WorldWideScience

Sample records for water system impact

  1. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  2. Impact of Hybrid Water Supply on the Centralised Water System

    Directory of Open Access Journals (Sweden)

    Robert Sitzenfrei

    2017-11-01

    Full Text Available Traditional (technical concepts to ensure a reliable water supply, a safe handling of wastewater and flood protection are increasingly criticised as outdated and unsustainable. These so-called centralised urban water systems are further maladapted to upcoming challenges because of their long lifespan in combination with their short-sighted planning and design. A combination of (existing centralised and decentralised infrastructure is expected to be more reliable and sustainable. However, the impact of increasing implementation of decentralised technologies on the local technical performance in sewer or water supply networks and the interaction with the urban form has rarely been addressed in the literature. In this work, an approach which couples the UrbanBEATS model for the planning of decentralised strategies together with a water supply modelling approach is developed and applied to a demonstration case. With this novel approach, critical but also favourable areas for such implementations can be identified. For example, low density areas, which have high potential for rainwater harvesting, can result in local water quality problems in the supply network when further reducing usually low pipe velocities in these areas. On the contrary, in high demand areas (e.g., high density urban forms there is less effect of rainwater harvesting due to the limited available space. In these high density areas, water efficiency measures result in the highest savings in water volume, but do not cause significant problems in the technical performance of the potable water supply network. For a more generalised and case-independent conclusion, further analyses are performed for semi-virtual benchmark networks to answer the question of an appropriate representation of the water distribution system in a computational model for such an analysis. Inappropriate hydraulic model assumptions and characteristics were identified for the stated problem, which have more

  3. Impact of emerging clean vehicle system on water stress

    International Nuclear Information System (INIS)

    Cai, Hua; Hu, Xiaojun; Xu, Ming

    2013-01-01

    Graphical abstract: Display Omitted - Highlights: • Clean vehicles may increase US water consumption up to 2810 billion gallons/year. • Large-scale clean vehicle adoption could lead to severe regional water stress. • Fuel choice for clean vehicle is crucial in minimizing regional water stress. • Regional optimization illustrated the importance of regional consideration. - Abstract: While clean vehicles (i.e., vehicles powered by alternative fuels other than fossil fuels) offer great potential to reduce greenhouse gas emissions from gasoline-based vehicles, the associated impact on water resources has not yet been fully assessed. This research provides a systematic evaluation of the impact of a fully implemented clean vehicle system on national and state-level water demand and water stress. On the national level, based on existing policies, transitioning the current gasoline-based transportation into one with clean vehicles will increase national annual water consumption by 1950–2810 billion gallons of water, depending on the market penetration of electric vehicles. On the state level, variances of water efficiency in producing different fuels are significant. The fuel choice for clean vehicle development is especially crucial for minimizing water stress increase in states with already high water stress, high travel demands, and significant variations in water efficiency in producing different alternative fuels. Current development of clean vehicle infrastructure, however, has not reflected these state-level variations. This study takes an optimization approach to further evaluate impacts on state-level water stress from a fully implemented clean vehicle system and identified potential roles (fuel producer or consumer) states may play in real world clean vehicle development scenario. With an objective of minimizing overall water stress impact, our optimization model aims to provide an analytical framework to better assess impacts on state-level water

  4. Water Quality Impacts of Cover Crop/Manure Management Systems

    OpenAIRE

    Kern, James Donald

    1997-01-01

    Crop production, soil system, water quality, and economic impacts of four corn silage production systems were compared through a field study including 16 plots (4 replications of each treatment). Systems included a rye cover crop and application of liquid dairy manure in the spring and fall. The four management systems were: 1) traditional, 2) double- crop, 3) roll-down, and 4) undercut. In the fourth system, manure was applied below the soil surface during the ...

  5. Impact of Operating Rules on Planning Capacity Expansion of Urban Water Supply Systems

    Science.gov (United States)

    de Neufville, R.; Galelli, S.; Tian, X.

    2017-12-01

    This study addresses the impact of operating rules on capacity planning of urban water supply systems. The continuous growth of metropolitan areas represents a major challenge for water utilities, which often rely on industrial water supply (e.g., desalination, reclaimed water) to complement natural resources (e.g., reservoirs). These additional sources increase the reliability of supply, equipping operators with additional means to hedge against droughts. How do their rules for using industrial water supply impact the performance of water supply system? How might it affect long-term plans for capacity expansion? Possibly significantly, as demonstrated by the analysis of the operations and planning of a water supply system inspired by Singapore. Our analysis explores the system dynamics under multiple inflow and management scenarios to understand the extent to which alternative operating rules for the use of industrial water supply affect system performance. Results first show that these operating rules can have significant impact on the variability in system performance (e.g., reliability, energy use) comparable to that of hydro-climatological conditions. Further analyses of several capacity expansion exercises—based on our original hydrological and management scenarios—show that operating rules significantly affect the timing and magnitude of critical decisions, such as the construction of new desalination plants. These results have two implications: Capacity expansion analysis should consider the effect of a priori uncertainty about operating rules; and operators should consider how their flexibility in operating rules can affect their perceived need for capacity.

  6. Assessment of the impact of traditional septic tank soakaway systems on water quality in Ireland.

    Science.gov (United States)

    Keegan, Mary; Kilroy, Kate; Nolan, Daniel; Dubber, Donata; Johnston, Paul M; Misstear, Bruce D R; O'Flaherty, Vincent; Barrett, Maria; Gill, Laurence W

    2014-01-01

    One of the key threats to groundwater and surface water quality in Ireland is the impact of poorly designed, constructed or maintained on-site wastewater treatment systems. An extensive study was carried out to quantify the impact of existing sites on water quality. Six existing sites, consisting of a traditional septic tank and soakaway system, located in various ranges of subsoil permeabilities were identified and monitored to determine how well they function under varying subsoil and weather conditions. The preliminary results of the chemical and microbiological pollutant attenuation in the subsoil of the systems have been assessed and treatment performance evaluated, as well as impact on local surface water and groundwater quality. The source of any faecal contamination detected in groundwater, nearby surface water and effluent samples was confirmed by microbial source tracking. From this, it can be seen that the transport and treatment of percolate vary greatly depending on the permeability and composition of the subsoil.

  7. IMPACT ON WATER DISTRIBUTION SYSTEM BIOFILM DENSITIES FROM REVERSE OSMOSIS MEMBRANE TREATMENT OF SUPPLY WATER

    Science.gov (United States)

    The quality of potable water is such that the concentration of nutrients available for growth of microorganisms within distribution systems is limited. In such systems carbon is often the growth limiting nutrient. Research conducted in the Netherlands has indicated that low level...

  8. Shutdown of the River Water System at the Savannah River Site: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1996-11-01

    This environmental impact statement (EIS) evaluates alternative approaches to and environmental impacts of shutting down the River Water System at the Savannah River Site (SRS). Five production reactors were operated at the site.to support these facilities, the River Water System was constructed to provide cooling water to pass through heat exchangers to absorb heat from the reactor core in each of the five reactor areas (C, K, L, P, and R). The DOE Savannah River Strategic Plan directs the SRS to find ways to reduce operating costs and to determine what site infrastructure it must maintain and what infrastructure is surplus. The River Water System has been identified as a potential surplus facility. Three alternatives to reduce the River Water System operating costs are evaluated in this EIS. In addition to the No-Action Alternative, which consists of continuing to operate the River Water System, this EIS examines one alternative (the Preferred Alternative) to shut down and maintain the River Water System in a standby condition until DOE determines that a standby condition is no longer necessary, and one alternative to shut down and deactivate the River Water System. The document provides background information and introduces the River Water System at the SRS; sets forth the purpose and need for DOE action; describes the alternatives DOE is considering; describes the environment at the SRS and in the surrounding area potentially affected by the alternatives addressed and provides a detailed assessment of the potential environmental impacts of the alternatives; and identifies regulatory requirements and evaluates their applicability to the alternatives considered

  9. The impact of an inadequate municipal water system on the residents of Chinhoyi town, Zimbabwe.

    Science.gov (United States)

    Schwartz, U; Siziya, S; Tshimanga, M; Barduagni, P; Chauke, T L

    1999-06-01

    To assess the use and impact of the water reticulation system in Chinhoyi on its residents. Cross sectional and case series studies. Chinhoyi town. 600 Chinhoyi residents. Practices and perceptions of Chinhoyi residents on the water system, and distribution of water-related diseases per area of residence. Out of 600 respondents, 565 (99.3%) had access to piped water and 558 (98.0%) to flush toilets. Breakdowns of water supply and functioning of toilet facility were reported by 308 (77.0%) and 110 (28.0%) respondents in the previous six months, respectively. Main complaints of Chinhoyi residents were about low water quality (36.2%), inadequate sewage system (31.3%) and environmental pollution (26.5%). Cases of water-related diseases were not associated with natural water bodies. Chinhoyi residents have good access to the municipal water and an adequate sanitation system. However, low quality of the water, frequent system breakdowns and the degradation and loss of amenity of the environment impair their quality of life.

  10. Coupled water-energy modelling to assess climate change impacts on the Iberian Power System

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Madsen, H.; Riegels, N.

    and marginal costs of the power producers. Two effects of climate change on the power system were studied: changes in the hydropower production caused by changes in precipitation and temperature, and changes in the electricity demand over the year caused by temperature changes. A rainfall-runoff model......Water resources systems and power systems are strongly linked; water is needed for most power generation technologies, and electricity is required in every stage of water usage. In the Iberian Peninsula, climate change is expected to have a negative impact on the power system: changes in runoff...... was established to estimate the impact of precipitation and temperature changes on reservoir inflows. The model was calibrated using observed precipitation, temperature and river discharge time series. Potential evapotranspiration was estimated from temperature data, and snow accumulation/melt was modelled using...

  11. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    Science.gov (United States)

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply

  12. Importance of exposure model in estimating impacts when a water distribution system is contaminated

    International Nuclear Information System (INIS)

    Davis, M. J.; Janke, R.; Environmental Science Division; USEPA

    2008-01-01

    The quantity of a contaminant ingested by individuals using tap water drawn from a water distribution system during a contamination event depends on the concentration of the contaminant in the water and the volume of water ingested. If the concentration varies with time, the actual time of exposure affects the quantity ingested. The influence of the timing of exposure and of individual variability in the volume of water ingested on estimated impacts for a contamination event has received limited attention. We examine the significance of ingestion timing and variability in the volume of water ingested by using a number of models for ingestion timing and volume. Contaminant concentrations were obtained from simulations of an actual distribution system for cases involving contaminant injections lasting from 1 to 24 h. We find that assumptions about exposure can significantly influence estimated impacts, especially when injection durations are short and impact thresholds are high. The influence of ingestion timing and volume should be considered when assessing impacts for contamination events

  13. Soil phosphatase and urease activities impacted by cropping systems and water management

    Science.gov (United States)

    Soil enzymes can play an important role in nutrient availability to plants. Consequently, soil enzyme measurements can provide useful information on soil fertility for crop production. We examined the impact of cropping system and water management on phosphatase, urease, and microbial biomass C in s...

  14. Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks

    International Nuclear Information System (INIS)

    Lee, Mengshan; Keller, Arturo A.; Chiang, Pen-Chi; Den, Walter; Wang, Hongtao; Hou, Chia-Hung; Wu, Jiang; Wang, Xin; Yan, Jinyue

    2017-01-01

    Highlights: •This study quantifies the nexus as energy intensity and greenhouse gas potential. •Baseline water stress and return flow ratio are identified as water risks. •Source water accessibility significantly contributes to variations in the nexus. •Water risks have little impact on the nexus of wastewater systems. •Study on the nexus is suggested to be conducted at regional levels. -- Abstract: The importance of the interdependence between water and energy, also known as the water-energy nexus, is well recognized. The water-energy nexus is typically characterized in resource use efficiency terms such as energy intensity. This study aims to explore the quantitative results of the nexus in terms of energy intensity and environmental impacts (mainly greenhouse gas emissions) on existing water systems within urban water cycles. We also characterized the influence of water risks on the water-energy nexus, including baseline water stress (a water quantity indicator) and return flow ratio (a water quality indicator). For the 20 regions and 4 countries surveyed (including regions with low to extremely high water risks that are geographically located in Africa, Australia, Asia, Europe, and North America), their energy intensities were positively related to the water risks. Regions with higher water risks were observed to have relatively higher energy and GHG intensities associated with their water supply systems. This mainly reflected the major influence of source water accessibility on the nexus, particularly for regions requiring energy-intensive imported or groundwater supplies, or desalination. Regions that use tertiary treatment (for water reclamation or environmental protection) for their wastewater treatment systems also had relatively higher energy and GHG emission intensities, but the intensities seemed to be independent from the water risks. On-site energy recovery (e.g., biogas or waste heat) in the wastewater treatment systems offered a great

  15. Ground water impact assessment report for the 216-B-3 Pond system

    International Nuclear Information System (INIS)

    Johnson, V.G.; Law, A.G.; Reidel, S.P.; Evelo, S.D.; Barnett, D.B.; Sweeney, M.D.

    1995-01-01

    Ground water impact assessments were required for a number of liquid effluent receiving sites according to the Hanford Federal Facility Agreement and Consent Order Milestones M-17-00A and M-17-00B, as agreed upon by the US Department of Energy. This report is one of the last three assessments required and addresses the impact of continued discharge of uncontaminated wastewater to the 216-B-3C expansion lobe of the B Pond system in the 200 East Area until June 1997. Evaluation of past and projected effluent volumes and composition, geohydrology of the receiving site, and contaminant plume distribution patterns, combined with ground water modeling, were used to assess both changes in ground water flow regime and contaminant-related impacts

  16. Impact of Red Water System (RWS) application on water quality of catfish culture using aquaponics

    Science.gov (United States)

    Zahidah; Dhahiyat, Y.; Andriani, Y.; Sahidin, A.; Farizi, I.

    2018-03-01

    This study aim was to analyze the effect of Red Water System (RWS) probiotics application on water quality in aquaponic system. The research used experimental method using Completely Randomized Design (CRD) with five treatments and three replications. Treatment A: RWS 7.5 μL·L-1/week without aquaponic probiotic, Treatment B: aquaponic without RWS probiotics, treatment C: RWS probiotic addition in aquaponic media at 7.5 μL·L-1/week, treatment D: addition of RWS probiotics in aquaponic media at 10 μL·L-1/week and treatment E: addition of RWS probiotics in in aquaponic media at 12.8 μL·L-1/week. Parameters measured were pH, temperature, ammonia, nitrate and phosphate. The results showed that water temperature and pH relatively unchanged in all treatments. The addition of RWS probiotics did not improve the concentration of ammonia, nitrate and phosphate. In fact, the catfish culture with only aquaponic resulted lower concentration of ammonia, nitrate and phosphate than other treatment. The lowest value of ammonia, nitrate and phosphates was obtained in the experimental groups of aquaponic with RWS of 10 μL·L-1/week (Treatment D). Treatment D has the lowest average ammonia of 0.50 ppm, reduced nitrate up to 60.78 % and temperature and pH relatively unchanged.

  17. Ranking of small scale proposals for water system repair using the Rapid Impact Assessment Matrix (RIAM)

    Energy Technology Data Exchange (ETDEWEB)

    Shakib-Manesh, T.E.; Hirvonen, K.O.; Jalava, K.J.; Ålander, T.; Kuitunen, M.T., E-mail: markku.kuitunen@jyu.fi

    2014-11-15

    Environmental impacts of small scale projects are often assessed poorly, or not assessed at all. This paper examines the usability of the Rapid Impact Assessment Matrix (RIAM) as a tool to prioritize project proposals for small scale water restoration projects in relation to proposals' potential to improve the environment. The RIAM scoring system was used to assess and rank the proposals based on their environmental impacts, the costs of the projects to repair the harmful impacts, and the size of human population living around the sites. A four-member assessment group (The expert panel) gave the RIAM-scores to the proposals. The assumed impacts of the studied projects at the Eastern Finland water systems were divided into the ecological and social impacts. The more detailed assessment categories of the ecological impacts in this study were impacts on landscape, natural state, and limnology. The social impact categories were impacts to recreational use of the area, fishing, industry, population, and economy. These impacts were scored according to their geographical and social significance, their magnitude of change, their character, permanence, reversibility, and cumulativeness. The RIAM method proved to be an appropriate and recommendable method for the small-scale assessment and prioritizing of project proposals. If the assessments are well documented, the RIAM can be a method for easy assessing and comparison of the various kinds of projects. In the studied project proposals there were no big surprises in the results: the best ranks were received by the projects, which were assumed to return watersheds toward their original state.

  18. Ranking of small scale proposals for water system repair using the Rapid Impact Assessment Matrix (RIAM)

    International Nuclear Information System (INIS)

    Shakib-Manesh, T.E.; Hirvonen, K.O.; Jalava, K.J.; Ålander, T.; Kuitunen, M.T.

    2014-01-01

    Environmental impacts of small scale projects are often assessed poorly, or not assessed at all. This paper examines the usability of the Rapid Impact Assessment Matrix (RIAM) as a tool to prioritize project proposals for small scale water restoration projects in relation to proposals' potential to improve the environment. The RIAM scoring system was used to assess and rank the proposals based on their environmental impacts, the costs of the projects to repair the harmful impacts, and the size of human population living around the sites. A four-member assessment group (The expert panel) gave the RIAM-scores to the proposals. The assumed impacts of the studied projects at the Eastern Finland water systems were divided into the ecological and social impacts. The more detailed assessment categories of the ecological impacts in this study were impacts on landscape, natural state, and limnology. The social impact categories were impacts to recreational use of the area, fishing, industry, population, and economy. These impacts were scored according to their geographical and social significance, their magnitude of change, their character, permanence, reversibility, and cumulativeness. The RIAM method proved to be an appropriate and recommendable method for the small-scale assessment and prioritizing of project proposals. If the assessments are well documented, the RIAM can be a method for easy assessing and comparison of the various kinds of projects. In the studied project proposals there were no big surprises in the results: the best ranks were received by the projects, which were assumed to return watersheds toward their original state

  19. Water and Climate Impacts on Power System Operations: The Importance of Cooling Systems and Demand Response Measures

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Connell, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miara, Ariel [City College of New York, NY (United States); Ibanez, Eduardo [GE Energy Connections, Atlanta, GA (United States); Hummon, Marissa [Tendril, Denver, CO (United States)

    2016-12-01

    The U.S. electricity sector is highly dependent upon water resources; changes in water temperatures and water availability can affect operational costs and the reliability of power systems. Despite the importance of water for power system operations, the effects of changes in water characteristics on multiple generators in a system are generally not modeled. Moreover, demand response measures, which can change the magnitude and timing of loads and can have beneficial impacts on power system operations, have not yet been evaluated in the context of water-related power vulnerabilities. This effort provides a first comprehensive vulnerability and cost analysis of water-related impacts on a modeled power system and the potential for demand response measures to address vulnerability and cost concerns. This study uniquely combines outputs and inputs of a water and power plant system model, production cost, model, and relative capacity value model to look at variations in cooling systems, policy-related thermal curtailments, and demand response measures to characterize costs and vulnerability for a test system. Twenty-five scenarios over the course of one year are considered: a baseline scenario as well as a suite of scenarios to evaluate six cooling system combinations, the inclusion or exclusion of policy-related thermal curtailments, and the inclusion or exclusion of demand response measures. A water and power plant system model is utilized to identify changes in power plant efficiencies resulting from ambient conditions, a production cost model operating at an hourly scale is used to calculate generation technology dispatch and costs, and a relative capacity value model is used to evaluate expected loss of carrying capacity for the test system.

  20. Impact of water-deficit stress on tritrophic interactions in a wheat-aphid-parasitoid system.

    Directory of Open Access Journals (Sweden)

    Syed Suhail Ahmed

    Full Text Available Increasing temperature and CO2 concentrations can alter tritrophic interactions in ecosystems, but the impact of increasingly severe drought on such interactions is not well understood. We examined the response of a wheat-aphid-parasitoid system to variation in water-deficit stress levels. Our results showed that arid area clones of the aphid, Sitobion avenae (Fabricius, tended to have longer developmental times compared to semiarid and moist area clones, and the development of S. avenae clones tended to be slower with increasing levels of water-deficit. Body sizes of S. avenae clones from all areas decreased with increasing water-deficit levels, indicating their declining adaptation potential under drought. Compared to arid area clones, moist area clones of S. avenae had a higher frequency of backing under severe water stress only, but a higher frequency of kicking under well-watered conditions only, suggesting a water-deficit level dependent pattern of resistance against the parasitoid, Aphidius gifuensis (Ashmead. The number of S. avenae individuals attacked by the parasitoid in 10 min showed a tendency to decrease with increasing water-deficit levels. Clones of S. avenae tended to have lower parasitism rates under treatments with higher water-deficit levels. The development of the parasitoid tended to be slower under higher levels of water-deficit stress. Thus, the bottom-up effects of water-deficit stressed plants were negative on S. avenae. However, the top-down effects via parasitoids were compromised by water-deficit, which could favor the growth of aphid populations. Overall, the first trophic level under water-deficit stress was shown to have an indirect and negative impact on the third trophic level parasitoid, suggesting that parasitoids could be increasingly vulnerable in future warming scenarios.

  1. Assessing potential impacts associated with contamination events in water distribution systems : a sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M. J.; Janke, R.; Taxon, T. N. (Decision and Information Sciences); ( EVS); (EPA)

    2010-11-01

    An understanding of the nature of the adverse effects that could be associated with contamination events in water distribution systems is necessary for carrying out vulnerability analyses and designing contamination warning systems. This study examines the adverse effects of contamination events using models for 12 actual water systems that serve populations ranging from about 104 to over 106 persons. The measure of adverse effects that we use is the number of people who are exposed to a contaminant above some dose level due to ingestion of contaminated tap water. For this study the number of such people defines the impact associated with an event. We consider a wide range of dose levels in order to accommodate a wide range of potential contaminants. For a particular contaminant, dose level can be related to a health effects level. For example, a dose level could correspond to the median lethal dose, i.e., the dose that would be fatal to 50% of the exposed population. Highly toxic contaminants may be associated with a particular response at a very low dose level, whereas contaminants with low toxicity may only be associated with the same response at a much higher dose level. This report focuses on the sensitivity of impacts to five factors that either define the nature of a contamination event or involve assumptions that are used in assessing exposure to the contaminant: (1) duration of contaminant injection, (2) time of contaminant injection, (3) quantity or mass of contaminant injected, (4) population distribution in the water distribution system, and (5) the ingestion pattern of the potentially exposed population. For each of these factors, the sensitivities of impacts to injection location and contaminant toxicity are also examined. For all the factors considered, sensitivity tends to increase with dose level (i.e., decreasing toxicity) of the contaminant, with considerable inter-network variability. With the exception of the population distribution (factor 4

  2. Enhanced configuration of a water detritiation system; impact on ITER Isotope Separation System based cryogenic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, Ion, E-mail: ion.cristescu@kit.edu

    2016-11-01

    Highlights: • An enhanced configuration of ITER WDS has been developed. • The proposed configuration allows minimization of hazards due to the reduction of tritium inventory. • The load on the tritium recovery system (ITER ISS) is minimized with benefits on mitigation of the explosion hazards. - Abstract: Tritiated water is generated in the ITER systems by various sources and may contain deuterium and tritium at various concentrations. The reference process for the ITER Water Detritiation System is based on Combined Electrolysis Catalytic Exchange (CECE) configuration. During long time operation of the CECE process, the accumulation of deuterium in the electrolysis unit and consequently along the Liquid Phase Catalytic Exchange (LPCE) column is unavoidable with consequences on the overall detritiation factor of the system. Beside the deuterium issue in the process, the large amount of the tritiated water with tritium activity up to 500 Ci/kg in the electrolysis cells is a concern from the safety aspect of the plant. The enhanced configuration of a system for processing tritiated water allows mitigation of the effects due to deuterium accumulation and also reduction of tritium inventory within the electrolysis system. In addition the benefits concerning to the interface between the water detritiation system and tritium recovery based cryogenic distillation are also presented.

  3. Evidence for sites of methylmercury formation in a flowing water system: Impact of anthropogenic barriers and water management

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro-Barraza, Claudia [Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, Reno, NV 89557 (United States); Gustin, Mae Sexauer, E-mail: mgustin@cabnr.unr.edu [Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, Reno, NV 89557 (United States); Peacock, Mary [Department of Biology, University of Nevada-Reno, Reno, NV 89557 (United States); Miller, Matthieu [Department of Natural Resources and Environmental Sciences, University of Nevada-Reno, Reno, NV 89557 (United States)

    2014-04-01

    The Truckee River, California-Nevada, USA is impacted by mercury (Hg) contamination associated with legacy gold mining. In this work, we investigated the potential for hot-spots of methylmercury (MeHg) formation in the river. Mercury concentrations in multiple media were also used to assess the impacts of anthropogenic barriers, restoration, and water management in this flowing water ecosystem. Water samples were collected on a seasonal time step over 3 years, and analyzed for total Hg (THg) and MeHg concentrations, along with a variety of other water quality parameters. In addition, we measured THg and MeHg in sediments, THg in macroinvertebrates, and THg and δ{sup 15}N and δ{sup 13}C concentrations in fish. Differences in stable isotopes and Hg concentrations in fish were applied to understand the mobility of fish in the river. Mercury concentrations of specific macroinvertebrate species were used to identify sites of MeHg production. In general, loads of Hg and nutrients in the river reach above the Reno–Sparks metropolitan area were similar to that reported for pristine systems, while within and below the city, water quality impacts were observed. Fish isotope data showed that in the city reach food resources were different than those upriver and downriver. Based on Hg and isotope data, mobility of the fish in the river is impacted by anthropogenic obstructions and water manipulation. Below the city, particle bound Hg, derived from the legacy mining, continues to be input to the Truckee River. This Hg is deposited in riparian habitats and areas of river restoration, where it is methylated and becomes available to biota. During spring, when flows were highest, MeHg produced and stored in the sediments is mobilized and transported downriver. Fish and macroinvertebrate concentrations increased downriver indicating passive uptake from water. The information presented here could be useful for those doing river restoration and water manipulation in mercury

  4. Evidence for sites of methylmercury formation in a flowing water system: Impact of anthropogenic barriers and water management

    International Nuclear Information System (INIS)

    Pizarro-Barraza, Claudia; Gustin, Mae Sexauer; Peacock, Mary; Miller, Matthieu

    2014-01-01

    The Truckee River, California-Nevada, USA is impacted by mercury (Hg) contamination associated with legacy gold mining. In this work, we investigated the potential for hot-spots of methylmercury (MeHg) formation in the river. Mercury concentrations in multiple media were also used to assess the impacts of anthropogenic barriers, restoration, and water management in this flowing water ecosystem. Water samples were collected on a seasonal time step over 3 years, and analyzed for total Hg (THg) and MeHg concentrations, along with a variety of other water quality parameters. In addition, we measured THg and MeHg in sediments, THg in macroinvertebrates, and THg and δ 15 N and δ 13 C concentrations in fish. Differences in stable isotopes and Hg concentrations in fish were applied to understand the mobility of fish in the river. Mercury concentrations of specific macroinvertebrate species were used to identify sites of MeHg production. In general, loads of Hg and nutrients in the river reach above the Reno–Sparks metropolitan area were similar to that reported for pristine systems, while within and below the city, water quality impacts were observed. Fish isotope data showed that in the city reach food resources were different than those upriver and downriver. Based on Hg and isotope data, mobility of the fish in the river is impacted by anthropogenic obstructions and water manipulation. Below the city, particle bound Hg, derived from the legacy mining, continues to be input to the Truckee River. This Hg is deposited in riparian habitats and areas of river restoration, where it is methylated and becomes available to biota. During spring, when flows were highest, MeHg produced and stored in the sediments is mobilized and transported downriver. Fish and macroinvertebrate concentrations increased downriver indicating passive uptake from water. The information presented here could be useful for those doing river restoration and water manipulation in mercury contaminated

  5. Assessing climate change impacts on the Iberian power system using a coupled water-power model

    DEFF Research Database (Denmark)

    Cardenal, Silvio Javier Pereira; Madsen, Henrik; Arnbjerg-Nielsen, Karsten

    2014-01-01

    Climate change is expected to have a negative impact on the power system of the Iberian Peninsula; changes in river runoff are expected to reduce hydropower generation, while higher temperatures are expected to increase summer electricity demand, when water resources are already limited. However,...... to balance agricultural, power, and environmental objectives in the operation of Iberian reservoirs, though some impacts could be mitigated by better alignment between temporal patterns of irrigation and power demands....... patterns of electricity demand caused by temperature changes, and changes in irrigation water use caused by temperature and precipitation changes. A stochastic dynamic programming approach was used to develop operating rules for the integrated system given hydrological uncertainty. We found that changes...

  6. Impacts from urban water systems on receiving waters - How to account for severe wet-weather events in LCA?

    Science.gov (United States)

    Risch, Eva; Gasperi, Johnny; Gromaire, Marie-Christine; Chebbo, Ghassan; Azimi, Sam; Rocher, Vincent; Roux, Philippe; Rosenbaum, Ralph K; Sinfort, Carole

    2018-01-01

    Sewage systems are a vital part of the urban infrastructure in most cities. They provide drainage, which protects public health, prevents the flooding of property and protects the water environment around urban areas. On some occasions sewers will overflow into the water environment during heavy rain potentially causing unacceptable impacts from releases of untreated sewage into the environment. In typical Life Cycle Assessment (LCA) studies of urban wastewater systems (UWS), average dry-weather conditions are modelled while wet-weather flows from UWS, presenting a high temporal variability, are not currently accounted for. In this context, the loads from several storm events could be important contributors to the impact categories freshwater eutrophication and ecotoxicity. In this study we investigated the contributions of these wet-weather-induced discharges relative to average dry-weather conditions in the life cycle inventory for UWS. In collaboration with the Paris public sanitation service (SIAAP) and Observatory of Urban Pollutants (OPUR) program researchers, this work aimed at identifying and comparing contributing flows from the UWS in the Paris area by a selection of routine wastewater parameters and priority pollutants. This collected data is organized according to archetypal weather days during a reference year. Then, for each archetypal weather day and its associated flows to the receiving river waters (Seine), the parameters of pollutant loads (statistical distribution of concentrations and volumes) were determined. The resulting inventory flows (i.e. the potential loads from the UWS) were used as LCA input data to assess the associated impacts. This allowed investigating the relative importance of episodic wet-weather versus "continuous" dry-weather loads with a probabilistic approach to account for pollutant variability within the urban flows. The analysis at the scale of one year showed that storm events are significant contributors to the impacts

  7. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  8. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  9. Life Cycle Environmental Impacts of Disinfection Technologies Used in Small Drinking Water Systems.

    Science.gov (United States)

    Jones, Christopher H; Shilling, Elizabeth G; Linden, Karl G; Cook, Sherri M

    2018-03-06

    Small drinking water systems serve a fifth of the U.S. population and rely heavily on disinfection. While chlorine disinfection is common, there is interest in minimizing chemical addition, especially due to carcinogenic disinfection byproducts and chlorine-resistant pathogens, by using ultraviolet technologies; however, the relative, broader environmental impacts of these technologies are not well established, especially in the context of small (environmental trade-offs between chlorine and ultraviolet disinfection via comparative life cycle assessment. The functional unit was the production of 1 m 3 of drinking water to U.S. Treatment included cartridge filtration followed by either chlorine disinfection or ultraviolet disinfection with chlorine residual addition. Environmental performance was evaluated for various chlorine contact zone materials (plastic, concrete, steel), ultraviolet validation factors (1.2 to 4.4), and electricity sources (renewable; U.S. average, high, and low impact grids). Performance was also evaluated when filtration and chlorine residual were not required. From a life cycle assessment perspective, replacing chlorine with UV was preferred only in a limited number of cases (i.e., high pumping pressure but filtration is not required). In all others, chlorine was environmentally preferred, although some contact zone materials and energy sources had an impact on the comparison. Utilities can use these data to inform their disinfection technology selection and operation to minimize environmental and human health impacts.

  10. Impacts of Rainfall Variability and Expected Rainfall Changes on Cost-Effective Adaptation of Water Systems to Climate Change

    NARCIS (Netherlands)

    Pol, van der T.D.; Ierland, van E.C.; Gabbert, S.G.M.; Weikard, H.P.; Hendrix, E.M.T.

    2015-01-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change

  11. Representation of deforestation impacts on climate, water, and nutrient cycles in the ACME earth system model

    Science.gov (United States)

    Cai, X.; Riley, W. J.; Zhu, Q.

    2017-12-01

    Deforestation causes a series of changes to the climate, water, and nutrient cycles. Employing a state-of-the-art earth system model—ACME (Accelerated Climate Modeling for Energy), we comprehensively investigate the impacts of deforestation on these processes. We first assess the performance of the ACME Land Model (ALM) in simulating runoff, evapotranspiration, albedo, and plant productivity at 42 FLUXNET sites. The single column mode of ACME is then used to examine climate effects (temperature cooling/warming) and responses of runoff, evapotranspiration, and nutrient fluxes to deforestation. This approach separates local effects of deforestation from global circulation effects. To better understand the deforestation effects in a global context, we use the coupled (atmosphere, land, and slab ocean) mode of ACME to demonstrate the impacts of deforestation on global climate, water, and nutrient fluxes. Preliminary results showed that the land component of ACME has advantages in simulating these processes and that local deforestation has potentially large impacts on runoff and atmospheric processes.

  12. An Assessment of Subsurface Intake Systems: Planning and Impact on Feed Water Quality for SWRO Facilities

    KAUST Repository

    Dehwah, Abdullah

    2017-01-01

    Subsurface intake systems are known to improve the feed water quality for SWRO plants. However, a little is known about the feasibility of implementation in coastal settings, the degree of water quality improvements provided by these systems

  13. Assessing the impact of water treatment on bacterial biofilms in drinking water distribution systems using high-throughput DNA sequencing.

    Science.gov (United States)

    Shaw, Jennifer L A; Monis, Paul; Fabris, Rolando; Ho, Lionel; Braun, Kalan; Drikas, Mary; Cooper, Alan

    2014-12-01

    Biofilm control in drinking water distribution systems (DWDSs) is crucial, as biofilms are known to reduce flow efficiency, impair taste and quality of drinking water and have been implicated in the transmission of harmful pathogens. Microorganisms within biofilm communities are more resistant to disinfection compared to planktonic microorganisms, making them difficult to manage in DWDSs. This study evaluates the impact of four unique drinking water treatments on biofilm community structure using metagenomic DNA sequencing. Four experimental DWDSs were subjected to the following treatments: (1) conventional coagulation, (2) magnetic ion exchange contact (MIEX) plus conventional coagulation, (3) MIEX plus conventional coagulation plus granular activated carbon, and (4) membrane filtration (MF). Bacterial biofilms located inside the pipes of each system were sampled under sterile conditions both (a) immediately after treatment application ('inlet') and (b) at a 1 km distance from the treatment application ('outlet'). Bacterial 16S rRNA gene sequencing revealed that the outlet biofilms were more diverse than those sampled at the inlet for all treatments. The lowest number of unique operational taxonomic units (OTUs) and lowest diversity was observed in the MF inlet. However, the MF system revealed the greatest increase in diversity and OTU count from inlet to outlet. Further, the biofilm communities at the outlet of each system were more similar to one another than to their respective inlet, suggesting that biofilm communities converge towards a common established equilibrium as distance from treatment application increases. Based on the results, MF treatment is most effective at inhibiting biofilm growth, but a highly efficient post-treatment disinfection regime is also critical in order to prevent the high rates of post-treatment regrowth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya.

    Science.gov (United States)

    Rather, Mohmmad Irshad; Rashid, Irfan; Shahi, Nuzhat; Murtaza, Khalid Omar; Hassan, Khalida; Yousuf, Abdul Rehman; Romshoo, Shakil Ahmad; Shah, Irfan Yousuf

    2016-03-01

    The pristine aquatic ecosystems in the Himalayas are facing an ever increasing threat from various anthropogenic pressures which necessitate better understanding of the spatial and temporal variability of pollutants, their sources, and possible remedies. This study demonstrates the multi-disciplinary approach utilizing the multivariate statistical techniques, data from remote sensing, lab, and field-based observations for assessing the impact of massive land system changes on water quality of the river Jhelum. Land system changes over a period of 38 years have been quantified using multi-spectral satellite data to delineate the extent of different anthropogenically driven land use types that are the main non-point sources of pollution. Fifteen water quality parameters, at 12 sampling sites distributed uniformly along the length of the Jhelum, have been assessed to identify the possible sources of pollution. Our analysis indicated that 18% of the forested area has degraded into sparse forest or scrublands from 1972 to 2010, and the areas under croplands have decreased by 24% as people shifted from irrigation-intensive agriculture to orchard farming while as settlements showed a 397% increase during the observation period. One-way ANOVA revealed that all the water quality parameters had significant spatio-temporal differences (p < 0.01). Cluster analysis (CA) helped us to classify all the sampling sites into three groups. Factor analysis revealed that 91.84% of the total variance was mainly explained by five factors. Drastic changes in water quality of the Jhelum since the past three decades are manifested by increases in nitrate-nitrogen, TDS, and electric conductivity. The especially high levels of nitrogen (858 ± 405 μgL(-1)) and phosphorus (273 ± 18 μgL(-1)) in the Jhelum could be attributed to the reckless application of fertilizers, pesticides, and unplanned urbanization in the area.

  15. Analysis of the Earthquake Impact towards water-based fire extinguishing system

    Science.gov (United States)

    Lee, J.; Hur, M.; Lee, K.

    2015-09-01

    Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.

  16. Impact of different irrigation systems on water quality in peri-urban areas of Gujarat, India

    OpenAIRE

    Vangani, Ruchi; Saxena, Deepak; Gerber, Nikolaus; Mavalankar, Dileep; von Braun, Joachim

    2016-01-01

    The ever-growing population of India, along with the increasing competition for water for productive uses in different sectors - especially irrigated agriculture and related local water systems and drainage - poses a challenge in an effort to improve water quality and sanitation. In rural and peri-urban settings, where agriculture is one of the main sources of livelihood, the type of water use in irrigated agriculture has complex interactions with drinking water and sanitation. In particular,...

  17. What Is the Contribution of City-Scale Actions to the Overall Food System's Environmental Impacts?: Assessing Water, Greenhouse Gas, and Land Impacts of Future Urban Food Scenarios.

    Science.gov (United States)

    Boyer, Dana; Ramaswami, Anu

    2017-10-17

    This paper develops a methodology for individual cities to use to analyze the in- and trans-boundary water, greenhouse gas (GHG), and land impacts of city-scale food system actions. Applied to Delhi, India, the analysis demonstrates that city-scale action can rival typical food policy interventions that occur at larger scales, although no single city-scale action can rival in all three environmental impacts. In particular, improved food-waste management within the city (7% system-wide GHG reduction) matches the GHG impact of preconsumer trans-boundary food waste reduction. The systems approach is particularly useful in illustrating key trade-offs and co-benefits. For instance, multiple diet shifts that can reduce GHG emissions have trade-offs that increase water and land impacts. Vertical farming technology (VFT) with current applications for fruits and vegetables can provide modest system-wide water (4%) and land reductions (3%), although implementation within the city itself may raise questions of constraints in water-stressed cities, with such a shift in Delhi increasing community-wide direct water use by 16%. Improving the nutrition status for the bottom 50% of the population to the median diet is accompanied by proportionally smaller increases of water, GHG, and land impacts (4%, 9%, and 8%, systemwide): increases that can be offset through simultaneous city-scale actions, e.g., improved food-waste management and VFT.

  18. Impact of chlorinated disinfection on copper corrosion in hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J. Castillo [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France); Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Hamdani, F. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Creus, J., E-mail: jcreus@univ-lr.fr [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Touzain, S. [Laboratoire des Sciences de l’Ingénieur pour l’Environnement, UMR-CNRS 7356, Université de La Rochelle, Avenue Michel Crépeau, 17042 La Rochelle Cedex 1 (France); Correc, O. [Centre Scientifique et Technique du Bâtiment Nantes, 11 rue Henri Picherit, BP 82341, 44323 Nantes Cedex 03 (France)

    2014-09-30

    Highlights: • Impact of disinfectant treatment on the durability of copper pipes. • Synergy between disinfectant concentration and temperature. • Pitting corrosion of copper associated to the corrosion products formation on copper. - Abstract: In France, hot water quality control inside buildings is occasionally ensured by disinfection treatments using temperature increases or addition of sodium hypochlorite (between 0.5 ppm and 1 ppm residual free chlorine). This disinfectant is a strong oxidiser and it could interact with metallic pipes usually used in hot water systems. This work deals with the study of the impact of these treatments on the durability of copper pipes. The objective of this work was to investigate the influence of sodium hypochlorite concentration and temperature on the copper corrosion mechanism. Copper samples were tested under dynamic and static conditions of ageing with sodium hypochlorite solutions ranging from 0 to 100 ppm with temperature at 50 °C and 70 °C. The efficiency of a corrosion inhibitor was investigated in dynamic conditions. Visual observations and analytical analyses of the internal surface of samples was studied at different ageing duration. Corrosion products were characterised by X-ray diffraction and Raman spectroscopy. Temperature and disinfectant were found to considerably affect the copper corrosion mechanism. Surprisingly, the corrosiveness of the solution was higher at lower temperatures. The temperature influences the nature of corrosion products. The protection efficiency is then strongly depend on the nature of the corrosion products formed at the surface of copper samples exposed to the aggressive solutions containing different concentration of disinfectant.

  19. The impact of cost recovery and sharing system on water policy implementation and human right to water: a case of Ileje, Tanzania.

    Science.gov (United States)

    Kibassa, Deusdedit

    2011-01-01

    In Tanzania, the National Water Policy (NAWAPO) of 2002 clearly stipulates that access to water supply and sanitation is a right for every Tanzanian and that cost recovery is the foundation of sustainable service delivery. To meet these demands, water authorities have introduced cost recovery and a water sharing system. The overall objective of this study was to assess the impact of cost recovery and the sharing system on water policy implementation and human rights to water in four villages in the Ileje district. The specific objectives were: (1) to assess the impact of cost recovery and the sharing system on the availability of water to the poor, (2) to assess user willingness to pay for the services provided, (3) to assess community understanding on the issue of water as a human right, (4) to analyse the implications of the results in relation to policies on human rights to water and the effectiveness of the implementation of the national water policy at the grassroots, and (5) to establish the guidelines for water pricing in rural areas. Questionnaires at water demand, water supply, ability and willingness to pay and revenue collection were the basis for data collection. While 36.7% of the population in the district had water supply coverage, more than 73,077 people of the total population of 115,996 still lacked access to clean and safe water and sanitation services in the Ileje district. The country's rural water supply coverage is 49%. Seventy-nine percent of the interviewees in all four villages said that water availability in litres per household per day had decreased mainly due to high water pricing which did not consider the income of villagers. On the other hand, more than 85% of the villagers were not satisfied with the amount they were paying because the services were still poor. On the issue of human rights to water, more than 92% of the villagers know about their right to water and want it exercised by the government. In all four villages, more than

  20. Impact of particles on sediment accumulation in a drinking water distribution system.

    Science.gov (United States)

    Vreeburg, J H G; Schippers, D; Verberk, J Q J C; van Dijk, J C

    2008-10-01

    Discolouration of drinking water is one of the main reasons customers complain to their water company. Though corrosion of cast iron is often seen as the main source for this problem, the particles originating from the treatment plant play an important and potentially dominant role in the generation of a discolouration risk in drinking water distribution systems. To investigate this thesis a study was performed in a drinking water distribution system. In two similar isolated network areas the effect of particles on discolouration risk was studied with particle counting, the Resuspension Potential Method (RPM) and assessment of the total accumulated sediment. In the 'Control Area', supplied with normal drinking water, the discolouration risk was regenerated within 1.5 year. In the 'Research Area', supplied with particle-free water, this will take 10-15 years. An obvious remedy for controlling the discolouration risk is to improve the treatment with respect to the short peaks that are caused by particle breakthrough.

  1. Evaluating water management strategies with the Systems Impact Assessment Model: SIAM version 4

    Science.gov (United States)

    Bartholow, John M.; Heasley, John; Hanna, Blair; Sandelin, Jeff; Flug, Marshall; Campbell, Sharon; Henriksen, Jim; Douglas, Aaron

    2005-01-01

    Water from many of California's coastal rivers has been used for a wide variety of development ventures, including major agricultural diversions, hydropower generation, and contaminant assimilation from industry, agriculture and logging. Anthropogenic impacts often degrade water quality and decrease the quantity and quality of aquatic habitat. Reallocating streamflow away from uses that degrade water quality to uses that foster higher water quality is a critical step in restoring riverine habitat and the anadromous fish that rely on that habitat for a portion of their life cycle. Reallocation always brings with it the need to examine the economic efficiency of the proposed changes. If the dollar benefits of improving water quality are greater than the costs, the criterion of improving economic efficiency is satisfied, a fact that can be highly persuasive to decision makers contemplating reallocation.

  2. Simulating climate change and socio-economic change impacts on flows and water quality in the Mahanadi River system, India.

