular Dynamics and Monte Carlo, to investigate the depth-dose profile and lateral radial spreading of swift proton beams in liquid water. The stochastic nature of the projectile-target interaction is accounted for in a detailed manner by including in a consistent way fluctuations in both the energy loss due to inelastic collisions and the angular deflection from multiple elastic scattering. Depth-variation of the projectile charge-state as it slows down into the target, due to electron capture and loss processes, is also considered. By selectively switching on/off these stochastic processes in the simulation, we evaluate the contribution of each one of them to the Bragg curve. Our simulations show that the inclusion of the energy-loss straggling sizeably affects the width of the Bragg peak, whose position is mainly determined by the stopping power. The lateral spread of the beam as a function of the depth in the target is also examined.

  13. TableMaker: An Excel Macro for Publication-Quality Tables

    Directory of Open Access Journals (Sweden)

    Marek Hlavac

    2016-04-01

    Full Text Available This article introduces TableMaker, a Microsoft Excel macro that produces publicationquality tables and includes them as new sheets in workbooks. The macro provides an intuitive graphical user interface that allows for the full customization of all table features. It also allows users to save and load table templates, and thus allows layouts to be both reproducible and transferable. It is distributed in a single computer file. As such, the macro is easy to share, as well as accessible to even beginning and casual users of Excel. Since it allows for the quick creation of reproducible and fully customizable tables, TableMaker can be very useful to academics, policy-makers and businesses by making the presentation and formatting of results faster and more efficient.

  14. Geochemical evolution of acidic ground water at a reclaimed surface coal mine in western Pennsylvania

    Science.gov (United States)

    Cravotta,, Charles A.

    1991-01-01

    solubility of O2 is not limiting, and oxidation of pyrite by O2 and Fe3+ accounts for most SO42- and Fe2+ observed in acidic ground water. However, in a system closed to O2, such as in the saturated zone, O2 solubility is limiting; hence, ferric oxidation of pyrite is a reasonable explanation for the observed elevated SO42- with increasing depth below the water table.

  15. Buoyancy of gas-filled bladders at great depth

    Science.gov (United States)

    Priede, Imants G.

    2018-02-01

    At high hydrostatic pressures exceeding 20 MPa or 200 bar, equivalent to depths exceeding ca.2000 m, the behaviour of gases deviates significantly from the predictions of standard equations such as Boyle's Law, the Ideal Gas Law and Van der Waals equation. The predictions of these equations are compared with experimental data for nitrogen, oxygen and air at 0 °C and 15 °C, at pressures up to 1100 bar (110 MPa) equivalent to full ocean depth of ca. 11000 m. Owing to reduced compressibility of gases at high pressures, gas-filled bladders at full ocean depth have a density of 847 kg m-3 for Oxygen, 622 kg m-3 for Nitrogen and 660 kg m-3 for air providing potentially useful buoyancy comparable with that available from man-made materials. This helps explain why some of the deepest-living fishes at ca. 7000 m depth (700 bar or 70 MPa) have gas-filled swim bladders. A table is provided of the density and buoyancy of oxygen, nitrogen and air at 0 °C and 15 °C from 100 to 1100 bar.

  16. Bi-criteria evaluation of the MIKE SHE model for a forested watershed on the South Carolina coastal plain

    Directory of Open Access Journals (Sweden)

    Z. Dai

    2010-06-01

    Full Text Available Hydrological models are important tools for effective management, conservation and restoration of forested wetlands. The objective of this study was to test a distributed hydrological model, MIKE SHE, by using bi-criteria (i.e., two measurable variables, streamflow and water table depth to describe the hydrological processes in a forested watershed that is characteristic of the lower Atlantic Coastal Plain. Simulations were compared against observations of both streamflow and water table depth measured on a first-order watershed (WS80 on the Santee Experimental Forest in South Carolina, USA. Model performance was evaluated using coefficient of determination (R2 and Nash-Sutcliffe's model efficiency (E. The E and root mean squared error (RMSE were chosen as objective functions for sensitivity analysis of parameters. The model calibration and validation results demonstrated that the streamflow and water table depth were sensitive to most of the model input parameters, especially to surface detention storage, drainage depth, soil hydraulic properties, plant rooting depth, and surface roughness. Furthermore, the bi-criteria approach used for distributed model calibration and validation was shown to be better than the single-criterion in obtaining optimum model input parameters, especially for those parameters that were only sensitive to some specific conditions. Model calibration using the bi-criteria approach should be advantageous for constructing the uncertainty bounds of model inputs to simulate the hydrology for this type of forested watersheds. R2 varied from 0.60–0.99 for daily and monthly streamflow, and from 0.52–0.91 for daily water table depth. E changed from 0.53–0.96 for calibration and 0.51–0.98 for validation of daily and monthly streamflow, while E varied from 0.50–0.90 for calibration and 0.66–0.80 for validation of daily water table depth. This study showed

  17. Penetration depth measurement of a 6 MeV electron beam in water by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    B. E. Hammer

    2011-11-01

    Full Text Available We demonstrate magnetic resonance imaging (MRI visualization of a 6 MeV electron beam in ferrous-doped water; a 25 mm penetration depth was measured. Time domain nuclear magnetic resonance was used to investigate the effect of generated free radicals on the free induction decay (FID in nondoped water; no apparent effects to the FID were observed. We show that MRI visualization of charged particle beams used in medical applications will require exogenous agents to provide contrast enhancement.

  18. Effects of water depth and substrate color on the growth and body color of the red sea cucumber, Apostichopus japonicus

    Science.gov (United States)

    Jiang, Senhao; Dong, Shuanglin; Gao, Qinfeng; Ren, Yichao; Wang, Fang

    2015-05-01

    Three color variants of the sea cucumber, Apostichopus japonicus are recognized, the red one is highly valued in the market. When the red variant is cultured in ponds in China, its body color changes from red to celadon in 3-6 months. The effects of water depth and substrate color on the growth and body color of this animal were investigated. Juveniles of red A. japonicus were cultured in cages suspended at a range of water depths (20, 50, 100, 150 and 200 cm). The specific growth rate of red sea cucumbers was significantly higher in animals cultured at deeper water layers compared with those grown at shallowers. Body weights were greatest for sea cucumbers cultured at a depth of 150 cm and their survival rates were highest at a depth of 200 cm. A scale to evaluate the color of red sea cucumbers ( R value) was developed using a Pantone standard color card. All stocked animals in the 9-month trial retained a red color, however the red body color was much more intense in sea cucumbers cultured at shallower depths, while animals suspended in deeper layers became pale. In a separate trial, A. japonicus were cultured in suspended cages with seven different colored substrates. Substrate color had a significant effect on the growth and body-color of red A. japonicus. The yield were greatest for A. japonicus cultured on a yellow substrate, followed by green > white > orange > red > black and blue. All sea cucumbers in the 7-month trial retained a red color, although the red was most intense (highest R value) in animals cultured on a blue substrate and pale (lowest R value) for animals cultured on a green substrate.

  19. The AMSR2 Satellite-based Microwave Snow Algorithm (SMSA) to estimate regional to global snow depth and snow water equivalent

    Science.gov (United States)

    Kelly, R. E. J.; Saberi, N.; Li, Q.

    2017-12-01

    With moderate to high spatial resolution (observation approaches yet to be fully scoped and developed, the long-term satellite passive microwave record remains an important tool for cryosphere-climate diagnostics. A new satellite microwave remote sensing approach is described for estimating snow depth (SD) and snow water equivalent (SWE). The algorithm, called the Satellite-based Microwave Snow Algorithm (SMSA), uses Advanced Microwave Scanning Radiometer - 2 (AMSR2) observations aboard the Global Change Observation Mission - Water mission launched by the Japan Aerospace Exploration Agency in 2012. The approach is unique since it leverages observed brightness temperatures (Tb) with static ancillary data to parameterize a physically-based retrieval without requiring parameter constraints from in situ snow depth observations or historical snow depth climatology. After screening snow from non-snow surface targets (water bodies [including freeze/thaw state], rainfall, high altitude plateau regions [e.g. Tibetan plateau]), moderate and shallow snow depths are estimated by minimizing the difference between Dense Media Radiative Transfer model estimates (Tsang et al., 2000; Picard et al., 2011) and AMSR2 Tb observations to retrieve SWE and SD. Parameterization of the model combines a parsimonious snow grain size and density approach originally developed by Kelly et al. (2003). Evaluation of the SMSA performance is achieved using in situ snow depth data from a variety of standard and experiment data sources. Results presented from winter seasons 2012-13 to 2016-17 illustrate the improved performance of the new approach in comparison with the baseline AMSR2 algorithm estimates and approach the performance of the model assimilation-based approach of GlobSnow. Given the variation in estimation power of SWE by different land surface/climate models and selected satellite-derived passive microwave approaches, SMSA provides SWE estimates that are independent of real or near real

  20. Depth investigation of rapid sand filters for drinking water production reveals strong stratification in nitrification biokinetic behavior

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2016-01-01

    The biokinetic behavior of NH4 + removal was investigated at different depths of a rapid sand filter treating groundwater for drinking water preparation. Filter materials from the top, middle and bottom layers of a full-scale filter were exposed to various controlled NH4 + loadings in a continuous...

  1. Mortality table construction

    Science.gov (United States)

    Sutawanir

    2015-12-01

    Mortality tables play important role in actuarial studies such as life annuities, premium determination, premium reserve, valuation pension plan, pension funding. Some known mortality tables are CSO mortality table, Indonesian Mortality Table, Bowers mortality table, Japan Mortality table. For actuary applications some tables are constructed with different environment such as single decrement, double decrement, and multiple decrement. There exist two approaches in mortality table construction : mathematics approach and statistical approach. Distribution model and estimation theory are the statistical concepts that are used in mortality table construction. This article aims to discuss the statistical approach in mortality table construction. The distributional assumptions are uniform death distribution (UDD) and constant force (exponential). Moment estimation and maximum likelihood are used to estimate the mortality parameter. Moment estimation methods are easier to manipulate compared to maximum likelihood estimation (mle). However, the complete mortality data are not used in moment estimation method. Maximum likelihood exploited all available information in mortality estimation. Some mle equations are complicated and solved using numerical methods. The article focus on single decrement estimation using moment and maximum likelihood estimation. Some extension to double decrement will introduced. Simple dataset will be used to illustrated the mortality estimation, and mortality table.

  2. Experimental effects of immersion time and water temperature on body condition, burying depth and timing of spawning of the tellinid bivalve Macoma balthica

    Science.gov (United States)

    de Goeij, Petra; Honkoop, Pieter J.

    2003-03-01

    The burying depth of many bivalve molluscs on intertidal mudflats varies throughout the year and differs between places. Many factors are known to influence burying depth on a seasonal or spatial scale, with temperature and tidal regime probably being very important. Burying depth, body condition and gonadal development of Macoma balthica were followed throughout winter and spring in an experiment in which water temperature and immersion time were manipulated. Unexpectedly, relative water temperature, in contrast to the prediction, did not generally affect body condition or burying depth. This was probably a consequence of the exceptionally overall low water temperatures during the experimental winter. Differences in temperature did, however, result in different timing of spawning: M. balthica spawned earlier at higher spring temperatures. Longer immersion times led to higher body condition only late in spring, but led to deeper burying throughout almost the whole period. There was no effect of immersion time on the timing of spawning. We conclude that a longer immersion time leads to deeper burying, independent of body condition. We also conclude that burying behaviour of M. balthica is not determined by the moment of spawning.

  3. TABLE TENNIS CLUB

    CERN Document Server

    TABLE TENNIS CLUB

    2010-01-01

    2010 CERN Table Tennis Tournament The CERN Table Tennis Club organizes its traditional CERN Table Tennis Tournament, at the Meyrin club, 2 rue de livron, in Meyrin, Saturday August 21st, in the afternoon. The tournament is open to all CERN staff, users, visitors and families, including of course summer students. See below for details. In order to register, simply send an E-mail to Jean-Pierre Revol (jean-pierre.revol@cern.ch). You can also download the registration form from the Club Web page (http://www.cern.ch/tabletennis), and send it via internal mail. Photo taken on August 22, 2009 showing some of the participants in the 2nd CERN Table Tennis tournament. INFORMATION ON CERN TABLE TENNIS CLUB CERN used to have a tradition of table tennis activities at CERN. For some reason, at the beginning of the 1980’s, the CERN Table Tennis club merged with the Meyrin Table Tennis club, a member of the Association Genevoise de Tennis de Table (AGTT). Therefore, if you want to practice table tennis, you...

  4. Depth as an organizer of fish assemblages in floodplain lakes

    Science.gov (United States)

    Miranda, L.E.

    2011-01-01

    Depth reduction is a natural process in floodplain lakes, but in many basins has been accelerated by anthropogenic disturbances. A diverse set of 42 floodplain lakes in the Yazoo River Basin (Mississippi, USA) was examined to test the hypothesis of whether depth reduction was a key determinant of water quality and fish assemblage structure. Single and multiple variable analyses were applied to 10 commonly monitored water variables and 54 fish species. Results showed strong associations between depth and water characteristics, and between depth and fish assemblages. Deep lakes provided less variable environments, clearer water, and a wider range of microhabitats than shallow lakes. The greater environmental stability was reflected by the dominant species in the assemblages, which included a broader representation of large-body species, species less tolerant of extreme water quality, and more predators. Stability in deep lakes was further reflected by reduced among-lake variability in taxa representation. Fish assemblages in shallow lakes were more variable than deep lakes, and commonly dominated by opportunistic species that have early maturity, extended breeding seasons, small adult size, and short lifespan. Depth is a causal factor that drives many physical and chemical variables that contribute to organizing fish assemblages in floodplain lakes. Thus, correlations between fish and water transparency, temperature, oxygen, trophic state, habitat structure, and other environmental descriptors may ultimately be totally or partly regulated by depth. In basins undergoing rapid anthropogenic modifications, local changes forced by depth reductions may be expected to eliminate species available from the regional pool and could have considerable ecological implications. ?? 2010 Springer Basel AG (outside the USA).

  5. Mobility and transport of mercury and methylmercury in peat as a function of changes in water table regime and plant functional groups

    Science.gov (United States)

    Kristine M. Haynes; Evan S. Kane; Lynette Potvin; Erik A. Lilleskov; Randy Kolka; Carl P. J. Mitchell

    2017-01-01

    Climate change is likely to significantly affect the hydrology, ecology, and ecosystem function of peatlands, with potentially important but unclear impacts on mercury mobility within and transport from peatlands. Using a full-factorial mesocosm approach, we investigated the potential impacts on mercury mobility of water table regime changes (high and low) and...

  6. Elekta Precise Table characteristics of IGRT remote table positioning

    International Nuclear Information System (INIS)

    Riis, Hans L.; Zimmermann, Sune J.

    2009-01-01

    Cone beam CT is a powerful tool to ensure an optimum patient positioning in radiotherapy. When cone beam CT scan of a patient is acquired, scan data of the patient are compared and evaluated against a reference image set and patient position offset is calculated. Via the linac control system, the patient is moved to correct for position offset and treatment starts. This procedure requires a reliable system for movement of patient. In this work we present a new method to characterize the reproducibility, linearity and accuracy in table positioning. The method applies to all treatment tables used in radiotherapy. Material and methods. The table characteristics are investigated on our two recent Elekta Synergy Platforms equipped with Precise Table installed in a shallow pit concrete cavity. Remote positioning of the table uses the auto set-up (ASU) feature in the linac control system software Desktop Pro R6.1. The ASU is used clinically to correct for patient positioning offset calculated via cone beam CT (XVI)-software. High precision steel rulers and a USB-microscope has been used to detect the relative table position in vertical, lateral and longitudinal direction. The effect of patient is simulated by applying external load on the iBEAM table top. For each table position an image is exposed of the ruler and display values of actual table position in the linac control system is read out. The table is moved in full range in lateral direction (50 cm) and longitudinal direction (100 cm) while in vertical direction a limited range is used (40 cm). Results and discussion. Our results show a linear relation between linac control system read out and measured position. Effects of imperfect calibration are seen. A reproducibility within a standard deviation of 0.22 mm in lateral and longitudinal directions while within 0.43 mm in vertical direction has been observed. The usage of XVI requires knowledge of the characteristics of remote table positioning. It is our opinion

  7. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across American Samoa in 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  8. AcuTable

    DEFF Research Database (Denmark)

    Dibbern, Simon; Rasmussen, Kasper Vestergaard; Ortiz-Arroyo, Daniel

    2017-01-01

    In this paper we describe AcuTable, a new tangible user interface. AcuTable is a shapeable surface that employs capacitive touch sensors. The goal of AcuTable was to enable the exploration of the capabilities of such haptic interface and its applications. We describe its design and implementation...

  9. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    Science.gov (United States)

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  10. The maximum economic depth of groundwater abstraction for irrigation

    Science.gov (United States)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of

  11. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water.

    Science.gov (United States)

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D

    2004-01-01

    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus.

  12. Using Water Depth Sensors and High-resolution Topographic Mapping to Inform Wetland Management at a Globally Important Stopover Site for Migratory Shorebirds

    Science.gov (United States)

    Schaffer-Smith, D.; Swenson, J. J.; Reiter, M. E.; Isola, J. E.

    2017-12-01

    Over 50% of western hemisphere shorebird species are in decline due to ongoing habitat loss and habitat degradation. Wetland dependent shorebirds prefer shallowly flooded habitats (water depth managed to optimize shallow areas. In-situ water depth measurements and microtopography data coupled with satellite image analysis can assist in understanding habitat suitability patterns at broad spatial scales. We generated detailed bathymetry, and estimated spatial daily water depths, the proportion of wetland area providing flooded habitat within the optimal depth range, and the volume of water present in 23 managed wetlands in the Sacramento Valley of California, a globally important shorebird stopover site. Using 30 years of satellite imagery, we estimated suitable habitat extent across the landscape under a range of climate conditions. While spring shorebird abundance has historically peaked in early April, we found that maximum optimal habitat extent occurred after mid-April. More than 50% of monitored wetlands provided limited optimal habitat (fleeting; only 4 wetlands provided at least 10 consecutive days with >5% optimal habitat during the peak of migration. Wetlands with a higher percent clay content and lower topographic variability were more likely to provide a greater extent and duration of suitable habitat. We estimated that even in a relatively wet El-Nino year as little as 0.01%, to 10.72% of managed herbaceous wetlands in the Sacramento Valley provided optimal habitat for shorebirds at the peak of migration in early April. In an extreme drought year, optimal habitat decreased by 80% compared to a wet year Changes in the timing of wetland irrigation and drawdown schedules and the design of future wetland restoration projects could increase the extent and duration of optimal flooded habitat for migratory shorebirds, without significant increases in overall water use requirements.