    Science.gov (United States)

    Jin, Li; Whitehead, Paul G; Rodda, Harvey; Macadam, Ian; Sarkar, Sananda

    2018-05-12

    Delta systems formed by the deposition of sediments at the mouths of large catchments are vulnerable to sea level rise and other climate change impacts. Deltas often have some of the highest population densities in the world and the Mahanadi Delta in India is one of these, with a population of 39 million. The Mahanadi River is a major river in East Central India and flows through Chattisgarh and Orissa states before discharging into the Bay of Bengal. This study uses an Integrated Catchment Model (INCA) to simulate flow dynamics and water quality (nitrogen and phosphorus) and to analyze the impacts of climate change and socio-economic drivers in the Mahanadi River system. Future flows affected by large population growth, effluent discharge increases and changes in irrigation water demand from changing land uses are assessed under shared socio-economic pathways (SSPs). Model results indicate a significant increase in monsoon flows under the future climates at 2050s (2041-2060) and 2090s (2079-2098) which greatly enhances flood potential. The water availability under low flow conditions will be worsened because of increased water demand from population growth and increased irrigation in the future. Decreased concentrations of nitrogen and phosphorus are expected due to increased flow hence dilution. Socio-economic scenarios have a significant impact on water quality but less impact on the river flow. For example, higher population growth, increased sewage treatment discharges, land use change and enhanced atmospheric deposition would result in the deterioration of water quality, while the upgrade of the sewage treatment works lead to improved water quality. In summary, socio-economic scenarios would change future water quality of the Mahanadi River and alter nutrient fluxes transported into the delta region. This study has serious implications for people's livelihoods in the deltaic area and could impact coastal and Bay of Bengal water ecology. Copyright © 2018

  3. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Science.gov (United States)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  4. The Volta Basin Water Allocation System: assessing the impact of small-scale reservoir development on the water resources of the Volta basin, West Africa

    Directory of Open Access Journals (Sweden)

    R. Kasei

    2009-08-01

    Full Text Available In the Volta Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. There is an ongoing debate on the impact of further development of small and medium scale reservoirs on the water level of Lake Volta, which is essential for hydropower generation at the Akosombo power plant. The GLOWA Volta Project (GVP has developed a Volta Basin Water Allocation System (VB-WAS, a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the joint climate-hydrological modeling approach (MM5/WaSiM-ETH serve as input data for a river basin management model (MIKE BASIN. MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. The impact of the expansion of small and medium scale reservoirs on the stored volume of Lake Volta has been quantified and assessed in comparison with the impact of climate variability on the water resources of the basin.

  5. Columbia River System Operation Review final environmental impact statement. Appendix M: Water quality

    International Nuclear Information System (INIS)

    1995-11-01

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. Analysis of water quality begins with an account of the planning and evaluation process, and continues with a description of existing water quality conditions in the Columbia River Basin. This is followed by an explanation how the analysis was conducted. The analysis concludes with an assessment of the effects of SOR alternatives on water quality and a comparison of alternatives

  6. Sanitary hot water consumption patterns in commercial and industrial sectors in South Africa: Impact on heating system design

    International Nuclear Information System (INIS)

    Rankin, R.; Rousseau, P.G.

    2006-01-01

    A large amount of individual sanitary hot water consumers are present in the South African residential sector. This led to several studies being done on hot water consumption patterns in this sector. Large amounts of sanitary hot water are also consumed in the commercial sector in buildings such as hotels and in large residences such as those found in the mining industry. The daily profiles of sanitary hot water consumption are not related to any technical process but rather to human behavior and varying ambient conditions. The consumption of sanitary hot water, therefore, represents a challenge to the electrical utility because it is an energy demand that remains one of the biggest contributors to the undesirable high morning and afternoon peaks imposed on the national electricity supply grid. It also represents a challenge to sanitary hot water system designers because the amount of hot water as well as the daily profile in which it is consumed impacts significantly on system design. This paper deals with hot water consumption in the commercial and industrial sectors. In the commercial sector, we look at hotels and in the industrial sector at large mining residences. Both of them are served by centralized hot water systems. Measured results from the systems are compared to data obtained from previous publications. A comparison is also made to illustrate the impact that these differences will have on sanitary hot water system design. Simulations are conducted for these systems using a simulation program developed in previous studies. The results clearly show significant differences in the required heating and storage capacity for the new profiles. A twin peak profile obtained from previous studies in the residential sector was used up to now in studies of heating demand and system design in commercial buildings. The results shown here illustrate the sanitary hot water consumption profile differs significantly from the twin peaks profile with a very high morning

  7. Makeup water system performance and impact on PWR steam generator corrosion

    International Nuclear Information System (INIS)

    Bell, M.J.; Sawocha, S.G.; Smith, L.A.

    1984-01-01

    The object of this EPRI-funded project was to assess the possible relation of pressurized water reactor (PWR) steam generator corrosion at fresh water sites to makeup water impurity ingress. Makeup water system design, operation and performance reviews were based on site visits, plant design documents, performance records and grab sample analyses. Design features were assessed in terms of their effect on makeup system performance. Attempts were made to correlate the makeup plant source water, system design characteristics, and typical makeup water qualities to steam generator corrosion observations, particularly intergranular attack (IGA). Direct correlations were not made since many variables are involved in the corrosion process and in the case of IGA, the variables have not been clearly established. However, the study did demonstrate that makeup systems can be a significant source of contaminants that are suspected to lead to both IGA and denting. Additionally, it was noted that typical makeup system performance with respect to organic removal was not good. The role of organics in steam generator damage has not been quantified and may deserve further study

  8. The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system.

    Science.gov (United States)

    Zeng, Qinghui; Qin, Lihuan; Li, Xuyong

    2015-12-01

    Any inter-basin water transfer project would cause complex physical, chemical, hydrological and biological changes to the receiving system. The primary channel of the middle route of the South-to-North Water Transfer Project has a total length of 1267 km. There is a significant difference between the physical, chemical and biological characteristics of the originating and receiving drinking water conservation districts. To predict the impacts of this long-distance inter-basin water transfer project on the N&P (nitrogen and phosphorus) concentrations and eutrophication risk of the receiving system, an environmental fluid dynamics code (EFDC) model was applied. The calibrated model accurately reproduced the hydrodynamic, water quality and the entire algal bloom process. Thirteen scenarios were defined to fully understand the N&P and chlorophyll a (Chl a) variation among different hydrological years, different quantity and timing of water transfer, and different inflows of N&P concentrations. The results showed the following: (a) The water transfer project would not result in a substantial difference to the trophic state of the Miyun reservoir in any of the hydrological years. (b) The area affected by the water transfer did not involve the entire reservoir. To minimize the impact of water transfer on N&P nutrients and Chl a, water should be transferred as uniform as possible with small discharge. (c) The variation in Chl a was more sensitive to an increase in P than an increase in N for the transferred water. The increased percentages of the average Chl a concentration when water was transferred in the spring, summer and autumn were 7.76%, 16.67% and 16.45%. Our findings imply that special attention should be given to prevent P increment of the transferred water from May to October to prevent algal blooms. The results provide useful information for decision makers about the quantity and timing of water transfers. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Impacts of climate change on water resources and hydropower systems in central and southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Hamududu, Byman H

    2012-11-15

    Climate change is altering hydrological processes with varying degrees in various regions of the world. This research work investigates the possible impacts of climate change on water resource and Hydropower production potential in central and southern Africa. The Congo, Zambezi and Kwanza, Shire, Kafue and Kabompo basins that lie in central and southern Africa are used as case studies. The review of climate change impact studies shows that there are few studies on impacts of climate change on hydropower production. Most of these studies were carried out in Europe and north America and very few in Asia, south America and Africa. The few studies indicate that southern Africa would experience reduction in precipitation and runoff, consequently reductions in hydropower production. There are no standard methods of assessing the resulting impacts. Two approaches were used to assess the impacts of climate change on water resources and hydropower. One approach is lumping changes on country or regional level and use the mean climate changes on mean annual flows as the basis for regional changes in hydropower production. This is done to get an overall picture of the changes on global and regional level. The second approach is a detailed assessment process in which downscaling, hydrological modelling and hydropower simulations are carried out. The possible future climate scenarios for the region of central and southern Africa depicted that some areas where precipitation are likely to have increases while other, precipitation will reduce. The region northern Zambia and southern Congo showed increases while the northern Congo basin showed reductions. Further south in southern African region, there is a tendency of decreases in precipitation. To the west, in Angola, inland showed increases while towards the coast highlighted some decreases in precipitation. On a global scale, hydropower is likely to experience slight changes (0.08%) due to climate change by 2050. Africa is

  10. Interactions between physical, chemical and biological processes in aquatic systems - impacts on receiving waters with different contents of treated wastewater

    International Nuclear Information System (INIS)

    Kreuzinger, N.

    2000-08-01

    Two scenarios have be chosen within this PhD Thesis to describe the integrative key-significance of interactions between most relevant physical, chemical and biological processes in aquatic systems. These two case studies are used to illustrate and describe the importance of a detailed synthesis of biological, physical and chemical interactions in aquatic systems in order to provide relevant protection of water resources and to perform a sound water management. Methods are described to allow a detailed assessment of particular aspects within the complexity of the overall integration and therefore serve as a basis to determine the eventual necessity of proposed water management measures. Regarding the anthropogenic influence of treated wastewater on aquatic systems, one case study focuses on the interactions between emitted waters from a wastewater treatment plant and the resulting immission situation of its receiving water (The receiving water is quantitatively influenced by the treated wastewater by 95 %). This thesis proves that the effluent of wastewater treatment plants operated by best available technology meets the quality standards of running waters for the nutrients nitrogen and phosphorus, carbon-parameters, oxygen-regime and ecotoxicology. Within the second case study the focus is put on interactions between immissions and water usage. The general importance of biological phosphorus precipitation on the trophic situation of aquatic systems is described. Nevertheless, this generally known but within the field of applied limnology so far unrespected process of immobilization of phosphorus could be shown to represent a significant and major impact on phytoplannctotic development and eutrification. (author)

  11. Acceptance and Impact of Point-of-Use Water Filtration Systems in Rural Guatemala.

    Science.gov (United States)

    Larson, Kim L; Hansen, Corrie; Ritz, Michala; Carreño, Diego

    2017-01-01

    Infants and children in developing countries bear the burden of diarrheal disease. Diarrheal disease is linked to unsafe drinking water and can result in serious long-term consequences, such as impaired immune function and brain growth. There is evidence that point-of-use water filtration systems reduce the prevalence of diarrhea in developing countries. In the summer of 2014, following community forums and interactive workshops, water filters were distributed to 71 households in a rural Maya community in Guatemala. The purpose of this study was to evaluate the uptake of tabletop water filtration systems to reduce diarrheal diseases. A descriptive correlational study was used that employed community partnership and empowerment strategies. One year postintervention, in the summer of 2015, a bilingual, interdisciplinary research team conducted a house-to-house survey with families who received water filters. Survey data were gathered from the head of household on family demographics, current family health, water filter usage, and type of flooring in the home. Interviews were conducted in Spanish and in partnership with a village leader. Each family received a food package of household staples for their participation. Descriptive statistics were calculated for all responses. Fisher's exact test and odds ratios were used to determine relationships between variables. Seventy-nine percent (n = 56) of the 71 households that received a water filter in 2014 participated in the study. The majority of families (71.4%; n = 40) were using the water filters and 16 families (28.6%) had broken water filters. Of the families with working water filters, 15% reported diarrhea, while 31% of families with a broken water filter reported diarrhea. Only 55.4% of the homes had concrete flooring. More households with dirt flooring and broken water filters reported a current case of diarrhea. A record review of attendees at an outreach clinic in this village noted a decrease in intestinal

  12. Impacts of Mackenzie gas project on water supply systems of northern communities : Fort Simpson as a case study

    International Nuclear Information System (INIS)

    Mathrani, M.; Johnson, K.

    2007-01-01

    The proposed Mackenzie Gas Project (MGP) is a 1220-kilometre natural gas pipeline system along the Mackenzie Valley of Canada's Northwest Territories. The line will connect northern onshore gas fields with North American markets. Four major Canadian oil and gas companies and a group representing the Aboriginal peoples of Canada's Northwest Territories are partners in the proposed MGP. The MGP is currently in the project definition stage that involves examining the effect of the project on northern communities. Fort Simpson is located on an island, on the forks of the Mackenzie and Liard Rivers and is proposed as the major route for the MGP with the construction of barge handling areas, storage areas, camps/housing units and use of air and highway facilities. These activities are expected to result in burden on local civil infrastructure systems including water supply systems. Although the environmental impacts of the project on the community's infrastructure systems are projected by the MGP proponents, the local authority wanted to conduct its own assessment of the impacts on local water supply system. This paper presented the results of a study that examined the amount of water used by the community based upon available water use records and the current operational and maintenance costs based upon available financial documents. The study also estimated future water requirements based upon MGP activities and associated population growth. Current and future economic rates were also determined. 13 refs., 6 tabs

  13. Impacts of climate change on water resources and hydropower systems in central and southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Hamududu, Byman H.

    2012-11-15

    Climate change is altering hydrological processes with varying degrees in various regions of the world. This research work investigates the possible impacts of climate change on water resource and Hydropower production potential in central and southern Africa. The Congo, Zambezi and Kwanza, Shire, Kafue and Kabompo basins that lie in central and southern Africa are used as case studies. The review of climate change impact studies shows that there are few studies on impacts of climate change on hydropower production. Most of these studies were carried out in Europe and north America and very few in Asia, south America and Africa. The few studies indicate that southern Africa would experience reduction in precipitation and runoff, consequently reductions in hydropower production. There are no standard methods of assessing the resulting impacts. Two approaches were used to assess the impacts of climate change on water resources and hydropower. One approach is lumping changes on country or regional level and use the mean climate changes on mean annual flows as the basis for regional changes in hydropower production. This is done to get an overall picture of the changes on global and regional level. The second approach is a detailed assessment process in which downscaling, hydrological modelling and hydropower simulations are carried out. The possible future climate scenarios for the region of central and southern Africa depicted that some areas where precipitation are likely to have increases while other, precipitation will reduce. The region northern Zambia and southern Congo showed increases while the northern Congo basin showed reductions. Further south in southern African region, there is a tendency of decreases in precipitation. To the west, in Angola, inland showed increases while towards the coast highlighted some decreases in precipitation. On a global scale, hydropower is likely to experience slight changes (0.08%) due to climate change by 2050. Africa is

  14. Impacts of climate change on the municipal water management system in the Kingdom of Bahrain: Vulnerability assessment and adaptation options

    Directory of Open Access Journals (Sweden)

    Waleed K. Al-Zubari

    Full Text Available An assessment of the vulnerability of the municipal water management system to the impacts of climate change in the Kingdom of Bahrain, manifested by the increase in demands due to increase in temperatures, is conducted using a dynamic mathematical model representing the water sector in the kingdom. The model is developed using WEAP software and was calibrated and validated by historical matching utilizing data for the period 2000–2012. The model is used in the evaluation of the municipal water sector performance in terms of municipal water demands and their associated cost without and with climate change impacts scenarios for the period 2012–2030. The impact of climate change on the municipal water system is quantified as the difference between the two scenarios in three selected cost indicators: financial (production, conveyance and distribution costs, economic (natural gas asset consumption by desalination plants, and environmental (CO2 emissions by desalination plants. The vulnerability assessment indicated that the current municipal water management system in Bahrain is generally inefficient and associated with relatively high costs, which are expected to increase with time under the current policies and management approach focusing on supply-side management. The increase in temperature will increase these already high costs, and would exacerbate the water management challenges in Bahrain. However, these mounting challenges also present an opportune moment for Bahrain to review its current water resources management approaches and practices and to integrate climate change adaptation measures into its water planning and policies. In order to build an adaptive management capacity of the municipal water management system in Bahrain, a number of management interventions are proposed and evaluated, individually and combined, for their effectiveness in enhancing the efficiency of the management system using the developed dynamic model. These

  15. SWIBANGLA: Managing salt water intrusion impacts in coastal groundwater systems of Bangladesh

    NARCIS (Netherlands)

    Faneca Sànchez, Marta; Bashar, Khairul; Janssen, Gijs; Vogels, Marjolein; Snel, Jan; Zhou, Yangxiao; Stuurman, Roelof J.; Oude Essink, Gualbert

    Bangladesh is densely populated and it is expected that the population increases significantly in the coming decade, up to 60% more by 2050 according to IIASA (2013). Demand for drinking water will increase accordingly. These developments may cause significant changes in the hydrological system,

  16. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    International Nuclear Information System (INIS)

    Condon, Laura E; Maxwell, Reed M

    2014-01-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater–surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity. (paper)

  17. Impact of Water Management on Rice Varieties, Yield, and Water Productivity under the System of Rice Intensification in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Victoriano Joseph Pascual

    2016-12-01

    Full Text Available The system of rice intensification (SRI uses less water and enhances rice yield through synergy among several agronomic management practices. This claim was investigated to determine the effects of crop growth, yield and irrigation water use, using two thirds of the recommended SRI practices and two rice varieties, namely Tainan11 (TN11 and Tidung30 (TD30. Irrigation regimes were (a intermittent irrigation with three-day intervals (TD303 and TN113; (b intermittent irrigation with seven-day intervals (TD307 and TN117 and (c continuous flooding (TD30F and TN11F. Results showed that intermittent irrigation of three- and seven-day intervals produced water savings of 55% and 74% compared with continuous flooding. Total water productivity was greater with intermittent irrigation at seven-day intervals producing 0.35 kg·grain/m3 (TN117 and 0.46 kg·grain/m3 (TD307. Average daily headed panicle reduced by 166% and 196% for TN113 and TN117 compared with TN11F, with similar reduction recorded for TD303 (150% and TD307 (156% compared with TD30F. Grain yield of TD30 was comparable among irrigation regimes; however, it reduced by 30.29% in TN117 compared to TN11F. Plant height and leaf area were greater in plants exposed to intermittent irrigation of three-day intervals.

  18. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    Science.gov (United States)

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. An Assessment of Subsurface Intake Systems: Planning and Impact on Feed Water Quality for SWRO Facilities

    KAUST Repository

    Dehwah, Abdullah

    2017-12-01

    Subsurface intake systems are known to improve the feed water quality for SWRO plants. However, a little is known about the feasibility of implementation in coastal settings, the degree of water quality improvements provided by these systems, and the internal mechanisms of potential fouling compounds removal within subsurface intake systems. A new method was developed to assess the feasibility of using different subsurface intake systems in coastal areas and was applied to Red Sea coastline of Saudi Arabia. The methodology demonstrated that five specific coastal environments could support well intake systems use for small-capacity SWRO plants, whereas large-capacity SWRO facilities could use seabed gallery intake systems. It was also found that seabed intake system could run with no operational constraints based on the high evaporation rates and associated diurnal salinity changes along the coast line. Performance of well intake systems in several SWRO facilities along the Red Sea coast showed that the concentrations of organic compounds were reduced in the feed water, similar or better than traditional pretreatment methodologies. Nearly all algae, up to 99% of bacteria, between 84 and 100% of the biopolymer fraction of NOM, and a high percentage of TEP were removed during transport through the aquifer. These organics cause membrane biofouling and using well intakes showed a 50-75% lower need to clean the SWRO membranes compared to conventional open-ocean intakes. An assessment of the effectiveness of seabed gallery intake systems was conducted through a long-term bench-scale column experiment. The simulation of the active layer (upper 1 m) showed that it is highly effective at producing feed water quality improvements and acts totally different compared to slow sand filtration systems treating freshwater. No development of a “schmutzdecke” layer occurred and treatment was not limited to the top 10 cm, but throughout the full column thickness. Algae and

  20. Controls on water vapor isotopes over Roorkee, India: Impact of convective activities and depression systems

    Science.gov (United States)

    Saranya, P.; Krishan, Gopal; Rao, M. S.; Kumar, Sudhir; Kumar, Bhishm

    2018-02-01

    The study evaluates the water vapor isotopic compositions and its controls with special reference to Indian Summer Monsoon (ISM) season at Roorkee, India. Precipitation is usually a discrete event spatially and temporally in this part of the country, therefore, the information provided is limited, while, the vapors have all time availability and have a significant contribution in the hydrological cycle locally or over a regional scale. Hence for understanding the processes altering the various sources, its isotopic signatures were studied. The Isotope Water Vapour Line (Iso Val) was drawn together with the Global Meteoric Water Line (GMWL) and the best fit line was δD = 5.42 * δ18O + 27.86. The precipitation samples were also collected during the study period and were best fitted with δD = 8.20(±0.18) * δ18O + 9.04(±1.16) in the Local Meteoric Water Line (LMWL). From the back trajectory analysis of respective vapor samples, it is unambiguous that three major sources viz; local vapor, western disturbance and monsoon vapor are controlling the fate of moisture over Roorkee. The d-excess in ground-level vapor (GLV) reveals the supply of recycled moisture from continental water bodies and evapo-transpiration as additional moisture sources to the study area. The intensive depletion in isotopic ratios was associated with the large-scale convective activity and low-pressure/cyclonic/depression systems formed over Bay of Bengal.

  1. Hydrological and Farming System Impacts of Agricultural Water Management Interventions in North Gujarat

    OpenAIRE

    Singh, O.P.

    2013-01-01

    Groundwater over-exploitation is a common phenomenon in many arid and semi arid regions of the world. Within India, north Gujarat is one of such intensively exploited regions. Groundwater supports irrigated crop production and intensive dairy farming in the region. Well irrigation is critical to the region’s rural economy and livelihoods. The overall objective of the study was to examine the water demand management interventions on farming system, livelihood patterns, food and nutritional s...

  2. Surface water drainage system. Environmental assessment and finding of no significant impact

    International Nuclear Information System (INIS)

    1996-05-01

    This Environmental Assessment (EA) is written pursuant to the National Environmental Policy Act (NEPA). The document identifies and evaluates the action proposed to correct deficiencies in, and then to maintain, the surface water drainage system serving the Department of Energy's Rocky Flats Environmental Technology Site (Site), located north of Golden, Colorado. Many of the activities proposed would not normally be subject to this level of NEPA documentation. However, in many cases, maintenance of the system has been deferred to the point that wetlands vegetation has become established in some ditches and culverts, creating wetlands. The proposed activities would damage or remove some of these wetlands in order to return the drainage system to the point that it would be able to fully serve its intended function - stormwater control. The Department of Energy (DOE) regulations require that activities affecting environmentally sensitive areas like wetlands be the subject of an EA. Most portions of the surface water drainage system are presently inadequate to convey the runoff from a 100-year storm event. As a result, such an event would cause flooding across much of the Site and possibly threaten the integrity of the dams at the terminal ponds. Severe flooding would not only cause damage to facilities and equipment, but could also facilitate the transport of contaminants from individual hazardous substance sites (IHSSs). Uncontrolled flow through the A- and B-series ponds could cause contaminated sediments to become suspended and carried downstream. Additionally, high velocity flood flows significantly increase erosion losses

  3. The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale.

    Science.gov (United States)

    Palla, A; Gnecco, I; La Barbera, P

    2017-04-15

    In the framework of storm water management, Domestic Rainwater Harvesting (DRWH) systems are recently recognized as source control solutions according to LID principles. In order to assess the impact of these systems in storm water runoff control, a simple methodological approach is proposed. The hydrologic-hydraulic modelling is undertaken using EPA SWMM; the DRWH is implemented in the model by using a storage unit linked to the building water supply system and to the drainage network. The proposed methodology has been implemented for a residential urban block located in Genoa (Italy). Continuous simulations are performed by using the high-resolution rainfall data series for the ''do nothing'' and DRWH scenarios. The latter includes the installation of a DRWH system for each building of the urban block. Referring to the test site, the peak and volume reduction rate evaluated for the 2125 rainfall events are respectively equal to 33 and 26 percent, on average (with maximum values of 65 percent for peak and 51 percent for volume). In general, the adopted methodology indicates that the hydrologic performance of the storm water drainage network equipped with DRWH systems is noticeable even for the design storm event (T = 10 years) and the rainfall depth seems to affect the hydrologic performance at least when the total depth exceeds 20 mm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems.

    Science.gov (United States)

    Tan, J; Allard, S; Gruchlik, Y; McDonald, S; Joll, C A; Heitz, A

    2016-01-15

    The impact of elevated bromide concentrations (399 to 750 μg/L) on the formation of halogenated disinfection by-products (DBPs), namely trihalomethanes, haloacetic acids, haloacetonitriles, and adsorbable organic halogen (AOX), in two drinking water systems was investigated. Bromine was the main halogen incorporated into all of the DBP classes and into organic carbon, even though chlorine was present in large excess to maintain a disinfectant residual. Due to the higher reactivity of bromine compared to chlorine, brominated DBPs were rapidly formed, followed by a slower increase in chlorinated DBPs. Higher bromine substitution and incorporation factors for individual DBP classes were observed for the chlorinated water from the groundwater source (lower concentration of dissolved organic carbon (DOC)), which contained a higher concentration of bromide, than for the surface water source (higher DOC). The molar distribution of adsorbable organic bromine to chlorine (AOBr/AOCl) for AOX in the groundwater distribution system was 1.5:1 and almost 1:1 for the surface water system. The measured (regulated) DBPs only accounted for 16 to 33% of the total organic halogen, demonstrating that AOX measurements are essential to provide a full understanding of the formation of halogenated DBPs in drinking waters. In addition, the study demonstrated that a significant proportion (up to 94%) of the bromide in source waters can be converted AOBr. An evaluation of AOBr and AOCl through a second groundwater treatment plant that uses conventional treatment processes for DOC removal produced 70% of AOX as AOBr, with 69% of the initial source water bromide converted to AOBr. Exposure to organobromine compounds is suspected to result in greater adverse health consequences than their chlorinated analogues. Therefore, this study highlights the need for improved methods to selectively reduce the bromide content in source waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. System-spanning dynamically jammed region in response to impact of cornstarch and water suspensions

    Science.gov (United States)

    Allen, Benjamin; Sokol, Benjamin; Mukhopadhyay, Shomeek; Maharjan, Rijan; Brown, Eric

    2018-05-01

    We experimentally characterize the structure of concentrated suspensions of cornstarch and water in response to impact. Using surface imaging and particle tracking at the boundary opposite the impactor, we observed that a visible structure and particle flow at the boundary occur with a delay after impact. We show the delay time is about the same time as the strong stress response, confirming that the strong stress response results from deformation of the dynamically jammed structure once it spans between the impactor and a solid boundary. A characterization of this strong stress response is reported in a companion paper [Maharjan, Mukhopadhyay, Allen, Storz, and Brown, Phys. Rev. E 97, 052602 (2018), 10.1103/PhysRevE.97.052602]. We observed particle flow in the outer part of the dynamically jammed region at the bottom boundary, with a net transverse displacement of up to about 5% of the impactor displacement, indicating shear at the boundary. Direct imaging of the surface of the outer part of the dynamically jammed region reveals a change in surface structure that appears the same as the result of dilation in other cornstarch suspensions. Imaging also reveals cracks, like a brittle solid. These observations suggest the dynamically jammed structure can temporarily support stress according to an effective modulus, like a soil or dense granular material, along a network of frictional contacts between the impactor and solid boundary.

  6. Modeling impacts of water and fertilizer management on ecosystem services from rice rotated crop systems in China

    Science.gov (United States)

    Chen, Han; Yu, Chaoqing; Li, Changsheng; Huang, Xiao; Zhang, Jie; Yue, Yali; Huang, Guorui

    2015-04-01

    Sustainable intensification in agriculture has stressed the need for management practices that could increase crop yields while simultaneously reducing environmental impacts. It is well recognized that water and nutrient management hold great promise to address these goals. This study uses the DNDC biogeochemical model to stimulate the impacts of water regime and nitrogen fertilizer management interactions on ecosystem services of rice rotated crop systems in China. County-level optimal nitrogen fertilizer application rates under various water management practices were captured and then multiple scenarios of water and nitrogen fertilizer management were set to more than 1600 counties with rice rotations in China. Results indicate that an national average of 15.7±5.9% (the mean value and standard deviation derive from variability of three water management practices) reduction of nitrogen fertilizer inputs can be achieved without significantly sacrificing rice yields. On a national scale, shallow flooding with optimal N application rates appear most potential to enhance ecosystem services, which led to 10.6% reduction of nitrogen fertilizer inputs, 34.3% decrease of total GHG emissions, 2.8% less of overall N loss (NH3 volatilization, denitrification and N leaching) and a 1.7% increase of rice yields compared to the baseline scenario. Regional GHG emissions mitigation derived from water regime change vary with soil properties and the multiple crop index. Among the main production regions of rice in China, the highest reduction happened in Jiangxu, Yunnan, Guizhou and Hubei (more than 40% reduction) with high SOC, high multiple crop index and low clay fraction. The highest reduction of GHG emissions derived from reducing current N application rate to optimal rate appeared in Zhejiang, Guangdong, Jiangsu where the serious over-application of mineral N exit. It was concluded that process models like DNDC would act an essential tool to identify sustainable agricultural

  7. Release of drinking water contaminants and odor impacts caused by green building cross-linked polyethylene (PEX) plumbing systems.

    Science.gov (United States)

    Kelley, Keven M; Stenson, Alexandra C; Dey, Rajarashi; Whelton, Andrew J

    2014-12-15

    Green buildings are increasingly being plumbed with crosslinked polyethylene (PEX) potable water pipe. Tap water quality was investigated at a six month old plumbing system and chemical and odor quality impacts of six PEX pipe brands were examined. Eleven PEX related contaminants were found in the plumbing system; one regulated (toluene) and several unregulated: Antioxidant degradation products, resin solvents, initiator degradation products, or manufacturing aides. Water chemical and odor quality was monitored for new PEX-a, -b and -c pipes with (2 mg/L free chlorine) and without disinfectant over 30 days. Odor and total organic carbon (TOC) levels decreased for all pipes, but odor remained greater than the USA's Environmental Protection Agency's (USEPA) secondary maximum contaminant level. Odors were not attributed to known odorants ethyl-tert-butyl ether (ETBE) or methyl-tert-butyl ether (MTBE). Free chlorine caused odor levels for PEX-a1 pipe to increase from 26 to 75 threshold odor number (TON) on day 3 and affected the rate at which TOC changed for each brand over 30 days. As TOC decreased, the ultraviolet absorbance at 254 nm increased. Pipes consumed as much as 0.5 mg/L as Cl2 during each 3 day stagnation period. Sixteen organic chemicals were identified, including toluene, pyridine, methylene trichloroacetate and 2,4-di-tert-butylphenol. Some were also detected during the plumbing system field investigation. Six brands of PEX pipes sold in the USA and a PEX-a green building plumbing system impacted chemical and drinking water odor quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    Energy Technology Data Exchange (ETDEWEB)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

  9. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

    International Nuclear Information System (INIS)

    Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R.

    1993-11-01

    This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ''Availability of HVAC and Chilled Water Systems.'' The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the $1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ''generic'' insights on potential design-related and configuration-related vulnerabilities and potential high-frequency (∼1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations

  10. Impact of sensor detection limits on protecting water distribution systems from contamination events

    International Nuclear Information System (INIS)

    McKenna, Sean Andrew; Hart, David Blaine; Yarrington, Lane

    2006-01-01

    Real-time water quality sensors are becoming commonplace in water distribution systems. However, field deployable, contaminant-specific sensors are still in the development stage. As development proceeds, the necessary operating parameters of these sensors must be determined to protect consumers from accidental and malevolent contamination events. This objective can be quantified in several different ways including minimization of: the time necessary to detect a contamination event, the population exposed to contaminated water, the extent of the contamination within the network, and others. We examine the ability of a sensor set to meet these objectives as a function of both the detection limit of the sensors and the number of sensors in the network. A moderately sized distribution network is used as an example and different sized sets of randomly placed sensors are considered. For each combination of a certain number of sensors and a detection limit, the mean values of the different objectives across multiple random sensor placements are calculated. The tradeoff between the necessary detection limit in a sensor and the number of sensors is evaluated. Results show that for the example problem examined here, a sensor detection limit of 0.01 of the average source concentration is adequate for maximum protection. Detection of events is dependent on the detection limit of the sensors, but for those events that are detected, the values of the performance measures are not a function of the sensor detection limit. The results of replacing a single sensor in a network with a sensor having a much lower detection limit show that while this replacement can improve results, the majority of the additional events detected had performance measures of relatively low consequence.

  11. Biofuel impacts on water.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  12. Clustering analysis of water distribution systems: identifying critical components and community impacts.

    Science.gov (United States)

    Diao, K; Farmani, R; Fu, G; Astaraie-Imani, M; Ward, S; Butler, D

    2014-01-01

    Large water distribution systems (WDSs) are networks with both topological and behavioural complexity. Thereby, it is usually difficult to identify the key features of the properties of the system, and subsequently all the critical components within the system for a given purpose of design or control. One way is, however, to more explicitly visualize the network structure and interactions between components by dividing a WDS into a number of clusters (subsystems). Accordingly, this paper introduces a clustering strategy that decomposes WDSs into clusters with stronger internal connections than external connections. The detected cluster layout is very similar to the community structure of the served urban area. As WDSs may expand along with urban development in a community-by-community manner, the correspondingly formed distribution clusters may reveal some crucial configurations of WDSs. For verification, the method is applied to identify all the critical links during firefighting for the vulnerability analysis of a real-world WDS. Moreover, both the most critical pipes and clusters are addressed, given the consequences of pipe failure. Compared with the enumeration method, the method used in this study identifies the same group of the most critical components, and provides similar criticality prioritizations of them in a more computationally efficient time.

  13. Value-impact assessment for resolution of generic safety issue 143 - availability of HVAC and chilled water systems

    Energy Technology Data Exchange (ETDEWEB)

    Daling, P.M.; Marler, J.E.; Vo, T.V. [Pacific Northwest Laboratory, Richland, WA (United States)] [and others

    1995-02-01

    The Pacific Northwest Laboratory (PNL), under contract to the U.S. Nuclear Regulatory Commission (NRC), has conducted an assessment of the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, {open_quotes}Availability of Heating, Ventilation, and Air Conditioning (HVAC) and Chilled Water Systems.{close_quotes} This assessment was conducted to identify vulnerabilities related to failure of HVAC, chilled water and room cooling systems and develop estimates of the core damage frequencies and public risks associated with failures of these systems. This information was used to develop proposed resolution strategies to this generic issue and perform a value/impact assessment to determine their cost-effectiveness. Probabilistic risk assessments (PRAs) for four representative plants from the basis for the core damage frequency and public risk calculations. Internally-initiated core damage sequences as well as external events were considered. Three proposed resolution strategies were developed for this safety issue and it was determined that all three were not cost-effective. Additional evaluations were performed to develop {open_quotes}generic{close_quotes} insights on potential design-related vulnerabilities and potential high-frequency accident sequences that involve failures of HVAC/room cooling functions.

  14. Value-impact assessment for resolution of generic safety issue 143 - availability of HVAC and chilled water systems

    International Nuclear Information System (INIS)

    Daling, P.M.; Marler, J.E.; Vo, T.V.

    1995-01-01

    The Pacific Northwest Laboratory (PNL), under contract to the U.S. Nuclear Regulatory Commission (NRC), has conducted an assessment of the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, open-quotes Availability of Heating, Ventilation, and Air Conditioning (HVAC) and Chilled Water Systems.close quotes This assessment was conducted to identify vulnerabilities related to failure of HVAC, chilled water and room cooling systems and develop estimates of the core damage frequencies and public risks associated with failures of these systems. This information was used to develop proposed resolution strategies to this generic issue and perform a value/impact assessment to determine their cost-effectiveness. Probabilistic risk assessments (PRAs) for four representative plants from the basis for the core damage frequency and public risk calculations. Internally-initiated core damage sequences as well as external events were considered. Three proposed resolution strategies were developed for this safety issue and it was determined that all three were not cost-effective. Additional evaluations were performed to develop open-quotes genericclose quotes insights on potential design-related vulnerabilities and potential high-frequency accident sequences that involve failures of HVAC/room cooling functions

  15. Application of dynamic modeling for assessing the impact of radioactive releases to water sewer systems

    International Nuclear Information System (INIS)

    Sundell-Bergman, Synnove; Avila, Rodolfo; Cruz, Idalmis de la

    2008-01-01

    Full text: Potential radiological emergencies due to accidental or malicious acts involving nuclear materials requires tools for emergency dose assessment to help in the planning of countermeasures. In urban areas, the municipal sewage systems will receive the wastewater from households, industries and hospitals as well as the run-off water. Investigations have shown that sewage sludge is a sensitive indicator for radionuclides released from hospitals or spread via the atmosphere and thus simulation modelling of the fate of radionuclides entering sewage treatment plants via urban drainage systems could prove useful in emergency situations. A dynamic model (LUCIA) has been developed to assess the radiological consequences of non-homogenous releases of radionuclides to the sewage plants. In the first step the focussing has been on radioactive liquid releases from hospitals and the predictions show that there is a significant probability (> 0,2) that the sewage worker doses exceed 10 μSv/y while doses to farmers or fishermen (downstream plants) are marginal. Comparison of measured and estimated concentration values for iodine-131 reveal that the predictions made by LUCIA are reasonably good and fall within a factor of 2. For the purpose of emergency preparedness, scenarios have been defined and the fate of released radionuclides has been assessed. The main features of the LUCIA model will be presented and the application of the tool for emergency preparedness will be discussed. (author)

  16. Information retrieval system: impacts of water-level changes on uses of federal storage reservoirs of the Columbia River.

    Energy Technology Data Exchange (ETDEWEB)

    Fickeisen, D.H.; Cowley, P.J.; Neitzel, D.A.; Simmons, M.A.

    1982-09-01

    A project undertaken to provide the Bonneville Power Administration (BPA) with information needed to conduct environmental assessments and meet requirements of the National Environmental Policy Act (NEPA) and the Pacific Northwest Electric Power Planning and Conservation Act (Regional Act) is described. Access to information on environmental effects would help BPA fulfill its responsibilities to coordinate power generation on the Columbia River system, protect uses of the river system (e.g., irrigation, recreation, navigation), and enhance fish and wildlife production. Staff members at BPA identified the need to compile and index information resources that would help answer environmental impact questions. A computer retrieval system that would provide ready access to the information was envisioned. This project was supported by BPA to provide an initial step toward a compilation of environmental impact information. Scientists at Pacific Northwest Laboratory (PNL) identified, gathered, and evaluated information related to environmental effects of water level on uses of five study reservoirs and developed and implemented and environmental data retrieval system, which provides for automated storage and retrieval of annotated citations to published and unpublished information. The data retrieval system is operating on BPA's computer facility and includes the reservoir water-level environmental data. This project was divided into several tasks, some of which were conducted simultaneously to meet project deadlines. The tasks were to identify uses of the five study reservoirs, compile and evaluate reservoir information, develop a data entry and retrieval system, identify and analyze research needs, and document the data retrieval system and train users. Additional details of the project are described in several appendixes.

  17. Modeling impacts of water and fertilizer management on the ecosystem service of rice rotated cropping system in China

    Science.gov (United States)

    Chen, H.; Yu, C.; Li, C.

    2015-12-01

    Sustainable agricultural intensification demand optimum resource managements of agro-ecosystems. Detailed information on the impacts of water use and nutrient application on agro-ecosystem services including crop yields, greenhouse gas (GHG) emissions and nitrogen (N) loss is the key to guide field managements. In this study, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for rice rotated cropping systems in China. We set varied scenarios of water use in more than 1600 counties, and derived optimal rates of N application for each county in accordance to water use scenarios. Our results suggest that 0.88 ± 0.33 Tg per year (mean ± standard deviation) of synthetic N could be reduced without reducing rice yields, which accounts for 15.7 ± 5.9% of current N application in China. Field managements with shallow flooding and optimal N applications could enhance ecosystem services on a national scale, leading to 34.3% reduction of GHG emissions (CH4, N2O, and CO2), 2.8% reduction of overall N loss (NH3 volatilization, denitrification and N leaching) and 1.7% increase of rice yields, as compared to current management conditions. Among provinces with major rice production, Jiangsu, Yunnan, Guizhou, and Hubei could achieve more than 40% reduction of GHG emissions under appropriate water managements, while Zhejiang, Guangdong, and Fujian could reduce more than 30% N loss with optimal N applications. Our modeling efforts suggest that China is likely to benefit from reforming water and fertilization managements for rice rotated cropping system in terms of sustainable crop yields, GHG emission mitigation and N loss reduction, and the reformation should be prioritized in the above-mentioned provinces. Keywords: water regime, nitrogen fertilization, sustainable management, ecological modeling, DNDC

  18. Burned forests impact water supplies

    Science.gov (United States)

    Dennis W. Hallema; Ge Sun; Peter V. Caldwell; Steven P. Norman; Erika C. Cohen; Yongqiang Liu; Kevin D. Bladon; Steven G. McNulty

    2018-01-01

    Wildland fire impacts on surface freshwater resources have not previously been measured, nor factored into regional water management strategies. But, large wildland fires are increasing and raise concerns about fire impacts on potable water. Here we synthesize longterm records of wildland fire, climate, and river flow for 168 locations across the United States. We show...

  19. Simulating the impact of no-till systems on field water fluxes and maize productivity under semi-arid conditions

    Science.gov (United States)

    Mupangwa, W.; Jewitt, G. P. W.

    Crop output from the smallholder farming sector in sub-Saharan Africa is trailing population growth leading to widespread household food insecurity. It is therefore imperative that crop production in semi-arid areas be improved in order to meet the food demand of the ever increasing human population. No-till farming practices have the potential to increase crop productivity in smallholder production systems of sub-Saharan Africa, but rarely do because of the constraints experienced by these farmers. One of the most significant of these is the consumption of mulch by livestock. In the absence of long term on-farm assessment of the no-till system under smallholder conditions, simulation modelling is a tool that provides an insight into the potential benefits and can highlight shortcomings of the system under existing soil, climatic and socio-economic conditions. Thus, this study was designed to better understand the long term impact of no-till system without mulch cover on field water fluxes and maize productivity under a highly variable rainfall pattern typical of semi-arid South Africa. The simulated on-farm experiment consisted of two tillage treatments namely oxen-drawn conventional ploughing (CT) and ripping (NT). The APSIM model was applied for a 95 year period after first being calibrated and validated using measured runoff and maize yield data. The predicted results showed significantly higher surface runoff from the conventional system compared to the no-till system. Predicted deep drainage losses were higher from the NT system compared to the CT system regardless of the rainfall pattern. However, the APSIM model predicted 62% of the annual rainfall being lost through soil evaporation from both tillage systems. The predicted yields from the two systems were within 50 kg ha -1 difference in 74% of the years used in the simulation. In only 9% of the years, the model predicted higher grain yield in the NT system compared to the CT system. It is suggested that

  20. New storm water regulations impact industry

    International Nuclear Information System (INIS)

    Gemar, C.

    1991-01-01

    In November 1990, new Environmental Protection Agency (EPA) regulations aimed at governing the discharge of storm water from industrial facilities became effective. Because some industrial runoff contains toxics and other pollutants, the EPA considers storm water a major source of water contamination. The new regulations will have a profound impact on the National Pollutant Discharge Elimination System (NPDES) permit requirements for industry. This paper summarizes the new storm water regulations, focusing on the requirements for industrial facilities. It also presents suggestions for compliance

  1. Embedded resource accounting for coupled natural-human systems: An application to water resource impacts of the western U.S. electrical energy trade

    Science.gov (United States)

    Ruddell, Benjamin L.; Adams, Elizabeth A.; Rushforth, Richard; Tidwell, Vincent C.

    2014-10-01

    In complex coupled natural-human systems (CNH), multitype networks link social, environmental, and economic systems with flows of matter, energy, information, and value. Embedded Resource Accounting (ERA) is a systems analysis framework that includes the indirect connections of a multitype CNH network. ERA is conditioned on perceived system boundaries, which may vary according to the accountant's point of view. Both direct and indirect impacts are implicit whenever two subnetworks interact in such a system; the ratio of two subnetworks' impacts is the embedded intensity. For trade in the services of water, this is understood as the indirect component of a water footprint, and as "virtual water" trade. ERA is a generalization of input-output, footprint, and substance flow methods, and is a type of life cycle analysis. This paper presents results for the water and electrical energy system in the western U.S. This system is dominated by California, which outsources the majority of its water footprint of electrical energy. Electricity trade increases total water consumption for electricity production in the western U.S. by 15% and shifts water use to water-stressed Colorado River Basin States. A systemic underaccounting for water footprints occurs because state-level processes discount a portion of the water footprint occurring outside of the state boundary.

  2. Impact of canal water shortages on groundwater in the Lower Bari Doab Canal system in Pakistan

    International Nuclear Information System (INIS)

    Shakir, A.S.; Rehman, H.U.; Khan, N.M.; Qazi, A.U.

    2011-01-01

    This paper presents rigorous analysis of shortage of canal water supplies, crop water requirements, and groundwater use and its quality in the command of Lower Bari Doab Canal, Pakistan. The annual canal water supplies are 36% less than the crop water requirements. This shortage further increases to 56% if actual canal supplies (averaged over last ten years) are compared with the crop water requirement. The groundwater levels are depleting at the rate of 30 to 40 cm per year in most parts of the LBDC command and this tendency of lowering may increase in future due to further increase in crop water requirements. The analysis of data for the last seven years indicate that quality of groundwater in most parts of LBDC command is generally good (64% of the area) or marginally acceptable (28%) for irrigation use. However, declining trends in groundwater quality are visible and can create long term sustain ability problems if proper remedial actions are not taken well in time. (author)

  3. Exposure Through Runoff and Ground Water Contamination Differentially Impact Behavior and Physiology of Crustaceans in Fluvial Systems.