  13. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth

    Science.gov (United States)

    Momen, M.; Wood, J. D.; Novick, K. A.; Pockman, W.; Konings, A. G.

    2017-12-01

    Remotely-sensed microwave observations of vegetation optical depth (VOD) have been widely used to examine vegetation responses to climate. Such studies have alternately found that VOD is sensitive to both biomass and canopy water content. However, the relative impacts of changes in phenology or water stress on VOD have not been disentangled. In particular, understanding whether leaf water potential (LWP) affects VOD may permit the assimilation of satellite observations into new large-scale plant hydraulic models. Despite extensive validation of the relationship between satellite-derived VOD estimates and vegetation density, relatively few studies have explicitly sought to validate the sensitivity of VOD to canopy water status, and none have studied the effect of variations in LWP on VOD. In this work, we test the sensitivity of VOD to variations in LWP, and present a conceptual framework which relates VOD to a combination of leaf water potential and total biomass including leaves, whose dynamics can be measured through leaf area index, and woody biomass. We used in-situ measurements of LWP data to validate the conceptual model in mixed deciduous forests in Indiana and Missouri, as well as a pinion-juniper woodland in New Mexico. Observed X-band VOD from the AMSR-E and AMSR2 satellites showed dynamics similar to those reconstructed VOD signals based on the new conceptual model which employs in-situ LWP data (R2=0.60-0.80). Because LWP data are not available at global scales, we further estimated ecosystem LWP based on remotely sensed surface soil moisture to better understand the sensitivity of VOD across ecosystems. At the global scale, incorporating a combination of biomass and water potential in the reconstructed VOD signal increased correlations with VOD about 15% compared to biomass alone and about 30% compared to water potential alone. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water

  14. Moderate drop in water table increases peatland vulnerability to post-fire regime shift.

    Science.gov (United States)

    Kettridge, N; Turetsky, M R; Sherwood, J H; Thompson, D K; Miller, C A; Benscoter, B W; Flannigan, M D; Wotton, B M; Waddington, J M

    2015-01-27

    Northern and tropical peatlands represent a globally significant carbon reserve accumulated over thousands of years of waterlogged conditions. It is unclear whether moderate drying predicted for northern peatlands will stimulate burning and carbon losses as has occurred in their smaller tropical counterparts where the carbon legacy has been destabilized due to severe drainage and deep peat fires. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland subjected to decadal drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition previously observed within only severely disturbed tropical peatlands. The combined impact of moderate drainage followed by wildfire converted the low productivity, moss-dominated peatland to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy of stored peat carbon.

  15. Iron-mediated soil carbon response to water-table decline in an alpine wetland

    Science.gov (United States)

    Wang, Yiyun; Wang, Hao; He, Jin-Sheng; Feng, Xiaojuan

    2017-06-01

    The tremendous reservoir of soil organic carbon (SOC) in wetlands is being threatened by water-table decline (WTD) globally. However, the SOC response to WTD remains highly uncertain. Here we examine the under-investigated role of iron (Fe) in mediating soil enzyme activity and lignin stabilization in a mesocosm WTD experiment in an alpine wetland. In contrast to the classic `enzyme latch' theory, phenol oxidative activity is mainly controlled by ferrous iron [Fe(II)] and declines with WTD, leading to an accumulation of dissolvable aromatics and a reduced activity of hydrolytic enzyme. Furthermore, using dithionite to remove Fe oxides, we observe a significant increase of Fe-protected lignin phenols in the air-exposed soils. Fe oxidation hence acts as an `iron gate' against the `enzyme latch' in regulating wetland SOC dynamics under oxygen exposure. This newly recognized mechanism may be key to predicting wetland soil carbon storage with intensified WTD in a changing climate.

  16. Impact of water depth on the distribution of iGDGTs in the surface sediments from the northern South China Sea: applicability of TEX86 in marginal seas

    Science.gov (United States)

    Chen, Jiali; Hu, Pengju; Li, Xing; Yang, Yang; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Lü, Xiaoxia

    2018-03-01

    The TEX 86 H paleothermometer on the base of isoprenoid glycerol dialkyl glycerol tetraethers (iGDGTs) has been widely applied to various marine settings to reconstruct past sea surface temperatures (SSTs). However, it remains uncertain how well this proxy reconstructs SSTs in marginal seas. In this study, we analyze the environmental factors governing distribution of iGDGTs in surface sediments to assess the applicability of TEX 86 H paleothermometer in the South China Sea (SCS). Individual iGDGT concentrations increase gradually eastwards. Redundancy analysis based on the relative abundance of an individual iGDGT compound and environmental parameters suggests that water depth is the most influential factor to the distribution of iGDGTs, because thaumarchaeota communities are water-depth dependent. Interestingly, the SST difference (Δ T) between TEX 86 H derived temperature and remote-sensing SST is less than 1°C in sediments with water depth>200 m, indicating that TEX 86 H was the robust proxy to trace the paleo-SST in the region if water depth is greater than 200 m.

  17. WATER RETENTION OPTION OF DRAINAGE SYSTEM FOR DRY SEASON CORN CULTIVATION AT TIDAL LOWLAND AREA

    Directory of Open Access Journals (Sweden)

    Bakri

    2015-10-01

    Full Text Available Farming constraint at tidal lowland area is about water management related to the nature of excessive water during wet season and insufficient water during dry season. This field research objectives was to find out the corn crop cultivation in August 2014 which entered dry season. The installation of subsurface drainage that previously had functioned as water discharge was converted into water retention. The research results showed that corn had grown well during peak dry season period (October in which water table was at –50 cm below soil surface, whereas water table depth was dropped to –70 cm below soil surface in land without subsurface drainage. This condition implied that installation of subsurface drainage at dry season had function as water retention, not as water discharge. Therefore, network function was inverted from water discharge into water retention. It had impact on the development of optimum water surface that flow in capillary mode to fulfill the crop’s water requirement. Corn production obtained was 6.4 t ha-1. This condition was very promising though still below the maximum national production. The applications of subsurface drainage was still not optimum due to the supply of water from the main system was not the same because of the soil physical properties diversity and topography differences.

  18. Adaptability of four cassava ( Manihot esculenta crantz ) cultivars in ...

    African Journals Online (AJOL)

    The deep water table site at Alabata had the highest growth indices and yield in valley bottom and the lowest in the fringe, while the shallow water table site at Ibadan recorded higher yield and growth indices in the fringe than the other positions. The shallowest water table depths at Ibadan and Alabata were and below ...

  19. A Vulnerability Evaluation of the Phreatic Water in the Plain Area of the Junggar Basin, Xinjiang Based on the VDEAL Model

    Directory of Open Access Journals (Sweden)

    Ruiliang Jia

    2014-11-01

    Full Text Available A VDEAL (V is the lithology of the vadose zone, D is the groundwater depth, E is the degree of groundwater exploitation, A is the aquifer characteristics and L is the land use pattern. model, which is suitable for a vulnerability evaluation of the groundwater in arid inland areas, and that is based on the GOD (G is the groundwater status, O is overburden feature and D is groundwater depth method and DRASTIC (D is the depth of water-table, R is the net recharge, A is the aquifer media, S is the soil media, T is the topography, I is the impact of the vadose and C is the conductivity of the aquifer. model is proposed in this paper. Five indicators were selected by reference to the DRAV (D is the depth of water-table, R is the net recharge, A is the aquifer media and V is the impact of the vadose. and VLDA (V is the lithology of the vadose zone , L is the land use pattern, D is the groundwater depth and A is the aquifer characteristics and. models, namely, the lithology of the vadose zone (V, the groundwater depth (D, the degree of groundwater exploitation (E, the aquifer characteristics (A and the land use pattern (L. According to monitoring data from 2003 and 2011, the variations of phreatic water quality in the plain area of the Junggar Basin were divided into three types: the water quality may have deteriorated, be unchanged or improved. Four groups of indicator weights were configured to calculate the vulnerability index using the VDEAL model. The changes of phreatic water quality were then compared against the vulnerability index. The normalized weights of V, D, E, A, and L were respectively 0.15, 0.25, 0.10, 0.10, and 0.40; this is according to the principle that the sampling sites of deteriorated water quality are generally distributed in a high-vulnerability region, and the sites of unchanged and improved water quality are distributed in middle vulnerability, low vulnerability and invulnerable regions. The evaluation results of phreatic

  20. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system

    Science.gov (United States)

    Morway, Eric D.; Gates, Timothy K.; Niswonger, Richard G.

    2013-01-01

    Some of the world’s key agricultural production systems face big challenges to both water quantity and quality due to shallow groundwater that results from long-term intensive irrigation, namely waterlogging and salinity, water losses, and environmental problems. This paper focuses on water quantity issues, presenting finite-difference groundwater models developed to describe shallow water table levels, non-beneficial groundwater consumptive use, and return flows to streams across two regions within an irrigated alluvial river valley in southeastern Colorado, USA. The models are calibrated and applied to simulate current baseline conditions in the alluvial aquifer system and to examine actions for potentially improving these conditions. The models provide a detailed description of regional-scale subsurface unsaturated and saturated flow processes, thereby enabling detailed spatiotemporal description of groundwater levels, recharge to infiltration ratios, partitioning of ET originating from the unsaturated and saturated zones, and groundwater flows, among other variables. Hybrid automated and manual calibration of the models is achieved using extensive observations of groundwater hydraulic head, groundwater return flow to streams, aquifer stratigraphy, canal seepage, total evapotranspiration, the portion of evapotranspiration supplied by upflux from the shallow water table, and irrigation flows. Baseline results from the two regional-scale models are compared to model predictions under variations of four alternative management schemes: (1) reduced seepage from earthen canals, (2) reduced irrigation applications, (3) rotational lease fallowing (irrigation water leased to municipalities, resulting in temporary dry-up of fields), and (4) combinations of these. The potential for increasing the average water table depth by up to 1.1 and 0.7 m in the two respective modeled regions, thereby reducing the threat of waterlogging and lowering non-beneficial consumptive use

  1. Determination of electron depth-dose curves for water, ICRU tissue, and PMMA and their application to radiation protection dosimetry

    International Nuclear Information System (INIS)

    Grosswendt, B.

    1994-01-01

    For monoenergetic electrons in the energy range between 60 keV and 10 MeV, normally incident on water, 4-element ICRU tissue and PMMA phantoms, depth-dose curves have been calculated using the Monte Carlo method. The phantoms' shape was that of a rectangular solid with a square front face of 30 cm x 30 cm and a thickness of 15 cm; it corresponds to that recommended by the ICRU for use in the procedure of calibrating radiation protection dosemeters. The depth-dose curves have been used to determine practical ranges, half-value depths, electron fluence to maximum absorbed dose conversion factors, and conversion factors between electron fluence and absorbed dose at depths d corresponding to 0.007 g.cm -2 , 0.3 g.cm -2 , and 1.0 g.cm -2 . The latter data can be used as fluence to dose equivalent conversion factors for extended parallel electron beams. (Author)

  2. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  3. An optical fiber expendable seawater temperature/depth profile sensor

    Science.gov (United States)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  4. NifH- Harboring Bacterial Community Composition Across an Alaskan Permafrost Thaw Gradient

    Directory of Open Access Journals (Sweden)

    Christopher Ryan Penton

    2016-11-01

    Full Text Available Since nitrogen (N is often limiting in permafrost soils, we investigated the N2-fixing genetic potential and the inferred taxa harboring those genes by sequencing nifH gene fragments in samples taken along a permafrost thaw gradient in an Alaskan boreal soil. Samples from minimally, moderately and extensively thawed sites were taken to a depth of 79 cm to encompass zones above and below the depth of the water table. NifH reads were translated with frameshift correction and 112,476 sequences were clustered at 5% amino acid dissimilarity resulting in 1,631 OTUs. Sample depth in relation to water table depth was correlated to differences in the NifH sequence classes. NifH sequences most closely related to group I nifH-harboring Alpha- and Beta Proteobacteria were in higher abundance above water table depth while those related to group III nifH-harboring Delta and Gamma Proteobacteria were more abundant below. The most dominant below water table depth NifH sequences, comprising 1/3 of the total, were distantly related to Verrucomicrobia-Opitutaceae. Overall, these results suggest that permafrost thaw alters the class-level composition of N2-fixing communities in the thawed soil layers and that this distinction corresponds to the depth of the water table. These nifH data were also compared to nifH sequences obtained from a study at an Alaskan taiga site, and to those of other geographically distant, non-permafrost sites. The two Alaska sites were differentiated largely by changes in relative abundances of the same OTUs, whereas the non-Alaska sites were differentiated by the lack of many Alaskan OTUs, and the presence of unique halophilic, sulfate- and iron-reducing taxa in the Alaska sites.

  5. Analyzing and Improving the Water-Table Fluctuation Method of Estimating Groundwater Recharge: Field Considerations Patros, T.B. and Parkin, G.W., School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada

    Science.gov (United States)

    Patros, T.; Parkin, G. W.

    2012-12-01

    The focus of the project is on measuring and quantifying groundwater recharge (GWR) using the water-table fluctuation (WTF) method. This method requires measuring the change in water-table (WT) height (Δh) during recharge (R) events and volumetric soil specific yield water content (θsy), (&/or) perhaps more correctly volumetric soil fillable water content (θf). The rise in WT can also result from other non-precipitation-related WTF causes (e.g., Lisse effect, temperature variations, barometric, lateral flow, Reverse Wieringermeer effect, encapsulated air, pumping), which must be counted for. The measurement of the storativity (S) terms (θsy) and/or θf) is, indeed, not clear-cut and often they are taken as being constant with depth, time, WT movement (Drying-Wetting & Freezing-Thawing) history and heterogeneity. In fact, these two terms (θsy & θf) are controversial in their definition, thus in their use, in the literature and may either overestimate the R, when using θsy, or underestimate it, when using θf. To resolve some of these questions, a novel-automated method is under development, at the University of Guelph's Elora Research Station (ERS) and Arboretum, along with a novel multi-event time series model. The long-term expected outcomes and significance of this study are; 1. Establishing accuracy in defining and evaluating the θsy and θf and using them accordingly in estimating GWR with the WTF method in order to overcome some of the existing substantial gaps in our knowledge of groundwater (GW) storage variation. 2. Obtaining GWR measurements at the local scale on a year-round basis, which are currently scarce or even completely lacking for many regions of Ontario and thus would provide a valuable database for guiding development of any policy requiring GWR. 3. Using this database to calibrate and test estimates of the spatial and temporal variability in regional-scale (watershed scale) GWR from approximate statistical techniques or deterministic

  6. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Mariana Archipelago in 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  7. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago since 2013

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  8. Depth distribution of benthic dinoflagellates in the Caribbean Sea

    Science.gov (United States)

    Boisnoir, Aurélie; Pascal, Pierre-Yves; Cordonnier, Sébastien; Lemée, Rodolophe

    2018-05-01

    Monitoring of benthic dinoflagellates is usually conducted between sub-surface and 5 m depth, where these organisms are supposed to be in highest abundances. However, only few studies have focused on the small-scale depth distribution of benthic dinoflagellates. In the present study, abundances of dinoflagellates were evaluated on an invasive macrophyte Halophila stipulacea in two coastal sites in Guadeloupe (Caribbean Sea) along a depth gradient from sub-surface to 3 m at Gosier and until 20 m at Rivière Sens during the tropical wet and dry seasons. Species of genus Ostreopsis and Prorocentrum were the most abundant. Depth did not influence total dinoflagellate abundance but several genera showed particular depth-distribution preferences. The highest abundances of Ostreopsis and Gambierdiscus species were estimated preferentially in surface waters, whereas Coolia spp. were found in the same proportions but in deeper waters. Halophila stipulacea biomass was positively correlated with Ostreopsis spp. abundance. Our study suggests that sampling of benthic dinoflagellates should be conducted at different water depths taking into account the presence of the macroalgal substrate as well. In the Caribbean area, special attention should be addressed to the presence of H. stipulacea which tends to homogenize the marine landscape and represents a substrate for hosting dinoflagellate growth.

  9. Resilience to Changing Snow Depth in a Shrubland Ecosystem.

    Science.gov (United States)

    Loik, M. E.

    2008-12-01

    Snowfall is the dominant hydrologic input for high elevations and latitudes of the arid- and semi-arid western United States. Sierra Nevada snowpack provides numerous important services for California, but is vulnerable to anthropogenic forcing of the coupled ocean-atmosphere system. GCM and RCM scenarios envision reduced snowpack and earlier melt under a warmer climate, but how will these changes affect soil and plant water relations and ecosystem processes? And, how resilient will this ecosystem be to short- and long-term forcing of snow depth and melt timing? To address these questions, our experiments utilize large- scale, long-term roadside snow fences to manipulate snow depth and melt timing in eastern California, USA. Interannual snow depth averages 1344 mm with a CV of 48% (April 1, 1928-2008). Snow fences altered snow melt timing by up to 18 days in high-snowfall years, and affected short-term soil moisture pulses less in low- than medium- or high-snowfall years. Sublimation in this arid location accounted for about 2 mol m- 2 of water loss from the snowpack in 2005. Plant water potential increased after the ENSO winter of 2005 and stayed relatively constant for the following three years, even after the low snowfall of winter 2007. Over the long-term, changes in snow depth and melt timing have impacted cover or biomass of Achnatherum thurberianum, Elymus elemoides, and Purshia tridentata. Growth of adult conifers (Pinus jeffreyi and Pi. contorta) was not equally sensitive to snow depth. Thus, complex interactions between snow depth, soil water inputs, physiological processes, and population patterns help drive the resilience of this ecosystem to changes in snow depth and melt timing.

  10. CERN Table Tennis Club

    CERN Multimedia

    CERN Table Tennis Club

    2014-01-01

    CERN Table Tennis Club Announcing CERN 60th Anniversary Table Tennis Tournament to take place at CERN, from July 1 to July 15, 2014   The CERN Table Tennis Club, reborn in 2008, is encouraging people at CERN to take more regular exercise. This is why the Club, thanks to the strong support of the CERN Staff Association, installed last season a first outdoor table on the terrace of restaurant # 1, and will install another one this season on the terrace of Restaurant # 2. Table tennis provides both physical exercise and friendly social interactions. The CERN Table Tennis club is happy to use the unique opportunity of the 60th CERN anniversary to promote table tennis at CERN, as it is a game that everybody can easily play, regardless of level. Table tennis is particularly well suited for CERN, as many great physicists play table tennis, as you might already know: “Heisenberg could not even bear to lose a game of table tennis”; “Otto Frisch played a lot of table tennis;...

  11. Evaluation of a distributed catchment scale water balance model

    Science.gov (United States)

    Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.

    1993-01-01

    The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.

  12. Identify the Effective Wells in Determination of Groundwater Depth in Urmia Plain Using Principle Component Analysis

    Directory of Open Access Journals (Sweden)

    Sahar Babaei Hessar

    2017-06-01

    observations (n, here it is the number of years. So, for each well there are a 10 * 10 matrix. It should be noted in monitoring adjacent wells to a specific well, its dataset is not used. To quantify the effect of each well according to the number of its participation in the analysis and frequency of its effectiveness, each well is ranked. In the next step, the ineffective wells were recognized and eliminated using both the variation coefficient and Error criteria. Following, the procedure will be discussed. Results Discussion: In this study, at first step using PCA technique wells were identified with a more than 0.9 correlation coefficient. Then each well ranked based on the relative importance and according to the specified thresholds, the variation coefficient and error of monitoring was estimated. The wells remain in threshold 1 led to the lowest variation coefficient, considered as effective wells in the evaluation of aquifer parameters. By eliminating ineffective wells at each threshold, the variation coefficient is reduced because of the elimination of wells with a greater difference in water depth compared to the average of whole wells. To check the certainty of obtained results, the error criteria were calculated for each threshold. According to the results, both variation coefficient and standard error of monitoring in threshold 1 come to be at least. Thus, 12 wells remain in the threshold 1 are considered as the important wells in monitoring the water table of plain Urmia. Monitoring error for these 12 wells is equal to 5.1 % which is negligible and can be introduced as index wells in sampling and estimation of groundwater table in plain Urmia. Using this method, instead measurements of water table in 51 wells it can be performed exclusively in the 12 wells. Conclusion: Due to reduction of precipitation and unauthorized uses of groundwater resources, water table monitoring is very important in the accurate management of these resources. Because of extensive

  13. Monthly tables of measurements. October 2000; Tableaux mensuels des mesures. Octobre 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-01

    This report of the O.P.R.I. (Office of Protection against Ionizing Radiations) exposes the principal results concerning the routine monitoring of environmental radioactivity in France: atmospheric dusts, rainwater, surface water, underground water, sewage water, drinking water, food chain (milk, vegetables, fishes), sea water around nuclear sites and other sites. The activities of various radioisotopes are presented in tables. (N.C.)

  14. Transverse structure of tidal flow, residual flow and sediment concentration in estuaries: sensitivity to tidal forcing and water depth

    NARCIS (Netherlands)

    Huijts, K.M.H.|info:eu-repo/dai/nl/304831867; de Swart, H.E.|info:eu-repo/dai/nl/073449725; Schramkowski, G.P.; Schuttelaars, H.M.

    2011-01-01

    An analytical and a numerical model are used to understand the response of velocity and sediment distributions over Gaussian-shaped estuarine cross-sections to changes in tidal forcing and water depth. The estuaries considered here are characterized by strong mixing and a relatively weak

  15. Diurnal variations in depth profiles of UV-induced DNA damage and inhibition of bacterioplankton production in tropical coastal waters

    NARCIS (Netherlands)

    Visser, PM; Poos, JJ; Scheper, BB; Boelen, P; van Duyl, FC

    2002-01-01

    In this study, diurnal changes in bacterial production and DNA damage in bacterio-plankton (measured as cyclobutane pyrimidine dimers, CPDs) incubated in bags at different depths in tropical coastal waters were investigated. The DNA damage and inhibition of the bacterial production was highest at

  16. WATER DEPTH and Other Data (NODC Accession 9400096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Conductivity, Temperature and Depth (CTD); and bathythermograph (XBT) data were collected as part of Distribution/Abundance of Marine Mammals in Gulf of Mexico...

  17. Wind wave analysis in depth limited water using OCEANLYZ, A MATLAB toolbox

    Science.gov (United States)

    Karimpour, Arash; Chen, Qin

    2017-09-01

    There are a number of well established methods in the literature describing how to assess and analyze measured wind wave data. However, obtaining reliable results from these methods requires adequate knowledge on their behavior, strengths and weaknesses. A proper implementation of these methods requires a series of procedures including a pretreatment of the raw measurements, and adjustment and refinement of the processed data to provide quality assurance of the outcomes, otherwise it can lead to untrustworthy results. This paper discusses potential issues in these procedures, explains what parameters are influential for the outcomes and suggests practical solutions to avoid and minimize the errors in the wave results. The procedure of converting the water pressure data into the water surface elevation data, treating the high frequency data with a low signal-to-noise ratio, partitioning swell energy from wind sea, and estimating the peak wave frequency from the weighted integral of the wave power spectrum are described. Conversion and recovery of the data acquired by a pressure transducer, particularly in depth-limited water like estuaries and lakes, are explained in detail. To provide researchers with tools for a reliable estimation of wind wave parameters, the Ocean Wave Analyzing toolbox, OCEANLYZ, is introduced. The toolbox contains a number of MATLAB functions for estimation of the wave properties in time and frequency domains. The toolbox has been developed and examined during a number of the field study projects in Louisiana's estuaries.

  18. Ground-Water Geochemistry of Kwajalein Island, Republic of the Marshall Islands, 1991

    Science.gov (United States)

    Tribble, Gordon W.

    1997-01-01

    Ground water on Kwajalein Island is an important source of drinking water, particularly during periods of low rainfall. Fresh ground water is found as a thin lens underlain by saltwater. The concentration of dissolved ions increases with depth below the water table and proximity to the shoreline as high-salinity seawater mixes with fresh ground water. The maximum depth of the freshwater lens is 37 ft. Chloride is assumed to be non-reactive under the range of geochemical conditions on the atoll. The concentration of chloride thus is used as a conservative constituent to evaluate freshwater-saltwater mixing within the aquifer. Concentrations of sodium and for the most part, potassium and sulfate, also appear to be determined by conservative mixing between saltwater and rain. Concentrations of calcium, magnesium, and strontium are higher than expected from conservative mixing; these higher concentrations are a result of the dissolution of carbonate minerals. An excess in dissolved inorganic carbon results from carbonate-mineral dissolution and from the oxidation of organic matter in the aquifer; the stoichiometric difference between excess dissolved inorganic carbon and excess bivalent cations is used as a measure of the amount of organic-matter oxidation. Organic-matter oxidation also is indicated by the low concentration of dissolved oxygen, high concentrations of nutrients, and the presence of hydrogen sulfide in many of the water samples. Low levels of dissolved oxygen indicate oxic respiration, and sulfate reduction is indicated by hydrogen sulfide. The amount of dissolved inorganic carbon released during organic-matter oxidation is nearly equivalent to the amount of carbonate-mineral dissolution. Organic-matter oxidation and carbonate-mineral dissolution seem to be most active either in the unsaturated zone or near the top of the water table. The most plausible explanation is that high amounts of oxic respiration in the unsaturated zone generate carbon dioxide

  19. Representing Northern Peatland Hydrology and Biogeochemistry with ALM Land Surface Model

    Science.gov (United States)

    Shi, X.; Ricciuto, D. M.; Thornton, P. E.; Hanson, P. J.; Xu, X.; Mao, J.; Warren, J.; Yuan, F.; Norby, R. J.; Sebestyen, S.; Griffiths, N.; Weston, D. J.; Walker, A.

    2017-12-01

    Northern peatlands are likely to be important in future carbon cycle-climate feedbacks due to their large carbon pool and vulnerability to hydrological change. Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth for a vegetated wetland, independent of prescribed regional water tables. Firstly, we introduce a new configuration of the land model (ALM) of Accelerated Climate model for Energy (ACME), which includes a fully prognostic water table calculation for a vegetated peatland. Secondly, we couple our new hydrology treatment with vertically structured soil organic matter pool, and the addition of components from methane biogeochemistry. Thirdly, we introduce a new PFT for mosses and implement the water content dynamics and physiology of mosses. We inform and test our model based on SPRUCE experiment to get the reasonable results for the seasonal dynamics water table depths, water content dynamics and physiology of mosses, and correct soil carbon profiles. Then, we use our new model structure to test the how the water table depth and CH4 emission will respond to elevated CO2 and different warming scenarios.

  20. Wind Wave Behavior in Fetch and Depth Limited Estuaries

    Science.gov (United States)

    Karimpour, Arash; Chen, Qin; Twilley, Robert R.

    2017-01-01

    Wetland dominated estuaries serve as one of the most productive natural ecosystems through their ecological, economic and cultural services, such as nursery grounds for fisheries, nutrient sequestration, and ecotourism. The ongoing deterioration of wetland ecosystems in many shallow estuaries raises concerns about the contributing erosive processes and their roles in restraining coastal restoration efforts. Given the combination of wetlands and shallow bays as landscape components that determine the function of estuaries, successful restoration strategies require knowledge of wind wave behavior in fetch and depth limited water as a critical design feature. We experimentally evaluate physics of wind wave growth in fetch and depth limited estuaries. We demonstrate that wave growth rate in shallow estuaries is a function of wind fetch to water depth ratio, which helps to develop a new set of parametric wave growth equations. We find that the final stage of wave growth in shallow estuaries can be presented by a product of water depth and wave number, whereby their product approaches 1.363 as either depth or wave energy increases. Suggested wave growth equations and their asymptotic constraints establish the magnitude of wave forces acting on wetland erosion that must be included in ecosystem restoration design.

  1. Investigation of Arctic and Antarctic spatial and depth patterns of sea water in CTD profiles using chemometric data analysis

    DEFF Research Database (Denmark)

    Kotwa, Ewelina Katarzyna; Lacorte, Silvia; Duarte, Carlos

    2014-01-01

    In this paper we examine 2- and 3-way chemometric methods for analysis of Arctic and Antarctic water samples. Standard CTD (conductivity–temperature–depth) sensor devices were used during two oceanographic expeditions (July 2007 in the Arctic; February 2009 in the Antarctic) covering a total of 174...

  2. Depth dose distribution in the water for clinical applicators of 90Sr + 90Y, with a extrapolation mini chamber

    International Nuclear Information System (INIS)

    Antonio, Patricia de Lara; Caldas, Linda V.E.; Oliveira, Mercia L.

    2009-01-01

    This work determines the depth dose in the water for clinical applicators of 90 Sr + 90 Y, using a extrapolation mini chamber developed at the IPEN, Sao Paulo, Brazil, and different thickness acrylic plates. The obtained results were compared with the international recommendations and were considered satisfactory

  3. Shaking Table Experiment of Trampoline Effect

    Science.gov (United States)

    Aoi, S.; Kunugi, T.; Fujiwara, H.

    2010-12-01

    It has been widely thought that soil response to ground shaking do not experience asymmetry in ground motion. An extreme vertical acceleration near four times gravity was recorded during the 2008 Iwate-Miyagi earthquake at IWTH25 station. This record is distinctly asymmetric in shape; the waveform envelope amplitude is about 1.6 times larger in the upward direction compared to the downward direction. To explain this phenomenon, Aoi et al. (2008) proposed a simple model of a mass bouncing on a trampoline. In this study we perform a shaking table experiment of a soil prototype to try to reproduce the asymmetric ground motion and to investigate the physics of this asymmetric behavior. A soil chamber made of an acrylic resin cylinder with 200 mm in diameter and 500 mm in height was tightly anchored to the shaking table and vertically shaken. We used four different sample materials; Toyoura standard sands, grass beads (particle size of 0.1 and 0.4 mm) and sawdust. Sample was uniformly stacked to a depth of 450 mm and, to measure the vertical motions, accelerometers was installed inside the material (at depths of 50, 220, and 390 mm) and on the frame of the chamber. Pictures were taken from a side by a high speed camera (1000 frames/sec) to capture the motions of particles. The chamber was shaken by sinusoidal wave (5, 10, and 20 Hz) with maximum amplitudes from 0.1 to 4.0 g. When the accelerations roughly exceeded gravity, for all samples, granular behaviors of sample materials became dominant and the asymmetric motions were successfully reproduced. Pictures taken by the high speed camera showed that the motions of the particles are clearly different from the motion of the chamber which is identical to the sinusoidal motion of the shaking table (input motion). Particles are rapidly flung up and freely pulled down by gravity, and the downward motion of the particles is slower than the upward motion. It was also observed that the timing difference of the falling motions

  4. 18 CFR Table 1 to Part 301 - Functionalization and Escalation Codes

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Functionalization and Escalation Codes 1 Table 1 to Part 301 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS FOR FEDERAL POWER MARKETING ADMINISTRATIONS AVERAGE SYSTEM COST...

  5. High temporal resolution modeling of the impact of rain, tides, and sea level rise on water table flooding in the Arch Creek basin, Miami-Dade County Florida USA.

    Science.gov (United States)

    Sukop, Michael C; Rogers, Martina; Guannel, Greg; Infanti, Johnna M; Hagemann, Katherine

    2018-03-01

    Modeling of groundwater levels in a portion of the low-lying coastal Arch Creek basin in northern Miami-Dade County in Southeast Florida USA, which is subject to repetitive flooding, reveals that rain-induced short-term water table rises can be viewed as a primary driver of flooding events under current conditions. Areas below 0.9m North American Vertical Datum (NAVD) elevation are particularly vulnerable and areas below 1.5m NAVD are vulnerable to exceptionally large rainfall events. Long-term water table rise is evident in the groundwater data, and the rate appears to be consistent with local rates of sea level rise. Linear extrapolation of long-term observed groundwater levels to 2060 suggest roughly a doubling of the number of days when groundwater levels exceed 0.9m NAVD and a threefold increase in the number of days when levels exceed 1.5m NAVD. Projected sea level rise of 0.61m by 2060 together with increased rainfall lead to a model prediction of frequent groundwater-related flooding in areas1.5m NAVD and widespread flooding of the area in the past. Tidal fluctuations in the water table are predicted to be more pronounced within 600m of a tidally influenced water control structure that is hydrodynamically connected to Biscayne Bay. The inland influence of tidal fluctuations appears to increase with increased sea level, but the principal driver of high groundwater levels under the 2060 scenario conditions remains groundwater recharge due to rainfall events. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Relations among water levels, specific conductance, and depths of bedrock fractures in four road-salt-contaminated wells in Maine, 2007–9

    Science.gov (United States)

    Schalk, Charles W.; Stasulis, Nicholas W.

    2012-01-01

    Data on groundwater-level, specific conductance (a surrogate for chloride), and temperature were collected continuously from 2007 through 2009 at four bedrock wells known to be affected by road salts in an effort to determine the effects of road salting and fractures in bedrock that intersect the well at a depth below the casing on the presence of chloride in groundwater. Dissolved-oxygen data collected periodically also were used to make inferences about the interaction of fractures and groundwater flow. Borehole geophysical tools were used to determine the depths of fractures in each well that were actively contributing flow to the well, under both static and pumped conditions; sample- and measurement-depths were selected to correspond to the depths of these active fractures. Samples of water from the wells, collected at depths corresponding to active bedrock fractures, were analyzed for chloride concentration and specific conductance; from these analyses, a linear relation between chloride concentration and specific conductance was established, and continuous and periodic measurements of specific conductance were assumed to represent chloride concentration of the well water at the depth of measurement. To varying degrees, specific conductance increased in at least two of the wells during winter and spring thaws; the shallowest well, which also was closest to the road receiving salt treatment during the winter, exhibited the largest changes in specific conductance during thaws. Recharge events during summer months, long after application of road salt had ceased for the year, also produced increases in specific conductance in some of the wells, indicating that chloride which had accumulated or sequestered in the overburden was transported to the wells throughout the year. Geophysical data and periodic profiles of water quality along the length of each well’s borehole indicated that the greatest changes in water quality were associated with active fractures; in

  7. Influence of sampling depth and post-sampling analysis time on the ...

    African Journals Online (AJOL)

    Bacteriological analysis was carried out for samples taken at water depth and at 1, 6, 12 and 24 hours post-sampling. It was observed that the total and faecal coliform bacteria were significantly higher in the 3 m water depth samples than in the surface water samples (ANOVA, F = 59.41, 26.751, 9.82 (T.C); 46.41, 26.81, ...

  8. Effects of groundwater pumping on the sustainability of a mountain wetland complex, Yosemite National Park, California

    Directory of Open Access Journals (Sweden)

    David J. Cooper

    2015-03-01

    Full Text Available Study Region: We analyzed the effects of groundwater pumping on a mountain wetland complex, Yosemite National Park, California, USA. Study Focus: Groundwater pumping from mountain meadows is common in many regions of the world. However, few quantitative analyses exist of the hydrologic or ecological effects of pumping. New Hydrological Insights for the Region: Daily hydraulic head and water table variations at sampling locations within 100 m of the pumping well were strongly correlated with the timing and duration of pumping. The effect of pumping varied by distance from the pumping well, depth of the water table when the pumping started, and that water year's snow water equivalent (SWE. Pumping in years with below average SWE and/or early melting snow pack, resulted in a water table decline to the base of the fen peat body by mid summer. Pumping in years with higher SWE and later melting snowpack, resulted in much less water level drawdown from the same pumping schedule. Predictive modeling scenarios showed that, even in a dry water year like 2004, distinct increases in fen water table elevation can be achieved with reductions in pumping. A high water table during summers following low snowpack water years had a more significant influence on vegetation composition than depth of water table in wet years or peat thickness, highlighting the impact of water level drawdown on vegetation. Keywords: Fen, Groundwater pumping, Modeling, Mountain meadow, Water table, Wetlands

  9. Role of soil characteristics on analysis of water flow in shallow land

    International Nuclear Information System (INIS)

    Tohaya, Takayuki; Wakabayashi, Noriaki; Wadachi, Yoshiki.

    1987-09-01

    Analysis of water flow on posutulated model grounds has been carried out by using 2-dimensional finite element analytical model, to clarify the effects of soil characteristics (hydroulic conductivities in saturated and unsaturated zones, moisture content - water head relationship, porosity, etc.) of a shallow land layer on variations in water tables and water flow rates. Results thus obtained indicate that hydroulic conductivities in saturated and unsaturated zones play an important role in governing the development of a water table, especially the hydroulic conductivity of the top layer and of the layers near the water table give significant effect on the water table development. It was found through multiple regression analyses of the variation of the water table that among soil characteristics following parameters give pronounced effect on the development of the water table in the order; the relationship between moisture content of the unsaturated zone and pressure head, the distance between the water table and ground surface, and the saturated hydroulic conductivity of the layer immediately above the water table. (author)

  10. A Gusseted Thermogradient Table to Control Soil Temperatures for Evaluating Plant Growth and Monitoring Soil Processes.