    Science.gov (United States)

    Steele, Alexandra N; Belanger, Rachelle M; Moore, Paul A

    2018-06-19

    Chemical pollutants enter aquatic systems through numerous pathways (e.g., surface runoff and ground water contamination), thus associating these contaminant sources with varying hydrodynamic environments. The hydrodynamic environment shapes the temporal and spatial distribution of chemical contaminants through turbulent mixing. The differential dispersal of contaminants is not commonly addressed in ecotoxicological studies and may have varying implications for organism health. The purpose of this study is to understand how differing routes of exposure to atrazine alter social behaviors and physiological responses of aquatic organisms. This study used agonistic encounters in crayfish Orconectes virilis as a behavioral assay to investigate impact of sublethal concentrations of atrazine (0, 40, 80, and 160 µg/L) delivered by methods mimicking ground water and surface runoff influx into flow-through exposure arenas for a total of 23 h. Each experimental animal participated in a dyadic fight trial with an unexposed opponent. Fight duration and intensity were analyzed. Experimental crayfish hepatopancreas and abdominal muscle tissue samples were analyzed for cytochrome P450 and acetylcholinesterase levels to discern mechanism of detoxification and mode of action of atrazine. Atrazine delivered via runoff decreased crayfish overall fight intensity and contrastingly ground water delivery increased overall fight intensity. The behavioral differences were mirrored by increases in cytochrome P450 activity, whereas no differences were found in acetylcholinesterase activity. This study demonstrates that method of delivery into fluvial systems has differential effects on both behavior and physiology of organisms and emphasizes the need for the consideration of delivery pathway in ecotoxicological studies and water-impairment standards.

  4. IMPACT OF REALIZED IMS SYSTEM IN PRODUCTION AND DISTRIBUTION OF WATER ON QUALITY OF LIFE

    Directory of Open Access Journals (Sweden)

    Gordana Todorović

    2017-03-01

    Full Text Available In this paper from the assessments: the satisfaction of the citizens with the services PUC "Waterworks and Sewerage" and the total time interruption in water supply, appreciating their importance, we carried out the assessment of the implemented IMS PUC "Waterworks and Sewerage" in Kragujevac.

  5. Overview of biofilm formation in distribution systems and its impact on the deterioration of water quality

    CSIR Research Space (South Africa)

    Momba, MNB

    2000-01-01

    Full Text Available in drinking water have long been known to cause disease and death in consumers (Craun, 1986). The health risks associated with these pathogens range from viral and bacterial gastroenteric diseases to infections such as hepatitis A and giardiasis... range from viral and bacterial gastro-enteric diseases to infections such as hepatitis A and giardiasis. Recently there have also been reports of the survival of Campylobacter spp., Helicobacter pylori and Cryptosporidium parvum in biofilms...

  6. Use of System Thinking Software for Determining Climate Change Impacts in Water Balance for the Rio Yaqui Basin, Sonora, Mexico

    Science.gov (United States)

    Tapia, E. M.; Minjarez, J. I.; Espinoza, I. G.; Sosa, C. M.

    2013-05-01

    Climate change in Northwestern Mexico and its hydrological impact on water balance, water scarcity and flooding events, has become a matter of increasing concern over the past several decades due to the region's semiarid conditions. Changes in temperature, precipitation, and sea level will affect agriculture, farming, and aquaculture, in addition to compromising the quality of water resources for human consumption. According to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007), Global Circulation Models (GCMs) can provide reliable estimations of future climate conditions in addition to atmospheric processes that cause them, based on different input scenarios such as A2 (higher emission of greenhouse gases) and B1 (lower emission of GHG), among others. However, GCM`s resolution results to coarse in regions which have high space and time climate variability. To remediate this, several methods based on dynamical, statistical and empirical analysis have been proposed for downcaling. In this study, we evaluate possible changes in precipitation and temperature for the "Rio Yaqui Basin" in Sonora, Mexico and assess the impact of such changes on runoff, evapotranspiration and aquifer recharge for the 2010-2099 period of time. For this purpose, we analyzed the results of a Bias Corrected and Downscaled Climate Projection from the World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset: UKMO-HADCM3 from the Hadley Centre for Climate Prediction. Northwest Mexico is under the influence of the North American Monsoon (NAM), a system affecting the states of Sinaloa and Sonora where the precipitation regimes change drastically during the summer months of June, July and August. It is associated to the sharp variations of topography, precipitation and temperature regimes in the region, so the importance of analyzing the downscaled climate projections. The Rio Yaqui Basin is one of

  7. The Impact of Traditional Septic Tank Soakaway Systems and the Effects of Remediation on Water Quality in Ireland

    Science.gov (United States)

    Kilroy, Kate; Keggan, Mary; Barrett, Maria; Dubber, Donata; Gill, Laurence W.; O'Flaherty, Vincent

    2014-05-01

    occurrence using real-time Polymerase Chain Reaction (qPCR) assays (Kildare et al., 2007). The abundance of both archaeal and bacterial 16S rRNA and of several functional nitrification and denitrification genes (i.e., amoA, nirS, nirK, and nosZ) is also being determined and compared in both sites. Ultimately, this novel project aims to assess the effectiveness of remediation at reducing the risk of pathogen transport and nitrate loading to local ground and surface waters. Results from both sites suggest low permeability subsoil prevents the even distribution of effluent through the receiving subsoil, forcing it instead to flow laterally via distinct pathways such as sand lenses and nearby drainage routes. This affects the ability of the subsoil to sufficiently treat the percolating effluent. Initial results from the remediation of the existing systems to alternative low pressure systems indicate a positive impact towards the groundwater quality of both sites. This step towards a better understanding of the factors influencing microbial denitrification and the behaviour of pathogens in sensitive environments aids in identifying management options for reducing nitrous oxide (N2O) emissions and nitrate (NO3-) leaching; and for enhanced protection of public health.

  8. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  9. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  10. Variations of uranium concentrations in a multi-aquifer system under the impact of surface water-groundwater interaction

    Science.gov (United States)

    Wu, Ya; Li, Junxia; Wang, Yanxin; Xie, Xianjun

    2018-04-01

    Understanding uranium (U) mobility is vital to minimizing its concentrations in potential drinking water sources. In this study, we report spatial-seasonal variations in U speciation and concentrations in a multi-aquifer system under the impact of Sanggan River in Datong basin, northern China. Hydrochemical and H, O, Sr isotopic data, thermodynamic calculations, and geochemical modeling are used to investigate the mechanisms of surface water-groundwater mixing-induced mobilization and natural attenuation of U. In the study site, groundwater U concentrations are up to 30.2 μg/L, and exhibit strong spatial-seasonal variations that are related to pH and Eh values, as well as dissolved Ca2+, HCO3-, and Fe(III) concentrations. For the alkaline aquifers of this site (pH 7.02-8.44), U mobilization is due to the formation and desorption of Ca2UO2(CO3)30 and CaUO2(CO3)32- caused by groundwater Ca2+ elevation via mineral weathering and Na-Ca exchange, incorporated U(VI) release from calcite, and U(IV) oxidation by Fe(OH)3. U immobilization is linked to the adsorption of CaUO2(CO3)32- and UO2(CO3)34- shifted from Ca2UO2(CO3)30 because of HCO3- elevation and Ca2+ depletion, U(VI) co-precipitation with calcite, and U(VI) reduction by adsorbed Fe2+ and FeS. Those results are of great significance for the groundwater resource management of this and similar other surface water-groundwater interaction zones.

  11. Assessment of land use impact on water-related ecosystem services capturing the integrated terrestrial-aquatic system.

    Science.gov (United States)

    Maes, Wouter H; Heuvelmans, Griet; Muys, Bart

    2009-10-01

    Although the importance of green (evaporative) water flows in delivering ecosystem services has been recognized, most operational impact assessment methods still focus only on blue water flows. In this paper, we present a new model to evaluate the effect of land use occupation and transformation on water quantity. Conceptually based on the supply of ecosystem services by terrestrial and aquatic ecosystems, the model is developed for, but not limited to, land use impact assessment in life cycle assessment (LCA) and requires a minimum amount of input data. Impact is minimal when evapotranspiration is equal to that of the potential natural vegetation, and maximal when evapotranspiration is zero or when it exceeds a threshold value derived from the concept of environmental water requirement. Three refinements to the model, requiring more input data, are proposed. The first refinement considers a minimal impact over a certain range based on the boundary evapotranspiration of the potential natural vegetation. In the second refinement the effects of evaporation and transpiration are accounted for separately, and in the third refinement a more correct estimate of evaporation from a fully sealed surface is incorporated. The simplicity and user friendliness of the proposed impact assessment method are illustrated with two examples.

  12. Sedimentation and Its Impacts/Effects on River System and Reservoir Water Quality: case Study of Mazowe Catchment, Zimbabwe

    Science.gov (United States)

    Tundu, Colleta; Tumbare, Michael James; Kileshye Onema, Jean-Marie

    2018-04-01

    Sediment delivery into water sources and bodies results in the reduction of water quantity and quality, increasing costs of water purification whilst reducing the available water for various other uses. The paper gives an analysis of sedimentation in one of Zimbabwe's seven rivers, the Mazowe Catchment, and its impact on water quality. The Revised Universal Soil Loss Equation (RUSLE) model was used to compute soil lost from the catchment as a result of soil erosion. The model was used in conjunction with GIS remotely sensed data and limited ground observations. The estimated annual soil loss in the catchment indicates soil loss ranging from 0 to 65 t ha yr-1. Bathymetric survey at Chimhanda Dam showed that the capacity of the dam had reduced by 39 % as a result of sedimentation and the annual sediment deposition into Chimhanda Dam was estimated to be 330 t with a specific yield of 226 t km-2 yr-1. Relationship between selected water quality parameters, TSS, DO, NO3, pH, TDS, turbidity and sediment yield for selected water sampling points and Chimhanda Dam was analyzed. It was established that there is a strong positive relationship between the sediment yield and the water quality parameters. Sediment yield showed high positive correlation with turbidity (0.63) and TDS (0.64). Water quality data from Chimhanda treatment plant water works revealed that the quality of water is deteriorating as a result of increase in sediment accumulation in the dam. The study concluded that sedimentation can affect the water quality of water sources.

  13. The impact of water exchange rate on the health and performance of rainbow trout Oncorhynchus mykiss in recirculation aquaculture systems

    Science.gov (United States)

    Fish mortality in recirculating aquaculture systems (RAS) has been observed by the authors to increase when RAS are managed at low makeup water exchange rates with relatively high feed loading. The precise etiology of this elevated mortality was unknown, all typical water quality parameters were wit...

  14. Yield and Water Quality Impacts of Field-Scale Integration of Willow into a Continuous Corn Rotation System.

    Science.gov (United States)

    Zumpf, Colleen; Ssegane, Herbert; Negri, Maria Cristina; Campbell, Patty; Cacho, Julian

    2017-07-01

    Agricultural landscape design has gained recognition by the international environmental and development community as a strategy to address multiple goals in land, water, and ecosystem service management; however, field research is needed to quantify impacts on specific local environments. The production of bioenergy crops in specific landscape positions within a grain-crop field can serve the dual purpose of producing cellulosic biomass (nutrient recovery) while also providing regulating ecosystem services to improve water quality (nutrient reduction). The effectiveness of such a landscape design was evaluated by the strategic placement of a 0.8-ha short-rotation shrub willow ( Seemen) bioenergy buffer along marginal soils in a 6.5-ha corn ( L.) field in a 6-yr field study in central Illinois. The impact of willow integration on water quality (soil water, shallow groundwater leaching, and crop nutrient uptake) and quantity (soil moisture and transpiration) was monitored in comparison with corn in the willow's first cycle of growth. Willows significantly reduced nitrate leachate in shallow subsurface water by 88% while maintaining adequate nutrient and water usage. Results suggest that willows offer an efficient nutrient-reduction strategy and may provide additional ecosystem services and benefits, including enhanced soil health. However, low values for calculated willow biomass will need to be readdressed in the future as harvest data become available to understand contributing factors that affected productivity beyond nutrient availability. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Impact of environmental regulations on control of copper ion concentration in the DIII-D cooling water system

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1993-10-01

    Tokamaks and industrial users are faced with the task of maintaining closed-loop, low conductivity, low impurity, cooling water systems. Operating these systems concentrates the impurities in the water requiring subsequent disposal. Environmental regulations are making this increasingly difficult. This paper will discuss the solution to the problem of removing and disposing of copper ions in the DIII-D low conductivity water system. Since the commissioning of the Doublet facility, the quality of the water in the 3000 gpm system that cools the DIII-D vacuum vessel coils, power supplies and auxiliary heating components has been controlled with mixed-bed ion exchangers. Low ion levels, particularly copper, are required to operate this equipment. In early 1992, the company that leases and regenerates DIII-D ion exchangers said they no longer can accept these resin beds for regeneration due to the level of copper ion on the resin. This change in policy, a change that has been adopted throughout their industry, was necessary to assure that the Metropolitan Sewerage System of the City of San Diego stays in compliance with State of California regulations and EPA-mandated national pretreatment standards and regulations. A cost effective solution was implemented which utilizes a reverse osmosis filtration system with the ion exchangers for make-up water. Levels of copper ion disposed to the sewer are in compliance with government standards. These measures have thus far proved effective in maintaining low conductivity and overall good quality cooling water. Specifically, this paper discusses DIII-D deionized cooling water quality requirements and an affective means to meet these requirements in order to be in compliance with government regulations for copper ion disposal. The problems discussed, the alternatives considered and the approach taken would be readily applicable to any deionized cooling water system containing copper where EPA standards and regulations are mandated

  16. Flood impacts on a water distribution network

    Science.gov (United States)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio

    2017-12-01

    Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.

  17. Impact factors on the structuration and the rheological behavior of the clay-water system for smectite dispersions

    International Nuclear Information System (INIS)

    Paumier, S.

    2007-11-01

    Smectite are swelling clays widely used in industry. Their mechanical properties are unequal according to their mineralogical and physico-chemical characteristics. The aim of this study is to improve the knowledge of the interlayer cation impact on the structure built by the smectite-water system according to the concentration. Homo-ionic (Na + et Ca 2+ ) and bi-ionic systems are observed. This study cross checks mineralogical methods, physicochemical analysis and broad range of rheometric tests. At low concentration (less than 60 g/l) the calcium dispersions are shear thinning and few viscous due to the layer association in huge deformable flocks. The sodium smectite layers are dispersed; the dispersions are highly viscous. The lowest viscosity is detected for mix of 20 % of sodium smectite and 80 % of calcium smectite. At higher concentration (60 to 100 g/l), the yield stress and viscoelastic properties are studied by creep-recovery tests, oscillatory tests and imposed shear step. At the liquid state, the flow is first heterogeneous with a shear banding effect then homogeneous. The results make it possible to define the concentration area characteristic of each mechanical behavior (viscosity, shear thinning and yield stress) according to the saturation cation. The thixotropic properties are characterized with de-structuring-restructuring tests. Two kinetics are determined. Finally we realize a data base with 12 natural and industrial bentonite. The rheograms would be efficient to differentiate the natural calcium bentonite (Newtonian law), natural sodium bentonite (Herschel-Bulkley law) and activated calcium bentonite (Bingham law). (author)

  18. Impact on a utility, utility customers and the environment of an ensemble of solar domestic hot water systems

    International Nuclear Information System (INIS)

    Cragan, K.E.; Klein, S.A.; Beckman, W.A.

    1995-01-01

    The benefits of the installation of a large number of solar domestic hot water (SDHW) systems are identified and quantified. The benefits of SDHW systems include reduced energy use, reduced electrical demand, and reduced pollution. The avoided emissions, capacity contribution, energy and demand savings were evaluated using the power generation schedules, emissions data and annual hourly load profiles from a Wisconsin utility. It is shown that each six square meter solar water heater system can save annually: 3,560 kWh of energy, 0.66 kW of peak demand, and over four tons of pollution

  19. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  20. Perceptions of Present and Future Climate Change Impacts on Water Availability for Agricultural Systems in the Western Mediterranean Region

    Directory of Open Access Journals (Sweden)

    Thi Phuoc Lai Nguyen

    2016-11-01

    Full Text Available Many Mediterranean countries have experienced water shortages during the last 20 years and future climate change projections foresee further pressure on water resources. This will have significant implications for irrigation water management in agricultural systems in the future. Through qualitative and quantitative empirical research methods carried out on a case study on four Mediterranean farming systems located in Oristano, Italy, we sought to understand the relationship between farmers’ perceptions of climate change (i.e., increased temperature and decreased precipitation and of present and future water availability for agriculture as forecasted by climatic and crop models. We also explored asymmetries between farmers’ perceptions and present and future climate change and water scenarios as well as factors influencing perceptions. Our hypotheses were that farmers’ perceptions are the main drivers of actual water management practices and that sustainable practices can emerge from learning spaces designed from the understanding of the gaps between perceptions and scientific evidences. Results showed that most farmers perceived that climate change is occurring or will occur in their area. They also perceived that there has been an increased temperature trend, but also increased precipitation. Therefore, they are convinced that they have and will have enough irrigation water for agriculture in the near future, while climate change projections foresee an increasing pressure on water resources in the Mediterranean region. Such results suggest the need for (i irrigation management policies that take into account farmers’ perceptions in order to promote virtuous behaviors and improve irrigation water use efficiency; (ii new, well-designed learning spaces to improve the understanding on climate change expectations in the near future in order to support effective adaptive responses at the farm and catchment scales.

  1. Water Impact Prediction Tool for Recoverable Rockets

    Science.gov (United States)

    Rooker, William; Glaese, John; Clayton, Joe

    2011-01-01

    Reusing components from a rocket launch can be cost saving. NASA's space shuttle system has reusable components that return to the Earth and impact the ocean. A primary example is the Space Shuttle Solid Rocket Booster (SRB) that descends on parachutes to the Earth after separation and impacts the ocean. Water impact generates significant structural loads that can damage the booster, so it is important to study this event in detail in the design of the recovery system. Some recent examples of damage due to water impact include the Ares I-X First Stage deformation as seen in Figure 1 and the loss of the SpaceX Falcon 9 First Stage.To ensure that a component can be recovered or that the design of the recovery system is adequate, an adequate set of structural loads is necessary for use in failure assessments. However, this task is difficult since there are many conditions that affect how a component impacts the water and the resulting structural loading that a component sees. These conditions include the angle of impact with respect to the water, the horizontal and vertical velocities, the rotation rate, the wave height and speed, and many others. There have been attempts to simulate water impact. One approach is to analyze water impact using explicit finite element techniques such as those employed by the LS-Dyna tool [1]. Though very detailed, this approach is time consuming and would not be suitable for running Monte Carlo or optimization analyses. The purpose of this paper is to describe a multi-body simulation tool that runs quickly and that captures the environments a component might see. The simulation incorporates the air and water interaction with the component, the component dynamics (i.e. modes and mode shapes), any applicable parachutes and lines, the interaction of winds and gusts, and the wave height and speed. It is capable of quickly conducting Monte Carlo studies to better capture the environments and genetic algorithm optimizations to reproduce a

  2. Impact of Conventional and Integrated Management Systems on the Water-Soluble Vitamin Content in Potatoes, Field Beans, and Cereals.

    Science.gov (United States)

    Freitag, Sabine; Verrall, Susan R; Pont, Simon D A; McRae, Diane; Sungurtas, Julia A; Palau, Raphaëlle; Hawes, Cathy; Alexander, Colin J; Allwood, J William; Foito, Alexandre; Stewart, Derek; Shepherd, Louise V T

    2018-01-31

    The reduction of the environmental footprint of crop production without compromising crop yield and their nutritional value is a key goal for improving the sustainability of agriculture. In 2009, the Balruddery Farm Platform was established at The James Hutton Institute as a long-term experimental platform for cross-disciplinary research of crops using two agricultural ecosystems. Crops representative of UK agriculture were grown under conventional and integrated management systems and analyzed for their water-soluble vitamin content. Integrated management, when compared with the conventional system, had only minor effects on water-soluble vitamin content, where significantly higher differences were seen for the conventional management practice on the levels of thiamine in field beans (p water-soluble vitamin content of the crops analyzed here.

  3. Impacts of Combined Cooling, Heating and Power Systems, and Rainwater Harvesting on Water Demand, Carbon Dioxide, and NOx Emissions for Atlanta.

    Science.gov (United States)

    James, Jean-Ann; Sung, Sangwoo; Jeong, Hyunju; Broesicke, Osvaldo A; French, Steven P; Li, Duo; Crittenden, John C

    2018-01-02

    The purpose of this study is to explore the potential water, CO 2 and NO x emission, and cost savings that the deployment of decentralized water and energy technologies within two urban growth scenarios can achieve. We assess the effectiveness of urban growth, technological, and political strategies to reduce these burdens in the 13-county Atlanta metropolitan region. The urban growth between 2005 and 2030 was modeled for a business as usual (BAU) scenario and a more compact growth (MCG) scenario. We considered combined cooling, heating and power (CCHP) systems using microturbines for our decentralized energy technology and rooftop rainwater harvesting and low flow fixtures for the decentralized water technologies. Decentralized water and energy technologies had more of an impact in reducing the CO 2 and NO x emissions and water withdrawal and consumption than an MCG growth scenario (which does not consider energy for transit). Decentralized energy can reduce the CO 2 and NO x emissions by 8% and 63%, respectively. Decentralized energy and water technologies can reduce the water withdrawal and consumption in the MCG scenario by 49% and 50% respectively. Installing CCHP systems on both the existing and new building stocks with a net metering policy could reduce the CO 2 , NO x , and water consumption by 50%, 90%, and 75% respectively.

  4. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  5. Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics.

    Science.gov (United States)

    Whitehead, P G; Barbour, E; Futter, M N; Sarkar, S; Rodda, H; Caesar, J; Butterfield, D; Jin, L; Sinha, R; Nicholls, R; Salehin, M

    2015-06-01

    The potential impacts of climate change and socio-economic change on flow and water quality in rivers worldwide is a key area of interest. The Ganges-Brahmaputra-Meghna (GBM) is one of the largest river basins in the world serving a population of over 650 million, and is of vital concern to India and Bangladesh as it provides fresh water for people, agriculture, industry, conservation and for the delta system downstream. This paper seeks to assess future changes in flow and water quality utilising a modelling approach as a means of assessment in a very complex system. The INCA-N model has been applied to the Ganges, Brahmaputra and Meghna river systems to simulate flow and water quality along the rivers under a range of future climate conditions. Three model realisations of the Met Office Hadley Centre global and regional climate models were selected from 17 perturbed model runs to evaluate a range of potential futures in climate. In addition, the models have also been evaluated using socio-economic scenarios, comprising (1) a business as usual future, (2) a more sustainable future, and (3) a less sustainable future. Model results for the 2050s and the 2090s indicate a significant increase in monsoon flows under the future climates, with enhanced flood potential. Low flows are predicted to fall with extended drought periods, which could have impacts on water and sediment supply, irrigated agriculture and saline intrusion. In contrast, the socio-economic changes had relatively little impact on flows, except under the low flow regimes where increased irrigation could further reduce water availability. However, should large scale water transfers upstream of Bangladesh be constructed, these have the potential to reduce flows and divert water away from the delta region depending on the volume and timing of the transfers. This could have significant implications for the delta in terms of saline intrusion, water supply, agriculture and maintaining crucial ecosystems such

  6. Development and use of mathematical models and software frameworks for integrated analysis of agricultural systems and associated water use impacts

    Science.gov (United States)

    Fowler, K. R.; Jenkins, E.W.; Parno, M.; Chrispell, J.C.; Colón, A. I.; Hanson, Randall T.

    2016-01-01

    The development of appropriate water management strategies requires, in part, a methodology for quantifying and evaluating the impact of water policy decisions on regional stakeholders. In this work, we describe the framework we are developing to enhance the body of resources available to policy makers, farmers, and other community members in their e orts to understand, quantify, and assess the often competing objectives water consumers have with respect to usage. The foundation for the framework is the construction of a simulation-based optimization software tool using two existing software packages. In particular, we couple a robust optimization software suite (DAKOTA) with the USGS MF-OWHM water management simulation tool to provide a flexible software environment that will enable the evaluation of one or multiple (possibly competing) user-defined (or stakeholder) objectives. We introduce the individual software components and outline the communication strategy we defined for the coupled development. We present numerical results for case studies related to crop portfolio management with several defined objectives. The objectives are not optimally satisfied for any single user class, demonstrating the capability of the software tool to aid in the evaluation of a variety of competing interests.

  7. Constitutive relation for the system-spanning dynamically jammed region in response to impact of cornstarch and water suspensions

    Science.gov (United States)

    Maharjan, Rijan; Mukhopadhyay, Shomeek; Allen, Benjamin; Storz, Tobias; Brown, Eric

    2018-05-01

    We experimentally characterize the impact response of concentrated suspensions consisting of cornstarch and water. We observe that the suspensions support a large normal stress—on the order of MPa—with a delay after the impactor hits the suspension surface. We show that neither the delay nor the magnitude of the stress can yet be explained by either standard rheological models of shear thickening in terms of steady-state viscosities, or impact models based on added mass or other inertial effects. The stress increase occurs when a dynamically jammed region of the suspension in front of the impactor propagates to the opposite boundary of the container, which can support large stresses when it spans between solid boundaries. We present a constitutive relation for impact rheology to relate the force on the impactor to its displacement. This can be described in terms of an effective modulus but only after the delay required for the dynamically jammed region to span between solid boundaries. Both the modulus and the delay are reported as a function of impact velocity, fluid height, and weight fraction. We report in a companion paper the structure of the dynamically jammed region when it spans between the impactor and the opposite boundary [Allen et al., Phys. Rev. E 97, 052603 (2018), 10.1103/PhysRevE.97.052603]. In a direct follow-up paper, we show that this constitutive model can be used to quantitatively predict, for example, the trajectory and penetration depth of the foot of a person walking or running on cornstarch and water [Mukhopadhyay et al., Phys. Rev. E 97, 052604 (2018), 10.1103/PhysRevE.97.052604].

  8. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  9. Modeling climate change impacts on water trading.

    Science.gov (United States)

    Luo, Bin; Maqsood, Imran; Gong, Yazhen

    2010-04-01

    This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program. (c) 2010 Elsevier B.V. All rights reserved.

  10. Grey water impact on soil physical properties

    Directory of Open Access Journals (Sweden)

    Miguel L. Murcia-Sarmiento

    2014-01-01

    Full Text Available Due to the increasing demand for food produced by the increase in population, water as an indispensable element in the growth cycle of plants every day becomes a fundamental aspect of production. The demand for the use of this resource is necessary to search for alternatives that should be evaluated to avoid potential negative impacts. In this paper, the changes in some physical properties of soil irrigated with synthetic gray water were evaluated. The experimental design involved: one factor: home water and two treatments; without treated water (T1 and treated water (T2. The variables to consider in the soil were: electrical conductivity (EC, exchangeable sodium percentage (ESP, average weighted diameter (MWD and soil moisture retention (RHS. The water used in drip irrigation high frequency was monitored by tensiometer for producing a bean crop (Phaseolous vulgaris L. As filtration system used was employed a unit composed of a sand filter (FLA and a subsurface flow wetland artificial (HFSS. The treatments showed significant differences in the PSI and the RHS. The FLA+HFSS system is an alternative to the gray water treatment due to increased sodium retention.

  11. Impacts of Embankment System on Natural Wetlands and Sustainable Water Resources Development in the Northwest Region of Bangladesh

    Science.gov (United States)

    Pervin, M.; Rahman, M. A.

    2012-12-01

    In the Northwest region of Bangladesh, the Chalan Beel is one of the largest Beel ("Beel" refers to natural wetland) in Bangladesh. Polder C (an area surrounded by embankment) of Chalan Beel area consists of 50% natural wetland of the region. Historically, the area was rich with fish, flora and fauna, and agricultural resources. Both flood and drainage congestion have been identified as major problems existing in the project area. Farmers are badly affected by the sudden onrush of floodwater through the embankment breaches, public cuts and incomplete hydraulic structures during the rainy season. The floodwater damages B. Aman and late Boro paddy by 10% and washes away housing settlements. Sometimes water gets scarce in polder C in dry season that is unfavorable for the crop. Loss of crops and fishery affects the economy strongly. The polder was not according to master plan and with lack of operation and maintenance. Instead of improving the livelihood in the study area the embankment arises detrimental effect on the people. This paper focuses mainly the impact of the embankments on hydrology, fishery, agriculture and socio-economic condition in polder C at Chalan Beel area. Present conditions are compared with the natural conditions existed in the last decades. Finally, the paper gives some recommendations for further sustainable water resources management. It is estimated that the natural wetland loss is about 10%. The analysis shows that the river or channel cross-sections are reduced by ca. 2 m and water level is increasing with time in the rivers along the polder due to confinement effect and siltation. It appears from the study that due to this confinement effect and siltation effect, flood and drainage problems are increasing and consequently, the area is affected in every year to a great extent. At present, cross sections of natural canals are not working properly and back water flow from Hurasagar River creates drainage congestion. About 20% of fish

  12. The impacts of climatologically-driven megadrought, past and future, on semi-arid watersheds and the water resource system they support in central Arizona, USA.

    Science.gov (United States)

    Murphy, K. W.; Ellis, A. W.

    2017-12-01

    The sustainability of water resource systems in the western United States has previously been brought into question by drought concerns and how it will be influenced by future climate change. Although decadal droughts are observed in instrumental records, the data are typically too short and the droughts too few to render the range of hydroclimatic variability that might impact modern water resource systems in the future. Natural modes of variability are not well represented in climate models, which limits the applicability of their downscaled projections in a region of interest since drought risk would be understated. Paleoclimate data have provided evidence of megadroughts from centuries ago whose hydrologic manifestations of climate variability could readily reoccur again in the future. These can be applied to research into watershed hydrologic response and resource system resilience - past, present, and future. A 645-year tree ring reconstruction of stream flow for the Salt and Verde River watersheds in central Arizona has revealed several drought periods, some more severe than seen in the 129-year instrumental record, including a late 16th century megadrought which affected large portions of the United States. This research study translated the tree ring record into net basin water supply which drives a reservoir operations simulation model to assess how the resource system performs under such severe drought. Regional climate change scenarios were developed from the observation that watershed climate sensitivity has been twice the global warming response. These were applied to the watersheds' temperature sensitivities and precipitation elasticities (reported at AGU2014) to obtain detailed renditions of hydrologic response should megadrought reoccur in a future climate. This provided one of the first rigorous projections of surface water supply under future climate change that amplifies the impact of megadrought arising from modes of climate variability often

  13. Non-indigenous macroinvertebrate species in Lithuanian fresh waters, Part 2: Macroinvertebrate assemblage deviation from naturalness in lotic systems and the consequent potential impacts on ecological quality assessment

    Directory of Open Access Journals (Sweden)

    Arbačiauskas K.

    2011-12-01

    Full Text Available The biological pressure represented by non-indigenous macroinvertebrate species (NIMS should be addressed in the implementation of EU Water Framework Directive as this can have a direct impact on the ’naturalness’ of the invaded macroinvertebrate assemblage. The biocontamination concept allows assessment of this deviation from naturalness, by evaluation of abundance and disparity contamination of an assemblage. This study aimed to assess the biocontamination of macroinvertebrate assemblages in Lithuanian rivers, thereby revealing the most high-impact non-indigenous species, and to explore the relationship between biocontamination and conventional metrics of ecological quality. Most of the studied rivers appeared to be impacted by NIMS. The amphipods Pontogammarus robustoides, Chelicorophium curvispinum and snail Litoglyphus naticoides were revealed as high-impact NIMS for Lithuanian lotic systems. Metrics of ecological quality which largely depend upon the richness of indicator taxa, such as the biological monitoring working party (BMWP score and Ephemeroptera/Plecoptera/Trichoptera (EPT taxa number, were negatively correlated with biocontamination, implying they could provide unreliable ecological quality estimates when NIMS are present. Routine macroinvertebrate water quality monitoring data are sufficient for generation of the biocontamination assessment and thus can provide supplementary information, with minimal extra expense or effort. We therefore recommend that biocontamination assessment is included alongside established methods for gauging biological and chemical water quality.

  14. Impact Management System

    Data.gov (United States)

    US Agency for International Development — IMS (developed w/Iraq mission) is a system for conducting quality portfolio impact analysis, linking projects to strategy through integration of context data. IMS...

  15. Modeling the cadmium balance in Australian agricultural systems in view of potential impacts on food and water quality

    International Nuclear Information System (INIS)

    Vries, W. de; McLaughlin, M.J.

    2013-01-01

    The historical build up and future cadmium (Cd) concentrations in top soils and in crops of four Australian agricultural systems are predicted with a mass balance model, focusing on the period 1900–2100. The systems include a rotation of dryland cereals, a rotation of sugarcane and peanuts/soybean, intensive dairy production and intensive horticulture. The input of Cd to soil is calculated from fertilizer application and atmospheric deposition and also examines options including biosolid and animal manure application in the sugarcane rotation and dryland cereal production systems. Cadmium output from the soil is calculated from leaching to deeper horizons and removal with the harvested crop or with livestock products. Parameter values for all Cd fluxes were based on a number of measurements on Australian soil–plant systems. In the period 1900–2000, soil Cd concentrations were predicted to increase on average between 0.21 mg kg −1 in dryland cereals, 0.42 mg kg −1 in intensive agriculture and 0.68 mg kg −1 in dairy production, which are within the range of measured increases in soils in these systems. Predicted soil concentrations exceed critical soil Cd concentrations, based on food quality criteria for Cd in crops during the simulation period in clay-rich soils under dairy production and intensive horticulture. Predicted dissolved Cd concentrations in soil pore water exceed a ground water quality criterion of 2 μg l −1 in light textured soils, except for the sugarcane rotation due to large water leaching fluxes. Results suggest that the present fertilizer Cd inputs in Australia are in excess of the long-term critical loads in heavy-textured soils for dryland cereals and that all other systems are at low risk. Calculated critical Cd/P ratios in P fertilizers vary from 1000 mg Cd kg P −1 for the different soil, crop and environmental conditions applied. - Highlights: • Cadmium concentrations in soils and plants are predicted with a mass balance

  16. Modeling the cadmium balance in Australian agricultural systems in view of potential impacts on food and water quality

    Energy Technology Data Exchange (ETDEWEB)

    Vries, W. de, E-mail: wim.devries@wur.nl [Alterra-Wageningen University and Research Centre, PO Box 47, 6700 AA Wageningen (Netherlands); Environmental Systems Analysis Group, Wageningen University, PO Box 47, 6700 AA Wageningen (Netherlands); McLaughlin, M.J. [CSIRO Sustainable Agriculture Flagship, CSIRO Land and Water, PMB 2, Glen Osmond, South Australia 5064 (Australia); University of Adelaide, PMB 1, Glen Osmond, South Australia 5064 (Australia)

    2013-09-01

    The historical build up and future cadmium (Cd) concentrations in top soils and in crops of four Australian agricultural systems are predicted with a mass balance model, focusing on the period 1900–2100. The systems include a rotation of dryland cereals, a rotation of sugarcane and peanuts/soybean, intensive dairy production and intensive horticulture. The input of Cd to soil is calculated from fertilizer application and atmospheric deposition and also examines options including biosolid and animal manure application in the sugarcane rotation and dryland cereal production systems. Cadmium output from the soil is calculated from leaching to deeper horizons and removal with the harvested crop or with livestock products. Parameter values for all Cd fluxes were based on a number of measurements on Australian soil–plant systems. In the period 1900–2000, soil Cd concentrations were predicted to increase on average between 0.21 mg kg{sup −1} in dryland cereals, 0.42 mg kg{sup −1} in intensive agriculture and 0.68 mg kg{sup −1} in dairy production, which are within the range of measured increases in soils in these systems. Predicted soil concentrations exceed critical soil Cd concentrations, based on food quality criteria for Cd in crops during the simulation period in clay-rich soils under dairy production and intensive horticulture. Predicted dissolved Cd concentrations in soil pore water exceed a ground water quality criterion of 2 μg l{sup −1} in light textured soils, except for the sugarcane rotation due to large water leaching fluxes. Results suggest that the present fertilizer Cd inputs in Australia are in excess of the long-term critical loads in heavy-textured soils for dryland cereals and that all other systems are at low risk. Calculated critical Cd/P ratios in P fertilizers vary from < 50 to > 1000 mg Cd kg P{sup −1} for the different soil, crop and environmental conditions applied. - Highlights: • Cadmium concentrations in soils and plants

  17. Water quality diagnosis system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu

    1989-01-01

    By using a model representing a relationship between the water quality parameter and the dose rate in primary coolant circuits of a water cooled reactor, forecasting for the feature dose rate and abnormality diagnosis for the water quality are conducted. The analysis model for forecasting the reactor water activity or the dose rate receives, as the input, estimated curves for the forecast Fe, Ni, Co concentration in feedwater or reactor water pH, etc. from the water quality data in the post and forecasts the future radioactivity or dose rate in the reactor water. By comparing the result of the forecast and the setting value such as an aimed value, it can be seen whether the water quality at present or estimated to be changed is satisfactory or not. If the quality is not satisfactory, it is possible to take an early countermeasure. Accordingly, the reactor water activity and the dose rate can be kept low. Further, the basic system constitution, diagnosis algorithm, indication, etc. are identical between BWR and PWR reactors, except for only the difference in the mass balance. (K.M.)

  18. Prototype water reuse system

    Science.gov (United States)

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    A small-scale water reuse system (150 L/min) was developed to create an environment for observing fish under a variety of temperature regimes. Key concerns of disease control, water quality, temperature control, and efficiency and case of operation were addressed. Northern squawfish (Ptychocheilus oregonensis) were held at loading densities ranging from 0.11 to 0.97 kg/L per minute and at temperatures from 10 to 20°C for 6 months with no disease problems or degradation ofwater quality in the system. The system required little maintenance during 2 years of operation.

  19. ANN Model for Predicting the Impact of Submerged Aquatic Weeds Existence on the Hydraulic Performance of Branched Open Channel System Accompanied by Water Structures

    International Nuclear Information System (INIS)

    Abdeen, Mostafa A. M.; Abdin, Alla E.

    2007-01-01

    The existence of hydraulic structures in a branched open channel system urges the need for considering the gradually varied flow criterion in evaluating the different hydraulic characteristics in this type of open channel system. Computations of hydraulic characteristics such as flow rates and water surface profiles in branched open channel system with hydraulic structures require tremendous numerical effort especially when the flow cannot be assumed uniform. In addition, the existence of submerged aquatic weeds in this branched open channel system adds to the complexity of the evaluation of the different hydraulic characteristics for this system. However, this existence of aquatic weeds can not be neglected since it is very common in Egyptian open channel systems. Artificial Neural Network (ANN) has been widely utilized in the past decade in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of submerged aquatic weeds existence on the hydraulic performance of branched open channel system. Specifically the current paper investigates a branched open channel system that consists of main channel supplies water to two branch channels that are infested by submerged aquatic weeds and have water structures such as clear over fall weirs and sluice gates. The results of this study showed that ANN technique was capable, with small computational effort and high accuracy, of predicting the impact of different infestation percentage for submerged aquatic weeds on the hydraulic performance of branched open channel system with two different hydraulic structures

  20. A Process for Evaluating Adverse Environmental Impacts by Cooling-Water System Entrainment at a California Power Plant

    Directory of Open Access Journals (Sweden)

    C.P. Ehrler

    2002-01-01

    Full Text Available A study to determine the effects of entrainment by the Diablo Canyon Power Plant (DCPP was conducted between 1996 and 1999 as required under Section 316(b of the Clean Water Act. The goal of this study was to present the U.S. Environmental Protection Agency (EPA and Central Coast Regional Water Quality Control Board (CCRWQCB with results that could be used to determine if any adverse environmental impacts (AEIs were caused by the operation of the plant’s cooling-water intake structure (CWIS. To this end we chose, under guidance of the CCRWQCB and their entrainment technical working group, a unique approach combining three different models for estimating power plant effects: fecundity hindcasting (FH, adult equivalent loss (AEL, and the empirical transport model (ETM. Comparisons of the results from these three approaches provided us a relative measure of confidence in our estimates of effects. A total of 14 target larval fish taxa were assessed as part of the DCPP 316(b. Example results are presented here for the kelp, gopher, and black-and-yellow (KGB rockfish complex and clinid kelpfish. Estimates of larval entrainment losses for KGB rockfish were in close agreement (FH is approximately equals to 550 adult females per year, AEL is approximately equals to 1,000 adults [male and female] per year, and ETM = larval mortality as high as 5% which could be interpreted as ca. 2,600 1 kg adult fish. The similar results from the three models provided confidence in the estimated effects for this group. Due to lack of life history information needed to parameterize the FH and AEL models, effects on clinid kelpfish could only be assessed using the ETM model. Results from this model plus ancillary information about local populations of adult kelpfish suggest that the CWIS might be causing an AEI in the vicinity of DCPP.

  1. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  2. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. A chloraminated drinking water distribution system (DWDS) simulator was operated throug...

  3. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph; Farooq, Aamir; Ghaffour, NorEddine

    2012-01-01

    . Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a

  4. Water electrolysis system

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao; Ikehara, Masahisa; Kataoka, Noboru; Ueno, Syuichi; Ishikawa, Nobuhide.

    1996-01-01

    Nissho Iwai Co. and Ebara Co. received an order for hydrogen and oxygen generating system (water electrolysis system) to be installed at Tokai-2 power station of The Japan Atomic Power Company, following the previous order at Tsuruga-1 where the gas injection from FY1996 is planned. Hydrogen gas generated by the system will be injected to coolant of boiling water reactors to improve corrosive environment. The system is being offered by a tripartite party, Nissho Iwai, Ebara, and Norsk Hydro Electrolysers of Norway (NHEL). NHEL provides a electrolyser unit, as a core of the system. Ebara provides procurement, installation, and inspection as well as total engineering work, under the basic design by NHEL which has over 60 years-experience in this field. (author)

  5. A cost-effectiveness analysis of water security and water quality: impacts of climate and land-use change on the River Thames system.

    Science.gov (United States)

    Whitehead, P G; Crossman, J; Balana, B B; Futter, M N; Comber, S; Jin, L; Skuras, D; Wade, A J; Bowes, M J; Read, D S

    2013-11-13

    The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.

  6. Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region

    Directory of Open Access Journals (Sweden)

    Jean-Ann James

    2016-12-01

    Full Text Available The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2 and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamily residential buildings.

  7. The impact of water quality changes on the socio-economic system of the Guadiana Estuary: an assessment of management options

    Directory of Open Access Journals (Sweden)

    Mª Helena E. Guimarães

    2012-09-01

    Full Text Available Tourism related to bathing has a growing economic importance in the Guadiana Estuary in southern Spain and Portugal. Polls of local public opinion showed an awareness of potential and current threats to the aquatic environment posed by regulation of river flow and untreated/poorly-treated urban sewage discharge. Because of this strong concern for water quality, it was selected as the policy issue for our application of the Systems Approach Framework (SAF. We developed an integrated simulation model of the Guadiana estuarine system in which the ecological system and socioeconomic components are linked by means of beach eco-label (Blue Flag Award through its dependence on fecal bacterial thresholds. We quantified the socioeconomic impacts of water quality through an Economic Base Model that is used to portray the effect of increasing employment on resident population as a result of change in coastal water quality. A Cost-Benefit Analysis provides monetary indicators for scenario evaluation. It includes a monetary valuation of changes in water quality on human welfare using a Contingent Valuation Method. Because the population has a strong seasonal influence on the wastewater discharge into the estuary, we were able to simulate the feedback loop between the human activities that control water quality and those that benefit from it. We organized a critical evaluation of our efforts with the stakeholders, which allowed us to better understand their perceptions of the strengths, limitations, and opportunities for future SAF applications. Here we describe several aspects of our efforts that demonstrate the potential value of the SAF to environmental managers and stakeholders in clarifying some of the causal mechanisms, management options, and costs for resolution of the conflictual problem between water quality and tourism in the Guadiana estuary.

  8. Power System Operations With Water Constraints

    Science.gov (United States)

    Qiu, F.; Wang, J.

    2015-12-01

    The interdependency between water and energy, although known for many decades, has not received enough attention until recent events under extreme weather conditions (especially droughts). On one hand, water and several types of energy supplies have become increasingly scarce; the demand on water and energy continues to grow. On the other hand, the climate change has become more and more disruptive (i.e., intensity and frequency of extreme events), causing severe challenges to both systems simultaneously. Water and energy systems have become deeply coupled and challenges from extreme weather events must be addressed in a coordinated way across the two systems.In this work, we will build quantitative models to capture the interactions between water and energy systems. We will incorporate water constraints in power system operations and study the impact of water scarcity on power system resilience.

  9. Indirect economic impacts in water supplies augmented with desalinated water

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Binning, Philip John

    2010-01-01

    Several goals can be considered when optimizing blends from multiple water resources for urban water supplies. Concentration-response relationships from the literature indicate that a changed water quality can cause impacts on health, lifetime of consumer goods and use of water additives like...... going from fresh water based to desalinated water supply. Large uncertainties prevent the current results from being used for or against desalination as an option for Copenhagen's water supply. In the future, more impacts and an uncertainty analysis will be added to the assessment....... softeners. This paper describes potential economic consequences of diluting Copenhagen's drinking water with desalinated water. With a mineral content at 50% of current levels, dental caries and cardiovascular diseases are expected to increase by 51 and 23% respectively. Meanwhile, the number of dish...

  10. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  11. Systems assessment of water savings impact of controlled environment agriculture (CEA) utilizing wirelessly networked Sense•Decide•Act•Communicate (SDAC) systems.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Jonathan T.; Baynes, Edward E., Jr.; Aguirre,Carlos (University of Texas at El Paso, El Paso, TX); Jordan, Jon (University of Arizona, Tucson, AZ); Giacomelli, Gene (University of Arizona, Tucson, AZ); Waggoner, Justin (New Mexico State University, Las Cruces, NM); Loest, Clint (New Mexico State University, Las Cruces, NM); Szumel, Leo; Nakaoka, Tyler; Pate, Ronald C.; Berry, Nina M.; Pohl, Phillip Isabio; Aguirre, Francisco Luis (Invernaderos y Maquinaria Aguirre, Cd., Aldama, Chihuahua, Mexico); Aguilar, Jose (University of Texas at El Paso, El Paso, TX); Gupta, Vipin P.; Ochoa, Juan (University of Texas at El Paso, El Paso, TX); Davis, Jesse Zehring; Ramos, Damian (University of Texas at El Paso, El Paso, TX)

    2005-02-01

    Reducing agricultural water use in arid regions while maintaining or improving economic productivity of the agriculture sector is a major challenge. Controlled environment agriculture (CEA, or, greenhouse agriculture) affords advantages in direct resource use (less land and water required) and productivity (i.e., much higher product yield and quality per unit of resources used) relative to conventional open-field practices. These advantages come at the price of higher operating complexity and costs per acre. The challenge is to implement and apply CEA such that the productivity and resource use advantages will sufficiently outweigh the higher operating costs to provide for overall benefit and viability. This project undertook an investigation of CEA for livestock forage production as a water-saving alternative to open-field forage production in arid regions. Forage production is a large consumer of fresh water in many arid regions of the world, including the southwestern U.S. and northern Mexico. With increasing competition among uses (agriculture, municipalities, industry, recreation, ecosystems, etc.) for limited fresh water supplies, agricultural practice alternatives that can potentially maintain or enhance productivity while reducing water use warrant consideration. The project established a pilot forage production greenhouse facility in southern New Mexico based on a relatively modest and passive (no active heating or cooling) system design pioneered in Chihuahua, Mexico. Experimental operations were initiated in August 2004 and carried over into early-FY05 to collect data and make initial assessments of operational and technical system performance, assess forage nutrition content and suitability for livestock, identify areas needing improvement, and make initial assessment of overall feasibility. The effort was supported through the joint leveraging of late-start FY04 LDRD funds and bundled CY2004 project funding from the New Mexico Small Business Technical

  12. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  13. Impact of RO-desalted water on distribution water qualities.

    Science.gov (United States)

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  14. Climate impact on BC Hydro's water resources

    International Nuclear Information System (INIS)

    Smith, D.; Rodenhuis, D.

    2008-01-01

    BC Hydro like many other hydro utilities has used the historical record of weather and runoff as the standard description the variability and uncertainty of the key weather drivers for its operation and planning studies. It has been conveniently assumed that this historical record is or has been statistically stationary and therefore is assumed to represent the future characteristics of climatic drivers on our system. This assumption is obviously no longer justifiable. To address the characterisation of future weather, BC Hydro has a multi-year a directed research program with the Pacific Climate Impacts Consortium to evaluate the impacts of climate change on the water resources that BC Hydro manages for hydropower generation and other uses. The objective of this program is to derive climate change adjusted meteorologic and hydrologic sequences suitable for use in system operations and planning studies. These climate-adjusted sequences then can be used to test system sensitivity to climate change scenarios relative to the baseline of the historical record. This paper describes BC Hydro's research program and the results achieved so far. (author)

  15. Environmental Impact Assessment in Sustainable Water Resources ...

    African Journals Online (AJOL)

    During project study and design, major environmental impacts of water ... should be identified and made available for decision makers and the public. ... remotely sensed data can be analysed in GIS environment to generate data and map the ...

  16. Distributed ecohydrological modelling to evaluate irrigation system performance in Sirsa district, India II: Impact of viable water management scenarios

    NARCIS (Netherlands)

    Singh, R.; Jhorar, R.K.; Dam, van J.C.; Feddes, R.A.

    2006-01-01

    This study focuses on the identification of appropriate strategies to improve water management and productivity in an irrigated area of 4270 km2 in India (Sirsa district). The field scale ecohydrological model SWAP in combination with field experiments, remote sensing and GIS has been applied in a

  17. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  18. A systems engineering analysis to examine the economic impact for treatment of tritiated water in the Hanford KE-Basin

    International Nuclear Information System (INIS)

    Villegas, A.; Clark, L.; Schmidt, A.

    1995-02-01

    Federal and state agencies have established a Tri-Party Agreement (TPA) to address some key environmental issues faced at the Hanford Site. Under the TPA, the Department of Energy is currently under a consent order to reduce the tritium concentration in the spent fuel storage basin for KE-Reactor from 3.0 μCi/L to 0.3 μCi/L in the KE spent fuel storage basin, starting in 1996. The 100KE and 100KW Area fuel storage basins (K-Basins) at Hanford were built in the early 1950s to receive and provide temporary storage for irradiated fuel from the now shutdown KE and KW production reactors. In 1977, the KE-Basin began to leak at a rate of 13.5 gpm (51 L/min.), but, decreased to 0.03 to 0.05 gpm (0. 13 to 0.19 L/min.) by 1980. In 1993, the leak increased to a rate of 0.42 gpm (1.6 L/min.). This engineering analysis examines the relative costs to reduce the tritium concentration KE-Basin water using a polyphosphazene polymer membrane under development at Pacific Northwest Laboratory. The estimated cost of using the membrane to reduce the tritium concentration is compared to three no-treatment alternatives that include: (1) disposing of the tritium-contaminated water directly to the Columbia River, (2) disposing of the contaminated water to the soil at the on-site Effluent Treatment Facility, and (3) disposing of the contaminated water by evaporation using solar evaporation ponds

  19. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  20. Perceived agricultural runoff impact on drinking water.

    Science.gov (United States)

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  1. Impact of water boundary layer diffusion on the nitrification rate of submerged biofilter elements from a recirculating aquaculture system

    DEFF Research Database (Denmark)

    Prehn, Jonas; Waul, Christopher Kevin; Pedersen, Lars-Flemming

    2012-01-01

    Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS’s. The aim of this study was to det...... biofilters. The results may thus have practical implications in relation to the design, operational strategy of RAS biofilters and how to optimize TAN removal in fixed film biofilter systems......Total ammonia nitrogen (TAN) removal by microbial nitrification is an essential process in recirculating aquaculture systems (RAS). In order to protect the aquatic environment and fish health, it is important to be able to predict the nitrification rates in RAS’s. The aim of this study...

  2. 4DVAR data Assimilation with the Regional Ocean Modeling System (ROMS): Impact on the Water Mass Distributions in the Yellow Sea

    Science.gov (United States)

    Lee, Joon-Ho; Kim, Taekyun; Pang, Ig-Chan; Moon, Jae-Hong

    2018-04-01

    In this study, we evaluate the performance of the recently developed incremental strong constraint 4-dimensional variational (4DVAR) data assimilation applied to the Yellow Sea (YS) using the Regional Ocean Modeling System (ROMS). Two assimilation experiments are compared: assimilating remote-sensed sea surface temperature (SST) and both the SST and in-situ profiles measured by shipboard CTD casts into a regional ocean modeling from January to December of 2011. By comparing the two assimilation experiments against a free-run without data assimilation, we investigate how the assimilation affects the hydrographic structures in the YS. Results indicate that the SST assimilation notably improves the model behavior at the surface when compared to the nonassimilative free-run. The SST assimilation also has an impact on the subsurface water structure in the eastern YS; however, the improvement is seasonally dependent, that is, the correction becomes more effective in winter than in summer. This is due to a strong stratification in summer that prevents the assimilation of SST from affecting the subsurface temperature. A significant improvement to the subsurface temperature is made when the in-situ profiles of temperature and salinity are assimilated, forming a tongue-shaped YS bottom cold water from the YS toward the southwestern seas of Jeju Island.

  3. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  4. Impact analysis of a water storage tank

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Jo, Jong Chull; Jeong, Sang Jin

    2006-01-01

    This study investigates the dynamic response characteristics of a structure impacted by a high speed projectile. The impact of a 300 kg projectile on a water storage tank is simulated by the general purpose computer codes ANSYS and LS-DYNA. Several methods to simulate the impact are considered and their results are compared. Based upon this, an alternative impact analysis method that equivalent to an explicit dynamic analysis is proposed. The effect of fluid on the responses of the tank is also addressed

  5. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  6. Mathematical model for water quality impact assessment and its computer application in coal mine water

    International Nuclear Information System (INIS)

    Sundararajan, M.; Chakraborty, M.K.; Gupta, J.P.; Saxena, N.C.; Dhar, B.B.

    1994-01-01

    This paper presents a mathematical model to assess the Water Quality Impact in coal mine or in river system by accurate and rational method. Algorithm, flowchart and computer programme have been developed upon this model to assess the quality of coal mine water. 3 refs., 2 figs., 2 tabs

  7. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph

    2012-12-28

    Water is a valuable resource throughout the world, especially in hot, dry climates and regions experiencing significant population growth. Supplies of fresh water are complicated by the economic and political conditions in many of these regions. Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a possible method to alleviate water scarcity issues. Using the results of a climate model that tested data collected from 2000 to 2010, we have identified areas in the world with the greatest collection potential. We gave special consideration to areas with known water scarcities, including the coastal regions of the Arabian Peninsula, Sub-Saharan Africa and South Asia. We found that the quality of the collected water is an important criterion in determining the potential uses for this water. Condensate water samples were collected from a few locations in Saudi Arabia and detailed characterizations were conducted to determine the quality of this water. We found that the quality of condensate water collected from various locations and types of air conditioners was very high with conductivities reaching as low as 18 μS/cm and turbidities of 0. 041 NTU. The quality of the collected condensate was close to that of distilled water and, with low-cost polishing treatments, such as ion exchange resins and electrochemical processes, the condensate quality could easily reach that of potable water. © 2012 Springer Science+Business Media Dordrecht.

  8. Impacts of thermal and chemical discharges to surface water

    International Nuclear Information System (INIS)

    Stober, Q.J.

    1974-01-01

    Various aspects of thermal and chemical discharges to surface water are outlined. The major impacts of nuclear power plants on aquatic resources are disruption during construction, intake of cooling water, discharge problems, and interactions with other water users. The following topics are included under the heading, assessment of aquatic ecology: identification of flora and fauna; abundance of aquatic organisms; species-environment relationships; and identification of pre-existing environmental stress. The following topics are included under the heading, environmental effects of plant operation: entrapment of fish by cooling water; passage of plankton through cooling system; discharge area and thermal plume; chemical effluents; and plant construction. (U.S.)

  9. Impact of Climate Change on Water Resources in Taiwan

    OpenAIRE

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future wat...

  10. Growth of Legionella anisa in a model drinking water system to evaluate different shower outlets and the impact of cast iron rust.

    Science.gov (United States)

    van der Lugt, Wilco; Euser, Sjoerd M; Bruin, Jacob P; Den Boer, Jeroen W; Walker, Jimmy T; Crespi, Sebastian

    2017-11-01

    Legionella continues to be a problem in water systems. This study investigated the influence of different shower mixer faucets, and the influence of the presence of cast iron rust from a drinking water system on the growth of Legionella. The research is conducted using a model of a household containing four drinking water systems. All four systems, which contained standard plumbing components including copper pipes and a water heater, were filled with unchlorinated drinking water. Furthermore, all systems had three different shower faucets: (A) a stainless-steel faucet, (B) a brass-ceramic faucet, and (C) a brass thermostatic faucet. System 1 was solely filled with drinking water. System 2 was filled with drinking water, and cast iron rust. System 3 was contaminated with Legionella, and system 4 was contaminated with a Legionella, and cast iron rust. During a period of 34 months, 450 cold water samples were taken from 15 sample points of the four drinking water systems, and tested for Legionella according to the Dutch Standard (NEN 6265). In system 4, with added cast iron rust, the stainless-steel mixer faucet (A) had the highest concentration of Legionella at >4.3log10CFU/l (>20,000CFU/l) and was positive in 46.4% of samples. In contrast, the stainless-steel mixer faucet (A) of system 3 without cast iron rust showed 14.3% positive samples with a maximum concentration of 3.9log10CFU/l (7600CFU/l) Legionella. Additionally, both contaminated systems (3 and 4), with the brass thermostatic faucet (C), tested positive for Legionella. System 3 in 85.7% of the samples, with a maximum concentration of 4.38log10CFU/l (24,200CFU/l), and system 4 in 64.3% of the samples with a maximum concentration of 4.13log10CFU/l (13.400CFU/l). These results suggest that both the type of faucet used in a drinking water system and the presence or absence of cast iron rust influence the growth of Legionella. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. An Analysis on the Economical Impacts from the Establishment of Environment-friendly Taxation System I concentrating on a Subsidy for Water Supply

    Energy Technology Data Exchange (ETDEWEB)

    Min, D.K.; Cho, S.H.; Kang, M.O.; Lim, H.J. [Korea Environment Institute, Seoul (Korea)

    2001-12-01

    Recently, rapid economic growth and water shortage have become of growing concern. The relationship between the economy and water resources is not seemingly apparent, but in the environmental context, there exists a close interaction. By and large, government policies emphasizing economic issues can very well be subject to neglecting environmental issues. In addition, it is a well-known fact that supply side management policies have a negative impact on the environmental sector. The primary purpose of this study is to investigate the possibility of securing economic growth and improving environmental quality simultaneously by taking a static general equilibrium approach. Implementation of such policy is initiated by means of cutting environmentally unfriendly subsidies to water sector (water supply and sewage). The revenue from the reduction of subsidies is associated with indirect taxes in production sectors, which consequently reduces indirect tax rates. The study has revealed a type of double dividend effect: reduction of water supply and increase of gross domestic products (GDP). The GDP changes 0.299% - 0.561% according to variations of elasticities and the way revenue is linked with indirect taxes applied to scenarios. Meanwhile, the impacts of cutting subsidies in the water sector result in the significant increase of water prices and the reduction of water output respectively. The output reduction is proportional to values of elasticity utilized; starting a 10% for zero up to 60%. Several policy implications can be inferred from the results of this study. Taking in account the long-term effects of the subsidy-cut policy, the study predicts more output reduction in the water sector since, economically-speaking, long-term elasticities are larger than the short-term ones, like that in the present study. Hence, a current water policy that is under-priced, so as to allow over-consumption, should be changed in order for the society to achieve economic growth and

  12. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  13. Energy system impacts of desalination in Jordan

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Lund, Henrik; Mathiesen, Brian Vad

    2014-01-01

    and Multi Stage Flash (MSF) desalination driven by Cogeneration of Heat and Power (CHP). The two systems impact the energy systems in different ways due to the technologies’ particular characteristics. The systems are analyses in the energy systems analysis model EnergyPLAN to determine the impacts......Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst...... others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigates a Jordanian energy scenario with two different desalination technologies; reverse osmosis (RO) driven by electricity...

  14. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  15. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  16. Orion Ground Test Article Water Impact Tests: Photogrammetric Evaluation of Impact Conditions

    Science.gov (United States)

    Vassilakos, Gregory J.; Mark, Stephen D.

    2018-01-01

    The Ground Test Article (GTA) is an early production version of the Orion Crew Module (CM). The structural design of the Orion CM is being developed based on LS-DYNA water landing simulations. As part of the process of confirming the accuracy of LS-DYNA water landing simulations, the GTA water impact test series was conducted at NASA Langley Research Center (LaRC) to gather data for comparison with simulations. The simulation of the GTA water impact tests requires the accurate determination of the impact conditions. To accomplish this, the GTA was outfitted with an array of photogrammetry targets. The photogrammetry system utilizes images from two cameras with a specialized tracking software to determine time histories for the 3-D coordinates of each target. The impact conditions can then be determined from the target location data.

  17. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  18. Modeling electric load and water consumption impacts from an integrated thermal energy and rainwater storage system for residential buildings in Texas

    International Nuclear Information System (INIS)

    Upshaw, Charles R.; Rhodes, Joshua D.; Webber, Michael E.

    2017-01-01

    Highlights: • Hydronic integrated rainwater thermal storage (ITHERST) system concept presented. • ITHERST system modeled to assess peak electric load shifting and water savings. • Case study shows 75% peak load reduction and 9% increase in energy consumption. • Potable rainwater collection could provide ∼50–90% of water used for case study. - Abstract: The United States’ built environment is a significant direct and indirect consumer of energy and water. In Texas, and other parts of the Southern and Western US, air conditioning loads, particularly from residential buildings, contribute significantly to the peak electricity load on the grid, straining transmission. In parallel, water resources in these regions are strained by growing populations and shrinking supplies. One potential method to address both of these issues is to develop integrated thermal energy and auxiliary water (e.g. rainwater, greywater, etc.) storage and management systems that reduce peak load and freshwater consumption. This analysis focuses on a proposed integrated thermal energy and rainwater storage (ITHERST) system that is incorporated into a residential air-source chiller/heat pump with hydronic distribution. This paper describes a step-wise hourly thermodynamic model of the thermal storage system to assess on-peak performance, and a daily volume-balance model of auxiliary water collection and consumption to assess water savings potential. While the model is generalized, this analysis uses a case study of a single family home in Austin, Texas to illustrate its capabilities. The results indicate this ITHERST system could reduce on-peak air conditioning electric power demand by over 75%, with increased overall electric energy consumption of approximately 7–9%, when optimally sized. Additionally, the modeled rainwater collection reduced municipal water consumption by approximately 53–89%, depending on the system size.

  19. Impacts of extreme flooding on riverbank filtration water quality.

    Science.gov (United States)

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) 400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration

  20. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Pressurized water reactor systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1975-01-01

    Design and mode of operation of the main PWR components are described: reactor core, pressure vessel and internals, cooling systems with pumps and steam generators, ancillary systems, and waste processing. (TK) [de

  2. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  3. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand

    Directory of Open Access Journals (Sweden)

    Shabbir H. Gheewala

    2014-06-01

    Full Text Available The proliferation of food, feed and biofuels demands promises to increase pressure on water competition and stress, particularly for Thailand, which has a large agricultural base. This study assesses the water footprint of ten staple crops grown in different regions across the country and evaluates the impact of crop water use in different regions/watersheds by the water stress index and the indication of water deprivation potential. The ten crops include major rice, second rice, maize, soybean, mungbean, peanut, cassava, sugarcane, pineapple and oil palm. The water stress index of the 25 major watersheds in Thailand has been evaluated. The results show that there are high variations of crop water requirements grown in different regions due to many factors. However, based on the current cropping systems, the Northeastern region has the highest water requirement for both green water (or rain water and blue water (or irrigation water. Rice (paddy farming requires the highest amount of irrigation water, i.e., around 10,489 million m3/year followed by the maize, sugarcane, oil palm and cassava. Major rice cultivation induces the highest water deprivation, i.e., 1862 million m3H2Oeq/year; followed by sugarcane, second rice and cassava. The watersheds that have high risk on water competition due to increase in production of the ten crops considered are the Mun, Chi and Chao Phraya watersheds. The main contribution is from the second rice cultivation. Recommendations have been proposed for sustainable crops production in the future.

  4. Monitoring Impacts of Long-Term Drought on Surface Water Quantity and Quality in Middle Rio Grande Basin Reservoirs Using Multispectral Remote Sensing and Geographic Information Systems

    Science.gov (United States)

    Mubako, S. T.; Hargrove, W. L.

    2017-12-01

    , currents, and relationships to water input to the two reservoirs. The study contributes to a better understanding of anthropogenic and climatic impacts on reservoir surface area fluctuations, water quality and quantity impacts due to evaporation and consumptive use, and provides historical and baseline data for future water management decisions.

  5. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  6. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  7. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    OpenAIRE

    Rygaard, Martin

    2011-01-01

    While integrated assessments of sustainability of water systems are largely focused on quantity issues, chemical use, and energy consumption, effects of the supplied water quality are often overlooked. Drinking water quality affects corrosion rates, human health, applicability of water and aesthetics. Even small changes in the chemical composition of water may accumulate large impacts on city scale. Here, a method for integrated assessment of water quality is presented. Based on dose-response...

  8. Spring cleaning: rural water impacts, valuation, and property rights institutions.

    Science.gov (United States)

    Kremer, Michael; Leino, Jessica; Miguel, Edward; Zwane, Alix Peterson

    2011-01-01

    Using a randomized evaluation in Kenya, we measure health impacts of spring protection, an investment that improves source water quality. We also estimate households' valuation of spring protection and simulate the welfare impacts of alternatives to the current system of common property rights in water, which limits incentives for private investment. Spring infrastructure investments reduce fecal contamination by 66%, but household water quality improves less, due to recontamination. Child diarrhea falls by one quarter. Travel-cost based revealed preference estimates of households' valuations are much smaller than both stated preference valuations and health planners' valuations, and are consistent with models in which the demand for health is highly income elastic. We estimate that private property norms would generate little additional investment while imposing large static costs due to above-marginal-cost pricing, private property would function better at higher income levels or under water scarcity, and alternative institutions could yield Pareto improvements.

  9. Impact of disinfection on drinking water biofilm bacterial community.

    Science.gov (United States)

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  10. Alternative electrical transmission systems and their environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.

    1977-08-01

    A general description is provided of electrical transmission systems as an aid in determining their environmental impacts. Alternating current, direct current, overhead systems, underground systems, and water crossings are treated. The cost, performance, reliability, safety, and environmental impact of these systems are compared.

  11. Water-energy nexus: Impact on electrical energy conversion and mitigation by smart water resources management

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Sansavini, Giovanni

    2017-01-01

    Highlights: • The issues to energy conversion stemming from the water-energy nexus are investigated. • The objective is to minimize power curtailments caused by critical river water conditions. • A water-energy nexus model for smart management of water resources is developed. • Systemic risks to energy conversion stem from critical temperature and flow regimes. • Full coordination of the hydrologically-linked units provides the most effective strategy. - Abstract: The water-energy nexus refers to the water used to generate electricity and to the electric energy used to collect, clean, move, store, and dispose of water. Water is used in all stages of electric energy conversion making power systems vulnerable to water scarcity and warming. In particular, a water flow decrease and temperature increase in rivers can significantly limit the generation of electricity. This paper investigates the issues to energy conversion stemming from the water-energy nexus and mitigates them by developing a model for the smart utilization of water resources. The objective is to minimize power curtailments caused by a river water flow decrease and a temperature increase. The developed water-energy nexus model integrates the operational characteristics of hydro power plants, the environmental conditions, the river water temperature prediction and thermal load release in river bodies. The application to a hydraulic cascade of hydro and a thermal power plants under drought conditions shows that smart water management entails a significant reduction of power curtailments. In general, the full coordination of the power outputs of the units affected by the hydrological link provides the most effective mitigations of the potential issues stemming from the water-energy nexus. Finally, critical temperature and flow regimes are identified which severely impact the energy conversion and may cause systemic risks in case the generators in one region must be simultaneously curtailed.

  12. Comparative Study on Water Impact Problem

    OpenAIRE

    Yang, Liang; Yang, Hao; Yan, Shiqiang; Ma, Qingwei; Bihnam, Maria

    2016-01-01

    This paper presents a comparative numerical study for the water impact problems due to dropping of triangular wedges or ship sections. In the numerical investigation, both the dynamic mesh technique and immersed boundary method adopting fixed Cartesian grids have been adopted in order to conform to the motion of the structure. For the former, a multiple-phase solver with the volume of fluid for identifying the free surface is implemented. In the simulation using this method, both the compress...

  13. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  14. Energy system impacts of desalination in Jordan

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2014-02-01

    Full Text Available Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigates a Jordanian energy scenario with two different desalination technologies; reverse osmosis (RO driven by electricity and Multi Stage Flash (MSF desalination driven by Cogeneration of Heat and Power (CHP. The two systems impact the energy systems in different ways due to the technologies’ particular characteristics. The systems are analyses in the energy systems analysis model EnergyPLAN to determine the impacts on energy system performance. Results indicate that RO and MSF are similar in fuel use. While there is no use of waste heat from condensing mode plants, efficiencies for CHP and MSF are not sufficiently good to results in lower fuel usage than RO. The Jordanian energy system is somewhat inflexible giving cause to Critical Excess Electricity Production (CEEP even at relatively modest wind power penetrations. Here RO assists the energy system in decreasing CEEP – and even more if water storage is applied.

  15. The impact of river water intrusion on trace metal cycling in karst aquifers: an example from the Floridan aquifer system at Madison Blue Spring, Florida

    Science.gov (United States)

    Brown, A. L.; Martin, J. B.; Screaton, E.; Spellman, P.; Gulley, J.

    2011-12-01

    Springs located adjacent to rivers can serve as recharge points for aquifers when allogenic runoff increases river stage above the hydraulic head of the spring, forcing river water into the spring vent. Depending on relative compositions of the recharged water and groundwater, the recharged river water could be a source of dissolved trace metals to the aquifer, could mobilize solid phases such as metal oxide coatings, or both. Whether metals are mobilized or precipitated should depend on changes in redox and pH conditions as dissolved oxygen and organic carbon react following intrusion of the river water. To assess how river intrusion events affect metal cycling in springs, we monitored a small recharge event in April 2011 into Madison Blue Spring, which discharges to the Withlacoochee River in north-central Florida. Madison Blue Spring is the entrance to a phreatic cave system that includes over 7.8 km of surveyed conduits. During the event, river stage increased over base flow conditions for approximately 25 days by a maximum of 8%. Intrusion of the river water was monitored with conductivity, temperature and depth sensors that were installed within the cave system and adjacent wells. Decreased specific conductivity within the cave system occurred for approximately 20 days, reflecting the length of time that river water was present in the cave system. During this time, grab samples were collected seven times over a period of 34 days for measurements of major ion and trace metal concentrations at the spring vent and at Martz sink, a karst window connected to the conduit system approximately 150 meters from the spring vent. Relative fractions of surface water and groundwater were estimated based on Cl concentrations of the samples, assuming conservative two end-member mixing during the event. This mixing model indicates that maximum river water contribution to the groundwater system was approximately 20%. River water had concentrations of iron, manganese, and other

  16. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    Science.gov (United States)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  17. Deterioration and optimal rehabilitation modelling for urban water distribution systems

    NARCIS (Netherlands)

    Zhou, Y.

    2018-01-01

    Pipe failures in water distribution systems can have a serious impact and hence it’s important to maintain the condition and integrity of the distribution system. This book presents a whole-life cost optimisation model for the rehabilitation of water distribution systems. It combines a pipe breakage

  18. Amoxicillin in a biological water recovery system

    International Nuclear Information System (INIS)

    Morse, A.; Jackson, A.; Rainwater, K.; Pickering, K.

    2002-01-01

    Pharmaceuticals are new contaminants of concern in the aquatic environment, having been identified in groundwater, surface water, and residential tap water. Possible sources of pharmaceuticals include household wastewaters, runoff from feedlots, or waste discharges from pharmaceutical manufacturing plants. When surface water or groundwater supplies impacted by pharmaceuticals are used in drinking water production, the contaminants may reduce drinking water quality. Many pharmaceuticals, such as amoxicillin, pass through the body largely unmetabolized and directly enter wastewater collection systems. Pharmaceuticals are designed to persist in the body long enough to have the desired therapeutic effect. Therefore, they may also have the ability to persist in the environment (Seiler et al, 1999). The purpose of this work is to determine the overall transformation potential of a candidate pharmaceutical in wastewater treatment with specific emphasis on recycle systems. Amoxicillin is the selected pharmaceutical agent, an orally absorbed broad-spectrum antibiotic with a variety of clinical uses including ear, nose, and throat infections and lower respiratory tract infections. Experiments were conducted using an anaerobic reactor (with NO 3 - and NO 2 - as the e - acceptors) followed by a two-phase nitrifying tubular reactor. Influent composed of water, urine and surfactant was spiked with amoxicillin and fed into the wastewater recycle system. The concentration of amoxicillin in the feed and effluent was quantified using an HPLC. Results from this study include potential for long-term buildup in recycled systems, accumulation of breakdown products and possible transfer of antibiotic resistance to microorganisms in the system effluent. In addition, the results of this study may provide information on contamination potential for communities that are considering supplementing drinking water supplies with recovered wastewater or for entities considering a closed loop

  19. Water-quality impact assessment for hydropower

    International Nuclear Information System (INIS)

    Daniil, E.I.; Gulliver, J.; Thene, J.R.

    1991-01-01

    A methodology to assess the impact of a hydropower facility on downstream water quality is described. Negative impacts can result from the substitution of discharges aerated over a spillway with minimally aerated turbine discharges that are often withdrawn from lower reservoir levels, where dissolved oxygen (DO) is typically low. Three case studies illustrate the proposed method and problems that can be encountered. Historic data are used to establish the probability of low-dissolved-oxygen occurrences. Synoptic surveys, combined with downstream monitoring, give an overall picture of the water-quality dynamics in the river and the reservoir. Spillway aeration is determined through measurements and adjusted for temperature. Theoretical computations of selective withdrawal are sensitive to boundary conditions, such as the location of the outlet-relative to the reservoir bottom, but withdrawal from the different layers is estimated from measured upstream and downstream temperatures and dissolved-oxygen profiles. Based on field measurements, the downstream water quality under hydropower operation is predicted. Improving selective withdrawal characteristics or diverting part of the flow over the spillway provided cost-effective mitigation solutions for small hydropower facilities (less than 15 MW) because of the low capital investment required

  20. The impact of water vapour on climate

    International Nuclear Information System (INIS)

    Zittel, W.; Altmann, M.

    1994-01-01

    Do water vapour emissions from a solar hydrogen system affect the climate? This question was investigated by the authors. They state: The comparison with natural emissions by evaporation shows that emissions caused by energy generation, regardless of whether they stem from fossil, nuclear or regenerative energy systems, are negligible with a proportion of 0.005%. On the other hand, carbon dioxide emissions with a proportion of 4%, constitute a factor which already impedes the natural cycle. (orig.) [de

  1. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  2. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  3. Removing the impact of water abstractions on flow duration curves

    Science.gov (United States)

    Masoero, Alessandro; Ganora, Daniele; Galeati, Giorgio; Laio, Francesco; Claps, Pierluigi

    2015-04-01

    Changes and interactions between human system and water cycle are getting increased attention in the scientific community. Commonly discharge data needed for water resources studies were collected close to urban or industrial settlements, thus in environments where the interest for surveying was not merely scientific, but also for socio-economical purposes. Working in non-natural environments we must take into account human impacts, like the one due to water intakes for irrigation or hydropower generation, while assessing the actual water availability and variability in a river. This can became an issue in alpine areas, where hydropower exploitation is heavy and it is common to have water abstraction before a gauge station. To have a gauge station downstream a water intake can be useful to survey the environmental flow release and to record the maximum flood values, which should not be affected by the water abstraction. Nevertheless with this configuration we are unable to define properly the water volumes available in the river, information crucial to assess low flows and investigate drought risk. This situation leads to a substantial difference between observed data (affected by the human impact) and natural data (as would have been without abstraction). A main issue is how to correct these impacts and restore the natural streamflow values. The most obvious and reliable solution would be to ask for abstraction data to water users, but these data are hard to collect. Usually they are not available, because not public or not even collected by the water exploiters. A solution could be to develop a rainfall-run-off model of the basin upstream the gauge station, but this approach needs a great number of data and parameters Working in a regional framework and not on single case studies, our goal is to provide a consistent estimate of the non-impacted statistics of the river (i.e. mean value, L-moments of variation and skewness). We proposed a parsimonious method, based

  4. Enhancing Resilience to Water-Related Impacts of Climate Change ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Enhancing Resilience to Water-Related Impacts of Climate Change in Uganda's ... technologies (ICTs) can be used to help communities address water stress. ... This work will support the Uganda Ministry of Water and Environment's efforts to ...

  5. Integrated Vulnerability and Impacts Assessment for Natural and Engineered Water-Energy Systems in the Southwest and Southern Rocky Mountain Region

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wolfsberg, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Middleton, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-01

    In the Southwest and Southern Rocky Mountains (SWSRM), energy production, energy resource extraction, and other high volume uses depend on water supply from systems that are highly vulnerable to extreme, coupled hydro-ecosystem-climate events including prolonged drought, flooding, degrading snow cover, forest die off, and wildfire. These vulnerabilities, which increase under climate change, present a challenge for energy and resource planners in the region with the highest population growth rate in the nation. Currently, analytical tools are designed to address individual aspects of these regional energy and water vulnerabilities. Further, these tools are not linked, severely limiting the effectiveness of each individual tool. Linking established tools, which have varying degrees of spatial and temporal resolution as well as modeling objectives, and developing next-generation capabilities where needed would provide a unique and replicable platform for regional analyses of climate-water-ecosystem-energy interactions, while leveraging prior investments and current expertise (both within DOE and across other Federal agencies).

  6. Impact of Climate Change on Water Resources in Taiwan

    Directory of Open Access Journals (Sweden)

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    Full Text Available This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future water needs, regional reservoir effective capacity and renewable water resource volume. This paper uses three water resource assessment indicators: the annual water utilization ratio indicator, the water shortage indicator and the extreme event occurrence indicator. Through fuzzy comprehensive assessment, we divide the evaluation set into five levels: very good (L1, good (L2, fair (L3, poor (L4 and very poor (L5. Results indicate that, given the effects of future climate change (2080 - 2099 and the increase in water demand, future water resources conditions in northern and eastern Taiwan will not be significantly different from historical levels (1979 - 1998 and will maintain a ¡§good¡¨ level (L2, while the conditions in southern Taiwan will visibly deteriorate from its historical ¡§fair¡¨ level (L3 to ¡§poor¡¨ (L4; and the future conditions for central Taiwan will be ¡§poor¡¨ (L4. The initiation of adaptation options for water management in southern and central Taiwan would be needed by increasing reservoir capacity and reducing overall water use.

  7. Big Data and Heath Impacts of Drinking Water Quality Violation

    Science.gov (United States)

    Allaire, M.; Zheng, S.; Lall, U.

    2017-12-01

    Health impacts of drinking water quality violations are only understood at a coarse level in the United States. This limits identification of threats to water security in communities across the country. Substantial under-reporting is suspected due to requirements at U.S. public health institutes that water borne illnesses be confirmed by health providers. In the era of `big data', emerging information sources could offer insight into waterborne disease trends. In this study, we explore the use of fine-resolution sales data for over-the-counter medicine to estimate the health impacts of drinking water quality violations. We also demonstrate how unreported water quality issues can be detected by observing market behavior. We match a panel of supermarket sales data for the U.S. at the weekly level with geocoded violations data from 2006-2015. We estimate the change in anti-diarrheal medicine sale due to drinking water violations using a fixed effects model. We find that water quality violations have considerable effects on medicine sales. Sales nearly double due to Tier 1 violations, which pose an immediate health risk, and sales increase 15.1 percent due to violations related to microorganisms. Furthermore, our estimate of diarrheal illness cases associated with water quality violations indicates that the Centers for Disease Control and Prevention (CDC) reporting system may only capture about one percent of diarrheal cases due to impaired water. Incorporating medicine sales data could offer national public health institutes a game-changing way to improve monitoring of disease outbreaks. Since many disease cases are not formally diagnosed by health providers, consumption information could provide additional information to remedy under-reporting issues and improve water security in communities across the United States.

  8. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  9. Sodium-water reaction product flow system

    Energy Technology Data Exchange (ETDEWEB)

    Shirataki, K; Wada, H

    1978-11-18

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system.

  10. Sodium-water reaction product flow system

    International Nuclear Information System (INIS)

    Shirataki, Koji; Wada, Hozumi.

    1978-01-01

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system. (Yoshihara, H.)

  11. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  12. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  13. Virtual water: Virtuous impact? : the unsteady state of virtual water

    NARCIS (Netherlands)

    Roth, D.; Warner, J.F.

    2008-01-01

    “Virtual water,” water needed for crop production, is now being mainstreamed in the water policy world. Relying on virtual water in the form of food imports is increasingly recommended as good policy for water-scarce areas. Virtual water globalizes discussions on water scarcity, ecological

  14. Hydrologic Engineering Center River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement

    Science.gov (United States)

    2017-09-18

    ER D C/ EL T R- 17 -1 8 Missouri River Recovery Program (MRRP) Hydrologic Engineering Center-River Analysis System (HEC-RAS) Water...Zhonglong Zhang and Billy E. Johnson September 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research...and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and

  15. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Water supply impacts of nuclear fall

    International Nuclear Information System (INIS)

    Hobbs, B.F.; Luo, Y.; Maciejowski, M.E.; Chester, C.V.

    1989-01-01

    “Nuclear winter,” more properly called “nuclear fall,” could be caused by injection of large amounts of dust into the atmosphere. Besides causing a decrease in temperature, it could be accompanied by “nuclear drought,” a catastrophic decrease in precipitation. Dry land agriculture would then be impossible, and municipal, industrial, and irrigation water supplies would be diminished. It has been argued that nuclear winter/fall poses a much greater threat to human survival than do fall out or the direct impacts of a conflict. However, this does not appear to be true, at least for the U.S. Even under the unprecedented drought that could result from nuclear fall, water supplies would be available for many essential activities. For the most part, ground water supplies would be relatively invulnerable to nuclear drought, and adequate surface supplies would be available for potable uses. This assumes that conveyance facilities and power supplies survive a conflict largely intact or can be repaired

  17. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    Science.gov (United States)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  18. Water maser emission from exoplanetary systems

    Science.gov (United States)

    Cosmovici, C. B.; Pogrebenko, S.

    2018-01-01

    Since the first discovery of a Jupiter-mass planet in 1995 more than 2000 exo-planets have been found to exist around main sequence stars. The detection techniques are based on the radial velocity method (which involves the measurement of the star's wobbling induced by the gravitational field of the orbiting giant planets) or on transit photometry by using space telescopes (Kepler, Corot, Hubble and Spitzer) outside the absorbing Earth atmosphere. From the ground, as infrared observations are strongly limited by atmospheric absorption, radioastronomy offers almost the only possible way to search for water presence and abundance in the planetary atmospheres of terrestrial-type planets where life may evolve. Following the discovery in 1994 of the first water maser emission in the atmosphere of Jupiter induced by a cometary impact, our measurements have shown that the water maser line at 22 GHz (1.35 cm) can be used as a powerful diagnostic tool for water search outside the solar system, as comets are able to deliver considerable amounts of water to planets raising the fascinating possibility of extraterrestrial life evolution. Thus in 1999 we started the systematic search for water on 35 different targets up to 50 light years away from the Sun. Here we report the first detection of the water maser emission from the exoplanetary systems Epsilon Eridani, Lalande 21185 and Gliese 581. We have shown the peculiar feasibility of water detection and its importance in the search for exoplanetary systems especially for the Astrobiology programs, given the possibility of long period observations using powerful radiotelescopes equipped with adequate spectrometers.

  19. A Benchmarking System for Domestic Water Use

    Directory of Open Access Journals (Sweden)

    Dexter V. L. Hunt

    2014-05-01

    Full Text Available The national demand for water in the UK is predicted to increase, exacerbated by a growing UK population, and home-grown demands for energy and food. When set against the context of overstretched existing supply sources vulnerable to droughts, particularly in increasingly dense city centres, the delicate balance of matching minimal demands with resource secure supplies becomes critical. When making changes to "internal" demands the role of technological efficiency and user behaviour cannot be ignored, yet existing benchmarking systems traditionally do not consider the latter. This paper investigates the practicalities of adopting a domestic benchmarking system (using a band rating that allows individual users to assess their current water use performance against what is possible. The benchmarking system allows users to achieve higher benchmarks through any approach that reduces water consumption. The sensitivity of water use benchmarks are investigated by making changes to user behaviour and technology. The impact of adopting localised supplies (i.e., Rainwater harvesting—RWH and Grey water—GW and including "external" gardening demands are investigated. This includes the impacts (in isolation and combination of the following: occupancy rates (1 to 4; roof size (12.5 m2 to 100 m2; garden size (25 m2 to 100 m2 and geographical location (North West, Midlands and South East, UK with yearly temporal effects (i.e., rainfall and temperature. Lessons learnt from analysis of the proposed benchmarking system are made throughout this paper, in particular its compatibility with the existing Code for Sustainable Homes (CSH accreditation system. Conclusions are subsequently drawn for the robustness of the proposed system.

  20. Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy.

    Science.gov (United States)

    Hu, Jun; Dong, Huiyu; Xu, Qiang; Ling, Wencui; Qu, Jiuhui; Qiang, Zhimin

    2018-02-01

    Switch of source water may induce "red water" episodes. This study investigated the impacts of water quality on iron release, dissolved oxygen consumption (ΔDO), corrosion scale evolution and bacterial community succession in cast iron pipes used for drinking water distribution at pilot scale, and proposed a source water switch strategy accordingly. Three sets of old cast iron pipe section (named BP, SP and GP) were excavated on site and assembled in a test base, which had historically transported blended water, surface water and groundwater, respectively. Results indicate that an increasing Cl - or SO 4 2- concentration accelerated iron release, but alkalinity and calcium hardness exhibited an opposite tendency. Disinfectant shift from free chlorine to monochloramine slightly inhibited iron release, while the impact of peroxymonosulfate depended on the source water historically transported in the test pipes. The ΔDO was highly consistent with iron release in all three pipe systems. The mass ratio of magnetite to goethite in the corrosion scales of SP was higher than those of BP and GP and kept almost unchanged over the whole operation period. Siderite and calcite formation confirmed that an increasing alkalinity and hardness inhibited iron release. Iron-reducing bacteria decreased in the BP but increased in the SP and GP; meanwhile, sulfur-oxidizing, sulfate-reducing and iron oxidizing bacteria increased in all three pipe systems. To avoid the occurrence of "red water", a source water switch strategy was proposed based on the difference between local and foreign water qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Diffuse nitrogen loss simulation and impact assessment of stereoscopic agriculture pattern by integrated water system model and consideration of multiple existence forms

    Science.gov (United States)

    Zhang, Yongyong; Gao, Yang; Yu, Qiang

    2017-09-01

    Agricultural nitrogen loss becomes an increasingly important source of water quality deterioration and eutrophication, even threatens water safety for humanity. Nitrogen dynamic mechanism is still too complicated to be well captured at watershed scale due to its multiple existence forms and instability, disturbance of agricultural management practices. Stereoscopic agriculture is a novel agricultural planting pattern to efficiently use local natural resources (e.g., water, land, sunshine, heat and fertilizer). It is widely promoted as a high yield system and can obtain considerable economic benefits, particularly in China. However, its environmental quality implication is not clear. In our study, Qianyanzhou station is famous for its stereoscopic agriculture pattern of Southern China, and an experimental watershed was selected as our study area. Regional characteristics of runoff and nitrogen losses were simulated by an integrated water system model (HEQM) with multi-objective calibration, and multiple agriculture practices were assessed to find the effective approach for the reduction of diffuse nitrogen losses. Results showed that daily variations of runoff and nitrogen forms were well reproduced throughout watershed, i.e., satisfactory performances for ammonium and nitrate nitrogen (NH4-N and NO3-N) loads, good performances for runoff and organic nitrogen (ON) load, and very good performance for total nitrogen (TN) load. The average loss coefficient was 62.74 kg/ha for NH4-N, 0.98 kg/ha for NO3-N, 0.0004 kg/ha for ON and 63.80 kg/ha for TN. The dominating form of nitrogen losses was NH4-N due to the applied fertilizers, and the most dramatic zones aggregated in the middle and downstream regions covered by paddy and orange orchard. In order to control diffuse nitrogen losses, the most effective practices for Qianyanzhou stereoscopic agriculture pattern were to reduce farmland planting scale in the valley by afforestation, particularly for orchard in the

  2. Environmental impact of hydropower systems

    International Nuclear Information System (INIS)

    Malai, Marius

    1996-01-01

    The installed hydropower potential of Romania is evaluated to 15,700 MW and 42 billion MWh/year power generation. Only 39% of this potential are currently being utilized. In this note, the impact of Somes-Tarnita and Mariselu-Cluj hydropower systems on the environment is presented. Also, the socio-economic effects on the local communities are considered. These two hydropower systems supply a total electric power of 470 GWh/year

  3. Environmental impact of by pass channel of surface waters

    International Nuclear Information System (INIS)

    Vismara, R.; Renoldi, M.; Torretta, V.

    1996-01-01

    In this paper are analyzed the impacts generated by surface waters drawing on river course. This impacts are generated also by reduction of water flow. This effect is most important for the presence of biological community: algae, fiches, micro invertebrates. Are also reported regional laws, water master plan of Lombardia region

  4. Evaluation of Climate Change Impact on Drinking Water Treatment Plant Operation

    Science.gov (United States)

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and, therefore, will influence the design and operation of current and future drinking water treatment systems. Some of these impacts may lead to violations ...

  5. Could the Hokusai Impact Have Delivered Mercury's Water Ice?

    Science.gov (United States)

    Ernst, C. M.; Chabot, N. L.; Barnouin, O. S.

    2018-05-01

    Hokusai is the best candidate source crater for Mercury’s water-ice inventory if it was primarily delivered by a single impact event. The Hokusai impact could account for the inventory of water ice on Mercury for impact velocities <30 km/s.

  6. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.