    Science.gov (United States)

    Welbaum, Gregory E; Khan, Osamah S; Samarah, Nezar H

    2016-10-22

    Thermogradient tables were first developed in the 1950s primarily to test seed germination over a range of temperatures simultaneously without using a series of incubators. A temperature gradient is passively established across the surface of the table between the heated and cooled ends and is lost quickly at distances above the surface. Since temperature is only controlled on the table surface, experiments are restricted to shallow containers, such as Petri dishes, placed on the table. Welding continuous aluminum vertical strips or gussets perpendicular to the surface of a table enables temperature control in depth via convective heat flow. Soil in the channels between gussets was maintained across a gradient of temperatures allowing a greater diversity of experimentation. The gusseted design was evaluated by germinating oat, lettuce, tomato, and melon seeds. Soil temperatures were monitored using individual, battery-powered dataloggers positioned across the table. LED lights installed in the lids or along the sides of the gradient table create a controlled temperature chamber where seedlings can be grown over a range of temperatures. The gusseted design enabled accurate determination of optimum temperatures for fastest germination rate and the highest percentage germination for each species. Germination information from gradient table experiments can help predict seed germination and seedling growth under the adverse soil conditions often encountered during field crop production. Temperature effects on seed germination, seedling growth, and soil ecology can be tested under controlled conditions in a laboratory using a gusseted thermogradient table.

  11. Modeling water flow, depth and inundation extent over the rivers of the Contiguous US within a Catchment-based Land Surface Modeling Framework

    Science.gov (United States)

    Liu, Z.; David, C. H.; Famiglietti, J. S.

    2013-12-01

    With population growth and increasing demand of water supply, the need for integrated continental and global scale surface water dynamics simulation systems relying on both observations and models is ever increasing. In this study we characterize how accurately we can estimate river discharge, river depth and the corresponding inundation extent over the contiguous U.S. by combining observations and models. We present a continental-scale implementation of the Catchment-based Hydrological And Routing Modeling System (CHARMS) that includes an explicit representation of the river networks from a Geographic Information System (GIS) dataset. The river networks and contributing catchment boundaries of the Contiguous U.S are upscaled from the NHDPlus dataset. The average upscaled catchment size is 2773 km2 and the unique main river channel contained in each catchment consists of several river reaches of average length 1.6 km. We derive 18 sets of empirical relationship between channel dimension (bankfull depth and bankfull width) and drainage area based on USGS gauge observations to describe river dynamics for the 18 water resource regions of the NHDPlus representation of the United States. These relationships are used to separate the main river channel and floodplain. Modeled monthly and daily streamflow show reasonable agreement with gauge observations and initial results show that basins with fewer anthropogenic modifications are more accurately simulated. Modeled monthly and daily river depth and floodplain extent associated with each river reach are also explicitly estimated over the U.S., although such simulations are more challenging to validate. Our results have implications for capturing the seasonal-to-interannual dynamics of surface water in climate models. Such a continental-scale modeling framework development would, by design, facilitate the use of existing in situ observations and be suitable for integrating the upcoming NASA Surface Water and Ocean

  12. Management of ground water using isotope techniques

    International Nuclear Information System (INIS)

    Romani, Saleem

    2004-01-01

    Ground water play a major role in national economy and sustenance of life and environment. Prevalent water crisis in India includes falling water table, water quality deterioration, water logging and salinity. Keeping in view the increasing thrust on groundwater resources and the present scenario of availability vis-a vis demand there is a need to reorient our approach to ground water management. The various ground water management options require proper understanding of ground water flow system. Isotopes are increasingly being applied in hydrogeological investigations as a supplementary tool for assessment of aquifer flow and transport characteristics. Isotope techniques coupled with conventional hydrogeological and hydrochemical methods can bring in greater accuracy in the conceptualization of hydrogeological control mechanism. The use of isotope techniques in following areas can certainly be of immense help in implementing various ground water management options in an efficient manner. viz.Interaction between the surface water - groundwater systems to plan conjunctive use of surface and ground water. Establishing hydraulic interconnections between the aquifers in a multi aquifer system. Depth of circulation of water and dating of ground water. Demarcating ground water recharge and discharge areas. Plan ground water development in coastal aquifers to avoid sea water ingress. Development of flood plain aquifer. (author)

  13. Hydrogeochemical contrast between brown and grey sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply.

    Science.gov (United States)

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Mörth, Carl-Magnus; Jacks, Gunnar

    2012-08-01

    Delineation of safe aquifer(s) that can be targeted by cheap drilling technology for tubewell (TW) installation becomes highly imperative to ensure access to safe and sustainable drinking water sources for the arsenic (As) affected population in Bengal Basin. This study investigates the potentiality of brown sand aquifers (BSA) as a safe drinking water source by characterizing its hydrogeochemical contrast to grey sand aquifers (GSA) within shallow depth (water guidelines, which warrants rigorous assessment of attendant health risk for Mn prior to considering mass scale exploitation of the BSA for possible sustainable drinking water supply. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Influence of water vapour and permanent gases on the atmospheric optical depths and transmittance

    Science.gov (United States)

    Badescu, V.

    1991-05-01

    The influence of the atmospheric state on the extinction of direct solar radiation has been studied by using a four layer atmospheric model. Simple analytical formulae are established for the spectral optical depths of permanent gases and water vapour. These formulae use the ground level values of air pressure, temperature and relative huniidity. An additional parameter, related to the vertical distribution of the hunmidity content, is used for a better estimation of the water vapour optical depth. Good agreement between theory and measurements is found. The paper shows the dependence of the atmospheric spectral transmittance on the above mentioned parameters. L'influence de l'état atmosphérique sur l'extinction de la radiation solaire directe a été étudiée à l'aide d'un modèle atmosphérique développé antérieurement par l'auteur. Des formules simples ont été établies pour l'épaisseur optique spectrale des gaz et de la vapeur d'eau. Ces formules utilisent les valeurs de la pression atmosphérique, de la température et de l'humidité relative, mesurées au niveau du sol. Un paramètre supplémentaire, lié à la distribution verticale du contenu d'humidité, est utilisé pour calculer l'épaisseur optique due à la vapeur d'eau. La théorie est en bon accord avec les résultats des mesures. Le travail montre la dépendance de la transmittance atmosphérique spectrale en fonction des paramètres spécifiés ci-dessus.

  15. Tabled Execution in Scheme

    Energy Technology Data Exchange (ETDEWEB)

    Willcock, J J; Lumsdaine, A; Quinlan, D J

    2008-08-19

    Tabled execution is a generalization of memorization developed by the logic programming community. It not only saves results from tabled predicates, but also stores the set of currently active calls to them; tabled execution can thus provide meaningful semantics for programs that seemingly contain infinite recursions with the same arguments. In logic programming, tabled execution is used for many purposes, both for improving the efficiency of programs, and making tasks simpler and more direct to express than with normal logic programs. However, tabled execution is only infrequently applied in mainstream functional languages such as Scheme. We demonstrate an elegant implementation of tabled execution in Scheme, using a mix of continuation-passing style and mutable data. We also show the use of tabled execution in Scheme for a problem in formal language and automata theory, demonstrating that tabled execution can be a valuable tool for Scheme users.

  16. Initial yield to depth relation for water wells drilled into crystalline bedrock - Pinardville quadrangle, New Hampshire

    Science.gov (United States)

    Drew, L.J.; Schuenemeyer, J.H.; Amstrong, T.R.; Sutphin, D.M.

    2001-01-01

    A model is proposed to explain the statistical relations between the mean initial water well yields from eight time increments from 1984 to 1998 for wells drilled into the crystalline bedrock aquifer system in the Pinardville area of southern New Hampshire and the type of bedrock, mean well depth, and mean well elevation. Statistical analyses show that the mean total yield of drilling increments is positively correlated with mean total well depth and mean well elevation. In addition, the mean total well yield varies with rock type from a minimum of 46.9 L/min (12.4 gpm) in the Damon Pond granite to a maximum of 74.5 L/min (19.7 gpm) in the Permian pegmatite and granite unit. Across the eight drilling increments that comprise 211 wells each, the percentages of very low-yield wells (1.9 L/min [0.5 gpm] or less) and high-yield wells (151.4 L/min [40 gpm] or more) increased, and those of intermediate-yield wells decreased. As housing development progressed during the 1984 to 1998 interval, the mean depth of the wells and their elevations increased, and the mix of percentages of the bedrock types drilled changed markedly. The proposed model uses a feed-forward mechanism to explain the interaction between the increasing mean elevation, mean well depth, and percentages of very low-yielding wells and the mean well yield. The increasing percentages of very low-yielding wells through time and the economics of the housing market may control the system that forces the mean well depths, percentages of high-yield wells, and mean well yields to increase. The reason for the increasing percentages of very low-yield wells is uncertain, but the explanation is believed to involve the complex structural geology and tectonic history of the Pinardville quadrangle.

  17. Fish communities associated with cold-water corals vary with depth and substratum type

    Science.gov (United States)

    Milligan, Rosanna J.; Spence, Gemma; Roberts, J. Murray; Bailey, David M.

    2016-08-01

    Understanding the processes that drive the distribution patterns of organisms and the scales over which these processes operate are vital when considering the effective management of species with high commercial or conservation value. In the deep sea, the importance of scleractinian cold-water corals (CWCs) to fish has been the focus of several studies but their role remains unclear. We propose this may be due to the confounding effects of multiple drivers operating over multiple spatial scales. The aims of this study were to investigate the role of CWCs in shaping fish community structure and individual species-habitat associations across four spatial scales in the NE Atlantic ranging from "regions" (separated by >500 km) to "substratum types" (contiguous). Demersal fish and substratum types were quantified from three regions: Logachev Mounds, Rockall Bank and Hebrides Terrace Seamount (HTS). PERMANOVA analyses showed significant differences in community composition between all regions which were most likely caused by differences in depths. Within regions, significant variation in community composition was recorded at scales of c. 20-3500 m. CWCs supported significantly different fish communities to non-CWC substrata at Rockall Bank, Logachev and the HTS. Single-species analyses using generalised linear mixed models showed that Sebastes sp. was strongly associated with CWCs at Rockall Bank and that Neocyttus helgae was more likely to occur in CWCs at the HTS. Depth had a significant effect on several other fish species. The results of this study suggest that the importance of CWCs to fish is species-specific and depends on the broader spatial context in which the substratum is found. The precautionary approach would be to assume that CWCs are important for associated fish, but must acknowledge that CWCs in different depths will not provide redundancy or replication within spatially-managed conservation networks.

  18. Spatio-temporal distribution of Diaphanosoma brachyurum (Cladocera: Sididae in freshwater reservoir ecosystems: importance of maximum water depth and macrophyte beds for avoidance of fish predation

    Directory of Open Access Journals (Sweden)

    Jong-Yun Choi

    2014-10-01

    Full Text Available In empirical studies, Cladocera is commonly utilized as a primary food source for predators such as fish, thus, predator avoidance are important strategies to sustain their population in freshwater ecosystems. In this study, we tested the hypothesis that water depth is an important factor in determining the spatial distribution of Diaphanosoma brachyurum Liévin, 1848 in response to fish predation. Quarterly monitoring was implemented at three water layers (i.e., water surface and middle and bottom layers in 21 reservoirs located in the southeastern part of South Korea. D. brachyurum individuals were frequently observed at the study sites and exhibited different spatial patterns of distribution in accordance with the maximum depth of the reservoirs. In the reservoirs with a maximum depth of more than 6 m, high densities of D. brachyurum were observed in the bottom layers; however, in the shallower reservoirs (maximum depth <6 m, D. brachyurum were concentrated in the surface layer. Moreover, during additional surveys, we observed a trend in which D. brachyurum densities increased as the maximum depth or macrophyte biomass increased. Gut contents analysis revealed that predatory fishes in each reservoir frequently consumed D. brachyurum; however, the consumption rate abruptly decreased in reservoirs where the maximum depth was more than 11 m or in the shallow reservoirs supporting a macrophyte bed. Interestingly, the reservoirs more than 11-m depth supported high densities of D. brachyurum in the bottom layer and in the surface macrophyte bed. Based on these results, reservoirs with a maximum depth of more than 11 m or those with a macrophyte bed may provide a refuge for D. brachyurum to avoid fish predation. Compared with other cladoceran species, D. brachyurum readily exploits various types of refugia (in this study, the deep layer or surface macrophyte bed, which may help explain why this species is abundant in various types of reservoirs.

  19. A look-up table for fully developed film-boiling heat transfer

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Leung, L.K.H.; Vasic, A.Z.; Guo, Y.J.; Cheng, S.C.

    2003-01-01

    An improved look-up table for film-boiling heat-transfer coefficients has been derived for steam-water flow inside vertical tubes. Compared to earlier versions of the look-up table, the following improvements were made: - The database has been expanded significantly. The present database contains 77,234 film-boiling data points obtained from 36 sources. - The upper limit of the thermodynamic quality range was increased from 1.2 to 2.0. The wider range was needed as non-equilibrium effects at low flows can extend well beyond the point where the thermodynamic quality equals unity. - The surface heat flux has been replaced by the surface temperature as an independent parameter. - The new look-up table is based only on fully developed film-boiling data. - The table entries at flow conditions for which no data are available is based on the best of five different film-boiling prediction methods. The new film-boiling look-up table predicts the database for fully developed film-boiling data with an overall rms error in heat-transfer coefficient of 10.56% and an average error of 1.71%. A comparison of the prediction accuracy of the look-up table with other leading film-boiling prediction methods shows that the look-up table results in a significant improvement in prediction accuracy

  20. Tree density and permafrost thaw depth influence water limitations on stomatal conductance in Siberian Arctic boreal forests

    Science.gov (United States)

    Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.

    2017-12-01

    Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.

  1. Steam table routines for the simulation of nuclear power plants

    International Nuclear Information System (INIS)

    Hall, C.A.; Mutafelija, B.A.; Rapp, J.P.

    1976-01-01

    The dynamic simulation of nuclear power generating stations requires evaluation of a large number of steam and water properties at every integration time step. Some of the interpolation/approximation methods presently used are described with particular emphasis on the use of the bilinear transfinite interpolation method. The fundamental requirements for the steam table routines are outlined and different approaches are compared. The superiority of the bilinear transfinite interpolation method is discussed. The use of the steam table functions in real-time simulation is of particular interest

  2. A Country-Specific Water Consumption Inventory Considering International Trade in Asian Countries Using a Multi-Regional Input-Output Table

    Directory of Open Access Journals (Sweden)

    Yuya Ono

    2017-08-01

    Full Text Available Interest in the impacts of water use in the life cycle of products and services are increasing among various stakeholders. The water footprint is a tool to identify critical and effective points for reducing the impact of water use through the entire life cycle of products, services, and organizations. The purpose of this study was to develop a water consumption inventory database that focused on identifying of Asian water consumption using an input-output (IO framework. An Asia International Input-Output table (AIIO was applied in this study. The amount of water consumption required for agricultural products was estimated by modeling; for other sectors it was estimated from statistical reports. The intensities of direct water consumption in each sector were calculated by dividing the amount of water consumption by the domestic production. Based on the IO analysis using Leontief’s inverse matrix, the intensities of water consumption from cradle to gate were estimated for all goods and services. There was high intensity of water consumption in the primary industry sectors, together with a high dependency on rainwater as an input water source. The water consumption intensities generally showed a larger reduction in secondary sectors, in comparison with the tertiary sectors, due to the use of recycled water. There were differences between this study and previous studies due to the use of site-specific production data and the temporal resolution of crop production. By considering site-specific conditions, it is expected that the dataset developed here can be used for estimating the water footprint of products, services, and organizations in nine countries (Japan, South Korea, China, Taiwan, Thailand, the Philippines, Malaysia, Singapore, Indonesia, and USA.

  3. 'Misclassification error' greedy heuristic to construct decision trees for inconsistent decision tables

    KAUST Repository

    Azad, Mohammad; Moshkov, Mikhail

    2014-01-01

    A greedy algorithm has been presented in this paper to construct decision trees for three different approaches (many-valued decision, most common decision, and generalized decision) in order to handle the inconsistency of multiple decisions in a decision table. In this algorithm, a greedy heuristic ‘misclassification error’ is used which performs faster, and for some cost function, results are better than ‘number of boundary subtables’ heuristic in literature. Therefore, it can be used in the case of larger data sets and does not require huge amount of memory. Experimental results of depth, average depth and number of nodes of decision trees constructed by this algorithm are compared in the framework of each of the three approaches.

  4. Symbol Tables and Branch Tables: Linking Applications Together

    Science.gov (United States)

    Handler, Louis M.

    2011-01-01

    This document explores the computer techniques used to execute software whose parts are compiled and linked separately. The computer techniques include using a branch table or indirect address table to connect the parts. Methods of storing the information in data structures are discussed as well as differences between C and C++.

  5. Soil texture and depth influence on the neutron probe calibration

    International Nuclear Information System (INIS)

    Santos, Reginaldo Ferreira; Carlesso, Reimar

    1998-01-01

    The neutron probe is an equipment used on determination of the soil water content, based on the fast neutron attenuation. Therefore, there is a calibration need in the field and, consequently, to verify the soil texture and depth influence for to determining the calibration curves in relation to the water content. The study was developed at Santa Maria's Federal University in a lisimeter group, protected from the rains with transparent plastic. There different soil textures, three depths (10, 30 and 50 cm from the soil surface) and four replicates were used. Linear regression equations between neutron counts and soil water contents were made. The results showed that there was interference of the texture and depth of the soil, analyzed jointly, on the calibration curves, and the observed and estimated values varied form o,02 to 0,06 cm3/cm3 of the soil water content and the correlation coefficients were 0,86 0,95 and 0,89 for clayray, franc-silt-clayey and franc-sandy, respectively. For soil texture and depth, analyzed separately, the differences among the values observed in the field and the estimated ones, varied from 0,0 to 0,02 cm3/cm3 soil water content and presented correlation coefficients between 0,97 and 1,0. (author)

  6. Integrating Multiple Geophysical Methods to Quantify Alpine Groundwater- Surface Water Interactions: Cordillera Blanca, Peru

    Science.gov (United States)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Baker, E. A.; Somers, L. D.; Aubry-Wake, C.; Wigmore, O.; Mark, B. G.; Moucha, R.

    2016-12-01

    Groundwater- surface water interactions in alpine catchments are often poorly understood as groundwater and hydrologic data are difficult to acquire in these remote areas. The Cordillera Blanca of Peru is a region where dry-season water supply is increasingly stressed due to the accelerated melting of glaciers throughout the range, affecting millions of people country-wide. The alpine valleys of the Cordillera Blanca have shown potential for significant groundwater storage and discharge to valley streams, which could buffer the dry-season variability of streamflow throughout the watershed as glaciers continue to recede. Known as pampas, the clay-rich, low-relief valley bottoms are interfingered with talus deposits, providing a likely pathway for groundwater recharged at the valley edges to be stored and slowly released to the stream throughout the year by springs. Multiple geophysical methods were used to determine areas of groundwater recharge and discharge as well as aquifer geometry of the pampa system. Seismic refraction tomography, vertical electrical sounding (VES), electrical resistivity tomography (ERT), and horizontal-to-vertical spectral ratio (HVSR) seismic methods were used to determine the physical properties of the unconsolidated valley sediments, the depth to saturation, and the depth to bedrock for a representative section of the Quilcayhuanca Valley in the Cordillera Blanca. Depth to saturation and lithological boundaries were constrained by comparing geophysical results to continuous records of water levels and sediment core logs from a network of seven piezometers installed to depths of up to 6 m. Preliminary results show an average depth to bedrock for the study area of 25 m, which varies spatially along with water table depths across the valley. The conceptual model of groundwater flow and storage derived from these geophysical data will be used to inform future groundwater flow models of the area, allowing for the prediction of groundwater

  7. Shave-off depth profiling: Depth profiling with an absolute depth scale

    International Nuclear Information System (INIS)

    Nojima, M.; Maekawa, A.; Yamamoto, T.; Tomiyasu, B.; Sakamoto, T.; Owari, M.; Nihei, Y.

    2006-01-01

    Shave-off depth profiling provides profiling with an absolute depth scale. This method uses a focused ion beam (FIB) micro-machining process to provide the depth profile. We show that the shave-off depth profile of a particle reflected the spherical shape of the sample and signal intensities had no relationship to the depth. Through the introduction of FIB micro-sampling, the shave-off depth profiling of a dynamic random access memory (DRAM) tip was carried out. The shave-off profile agreed with a blue print from the manufacturing process. Finally, shave-off depth profiling is discussed with respect to resolutions and future directions

  8. Thermodynamic properties of mineral compounds (tables); Proprietes thermodynamiques des composes mineraux (tables)

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, P. [Lille-1 Univ., Lab. de Metallurgie Physique, UMR CNRS 8517, 59 - Villeneuve-d' Ascq (France)

    2005-10-01

    This article presents, in the form of tables, the thermodynamic data necessary for the calculation of equilibrium constants of reactions between mineral compounds (Rb, Re, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Th, Ti, Tl, Tm, U, V, W, Xe, Y, Yb, Zn, and Zr compounds). Table 1 presents the data recommended by Codata; table 2 gives the minimum informations allowing the calculation of an equilibrium constant in first approximation; table 3 allows to take into consideration the thermal capacities. Finally, table 4 gathers the data relative to species in aqueous solution. (J.S.)

  9. Water-table and potentiometric-surface altitudes in the upper glacial, Magothy, and Lloyd aquifers of Long Island, New York, April–May 2016

    Science.gov (United States)

    Como, Michael D.; Finkelstein, Jason S.; Rivera, Simonette L.; Monti, Jack; Busciolano, Ronald J.

    2018-06-06

    The U.S. Geological Survey, in cooperation with State and local agencies, systematically collects groundwater data at varying measurement frequencies to monitor the hydrologic conditions on Long Island, New York. Each year during April and May, the U.S. Geological Survey completes a synoptic survey of water levels to define the spatial distribution of the water table and potentiometric surfaces within the three main water-bearing units underlying Long Island—the upper glacial, Magothy, and Lloyd aquifers—and the hydraulically connected Jameco and North Shore aquifers. These data and the maps constructed from them are commonly used in studies of the hydrology of Long Island and are used by water managers and suppliers for aquifer management and planning purposes.Water-level measurements made in 424 monitoring wells (observation and supply wells), 13 streamgages, and 2 lake gages across Long Island during April–May 2016 were used to prepare the maps in this report. Groundwater measurements were made by the wetted-tape or electric-tape method to the nearest hundredth of a foot. Contours of water-table and potentiometric-surface altitudes were created using the groundwater measurements. The water-table contours were interpreted using water-level data collected from 275 observation wells and 1 supply well screened in the upper glacial aquifer and the shallow Magothy aquifer and 13 streamgages and 2 lake gages. The potentiometric-surface contours of the Magothy aquifer were interpreted from measurements at 88 wells (61 observation wells and 27 supply wells) screened in the middle to deep Magothy aquifer and the contiguous and hydraulically connected Jameco aquifer. The potentiometric-surface contours of the Lloyd aquifer were interpreted from measurements at 60 wells (55 observation wells and 5 supply wells) screened in the Lloyd aquifer and the contiguous and hydraulically connected North Shore aquifer. Many of the supply wells are in continuous operation and

  10. Sowing Depth Effects on Vetch Yield in Maragheh Dry Lands

    Directory of Open Access Journals (Sweden)

    J Asghari Meidany

    2013-12-01

    Full Text Available Increases forage production and economic production in rainfed condition requires attention to agricultural issues such as determination of appropriate sowing depth. So in order to determine the effect of different sowing depths of vetch this experiment was conducted in Agricultural Research Station of Maragheh as strip plot based on randomized complete block design with three species of vetch V. sativa , V. dasycarpa-kouhak and V. narbonensis velox67 as main plots and three sowing depth as sub factor. Results showed that the effect of sowing depth on Vicia yield was significant at the 1% level and the maximum yield of wet hay, dry hay, straw and seed depth of belong to 8-10 cm depth and respectively are 5.364, 3.416, 4.389 and 1.081 ton per ha whereas the minimum yield of wet hay, dry hay, straw and seed depth of belong to 2-4 cm depth and respectively are 4.888, 2.318, 3.729 and 0.825. Among the three Vicia species the highest yield of wet hay, dry hay , straw and seed belongs to V. dasykarpa and respectively are 5.632, 3.532, 4.614 and 1.065 ton/ha. Soil moisture study in the field of these vetches at the time of 10 % vetch flowering showed water differences. V.dasycarpa had lower water depletion from soil. The amount of average soil water for species included: V. dasycarpa 26.31, V. sativa 23.76 and V. narbonesis 22.5.

  11. Applied satellite remote sensing to runoff analysis: Through the effective depth of soil layer

    International Nuclear Information System (INIS)

    Yamamoto, Y.; Kondoh, T.; Kida, T.; Nishikawa, H.

    2002-01-01

    The thickness of the soil layers in which tree roots are able to develop freely influences forest composition and growth. Trees growing in shallow soil are usually less well supplied with water and mineral nutrients than those growing in deeper soil. A soil may be deep in an absolute sense but, because of a relatively impervious layer, such as hardpan or because of a high water-table, may be shallow in a physiological sense. Penetrability measurements have been found useful in evaluating the influence of different forest types on the physical properties of soils. Commonly the penetrability of soils can be measured by using the Hasegawa-formed soil penetrometer and can be judged as the soil softness content (SSC). Previous studies report soil with more than 1.9 cm/drop of SSC to be highly permeable and therefore roots are more likely to be extensively developed. Based upon this theory the depth of soil layer with more than 1.9 cm/drop of SSC can be defined as the Effective Depth of Soil Layer (EDSL). We examined the relationship between the Ratio Vegetation Index (RVI) and the EDSL and established a 'Runoff Simulation Model (RSM)' based upon the theory of the Storage Function Model method. The conclusions are that (1) a strong positive correlation between the RVI (ground measured) and the EDSL was given, (2) applying results of conclusion (1) to satellite analysis a similar correlation between the RVI (satellite analysis of JERS 1/OPS data) and the EDSL was observed and (3) the simulated storm-runoff hydro graph coincides with the observed one well

  12. Response of spatial point pattern of halostachys caspica population to ground water depth

    International Nuclear Information System (INIS)

    Niu, P.; Wang, M.; Jiang, P.; Li, M.; Chu, G.

    2017-01-01

    We subjected Halostachys caspica populations to three groundwater depths: shallow ( 4.5 m) in the sample plots, at the diluvial fan of the South Junggar Basin. Both the spatial pattern and spatial association of the population among all three groundwater depths and four growth stages were studied to investigate the impact of groundwater depth on the formation and persistence mechanism of the spatial pattern of Halostachys caspica populations. In this study, Ripley's K function was utilized to characterize spatial patterns and intraspecific associations of H. caspica in three 1-ha plots, as well as to study their relationship with groundwater depth. The seedling supplement severely decreased with increasing groundwater depth, and the population structure changed noticeably due to increased amount of dead standing plants. Different growth stages of the H. caspica population all had aggregated distributions at small scale in the three groundwater depth areas. With increasing scales, the aggregation intensity weakened in all growth stages. Distribution was aggregated at 50 m scales in both the shallow and middle groundwater depth areas, while the deep groundwater depth area followed a random distribution. (author)

  13. Efecto del agua aplicada en las relaciones hídricas y productividad de la vid 'Crimson Seedless' Effect of applied water on water relations and productivity of 'Crimson Seedless' table grapes

    Directory of Open Access Journals (Sweden)

    Raúl Ferreyra

    2006-07-01

    Full Text Available Este estudio fue dirigido para evaluar la relación agua-rendimiento en vid de mesa cv. Crimson y establecer valores críticos para las mediciones del estado hídrico de las plantas. Los estudios de campo se desarrollaron durante tres años, en el Valle de Aconcagua, Chile, a 32º47'S y 70º42'O, en un suelo de textura franco arcillosa. Se proporcionaron a las plantas diferentes cantidades de agua de riego entre 40 y 100% de la evapotranspiración del cultivo (Etc. El potencial hídrico xilemático medido a mediodía (psixmin y la conductancia estomática estuvieron estrechamente relacionados con el déficit de agua impuesto y el rendimiento obtenido. Los rendimientos de la vid disminuyeron respecto al agua aplicada en el rango de los tratamientos estudiados. Sesenta por ciento de restricción de la Etc redujo 22% del rendimiento. Cuando la planta mantuvo psixmin mayor que -0,75 MPa entre cuaja y pinta, la producción y los calibres fueron mayores.This study aimed to evaluate the relationship between water and production in 'Crimson Seedless' table grapes, and to establish threshold values for plants water status. Field experiments were carried out, during a three-year period, in the Aconcagua Valley, Chile, at 32º47'S and 70º42'W, in a clay-loamy textured soil. Different irrigation water amounts were applied, between 40 and 100% crop evapotranspiration (Etc. Stem water potential measured at midday (psixmin and stomatal conductance were closely related to water shortage and yield obtained. Table grape yields decreased in comparison with applied water within the range of studied treatments. Sixty per cent Etc restriction decreased yields in 22%. When plants maintained psixmin greater than -0.75 MPa, between berry set and veraison, yield and berry size were high.

  14. Environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks, New Jersey Coastal Plain, USA: migration to the water table.

    Science.gov (United States)

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman

    2010-01-01

    Fate of radium (Ra) in liquid regeneration brine wastes from water softeners disposed to septic tanks in the New Jersey Coastal Plain was studied. Before treatment, combined Ra ((226)Ra plus (228)Ra) concentrations (maximum, 1.54 Bq L(-1)) exceeded the 0.185 Bq L(-1) Maximum Contaminant Level in 4 of 10 studied domestic-well waters (median pH, 4.90). At the water table downgradient from leachfields, combined Ra concentrations were low (commonly 5.3, indicating sequestration; when pH was septic-tank effluents (maximum, 0.243 Bq L(-1))), indicating Ra mobilization from leachfield sediments. Confidence in quantification of Ra mass balance was reduced by study design limitations, including synoptic sampling of effluents and ground waters, and large uncertainties associated with analytical methods. The trend of Ra mobilization in acidic environments does match observations from regional water-quality assessments.

  15. Influence of landscape heterogeneity on water available to tropical forests in an Amazonian catchment and implications for modeling drought response

    Science.gov (United States)

    Fang, Yilin; Leung, L. Ruby; Duan, Zhuoran; Wigmosta, Mark S.; Maxwell, Reed M.; Chambers, Jeffrey Q.; Tomasella, Javier

    2017-08-01

    The Amazon basin has experienced periodic droughts in the past, and intense and frequent droughts are predicted in the future. Landscape heterogeneity could play an important role in how tropical forests respond to drought by influencing water available to plants. Using the one-dimensional ACME Land Model and the three-dimensional ParFlow variably saturated flow model, numerical experiments were performed for a catchment in central Amazon to elucidate processes that influence water available for plant use and provide insights for improving Earth system models. Results from ParFlow show that topography has a dominant influence on groundwater table and runoff through lateral flow. Without any representations of lateral processes, ALM simulates very different seasonal variations in groundwater table and runoff compared to ParFlow even if it is able to reproduce the long-term spatial average groundwater table of ParFlow through simple parameter calibration. In the ParFlow simulations, even in the plateau with much deeper water table depth during the dry season in the drought year of 2005, plant transpiration is not water stressed as the soil saturation is still sufficient for the stomata to be fully open based on the empirical wilting formulation in the models. This finding is insensitive to uncertainty in atmospheric forcing and soil parameters, but the empirical wilting formulation is an important factor that should be addressed using observations and modeling of coupled plant hydraulics-soil hydrology processes in future studies. The results could be applicable to other catchments in the Amazon basin with similar seasonal variability and hydrologic regimes.

  16. Spatial pattern of a fish assemblage in a seasonal tropical wetland: effects of habitat, herbaceous plant biomass, water depth, and distance from species sources

    Directory of Open Access Journals (Sweden)

    Izaias M Fernandes

    Full Text Available The influence of habitat, biomass of herbaceous vegetation, depth and distance from permanent water bodies on the structure of fish assemblages of a seasonal floodplain was evaluated using data collected along 22 transects in an area of 25 km² in the floodplain of Cuiabá River, Pantanal, Brazil. Each transect was sampled for fish using throw traps and gillnets during the flood period of 2006. Multivariate multiple regression analysis and multivariate analysis of covariance indicated that depth was the only variable that affected the structure of the fish assemblage, both for quantitative data (abundance and qualitative data (presence-absence. Species such as Neofundulus parvipinnis and Laetacara dorsigera were more abundant in shallower sites (below 25 cm, while Serrasalmus maculatus and Metynnis mola were found mostly in the deepest areas (over 55 cm. However, species such as Hoplias malabaricus and Hoplerythrinus unitaeniatus occurred at all sampled depths. Although the distribution of most species was restricted to a few sites, there was a positive relationship between species richness and depth of the water body. Surprisingly, the replacement of native vegetation by exotic pasture did not affect the fish assemblage in the area, at the probability level considered.

  17. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Pacific Remote Island Areas since 2014

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  18. Geostatistical Characteristic of Space -Time Variation in Underground Water Selected Quality Parameters in Klodzko Water Intake Area (SW Part of Poland)

    Science.gov (United States)

    Namysłowska-Wilczyńska, Barbara

    2016-04-01

    This paper presents selected results of research connected with the development of a (3D) geostatistical hydrogeochemical model of the Klodzko Drainage Basin, dedicated to the spatial and time variation in the selected quality parameters of underground water in the Klodzko water intake area (SW part of Poland). The research covers the period 2011÷2012. Spatial analyses of the variation in various quality parameters, i.e, contents of: ammonium ion [gNH4+/m3], NO3- (nitrate ion) [gNO3/m3], PO4-3 (phosphate ion) [gPO4-3/m3], total organic carbon C (TOC) [gC/m3], pH redox potential and temperature C [degrees], were carried out on the basis of the chemical determinations of the quality parameters of underground water samples taken from the wells in the water intake area. Spatial and time variation in the quality parameters was analyzed on the basis of archival data (period 1977÷1999) for 22 (pump and siphon) wells with a depth ranging from 9.5 to 38.0 m b.g.l., later data obtained (November 2011) from tests of water taken from 14 existing wells. The wells were built in the years 1954÷1998. The water abstraction depth (difference between the terrain elevation and the dynamic water table level) is ranged from 276÷286 m a.s.l., with an average of 282.05 m a.s.l. Dynamic water table level is contained between 6.22 m÷16.44 m b.g.l., with a mean value of 9.64 m b.g.l. The latest data (January 2012) acquired from 3 new piezometers, with a depth of 9÷10m, which were made in other locations in the relevant area. Thematic databases, containing original data on coordinates X, Y (latitude, longitude) and Z (terrain elevation and time - years) and on regionalized variables, i.e. the underground water quality parameters in the Klodzko water intake area determined for different analytical configurations (22 wells, 14 wells, 14 wells + 3 piezometers), were created. Both archival data (acquired in the years 1977÷1999) and the latest data (collected in 2011÷2012) were analyzed

  19. Mid-depth temperature maximum in an estuarine lake

    Science.gov (United States)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  20. How processing digital elevation models can affect simulated water budgets

    Science.gov (United States)

    Kuniansky, E.L.; Lowery, M.A.; Campbell, B.G.

    2009-01-01

    For regional models, the shallow water table surface is often used as a source/sink boundary condition, as model grid scale precludes simulation of the water table aquifer. This approach is appropriate when the water table surface is relatively stationary. Since water table surface maps are not readily available, the elevation of the water table used in model cells is estimated via a two-step process. First, a regression equation is developed using existing land and water table elevations from wells in the area. This equation is then used to predict the water table surface for each model cell using land surface elevation available from digital elevation models (DEM). Two methods of processing DEM for estimating the land surface for each cell are commonly used (value nearest the cell centroid or mean value in the cell). This article demonstrates how these two methods of DEM processing can affect the simulated water budget. For the example presented, approximately 20% more total flow through the aquifer system is simulated if the centroid value rather than the mean value is used. This is due to the one-third greater average ground water gradients associated with the centroid value than the mean value. The results will vary depending on the particular model area topography and cell size. The use of the mean DEM value in each model cell will result in a more conservative water budget and is more appropriate because the model cell water table value should be representative of the entire cell area, not the centroid of the model cell.