    Science.gov (United States)

    Hedrich, Sabrina; Johnson, D Barrie

    2012-02-01

    A novel modular bioremediation system which facilitates the selective removal of soluble iron from extremely acidic (pH ∼2) metal-rich wastewaters by ferrous iron oxidation and selective precipitation of the ferric iron produced is described. In the first of the three modules, rapid ferrous iron oxidation was mediated by the recently-characterized iron-oxidizing autotrophic acidophile, "Ferrovum myxofaciens", which grew as long "streamers" within the reactor. Over 90% of the iron present in influent test liquors containing 280mg/L iron was oxidized at a dilution rate of 0.41h(-1), in a proton-consuming reaction. The ferric iron-rich solutions produced were pumped into a second reactor where controlled addition of sodium hydroxide caused the water pH to increase to 3.5 and ferric iron to precipitate as the mineral schwertmannite. Addition of a flocculating agent promoted rapid aggregation and settling of the fine-grain schwertmannite particles. A third passive module (a packed-bed bioreactor, also inoculated with "Fv. myxofaciens") acted as a polishing reactor, lowering soluble iron concentrations in the processed water to iron from a synthetic acidic (pH 2.1) mine water that contained soluble aluminum, copper, manganese and zinc in addition to iron. Schwertmannite was again produced, with little or no co-precipitation of other metals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Water Matters: Assessing the Impacts of Water and Sanitation Infrastructure in the U.S./Mexico Border Region

    Science.gov (United States)

    Hargrove, W. L.; Del Rio, M.; Korc, M.

    2017-12-01

    Using Health Impact Assessment methods, we determined: 1) the impact of water and sanitation infrastructure installed about 15 years ago in two Texas border communities; 2) the impact of failing septic tanks in a neighborhood where septic systems are more than 20 years old and failing; and 3) the impacts of hauled water as the main household water source in a colonia. We obtained a total of 147 household surveys related to water and sanitation in four communities. Households who had obtained water and sanitation infrastructure had less skin problems, neuropathy, gastrointestinal illness, and stomach infections compared to an earlier time when they relied on local domestic wells or hauled water and septic tanks. Hepatitis A incidence in El Paso County, TX dropped precipitously after the implementation of water and sanitation infrastructure. Hauling water contributed to mental stress and anxiety and was risky in terms of road safety. We also assessed the economic and community development impacts of water and sanitation infrastructure. Communities benefitted from higher property values, expanded health care services, more parks and recreation, more local businesses, and improved fire safety. We argue that though water and sanitation infrastructure is a significant contributor to addressing inequities in the border region, much remains to be done to achieve water justice in this challenging region.

  8. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-11

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground conductor, and a separator at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.

  9. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  10. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  11. NASA's Impacts Towards Improving International Water Management Using Satellites

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lawford, R. G.; Mohr, K. I.; Lee, C. M.

    2013-12-01

    Key objectives of the NASA's Water Resources and Capacity Building Programs are to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management. This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts to international partners, particularly developing countries. NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and internationally to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. This presentation will outline and describe NASA's international water related research, applications and capacity building programs' efforts to address developing countries critical water challenges in Asia, African and Latin America. This will specifically highlight impacts and case studies from NASA's programs in Water Resources (e.g., drought, snow

  12. Identification and characterization of steady and occluded water in drinking water distribution systems.

    Science.gov (United States)

    Tong, Huiyan; Zhao, Peng; Zhang, Hongwei; Tian, Yimei; Chen, Xi; Zhao, Weigao; Li, Mei

    2015-01-01

    Deterioration and leakage of drinking water in distribution systems have been a major issue in the water industry for years, which are associated with corrosion. This paper discovers that occluded water in the scales of the pipes has an acidic environment and high concentration of iron, manganese, chloride, sulfate and nitrate, which aggravates many pipeline leakage accidents. Six types of water samples have been analyzed under the flowing and stagnant periods. Both the water in the exterior of the tubercles and stagnant water carry suspended iron particles, which explains the occurrence of "red water" when the system hydraulic conditions change. Nitrate is more concentrated in occluded water under flowing condition in comparison with that in flowing water. However, the concentration of nitrate in occluded water under stagnant condition is found to be less than that in stagnant water. A high concentration of manganese is found to exist in steady water, occluded water and stagnant water. These findings impact secondary pollution and the corrosion of pipes and containers used in drinking water distribution systems. The unique method that taking occluded water from tiny holes which were drilled from the pipes' exteriors carefully according to the positions of corrosion scales has an important contribution to research on corrosion in distribution systems. And this paper furthers our understanding and contributes to the growing body of knowledge regarding occluded environments in corrosion scales. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  14. Modelling water uptake efficiency of root systems

    Science.gov (United States)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  15. Impact of upstream industrial effluents on irrigation water quality ...

    African Journals Online (AJOL)

    Impact of upstream industrial effluents on irrigation water quality, soils and ... Knowledge of irrigation water quality is critical to predicting, managing and reducing salt ... Presence of heavy metals in concentration higher than the recommended ...

  16. Perceived Impact of Private Sector Involvement In Water Supply on ...

    African Journals Online (AJOL)

    Perceived Impact of Private Sector Involvement In Water Supply on the Urban Poor in Dar es Salaam. ... Tanzania Journal of Development Studies ... Dar es Salaam is not perceived to be a panacea to the water problems facing the urban poor.

  17. Urban and peri-urban agricultural production in Beijing municipality and its impact on water quality

    NARCIS (Netherlands)

    Wolf, J.; Wijk, van M.S.; Cheung, X.; Hu, Y.; Diepen, van C.A.; Jongbloed, A.W.; Keulen, van H.; Lu, C.H.; Roeter, R.

    2003-01-01

    This paper reviews water use and water resource issues in Beijing Municipality, the main trends in the agricultural production systems in and around the city with respect to land use, input use, production and economic role, and the impacts of agricultural activities on water quality. Rapid

  18. Reuse of waste water: impact on water supply planning

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, G.F. Jr.

    1978-06-01

    As the urban population of the world increases and demands on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analyzing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.

  19. Impact resistant battery enclosure systems

    Science.gov (United States)

    Tsutsui, Waterloo; Feng, Yuezhong; Chen, Weinong Wayne; Siegmund, Thomas Heinrich

    2017-10-31

    Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.

  20. Regional Water System Vulnerabilities and Strengths for Unavoidable Climate Adaptation

    Science.gov (United States)

    Gleick, P. H.; Palaniappan, M.; Christian-Smith, J.; Cooley, H.

    2011-12-01

    A wide range of options are available to help water systems prepare and adapt for unavoidable climate impacts, but these options vary depending on region, climatic conditions, economic status, and technical infrastructure in place. Drawing on case studies from the United States, India, and elsewhere, and from both urban and agricultural water systems, risks to water supply and quality are evaluated and summarized and categories of responses to help improve the effectiveness of adaptation policies are reviewed. Among the issues to be discussed are characteristics unique to developing country cities, such as the predominance of informal actors in the water sector. The formal, or government sector, which often exclusively manages water access and distribution in developed country cities, is only one among many players in the water sector in developing country cities. Informal access to water includes direct access by individuals through private groundwater systems, private water markets using vendors or sales of bottled water, and rainwater harvesting systems on individual homes. In this environment, with already existing pressures on water availability and use, the impacts of climate change on water will be strongly felt. This complicates planning for water supply and demand and risks increasing already prevalent water insecurity, especially for urban poor. In wealthier countries, any planning for water-related climate impacts tends to take the form of "business as usual" responses, such as efforts to expand supply with new infrastructure, manage demand through conservation programs, or simply put off addressing the problem to the next generation of managers and users. These approaches can be effective, but also risk missing unusual, non-linear, or threshold impacts. Examples of more informed and innovative efforts to substantively address climate change risks will be presented.

  1. Impact of major volcanic eruptions on stratospheric water vapour

    Directory of Open Access Journals (Sweden)

    M. Löffler

    2016-05-01

    Full Text Available Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry–climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg – Modular Earth Submodel System (ECHAM/MESSy Atmospheric Chemistry (EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño–Southern Oscillation (ENSO are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  2. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  3. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  4. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  5. Climate change impact on water resources - Example of an anthropized basin (Llobregat, Spain)

    Science.gov (United States)

    Versini, P.-A.; Pouget, L.; Mc Ennis, S.; Guiu Carrio, R.; Sempere-Torres, D.; Escaler, I.

    2012-04-01

    The impact of climate change is one of the central topics of study by water agencies and companies. Indeed, the forecasted increase of atmospheric temperature may change the amount, frequency and intensity of precipitation and affect the hydrological cycle: runoff, infiltration, aquifer recharge, etc… Moreover, global change combining climate change but also land use and water demand changes, may cause very important impacts on water availability and quality. Global change scenarios in Spain describe a general trend towards increased temperature and water demand, and reduced precipitation as a result of its geographical situation and socio-economic characteristics. The European project WATER CHANGE (included in the LIFE + Environment Policy and Governance program) aims to develop a modeling system to assess the Global Change impacts, and their associated uncertainties, on water availability for water supply and water use. Its objective is to help river basin agencies and water companies in their long term planning and in the definition of adaptation measures. This work presents the results obtained by applying the modelling system to the Llobregat river basin (Spain). This is an anthropized catchment of about 5000 km2, where water resources are used for different purposes, such as drinking water production, agriculture irrigation, industry and hydroelectric energy production. Based on future global change scenarios, the water resources system has been assessed in terms of water deficit and supply. A cost-benefit analysis has also been conducted in order to evaluate every realistic measure that could optimize and improve the system.

  6. Drinking Water Microbiome as a Screening Tool for Nitrification in Chloraminated Drinking Water Distribution Systems (abstract)

    Science.gov (United States)

    Many water utilities in the US using chloramine as disinfectant treatment in their distribution systems have experienced nitrification episodes, which detrimentally impact the water quality. Here, we used 16S rRNA sequencing data to generate high-resolution taxonomic profiles of...

  7. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  8. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  9. Selecting downscaled climate projections for water resource impacts and adaptation

    Science.gov (United States)

    Vidal, Jean-Philippe; Hingray, Benoît

    2015-04-01

    variables - climate change signal in temporally and spatially integrated variables - has been carefully made with respect their relevance for water resource management. This work proposes a twofold assessment of this selection approach. First, a climate validation allows checking the selection response of more extreme climate variables critical for hydrological impacts as well as spatially distributed ones. Second, a hydrological validation allows checking the selection response of streamflow variables relevant for water resource management. Findings highlight that such validations may critically help preventing misinterpretations and misuses of impact model ensemble outputs for integrated adaptation purposes. This work is part of the GICC R2D2-2050 project (Risk, water Resources and sustainable Development of the Durance catchment in 2050) and the EU FP7 COMPLEX project (Knowledge Based Climate Mitigation Systems for a Low Carbon Economy). Christierson, B. v., Vidal, J.-P., & Wade, S. D. (2012) Using UKCP09 probabilistic climate information for UK water resource planning}. J. Hydrol., {424-425}, 48-67. doi: 10.1016/j.jhydrol.2011.12.020} Lafaysse, M.; Hingray, B.; Terray, L.; Mezghani, A. & Gailhard, J. (2014) Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin. Water Resour. Res., {50}, 3317-3341. doi: 10.1002/2013WR014897 Vidal, J.-P. & Hingray, B. (2014) A framework for identifying tailored subsets of climate projections for impact and adaptation studies. EGU2014-7851

  10. Barcelona's water supply, 1867–1967 : the transition to a modern system

    OpenAIRE

    Guàrdia Bassols, Manuel; Rosselló i Nicolau, Maribel; Garriga Bosch, Sergi

    2013-01-01

    Barcelona's water supply since 14th century to 1867, the Eixample's water supply problem the development of modern water supply since 1867 to 1967 the new sanitation system impact on water consumption water's slow entry into the domestic sphere from post-war restrictions to widespread water consumption. Peer Reviewed

  11. Economic optimization of photovoltaic water pumping systems for irrigation

    International Nuclear Information System (INIS)

    Campana, P.E.; Li, H.; Zhang, J.; Zhang, R.; Liu, J.; Yan, J.

    2015-01-01

    Highlights: • A novel optimization procedure for photovoltaic water pumping systems for irrigation is proposed. • An hourly simulation model is the basis of the optimization procedure. • The effectiveness of the new optimization approach has been tested to an existing photovoltaic water pumping system. - Abstract: Photovoltaic water pumping technology is considered as a sustainable and economical solution to provide water for irrigation, which can halt grassland degradation and promote farmland conservation in China. The appropriate design and operation significantly depend on the available solar irradiation, crop water demand, water resources and the corresponding benefit from the crop sale. In this work, a novel optimization procedure is proposed, which takes into consideration not only the availability of groundwater resources and the effect of water supply on crop yield, but also the investment cost of photovoltaic water pumping system and the revenue from crop sale. A simulation model, which combines the dynamics of photovoltaic water pumping system, groundwater level, water supply, crop water demand and crop yield, is employed during the optimization. To prove the effectiveness of the new optimization approach, it has been applied to an existing photovoltaic water pumping system. Results show that the optimal configuration can guarantee continuous operations and lead to a substantial reduction of photovoltaic array size and consequently of the investment capital cost and the payback period. Sensitivity studies have been conducted to investigate the impacts of the prices of photovoltaic modules and forage on the optimization. Results show that the water resource is a determinant factor

  12. Impact factors on the structuration and the rheological behavior of the clay-water system for smectite dispersions; Facteurs determinant l'organisation et la rheologie du systeme argile-eau pour des suspensions de smectites

    Energy Technology Data Exchange (ETDEWEB)

    Paumier, S

    2007-11-15

    Smectite are swelling clays widely used in industry. Their mechanical properties are unequal according to their mineralogical and physico-chemical characteristics. The aim of this study is to improve the knowledge of the interlayer cation impact on the structure built by the smectite-water system according to the concentration. Homo-ionic (Na{sup +} et Ca{sup 2+}) and bi-ionic systems are observed. This study cross checks mineralogical methods, physicochemical analysis and broad range of rheometric tests. At low concentration (less than 60 g/l) the calcium dispersions are shear thinning and few viscous due to the layer association in huge deformable flocks. The sodium smectite layers are dispersed; the dispersions are highly viscous. The lowest viscosity is detected for mix of 20 % of sodium smectite and 80 % of calcium smectite. At higher concentration (60 to 100 g/l), the yield stress and viscoelastic properties are studied by creep-recovery tests, oscillatory tests and imposed shear step. At the liquid state, the flow is first heterogeneous with a shear banding effect then homogeneous. The results make it possible to define the concentration area characteristic of each mechanical behavior (viscosity, shear thinning and yield stress) according to the saturation cation. The thixotropic properties are characterized with de-structuring-restructuring tests. Two kinetics are determined. Finally we realize a data base with 12 natural and industrial bentonite. The rheograms would be efficient to differentiate the natural calcium bentonite (Newtonian law), natural sodium bentonite (Herschel-Bulkley law) and activated calcium bentonite (Bingham law). (author)

  13. Radioecological models for inland water systems

    International Nuclear Information System (INIS)

    Raskob, W.; Popov, A.; Zheleznyak, M.J.

    1998-04-01

    Following a nuclear accident, radioactivity may either be directly discharged into rivers, lakes and reservoirs or - after the re-mobilisation of dry and wet deposited material by rain events - may result in the contamination of surface water bodies. These so-called aquatic exposure pathways are still missing in the decision support system IMIS/PARK. Therefore, a study was launched to analyse aquatic and radioecological models with respect to their applicability for assessing the radiation exposure of the population. The computer codes should fulfil the following requirements: 1. to quantify the impact of radionuclides in water systems from direct deposition and via runoff, both dependent on time and space, 2. to forecast the activity concentration in water systems (rivers and lakes) and sediment, both dependent on time and space, and 3. to assess the time dependent activity concentration in fish. To that purpose, a literature survey was conducted to collect a list of all relevant computer models potentially suitable for these tasks. In addition, a detailed overview of the key physical process was provided, which should be considered in the models. Based on the three main processes, 9 codes were selected for the runoff from large watersheds, 19 codes for the river transport and 14 for lakes. (orig.) [de

  14. Low velocity impact on polymer composite plates in contact with water

    Directory of Open Access Journals (Sweden)

    Y Kwon

    2016-09-01

    Full Text Available In this study, composite materials were tested in two different environments to determine the role of Fluid Structure Interaction with composites under a low velocity impact. This was done using a low velocity impact machine and polymer composite plates. The composite is made of laminated symmetrical plain weave E-glass fabrics. The test area of the composite plates is 30.5 cm by 30.5 cm with clamped boundary conditions. The testing was done using a drop weight system to impact the center of the test area. One testing was performed with composite plates in air, called dry impact. The other testing was conducted while composite plates were submerged in water, called wet impact. A Plexiglas box in conjunction with the impact machine was used to keep the top of the composite sample dry while it was submerged in an anechoic water tank, so called water-backed air impact. Output from the tests was recorded using strain gauges and a force impact sensor. The results show that an added mass effect from the water plays a large role in the Fluid Structure Interaction with composites due to the similar densities of water and the composites. The wet impact results in a larger impact force and damage than the dry impact under the same impact condition, i.e., the same impact mass and drop height.

  15. Impacts of crop insurance on water withdrawals for irrigation

    Science.gov (United States)

    Deryugina, Tatyana; Konar, Megan

    2017-12-01

    Agricultural production remains particularly vulnerable to weather fluctuations and extreme events, such as droughts, floods, and heat waves. Crop insurance is a risk management tool developed to mitigate some of this weather risk and protect farmer income in times of poor production. However, crop insurance may have unintended consequences for water resources sustainability, as the vast majority of freshwater withdrawals go to agriculture. The causal impact of crop insurance on water use in agriculture remains poorly understood. Here, we determine the empirical relationship between crop insurance and irrigation water withdrawals in the United States. Importantly, we use an instrumental variables approach to establish causality. Our methodology exploits a major policy change in the crop insurance system - the 1994 Federal Crop Insurance Reform Act - which imposed crop insurance requirements on farmers. We find that a 1% increase in insured crop acreage leads to a 0.223% increase in irrigation withdrawals, with most coming from groundwater aquifers. We identify farmers growing more groundwater-fed cotton as an important mechanism contributing to increased withdrawals. A 1% increase in insured crop acreage leads to a 0.624% increase in cotton acreage, or 95,602 acres. These results demonstrate that crop insurance causally leads to more irrigation withdrawals. More broadly, this work underscores the importance of determining causality in the water-food nexus as we endeavor to achieve global food security and water resources sustainability.

  16. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Understanding the Impacts and Meaning of Maintaining Detectable Disinfection Residuals in Drinking Water Distribution Systems: Controlling Waterborne Pathogens, Disinfection Byproducts, Organic Chloramines, and Nitrification

    Science.gov (United States)

    : EPA Region 6, in collaboration with the Office of Research and Development and Office of Water (OW) in Cincinnati, Ohio, and the Louisiana Department of Health and Hospitals (LDHH), proposes a drinking water research project to understand how maintaining various drinking water...

  18. Anthropogenic impacts on the water quality of Aba River, southeast ...

    African Journals Online (AJOL)

    Anthropogenic impacts on the water quality of Aba River, southeast Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... of Aba River, southeast Nigeria was studied in four stations from November 2014 to August 2015 to identify the major anthropogenic activities and their impact on the water quality.

  19. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  20. Water Penetration through a Superhydrophobic Mesh During a Drop Impact

    Science.gov (United States)

    Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

    2017-01-01

    When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

  1. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  2. Water quality impacts of forest fires

    Science.gov (United States)

    Tecle Aregai; Daniel Neary

    2015-01-01

    Forest fires have been serious menace, many times resulting in tremendous economic, cultural and ecological damage to many parts of the United States. One particular area that has been significantly affected is the water quality of streams and lakes in the water thirsty southwestern United States. This is because the surface water coming off burned areas has resulted...

  3. Impact of water drops on small targets

    Science.gov (United States)

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.

    2002-10-01

    The collision of water drops against small targets was studied experimentally by means of a high-speed photography technique. The drop impact velocity was about 3.5 m/s. Drop diameters were in the range of 2.8-4.0 mm. The target was a stainless steel disk of 3.9 mm diameter. The drop spread beyond the target like a central cap surrounded by a thin, slightly conical lamella bounded by a thicker rim. By mounting a small obstacle near the target, surface-tension driven Mach waves in the flowing lamella were generated, which are formally equivalent to the familiar compressibility driven Mach waves in gas dynamics. From the measurement of the Mach angle, the values of some flow parameters could be obtained as functions of time, which provided insight into the flow structure. The liquid flowed from the central cap to the liquid rim through the thin lamella at constant momentum flux. At a certain stage of the process, most of the liquid accumulated in the rim and the internal part of the lamella became metastable. In this situation, a rupture wave propagating through the metastable internal part of the lamella caused the rim to retract while forming outwardly directed secondary jets. The jets disintegrated into secondary droplets due to the Savart-Plateau-Rayleigh instability. Prior to the end of the retraction, an internal circular wave of rupture was formed. It originated at the target and then it propagated to meet the retracting rim. Their meeting resulted in a crown of tiny droplets. A theoretical analysis of the ejection process is proposed.

  4. Microbial contamination of the drinking water distribution system and its impact on human health in Khan Yunis Governorate, Gaza Strip: seven years of monitoring (2000-2006).

    Science.gov (United States)

    Abu Amr, S S; Yassin, M M

    2008-11-01

    To assess total and faecal coliform contamination in water wells and distribution networks over the past 7 years, and their association with human health in Khan Yunis Governorate, Gaza Strip. Historical data and interview questionnaire. Data were obtained from the Palestinian Ministry of Health on total and faecal coliform contamination in water wells and distribution networks, and on the incidence of water-related diseases in Khan Yunis Governorate. An interview questionnaire was conducted with 210 residents of Khan Yunis Governorate. Total and faecal coliform contamination exceeded the World Health Organization's limit for water wells and networks. However, the contamination percentages were higher in networks than in wells. Diarrhoeal diseases were strongly correlated with faecal coliform contamination in water networks (r=0.98). This is consistent with the finding that diarrhoeal diseases were the most common self-reported diseases among the interviewees. Such diseases were more prevalent among subjects who drank municipal water than subjects who drank desalinated or home-filtered water (odds ratio=2.03). Intermittent water supply, insufficient chlorination and sewage flooding seem to be associated with self-reported diseases. Residents in the Gaza Strip have a good level of knowledge about drinking water contamination, and this is reflected in good practice. Water quality has deteriorated in the Gaza Strip, and this may contribute to the prevalence of water-related diseases. Self-reported diseases among interviewees in Khan Yunis Governorate were associated with source of drinking water, intermittent water supply, insufficient chlorination, sewage flooding and age of water networks.

  5. Impacts of Participatory Modeling on Climate Change-related Water Management Impacts in Sonora, Mexico

    Science.gov (United States)

    Halvorsen, K. E.; Kossak, D. J.; Mayer, A. S.; Vivoni, E. R.; Robles-Morua, A.; Gamez Molina, V.; Dana, K.; Mirchi, A.

    2013-12-01

    Climate change-related impacts on water resources are expected to be particularly severe in the arid developing world. As a result, we conducted a series of participatory modeling workshops on hydrologic and water resources systems modeling in the face of climate change in Sonora, Mexico. Pre-surveys were administered to participants on Day 1 of a series of four workshops spaced out over three months in 2013. Post-surveys repeated many pre-survey questions and included questions assessing the quality of the workshops and models. We report on significant changes in participant perceptions of water resource models and problems and their assessment of the workshops. These findings will be of great value to future participatory modeling efforts, particularly within the developing world.

  6. The impact of industrial waste of Venezuelan marine water

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1993-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  7. The impact of industrial waste of Venezuelan marine water

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1994-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  8. Mitigating the impact of swimming pools on domestic water demand

    African Journals Online (AJOL)

    need to implement desalination schemes by ensuring water is used in in a 'fit for purpose' manner. This study therefore aims to better understand the impact that pools have on residential water demand through the analysis of metered water demand records and end-use modelling. The study site was the Liesbeek.

  9. Water temperature impacts water consumption by range cattle in winter

    Science.gov (United States)

    Water consumption and DMI have been found to be positively correlated, which may interact with ingestion of cold water or grazed frozen forage due to transitory reductions in temperature of ruminal contents. The hypothesis underpinning the study explores the potential that cows provided warm drinkin...

  10. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  11. Modelling the impact of Water Sensitive Urban Design technologies on the urban water cycle

    DEFF Research Database (Denmark)

    Locatelli, Luca

    Alternative stormwater management approaches for urban developments, also called Water Sensitive Urban Design (WSUD), are increasingly being adopted with the aims of providing flood control, flow management, water quality improvements and opportunities to harvest stormwater for non-potable uses....... To model the interaction of infiltration based WSUDs with groundwater. 4. To assess a new combination of different WSUD techniques for improved stormwater management. 5. To model the impact of a widespread implementation of multiple soakaway systems at the catchment scale. 6. Test the models by simulating...... the hydrological performance of single devices relevant for urban drainage applications. Moreover, the coupling of soakaway and detention storages is also modeled to analyze the benefits of combining different local stormwater management systems. These models are then integrated into urban drainage network models...

  12. Impact of surface water recharge on the design of a groundwater monitoring system for the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Wood, T.R.

    1990-01-01

    Recent hydrogeologic studies have been initiated to characterize the hydrogeologic conditions at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Measured water levels in wells penetrating the Snake River Plain aquifer near the RWMC and the corresponding direction of flow show change over time. This change is related to water table mounding caused by recharge from excess water diverted from the Big Lost River for flood protection during high flows. Water levels in most wells near the RWMC rise on the order of 10 ft (3 m) in response to recharge, with water in one well rising over 60 ft (18 m). Recharge changes the normal south-southwest direction of flow to the east. Design of the proposed groundwater monitoring network for the RWMC must account for the variable directions of groundwater flow. 11 refs., 9 figs., 2 tabs

  13. Water in Tektites and Impact Glasses by FTIR Spectrometry

    Science.gov (United States)

    Beran, Anton; Koeberl, Christian

    1997-03-01

    To improve the scarce data base of water content in tektites and impact glasses, we analyzed 26 tektites from all four strewn fields and 25 impact glass samples for their water content. We used the fourier transformed IR (FTIR) spectrometry method, which permits measurement of areas of about 40 mm in diameter. Our results show that the tektites have water contents ranging from 0.002 to 0.030 wt% (average 0.014+/-0.008 wt%). Ivory Coast tektites have the lowest water abundances (0.002-0.003 wt%), and Muong Nong-type indochinites and some North American tektites having the highest contents (up to about 0.03 wt%). Impact glass samples (from the Zhamanshin, Aouelloul, and Rio Cuarto craters) yielded water contents of 0.008 to 0.13 wt% H2O. Typical impact glasses from the Aouelloul and Zhamanshin craters have low water contents (0.008 to 0.063 wt%). Libyan Desert Glasses and Rio Cuarto glasses have higher water contents (about 0.11 wt%). We also analyzed glasses of unknown origin (e.g., urengoites; glass fragments from Tikal), which showed very low water contents, in agreement with an origin by impact. Our data confirm that all tektites found on land have very low water contents (<0.03 wt% water), while impact glasses have slightly higher water contents. Both glass types are very dry compared to volcanic glasses. This study confirms that the low water contents (<0.05 wt%) of such glasses can be considered good evidence for an origin by impact.

  14. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  15. A review of seawater intrusion in the Nile Delta groundwater system – the basis for assessing impacts due to climate changes and water resources development

    NARCIS (Netherlands)

    Mabrouk, M.B.; Jonoski, A.; Solomatine, D.P.; Uhlenbrook, S.

    2013-01-01

    Serious environmental problems are emerging in the River Nile basin and its groundwater resources. Recent years have brought scientific evidence of climate change and development-induced environmental impacts globally as well as over Egypt. Some impacts are subtle, like decline of the Nile River

  16. Eco-environmental impact of inter-basin water transfer projects: a review.

    Science.gov (United States)

    Zhuang, Wen

    2016-07-01

    The objective reality of uneven water resource distribution and imbalanced water demand of the human society makes it inevitable to transfer water. It has been an age-old method to adopt the inter-basin water transfers (IBTs) for alleviating and even resolving the urgent demand of the water-deficient areas. A number of countries have made attempts and have achieved enormous benefits. However, IBTs inevitably involve the redistribution of water resources in relevant basins and may cause changes of the ecological environment in different basins. Such changes are two-sided, namely, the positive impacts, including adding new basins for water-deficient areas, facilitating water cycle, improving meteorological conditions in the recipient basins, mitigating ecological water shortage, repairing the damaged ecological system, and preserving the endangered wild fauna and flora, as well as the negative impacts, including salinization and aridification of the donor basins, damage to the ecological environment of the donor basins and the both sides of the conveying channel system, increase of water consumption in the recipient basins, and spread of diseases, etc. Because IBTs have enormous ecological risk, it is necessary to comprehensively analyze the inter-basin water balance relationship, coordinate the possible conflicts and environmental quality problems between regions, and strengthen the argumentation of the ecological risk of water transfer and eco-compensation measures. In addition, there are some effective alternative measures for IBTs, such as attaching importance to water cycle, improving water use efficiency, developing sea water desalination, and rainwater harvesting technology, etc.

  17. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  18. Silver disinfection in water distribution systems

    Science.gov (United States)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  19. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  20. Greening the global water system

    Science.gov (United States)

    Hoff, H.; Falkenmark, M.; Gerten, D.; Gordon, L.; Karlberg, L.; Rockström, J.

    2010-04-01

    SummaryRecent developments of global models and data sets enable a new, spatially explicit and process-based assessment of green and blue water in food production and trade. An initial intercomparison of a range of different (hydrological, vegetation, crop, water resources and economic) models, confirms that green water use in global crop production is about 4-5 times greater than consumptive blue water use. Hence, the full green-to-blue spectrum of agricultural water management options needs to be used when tackling the increasing water gap in food production. The different models calculate considerable potentials for complementing the conventional approach of adding irrigation, with measures to increase water productivity, such as rainwater harvesting, supplementary irrigation, vapour shift and soil and nutrient management. Several models highlight Africa, in particular sub-Saharan Africa, as a key region for improving water productivity in agriculture, by implementing these measures. Virtual water trade, mostly based on green water, helps to close the water gap in a number of countries. It is likely to become even more important in the future, when inequities in water availability are projected to grow, due to climate, population and other drivers of change. Further model developments and a rigorous green-blue water model intercomparison are proposed, to improve simulations at global and regional scale and to enable tradeoff analyses for the different adaptation options.

  1. MUWS (Microbiology in Urban Water Systems – an interdisciplinary approach to study microbial communities in urban water systems

    Directory of Open Access Journals (Sweden)

    P. Deines

    2010-07-01

    Full Text Available Microbiology in Urban Water Systems (MUWS is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems and sewer networks are both large, highly interconnected, dynamic, subject to time and varying inputs and demands, and difficult to control. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance within urban water infrastructure systems is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we ultimately aim to link microbial community abundance, diversity and function to physical and engineering variables so that novel insights into the performance and management of both water distribution systems and sewer networks can be explored. By presenting the details and principals behind the molecular microbiological techniques that we use, this paper demonstrates the potential of an integrated approach to better understand how urban water system function, and so meet future challenges.

  2. Linking economic water use, freshwater ecosystem impacts, and virtual water trade in a Great Lakes watershed

    Science.gov (United States)

    Mubako, S. T.; Ruddell, B. L.; Mayer, A. S.

    2013-12-01

    The impact of human water uses and economic pressures on freshwater ecosystems is of growing interest for water resource management worldwide. This case study for a water-rich watershed in the Great Lakes region links the economic pressures on water resources as revealed by virtual water trade balances to the nature of the economic water use and the associated impacts on the freshwater ecosystem. A water accounting framework that combines water consumption data and economic data from input output tables is applied to quantify localized virtual water imports and exports in the Kalamazoo watershed which comprises ten counties. Water using economic activities at the county level are conformed to watershed boundaries through land use-water use relationships. The counties are part of a region implementing the Michigan Water Withdrawal Assessment Process, including new regulatory approaches for adaptive water resources management under a riparian water rights framework. The results show that at local level, there exists considerable water use intensity and virtual water trade balance disparity among the counties and between water use sectors in this watershed. The watershed is a net virtual water importer, with some counties outsourcing nearly half of their water resource impacts, and some outsourcing nearly all water resource impacts. The largest virtual water imports are associated with agriculture, thermoelectric power generation and industry, while the bulk of the exports are associated with thermoelectric power generation and commercial activities. The methodology is applicable to various spatial levels ranging from the micro sub-watershed level to the macro Great Lakes watershed region, subject to the availability of reliable water use and economic data.

  3. Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems.

    Science.gov (United States)

    Stang, Shannon; Wang, Haiying; Gardner, Kevin H; Mo, Weiwei

    2018-07-15

    As drinking water supply systems plan for sustainable management practices, impacts from future water quality and climate changes are a major concern. This study aims to understand the intraannual changes of energy consumption for water treatment, investigate the relative importance of water quality and climate indicators on energy consumption for water treatment, and predict the effects of climate change on the embodied energy of treated, potable water at two municipal drinking water systems located in the northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify the monthly energy consumption in the two drinking water systems. Regression and relative importance analyses were then performed between climate indicators, raw water quality indicators, and chemical and energy usages in the treatment processes to determine their correlations. These relationships were then used to project changes in embodied energy associated with the plants' processes, and the results were compared between the two regions. The projections of the southeastern US water plant were for an increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US plant was projected to decrease its energy demand due to a reduced demand for heating the plant's infrastructure. The findings indicate that geographic location and treatment process may determine the way climate change affects drinking water systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Impact on rock, water, and air

    Science.gov (United States)

    Ahrens, Thomas J.; O'Keefe, John D.

    1986-01-01

    It is argued that the meteorite-impact accretion is a process vital to the formation of the earth and terrestrial planets and that the evolution of the surfaces with time is affected by impacts. The paper reviews the previous calculations of Ahrens and O'Keefe of the effect of meteorite impacts on the rock surface of the earth, on the ocean, and the atmosphere, and presents some new work on the mechanism of impact-induced atmospheric escape. Using the similarity solution, the mass of atmosphere lost due to the impacts of 1 to 5 kg radius projectiles is calculated. It is shown that no atmosphere is lost for surface sources with energies less than 10 to the 27th erg. Impact of objects in the energy range 10 to the 27th to 10 to the 30th ergs causes gas losses of 10 to the 11th to 10 to the 14th kg (i.e., 10 to the -8th to 10 to the -5th of the total present atmospheric budget). Impact energies of greater than 10 to the 30th ergs cause little increase in atmospheric loss.

  5. Advanced Mars Water Acquisition System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Mars Water Acquisition System (AMWAS) recovers and purifies water from Mars soils for oxygen and fuel production, life support, food production, and...

  6. Design data brochure: Solar hot water system

    Science.gov (United States)

    1978-01-01

    A design calculation is detailed for a single-family residence housing a family of four in a nonspecific geographical area. The solar water heater system is designed to provide 80 gallons of 140 F hot water per day.

  7. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  8. Potential Well Water Contaminants and Their Impacts

    Science.gov (United States)

    The first step to protect your health and the health of your family is learning about what may pollute your source of drinking water. Potential contamination may occur naturally, or as a result of human activity.

  9. Atmospheric impacts of evaporative cooling systems

    International Nuclear Information System (INIS)

    Carson, J.E.

    1976-10-01

    The report summarizes available information on the effects of various power plant cooling systems on the atmosphere. While evaporative cooling systems sharply reduce the biological impacts of thermal discharges in water bodies, they create (at least, for heat-release rates comparable to those of two-unit nuclear generating stations) atmospheric changes. For an isolated site such as required for a nuclear power plant, these changes are rather small and local, and usually environmentally acceptable. However, one cannot say with certainty that these effects will remain small as the number of reactors on a given site increases. There must exist a critical heat load for a specific site which, if exceeded, can create its own weather patterns, and thus create inadvertent weather changes such as rain and snow, severe thunderstorms, and tornadoes. Because proven mathematical models are not available, it is not now possible to forecast precisely the extent and frequency of the atmospheric effects of a particular heat-dissipation system at a particular site. Field research on many aspects of cooling system operation is needed in order to document and quantify the actual atmospheric changes caused by a given cooling system and to provide the data needed to develop and verify mathematical and physical models. The more important topics requiring field study are plume rise, fogging and icing (from certain systems), drift emission and deposition rates, chemical interactions, cloud and precipitation formation and critical heat-release rates

  10. Hydraulic "fracking": are surface water impacts an ecological concern?

    Science.gov (United States)

    Burton, G Allen; Basu, Niladri; Ellis, Brian R; Kapo, Katherine E; Entrekin, Sally; Nadelhoffer, Knute

    2014-08-01

    Use of high-volume hydraulic fracturing (HVHF) in unconventional reservoirs to recover previously inaccessible oil and natural gas is rapidly expanding in North America and elsewhere. Although hydraulic fracturing has been practiced for decades, the advent of more technologically advanced horizontal drilling coupled with improved slickwater chemical formulations has allowed extensive natural gas and oil deposits to be recovered from shale formations. Millions of liters of local groundwaters are utilized to generate extensive fracture networks within these low-permeability reservoirs, allowing extraction of the trapped hydrocarbons. Although the technology is relatively standardized, the geographies and related policies and regulations guiding these operations vary markedly. Some ecosystems are more at risk from these operations than others because of either their sensitivities or the manner in which the HVHF operations are conducted. Generally, the closer geographical proximity of the susceptible ecosystem to a drilling site or a location of related industrial processes, the higher the risk of that ecosystem being impacted by the operation. The associated construction of roads, power grids, pipelines, well pads, and water-extraction systems along with increased truck traffic are common to virtually all HVHF operations. These operations may result in increased erosion and sedimentation, increased risk to aquatic ecosystems from chemical spills or runoff, habitat fragmentation, loss of stream riparian zones, altered biogeochemical cycling, and reduction of available surface and hyporheic water volumes because of withdrawal-induced lowering of local groundwater levels. The potential risks to surface waters from HVHF operations are similar in many ways to those resulting from agriculture, silviculture, mining, and urban development. Indeed, groundwater extraction associated with agriculture is perhaps a larger concern in the long term in some regions. Understanding the

  11. Climate Change Impacts on US Water Quality using two Models: HAWQS and US Basins

    Science.gov (United States)

    Climate change and freshwater quality are well-linked. Changes in climate result in changes in streamflow and rising water temperatures, which impact biochemical reaction rates and increase stratification in lakes and reservoirs. Using two water quality modeling systems (the Hydr...

  12. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    Science.gov (United States)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  13. Endocrine Disrupting Chemical Impacts on Aquatic Systems

    Science.gov (United States)

    Jobling, Susan

    2014-07-01

    We often talk about the importance of water, but one area that's often overlooked is the safety of our water supply. How many people actually think about the purity of their water when they turn on the tap? We may have real reason to be concerned because our water delivery systems and treatment technology seem to be stuck in the past, relying on old water treatment and water delivery systems. While these systems still do a great job filtering out particles, parasites and bacteria, they usually fail to remove 21st century contaminants like pesticides, industrial chemicals, lead, pharmaceuticals and arsenic. Indeed our water contains already a whole plethora of things in daily commerce and pharmaceuticals are increasingly showing up in the water supply, including antibiotics, anti-convulsants, mood altering medications and sex hormones. As the world's dependence on chemicals grows, our water supplies will continue to feel the effects, which inevitably will touch every person on this planet...

  14. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources

    DEFF Research Database (Denmark)

    Hybel, Anne-Marie; Godskesen, Berit; Rygaard, Martin

    2015-01-01

    used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2......) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial......Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were...

  15. STATE-OF-ART REPORT ABOUT WATER TREATMENT AND ENVIRONMENTAL IMPACTS IN RUSSIAN MINING

    OpenAIRE

    Lysova, Valeriya

    2014-01-01

    Mining industry has a great impact on the environment including aquatic systems. Therefore, efficient water treatment is an important factor for sustainable development of every mining enterprise. The study was done for the Finnish company Measurepolis Development Ltd. with the main aim to examine the current situation of water treatment and environmental impacts in Russian mining industry. The identification of the present needs and problems may help Measurepolis Development Ltd. to enter...

  16. Biofilm formation in a hot water system

    DEFF Research Database (Denmark)

    Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached......, in the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water. Therefore...

  17. Impacts of invasive alien plants on water quality, with particular ...

    African Journals Online (AJOL)

    Impacts of invasive alien plants on water quality, with particular emphasis on South ... their spread results in native species loss, increased biomass and fire intensity ... areas by changing the size, distribution and plant chemistry of the biomass.

  18. Elevated carbon dioxide: impacts on soil and plant water relations

    National Research Council Canada - National Science Library

    Kirkham, M. B

    2011-01-01

    .... Focusing on this critical issue, Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations presents research conducted on field-grown sorghum, winter wheat, and rangeland plants under elevated CO2...

  19. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  20. International symposium and field seminar on karst waters and environmental impacts. Abstracts

    International Nuclear Information System (INIS)

    Gunay, G.; Tezcan, L.; Atilla, A.O.

    1995-01-01

    The international symposium and field seminar on karst waters and environmental impacts was held on 10-20 September 1995 in Beldibi,Antalya, Turkey. The specialists discussed COST Action 65, Environmental Impact sand Legal Aspects, Engineering and Environmental Impacts of Karst, Research Methods, Tracing Techniques, Hydro chemistry, Environmental Isotopes in Karst, Transport Processing, Modeling and Flow Systems, Karst Morphology and Paleoenvironment, Regional Karst Systems, James F. Quinlay Pollution Control and Karst Water Protection Session and Hydrology. Almost 140 papers were presented in the meeting

  1. International symposium and field seminar on karst waters and environmental impacts. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gunay, G; Tezcan, L; Atilla, A O [comps.

    1996-12-31

    The international symposium and field seminar on karst waters and environmental impacts was held on 10-20 September 1995 in Beldibi,Antalya, Turkey. The specialists discussed COST Action 65, Environmental Impact sand Legal Aspects, Engineering and Environmental Impacts of Karst, Research Methods, Tracing Techniques, Hydro chemistry, Environmental Isotopes in Karst, Transport Processing, Modeling and Flow Systems, Karst Morphology and Paleoenvironment, Regional Karst Systems, James F. Quinlay Pollution Control and Karst Water Protection Session and Hydrology. Almost 140 papers were presented in the meeting.

  2. Modernized approach for the remediation of produced water impacted sites

    Energy Technology Data Exchange (ETDEWEB)

    Knafla, A.; Carey, J. [Equilibrium Environmental Inc., Calgary, AB (Canada); Stokes, D. [Talisman Energy Inc., Calgary, AB (Canada); Carey, J.; Sunita, R.

    2007-10-01

    This article described a project conducted to remediate a site in southeast Saskatchewan polluted by releases of produced water-related salts and boron during the 1960s. A risk assessment was conducted to define endpoints based on equivalent land capability and the potential for health risks. Multiple toxic stressors complicated the assessment, and limited published data were available regarding cumulative and interactive effects. Boron concentrations exceeded recommended guidelines, and the poor permeability of surface soils caused reduced infiltration and increased run-off. An automated pumping system was designed to allow for variable leachate removal rates depending on groundwater elevations. A distillation system using moderately saline water from a nearby source was designed to offset scaling that occurred due to high calcium sulfate concentrations. Results of the project suggested that the combination of groundwater control, improving surface soil permeability, establishing plant growth, and available water for infiltration resulted in significant improvements in soil quality and an approach towards land capability endpoints. The use of moderately saline irrigation water led to significant improvements in the soil salinity of heavily impacted areas. Test plots were then formed to test the efficacy of manure and calcium nitrate as a remediation technique. Test plots were treated with Roundup, and calcium nitrate before seeding, or with manure and calcium nitrate followed by rototilling and seeding. In treated plots, plant growth was observed for barley, alkali grass, wheatgrasses, orchard grass, rye, and alfalfa. Greater plant height and yield was visible in the manure and calcium nitrate treated plots. A decrease in boron topsoil concentrations was also observed. Average bioconcentration factors was calculated as 29.5. It was concluded that the method can provide a 20 per cent annual soil concentration reduction rate. 6 figs.

  3. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix O: Economic and Social Impact.

    Energy Technology Data Exchange (ETDEWEB)

    Columbia River System Operation Review (U.S.)

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included.

  4. Columbia River system operation review: Final environmental impact statement. Appendix O, economic and social impact

    International Nuclear Information System (INIS)

    1995-11-01

    This Appendix O of the Final Environmental Impact Statement for the Columbia River System measures the economic and social effects of the alternative system operation strategies and includes both geographic and methodology components. Areas discussed in detail include the following: purpose, scope and process; an economic history of the Columbia River Basin and its use today including the Columbia River and Socio-economic development in the Northwest and Major uses of the River System; Analysis procedures and methodologies including national economic evaluation, the concepts, analysis of assumptions, analysis for specific river uses, water quality, Regional evaluation, analysis, and social impacts; alternatives and impacts including implementation costs, andromous fish, resident fish and wildlife, flood control, irrigation and municipal and industrial water supply, navigation impacts, power, recreation, annual costs, regional economic analysis. Extensive comparison of alternatives is included

  5. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  6. Combined use of bacterial community analysis techniques and geographic information systems (GIS) for the evaluation of anthropogenic impact in coastal waters

    International Nuclear Information System (INIS)

    Bosch, R.; Aguilo, M. M.; Martin-Cardona, C.; Nogales, B.

    2009-01-01

    Marinas and recreational boats have an impact in coastal environments because they constitute point sources for low intensity but recurrent pollution by oil hydrocarbons. Since marinas tend to be located in areas of great natural beauty, and/or of high value economic activities, the pollution they contribute is assumed to be important and increasing, through currently-available information is very incomplete. (Author)

  7. Water and sediment quality assessment in the Colastiné-Corralito stream system (Santa Fe, Argentina): impact of industry and agriculture on aquatic ecosystems.