  1. Chemical Evolution of Groundwater Near a Sinkhole Lake, Northern Florida: 1. Flow Patterns, Age of Groundwater, and Influence of Lake Water Leakage

    Science.gov (United States)

    Katz, Brian G.; Lee, Terrie M.; Plummer, L. Niel; Busenberg, Eurybiades

    1995-06-01

    Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 m/d for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions.

  2. Water-Depth-Based Prediction Formula for the Blasting Vibration Velocity of Lighthouse Caused by Underwater Drilling Blasting

    OpenAIRE

    Gu, Wenbin; Wang, Zhenxiong; Liu, Jianqing; Xu, Jinglin; Liu, Xin; Cao, Tao

    2017-01-01

    Lighthouses are the most important hydraulic structures that should be protected during underwater drilling blasting. Thus, the effect of blasting vibration on lighthouse should be studied. On the basis of the dimensional analysis, we deduced a revised formula for water depth based on Sodev’s empirical formula and established the linear fitting model. During the underwater reef project in the main channel of Shipu Harbor in the Ningbo–Zhoushan Port, the blasting vibration data of the lighthou...

  3. Construction of α-decision trees for tables with many-valued decisions

    KAUST Repository

    Moshkov, Mikhail; Zielosko, Beata

    2011-01-01

    The paper is devoted to the study of greedy algorithm for construction of approximate decision trees (α-decision trees). This algorithm is applicable to decision tables with many-valued decisions where each row is labeled with a set of decisions. For a given row, we should find a decision from the set attached to this row. We consider bound on the number of algorithm steps, and bound on the algorithm accuracy relative to the depth of decision trees. © 2011 Springer-Verlag.

  4. Computations Of Critical Depth In Rivers With Flood Plains | Okoli ...

    African Journals Online (AJOL)

    Critical flows may occur at more than one depth in rivers with flood plains. The possibility of multiple critical depths affects the water-surface profile calculations. Presently available algorithms determine only one of the critical depths which may lead to large errors. It is the purpose of this paper to present an analytical ...

  5. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  6. The effect of ratio between rigid plant height and water depth on the manning’s coefficient in open channel

    Science.gov (United States)

    Rizalihadi, M.; Ziana; Shaskia, Nina; Asharly, H.

    2018-05-01

    One of the important factors in channel dimension is the Manning’s coefficient ( n ). This coefficient is influenced not only by the channel roughness but also by the presence of plants in the channel. The aim of the study is to see the effect of the ratio between the height of the rigid plant and water depth on the Manning’s coefficient (n) in open channel. The study was conducted in open channel with 15.5 m long, 0.5 m wide and 1.0 m high, in which at the center of the channel is planted with the rigid plants with a density of 42 plants/m2. The flow was run with a discharge of 0.013 m3/s at 6 ratios of Hplants/Hwater, namely: 0; 0.2; 0.6; 0.8; 1,0 and 1,2, to obtain the velocity and water profiles. Then the value of n is analyzed using Manning’s equation. The results showed that the mean velocity becomes decrease 17.81-34.01% as increase the ratio of Hplants/Hwater. This results in increasing n value to become 1.22-1.52 times compared to the unplanted channel ( no =0.038). So, it can be concluded that the ratio between the rigid plant’s height and water depth in the open channel can affect the value of Manning coefficient.

  7. Decision table languages and systems

    CERN Document Server

    Metzner, John R

    1977-01-01

    ACM Monograph Series: Decision Table Languages and Systems focuses on linguistic examination of decision tables and survey of the features of existing decision table languages and systems. The book first offers information on semiotics, programming language features, and generalization. Discussions focus on semantic broadening, outer language enrichments, generalization of syntax, limitations, implementation improvements, syntactic and semantic features, decision table syntax, semantics of decision table languages, and decision table programming languages. The text then elaborates on design im

  8. Changes in soluble metal concentrations induced by variable water table levels as response to liming and Phragmites australis growth in metal-polluted wetland soils: Management effectiveness

    NARCIS (Netherlands)

    Gonzalez Alcaraz, M.N.; van Gestel, C.A.M.

    2016-01-01

    This study aimed to assess the effectiveness of liming and Phragmites australis growth for the management of metal-polluted wetland soils under fluctuating water table levels. Soil columns (20 cm in diameter and 60 cm high) were constructed with two soil types (pH ~ 6.4 and pH ~ 3.1) and four

  9. Effect of unstable layer depth on the pore pressure distribution, case study of the Slano Blato landslide (Slovenia)

    Science.gov (United States)

    Askarinejad, Amin; Secchi, Bandar; Macek, Matej; Petkovsek, Ana; Springman, Sarah

    2013-04-01

    The Slano Blato landslide is one of the largest landslides in Slovenia with a volume of more than 1 mio m3 of moving debris. The landslide is located at the border of Triassic limestone and Eocene flysch formations. Flysch is composed of layers of marls and sandstones. The sliding mass consists mainly of clay and clayey gravel of highly weathered and deteriorated flysch, while a minor part represents grains and blocks of limestones. (Petkovšek et al., 2009). The first documentation of an instability event dates back to 1789 and the landslide was reactivated during a heavy rain period in November 2000. Since then, the ground surface level above the unstable material on the upper zones of the landslide is significantly decreasing so that the current slope surface is now more than 10 m below the terrain surveyed in 1998. The new landslide topography results in different pore pressure distributions in the slope, which were anticipated to have a detrimental effect on the stability and movement regime of the slope. The main goal of this work is to investigate the effect of the overlying debris depth on the pore water pressure distribution during a predefined precipitation scenario. The behaviour of the unsaturated soil and the effects of fissures in the bedrock are also considered in the analysis. Hydro-mechanical simulations were performed using 2D finite element software (PLAXIS) and numerical results are compared with results from analytical models, which use a 1D steady state formulation for the hydraulic part and a 2D limit equilibrium approach to calculate the safety factors. The numerical studies show significant change in the pore water pressure distribution in the landslide body with variation of the debris depth. An increase in the debris depth leads to higher suction due to the deeper location of the water table. Higher suction increases landslide stability due to: i) increase of the effective stress and hence the shear strength of the material and ii

  10. NURE [National Uranium Resource Evaluation] HSSR [Hydrogeochemical and Stream Sediment Reconnaissance] Data Summary Tables, United States: Volume 2

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents a summary of the distribution of elemental concentrations for water and sediment samples across states. Hawaii is missing from all tables since no sampling was done in that state. The following section briefly outlines the approach used by ISP in preparing these data tables. The third section contains the summary tables organized by sample type (water and sediment) and displaying elements within states and states within elements. These data summary tables show the general ranges of values present in the NURE Hydrogeochemical and Stream Sediment Reconnaissance sample data in each quadrangle or state. As with all summaries, they represent the data according to the best judgement of the professionals doing the analysis. This section gives a general description of the procedures used to produce the quadrangle summary percentiles

  11. MCNPX Model/Table Comparison

    International Nuclear Information System (INIS)

    Hendricks, J.S.

    2003-01-01

    MCNPX is a Monte Carlo N-Particle radiation transport code extending the capabilities of MCNP4C. As with MCNP, MCNPX uses nuclear data tables to transport neutrons, photons, and electrons. Unlike MCNP, MCNPX also uses (1) nuclear data tables to transport protons; (2) physics models to transport 30 additional particle types (deuterons, tritons, alphas, pions, muons, etc.); and (3) physics models to transport neutrons and protons when no tabular data are available or when the data are above the energy range (20 to 150 MeV) where the data tables end. MCNPX can mix and match data tables and physics models throughout a problem. For example, MCNPX can model neutron transport in a bismuth germinate (BGO) particle detector by using data tables for bismuth and oxygen and using physics models for germanium. Also, MCNPX can model neutron transport in UO 2 , making the best use of physics models and data tables: below 20 MeV, data tables are used; above 150 MeV, physics models are used; between 20 and 150 MeV, data tables are used for oxygen and models are used for uranium. The mix-and-match capability became available with MCNPX2.5.b (November 2002). For the first time, we present here comparisons that calculate radiation transport in materials with various combinations of data charts and model physics. The physics models are poor at low energies (<150 MeV); thus, data tables should be used when available. Our comparisons demonstrate the importance of the mix-and-match capability and indicate how well physics models work in the absence of data tables

  12. DOC concentrations across a depth-dependent light gradient on a Caribbean coral reef

    Directory of Open Access Journals (Sweden)

    Benjamin Mueller

    2017-06-01

    Full Text Available Photosynthates released by benthic primary producers (BPP, such as reef algae and scleractinian corals, fuel the dissolved organic carbon (DOC production on tropical coral reefs. DOC concentrations near BPP have repeatedly been observed to be elevated compared to those in the surrounding water column. As the DOC release of BPP increases with increasing light availability, elevated DOC concentrations near them will, in part, also depend on light availability. Consequently, DOC concentrations are likely to be higher on the shallow, well-lit reef terrace than in deeper sections on the fore reef slope. We measured in situ DOC concentrations and light intensity in close proximity to the reef alga Dictyota sp. and the scleractinian coral Orbicella faveolata along a depth-dependent light gradient from 5 to 20 m depth and compared these to background concentrations in the water column. At 10 m (intermediate light, DOC concentrations near Dictyota sp. were elevated by 15 µmol C L−1 compared to background concentrations in the water column, but not at 5 and 20 m (high and low light, respectively, or near O. faveolata at any of the tested depths. DOC concentrations did not differ between depths and thereby light environments for any of the tested water types. However, water type and depth appear to jointly affect in situ DOC concentrations across the tested depth-dependent light gradient. Corroborative ex situ measurements of excitation pressure on photosystem II suggest that photoinhibition in Dictyota sp. is likely to occur at light intensities that are commonly present on Curaçaoan coral reefs under high light levels at 5 m depth during midday. Photoinhibition may have thereby reduced the DOC release of Dictyota sp. and DOC concentrations in its close proximity. Our results indicate that the occurrence of elevated DOC concentrations did not follow a natural light gradient across depth. Instead, a combination of multiple factors, such as water type

  13. DOC concentrations across a depth-dependent light gradient on a Caribbean coral reef.

    Science.gov (United States)

    Mueller, Benjamin; Meesters, Erik H; van Duyl, Fleur C

    2017-01-01

    Photosynthates released by benthic primary producers (BPP), such as reef algae and scleractinian corals, fuel the dissolved organic carbon (DOC) production on tropical coral reefs. DOC concentrations near BPP have repeatedly been observed to be elevated compared to those in the surrounding water column. As the DOC release of BPP increases with increasing light availability, elevated DOC concentrations near them will, in part, also depend on light availability. Consequently, DOC concentrations are likely to be higher on the shallow, well-lit reef terrace than in deeper sections on the fore reef slope. We measured in situ DOC concentrations and light intensity in close proximity to the reef alga Dictyota sp. and the scleractinian coral Orbicella faveolata along a depth-dependent light gradient from 5 to 20 m depth and compared these to background concentrations in the water column. At 10 m (intermediate light), DOC concentrations near Dictyota sp. were elevated by 15 µmol C L -1 compared to background concentrations in the water column, but not at 5 and 20 m (high and low light, respectively), or near O. faveolata at any of the tested depths. DOC concentrations did not differ between depths and thereby light environments for any of the tested water types. However, water type and depth appear to jointly affect in situ DOC concentrations across the tested depth-dependent light gradient. Corroborative ex situ measurements of excitation pressure on photosystem II suggest that photoinhibition in Dictyota sp. is likely to occur at light intensities that are commonly present on Curaçaoan coral reefs under high light levels at 5 m depth during midday. Photoinhibition may have thereby reduced the DOC release of Dictyota sp. and DOC concentrations in its close proximity. Our results indicate that the occurrence of elevated DOC concentrations did not follow a natural light gradient across depth. Instead, a combination of multiple factors, such as water type, light

  14. 7 CFR 457.149 - Table grape crop insurance provisions.

    Science.gov (United States)

    2010-01-01

    ... grown for commercial sale for human consumption as fresh fruit on acreage where the cultural practices... determine the minimum quality grade will be: (i) The United States Standards for Grades of Table Grapes...; (6) Earthquake; (7) Volcanic eruption; or (8) Failure of irrigation water supply, if caused by an...

  15. MCNPX Model/Table Comparison

    CERN Document Server

    Hendricks, J S

    2003-01-01

    MCNPX is a Monte Carlo N-Particle radiation transport code extending the capabilities of MCNP4C. As with MCNP, MCNPX uses nuclear data tables to transport neutrons, photons, and electrons. Unlike MCNP, MCNPX also uses (1) nuclear data tables to transport protons; (2) physics models to transport 30 additional particle types (deuterons, tritons, alphas, pions, muons, etc.); and (3) physics models to transport neutrons and protons when no tabular data are available or when the data are above the energy range (20 to 150 MeV) where the data tables end. MCNPX can mix and match data tables and physics models throughout a problem. For example, MCNPX can model neutron transport in a bismuth germinate (BGO) particle detector by using data tables for bismuth and oxygen and using physics models for germanium. Also, MCNPX can model neutron transport in UO sub 2 , making the best use of physics models and data tables: below 20 MeV, data tables are used; above 150 MeV, physics models are used; between 20 and 150 MeV, data t...

  16. Potential for ground-water contamination from movement of wastewater through the unsaturated zone, upper Mojave River Basin, California

    Science.gov (United States)

    Umari, A.M.; Martin, P.M.; Schroeder, R.A.; Duell, L.F.; Fay, R.G.

    1993-01-01

    Septic-tank wastewater disposed in 30-foot-deep seepage pits (dry wells) at 46,000 residences is estimated to equal 18 percent of the natural recharge to the sole-source aquifer in the rapidly developing upper Mojave River Basin (Victor Valley) in the high desert northeast of Los Angeles. Vertical rates of movement of the wastewater wetting front through the unsaturated zone at three newly occupied residences ranged from 0.07 to 1.0 foot per day. These rates translate to traveltimes of several months to several years for the wastewater wetting front to reach the water table and imply that wastewater from many disposal systems already has reached the water table, which averages about 150 feet below land surface in the Victor Valley. As wastewater percolates from seepage pits into the adjacent unsaturated zone, the nitrogen present in reduced form is rapidly converted to nitrate. Analyses on soil-core extracts and soil moisturefrom suction lysimeters installed beneath the seepage pits at eight residences showed that nitrate concentrations and nitrate/ chloride ratios generally become lower with increasing depth. The intervals of greatest decline seemed to coincide with finer soil texture or were near the water table. Nitrate-reducing bacteria were tested for and found to be present in soil cores from two residences. Sparse nitrogen-15 data from suction lysimeters at one of these residences, where thenitrate concentration decreased by about one-half at a depth of 200 feet, indicate that the nitrate decline was accompanied by nitrogen-15 enrichment in the residual nitrate with an isotope-separation factor of about -10 permil. Despite the potential input of abundant nitrogen with the domestic wastewater recharge, nitrate concentrations in the area's ground water are generally low. The absence of high nitrate concentrations in the ground water is consistent with the existence of denitrification, a microbial nitrogen-removal mechanism, as wastewater moves through the

  17. Plastic and non-plastic variation in growth of newly established clones of Scirpus (Bolboschoenus) maritimus L. grown at different water depths

    NARCIS (Netherlands)

    Clevering, O.A.; Hundscheid, M.P.J.

    1998-01-01

    The importance of plastic responses to water depth as compared to non-plastic (developmental) changes in ramet (consisting of a culm e.g., stem with leaves, rhizome spacers and - tuber, and roots) characteristics of newly established clones of the emergent macrophyte Scirpus maritimus L. was

  18. Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

    Science.gov (United States)

    Weber, Lisa C.; Wiley, Michael J.; Wilcox, Douglas A.

    2016-01-01

    The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1) varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes under flooded and non-flooded conditions. Mean daily ET rates for the sites ranged from 4.0 mm d−1 to 6.6 mm d−1. Shallow groundwater discharge rates resulting from evaporative demand ranged from 2.5 mm d−1 to 4.3 mm d−1. This study helps to expand our understanding of the evapotranspirative demand of plants under various hydrologic and climate conditions. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  19. Monte Carlo Simulations on the water-to-air stopping power ratio for carbon ion dosimetry

    DEFF Research Database (Denmark)

    Henkner, Katrin; Bassler, Niels; Sobolevsky, Nikolai

    2009-01-01

    Many papers discussed the I value for water given by the ICRU, concluding that a value of about 80±2  eV instead of 67.2  eV would reproduce measured ion depth-dose curves. A change in the I value for water would have an effect on the stopping power and, hence, on the water-to-air stopping power...... tables and ICRU reports. The stopping power ratio is calculated via track-length dose calculation with SHIELD-HIT07. In the calculations, the stopping power ratio is reduced to a value of 1.119 in the plateau region as compared to the cited value of 1.13 in IAEA TRS-398. At low energies the stopping...

  20. Application of the Critical Heat Flux Look-Up Table to Large Diameter Tubes

    Directory of Open Access Journals (Sweden)

    M. El Nakla

    2013-01-01

    Full Text Available The critical heat flux look-up table was applied to a large diameter tube, namely 67 mm inside diameter tube, to predict the occurrence of the phenomenon for both vertical and horizontal uniformly heated tubes. Water was considered as coolant. For the vertical tube, a diameter correction factor was directly applied to the 1995 critical heat flux look-up table. To predict the occurrence of critical heat flux in horizontal tube, an extra correction factor to account for flow stratification was applied. Both derived tables were used to predict the effect of high heat flux and tube blockage on critical heat flux occurrence in boiler tubes. Moreover, the horizontal tube look-up table was used to predict the safety limits of the operation of boiler for 50% allowable heat flux.

  1. Depth-Dose and LET Distributions of Antiproton Beams in Various Target Materials

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Olsen, Sune; Petersen, Jørgen B.B.

    the annihilation process. Materials We have investigated the impact of substituting the target material on  the depth-dose distribution of pristine and  spread out antiproton beams using the FLUKA Monte Carlo transport program. Classical ICRP targets are compared to water phantoms. In addition, track average...... unrestricted LET is calculated for all configurations. Finally, we investigate which concentrations of gadolinium and boron are needed in a water target in order to observe a significant change in the antiproton depth-dose distribution.  Results Results indicate, that there is no significant change...... in the depth-dose distribution and average LET when substituting the materials. Adding boron and gadolinium up to concentrations of 1 per 1000 atoms to a water phantom, did not change the depth-dose profile nor the average LET. Conclusions  According to our FLUKA calculations, antiproton neutron capture...

  2. Chemical composition, water vapor permeability, and mechanical properties of yuba film influenced by soymilk depth and concentration.