    Science.gov (United States)

    Regaldo, Luciana; Gutierrez, María F; Reno, Ulises; Fernández, Viviana; Gervasio, Susana; Repetti, María R; Gagneten, Ana M

    2018-03-01

    The present study focuses on the evaluation of metal (chromium, copper, and lead), arsenic, and pesticide (atrazine and endosulfan) contamination in freshwater streams of one of the most important agricultural and industrial areas of central-eastern Argentina, which has not been reported earlier. The environmental fate of inorganic microcontaminants and pesticides was assessed. Samples were collected monthly for a year. Pesticide concentrations were measured in water; metal and arsenic concentrations were measured in water and sediments, and physicochemical variables were analyzed. In most cases, metals and arsenic in water exceeded the established guideline levels for the protection of aquatic biota: 98 and 56.25% of the samples showed higher levels of Cr and Pb, while 81.25 and 85% of the samples presented higher values for Cu and As, respectively. Cr, Pb, Cu, and As exceeded 181.5 times, 41.6 times, 57.5 times, and 12.9 times, respectively, the guideline level values. In sediment samples, permitted levels were also surpassed by 40% for Pb, 15% for As, 4% for Cu, and 2% for Cr. Geoaccumulation Index (Igeo) demonstrated that most of the sediment samples were highly polluted by Cr and Cu and very seriously polluted by Pb, which indicates progressive deterioration of the sediment quality. Atrazine never exceeded them, but 27% of the 48 water samples contained total endosulfan that surpassed the guidelines. The findings of this study suggest risk to the freshwater biota over prolong periods and possible risk to humans if such type of contaminated water is employed for recreation or human use. Improper disposal of industrial effluents and agricultural runoffs need to be controlled, and proper treatment should be done before disposal to avoid further deterioration of the aquifers of this area.

  8. Experimental Study on the Palatability Impacts of Potable Water as a Hydronic Medium

    Directory of Open Access Journals (Sweden)

    Robert Prybysh

    2018-02-01

    Full Text Available Hydronic systems installed in buildings utilize water to transport thermal energy within the building for heating and cooling purposes. These systems can be closed loop, where the water is chemically treated and circulated indefinitely, or they can be open loop, where the water is not treated and is effluxed as a result of occupant activities, such as bathing or cooking. Water in an open loop system may circulate within the system for a limited time before it is extracted from the system by occupant activities and replaced with new water from the local water supply. The implementation of open loop hydronic systems is becoming more common in multi-unit residential buildings, even though a number of questions regarding the use of such systems remain unanswered. One concern regarding the use of circulated potable water for heating purposes is the potential effects on the occupant perceptions of the palatability of the service water being delivered to their suites. In an open-loop HVAC system (Heating Ventilating, Air Conditioning System, heating water is subject to repeated thermal cycles and continuous recirculation, which creates the potential for chemical alterations of the materials present in the water or leaching of materials from the equipment and piping. Through the use of Flavor Profile Analysis (FPA established by the American Water Works Association, and a multi-unit HVAC system constructed in a controlled environment, the palatability effects of the operational system were evaluated for a number of scenarios. The collected feedback from the study participants was then tabulated to quantify the impacts of using potable water as a recirculating heating medium on the perceptions of the occupants. The resulting observations led us to conclude that utilizing potable water as a heating medium has a negligible effect on the palatability of water in the system for average retention times under one day, and a non-objectionable, but noticeable

  9. Cost Analysis of Water Transport for Climate Change Impact Assessment

    Science.gov (United States)

    Szaleniec, V.; Buytaert, W.

    2012-04-01

    It is expected that climate change will have a strong impact on water resources worldwide. Many studies exist that couple the output of global climate models with hydrological models to assess the impact of climate change on physical water availability. However, the water resources topology of many regions and especially that of cities can be very complex. Changes in physical water availability do therefore not translate easily into impacts on water resources for cities. This is especially the case for cities with a complex water supply topology, for instance because of geographical barriers, strong gradients in precipitation patterns, or competing water uses. In this study we explore the use of cost maps to enable the inclusion of water supply topologies in climate change impact studies. We use the city of Lima as a case study. Lima is the second largest desert city in the world. Although Peru as a whole has no water shortage, extreme gradients exist. Most of the economic activities including the city of Lima are located in the coastal desert. This region is geographically disconnected from the wet Amazon basin because of the Andes mountain range. Hence, water supply is precarious, provided by a complex combination of high mountain ecosystems including wetlands and glaciers, as well as groundwater aquifers depending on recharge from the mountains. We investigate the feasibility and costs of different water abstraction scenarios and the impact of climate change using cost functions for different resources. The option of building inter basins tunnels across the Andes is compared to the costs of desalinating seawater from the Pacific Ocean under different climate change scenarios and population growth scenarios. This approach yields recommendations for the most cost-effective options for the future.

  10. Impacts of Personal Experience: Informing Water Conservation Extension Education

    Science.gov (United States)

    Huang, Pei-wen; Lamm, Alexa J.

    2017-01-01

    Extension educators have diligently educated the general public about water conservation. Incorporating audiences' personal experience into educational programming is recommended as an approach to effectively enhance audiences' adoption of water conservation practices. To ensure the impact on the audiences and environment, understanding the…

  11. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    Science.gov (United States)

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  12. Impact of pipes networks simplification on water hammer phenomenon

    Indian Academy of Sciences (India)

    Simplification of water supply networks is an indispensible design step to make the original network easier to be analysed. The impact of networks' simplification on water hammer phenomenon is investigated. This study uses two loops network with different diameters, thicknesses, and roughness coefficients. The network is ...

  13. Macrophyte abundance and water quality status of three impacted ...

    African Journals Online (AJOL)

    Assessment of macrophyte abundance and water quality of three impacted inlet streams along Ikpa River Basin were investigated. A 5m x 5m quadrat through systematic sampling was used to sample the vegetation for density and frequency of species. Sediment and water samples were collected and analyzed using ...

  14. The Environmental Impact of Oilfield Formation Water on a ...

    African Journals Online (AJOL)

    A comparative analysis of the physico-chemical parameters of treated oilfield formation water and that of a freshwater stream with no previous history of pollution from oil exploration activities was determined. The environmental impact resulting from the discharge of treated oilfield formation water into freshwater samples ...

  15. Planning for impact management: a systems perspective

    International Nuclear Information System (INIS)

    Leistritz, F.L.; Halstead, J.M.; Chase, R.A.; Murdock, S.H.

    1983-01-01

    The authors develop a conceptual basis for viewing impact events and their subsequent management, and thus for designing impact management programs. Following an examination of the pragmatic rationales for an impact management program for large-scale projects, such as a nuclear waste repository, they discuss the interrelated nature of impact events that clarify the need for an integrated systems-orientated socioeconomic impact management framework. They then present the key components of such a system and discusss its implementation. Although a concerted systems approach is difficult to implement and is complex in design, it will be more difficult to complete the repository siting process without one. 4 tables

  16. Grey water treatment systems: A review

    NARCIS (Netherlands)

    Abu-Ghunmi, L.N.A.H.; Zeeman, G.; Fayyad, M.; Lier, van J.B.

    2011-01-01

    This review aims to discern a treatment for grey water by examining grey water characteristics, reuse standards, technology performance and costs. The review reveals that the systems for treating grey water, whatever its quality, should consist of processes that are able to trap pollutants with a

  17. Water Landing Impact of Recovery Space Capsule: A Research Overview

    OpenAIRE

    Nakano, Eiichiro; Uchikawa, Hideaki; Tanno, Hideyuki; Sugimoto, Ryu

    2014-01-01

    For the design of a manned or cargo space capsule, it is important to precisely estimate the Earth landing loads to the crew or cargo, and to limit the loads to within a permissible range. Water landing simulations and scale-model water landing tests with varying conditions for descending velocity, pitch angle, and horizontal velocity during splashdown were conducted to estimate the magnitude of water impact on the recovery space capsule. This paper describes the results of the simulation and...

  18. Climate Change Impacts on Water Availability and Use in the Limpopo River Basin

    OpenAIRE

    Tingju Zhu; Claudia Ringler

    2012-01-01

    This paper analyzes the effects of climate change on water availability and use in the Limpopo River Basin of Southern Africa, using a linked modeling system consisting of a semi-distributed global hydrological model and the Water Simulation Module (WSM) of the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT). Although the WSM simulates all major water use sectors, the focus of this study is to evaluate the implications of climate change on irrigation wat...

  19. Impact of reactor water chemistry on cladding performance

    International Nuclear Information System (INIS)

    Cox, B.

    1997-01-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  20. Impact of reactor water chemistry on cladding performance

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [University of Toronto, Centre for Nuclear Engineering, Toronto, Ontario (Canada)

    1997-07-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  1. Potential climate change impacts on water availability and cooling water demand in the Lusatian Lignite Mining Region, Central Europe

    Science.gov (United States)

    Pohle, Ina; Koch, Hagen; Gädeke, Anne; Grünewald, Uwe; Kaltofen, Michael; Redetzky, Michael

    2014-05-01

    In the catchments of the rivers Schwarze Elster, Spree and Lusatian Neisse, hydrologic and socioeconomic systems are coupled via a complex water management system in which water users, reservoirs and water transfers are included. Lignite mining and electricity production are major water users in the region: To allow for open pit lignite mining, ground water is depleted and released into the river system while cooling water is used in the thermal power plants. In order to assess potential climate change impacts on water availability in the catchments as well as on the water demand of the thermal power plants, a climate change impact assessment was performed using the hydrological model SWIM and the long term water management model WBalMo. The potential impacts of climate change were considered by using three regional climate change scenarios of the statistical regional climate model STAR assuming a further temperature increase of 0, 2 or 3 K by the year 2050 in the region respectively. Furthermore, scenarios assuming decreasing mining activities in terms of a decreasing groundwater depression cone, lower mining water discharges, and reduced cooling water demand of the thermal power plants are considered. In the standard version of the WBalMo model cooling water demand is considered as static with regard to climate variables. However, changes in the future cooling water demand over time according to the plans of the local mining and power plant operator are considered. In order to account for climate change impacts on the cooling water demand of the thermal power plants, a dynamical approach for calculating water demand was implemented in WBalMo. As this approach is based on air temperature and air humidity, the projected air temperature and air humidity of the climate scenarios at the locations of the power plants are included in the calculation. Due to increasing temperature and decreasing precipitation declining natural and managed discharges, and hence a lower

  2. Mode and Intermediate Waters in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Gnanadesikan, Anand [Johns Hopkins Univ., Baltimore, MD (United States); Sarmiento, Jorge L. [Princeton Univ., NJ (United States)

    2015-12-22

    This report describes work done as part of a joint Princeton-Johns Hopkins project to look at the impact of mode and intermediate waters in Earth System Models. The Johns Hopkins portion of this work focussed on the role of lateral mixing in ventilating such waters, with important implications for hypoxia, the uptake of anthropogenic carbon, the dynamics of El Nino and carbon pumps. The Johns Hopkins group also collaborated with the Princeton Group to help develop a watermass diagnostics framework.

  3. The Northeastern United States Energy-Water Nexus: Climate Change Impacts and Alternative Water Management Strategies for the Power Sector

    Science.gov (United States)

    Miara, A.; Macknick, J.; Vorosmarty, C. J.; Cohen, S. M.; Rosenzweig, B.

    2014-12-01

    The Northeastern United States (NE) relies heavily on thermoelectric power plants (90% of total capacity) to provide electricity to more than 70 million people. This region's power plants require consistent, large volumes of water at sufficiently cold temperatures to generate electricity efficiently, and withdraw approximately 10.5 trillion gallons of water annually. Previous findings indicate that assessments of future electricity pathways must account for water availability, water temperature and the changing climate, as changes in these conditions may limit operational efficiency in the future. To account for such electric system vulnerabilities, we have created a link between an electricity system capacity expansion model (ReEDS) and a hydrologic model that is coupled to a power plant simulation model (FrAMES-TP2M) that allows for a new approach to analyze electricity system development, performance, and environmental impacts. Together, these coupled tools allow us to estimate electricity development and operations in the context of a changing climate and impacts on the seasonal spatial and temporal variability of water resources, downstream thermal effluents that cause plant-to-plant interferences and harm aquatic habitat, economic costs of water conservation methods and associated carbon emissions. In this study, we test and compare a business-as-usual strategy with three alternative water management scenarios that include changes in cooling technologies and water sources utilized for the years 2014-2050. Results of these experiments can provide useful insight into the feasibility of the electricity expansion scenarios in terms of associated water use and thermal impacts, carbon emissions, the cost of generating electricity, and also highlight the importance of accounting for water resources in future power sector planning and performance assessments.

  4. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    controllers, centralized and site-specific sensor inputs, leak detection sensors, and the use of harvested water (i.e., rainwater and air condition water ...include ET functionality with soil moisture sensor, and leak detection via flow meter. ESTCP Final Report Smart Water Conservation System 58... leakage . The minimum static pressure was not achieved because tank water levels were less than 10 feet in the selected low profile tank.) Adjust break

  5. Functional systems of a pressurized water reactor

    International Nuclear Information System (INIS)

    Heinzel, V.

    1982-01-01

    The main topics, discussed in the present paper, are: - Principle design of the reactor coolant system - reactor pressure vessel with internals - containment design - residual heat removal and emergency cooling systems - nuclear component cooling systems - emergency feed water systems - plant electric power supply system. (orig./RW)

  6. Water impacts and water-climate goal conflicts of local energy choices - notes from a Swedish perspective

    Science.gov (United States)

    Ericsdotter Engström, Rebecka; Howells, Mark; Destouni, Georgia

    2018-02-01

    To meet both the Paris Agreement on Climate Change and the UN Sustainable Development Goals (SDGs), nations, sectors, counties and cities need to move towards a sustainable energy system in the next couple of decades. Such energy system transformations will impact water resources to varying extents, depending on the transformation strategy and fuel choices. Sweden is considered to be one of the most advanced countries towards meeting the SDGs. This paper explores the geographical origin of and the current water use associated with the supply of energy in the 21 regional counties of Sweden. These energy-related uses of water represent indirect, but still relevant, impacts for water management and the related SDG on clean water and sanitation (SDG 6). These indirect water impacts are here quantified and compared to reported quantifications of direct local water use, as well as to reported greenhouse gas (GHG) emissions, as one example of other types of environmental impacts of local energy choices in each county. For each county, an accounting model is set up based on data for the local energy use in year 2010, and the specific geographical origins and water use associated with these locally used energy carriers (fuels, heat and electricity) are further estimated and mapped based on data reported in the literature and open databases. Results show that most of the water use associated with the local Swedish energy use occurs outside of Sweden. Counties with large shares of liquid biofuel exhibit the largest associated indirect water use in regions outside of Sweden. This indirect water use for energy supply does not unambiguously correlate with either the local direct water use or the local GHG emissions, although for the latter, there is a tendency towards an inverse relation. Overall, the results imply that actions for mitigation of climate change by local energy choices may significantly affect water resources elsewhere. Swedish counties are thus important examples

  7. Water impacts and water-climate goal conflicts of local energy choices – notes from a Swedish perspective

    Directory of Open Access Journals (Sweden)

    R. E. Engström

    2018-02-01

    Full Text Available To meet both the Paris Agreement on Climate Change and the UN Sustainable Development Goals (SDGs, nations, sectors, counties and cities need to move towards a sustainable energy system in the next couple of decades. Such energy system transformations will impact water resources to varying extents, depending on the transformation strategy and fuel choices. Sweden is considered to be one of the most advanced countries towards meeting the SDGs. This paper explores the geographical origin of and the current water use associated with the supply of energy in the 21 regional counties of Sweden. These energy-related uses of water represent indirect, but still relevant, impacts for water management and the related SDG on clean water and sanitation (SDG 6. These indirect water impacts are here quantified and compared to reported quantifications of direct local water use, as well as to reported greenhouse gas (GHG emissions, as one example of other types of environmental impacts of local energy choices in each county. For each county, an accounting model is set up based on data for the local energy use in year 2010, and the specific geographical origins and water use associated with these locally used energy carriers (fuels, heat and electricity are further estimated and mapped based on data reported in the literature and open databases. Results show that most of the water use associated with the local Swedish energy use occurs outside of Sweden. Counties with large shares of liquid biofuel exhibit the largest associated indirect water use in regions outside of Sweden. This indirect water use for energy supply does not unambiguously correlate with either the local direct water use or the local GHG emissions, although for the latter, there is a tendency towards an inverse relation. Overall, the results imply that actions for mitigation of climate change by local energy choices may significantly affect water resources elsewhere. Swedish counties are thus

  8. Kansas Water Quality Action Targeting System (KATS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This system is a revision of the original KATS system developed in 1990 as a tool to aid resource managers target Kansas valuable and vulnerable water resources for...

  9. Defect and Innovation of Water Rights System

    Institute of Scientific and Technical Information of China (English)

    Zhou Bin

    2008-01-01

    The rare deposition of water resources conflicts with its limitless demand. This determined the existence of the water rights transaction system. The implementation of the water rights transaction system requires clarifying the definition of water re-source fight above all distinctly. At present, it is a kind of common right system arrangement which needs the Chinese government to dispose of water resources. Though a series of management sys-tems guaranteed the government's supply of water resource, it hindered the development of the water market seriously and caused the utilization of water resources to stay in the inefficient or low efficient state for a long time. Thus, we should change the government's leading role in the resource distribution and really rely on the market to carry on the water rights trade and transac-tion. In this way, the water rights could become a kind of private property right relatively, and circulate freely in the market. As a result of this, we should overcome the defects of common right, make its external performance internalized maximally and achieve the optimized water resource disposition and use it more effec-tively.

  10. Solar PV energy for water pumping system

    International Nuclear Information System (INIS)

    Mahar, F.

    1997-01-01

    The paper provides an introduction into understanding the relative merits, characteristics, including economics, of photovoltically powered water pumping systems. Although more than 10,000 photovoltaic pumping systems are known to be operating through out the world, many potential users do not know how to decide weather feasibility assessment, and system procurement so that the reader can made an informed decision about water pumping systems, especially those powered with photovoltaics. (author)

  11. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  12. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    Science.gov (United States)

    Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu

    2007-03-01

    Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ˜90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.

  13. Impacts of mining on water and soil.

    Science.gov (United States)

    Warhate, S R; Yenkie, M K N; Pokale, W K

    2007-04-01

    Out of seven coal mines situated in Wardha River Valley located at Wani (Dist. Yavatmal), five open caste coal mines are run by Western Coal Field Ltd, India. The results of 25 water and 19 soil samples (including one over burden) from Nilapur, Bramhani, Kolera, Gowari, Pimpari and Aheri for their pH, TDS, hardness, alkalinity, fluoride, chloride, nitrite, nitrate, phosphate, sulfate, cadmium, lead, zinc, copper, nickel, arsenic, manganese, sodium and potassium are studied in the present work. Statistical analysis and graphical presentation of the results are discussed in this paper.

  14. Impact of industrial effluents on surface waters

    International Nuclear Information System (INIS)

    Ahmed, K.

    2000-01-01

    The indiscriminate discharge of untreated municipal and industrial effluents has given rise to serious problems of water pollution and human health in Pakistan. The City of Lahore discharges about 365 mgd of wastewater with a BOD load of 250 tons per day, without treatment, into Ravi river. Because of the untreated industrial discharges, river Ravi is devoid of dissolved oxygen through most of its react between Lahore and Upper Chenab Canal under low flow conditions. Pollution levels can be controlled if each industry treats its own wastewater prior to disposal, in accordance with NEQS (Pakistan). (author)

  15. Closing the loop: integrating human impacts on water resources to advanced land surface models

    Science.gov (United States)

    Zaitchik, B. F.; Nie, W.; Rodell, M.; Kumar, S.; Li, B.

    2016-12-01

    Advanced Land Surface Models (LSMs), including those used in the North American Land Data Assimilation System (NLDAS), offer a physically consistent and spatially and temporally complete analysis of the distributed water balance. These models are constrained both by physically-based process representation and by observations ingested as meteorological forcing or as data assimilation updates. As such, they have become important tools for hydrological monitoring and long-term climate analysis. The representation of water management, however, is extremely limited in these models. Recent advances have brought prognostic irrigation routines into models used in NLDAS, while assimilation of Gravity Recovery and Climate Experiment (GRACE) derived estimates of terrestrial water storage anomaly has made it possible to nudge models towards observed states in water storage below the root zone. But with few exceptions these LSMs do not account for the source of irrigation water, leading to a disconnect between the simulated water balance and the observed human impact on water resources. This inconsistency is unacceptable for long-term studies of climate change and human impact on water resources in North America. Here we define the modeling challenge, review instances of models that have begun to account for water withdrawals (e.g., CLM), and present ongoing efforts to improve representation of human impacts on water storage across models through integration of irrigation routines, water withdrawal information, and GRACE Data Assimilation in NLDAS LSMs.

  16. Rotating Ceramic Water Filter Discs System for Water Filtration

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-04-01

    Full Text Available This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hydraulic conductivity of the first module was 13.7mm/day and that for the second module was 50mm/day. Results showed that the water filtration system can be operated continuously with a constant flow rate and the filtration process was controlled by a skin thin layer of rejected materials. The ceramic water filters of both filtration modules have high removal efficiency of total suspended solids up to 100% and of turbidity up to 99.94%.

  17. Wash water waste pretreatment system

    Science.gov (United States)

    1977-01-01

    Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

  18. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources.

    Science.gov (United States)

    Hybel, A-M; Godskesen, B; Rygaard, M

    2015-09-01

    Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial resolution was identified as a major factor determining the outcome of the impact assessment. For the three case studies, WTA and WSI were 27%-583% higher at Level 1 than impacts calculated for the regional scale. The results highlight that freshwater impact assessments based on regional data, rather than sub-river basin data, may dramatically underestimate the actual impact on the water resource. Furthermore, this study discusses the strengths and shortcomings of the applied indicator approaches. A sensitivity analysis demonstrates that although WSI has the highest environmental relevance, it also has the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource in aquifers remains a challenge for establishing a consistent method for benchmarking freshwater impacts caused by groundwater abstraction. Copyright © 2015 Elsevier

  19. Submersible purification system for radioactive water

    Science.gov (United States)

    Abbott, Michael L.; Lewis, Donald R.

    1989-01-01

    A portable, submersible water purification system for use in a pool of water containing radioactive contamination includes a prefilter for filtering particulates from the water. A resin bed is then provided for removal of remaining dissolved, particulate, organic, and colloidal impurities from the prefiltered water. A sterilizer then sterilizes the water. The prefilter and resin bed are suitably contained and are submerged in the pool. The sterilizer is water tight and located at the surface of the pool. The water is circulated from the pool through the prefilter, resin bed, and sterilizer by suitable pump or the like. In the preferred embodiment, the resin bed is contained within a tank which stands on the bottom of the pool and to which a base mounting the prefilter and pump is attached. An inlet for the pump is provided adjacent the bottom of the pool, while the sterilizer and outlet for the system is located adjacent the top of the pool.

  20. Habitat Particle Impact Monitoring System

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is the development of particle impact detection technology for application to habitable space exploration modules, both in space and on...

  1. Water system integration of a chemical plant

    International Nuclear Information System (INIS)

    Zheng Pingyou; Feng Xiao; Qian Feng; Cao Dianliang

    2006-01-01

    Water system integration can minimize both the freshwater consumption and the wastewater discharge of a plant. In industrial applications, it is the key to determine reasonably the contaminants and the limiting concentrations, which will decide the freshwater consumption and wastewater discharge of the system. In this paper, some rules to determine the contaminants and the limiting concentrations are proposed. As a case study, the water system in a chemical plant that produces sodium hydroxide and PVC (polyvinyl chloride) is integrated. The plant consumes a large amount of freshwater and discharges a large amount of wastewater, so minimization of both the freshwater consumption and the wastewater discharge is very important to it. According to the requirements of each water using process on the water used in it, the contaminants and the limiting concentrations are determined. Then, the optimal water reuse scheme is firstly studied based on the water network with internal water mains. To reduce the freshwater consumption and the wastewater discharge further, decentralized regeneration recycling is considered. The water using network is simplified by mixing some of the used water. After the water system integration, the freshwater consumption is reduced 25.5%, and the wastewater discharge is reduced 48%

  2. Balance: Hydroelectricity impacts on energy systems

    International Nuclear Information System (INIS)

    Baptista, V.; Baia, L.; Azevedo, H.

    1997-01-01

    The VALORAGUA (Value of Water in Portuguese) computer model was developed by Electricidade de Portugal (EDP) in order to determine the optimal operation strategy of a mixed hydro-thermal power system with an important share of hydroelectricity generation such as the one of Portugal. The model has become the main tool used by EDP for planning the development and operation of its power system. In recent years, EDP has acquired the ENPEP package and has become acquainted with its use for integrated energy and electricity planning. The main goal of this effort has been to incorporate in EDP's planning procedure an integrated approach for determining the possible role of electricity in meeting the overall requirements for energy of the country, with due account to the impacts (resource requirements and environmental emissions) of alternative energy and electricity systems. This paper concentrates on a comparison of the results of the BALANCE module of ENPEP for the electricity sector against the simulation results provided by VALORAGUA. Suggested improvements to the methodologies in order to overcome the divergences in results from these two models are also advanced in the paper. (author). 15 figs

  3. Balance: Hydroelectricity impacts on energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Baptista, V; Baia, L; Azevedo, H [Electricidade de Portugal, Porto (Portugal)

    1997-09-01

    The VALORAGUA (Value of Water in Portuguese) computer model was developed by Electricidade de Portugal (EDP) in order to determine the optimal operation strategy of a mixed hydro-thermal power system with an important share of hydroelectricity generation such as the one of Portugal. The model has become the main tool used by EDP for planning the development and operation of its power system. In recent years, EDP has acquired the ENPEP package and has become acquainted with its use for integrated energy and electricity planning. The main goal of this effort has been to incorporate in EDP`s planning procedure an integrated approach for determining the possible role of electricity in meeting the overall requirements for energy of the country, with due account to the impacts (resource requirements and environmental emissions) of alternative energy and electricity systems. This paper concentrates on a comparison of the results of the BALANCE module of ENPEP for the electricity sector against the simulation results provided by VALORAGUA. Suggested improvements to the methodologies in order to overcome the divergences in results from these two models are also advanced in the paper. (author). 15 figs.

  4. In-Water Hull Cleaning & Filtration System

    Science.gov (United States)

    George, Dan

    2015-04-01

    through a multi stage filtration unit on the surface. Solids greater than 50 micron are separated through a 1st stage separator and deposited into a disposal bin. Filtrate is then pumped through a series of high flow, back-flushable filters that remove particulate material greater than 5 micron. After the 1st and 2nd stage filtration the filtrate is then disinfected by passing through an automated UV reactor where the treated water is then released back into the ocean. This advancement in hull cleaning technology will allow vessels to be cleaned in areas where dry docking is not possible or viable along with being a preventive measure to reduce Biofouling in the environment. The in-water hull cleaning system certainly has earned its place as being an innovative leader in improving efficiencies and reducing environmental impact. https://www.linkedin.com/groups?mostRecent=&gid=6724648&trk=my_groups-tile-flipgrp

  5. Preoperational test report, raw water system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  6. Preoperational test report, raw water system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  7. PWR secondary water chemistry diagnostic system

    International Nuclear Information System (INIS)

    Miyazaki, S.; Hattori, T.; Yamauchi, S.; Kato, A.; Suganuma, S.; Yoshikawa, T.

    1989-01-01

    Water chemistry control is one of the most important tasks in order to maintain the reliability of plant equipments and extend operating life of the plant. We developed an advanced water chemistry management system which is able to monitor and diagnose secondary water chemistry. A prototype system had been installed at one plant in Japan since Nov. 1986 in order to evaluate system performance and man-machine interface. The diagnosis system has been successfully tested off line using synthesized plant data for various cases. We are continuing to improve the applicability and develop new technology which make it evaluate steam generator crevice chemistry. (author)

  8. Water turbine system and method of operation

    Science.gov (United States)

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  9. Water hammer analysis in a water distribution system

    Directory of Open Access Journals (Sweden)

    John Twyman

    2017-04-01

    Full Text Available The solution to water hammer in a water distribution system (WDS is shown by applying three hybrid methods (HM based on the Box’s scheme, McCormack's method and Diffusive Scheme. Each HM formulation in conjunction with their relative advantages and disadvantages are reviewed. The analyzed WDS has pipes with different lengths, diameters and wave speeds, being the Courant number different in each pipe according to the adopted discretization. The HM results are compared with the results obtained by the Method of Characteristics (MOC. In reviewing the numerical attenuation, second order schemes based on Box and McCormack are more conservative from a numerical point of view, being recommendable their application in the analysis of water hammer in water distribution systems.

  10. Three-Dimensional Simulations of Oblique Asteroid Impacts into Water

    Science.gov (United States)

    Gisler, G. R.; Ferguson, J. M.; Heberling, T.; Plesko, C. S.; Weaver, R.

    2016-12-01

    Waves generated by impacts into oceans may represent the most significant danger from near-earth asteroids and comets. For impacts near populated shores, the crown splash and subsequent waves, accompanied by sediment lofting and high winds, could be more damaging than storm surges from the strongest hurricanes. For asteroids less than 500 m in diameter that impact into deep water far from shores, the waves produced will be detectable over large distances, but probably not significantly dangerous. We present new three-dimensional simulations of oblique impacts into deep water, with trajectory angles ranging from 20 degrees to 60 degrees (where 90 degrees is vertical). These simulations are performed with the Los Alamos Rage hydrocode, and include atmospheric effects including ablation and airbursts. These oblique impact simulations are specifically performed in order to help determine whether there are additional dangers from the obliquity of impact not covered by previous two-dimensional studies. Water surface elevation profiles, surface pressures, and depth-averaged mass fluxes within the water are prepared for use in propagation studies.

  11. Impact Analysis for Risks in Informatics Systems

    OpenAIRE

    Baicu, Floarea; Baches, Maria Alexandra

    2013-01-01

    In this paper are presented methods of impact analysis on informatics system security accidents, qualitative and quantitative methods, starting with risk and informational system security definitions. It is presented the relationship between the risks of exploiting vulnerabilities of security system, security level of these informatics systems, probability of exploiting the weak points subject to financial losses of a company, respectively impact of a security accident on the company. Herewit...

  12. Environmental impacts and sustainability of degraded water reuse

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, D.L.; Bradford, S.A. [USDA ARS, Riverside, CA (United States). US Salin Laboratory

    2008-09-15

    Greater urban demand for finite water resources to meet domestic, agricultural, industrial, and recreational needs; increased frequency of drought resulting from erratic weather; and continued degradation of available water resources from point and nonpoint sources of pollution have focused attention on the reuse of degraded waters as a potential water source. However, short- and long-term detrimental environmental impacts and sustainability of degraded water reuse are not well known or understood. These concerns led to the organization of the 2007 ASA-CSSA-SSSA Symposium entitled Environmental Impacts and Sustainability of Degraded Water Reuse. Out of this symposium came a special collection of 4 review papers and 12 technical research papers focusing on various issues associated with the reuse of agricultural drainage water, well water generated in the production of natural gas from coalbeds, municipal wastewater and biosolids, wastewater from confined animal operations, urban runoff, and food-processing wastewater. Overviews of the papers, gaps in knowledge, and future research directions are presented. The future prognosis of degraded water reuse is promising, provided close attention is paid to managing constituents that pose short- and long-term threats to the environment and the health of humankind.

  13. Water Delivery and Giant Impacts in the 'Grand Tack' Scenario

    Science.gov (United States)

    O'Brien, David P.; Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; Mandell, Avi M.

    2014-01-01

    A new model for terrestrial planet formation has explored accretion in a truncated protoplanetary disk, and found that such a configuration is able to reproduce the distribution of mass among the planets in the Solar System, especially the Earth/Mars mass ratio, which earlier simulations have generally not been able to match. Walsh et al. tested a possible mechanism to truncate the disk-a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in numerous hydrodynamical simulations of giant planet formation. In addition to truncating the disk and producing a more realistic Earth/Mars mass ratio, the migration of the giant planets also populates the asteroid belt with two distinct populations of bodies-the inner belt is filled by bodies originating inside of 3 AU, and the outer belt is filled with bodies originating from between and beyond the giant planets (which are hereafter referred to as 'primitive' bodies). One implication of the truncation mechanism proposed in Walsh et al. is the scattering of primitive planetesimals onto planet-crossing orbits during the formation of the planets. We find here that the planets will accrete on order 1-2% of their total mass from these bodies. For an assumed value of 10% for the water mass fraction of the primitive planetesimals, this model delivers a total amount of water comparable to that estimated to be on the Earth today. The radial distribution of the planetary masses and the dynamical excitation of their orbits are a good match to the observed system. However, we find that a truncated disk leads to formation timescales more rapid than suggested by radiometric chronometers. In particular, the last giant impact is typically earlier than 20 Myr, and a substantial amount of mass is accreted after that event. This is at odds with the dating of the Moon-forming impact and the estimated amount of mass accreted by Earth following that event. However, 5 of the 27 planets larger than half an Earth mass formed in

  14. Energy costs and Portland water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W.M.; Hawley, R.P.

    1981-10-01

    The changing role of electrical energy on the Portland, Oregon, municipal-water-supply system is presented. Portland's actions in energy conservation include improved operating procedures, pump modifications, and modifications to the water system to eliminate pumping. Portland is implementing a small hydroelectric project at existing water-supply dams to produce an additional source of power for the area. Special precautions in construction and operation are necessary to protect the high quality of the water supply. 2 references, 7 figures.

  15. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  16. Fly ash dynamics in soil-water systems

    International Nuclear Information System (INIS)

    Sharma, S.; Fulekar, M.H.; Jayalakshmi, C.P.

    1989-01-01

    Studies regarding the effluents and coal ashes (or fly ash) resulting from coal burning are numerous, but their disposal and interactions with the soil and water systems and their detailed environmental impact assessment with concrete status reports on a global scale are scanty. Fly ash dynamics in soil and water systems are reviewed. After detailing the physical composition of fly ash, physicochemical changes in soil properties due to fly ash amendment are summarized. Areas covered include texture and bulk density, moisture retention, change in chemical equilibria, and effects of fly ash on soil microorganisms. Plant growth in amended soils is discussed, as well as plant uptake and accumulation of trace elements. In order to analyze the effect of fly ash on the physicochemical properties of water, several factors must be considered, including surface morphology of fly ash, pH of the ash sluice water, pH adjustments, leachability and solubility, and suspended ash and settling. The dynamics of fly ash in water systems is important due to pollution of groundwater resources from toxic components such as trace metals. Other factors summarized are bioaccumulation and biomagnification, human health effects of contaminants, and the impact of radionuclides in fly ash. Future research needs should focus on reduction of the environmental impact of fly ash and increasing utilization of fly ash as a soil amendment. 110 refs., 2 figs., 10 tabs

  17. Evaluating the impact of water conservation on fate of outdoor water use: a study in an arid region.

    Science.gov (United States)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria

    2011-08-01

    In this research, the impact of several water conservation policies and return flow credits on the fate of water used outdoors in an arid region is evaluated using system dynamics modeling approach. Return flow credits is a strategy where flow credits are obtained for treated wastewater returned to a water body, allowing for the withdrawal of additional water equal to the amount returned as treated wastewater. In the return credit strategy, treated wastewater becomes a resource. This strategy creates a conundrum in which conservation may lead to an apparent decrease in water supply because less wastewater is generated and returned to water body. The water system of the arid Las Vegas Valley in Nevada, USA is used as basis for the dynamic model. The model explores various conservation scenarios to attain the daily per capita demand target of 752 l by 2035: (i) status quo situation where conservation is not implemented, (ii) conserving water only on the outdoor side, (iii) conserving water 67% outdoor and 33% indoor, (iv) conserving equal water both in the indoor and outdoor use (v) conserving water only on the indoor side. The model is validated on data from 1993 to 2008 and future simulations are carried out up to 2035. The results show that a substantial portion of the water used outdoor either evapo-transpires (ET) or infiltrates to shallow groundwater (SGW). Sensitivity analysis indicated that seepage to groundwater is more susceptible to ET compared to any other variable. The all outdoor conservation scenario resulted in the highest return flow credits and the least ET and SGW. A major contribution of this paper is in addressing the water management issues that arise when wastewater is considered as a resource and developing appropriate conservation policies in this backdrop. The results obtained can be a guide in developing outdoor water conservation policies in arid regions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Climate Change-Related Water Disasters' Impact on Population Health.

    Science.gov (United States)

    Veenema, Tener Goodwin; Thornton, Clifton P; Lavin, Roberta Proffitt; Bender, Annah K; Seal, Stella; Corley, Andrew

    2017-11-01

    Rising global temperatures have resulted in an increased frequency and severity of cyclones, hurricanes, and flooding in many parts of the world. These climate change-related water disasters (CCRWDs) have a devastating impact on communities and the health of residents. Clinicians and policymakers require a substantive body of evidence on which to base planning, prevention, and disaster response to these events. The purpose of this study was to conduct a systematic review of the literature concerning the impact of CCRWDs on public health in order to identify factors in these events that are amenable to preparedness and mitigation. Ultimately, this evidence could be used by nurses to advocate for greater preparedness initiatives and inform national and international disaster policy. A systematic literature review of publications identified through a comprehensive search of five relevant databases (PubMed, Cumulative Index to Nursing and Allied Health Literature [CINAHL], Embase, Scopus, and Web of Science) was conducted using a modified Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach in January 2017 to describe major themes and associated factors of the impact of CCRWDs on population health. Three major themes emerged: environmental disruption resulting in exposure to toxins, population susceptibility, and health systems infrastructure (failure to plan-prepare-mitigate, inadequate response, and lack of infrastructure). Direct health impact was characterized by four major categories: weather-related morbidity and mortality, waterborne diseases/water-related illness, vector-borne and zoonotic diseases, and psychiatric/mental health effects. Scope and duration of the event are factors that exacerbate the impact of CCRWDs. Discussion of specific factors amenable to mitigation was limited. Flooding as an event was overrepresented in this analysis (60%), and the majority of the research reviewed was conducted in high-income or upper

  19. Impact of urban sprawl on water quality in eastern Massachusetts, USA.

    Science.gov (United States)

    Tu, Jun; Xia, Zong-Guo; Clarke, Keith C; Frei, Allan

    2007-08-01

    A study of water quality, land use, and population variations over the past three decades was conducted in eastern Massachusetts to examine the impact of urban sprawl on water quality using geographic information system and statistical analyses. Since 1970, eastern Massachusetts has experienced pronounced urban sprawl, which has a substantial impact on water quality. High spatial correlations are found between water quality indicators (especially specific conductance, dissolved ions, including Ca, Mg, Na, and Cl, and dissolved solid) and urban sprawl indicators. Urbanized watersheds with high population density, high percentage of developed land use, and low per capita developed land use tended to have high concentrations of water pollutants. The impact of urban sprawl also shows clear spatial difference between suburban areas and central cities: The central cities experienced lower increases over time in specific conductance concentration, compared to suburban and rural areas. The impact of urban sprawl on water quality is attributed to the combined effects of population and land-use change. Per capita developed land use is a very important indicator for studying the impact of urban sprawl and improving land use and watershed management, because inclusion of this indicator can better explain the temporal and spatial variations of more water quality parameters than using individual land use or/and population density.

  20. Performance Evaluation of Pressure Transducers for Water Impacts

    Science.gov (United States)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  1. Long-term integrated river basin planning and management of water quantity and water quality in mining impacted catchments

    Science.gov (United States)

    Pohle, Ina; Zimmermann, Kai; Claus, Thomas; Koch, Hagen; Gädeke, Anne; Uhlmann, Wilfried; Kaltofen, Michael; Müller, Fabian; Redetzky, Michael; Schramm, Martina; Schoenheinz, Dagmar; Grünewald, Uwe

    2015-04-01

    During the last decades, socioeconomic change in the catchment of the Spree River, a tributary of the Elbe, has been to a large extent associated with lignite mining activities and the rapid decrease of these activities in the 1990s. There are multiple interconnections between lignite mining and water management both in terms of water quantity and quality. During the active mining period a large-scale groundwater depression cone has been formed while river discharges have been artificially increased. Now, the decommissioned opencast mines are being transformed into Europe's largest man-made lake district. However, acid mine drainage causes low pH in post mining lakes and high concentrations of iron and sulphate in post mining lakes and the river system. Next to potential changes in mining activities, also the potential impacts of climate change (increasing temperature and decreasing precipitation) on water resources of the region are of major interest. The fundamental question is to what extent problems in terms of water quantity and water quality are exacerbated and whether they can be mitigated by adaptation measures. In consequence, long term water resource planning in the region has to formulate adaptation measures to climate change and socioeconomic change in terms of mining activities which consider both, water quantity and water quality aspects. To assess potential impacts of climate and socioeconomic change on water quantity and water quality of the Spree River catchment up to the Spremberg reservoir in the scenario period up to 2052, we used a model chain which consists of (i) the regional climate model STAR (scenarios with a further increase in temperature of 0 and 2 K), (ii) mining scenarios (mining discharges, cooling water consumption of thermal power plants), (iii) the ecohydrological model SWIM (natural water balance), (iv) the long term water management model WBalMo (managed discharges, withdrawal of water users, reservoir operation) and (v) the

  2. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  3. Coupling biophysical processes and water rights to simulate spatially distributed water use in an intensively managed hydrologic system

    Science.gov (United States)

    Han, Bangshuai; Benner, Shawn G.; Bolte, John P.; Vache, Kellie B.; Flores, Alejandro N.

    2017-07-01

    Humans have significantly altered the redistribution of water in intensively managed hydrologic systems, shifting the spatiotemporal patterns of surface water. Evaluating water availability requires integration of hydrologic processes and associated human influences. In this study, we summarize the development and evaluation of an extensible hydrologic model that explicitly integrates water rights to spatially distribute irrigation waters in a semi-arid agricultural region in the western US, using the Envision integrated modeling platform. The model captures both human and biophysical systems, particularly the diversion of water from the Boise River, which is the main water source that supports irrigated agriculture in this region. In agricultural areas, water demand is estimated as a function of crop type and local environmental conditions. Surface water to meet crop demand is diverted from the stream reaches, constrained by the amount of water available in the stream, the water-rights-appropriated amount, and the priority dates associated with particular places of use. Results, measured by flow rates at gaged stream and canal locations within the study area, suggest that the impacts of irrigation activities on the magnitude and timing of flows through this intensively managed system are well captured. The multi-year averaged diverted water from the Boise River matches observations well, reflecting the appropriation of water according to the water rights database. Because of the spatially explicit implementation of surface water diversion, the model can help diagnose places and times where water resources are likely insufficient to meet agricultural water demands, and inform future water management decisions.

  4. Water Resource Impacts Embedded in the Western US Electrical Energy Trade; Current Patterns and Adaptation to Future Drought

    Science.gov (United States)

    Adams, E. A.; Herron, S.; Qiu, Y.; Tidwell, V. C.; Ruddell, B. L.

    2013-12-01

    Water resources are a key element in the global coupled natural-human (CNH) system, because they are tightly coupled with the world's social, environmental, and economic subsystems, and because water resources are under increasing pressure worldwide. A fundamental adaptive tool used especially by cities to overcome local water resource scarcity is the outsourcing of water resource impacts through substitutionary economic trade. This is generally understood as the indirect component of a water footprint, and as ';virtual water' trade. This work employs generalized CNH methods to reveal the trade in water resource impacts embedded in electrical energy within the Western US power grid, and utilizes a general equilibrium economic trade model combined with drought and demand growth constraints to estimate the future status of this trade. Trade in embedded water resource impacts currently increases total water used for electricity production in the Western US and shifts water use to more water-limited States. Extreme drought and large increases in electrical energy demand increase the need for embedded water resource impact trade, while motivating a shift to more water-efficient generation technologies and more water-abundant generating locations. Cities are the largest users of electrical energy, and in the 21st Century will outsource a larger fraction of their water resource impacts through trade. This trade exposes cities to risks associated with disruption of long-distance transmission and distant hydrological droughts.

  5. Models of the Water Systems in Mauritius

    OpenAIRE

    Toth, F.L.

    1992-01-01

    Criteria for sustainable development in terms of managing a nation's water resources include the availability of water in required quantity and appropriate quality. This paper presents a set of water models developed for the IIASA/UNFPA Mauritius Project for use as an integral part of a system of models including demographic, economic, and land use models. The paper identifies the most important factors determining the available freshwater resources in Mauritius (climate, geology, hydrology),...

  6. Survivability of systems under multiple factor impact

    International Nuclear Information System (INIS)

    Korczak, Edward; Levitin, Gregory

    2007-01-01

    The paper considers vulnerable multi-state series-parallel systems operating under influence of external impacts. Both the external impacts and internal failures affect system survivability, which is determined as the probability of meeting a given demand. The external impacts are characterized by several destructive factors affecting the system or its parts simultaneously. In order to increase the system's survivability a multilevel protection against the destructive factors can be applied to its subsystems. In such systems, the protected subsystems can be destroyed only if all of the levels of their protection are destroyed. The paper presents an algorithm for evaluating the survivability of series-parallel systems with arbitrary configuration of multilevel protection against multiple destructive factor impacts. The algorithm is based on a composition of Boolean and the Universal Generating Function techniques. Illustrative examples are presented

  7. Life cycle assessment of a commercial rainwater harvesting system compared with a municipal water supply system

    Science.gov (United States)

    Building upon previously published life cycle assessment (LCA) methodologies, we conducted an LCA of a commercial rainwater harvesting (RWH) system and compared it to a municipal water supply (MWS) system adapted to Washington, D.C. Eleven life cycle impact assessment (LCIA) indi...