    Science.gov (United States)

    Zhang, Siran; Lee, Jaesang; Kim, Yookyung

    2018-03-01

    Yuba is a soy protein-lipid film formed during heating of soymilk. This study described yuba as an edible film by analyzing its chemical composition, water vapor permeability (WVP), and mechanical properties. Three yuba films were prepared by using different concentrations and depths of soymilk: HS (86 g kg -1 and 2.3 cm), LS (70 g kg -1 and 2.3 cm), and LD (70 g kg -1 and 3.0 cm). As yuba was successively skimmed, the protein, lipid, and SH content decreased, but carbohydrate and SS content increased. Though both the initial concentration and the depth of soymilk affect the properties of the films, the depth of soymilk influences WVP and tensile strength (TS) more. The WVP of the HS and LS changed the least (13-17 g mm kPa -1 m -2 day 1 ), while that of the LD changed the most (13-35 g mm kPa -1 m -2 day -1 ). There were no differences (P > 0.05) in the TS between the HS and LS. LD had the greatest decrease of TS and the lowest TS among the groups. The earlier the yuba films were collected, the greater the elongation of the films was: 129% (HS), 113% (LS), and 155% (LD). The initial concentration and the depth of soymilk changed the chemical composition and structure of the yuba films. The LS yuba produced more uniform edible films with good mechanical properties. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Regression analysis of growth responses to water depth in three wetland plant species

    DEFF Research Database (Denmark)

    Sorrell, Brian K; Tanner, Chris C; Brix, Hans

    2012-01-01

    depths from 0 – 0.5 m. Morphological and growth responses to depth were followed for 54 days before harvest, and then analysed by repeated measures analysis of covariance, and non-linear and quantile regression analysis (QRA), to compare flooding tolerances. Principal results Growth responses to depth...

  4. WAVECALC: an Excel-VBA spreadsheet to model the characteristics of fully developed waves and their influence on bottom sediments in different water depths

    Science.gov (United States)

    Le Roux, Jacobus P.; Demirbilek, Zeki; Brodalka, Marysia; Flemming, Burghard W.

    2010-10-01

    The generation and growth of waves in deep water is controlled by winds blowing over the sea surface. In fully developed sea states, where winds and waves are in equilibrium, wave parameters may be calculated directly from the wind velocity. We provide an Excel spreadsheet to compute the wave period, length, height and celerity, as well as horizontal and vertical particle velocities for any water depth, bottom slope, and distance below the reference water level. The wave profile and propagation can also be visualized for any water depth, modeling the sea surface change from sinusoidal to trochoidal and finally cnoidal profiles into shallow water. Bedload entrainment is estimated under both the wave crest and the trough, using the horizontal water particle velocity at the top of the boundary layer. The calculations are programmed in an Excel file called WAVECALC, which is available online to authorized users. Although many of the recently published formulas are based on theoretical arguments, the values agree well with several existing theories and limited field and laboratory observations. WAVECALC is a user-friendly program intended for sedimentologists, coastal engineers and oceanographers, as well as marine ecologists and biologists. It provides a rapid means to calculate many wave characteristics required in coastal and shallow marine studies, and can also serve as an educational tool.

  5. Study the Effect of Intermittent and Continuous Ponding Depths by Using Different Heads to Leach Water

    Directory of Open Access Journals (Sweden)

    Nesrin J. AL-Mansori

    2018-03-01

    Full Text Available As results of using water for irrigated lands in a random manner in a time of shortage main water resources, Experimental work carried out to study the effect of continuous and intermittent ponding depth on the leaching processes. Sandy soil used, sourced from Hilla / Al-Jameeya, at Hilla city. Sieve analysis and hydrometer testing used to identify the properties of the soil. A model used with dimensions of 30, 30 and, 70 cm, with two different heads of water. Shatt-Al-Hilla River samples used in the leaching process.   Chemical tests carried out before the leaching process to identify changes in the proprieties in both water and soil. Leachate collected from two soil columns drained into boxes and tests carried out every 30 minutes. After the leaching process was complete, the soil was re-tested. Chemical tests on soil samples and the collected water applied after leaching for 47.5 cm and 52.5cm heads. From the results،, it can be notice that electrical conductivity for the outlet discharge from soil samples decreased faster with time, then slowing down until the end of leaching process.  The same pattern can be seen for all soil properties. In continuous leaching, a large quantity of water is required over a short leaching period, the inverse true for intermittent leaching. All parameters reduce with time in continuous leaching in comparison to intermittent leaching but when the water level in the soil column compared, it can inferred that increasing the head will reduce all the parameters for soil.

  6. NW Pacific mid-depth ventilation changes during the Holocene

    Science.gov (United States)

    Rella, S.; Uchida, M.

    2010-12-01

    During the last 50 years the oxygen content of North Pacific Intermediate Water primarily originating in the Okhotsk Sea has declined suggesting decreased mid-depth water circulation, likely leading to changes in biological productivity in the NW Pacific realm and a decrease in CO2 drawdown. It is therefore of high interest to elucidate the climate-oceanic interconnections of the present interglacial period (Holocene) in the NW Pacific, in order to predict possible future climate and surface productivity changes associated with a decrease in mid-depth ventilation in this ecologically sensitive region. However, such efforts have been hampered so far by the lack of appropriate sediment cores with fast sedimentation rates during the Holocene. Core CK05-04 that was recovered in 2005 from off Shimokita peninsula, Japan, at ~1000 m depth shows sedimentation rates of ~80 cm/kyr during the Holocene and therefore presents an ideal opportunity to reconstruct for the first time the Holocene ventilation history of the NW Pacific Ocean. We employ Accelerator Mass Spectroscopy (NIES-TERRA, Tsukuba) radiocarbon analysis of co-existing benthic and planktonic foraminifera to conclude on the ventilation age of the mid-depth water using benthic-planktonic radiocarbon age differences. At the conference we would like to present the results.

  7. Water Table Management Reduces Tile Nitrate Loss in Continuous Corn and in a Soybean-Corn Rotation

    Directory of Open Access Journals (Sweden)

    Craig F. Drury

    2001-01-01

    Full Text Available Water table management systems can be designed to alleviate soil water excesses and deficits, as well as reduce nitrate leaching losses in tile discharge. With this in mind, a standard tile drainage (DR system was compared over 8 years (1991 to 1999 to a controlled tile drainage/subirrigation (CDS system on a low-slope (0.05 to 0.1% Brookston clay loam soil (Typic Argiaquoll in southwestern Ontario, Canada. In the CDS system, tile discharge was controlled to prevent excessive drainage, and water was pumped back up the tile lines (subirrigation to replenish the crop root zone during water deficit periods. In the first phase of the study (1991 to 1994, continuous corn (Zea mays, L. was grown with annual nitrogen (N fertilizer inputs as per local soil test recommendations. In the second phase (1995 to 1999, a soybean (Glycine max L., Merr.-corn rotation was used with N fertilizer added only during the two corn years. In Phase 1 when continuous corn was grown, CDS reduced total tile discharge by 26% and total nitrate loss in tile discharge by 55%, compared to DR. In addition, the 4-year flow weighted mean (FWM nitrate concentration in tile discharge exceeded the Canadian drinking water guideline (10 mg N l–1 under DR (11.4 mg N l–1, but not under CDS (7.0 mg N l–1. In Phase 2 during the soybean-corn rotation, CDS reduced total tile discharge by 38% and total nitrate loss in tile discharge by 66%, relative to DR. The 4-year FWM nitrate concentration during Phase 2 in tile discharge was below the drinking water guideline for both DR (7.3 mg N l–1 and CDS (4.0 mg N l–1. During both phases of the experiment, the CDS treatment caused only minor increases in nitrate loss in surface runoff relative to DR. Hence CDS decreased FWM nitrate concentrations, total drainage water loss, and total nitrate loss in tile discharge relative to DR. In addition, soybean-corn rotation reduced FWM nitrate concentrations and total nitrate loss in tile discharge

  8. Property Grids for the Kansas High Plains Aquifer from Water Well Drillers' Logs

    Science.gov (United States)

    Bohling, G.; Adkins-Heljeson, D.; Wilson, B. B.

    2017-12-01

    Like a number of state and provincial geological agencies, the Kansas Geological Survey hosts a database of water well drillers' logs, containing the records of sediments and lithologies characterized during drilling. At the moment, the KGS database contains records associated with over 90,000 wells statewide. Over 60,000 of these wells are within the High Plains aquifer (HPA) in Kansas, with the corresponding logs containing descriptions of over 500,000 individual depth intervals. We will present grids of hydrogeological properties for the Kansas HPA developed from this extensive, but highly qualitative, data resource. The process of converting the logs into quantitative form consists of first translating the vast number of unique (and often idiosyncratic) sediment descriptions into a fairly comprehensive set of standardized lithology codes and then mapping the standardized lithologies into a smaller number of property categories. A grid is superimposed on the region and the proportion of each property category is computed within each grid cell, with category proportions in empty grid cells computed by interpolation. Grids of properties such as hydraulic conductivity and specific yield are then computed based on the category proportion grids and category-specific property values. A two-dimensional grid is employed for this large-scale, regional application, with category proportions averaged between two surfaces, such as bedrock and the water table at a particular time (to estimate transmissivity at that time) or water tables at two different times (to estimate specific yield over the intervening time period). We have employed a sequence of water tables for different years, based on annual measurements from an extensive network of wells, providing an assessment of temporal variations in the vertically averaged aquifer properties resulting from water level variations (primarily declines) over time.

  9. Hydrography - MO 2014 Class L1 Lake Watersheds WQS TableG (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This feature class contains watersheds for Class L1 lakes listed in Table G - Lake Classifications and Use Designations of the Water Quality Standards rule published...

  10. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    Science.gov (United States)

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  11. Calibrating water depths of Ordovician communities: lithological and ecological controls on depositional gradients in Upper Ordovician strata of southern Ohio and north-central Kentucky, USA

    Directory of Open Access Journals (Sweden)

    Carlton E. Brett

    2015-02-01

    Full Text Available Limestone and shale facies of the Upper Ordovician Grant Lake Formation (Katian: Cincinnatian, Maysvillian are well exposed in the Cincinnati Arch region of southern Ohio and north-central Kentucky, USA. These rocks record a gradual change in lithofacies and biofacies along a gently northward-sloping ramp. This gradient spans very shallow, olive-gray, platy, laminated dolostones with sparse ostracodes in the south to offshore, nodular, phosphatic, brachiopod-rich limestones and marls in the north. This study uses facies analysis in outcrop to determine paleoenvironmental parameters, particularly those related to water depth (e.g., position of the photic zone and shoreline, relative degree of environmental energy. Within a tightly correlated stratigraphic interval (the Mount Auburn and Straight Creek members of the Grant Lake Formation and the Terrill Member of the Ashlock Formation, we document the occurrence of paleoenvironmental indicators, including desiccation cracks and light-depth indicators, such as red and green algal fossils and oncolites. This permitted recognition of a ramp with an average gradient of 10–20 cm water depth per horizontal kilometer. Thus, shallow subtidal (“lagoonal” deposits in the upramp portion fall within the 1.5–6 m depth range, cross-bedded grainstones representing shoal-type environments fall within the 6–18 m depth range and subtidal, shell-rich deposits in the downramp portion fall within the 20–30 m depth range. These estimates match interpretations of depth independently derived from faunal and sedimentologic evidence that previously suggested a gentle ramp gradient and contribute to ongoing and future high-resolution paleontologic and stratigraphic studies of the Cincinnati Arch region.

  12. 临界水深计算方法的研究%Research on calculation method for critical water depth

    Institute of Scientific and Technical Information of China (English)

    王功

    2011-01-01

    总结了渠道临界水深常见的计算方法,分析了过水断面比能曲线的特性,根据渠道临界水深的定义,利用计算机软件编程技术可以解决大量繁琐计算的特点,求解了明渠临界水深,并且分析与总结了用定义法解决工程计算的意义.%Firstly, common calculation methods for the channel critical depth has been summarized, and the characteristics of specific energy curve of flow cross-section have been analyzed in this paper.By using computer software programming technology that can solve the massive trival calculation, based on the definition of the channel critical depth, the critical water depth was solved.And the significance of using the definition method to solve engineering calculation has been analysed and summarized.

  13. National Coral Reef Monitoring Program: Shallow Water Conductivity-Temperature-Depth (CTD) Profiles for selected locations across the Hawaiian Archipelago in 2013 (NCEI Accession 0161327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Near-shore shallow water Conductivity-Temperature-Depth (CTD) surveys provided vertical profiles of temperature, salinity, and turbidity providing indications for...

  14. Shale across Scales from the Depths of Sedimentary Basins to Soil and Water at Earth's Surface

    Science.gov (United States)

    Brantley, S. L.; Gu, X.

    2017-12-01

    Shale has become highly important on the world stage because it can host natural gas. In addition, shale is now targeted as a formation that can host repositories for disposal of radioactive waste. This newly recognized importance of shale has driven increased research into the nature of this unusual material. Much of this research incorporates characterization tools that probe shale at scales from nanometers to millimeters. Many of the talks in this Union session discuss these techniques and how scientists use them to understand how they impact the flow of fluids at larger scales. Another research avenue targets how material properties affect soil formation on this lithology and how water quality is affected in sedimentary basins where shale gas resources are under development. For example, minerals in shale are dominated by clays aligned along bedding. As the shales are exhumed and exposed at the surface during weathering, bedding planes open and fractures and microfractures form, allowing outfluxes or influxes of fluids. These phenomena result in specific patterns of fluid flow and, eventually, soil formation and landscape development. Specifically, in the Marcellus Formation gas play - the largest shale gas play in the U.S.A. - exposures of the shale at the surface result in deep oxidation of pyrite and organic matter, deep dissolution of carbonates, and relatively shallow alteration of clays. Micron-sized particles are also lost from all depths above the oxidation front. These characteristics result in deeply weathered and quickly eroded landscapes, and may also be related to patterns in water quality in shale gas plays. For example, across the entire Marcellus shale gas play in Pennsylvania, the single most common water quality issue is contamination by natural gas. This contamination is rare and is observed to be more prevalent in certain areas. These areas are likely related to shale material properties and geological structure. Specifically, natural gas

  15. Depth of cinder deposits and water-storage capacity at Cinder Lake, Coconino County, Arizona

    Science.gov (United States)

    Macy, Jamie P.; Amoroso, Lee; Kennedy, Jeff; Unema, Joel

    2012-01-01

    The 2010 Schultz fire northeast of Flagstaff, Arizona, burned more than 15,000 acres on the east side of San Francisco Mountain from June 20 to July 3. As a result, several drainages in the burn area are now more susceptible to increased frequency and volume of runoff, and downstream areas are more susceptible to flooding. Resultant flooding in areas downgradient of the burn has resulted in extensive damage to private lands and residences, municipal water lines, and roads. Coconino County, which encompasses Flagstaff, has responded by deepening and expanding a system of roadside ditches to move flood water away from communities and into an area of open U.S. Forest Service lands, known as Cinder Lake, where rapid infiltration can occur. Water that has been recently channeled into the Cinder Lake area has infiltrated into the volcanic cinders and could eventually migrate to the deep regional groundwater-flow system that underlies the area. How much water can potentially be diverted into Cinder Lake is unknown, and Coconino County is interested in determining how much storage is available. The U.S. Geological Survey conducted geophysical surveys and drilled four boreholes to determine the depth of the cinder beds and their potential for water storage capacity. Results from the geophysical surveys and boreholes indicate that interbedded cinders and alluvial deposits are underlain by basalt at about 30 feet below land surface. An average total porosity for the upper 30 feet of deposits was calculated at 43 percent for an area of 300 acres surrounding the boreholes, which yields a total potential subsurface storage for Cinder Lake of about 4,000 acre-feet. Ongoing monitoring of storage change in the Cinder Lake area was initiated using a network of gravity stations.

  16. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    Science.gov (United States)

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  17. Experimental effect of flow depth on ratio discharge in lateral intakes in river bend

    International Nuclear Information System (INIS)

    Masjedi, A; Foroushani, E P

    2012-01-01

    Open-channel dividing flow is characterized by the inflow and outflow discharges, the upstream and downstream water depths, and the recirculation flow in the branch channel. In general, diversion flow can be categorized as natural and artificial flow. Natural flow diversion usually occurs as braiding or cut-off in bend rivers, while artificial flow is man-made to divert flow by lateral intake channels for water supply. This study presents the results of a laboratory research into effect intake flow depth on ratio discharge in lateral intakes in 180 degree bend. Investigation on lateral intake and determination of intake flow depth is among the most important issues in lateral intake on ratio discharge with model intake flow depth were measured in a laboratory flume under clear-water. Experiments were conducted for various intake flow depths and with different discharges. It was found that by increasing the flow depth at 180 degree flume bend, ratio discharge increases.

  18. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment

    Directory of Open Access Journals (Sweden)

    E. E. Stigter

    2017-07-01

    Full Text Available Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE. Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF. Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May and decreases during the late melt season (June to September as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.

  19. Periodic Table of Students.

    Science.gov (United States)

    Johnson, Mike

    1998-01-01

    Presents an exercise in which an eighth-grade science teacher decorated the classroom with a periodic table of students. Student photographs were arranged according to similarities into vertical columns. Students were each assigned an atomic number according to their placement in the table. The table is then used to teach students about…

  20. Ground water geochemistry in the vicinity of the Jabiluka deposits

    International Nuclear Information System (INIS)

    Deutscher, R.L.; Mann, A.W.; Giblin, A.

    1980-01-01

    Seventeen exploration drill holes in the vicinity of the Jabiluka One and Jabiluka Two deposits were logged for Eh-pH and conductivity at 5 metre intervals to depths of up to 195 metres below ground surface. Forty-seven water samples from exploration drill holes, augered holes on the Magela flood plain and from two billabongs in the vicinity of the deposits were collected and analyzed. Analyses for pH and Fe were conducted in the field, and further analyses for major ions Ca 2+ , Mg 2+ , Na + , K + , SO 4 2- , Cl - , HCO 3 - and Si and minorelements Zn, Cd, Pb, Cu and U were conducted in the laboratory. The in situ Eh-pH and conductivity measurements, and analyses for major and minor elements of ground waters suggest that deep-lying chlorite-graphite schists containing the uranium mineralization are well protected from, or do not react rapidly with, ground water under present-day conditions, i.e. the schists of the Cahill Formation are a stable host for uranium mineralization at depth. In the vicinity of the Magela flood plain where the Cahill Formation and the permanent water table are close to the surface, some samples were found to contain high concentrations of sulphate, zinc, lead and iron. These same samples were characterized by low pH's in the pH range 3.0-4.0. The anomalies suggest weathering of sulphides associated with the mineralized Cahill Formation, where the schists are at shallow depths and in an oxidizing environment. The anomalies are not, however, necessarily indicative of zones of uranium enrichment in this formation. (author)

  1. Culture of microalgae biomass for valorization of table olive processing water

    Directory of Open Access Journals (Sweden)

    Contreras, C. G.