  8. Effects of pulsating water jet impact on aluminium surface

    Czech Academy of Sciences Publication Activity Database

    Foldyna, Josef; Sitek, Libor; Ščučka, Jiří; Martinec, Petr; Valíček, Jan; Páleníková, K.

    2009-01-01

    Roč. 2009, č. 20 (2009), s. 6174-6180 ISSN 0924-0136 R&D Projects: GA ČR GA101/07/1451; GA ČR GP101/07/P512 Institutional research plan: CEZ:AV0Z30860518 Keywords : pulsating water jet * jet impact * material erosion * surface characteristics Subject RIV: JQ - Machines ; Tools Impact factor: 1.420, year: 2009 http://www.sciencedirect.com/science

  9. Corrosion evaluation of service water system materials

    International Nuclear Information System (INIS)

    Stein, A.A.; Felder, C.M.; Martin, R.L.

    1994-01-01

    The availability and reliability of the service water system is critical for safe operation of a nuclear power plant. Degradation of the system piping and components has forced utilities to re-evaluate the corrosion behavior of current and alternative system materials, to support assessments of the remaining service life of the service water system, selection of replacement materials, implementation of corrosion protection methods and corrosion monitoring programs, and identification of maintenance and operational constraints consistent with the materials used. TU Electric and Stone and Webster developed a service water materials evaluation program for the Comanche Peak Steam Electric Station. Because of the length of exposure and the generic interest in this program by the nuclear power industry, EPRI joined TU to co-sponsor the test program. The program was designed to evaluate the corrosion behavior of current system materials and candidate replacement materials and to determine the operational and design changes which could improve the corrosion performance of the system. Although the test program was designed to be representative of service water system materials and environments targeted to conditions at Comanche Peak, these conditions are typical of and relevant to other fresh water cooled nuclear service water systems. Testing was performed in raw water and water treated with biocide under typical service water operating conditions including continuous flow, intermittent flow, and stagnant conditions. The test program evaluated the 300 Series and 6% molybdenum stainless steels, copper-nickel, titanium, carbon steel, and a formed-in-place nonmetallic pipe lining to determine susceptibility to general, crevice, and microbiologically influenced corrosion and pitting attack. This report presents the results of the test program after 4 years of exposure

  10. Performance Analysis of Photovoltaic Water Heating System

    Directory of Open Access Journals (Sweden)

    Tomas Matuska

    2017-01-01

    Full Text Available Performance of solar photovoltaic water heating systems with direct coupling of PV array to DC resistive heating elements has been studied and compared with solar photothermal systems. An analysis of optimum fixed load resistance for different climate conditions has been performed for simple PV heating systems. The optimum value of the fixed load resistance depends on the climate, especially on annual solar irradiation level. Use of maximum power point tracking compared to fixed optimized load resistance increases the annual yield by 20 to 35%. While total annual efficiency of the PV water heating systems in Europe ranges from 10% for PV systems without MPP tracking up to 15% for system with advanced MPP trackers, the efficiency of solar photothermal system for identical hot water load and climate conditions is more than 3 times higher.

  11. Regulatory Impacts on Sustainable Drinking Water Supply: A Comparative Study on Dutch Water Companies

    NARCIS (Netherlands)

    Dalhuisen, J.M.; Nijkamp, P.

    2006-01-01

    Regulatory changes have exerted deep impacts on public service provision. This paper aims to disentangle recent differences in the external production circumstances of Dutch regional water companies in order to identify the crucial regulatory factors influencing the supply of water to various users

  12. Regulatory Impacts on Sustainable Drinking Water Supply: A Comparative Study on Dutch Water Companies

    NARCIS (Netherlands)

    Dalhuisen, J.M.; Nijkamp, P.

    2007-01-01

    Regulatory changes have exerted deep impacts on public service provision. This paper aims to disentangle recent differences in the external production circumstances of Dutch regional water companies in order to identify the crucial regulatory factors influencing the supply of water to various users

  13. Water footprint of European cars: potential impacts of water consumption along automobile life cycles.

    Science.gov (United States)

    Berger, Markus; Warsen, Jens; Krinke, Stephan; Bach, Vanessa; Finkbeiner, Matthias

    2012-04-03

    Due to global increase of freshwater scarcity, knowledge about water consumption in product life cycles is important. This study analyzes water consumption and the resulting impacts of Volkswagen's car models Polo, Golf, and Passat and represents the first application of impact-oriented water footprint methods on complex industrial products. Freshwater consumption throughout the cars' life cycles is allocated to material groups and assigned to countries according to import mix shares or location of production sites. Based on these regionalized water inventories, consequences for human health, ecosystems, and resources are determined by using recently developed impact assessment methods. Water consumption along the life cycles of the three cars ranges from 52 to 83 m(3)/car, of which more than 95% is consumed in the production phase, mainly resulting from producing iron, steel, precious metals, and polymers. Results show that water consumption takes place in 43 countries worldwide and that only 10% is consumed directly at Volkswagen's production sites. Although impacts on health tend to be dominated by water consumption in South Africa and Mozambique, resulting from the production of precious metals and aluminum, consequences for ecosystems and resources are mainly caused by water consumption of material production in Europe.

  14. Water masers in the Kronian system

    NARCIS (Netherlands)

    Pogrebenko, Sergei V.; Gurvits, Leonid I.; Elitzur, Moshe; Cosmovici, Cristiano B.; Avruch, Ian M.; Pluchino, Salvatore; Montebugnoli, Stelio; Salerno, Emma; Maccaferri, Giuseppe; Mujunen, Ari; Ritakari, Jouko; Molera, Guifre; Wagner, Jan; Uunila, Minttu; Cimo, Giuseppe; Schilliro, Francesco; Bartolini, Marco; Fernández, J. A.; Lazzaro, D.; Prialnik, D.; Schulz, R.

    2010-01-01

    The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of UV emission from a background star (Hansen et al. 2006). Prompted by this discovery, we

  15. Residential hot water distribution systems: Roundtablesession

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  16. APPLICATION OF A PHOTOVOLTAIC SYSTEM IN WATER ...

    African Journals Online (AJOL)

    use of the Photovoltaic system for water pumping is explored. .... employed to advantage for rural Ethiopia are solar energy, wind ... Kwh/sq.m/day and with a yearly average of about .... equator. Well Data : Total head 62m ... Investment return in photovoltaic potable water ... without any considerable change in performance.

  17. Water balance modelling of a uranium mill effluent management system

    Science.gov (United States)

    Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian

    2017-06-01

    A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.

  18. Impact of Interfacial Water Transport in PEMFCs on Cell Performance

    International Nuclear Information System (INIS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Pasaogullari, Ugur; Wang, Chao-Yang

    2014-01-01

    Coupled cell performance evaluation, liquid water visualization by neutron radiography (NRG) and numerical modeling based on multiphase mixture (M2) model were performed with three types of GDMs: Micro Porous Layer (MPL) free; Carbon Paper (CP) with MPL; and CP free to investigate interfacial liquid water transport phenomena in PEMFCs and its effect on cell performance. The visualized results of MPL free GDM with different wettability of bi-polar plates (BPPs) showed hydrophilic BPP improved liquid water transport at the interface between CP and channel. Numerical modeling results indicated that this difference with BPP wettability was caused by the liquid water coverage difference on CP surface. Thus, controlling liquid water coverage is the one of the key strategies for improving cell performance. Additionally, liquid water distributions across the cell for three types of GDMs were compared and significant difference in liquid water content at the interface between Catalyst Layer (CL) and GDM was observed. Numerical modeling suggests this difference is influenced by the gap at the interface and that the MPL could minimize this effect. The CP free cell (i.e. only MPL) showed the best performance and the lowest liquid water content. There were multiple impacts of interfacial liquid water transport both at CL-GDM and GDM-channel interfaces. High hydrophobicity and fine structure of MPLs contributed to enhanced liquid water transport at GDM-channel interface and as a result reduced the liquid water coverage. At the same time, MPL improves contact at the CL-GDM interface in the same manner as seen in CP with MPL case. Thus, the CP free concept showed the best performance. It is suggested that the design of the interface between each component of the PEMFC has a great impact on cell performance and plays a significant role in achievement of high current density operation and cost reduction in FCEVs

  19. Light water reactor safeguards system evaluation

    International Nuclear Information System (INIS)

    Varnado, G.B.; Ericson, D.M. Jr.; Bennett, H.A.; Hulme, B.L.; Daniel, S.L.

    1978-01-01

    A methodology for assessing the effectiveness of safeguards systems was developed in this study and was applied to a typical light water reactor plant. The relative importance of detection systems, barriers, response forces and other safeguards system components was examined in extensive parameter variation studies. (author)

  20. Cold Vacuum Drying facility potable water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system

  1. Life Support Systems: Wastewater Processing and Water Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Exploration Systems (AES) Life Support Systems project Wastewater Processing and Water Management task: Within an integrated life support system, water...

  2. CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving

    International Nuclear Information System (INIS)

    Wang, T M; Yang, X B; Liang, J H; Yao, G C; Zhao, W D

    2013-01-01

    Plunge diving is the most commonly used feeding method of a gannet, which can make the gannet transit from air to water rapidly and successfully. A large impact acceleration can be generated due to the air-to-water transition. However, the impact acceleration experienced by the gannet during plunge diving has not been studied. In this paper, this issue is investigated by using the CFD method. The effect of the dropping height and the water-entry inclination angle on the impact acceleration is considered. The results reveal that the impact acceleration along the longitudinal body axis increases with either of the two parameters. The peak time decreases with the dropping height. A quadratic relation is found between the peak impact acceleration and the initial water-entry velocity. According to the computation, when the dropping height is 30 m (most of gannets plunge from about this height), the peak impact acceleration can reach about 23 times the gravitational acceleration, which will exert a considerable force on the gannet body. Furthermore, the pressure distribution of different water-entry inclination angles indicates that the large pressure asymmetry caused by a small oblique angle may lead to a large impact acceleration in the direction perpendicular to the longitudinal body axis and cause damage to the neck of the gannet, which partly explains the reason why a gannet performing a high plunge diving in nature enters water with a large oblique angle from the perspective of impact mechanics. The investigation on the plunge-diving behavior in this paper will inspire and promote the development of a biomimetic amphibious robot that transits from air to water with the plunge-diving mode. (paper)

  3. Slowly biodegradable organic compounds impact the biostability of non-chlorinated drinking water produced from surface water.

    Science.gov (United States)

    Hijnen, W A M; Schurer, R; Bahlman, J A; Ketelaars, H A M; Italiaander, R; van der Wal, A; van der Wielen, P W J J

    2018-02-01

    It is possible to distribute drinking water without a disinfectant residual when the treated water is biologically stable. The objective of this study was to determine the impact of easily and slowly biodegradable compounds on the biostability of the drinking water at three full-scale production plants which use the same surface water, and on the regrowth conditions in the related distribution systems. Easily biodegradable compounds in the drinking water were determined with AOC-P17/Nox during 2012-2015. Slowly biodegradable organic compounds measured as particulate and/or high-molecular organic carbon (PHMOC), were monitored at the inlet and after the different treatment stages of the three treatments during the same period. The results show that PHMOC (300-470 μg C L -1 ) was approximately 10% of the TOC in the surface water and was removed to 50-100 μg C L -1 . The PHMOC in the water consisted of 40-60% of carbohydrates and 10% of proteins. A significant and strong positive correlation was observed for PHMOC concentrations and two recently introduced bioassay methods for slowly biodegradable compounds (AOC-A3 and biomass production potential, BPC 14 ). Moreover, these three parameters in the biological active carbon effluent (BACF) of the three plants showed a positive correlation with regrowth in the drinking water distribution system, which was assessed with Aeromonas, heterotrophic plate counts, coliforms and large invertebrates. In contrast, the AOC-P17/Nox concentrations did not correlate with these regrowth parameters. We therefore conclude that slowly biodegradable compounds in the treated water from these treatment plants seem to have a greater impact on regrowth in the distribution system than easily biodegradable compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Calculations of Asteroid Impacts into Deep and Shallow Water

    Science.gov (United States)

    Gisler, Galen; Weaver, Robert; Gittings, Michael

    2011-06-01

    Contrary to received opinion, ocean impacts of small (dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of kilometers from the impact point, and fallout from the initial splash can be extremely violent

  5. Surface Waters Information Management System (SWIMS)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was supported...

  6. Towards spatially smart abatement of human pharmaceuticals in surface waters: defining impact of sewage treatment plants on susceptible functions

    NARCIS (Netherlands)

    Gils, J.A.G.; Coppens, L.J.C.; Laak, ter T.L.; Raterman, B.W.; Wezel, van A.P.

    2015-01-01

    For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at,

  7. Towards spatially smart abatement of human pharmaceuticals in surface waters : Defining impact of sewage treatment plants on susceptible functions

    NARCIS (Netherlands)

    Coppens, Lieke J C; van Gils, Jos A G; Ter Laak, Thomas L|info:eu-repo/dai/nl/304831026; Raterman, Bernard W; van Wezel, Annemarie P|info:eu-repo/dai/nl/141376074

    2015-01-01

    For human pharmaceuticals, sewage treatment plants (STPs) are a major point of entry to surface waters. The receiving waters provide vital functions. Modeling the impact of STPs on susceptible functions of the surface water system allows for a spatially smart implementation of abatement options at,

  8. Droughts and governance impacts on water scarcity: an~analysis in the Brazilian semi-arid

    Directory of Open Access Journals (Sweden)

    A. C. S. Silva

    2015-06-01

    Full Text Available Extreme events are part of climate variability. Dealing with variability is still a challenge that might be increased due to climate change. However, impacts of extreme events are not only dependent on their variability, but also on management and governance. In Brazil, its semi-arid region is vulnerable to extreme events, especially droughts, for centuries. Actually, other Brazilian regions that have been mostly concerned with floods are currently also experiencing droughts. This article evaluates how a combination between climate variability and water governance might affect water scarcity and increase the impacts of extreme events on some regions. For this evaluation, Ostrom's framework for analyzing social-ecological systems (SES was applied. Ostrom's framework is useful for understanding interactions between resource systems, governance systems and resource users. This study focuses on social-ecological systems located in a drought-prone region of Brazil. Two extreme events were selected, one in 1997–2000, when Brazil's new water policy was very young, and the other one in 2012–2015. The analysis of SES considering Ostrom's principle "Clearly defined boundaries" showed that deficiencies in water management cause the intensification of drought's impacts for the water users. The reasons are more related to water management and governance problems than to drought event magnitude or climate change. This is a problem that holdup advances in dealing with extreme events.

  9. Droughts and governance impacts on water scarcity: an~analysis in the Brazilian semi-arid

    Science.gov (United States)

    Silva, A. C. S.; Galvão, C. O.; Silva, G. N. S.

    2015-06-01

    Extreme events are part of climate variability. Dealing with variability is still a challenge that might be increased due to climate change. However, impacts of extreme events are not only dependent on their variability, but also on management and governance. In Brazil, its semi-arid region is vulnerable to extreme events, especially droughts, for centuries. Actually, other Brazilian regions that have been mostly concerned with floods are currently also experiencing droughts. This article evaluates how a combination between climate variability and water governance might affect water scarcity and increase the impacts of extreme events on some regions. For this evaluation, Ostrom's framework for analyzing social-ecological systems (SES) was applied. Ostrom's framework is useful for understanding interactions between resource systems, governance systems and resource users. This study focuses on social-ecological systems located in a drought-prone region of Brazil. Two extreme events were selected, one in 1997-2000, when Brazil's new water policy was very young, and the other one in 2012-2015. The analysis of SES considering Ostrom's principle "Clearly defined boundaries" showed that deficiencies in water management cause the intensification of drought's impacts for the water users. The reasons are more related to water management and governance problems than to drought event magnitude or climate change. This is a problem that holdup advances in dealing with extreme events.

  10. Impact of hydraulic well restoration on native bacterial communities in drinking water wells.

    Science.gov (United States)

    Karwautz, Clemens; Lueders, Tillmann

    2014-01-01

    The microbial monitoring of drinking water production systems is essential to assure water quality and minimize possible risks. However, the comparative impact of microbes from the surrounding aquifer and of those established within drinking water wells on water parameters remains poorly understood. High pressure jetting is a routine method to impede well clogging by fine sediments and also biofilms. In the present study, bacterial communities were investigated in a drinking water production system before, during, and after hydraulic purging. Variations were observed in bacterial communities between different wells of the same production system before maintenance, despite them having practically identical water chemistries. This may have reflected the distinct usage practices of the different wells, and also local aquifer heterogeneity. Hydraulic jetting of one well preferentially purged a subset of the dominating taxa, including lineages related to Diaphorobacter, Nitrospira, Sphingobium, Ralstonia, Alkanindiges, Janthinobacterium, and Pseudomonas spp, suggesting their tendency for growth in well-associated biofilms. Lineages of potential drinking water concern (i.e. Legionellaceae, Pseudomonadaceae, and Acinetobacter spp.) reacted distinctly to hydraulic jetting. Bacterial diversity was markedly reduced in drinking water 2 weeks after the cleaning procedure. The results of the present study provide a better understanding of drinking water wells as a microbial habitat, as well as their role in the microbiology of drinking water systems.

  11. Impact of Hydraulic Well Restoration on Native Bacterial Communities in Drinking Water Wells

    Science.gov (United States)

    Karwautz, Clemens; Lueders, Tillmann

    2014-01-01

    The microbial monitoring of drinking water production systems is essential to assure water quality and minimize possible risks. However, the comparative impact of microbes from the surrounding aquifer and of those established within drinking water wells on water parameters remains poorly understood. High pressure jetting is a routine method to impede well clogging by fine sediments and also biofilms. In the present study, bacterial communities were investigated in a drinking water production system before, during, and after hydraulic purging. Variations were observed in bacterial communities between different wells of the same production system before maintenance, despite them having practically identical water chemistries. This may have reflected the distinct usage practices of the different wells, and also local aquifer heterogeneity. Hydraulic jetting of one well preferentially purged a subset of the dominating taxa, including lineages related to Diaphorobacter, Nitrospira, Sphingobium, Ralstonia, Alkanindiges, Janthinobacterium, and Pseudomonas spp, suggesting their tendency for growth in well-associated biofilms. Lineages of potential drinking water concern (i.e. Legionellaceae, Pseudomonadaceae, and Acinetobacter spp.) reacted distinctly to hydraulic jetting. Bacterial diversity was markedly reduced in drinking water 2 weeks after the cleaning procedure. The results of the present study provide a better understanding of drinking water wells as a microbial habitat, as well as their role in the microbiology of drinking water systems. PMID:25273229

  12. Impact of Yangtze river water transfer on the water quality of the Lixia river watershed, China.

    Directory of Open Access Journals (Sweden)

    Xiaoxue Ma

    Full Text Available To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO, chemical oxygen demand (COD, potassium permanganate index (CODMn, ammonia nitrogen (NH4+-N, electrical conductivity (EC, and water transparency (WT were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi and single-factor (Si evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4+-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed.

  13. Influence of an Extended Domestic Drinking Water System on the Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    Ljiljana Zlatanović

    2018-04-01

    Full Text Available Drinking water and fire safety are strongly bonded to each other. Actual drinking water demand and fire flows are both delivered through the same network, and are both devoted to public health and safety. In The Netherlands, the discussion about fire flows supplied by the drinking water networks has drawn fire fighters and drinking water companies together, searching for novel approaches to improve public safety. One of these approaches is the application of residential fire sprinkler systems fed by drinking water. This approach has an impact on the layout of domestic drinking water systems (DDWSs, as extra plumbing is required. This study examined the influence of the added plumbing on quality of both fresh and 10 h stagnant water in two full scale DDWSs: a conventional and an extended system. Overnight stagnation was found to promote copper and zinc leaching from pipes in both DDWSs. Microbial numbers and viability in the stagnant water, measured by heterotrophic plate count (HPC, flow cytometry (FCM and adenosine tri-phosphate (ATP, depended on the temperature of fresh water, as increased microbial numbers and viability was measured in both DDWSs when the temperature of fresh water was below the observed tipping point (15 °C for the HPC and 17 °C for the FCM and ATP measurements respectively and vice versa. A high level of similarity between water and biofilm communities, >98% and >70–94% respectively, indicates that the extension of the DDWS did not affect either the microbial quality of fresh drinking water or the biofilm composition.

  14. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    ht ly M or e W or kl oa d; 5 -M or e W or kl oa d; 6 -S ig ni fic an lty M or...install the water harvesting and pump system was captured from the contractor cost proposal. 7.1.3 Water Cost Water purchased from the Port Hueneme Water...818) 737-2734 KDuke@valleycrest.com Contractor Tom Santoianni 1205 Mill Rd. Bldg. 1430 Public Works, Ventura (805) 982-4075 Tom.Santoianni@navy.mil Energy Manager

  15. An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota

    2014-12-01

    Full Text Available This paper presents a critical review of the physical impacts of decentralized water supply systems on existing centralized water infrastructures. This paper highlights the combination of centralized and decentralized systems, which is referred to as hybrid water supply systems. The system is hypothesized to generate more sustainable and resilient urban water systems. The basic concept is to use decentralized water supply options such as rainwater tanks, storm water harvesting and localized wastewater treatment and reuse in combination with centralized systems. Currently the impact of hybrid water supply technologies on the operational performance of the downstream infrastructure and existing treatment processes is yet to be known. The paper identifies a number of significant research gaps related to interactions between centralized and decentralized urban water services. It indicates that an improved understanding of the interaction between these systems is expected to provide a better integration of hybrid systems by improved sewerage and drainage design, as well as facilitate operation and maintenance planning. The paper also highlights the need for a framework to better understand the interaction between different components of hybrid water supply systems.

  16. Impact of nutritional strategies on water productivity indicators for pigs

    Directory of Open Access Journals (Sweden)

    Julio Cesar Pascale Palhares

    2013-12-01

    Full Text Available The productivity of water is a poorly considered indicator in animal agriculture. This is because water is a resource still believed by persons in the production network to be abundant and of good quality. The aim of this study was to evaluate the impact of nutritional strategies in water productivity indicators for growing and slaughtering pigs. Five strategies were evaluated: control diet (T1, with a reduction in the level of crude protein (T2, phytase (T3, organic minerals (T4 and the three nutritional strategies combined (T5. The water productivity indicator is defined as the quantity of product by water used. The following indicators were calculated: total weight (kg L-1, cold carcass (kg L-1 lean carcass (L kg-1, and nutrition (kcal L-1. T5 showed the best productivities for each liter of water used. The total weight productivity in this treatment was 3.0 kg L-1, while in T1 was 2.5 kg L-1. T3 had the lowest productivities. The nutritional water productivities were 2,512, 2,763, 2,657, 2,814, and 3,039 kcal L-1, respectively for T1, T2, T3, T4, and T5. Nutritional strategies reduce the use of drinking water and therefore improve water productivities. The best productivities were observed when combining the strategies.

  17. Water depth effects on impact loading, kinematic and physiological variables during water treadmill running.

    Science.gov (United States)

    Macdermid, Paul W; Wharton, Josh; Schill, Carina; Fink, Philip W

    2017-07-01

    The purpose of this study was to compare impact loading, kinematic and physiological responses to three different immersion depths (mid-shin, mid-thigh, and xiphoid process) while running at the same speed on a water based treadmill. Participants (N=8) ran on a water treadmill at three depths for 3min. Tri-axial accelerometers were used to identify running dynamics plus measures associated with impact loading rates, while heart rate data were logged to indicate physiological demand. Participants had greater peak impact accelerations (prunning immersed to the xiphoid process. Physiological effort determined by heart rate was also significantly less (prunning immersed to the xiphoid process. Water immersed treadmill running above the waistline alters kinematics of gait, reduces variables associated with impact, while decreasing physiological demand compared to depths below the waistline. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION

    International Nuclear Information System (INIS)

    Sexton, R.A.; Meeuwsen, W.E.

    2009-01-01

    This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance. The KW IWTS was designed to treat basin water and maintain basin clarity during fuel retrieval, washing, and packaging activities in the KW Basin. The original design was based on a mission that was limited to handling of KW Basin fuel. The use of the IWTS was extended by the decision to transfer KE fuel to KW to be cleaned and packaged using KW systems. The use was further extended for the packaging of two more Multi-Canister Overpacks (MCOs) containing legacy fuel and scrap. Planning is now in place to clean and package Knock Out Pot (KOP) Material in MCOs using these same systems. Some washing of KOP material in the Primary Cleaning Machine (PCM) is currently being done to remove material that is too small or too large to be included in the KOP Material stream. These plans will require that the IWTS remain operational through a campaign of as many as 30 additional MCOs, and has an estimated completion date in 2012. Recent operation of the IWTS during washing of canisters of KOP Material has been impacted by low pressure readings at the inlet of the P4 Booster Pump. The system provides a low pressure alarm at 10 psig, and low-low pressure interlock at 5 psig. The response to these low readings has been to lower total system flow to between 301 and 315 gpm. In addition, the IWTS operator has been required to operate the system in manual mode and make frequent adjustments to the P4 booster pump speed during PCM washes. The preferred mode of operation is to establish a setpoint of 317 gpm for the P4 pump speed and run IWTS in semi-automatic mode. Based on hydraulic modeling compared to field data presented in this report, the low P4 inlet pressure is attributed to restrictions in the 2-inch KOP inlet hose and in the KOP itself

  19. Impact of Water on the Rheology of Lubricating Greases

    NARCIS (Netherlands)

    Cyriac, F.; Lugt, Pieter Martin; Bosman, Rob

    2016-01-01

    The operational life of bearings is often determined by the performance of the lubricating grease. The consistency of the grease prevents it from leaking out of the bearing and provides good sealing properties. The possible ingress of water into the bearing will have a considerable impact not only

  20. Impact of water hardness on energy consumption of geyser heating ...

    African Journals Online (AJOL)

    Therefore, the Eskom Research, Testing, and Development Business Unit embarked on a study to examine total water hardness as a chemical parameter that may impact the power consumption of electrical geyser heating elements. An accelerated scaling method was developed to lime-scale the geyser heating elements ...

  1. Assessing climate change impacts on water balance in the Mount

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  2. The Impact of Water Shortages on Educational Delivery in Selected ...

    African Journals Online (AJOL)

    The goal of the study was to investigate the impact of water shortages on educational delivery in selected schools in Harare East District. The population included school heads, teachers and pupils all drawn from selected schools of Harare East District. The sample consisted of five school heads, fifty teachers and one ...

  3. Climate and water resource change impacts and adaptation potential for US power supply

    Science.gov (United States)

    Miara, Ariel; Macknick, Jordan E.; Vörösmarty, Charles J.; Tidwell, Vincent C.; Newmark, Robin; Fekete, Balazs

    2017-11-01

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptation strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. Climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.

  4. Test System Impact on System Availability

    DEFF Research Database (Denmark)

    Pau, L. F.

    1987-01-01

    The specifications are presented for an imperfect automatic test system (ATS) (test frequency distribution, reliability, false alarm rate, nondetection rate) in order to account for the availability, readiness, mean time between unscheduled repairs (MTBUR), reliability, and maintenance of the sys......The specifications are presented for an imperfect automatic test system (ATS) (test frequency distribution, reliability, false alarm rate, nondetection rate) in order to account for the availability, readiness, mean time between unscheduled repairs (MTBUR), reliability, and maintenance...... of the system subject to monitoring and test. A time-dependent Markov model is presented, and applied in three cases, with examples of numerical results provided for preventive maintenance decisions, design of an automatic test system, buffer testing in computers, and data communications....

  5. Regional hydrological impacts of climate change: implications for water management in India

    Directory of Open Access Journals (Sweden)

    A. Mondal

    2015-04-01

    Full Text Available Climate change is most likely to introduce an additional stress to already stressed water systems in developing countries. Climate change is inherently linked with the hydrological cycle and is expected to cause significant alterations in regional water resources systems necessitating measures for adaptation and mitigation. Increasing temperatures, for example, are likely to change precipitation patterns resulting in alterations of regional water availability, evapotranspirative water demand of crops and vegetation, extremes of floods and droughts, and water quality. A comprehensive assessment of regional hydrological impacts of climate change is thus necessary. Global climate model simulations provide future projections of the climate system taking into consideration changes in external forcings, such as atmospheric carbon-dioxide and aerosols, especially those resulting from anthropogenic emissions. However, such simulations are typically run at a coarse scale, and are not equipped to reproduce regional hydrological processes. This paper summarizes recent research on the assessment of climate change impacts on regional hydrology, addressing the scale and physical processes mismatch issues. Particular attention is given to changes in water availability, irrigation demands and water quality. This paper also includes description of the methodologies developed to address uncertainties in the projections resulting from incomplete knowledge about future evolution of the human-induced emissions and from using multiple climate models. Approaches for investigating possible causes of historically observed changes in regional hydrological variables are also discussed. Illustrations of all the above-mentioned methods are provided for Indian regions with a view to specifically aiding water management in India.

  6. Impact of Water Quality on Chlorine Demand of Corroding Copper

    Science.gov (United States)

    Copper is the most widely used material in drinking water premise plumbing systems. In buildings such as hospitals, large and complicated plumbing networks make it difficult to maintain good water quality. Sustaining safe disinfectant residuals throughout a building to protect ag...

  7. Predicted impacts of future water level decline on monitoring wells using a ground-water model of the Hanford Site

    International Nuclear Information System (INIS)

    Wurstner, S.K.; Freshley, M.D.

    1994-12-01

    A ground-water flow model was used to predict water level decline in selected wells in the operating areas (100, 200, 300, and 400 Areas) and the 600 Area. To predict future water levels, the unconfined aquifer system was stimulated with the two-dimensional version of a ground-water model of the Hanford Site, which is based on the Coupled Fluid, Energy, and Solute Transport (CFEST) Code in conjunction with the Geographic Information Systems (GIS) software package. The model was developed using the assumption that artificial recharge to the unconfined aquifer system from Site operations was much greater than any natural recharge from precipitation or from the basalt aquifers below. However, artificial recharge is presently decreasing and projected to decrease even more in the future. Wells currently used for monitoring at the Hanford Site are beginning to go dry or are difficult to sample, and as the water table declines over the next 5 to 10 years, a larger number of wells is expected to be impacted. The water levels predicted by the ground-water model were compared with monitoring well completion intervals to determine which wells will become dry in the future. Predictions of wells that will go dry within the next 5 years have less uncertainty than predictions for wells that will become dry within 5 to 10 years. Each prediction is an estimate based on assumed future Hanford Site operating conditions and model assumptions

  8. Residential tap water contamination following the Freedom Industries chemical spill: perceptions, water quality, and health impacts.

    Science.gov (United States)

    Whelton, Andrew J; McMillan, LaKia; Connell, Matt; Kelley, Keven M; Gill, Jeff P; White, Kevin D; Gupta, Rahul; Dey, Rajarshi; Novy, Caroline

    2015-01-20

    During January 2014, an industrial solvent contaminated West Virginia’s Elk River and 15% of the state population’s tap water. A rapid in-home survey and water testing was conducted 2 weeks following the spill to understand resident perceptions, tap water chemical levels, and premise plumbing flushing effectiveness. Water odors were detected in all 10 homes sampled before and after premise plumbing flushing. Survey and medical data indicated flushing caused adverse health impacts. Bench-scale experiments and physiochemical property predictions showed flushing promoted chemical volatilization, and contaminants did not appreciably sorb into cross-linked polyethylene (PEX) pipe. Flushing reduced tap water 4-methylcyclohexanemethanol (4-MCHM) concentrations within some but not all homes. 4-MCHM was detected at unflushed (waters contained less 4-MCHM than the 1000 μg/L Centers for Disease Control drinking water limit, but one home exceeded the 120 μg/L drinking water limit established by independent toxicologists. Nearly all households refused to resume water use activities after flushing because of water safety concerns. Science based flushing protocols should be developed to expedite recovery, minimize health impacts, and reduce concentrations in homes when future events occur.

  9. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    Science.gov (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Forecasting systemic impact in financial networks

    NARCIS (Netherlands)

    Hautsch, N.; Schaumburg, J.; Schienle, M.

    2014-01-01

    We propose a methodology for forecasting the systemic impact of financial institutions in interconnected systems. Utilizing a five-year sample including the 2008/9 financial crisis, we demonstrate how the approach can be used for the timely systemic risk monitoring of large European banks and

  11. Impacts of Triclosan in Grey water on Soil Microorganisms

    International Nuclear Information System (INIS)

    Harrow, D.I; Felker, J.M; Baker, K.H

    2011-01-01

    The use of grey water for irrigation is becoming a common practice in arid regions such as the Southwestern US, the Middle East, Australia, and China. While grey water supplies nutrients to soil ecosystems, the possible impact of trace contaminants, particularly pharmaceuticals and personal care products, has not been determined. This paper examined the impact of triclosan, an antibacterial agent commonly added to consumer products, on microbial populations and microbial diversity in soil irrigated with grey water. While there was no change in the total number of heterotrophic microorganisms in the soil, both the types and the antibiotic resistance of the microorganisms were significantly influenced by triclosan. The proportion of the microbial isolates resistant to antibiotics increased while at the same time, overall diversity of the microbial community decreased.

  12. Climate change impacts on water barriers and possibilities

    DEFF Research Database (Denmark)

    Frederiksen, Peter

    in precipitation in 2100 and regional warming. Peak run-off will be displaced from spring to winter, run-off may be reduced by more than 40 % because of warming and rivers in the driest valleys may become intermittent streams with no water for irrigation except if minor reservoirs are constructed. In conclusion......The purpose is to elucidate climate change impacts on water related to precipitation, catchment hydrology, water management and land development in fruit export regions at the desert margin in Chile. The case is a region exposed to intense globalization and severe climate change. A timeline (past......, present, future) was applied to four valleys for comparative purposes. Data collection included field observations, semi-structured interviews, archives and library investigations. Precipitation decreased during the last century and varied as a function of El Niño Southern Oscillation impacts...

  13. Adjustable speed drives improve circulating water system

    International Nuclear Information System (INIS)

    Dent, R.A.; Dicic, Z.

    1994-01-01

    This paper illustrates the integration of electrical and mechanical engineering requirements to produce a solution to past problems and future operating demands. The application of adjustable speed drives in the modifications of the circulating water system at Indian Point No. 3 Nuclear Power Plant provided increased operating flexibility, efficiency and avoided otherwise costly renovations to the plant electrical systems. Rectification of the original inadequate design of the circulating water system, in addition to maximizing plant efficiency consistent with environmental considerations, formed the basis for this modification. This entailed replacement of all six circulating water pumps and motors and physical modifications to the intake system. This paper details the methodology used in this engineering task. The new system was installed successfully and has been operating reliably and economically for the past eight years

  14. Energy system impacts of desalination in Jordan

    OpenAIRE

    Poul Alberg Østergaard; Henrik Lund; Brian Vad Mathiesen

    2014-01-01

    Climate change mitigation calls for energy systems minimising end-use demands, optimising the fuel efficiency of conversion systems, increasing the use of renewable energy sources and exploiting synergies wherever possible. In parallel, global fresh water resources are strained due to amongst others population and wealth increase and competitive water uses from agriculture and industry is causing many nations to turn to desalination technologies. This article investigatesa Jordanian energy sc...

  15. Combining urbanization and hydrodynamics data to evaluate sea level rise impacts on coastal water resources

    Science.gov (United States)

    Young, C. R.; Martin, J. B.

    2016-02-01

    Assessments of the potential for salt water intrusion due to sea level rise require consideration of both coastal hydrodynamic and human activity thresholds. In siliciclastic systems, sea level rise may cause salt intrusion to coastal aquifers at annual or decadal scales, whereas in karst systems salt intrudes at the tidal scalse. In both cases, human activity impacts the freshwater portion of the system by altering the water demand on the aquifer. We combine physicochemical and human activity data to evaluate impact of sea level rise on salt intrusion to siliclastic (Indian River Lagoon, Fl, USA) and karst (Puerto Morelos, Yucatan, Mexico) systems under different sea level rise rate scenarios. Two hydrodynamic modeling scenarios are considered; flux controlled and head controlled. Under a flux controlled system hydraulic head gradients remain constant during sea level rise while under a head controlled system hydraulic graidents diminish, allowing saltwater intrusion. Our model contains three key terms; aquifer recharge, groundwater discharge and hydraulic conductivity. Groundwater discharge and hydraulic conductivity were calculated based on high frequency (karst system) and decadal (siliciclastic system) field measurements. Aquifer recharge is defined as precipitation less evapotranspiration and water demand was evaluated based on urban planning data that provided the regional water demand. Water demand includes agricultural area, toursim, traffic patterns, garbage collection and total population. Water demand was initially estimated using a partial leaset squares regression based on these variables. Our model indicates that water demand depends most on agricultural area, which has changed significantly over the last 30 years. In both systems, additional water demand creates a head controlled scenario, thus increaseing the protential fo salt intrusion with projected sea level rise.

  16. Hanford 200 area (sanitary) waste water system

    International Nuclear Information System (INIS)

    Danch, D.A.; Gay, A.E.

    1994-09-01

    The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

  17. Accounting for the water impacts of ethanol production

    International Nuclear Information System (INIS)

    Fingerman, Kevin R; Torn, Margaret S; Kammen, Daniel M; O'Hare, Michael H

    2010-01-01

    Biofuels account for 1-2% of global transportation fuel and their share is projected to continue rising, with potentially serious consequences for water resources. However, current literature does not present sufficient spatial resolution to characterize this localized effect. We used a coupled agro-climatic and life cycle assessment model to estimate the water resource impacts of bioenergy expansion scenarios at a county-level resolution. The study focused on the case of California, with its range of agroecological conditions, water scarcity, and aggressive alternative fuel incentive policies. Life cycle water consumption for ethanol production in California is up to 1000 times that of gasoline due to a cultivation phase that consumes over 99% of life cycle water use for agricultural biofuels. This consumption varies by up to 60% among different feedstocks and by over 350% across regions in California. Rigorous policy analysis requires spatially resolved modeling of water resource impacts and careful consideration of the various metrics that might act to constrain technology and policy options.

  18. Value-impact analysis for USI A-1, water hammer

    International Nuclear Information System (INIS)

    Serkiz, A.W.

    1983-05-01

    The Unresolved Safety Issue (USI) A-1 deals with safety concerns related to water hammer occurrence in nucler power plants. The staff's concerns were prompted by the increasing frequency of water hammer occurrence in the mid-1970's as new plants were coming on line, and in particular, by the feedwater line rupture at Indian Point No. 2 in 1973 (attributed to water hammer induced by steam-void collapse). Principal concerns were: the potential for inadequate dynamic load design, disablement of safety systems, and the release of radioactivity. The staff's views were set forth in NUREG-0582 and water hammer was designated a USI in 1979

  19. Environmental Impact Assessment of a Water Transfer Project

    Directory of Open Access Journals (Sweden)

    Pazoki

    2015-07-01

    Full Text Available Background Reliable water supplies for drinking and agriculture are some of the objectives for the sustainable development of every country. However, constructed facilities such as dams and irrigation networks and drainage can exert positive and negative effects directly or indirectly on the environment. The environmental impact assessment is a method for identifying the positive and negative effects caused by a plan and suggests performance management best practices aimed at lessening the negative impacts and augmenting the positive ones. Objectives The present study sought to evaluate the environmental impacts of the water transfer project of the Jooban Dam in two phases of preparation and operation. Materials and Methods A checklist containing the positive, negative, short-term, and long-term effects as well as the continuation and probable occurrence of these effects was used. Results The results showed that the negative environmental and social impacts of the project outweighed the positive impacts in terms of type, number, and intensity. Conclusions Unless there are well-thought out strategies for minimizing the undesirable impact on the environment, it is not advisable that such projects be permitted.

  20. The effect of plant water storage on water fluxes within the coupled soil-plant system.

    Science.gov (United States)

    Huang, Cheng-Wei; Domec, Jean-Christophe; Ward, Eric J; Duman, Tomer; Manoli, Gabriele; Parolari, Anthony J; Katul, Gabriel G

    2017-02-01

    In addition to buffering plants from water stress during severe droughts, plant water storage (PWS) alters many features of the spatio-temporal dynamics of water movement in the soil-plant system. How PWS impacts water dynamics and drought resilience is explored using a multi-layer porous media model. The model numerically resolves soil-plant hydrodynamics by coupling them to leaf-level gas exchange and soil-root interfacial layers. Novel features of the model are the considerations of a coordinated relationship between stomatal aperture variation and whole-system hydraulics and of the effects of PWS and nocturnal transpiration (Fe,night) on hydraulic redistribution (HR) in the soil. The model results suggest that daytime PWS usage and Fe,night generate a residual water potential gradient (Δψp,night) along the plant vascular system overnight. This Δψp,night represents a non-negligible competing sink strength that diminishes the significance of HR. Considering the co-occurrence of PWS usage and HR during a single extended dry-down, a wide range of plant attributes and environmental/soil conditions selected to enhance or suppress plant drought resilience is discussed. When compared with HR, model calculations suggest that increased root water influx into plant conducting-tissues overnight maintains a more favorable water status at the leaf, thereby delaying the onset of drought stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Water Distribution System Operation and Maintenance. A Field Study Training Program. Second Edition.

    Science.gov (United States)

    Kerri, Kenneth D.; And Others

    Proper installation, inspection, operation, maintenance, repair and management of water distribution systems have a significant impact on the operation and maintenance cost and effectiveness of the systems. The objective of this manual is to provide water distribution system operators with the knowledge and skills required to operate and maintain…

  2. Space Station Freedom regenerative water recovery system configuration selection

    Science.gov (United States)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  3. Consumer impacts on dividends from solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F.; Levermore, G. [University of Manchester, Manchester (United Kingdom); Lynch, H. [Centre for Alternative Technology, Machynlleth, University of East London, London (United Kingdom)

    2011-01-15

    Common domestic solar water heating system usage patterns were investigated by a survey of 55 installations. These usage patterns were modelled by simulation based on the actual occupants' use of boiler or other auxiliary heating control strategies. These strategies were not optimal, as often assumed. The effectiveness of the technology was found to be highly sensitive to the time settings used for auxiliary water heating, and the 65% of solar householders using their boilers in the mornings were found to be forgoing 75% of their potential savings. Additionally, 92% of consumers were found to be small households, whose potential savings were only 23% of those of larger households, which use more hot water. Overall the majority (at least 60%) of the systems surveyed were found to be achieving no more than 6% of their potential savings. Incorporating consideration of Legionella issues, results indicate that if solar thermal technology is to deliver its potential to CO2 reduction targets: solar householders must avoid any use of their auxiliary water heating systems before the end of the main warmth of the day, grants for solar technology should be focused on households with higher hot water demands, and particularly on those that are dependent on electricity for water heating, health and safety requirements for hot water storage must be reviewed and, if possible, required temperatures should be set at a lower level, so that carbon savings from solar water heating may be optimized.

  4. Vulnerability Assessment of Water Supply Systems: Status, Gaps and Opportunities

    Science.gov (United States)

    Wheater, H. S.

    2015-12-01

    Conventional frameworks for assessing the impacts of climate change on water resource systems use cascades of climate and hydrological models to provide 'top-down' projections of future water availability, but these are subject to high uncertainty and are model and scenario-specific. Hence there has been recent interest in 'bottom-up' frameworks, which aim to evaluate system vulnerability to change in the context of possible future climate and/or hydrological conditions. Such vulnerability assessments are generic, and can be combined with updated information from top-down assessments as they become available. While some vulnerability methods use hydrological models to estimate water availability, fully bottom-up schemes have recently been proposed that directly map system vulnerability as a function of feasible changes in water supply characteristics. These use stochastic algorithms, based on reconstruction or reshuffling methods, by which multiple water supply realizations can be generated under feasible ranges of change in water supply conditions. The paper reports recent successes, and points to areas of future improvement. Advances in stochastic modeling and optimization can address some technical limitations in flow reconstruction, while various data mining and system identification techniques can provide possibilities to better condition realizations for consistency with top-down scenarios. Finally, we show that probabilistic and Bayesian frameworks together can provide a potential basis to combine information obtained from fully bottom-up analyses with projections available from climate and/or hydrological models in a fully integrated risk assessment framework for deep uncertainty.

  5. Impact-based integrated real-time control for improvement of the Dommel River water quality

    NARCIS (Netherlands)

    Langeveld, J.; Benedetti, L.; Klein, de J.J.M.; Nopens, I.; Amerlinck, Y.; Nieuwenhuijzen, van A.F.; Flameling, T.; Zanten, van O.; Weijers, S.

    2013-01-01

    The KALLISTO project aims at finding cost-efficient sets of measures to meet the Water Framework Directive (WFD) derived goals for the river Dommel. Within the project, both acute and long term impacts of the urban wastewater system on the chemical and ecological quality of the river are studied

  6. Global warming potential impact of bioenergy systems

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, L.; Wenzel, H.

    environmental consequences related to land use changes. In this study the global warming potential impact associated with six alternative bioenergy systems based on willow and Miscanthus was assessed by means of life-cycle assessment. The results showed that bioenergy production may generate higher global...... warming impacts than the reference fossil fuel system, when the impacts from indirect land use changes are accounted for. In a life-cycle perspective, only highly-efficient co-firing with fossil fuel achieved a (modest) GHG emission reduction....

  7. Installed water resource modelling systems for catchment ...

    African Journals Online (AJOL)

    Following international trends there are a growing number of modelling systems being installed for integrated water resource management, in Southern Africa. Such systems are likely to be installed for operational use in ongoing learning, research, strategic planning and consensus-building amongst stakeholders in the ...