    2016-09-01

    Full Text Available Table olive processing water (TOPW contains many complex substances, such as phenols, which could be valorized as a substrate for microalgae biomass culture. The aim of this study was to assess the capability of Nannochloropsis gaditana to grow in TOPW at different concentrations (10- 80% in order to valorize this processing water. Within this range, the highest increment of biomass was determined at percentage of 40% of TOPW, reaching an increment of 0.36 ± 0.05 mg volatile suspended solids (VSS/L. Components of algal biomass were similar for the experiments at 10-40% of TOPW, where proteins were the major compounds (56-74%. Total phenols were retained in the microalgae biomass (0.020 ± 0.002 g of total phenols/g VSS. Experiments for 80% of TOPW resulted in a low production of microalgae biomass. High organic matter, nitrogen, phosphorus and phenol removal were achieved in all TOPW concentrations. Although high-value products, such as proteins, were obtained and high removal efficiencies of nutrients were determined, microalgae biomass culture should be enhanced to become a suitable integral processing water treatment.El agua resultante del proceso de elaboración de la aceituna de mesa (TOPW presenta un elevado contenido en sustancias complejas, como fenoles, que podría permitir su uso como sustrato para el cultivo de microalgas. El objetivo de este estudio se centra en evaluar la capacidad de crecimiento de Nannochloropsis gaditana en TOPW a distintas concentraciones (10-80% con vistas a la valorización de estas aguas. El mayor incremento de biomasa se obtuvo para un porcentaje del 40% de TOPW, alcanzando un aumento de 0.36 ± 0.50 mg sólidos en suspensión volátiles (SSV/L. Los componentes presentes en la biomasa han sido similares para los experimentos con 10-40% de TOPW, siendo las proteínas los compuestos mayoritarios en todos los casos (56-74%. Los fenoles totales quedaron retenidos en las microalgas, alcanzando una concentraci

  2. Elementary Statistics Tables

    CERN Document Server

    Neave, Henry R

    2012-01-01

    This book, designed for students taking a basic introductory course in statistical analysis, is far more than just a book of tables. Each table is accompanied by a careful but concise explanation and useful worked examples. Requiring little mathematical background, Elementary Statistics Tables is thus not just a reference book but a positive and user-friendly teaching and learning aid. The new edition contains a new and comprehensive "teach-yourself" section on a simple but powerful approach, now well-known in parts of industry but less so in academia, to analysing and interpreting process dat

  3. Empirical yield tables for Minnesota.

    Science.gov (United States)

    Jerold T. Hahn; Gerhard K. Raile

    1982-01-01

    Describes the tables derived from the 1977 Forest Survey of Minnesota and presents examples of how the tables can be used. These tables are broken down according to Minnesota's four Forest Survey Units, 14 forest types, and 5 site index classes. Presents 210 of the 350 possible tables that contained sufficient data to justify publication.

  4. Selection of areas for testing in the Eleana formation: Paleozoic geology of western Yucca Flat

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, J J

    1984-07-01

    The Paleozoic geology of NTS is reviewed to select an area for underground nuclear testing in shale. Constraints on possible areas, dictated by test program requirements and economics, are areas with topographic slope less than 5/sup 0/, depths to working point less than 3000 ft., and working points above the water table. The rock formation selected is Unit J (argillite) of the Mississippian age Eleana Formation. Within NTS, Western Yucca Flat is selected as the best area to meet the requirements. Details of the Paleozoic structure of western Yucca Flat are presented. The interpretation is based on published maps, cross-sections, and reports as well as borehole, refraction seismic, and gravity data. In terms of subsurface structure and areas where Eleana Formation Unit J occurs at depths between 500 ft to 3000 ft, four possible testing areas are identified. The areas are designated here as A, B, C and the Gravity High. Available data on the water table (static water level) is reviewed for western Yucca Flat area. Depth to the water table increases from 500 to 600 ft in Area A to 1500 ft or more in the Gravity High area. Review of the water table data rules out area A and B for testing in argillite above the water table. Area C is relatively unexplored and water conditions are unknown there. Thus, the Gravity High is selected as the most promising area for selecting testing sites. There is a dolomite thrust sheet of unknown thickness overlying the argillite in the Gravity High area. An exploration program is proposed to better characterize this structure. Finally, recommendations are made for procedures to follow for eventual site characterization of a testing site in argillite. 22 references, 12 figures, 1 table.

  5. Mathematical tables tables of in g [z] for complex argument

    CERN Document Server

    Abramov, A A

    1960-01-01

    Mathematical Tables of In ? (z) for Complex Argument is a compilation of tables of In ? (z), z = x + iy, calculated for steps in x and y of 0.01 and with an accuracy of one unit in the last (the sixth) decimal place. Interpolation is used to calculate In ? (z) for intermediate values and is carried out separately for the real and imaginary parts of In ? (z). Six places are retained in interpolation.This book first explains how the values of In ? (z) are calculated using the asymptotic formula in a wide lattice with step h = 0.16, and how the tables and the nomograph are used. The values in the

  6. Methane transport and emissions from soil as affected by water table and vascular plants.

    Science.gov (United States)

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  7. Impact of recharge through residual oil upon sampling of underlying ground water

    International Nuclear Information System (INIS)

    Wise, W.R.; Chang, Chichung; Klopp, R.A.; Bedient, P.B.

    1991-01-01

    At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observed the effects of the recharge process. Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present

  8. Tables of homogeneous equilibrium critical flow parameters for water in SI units

    International Nuclear Information System (INIS)

    Hall, D.G.; Czapary, L.S.

    1980-09-01

    This reference document presents tables and charts containing data calculated using the homogeneous equilibrium critical flow model (HEM). The ranges of stagnation state properties for which data are presented include: pressures from 2 to 22 120kPa, temperatures from 290 to 640 K, and thermodynamic qualities from 0 to 1

  9. Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements

    Science.gov (United States)

    Cui, Y.; Xiao, Perry; Imhof, R. E.

    2013-09-01

    Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.

  10. Air encapsulation. I. Measurement in a field soil

    International Nuclear Information System (INIS)

    Fayer, M.J.; Hillel, D.

    1986-01-01

    Encapsulated air is an important component of shallow water table fluctuations. Their objective was to measure the quantity and persistence of encapsulated air in a field setting. Using sprinkling rates of either 3.5 x 10 -6 or 3.8 x 10 -5 m s -1 , they brought the water table in a field soil from a depth of 1.5 m to the surface on several occasions. Moisture contents during and after sprinkling were monitored with a neutron probe. Twice following sprinkling, the water table was maintained at the surface for more than 20 d, during which time they continued to monitor moisture contents. With the water table at the surface, differences between the porosity and the measured moisture content were attributed to encapsulated air. Encapsulated air contents ranged from 1.1 to 6.3% of the bulk soil volume, depending on the rate of sprinkling, soil depth, and initial soil moisture content. During ponding, encapsulated air persisted at the 0.3-m depth for up to 28 d. The results indicate that encapsulated air is measurable in a field situation and that its quantity and persistence should be considered in analyzing the results of similar field experiments. 16 references

  11. Determination of water table using electrical sounding technique: A ...

    African Journals Online (AJOL)

    Models were generated for computer iterative technique and Borehole data were also collected using spontaneous potential logging method as well as driller's log in some selected sites within the study area so as to correlate surface measurement with borehole records. Analysis based on three depth related resistivity ...

  12. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012

    Science.gov (United States)

    Zhong, Xinyue; Zhang, Tingjun; Kang, Shichang; Wang, Kang; Zheng, Lei; Hu, Yuantao; Wang, Huijuan

    2018-01-01

    Snow depth is one of the key physical parameters for understanding land surface energy balance, soil thermal regime, water cycle, and assessing water resources from local community to regional industrial water supply. Previous studies by using in situ data are mostly site specific; data from satellite remote sensing may cover a large area or global scale, but uncertainties remain large. The primary objective of this study is to investigate spatial variability and temporal change in snow depth across the Eurasian continent. Data used include long-term (1966-2012) ground-based measurements from 1814 stations. Spatially, long-term (1971-2000) mean annual snow depths of >20 cm were recorded in northeastern European Russia, the Yenisei River basin, Kamchatka Peninsula, and Sakhalin. Annual mean and maximum snow depth increased by 0.2 and 0.6 cm decade-1 from 1966 through 2012. Seasonally, monthly mean snow depth decreased in autumn and increased in winter and spring over the study period. Regionally, snow depth significantly increased in areas north of 50° N. Compared with air temperature, snowfall had greater influence on snow depth during November through March across the former Soviet Union. This study provides a baseline for snow depth climatology and changes across the Eurasian continent, which would significantly help to better understanding climate system and climate changes on regional, hemispheric, or even global scales.

  13. Ground-water quality beneath solid-waste disposal sites at anchorage, Alaska

    Science.gov (United States)

    Zenone, Chester; Donaldson, D.E.; Grunwaldt, J.J.

    1975-01-01

    Studies at three solid-waste disposal sites in the Anchorage area suggest that differences in local geohydrologic conditions influence ground-water quality. A leachate was detected in ground water within and beneath two sites where the water table is very near land surface and refuse is deposited either at or below the water table in some parts of the filled areas. No leachate was detected in ground water beneath a third site where waste disposal is well above the local water table.

  14. Chemical Characterization of “Alcaparras” Stoned Table Olives from Northeast Portugal

    Directory of Open Access Journals (Sweden)

    Ricardo Malheiro

    2011-10-01

    Full Text Available Commercial stoned table olives named “alcaparras” from Trás-os-Montes (Portugal were chemically characterized. During three consecutive years (2004–2006 30 samples (10 per year were examined for their nutritional value (moisture, crude protein, total fat, ash, carbohydrates, and energy, with a detailed report of the fatty acids and tocopherols composition. Water was the major constituent (72.5 ± 5.5%, followed by fat (14.6 ± 5.1%. The average amount of protein and ash were 1.1% and 3.4%, respectively, reporting unusual ash values for table olives, related to the technological process. One hundred grams of fresh stoned table olives presented an average energetic value of 156 kcal, lower than most table olives. The lipids are rich in oleic acid (average of 77.7 ± 2.0%, followed by palmitic acid and linoleic acid. Samples showed an average of total tocopherols of 1.2 mg/100 g of fresh weight, being α-tocopherol the most abundant. Table olives are important sources of MUFA, as olive oil, recognized as a preventive factor in diseases in which free radicals are implicated, complemented by the amounts of vitamin E, with both antioxidant and vitamin action.

  15. Subsurface architecture of two tropical alpine desert cinder cones that hold water

    Science.gov (United States)

    Leopold, Matthias; Morelli, Amanda; Schorghofer, Norbert

    2016-06-01

    Basaltic lava is generally porous and cannot hold water to form lakes. Here we investigate two impermeable cinder cones in the alpine desert of Maunakea volcano, Hawaii. We present the results of the first ever geophysical survey of the area around Lake Waiau, the highest lake on the Hawaiian Islands, and establish the existence of a second body of standing water in a nearby cinder cone, Pu`upōhaku (~4000 m above sea level), which has a sporadic pond of water. Based on unpublished field notes from Alfred Woodcock (*1905-†2005) spanning the years 1966-1977, more recent observations, and our own geophysical survey using electric resistivity tomography, we find that perched groundwater resides in the crater perennially to a depth of 2.5 m below the surface. Hence, Pu`upōhaku crater hosts a previously unrecognized permanent body of water, the highest on the Hawaiian Islands. Nearby Lake Waiau is also perched within a cinder cone known as Pu`uwaiau. Among other hypotheses, permafrost or a massive block of lava were discussed as a possible cause for perching the water table. Based on our results, ground temperatures are too high and specific electric resistivity values too low to be consistent with either ice-rich permafrost or massive rock. Fine-grained material such as ash and its clay-rich weathering products are likely the impermeable material that explains the perched water table at both study sites. At Pu`uwaiau we discovered a layer of high conductivity that may constitute a significant water reservoir outside of the lake and further be responsible for perching the water toward the lake.

  16. The coefficient of friction of chrysotile gouge at seismogenic depths

    Science.gov (United States)

    Moore, Diane E.; Lockner, D.A.; Tanaka, H.; Iwata, K.

    2004-01-01

    We report new strength data for the serpentine mineral chrysotile at effective normal stresses, ??sn between 40 and 200 MPa in the temperature range 25??-280??C. Overall, the coefficient of friction, ?? (= shear stress/effective normal stress) of water-saturated chrysotile gouge increases both with increasing temperature and ??sn, but the rates vary and the temperature-related increases begin at ???100??C. As a result, a frictional strength minimum (?? = 0.1) occurs at low ??sn at about 100??C. Maximum strength (?? = 0.55) results from a combination of high normal stress and high temperature. The low-strength region is characterized by velocity strengthening and the high-strength region by velocity-weakening behavior. Thoroughly dried chrysotile has ?? = 0.7 and is velocity-weakening. The frictional properties of chrysolite can be explained in its tendency to adsorb large amounts of water that acts as a lubricant during shear. The water is progressively driven off the fiber surfaces with increasing temperature and pressure, causing chrysotile to approach its dry strength. Depth profiles for a chrysotile-lined fault constructed from these data would pass through a strength minimum at ???3 km depth, where sliding should be stable. Below that depth, strength increases rapidly as does the tendency for unstable (seismic) slip. Such a trend would not have been predicted from the room-temperature data. These results therefore illustrate the potential hazards of extrapolating room-temperature friction data to predict fault zone behavior at depth. This depth profile for chrysotile is consistent with the pattern of slip on the Hayward fault, which creeps aseismically at shallow depths but which may be locked below 5 km depth. ?? 2004 by V. H. Winston and Son, Inc. All rights reserved.

  17. Wind-wave amplification mechanisms: possible models for steep wave events in finite depth

    Directory of Open Access Journals (Sweden)

    P. Montalvo

    2013-11-01

    Full Text Available We extend the Miles mechanism of wind-wave generation to finite depth. A β-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of β is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the β-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrödinger equation is derived and the Akhmediev, Peregrine and Kuznetsov–Ma breather solutions for weak wind inputs in finite depth h are obtained.

  18. Geophysical techniques for reconnaissance investigations of soils and surficial deposits in mountainous terrain

    Science.gov (United States)

    Olson, C.G.; Doolittle, J.A.

    1985-01-01

    Two techniques were assessed for their capabilities in reconnaissance studies of soil characteristics: depth to the water table and depth to bedrock beneath surficial deposits in mountainous terrain. Ground-penetrating radar had the best near-surface resolution in the upper 2 m of the profile and provided continuous interpretable imagery of soil profiles and bedrock surfaces. Where thick colluvium blankets side slopes, the GPR could not consistently define the bedrock interface. In areas with clayey or shaley sediments, the GPR is also more limited in defining depth and is less reliable. Seismic refraction proved useful in determining the elevation of the water table and depth to bedrock, regardless of thickness of overlying material, but could not distinguish soil-profile characteristics.-from Authors

  19. Differential effects of exposure to parasites and bacteria on stress response in turbot Scophthalmus maximus simultaneously stressed by low water depth.

    Science.gov (United States)

    Rodríguez-Quiroga, J J; Otero-Rodiño, C; Suárez, P; Nieto, T P; García Estévez, J M; San Juan, F; Soengas, J L

    2017-07-01

    The stress response of turbot Scophthalmus maximus was evaluated in fish maintained 8 days under different water depths, normal (NWD, 30 cm depth, total water volume 40 l) or low (LWD, 5 cm depth, total water volume 10 l), in the additional presence of infection-infestation of two pathogens of this species. This was caused by intraperitoneal injection of sublethal doses of the bacterium Aeromonas salmonicida subsp. salmonicida or the parasite Philasterides dicentrarchi (Ciliophora:Scuticociliatida). The LWD conditions were stressful for fish, causing increased levels of cortisol in plasma, decreased levels of glycogen in liver and nicotinamide adenine dinucleotide phosphate (NADP) and increased activities of G6Pase and GSase. The presence of bacteria or parasites in fish under NWD resulted in increased cortisol levels in plasma whereas in liver, changes were of minor importance including decreased levels of lactate and GSase activity. The simultaneous presence of bacteria and parasites in fish under NWD resulted a sharp increase in the levels of cortisol in plasma and decreased levels of glucose. Decreased levels of glycogen and lactate and activities of GSase and glutathione reductase (GR), as well as increased activities of glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and levels of nicotinamide adenine dinucleotide phosphate (NADPH) occurred in the same fish in liver. Finally, the presence of pathogens in S. maximus under stressful conditions elicited by LWD resulted in synergistic actions of both type of stressors in cortisol levels. In liver, the presence of bacteria or parasites induced a synergistic action on several variables such as decreased activities of G6Pase and GSase as well as increased levels of NADP and NADPH and increased activities of GPase, G6PDH and 6PGDH. © 2017 The Fisheries Society of the British Isles.

  20. Water-resources reconnaissance of Isle de la Gonave, Haiti

    Science.gov (United States)

    Troester, J.W.; Turvey, M.D.

    2004-01-01

    Isle de la Gonave is a 750-km2 island off the coast of Haiti. The depth to the water table ranges from less than 30 m in the Eocene and Upper Miocene limestones to over 60 m in the 300-m-thick Quaternary limestone. Annual precipitation ranges from 800-1,400 mm. Most precipitation is lost through evapotranspiration and there is virtually no surface water. Roughly estimated from chloride mass balance, about 4% of the precipitation recharges the karst aquifer. Cave pools and springs are a common source for water. Hand-dug wells provide water in coastal areas. Few productive wells have been drilled deeper than 60 m. Reconnaissance field analyses indicate that groundwater in the interior is a calcium-bicarbonate type, whereas water at the coast is a sodium-chloride type that exceeds World Health Organization recommended values for sodium and chloride. Tests for the presence of hydrogen sulfide-producing bacteria were negative in most drilled wells, but positive in cave pools, hand-dug wells, and most springs, indicating bacterial contamination of most water sources. Because of the difficulties in obtaining freshwater, the 110,000 inhabitants use an average of only 7 L per person per day.