  8. Distilled Water Distribution Systems. Laboratory Design Notes.

    Science.gov (United States)

    Sell, J.C.

    Factors concerning water distribution systems, including an evaluation of materials and a recommendation of materials best suited for service in typical facilities are discussed. Several installations are discussed in an effort to bring out typical features in selected applications. The following system types are included--(1) industrial…

  9. BIOFILMS IN DRINKING WATER DISTRIBUTION SYSTEMS

    Science.gov (United States)

    Virtually anywhere a surface comes into contact with the water in a distribution system, one can find biofilms. Biofilms are formed in distribution system pipelines when microbial cells attach to pipe surfaces and multiply to form a film or slime layer on the pipe. Probably withi...

  10. Water quality control system and water quality control method

    International Nuclear Information System (INIS)

    Itsumi, Sachio; Ichikawa, Nagayoshi; Uruma, Hiroshi; Yamada, Kazuya; Seki, Shuji

    1998-01-01

    In the water quality control system of the present invention, portions in contact with water comprise a metal material having a controlled content of iron or chromium, and the chromium content on the surface is increased than that of mother material in a state where compression stresses remain on the surface by mechanical polishing to form an uniform corrosion resistant coating film. In addition, equipments and/or pipelines to which a material controlling corrosion potential stably is applied on the surface are used. There are disposed a cleaning device made of a material less forming impurities, and detecting intrusion of impurities and removing them selectively depending on chemical species and/or a cleaning device for recovering drain from various kinds of equipment to feedwater, connecting a feedwater pipeline and a condensate pipeline and removing impurities and corrosion products. Then, water can be kept to neutral purified water, and the concentrations of oxygen and hydrogen in water are controlled within an optimum range to suppress occurrence of corrosion products. (N.H.)

  11. TORR system polishes oily water clean

    International Nuclear Information System (INIS)

    Mowers, J.

    2002-01-01

    The TORR (total oil recovery and remediation) system utilizes a specially patented polymer material, similar to styrofoam, which is used to get rid of non-soluble hydrocarbons from water. An application in Fort Smith, Northwest Territories, is described where it was used to recover diesel oil, which had been seeping into the groundwater over a period of 20 years. About 100,000 gallons of heating oil had leached into the water; TORR removed the non-soluble hydrocarbons, while another piece of equipment removed the soluble portions. After treatment the water tested consistently at non-detectable levels and was clean enough to be discharged into the town's sewer system. The system is considered ideal for oil spills clean-up underground, onshore, or the open sea, but it also has many potentially useful applications in industrial and oilfield applications. Water used in steam injection and water floods to produce heavy oil and SAGD applications are some of the obvious ones that come to mind. Cleaning up the huge tailings ponds at the mining and processing of oil sands, and removing diluent from water that is used to thin out bitumen in pipelines so that it can be transported to processing plants, are other promising areas of application. Several field trials to test the effectiveness of the system in these type of applications are scheduled for the summer and fall of 2002

  12. Low-impact mating system

    Science.gov (United States)

    Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Le, Thang D. (Inventor); Morales, Ray H. (Inventor); Robertson, Brandan R. (Inventor)

    2009-01-01

    An androgynous mating system for mating two exoatmospheric space modules comprising a first mating assembly capable of mating with a second mating assembly; a second mating assembly structurally identical to said first mating assembly, said first mating assembly comprising; a load ring; a plurality of load cell subassemblies; a plurality of actuators; a base ring; a tunnel; a closed loop control system; one or more electromagnets; and one or more striker plates, wherein said one or more electomagnets on said second mating assembly are capable of mating with said one or more striker plates on said first mating assembly, and wherein said one or more striker plates is comprised of a plate of predetermined shape and a 5-DOF mechanism capable of maintaining predetermined contact requirements during said mating of said one or more electromagnets and said one or more striker plates.

  13. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Science.gov (United States)

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  14. Subsea innovative boosting technologies on deep water scenarios -- Impacts and demands

    International Nuclear Information System (INIS)

    Caetano, E.F.; Mendonca, J.E.; Pagot, P.R.; Cotrim, M.L.; Camargo, R.M.T.; Assayag, M.I.

    1995-01-01

    This paper presents the importance of deep water scenario for Brazil, the PETROBRAS Deep and Ultra-Deep Water R and D Program (PROCAP-2000) and the candidate fields for the deployment of subsea innovative boosting technologies (ESPS -- electrical submersible pump in subsea wells, SSS -- subsea separation systems and SBMS -- subsea multiphase flow pumping system) as well as the problems associated with the flow assurance in such conditions. The impact of those innovative systems, their technological stage and remaining demands to make them available for deployment in offshore subsea areas, mainly in giant deepwater fields, are discussed and predicted

  15. HECS System Changes: Impact on Students

    OpenAIRE

    Gillian Beer; Bruce Chapman

    2004-01-01

    This paper examines the impact of changes to Australia’s student financing system on various hypothetical students who choose the Government’s proposed deferred payment options, HECS-HELP and FEE-HELP. The present values of their HECS repayments under the existing (2004) system are compared with the present values of repayments under various alternative systems. These alternative systems relate to increasing the HECS charge by 25 per cent for HECS-HELP students and introducing a fee paid with...

  16. Service water system aging assessment - Phase I

    International Nuclear Information System (INIS)

    Jarrell, D.B.; Zimmerman, P.W.; Gore, M.L.

    1988-01-01

    The Service Water System (SWS) represents the final heat transfer loop between decay heat generated in the nuclear core and the safe dispersal of that heat energy in the environment. It is the objective of this investigation to demonstrate that aging phenomena can be identified and quantified such that aging degradation of system components can be detected and mitigated prior to the reduction of system availability to below an acceptable threshold. The approach used during the Phase I task was to (1) perform a literature search of government and private sector reports which relate to service water, aging related degradation, and potential methodologies for analysis; (2) assemble a data base which contains all the commercial power plants in the US, their Service Water System configuration, characteristics, and water source; (3) obtain and examine the available service water data from large generic data bases, i.e. NPRDS, LER, NPE, inspection reports, and other relevant plant reference data; (4) perform a fault tree analysis of a typical plant service water systems to examine failure propagation and understand specific input requirements of probabilistic risk analyses; (5) develop an in-depth questionnaire protocol for examining the information resource at a power plant which is not available through data base query and visit a central station power plant and solicit the required information; (6) analyze the information obtained from the in-depth plant interrogation and draw contrasts and conclusions with the data base information; (7) utilize the plant information to perform an interim assessment of service water system degradation mechanisms and focus future investigations. This paper addresses the elements of this task plan numbered 1, 3, 6, and 7. The remaining items are detailed in the phase-I report

  17. Radon in water aeration system operational performance

    International Nuclear Information System (INIS)

    Lamarre, B.L.

    1990-01-01

    North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

  18. Assessment of water supply system and water quality of Lighvan village using water safety plan

    Directory of Open Access Journals (Sweden)

    Mojtaba Pourakbar

    2015-12-01

    Full Text Available Background: Continuous expansion of potable water pollution sources is one of the main concerns of water suppliers, therefore measures such as water safety plan (WSP, have been taken into account to control these sources of pollution. The aim of this study was to identify probable risks and threatening hazards to drinking water quality in Lighvan village along with assessment of bank filtration of the village. Methods: In the present study all risks and probable hazards were identified and ranked. For each of these cases, practical suggestions for removing or controlling them were given. To assess potable water quality in Lighvan village, sampling was done from different parts of the village and physicochemical parameters were measured. To assess the efficiency of bank filtration system of the village, independent t test was used to compare average values of parameters in river and treated water. Results: One of the probable sources of pollution in this study was domestic wastewater which threatens water quality. The results of this study show that bank filtration efficiency in water supply of the village is acceptable. Conclusion: Although Bank filtration imposes fewer expenses on governments, it provides suitable water for drinking and other uses. However, it should be noted that application of these systems should be done after a thorough study of water pollution level, types of water pollutants, soil properties of the area, soil percolation and system distance from pollutant sources.

  19. Resilience of microbial communities in a simulated drinking water distribution system subjected to disturbances: role of conditionally rare taxa and potential implications for antibiotic-resistant bacteria

    Science.gov (United States)

    Many US water utilities using chloramine as their secondary disinfectant have experienced nitrification episodes that detrimentally impact water quality in their distribution systems. A semi-closed pipe-loop chloraminated drinking water distribution system (DWDS) simulator was u...

  20. Solar-gas systems impact analysis study

    Science.gov (United States)

    Neill, C. P.; Hahn, E. F.; Loose, J. C.; Poe, T. E.; Hirshberg, A. S.; Haas, S.; Preble, B.; Halpin, J.

    1984-07-01

    The impacts of solar/gas technologies on gas consumers and on gas utilities were measured separately and compared against the impacts of competing gas and electric systems in four climatic regions of the U.S. A methodology was developed for measuring the benefits or penalties of solar/gas systems on a combined basis for consumers sand distribution companies. It is shown that the combined benefits associated with solar/gas systems are generally greatest when the systems are purchased by customers who would have otherwise chosen high-efficiency electric systems (were solar/gas systems not available in the market place). The role of gas utilities in encouraging consumer acceptance of solar/gas systems was also examined ion a qualitative fashion. A decision framework for analyzing the type and level of utility involvement in solar/gas technologies was developed.

  1. Model potentials in liquid water ionization by fast electron impact

    International Nuclear Information System (INIS)

    De Sanctis, M L; Stia, C R; Fojón, O A; Politis, M-F; Vuilleumier, R

    2015-01-01

    We study the ionization of water molecules in liquid phase by fast electron impact. We use our previous first-order model within an independent electron approximation that allows the reduction of the multielectronic problem into a monoelectronic one. The initial molecular states of the liquid water are represented in a realistic way through a Wannier orbital formalism. We complete our previous study by taking into account approximately the influence of the passive electrons of the target by means of different model potentials. We compute multiple differential cross sections for the most external orbital 1B 1 and compare them with other results

  2. Urban Surface Water Quality, Flood Water Quality and Human Health Impacts in Chinese Cities. What Do We Know?

    Directory of Open Access Journals (Sweden)

    Yuhan Rui

    2018-02-01

    Full Text Available Climate change and urbanization have led to an increase in the frequency of extreme water related events such as flooding, which has negative impacts on the environment, economy and human health. With respect to the latter, our understanding of the interrelationship between flooding, urban surface water and human health is still very limited. More in-depth research in this area is needed to further strengthen the process of planning and implementation of responses to mitigate the negative health impacts of flooding in urban areas. The objective of this paper is to assess the state of the research on the interrelationship between surface water quality, flood water quality and human health in urban areas based on the published literature. These insights will be instrumental in identifying and prioritizing future research needs in this area. In this study, research publications in the domain of urban flooding, surface water quality and human health were collated using keyword searches. A detailed assessment of these publications substantiated the limited number of publications focusing on the link between flooding and human health. There was also an uneven geographical distribution of the study areas, as most of the studies focused on developed countries. A few studies have focused on developing countries, although the severity of water quality issues is higher in these countries. The study also revealed a disparity of research in this field across regions in China as most of the studies focused on the populous south-eastern region of China. The lack of studies in some regions has been attributed to the absence of flood water quality monitoring systems which allow the collection of real-time water quality monitoring data during flooding in urban areas. The widespread implementation of cost effective real-time water quality monitoring systems which are based on the latest remote or mobile phone based data acquisition techniques is recommended

  3. A Water Resources Management Model to Evaluate Climate Change Impacts in North-Patagonia, Argentina

    Science.gov (United States)

    Bucciarelli, L. F.; Losano, F. T.; Marizza, M.; Cello, P.; Forni, L.; Young, C. A.; Girardin, L. O.; Nadal, G.; Lallana, F.; Godoy, S.; Vallejos, R.

    2014-12-01

    Most recently developed climate scenarios indicate a potential future increase in water stress in the region of Comahue, located in the North-Patagonia, Argentina. This region covers about 140,000 km2 where the Limay River and the Neuquén River converge into the Negro River, constituting the largest integrated basins in Argentina providing various uses of water resources: a) hydropower generation, contributing 15% of the national electricity market; b) fruit-horticultural products for local markets and export; c) human and industrial water supply; d) mining and oil exploitation, including Vaca Muerta, second world largest reserves of shale gas and fourth world largest reserves of shale-oil. The span of multiple jurisdictions and the convergence of various uses of water resources are a challenge for integrated understanding of economically and politically driven resource use activities on the natural system. The impacts of climate change on the system could lead to water resource conflicts between the different political actors and stakeholders. This paper presents the results of a hydrological simulation of the Limay river and Neuquén river basins using WEAP (Water Evaluation and Planning) considering the operation of artificial reservoirs located downstream at a monthly time step. This study aims to support policy makers via integrated tools for water-energy planning under climate uncertainties, and to facilitate the formulation of water policy-related actions for future water stress adaptation. The value of the integrated resource use model is that it can support local policy makers understand the implications of resource use trade-offs under a changing climate: 1) water availability to meet future growing demand for irrigated areas; 2) water supply for hydropower production; 3) increasing demand of water for mining and extraction of unconventional oil; 4) potential resource use conflicts and impacts on vulnerable populations.

  4. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  5. Energy management techniques: SRP cooling water distribution system

    International Nuclear Information System (INIS)

    Edenfield, A.B.

    1979-10-01

    Cooling water for the nuclear reactors at the Savannah River Plant is supplied by a pumping and distribution system that includes about 50 miles of underground pipeline. The energy management program at SRP has thus far achieved a savings of about 5% (186 x 10 9 Btu) of the energy consumed by the electrically powered cooling water pumps; additional savings of about 14% (535 x 10 9 Btu) can be achieved by capital expenditures totaling about $3.7 million. The present cost of electricity for operation of this system is about $25 million per year. A computer model of the system was adapted and field test data were used to normalize the program to accurately represent pipeline physical characteristics. Alternate pumping schemes are analyzed to determine projected energy costs and impact on system safety and reliability

  6. Impact of climate forcing uncertainty and human water use on global and continental water balance components

    Directory of Open Access Journals (Sweden)

    H. Müller Schmied

    2016-10-01

    Full Text Available The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans and inland sinks. During 1971–2000, evapotranspiration due to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the highest discharge deviations occurring for river discharge in Africa (−6 to 11 % from the ensemble mean. Uncertain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of the global sum of water consumption in the other water use sector.

  7. 78 FR 15973 - Notice of Public Scoping Meetings for the Pojoaque Basin Regional Water System Environmental...

    Science.gov (United States)

    2013-03-13

    ... Pojoaque Basin Regional Water System Environmental Impact Statement, New Mexico AGENCY: Bureau of... Environmental Policy Act of 1969, as amended, the Bureau of Reclamation is preparing an environmental impact... document, alternatives, concerns, and issues to be addressed in the environmental impact statement. DATES...

  8. Environmental impacts of open loop geothermal system on groundwater

    Science.gov (United States)

    Kwon, Koo-Sang; Park, Youngyun; Yun, Sang Woong; Lee, Jin-Yong

    2013-04-01

    Application of renewable energies such as sunlight, wind, rain, tides, waves and geothermal heat has gradually increased to reduce emission of CO2 which is supplied from combustion of fossil fuel. The geothermal energy of various renewable energies has benefit to be used to cooling and heating systems and has good energy efficiency compared with other renewable energies. However, open loop system of geothermal heat pump system has possibility that various environmental problems are induced because the system directly uses groundwater to exchange heat. This study was performed to collect data from many documents such as papers and reports and to summarize environmental impacts for application of open loop system. The environmental impacts are classified into change of hydrogeological factors such as water temperature, redox condition, EC, change of microbial species, well contamination and depletion of groundwater. The change of hydrogeological factors can induce new geological processes such as dissolution and precipitation of some minerals. For examples, increase of water temperature can change pH and Eh. These variations can change saturation index of some minerals. Therefore, dissolution and precipitation of some minerals such as quartz and carbonate species and compounds including Fe and Mn can induce a collapse and a clogging of well. The well contamination and depletion of groundwater can reduce available groundwater resources. These environmental impacts will be different in each region because hydrogeological properties and scale, operation period and kind of the system. Therefore, appropriate responses will be considered for each environmental impact. Also, sufficient study will be conducted to reduce the environmental impacts and to improve geothermal energy efficiency during the period that a open loop system is operated. This work was supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning

  9. Chemistry management of generator stator water system

    International Nuclear Information System (INIS)

    Sankar, N.; Santhanam, V.S.; Ayyar, S.R.; Umapathi, P.; Jeena, P.; Hari Krishna, K.; Rajendran, D.

    2015-01-01

    Chemistry management of water cooled turbine generators with hollow copper conductors is very essential to avoid possible re-deposition of released copper oxides on stator windings, which otherwise may cause flow restrictions by partial plugging of copper hollow conductors and impair cooling. The phenomenon which is of more concern is not strictly of corrosion failure, but the consequences caused by the re-deposition of copper oxides that were formed by reaction of copper with oxygen. There were also some Operating experiences (OE) related to Copper oxide fouling in the system resulting shut down/off-line of plants. In Madras Atomic Power Station (MAPS), the turbine generator stator windings are of Copper material and cooled by demineralized water passing through the hollow conductors. The heated water from the stator is cooled by process water. A part of the stator water is continuously passed through a mixed bed polisher to remove any soluble ionic contaminants to maintain the purity of system water and also maintain copper content as low as possible to avoid possible re-deposition of released copper oxides on stator windings. The chemistry regime employed is neutral water with dissolved oxygen content between 1000-2000 ppb. Chemistry management of Stator water system was reviewed to know its effectiveness. Detailed chemical analyses of the spent resins from the polishing unit were carried out in various campaigns which indicated only part exhaustion of the polishing unit resins and reasonably low levels of copper entrapment in the resins, thus highlighting the effectiveness of the in-practice chemistry regime. (author)

  10. Impacts of outboard motors on aquatic systems

    International Nuclear Information System (INIS)

    Moore, M.J.; Woodin, B.R.; Shea, D.S.; Stegeman, J.J.

    1995-01-01

    Outboard motor emissions often are localized in coastal and freshwater ponds, which may make their impact comparable to larger sources that discharge at greater distances from these locales. Outboard motor exhaust gases are rapidly cooled with some fractions being condensed and remaining in the water column rather than being released into the atmosphere. Here the authors compare the hydrocarbon emissions and biochemical effects of 2-cycle vs. 4-cycle engines. The engines were run for the same periods in 30-gallon containers and quantities and identities of hydrocarbons in the water were determined. Polynuclear aromatic hydrocarbons including 2-ring to 5-ring compounds and alkylated derivatives were detected. The concentration of total polynuclear aromatic hydrocarbon (PAH) was 5-fold less in the water from the 4 cycle than from the 2 cycle engine. However, the concentrations of 4- and 5-ring PAHs were not significantly different in water from the two engines. Exposure of killifish (Fundulus diaphanus) to diluted water containing emissions caused an induction of the content and catalytic activity of cytochrome P4501A (CYP1A), a sensitive biomarker for hydrocarbon exposure. CYP1A protein was induced by both, but inhibition of EROD induction occurred with greater concentrations of 4-cycle water. Relating these results to field data for CYP1A in fish from ponds that are or are not exposed to boating activity suggests that boating could account for a substantial part of the induction seen

  11. Assessment of cyanobacteria impact on bathing water quality in Poland

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2012-12-01

    Full Text Available Introduction: Quality of bathing water is of key importance for bathers’ health, mainly due to the fact, that each year millions of people use bathing sites as places for recreation and sport activities. Most of the bathing sites are of adequate quality of water, but still there are cases of health risk because bathing water is polluted. One of the main health risk factor in bathing water are cyanobacteria and their blooms. Cyanobacteria are microorganisms of morphological features of bacteria and algae. They live in colonies, which in large quantities show up as streaks, dense foam on the water surface. The aim of this paper was to assess the impact of cyanobacteria blooms on health regarding bathing water quality in Poland. Materials and methods: Assessment covered all bathing sites in Poland supervised by Polish National Sanitary Inspection (PIS in the period from 2007 to 2009. The base was data collected during bathing water monitoring conducted by PIS and their formal decisions of bathing bans introduced in response to revealed bathing water pollution. Results and discussion: The results of assessment indicate, that about one-fourth of all bathing bans in Poland was due to cyanobacteria blooms. Conclusions: Every fifth bathing sites located on artificial lake or water reservoir and every tenth on the sea bathing sites were polluted. Average period of bathing ban due to cyanobacteria blooms in Poland varies. Relatively the shortest bathing bans were observed on the sea bathing sites (no longer than one week on average. Much longer were bathing bans on lakes and artificial lakes (one month on average.

  12. Climate change impacts on boundary and transboundary water management

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, J.P.; Martin, H.; Colucci, P. [Global Change Strategies International, Ottawa, ON (Canada); McBean, G. [Institute for Catastrophic Loss Reduction, Toronto, ON (Canada); McDougall, J.; Shrubsole, D.; Whalley, J. [Western Ontario Univ., London, ON (Canada); Halliday, R. [R. Halliday and Associates, Saskatoon, SK (Canada); Alden, M.; Mortsch, L.; Mills, B. [Environment Canada, Downsview, ON (Canada). Meteorological Service of Canada; Coleman, C.; Zhang, Y.; Jia, J.; Porco, M.; Henstra, S.

    2003-06-30

    Climate change will have an impact on water cycles, with increased river flows in some areas, and decreased river flows in others. This report focuses on climate change related issues of water management in boundary and transboundary areas between Canada and the United States. Water resources in these areas are governed by agreements between provinces, territories and the federal governments of Canada and the United States. The Climate Change Action Fund and Natural Resources Canada launched a project through a partnership between the Global Change Strategies International (GCSI), the Institute for Catastrophic Loss Reduction (ICLR) and the Meteorological Services of Canada (MSC). The objective was to address potential difficulties in water management resources within North America. This report presents the results of the collaboration. It includes climate scenarios and climate model outputs on future temperature and precipitation by 2050, under a range of emission scenarios. It also includes an analysis of Canada-United States transboundary water instruments for vulnerability to climate change, as well as perceptions of fairness in allocating water in the Saskatchewan River Basin. This report also includes a review of the terms of existing Treaties and Agreements of 11 river basins between Canada and the United States on boundary and transboundary waters. The report concludes that it is very likely that much of Canada will see increased intense precipitation events while the interior regions will have increased risk of drought. These two projections will have major implications for river flows and the management of water resource. Seven recommendations were presented to ensure that water is allocated fairly and responsibly. refs., tabs., figs.

  13. Assessment of the environmental impacts deriving from the life cycle of a typical solar water heater

    Directory of Open Access Journals (Sweden)

    G. Gaidajis

    2014-01-01

    Full Text Available According to life cycle thinking, the environmental burden deriving from different life cycle stages of a product or a system, such as manufacturing, transportation, maintenance and landfilling should be taken into consideration while assessing its environmental performance. In that aspect, the environmental impacts deriving from the life cycle of a typical solar water heater (SWH in Greece are analyzed and assessed with the application of relative life cycle assessment (LCA software in this study. In order to examine various impact categories such as global warming, ozone layer depletion, ecotoxicity and so forth, the IMPACT2002+ method is applied. The aim of this study is to examine the life cycle stages, processes and materials that significantly affect the system under examination and to provide a discussion regarding the environmental friendliness of solar water heaters.

  14. Human impact on the microbiological water quality of the rivers

    OpenAIRE

    P?ll, Em?ke; Niculae, Mihaela; Kiss, Timea; ?andru, Carmen Dana; Sp?nu, Marina

    2013-01-01

    Microbiological contamination is an important water-quality problem worldwide. Human impact on this category of contamination is significant and several human-related activities, and also the population explosion, have affected and are still affecting dramatically the aquatic environment. Extensive industrialization and agriculture have led to increased pollution and hydromorphological changes in many river basins. The Danube river is one of the most affected by these changes where human invo...

  15. Does National Culture Impact Capital Budgeting Systems?

    Directory of Open Access Journals (Sweden)

    Peter J. Graham

    2017-06-01

    Full Text Available We examine how national culture impacts organisational selection of capital budgeting systems to develop our understanding of what influence a holistic formulation of national culture has on capital budgeting systems. Such an understanding is important as it would not only provide a clearer link between national culture and capital budgeting systems and advance extant literature but would also help multinational firms that have business relationships with Indonesian firms in suitably designing strategies. We conducted semi-structured interviews of selected finance managers of listed firms in Indonesia and Australia. Consistent with the contingency theory, we found that economic, political, legal and social uncertainty impact on the use of capital budgeting systems. The levels of uncertainty were higher in Indonesia than Australia and need to be reckoned in the selection of capital budgeting systems used by firms. We also found that firms are influenced by project size and complexity, when selecting capital budgeting systems.

  16. Reliability and Cost Impacts for Attritable Systems

    Science.gov (United States)

    2017-03-23

    on reliability and cost: a probabilistic model. Electric Power Systems Research, 72(3), 213-224. Kalbfleisch, J.D. & Prentice, R.L. (1980). The...copyright protection in the United States. AFIT-ENV-MS-17-M-172 RELIABILITY AND COST IMPACTS FOR ATTRITABLE SYSTEMS THESIS Presented to... power of discrete time Markov chains, whether homogeneous or non-homogeneous, to model the reliability and dependability of repairable systems should

  17. Does National Culture Impact Capital Budgeting Systems?

    OpenAIRE

    Peter J. Graham; Milind Sathye

    2017-01-01

    We examine how national culture impacts organisational selection of capital budgeting systems to develop our understanding of what influence a holistic formulation of national culture has on capital budgeting systems. Such an understanding is important as it would not only provide a clearer link between national culture and capital budgeting systems and advance extant literature but would also help multinational firms that have business relationships with Indonesian firms in suita...

  18. The Role of Plant Water Storage on Water Fluxes within the Coupled Soil-Plant-Atmosphere System

    Science.gov (United States)

    Huang, C. W.; Duman, T.; Parolari, A.; Katul, G. G.

    2015-12-01

    Plant water storage (PWS) contributes to whole-plant transpiration (up to 50%), especially in large trees and during severe drought conditions. PWS also can impact water-carbon economy as well as the degree of resistance to drought. A 1-D porous media model is employed to accommodate transient water flow through the plant hydraulic system. This model provides a mechanistic representation of biophysical processes constraining water transport, accounting for plant hydraulic architecture and the nonlinear relation between stomatal aperture and leaf water potential when limited by soil water availability. Water transport within the vascular system from the stem base to the leaf-lamina is modeled using Richards's equation, parameterized with the hydraulic properties of the plant tissues. For simplicity, the conducting flow in the radial direction is not considered here and the capacitance at the leaf-lamina is assumed to be independent of leaf water potential. The water mass balance in the leaf lamina sets the upper boundary condition for the flow system, which links the leaf-level transpiration to the leaf water potential. Thus, the leaf-level gas exchange can be impacted by soil water availability through the water potential gradient from the leaf lamina to the soil, and vice versa. The root water uptake is modeled by a multi-layered macroscopic scheme to account for possible hydraulic redistribution (HR) in certain conditions. The main findings from the model calculations are that (1) HR can be diminished by the residual water potential gradient from roots to leaves at night due to aboveground capacitance, tree height, nocturnal transpiration or the combination of the three. The degree of reduction depends on the magnitude of residual water potential gradient; (2) nocturnal refilling to PWS elevates the leaf water potential that subsequently delays the onset of drought stress at the leaf; (3) Lifting water into the PWS instead of HR can be an advantageous strategy

  19. Solar Water Heating System for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Syaifurrahman

    2018-01-01

    Full Text Available Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  20. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  1. System Dynamics Approach for Critical Infrastructure and Decision Support. A Model for a Potable Water System.

    Science.gov (United States)

    Pasqualini, D.; Witkowski, M.

    2005-12-01

    The Critical Infrastructure Protection / Decision Support System (CIP/DSS) project, supported by the Science and Technology Office, has been developing a risk-informed Decision Support System that provides insights for making critical infrastructure protection decisions. The system considers seventeen different Department of Homeland Security defined Critical Infrastructures (potable water system, telecommunications, public health, economics, etc.) and their primary interdependencies. These infrastructures have been modeling in one model called CIP/DSS Metropolitan Model. The modeling approach used is a system dynamics modeling approach. System dynamics modeling combines control theory and the nonlinear dynamics theory, which is defined by a set of coupled differential equations, which seeks to explain how the structure of a given system determines its behavior. In this poster we present a system dynamics model for one of the seventeen critical infrastructures, a generic metropolitan potable water system (MPWS). Three are the goals: 1) to gain a better understanding of the MPWS infrastructure; 2) to identify improvements that would help protect MPWS; and 3) to understand the consequences, interdependencies, and impacts, when perturbations occur to the system. The model represents raw water sources, the metropolitan water treatment process, storage of treated water, damage and repair to the MPWS, distribution of water, and end user demand, but does not explicitly represent the detailed network topology of an actual MPWS. The MPWS model is dependent upon inputs from the metropolitan population, energy, telecommunication, public health, and transportation models as well as the national water and transportation models. We present modeling results and sensitivity analysis indicating critical choke points, negative and positive feedback loops in the system. A general scenario is also analyzed where the potable water system responds to a generic disruption.

  2. Impact of Water Scarcity on the Fenhe River Basin and Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Weiwei Shao

    2017-01-01

    Full Text Available This study produced a drought map for the Fenhe River basin covering the period from 150 BC to 2012 using regional historical drought records. Based on meteorological and hydrological features, the characteristics and causes of water scarcity in the Fenhe River basin were examined, along with their impact on the national economy and ecological environment. The effects of water scarcity in the basin on the national economy were determined from agricultural, industrial, and domestic perspectives. The impact on aquatic ecosystems was ascertained through an evolution trend analysis of surface water systems, including rivers, wetlands, and slope ecosystems, and subterranean water systems, including groundwater and karst springs. As a result of these analyses, strategies are presented for coping with water scarcity in this basin, including engineering countermeasures, such as the construction of a water network in Shanxi, and the non-engineering approach of groundwater resource preservation. These comprehensive coping strategies are proposed with the aim of assisting the prevention and control of water scarcity in the arid and semi-arid areas of China.

  3. Water management in Angkor: human impacts on hydrology and sediment transportation.

    Science.gov (United States)

    Kummu, Matti

    2009-03-01

    The city of Angkor, capital of the Khmer empire from the 9th to 15th century CE, is well known for its impressive temples, but recent research has uncovered an extensive channel network stretching across over 1000 km2. The channel network with large reservoirs (termed baray) formed the structure of the city and was the basis for its water management. The annual long dry season associated with the monsoon climate has challenged water management for centuries, and the extensive water management system must have played an important role in the mitigation of such marked seasonality. However, by changing the natural water courses with off-take channels the original catchments were also reshaped. Moreover, severe problems of erosion and sedimentation in human built channels evolved and impacted on the whole water management system. This paper describes the present hydrology of the area and discusses the impacts of water management on hydrology during the Angkor era. The paper, moreover, attempts to summarise lessons that could be learnt from Angkorian water management that might apply to present challenges within the field.

  4. Impact system for ultrafast synchrotron experiments

    International Nuclear Information System (INIS)

    Jensen, B. J.; Owens, C. T.; Ramos, K. J.; Yeager, J. D.; Saavedra, R. A.; Luo, S. N.; Hooks, D. E.; Iverson, A. J.; Fezzaa, K.

    2013-01-01

    The impact system for ultrafast synchrotron experiments, or IMPULSE, is a 12.6-mm bore light-gas gun (<1 km/s projectile velocity) designed specifically for performing dynamic compression experiments using the advanced imaging and X-ray diffraction methods available at synchrotron sources. The gun system, capable of reaching projectile velocities up to 1 km/s, was designed to be portable for quick insertion/removal in the experimental hutch at Sector 32 ID-B of the Advanced Photon Source (Argonne, IL) while allowing the target chamber to rotate for sample alignment with the beam. A key challenge in using the gun system to acquire dynamic data on the nanosecond time scale was synchronization (or bracketing) of the impact event with the incident X-ray pulses (80 ps width). A description of the basic gun system used in previous work is provided along with details of an improved launch initiation system designed to significantly reduce the total system time from launch initiation to impact. Experiments were performed to directly measure the gun system time and to determine the gun performance curve for projectile velocities ranging from 0.3 to 0.9 km/s. All results show an average system time of 21.6 ± 4.5 ms, making it possible to better synchronize the gun system and detectors to the X-ray beam.

  5. Impact of highway construction on water bodies: a geospatial assessment.

    Science.gov (United States)

    Vijay, Ritesh; Kushwaha, Vikash K; Mardikar, Trupti; Labhasetwar, P K

    2017-08-01

    India has witnessed a massive infrastructure boom in the past few years. One of such projects is National Highway-7 (NH-7), a North-South highway connecting Kanyakumari, Tamil Nadu, to Varanasi, Uttar Pradesh, traversing many water bodies. The present study aims to assess the pre- and post-construction impact due to existing, new and widened NH-7 on the physical status of the water bodies, using remote sensing techniques. Satellite images spanning 22 years were procured and analysed for change detection in land use and land cover within the waterbodies. The study indicates that construction activities have led to transformation within the water bodies regarding reduction in area and inter-changing of land use and land cover classes, in turn leading to siltation and reduction of recharge.

  6. Impact on surface water quality due to coke oven effluents

    International Nuclear Information System (INIS)

    Ghose, M.K.; Roy, S.

    1994-01-01

    Large quantities of water are used for the quenching of hot coke and also for washing the gas produced from the coke ovens. Liquid effluents thus generated are highly polluted and are being discharged into the river Damodar without proper treatment. Four coke plants of Bharat Coking Coal Ltd.(BCCL) have been surveyed for characterization and to assess the impact on surface water quality. About 175-200 kilolitres of waste water is being generated per day by each of the coke plants. The concentration of CO, BOD, COD, TSS, phenol and cyanide in each of the coke plants were found to exceed the limits specified by pollution control board. Ammonia, oil and grease and TDS were found to be 19.33 mg/l, 7.81 mg/l, 1027.75 mg/l respectively. Types of samples collected, sampling frequencies, sample preservation and the results obtained have been discussed. (author). 6 refs., 1 tab., 1 fig

  7. WATER QUALITY ANALYSIS OF AGRICULTURALLY IMPACTED TIDAL BLACKBIRD CREEK, DELAWARE

    Directory of Open Access Journals (Sweden)

    Matthew Stone

    2016-11-01

    Full Text Available Blackbird Creek, Delaware is a small watershed in northern Delaware that has a significant proportion of land designated for agricultural land use. The Blackbird Creek water monitoring program was initiated in 2012 to assess the condition of the watershed’s habitats using multiple measures of water quality. Habitats were identified based on percent adjacent agricultural land use. Study sites varying from five to fourteen were sampled biweekly during April and November, 2012-2015. Data were analyzed using principal component analysis and generalized linear modeling. Results from these first four years of data documented no significant differences in water quality parameters (dissolved oxygen, pH, temperature, salinity, inorganic nitrate, nitrite, ammonia, orthophosphate, alkalinity, and turbidity between the two habitats, although both orthophosphate and turbidity were elevated beyond EPA-recommended values. There were statistically significant differences for all of the parameters between agriculture seasons. The lack of notable differences between habitats suggests that, while the watershed is generally impacted by agricultural land use practices, there appears to be no impact on the surface water chemistry. Because there were no differences between habitats, it was concluded that seasonal differences were likely due to basic seasonal variation and were not a function of agricultural land use practices.

  8. Drought evolution: greater and faster impacts on blue water than on green water

    Science.gov (United States)

    Destouni, G.; Orth, R.

    2017-12-01

    Drought propagates through the terrestrial water cycle, affecting different interlinked geospheres which have so far been mostly investigated separately and without direct comparison. By use of comprehensive multi-decadal data from >400 near-natural catchments along a steep climate gradient across Europe we here analyze drought propagation from precipitation (deficits) through soil moisture to runoff (blue water) and evapotranspiration (green water). We show that soil-moisture droughts reduce runoff stronger and faster than evapotranspiration. While runoff responds within weeks, evapotranspiration can be unaffected for months, or even entirely as in central and northern Europe. Understanding these different drought pathways towards blue and green water resources contributes to improve food and water security and offers early warning potential to mitigate (future) drought impacts on society and ecosystems.

  9. Wash water waste pretreatment system study

    Science.gov (United States)

    1976-01-01

    The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

  10. Cost, energy, global warming, eutrophication and local human health impacts of community water and sanitation service options.

    Science.gov (United States)

    Schoen, Mary E; Xue, Xiaobo; Wood, Alison; Hawkins, Troy R; Garland, Jay; Ashbolt, Nicholas J

    2017-02-01

    We compared water and sanitation system options for a coastal community across selected sustainability metrics, including environmental impact (i.e., life cycle eutrophication potential, energy consumption, and global warming potential), equivalent annual cost, and local human health impact. We computed normalized metric scores, which we used to discuss the options' strengths and weaknesses, and conducted sensitivity analysis of the scores to changes in variable and uncertain input parameters. The alternative systems, which combined centralized drinking water with sanitation services based on the concepts of energy and nutrient recovery as well as on-site water reuse, had reduced environmental and local human health impacts and costs than the conventional, centralized option. Of the selected sustainability metrics, the greatest advantages of the alternative community water systems (compared to the conventional system) were in terms of local human health impact and eutrophication potential, despite large, outstanding uncertainties. Of the alternative options, the systems with on-site water reuse and energy recovery technologies had the least local human health impact; however, the cost of these options was highly variable and the energy consumption was comparable to on-site alternatives without water reuse or energy recovery, due to on-site reuse treatment. Future work should aim to reduce the uncertainty in the energy recovery process and explore the health risks associated with less costly, on-site water treatment options. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Surface wastewater in Samara and their impact on water basins as water supply sources

    Science.gov (United States)

    Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina

    2017-10-01

    The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.

  12. Potential applications of plasma science techniques for water treatment systems

    International Nuclear Information System (INIS)

    Pavlik, D.

    1994-01-01

    The historical evolution of water treatment techniques and their impact on man and his environment are presented. Ancient man recognized the relationship between good water and good health. However, it was not until the late 1800's that man's own contribution to the pollution of water via biological and chemical contamination of the water stream was recognized as having adverse affects on water quality. Since that time virtually every nation has adopted laws and regulations to ensure that safe sources of unpolluted water are available to its citizens. In the United States, water quality is governed by the Clean Water Act of 1972 administered at the federal level by the Environmental Protection Agency (EPA). Further, each state has established its equivalent agency which administers its own laws and regulations. Different biological and chemical biohazards present in the water system are discussed. Biological contaminants include various types of viruses, bacteria, fungii, molds, yeasts, algae, amoebas, and parasites. Chemical contaminates include elemental heavy metals and other organic and inorganic compounds which interfere with normal biological functions. Conventional water treatments for both consumption and sewage effluent commonly employ four different principals: mechanical filtration, quiescent gravity settling, biological oxidation, and chemical treatment. Although these techniques have greatly reduced the incidence of water-borne disease recent studies suggest that more effective means of eliminating biohazards are needed. Regulatory requirements for more aggressive treatment and elimination of residual contaminants present a significant opportunity for the application of various forms of electromagnetic radiation techniques. A comparison between conventional techniques and more advanced methods using various forms of electromagnetic radiation is discussed

  13. Water Treatment Systems for Long Spaceflights

    Science.gov (United States)

    FLynn, Michael T.

    2012-01-01

    Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

  14. Downscaling climate model output for water resources impacts assessment (Invited)

    Science.gov (United States)

    Maurer, E. P.; Pierce, D. W.; Cayan, D. R.

    2013-12-01

    Water agencies in the U.S. and around the globe are beginning to wrap climate change projections into their planning procedures, recognizing that ongoing human-induced changes to hydrology can affect water management in significant ways. Future hydrology changes are derived using global climate model (GCM) projections, though their output is at a spatial scale that is too coarse to meet the needs of those concerned with local and regional impacts. Those investigating local impacts have employed a range of techniques for downscaling, the process of translating GCM output to a more locally-relevant spatial scale. Recent projects have produced libraries of publicly-available downscaled climate projections, enabling managers, researchers and others to focus on impacts studies, drawing from a shared pool of fine-scale climate data. Besides the obvious advantage to data users, who no longer need to develop expertise in downscaling prior to examining impacts, the use of the downscaled data by hundreds of people has allowed a crowdsourcing approach to examining the data. The wide variety of applications employed by different users has revealed characteristics not discovered during the initial data set production. This has led to a deeper look at the downscaling methods, including the assumptions and effect of bias correction of GCM output. Here new findings are presented related to the assumption of stationarity in the relationships between large- and fine-scale climate, as well as the impact of quantile mapping bias correction on precipitation trends. The validity of these assumptions can influence the interpretations of impacts studies using data derived using these standard statistical methods and help point the way to improved methods.

  15. Regional-scale application of the decision support system MOIRA-PLUS: an example of assessment of the radiological impact of the Chernobyl accident on the fresh water ecosystem in Italy

    Energy Technology Data Exchange (ETDEWEB)

    Monte, Luigi, E-mail: luigi.monte@enea.i [ENEA CR Casaccia, via P. Anguillarese, 301, 00100 Rome (Italy)

    2011-02-15

    The present work illustrates the customisation and application of the decision support system MOIRA-PLUS (a MOdel-based computerised system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems and drainage areas) to the fresh water environment in Italy. MOIRA-PLUS is aimed at evaluating the behaviour of radiocaesium and radiostrontium in fresh water ecosystems and at assessing the appropriateness of suitable strategies for the management of contaminated water bodies by the application of multi-attribute analysis techniques. MOIRA-PLUS can be applied to complex networks of lakes, rivers and tributaries and can be straightforwardly customised utilising data and information from readily accessible sources such as official websites provided by scientific or government organisations. The present work shows an application of the decision system to 10 lakes and 18 rivers in Italy contaminated with {sup 137}Cs of Chernobyl origin. Site-specific values of some aggregated transfer parameters were estimated for the most important Italian lakes. Although high values of fish and water consumptions were hypothesised, very low doses to public from the fresh water pathway following the accident were calculated. - Research highlights: {yields} MOIRA-PLUS is a computerised decision support system aimed at evaluating the behaviour of radiocaesium and radiostrontium in fresh water ecosystems and at assessing the appropriateness of suitable strategies for the management of the contaminated aquatic environment by the application of advanced multi-attribute analysis techniques. {yields} MOIRA-PLUS (release 4.1.2) allows the user to customise the migration model for the assessment of the behaviour of radionuclides in complex networks of water systems including, for instance, a main watercourse and several tributaries of different order. {yields} The test and the calibration of MOIRA-PLUS migration models applied to 18

  16. Regional-scale application of the decision support system MOIRA-PLUS: an example of assessment of the radiological impact of the Chernobyl accident on the fresh water ecosystem in Italy

    International Nuclear Information System (INIS)

    Monte, Luigi

    2011-01-01

    The present work illustrates the customisation and application of the decision support system MOIRA-PLUS (a MOdel-based computerised system for management support to Identify optimal remedial strategies for Restoring radionuclide contaminated Aquatic ecosystems and drainage areas) to the fresh water environment in Italy. MOIRA-PLUS is aimed at evaluating the behaviour of radiocaesium and radiostrontium in fresh water ecosystems and at assessing the appropriateness of suitable strategies for the management of contaminated water bodies by the application of multi-attribute analysis techniques. MOIRA-PLUS can be applied to complex networks of lakes, rivers and tributaries and can be straightforwardly customised utilising data and information from readily accessible sources such as official websites provided by scientific or government organisations. The present work shows an application of the decision system to 10 lakes and 18 rivers in Italy contaminated with 137 Cs of Chernobyl origin. Site-specific values of some aggregated transfer parameters were estimated for the most important Italian lakes. Although high values of fish and water consumptions were hypothesised, very low doses to public from the fresh water pathway following the accident were calculated. - Research highlights: → MOIRA-PLUS is a computerised decision support system aimed at evaluating the behaviour of radiocaesium and radiostrontium in fresh water ecosystems and at assessing the appropriateness of suitable strategies for the management of the contaminated aquatic environment by the application of advanced multi-attribute analysis techniques. → MOIRA-PLUS (release 4.1.2) allows the user to customise the migration model for the assessment of the behaviour of radionuclides in complex networks of water systems including, for instance, a main watercourse and several tributaries of different order. → The test and the calibration of MOIRA-PLUS migration models applied to 18 rivers and 10 lakes in

  17. Climate Change Impacts on Water Availability and Use in the Limpopo River Basin

    Directory of Open Access Journals (Sweden)

    Tingju Zhu

    2012-01-01

    Full Text Available This paper analyzes the effects of climate change on water availability and use in the Limpopo River Basin of Southern Africa, using a linked modeling system consisting of a semi-distributed global hydrological model and the Water Simulation Module (WSM of the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT. Although the WSM simulates all major water use sectors, the focus of this study is to evaluate the implications of climate change on irrigation water supply in the catchments of the Limpopo River Basin within the four riparian countries: Botswana, Mozambique, South Africa, and Zimbabwe. The analysis found that water resources of the Limpopo River Basin are already stressed under today’s climate conditions. Projected water infrastructure and management interventions are expected to improve the situation by 2050 if current climate conditions continue into the future. However, under the climate change scenarios studied here, water supply availability is expected to worsen considerably by 2050. Assessing hydrological impacts of climate change is crucial given that expansion of irrigated areas has been postulated as a key adaptation strategy for Sub-Saharan Africa. Such expansion will need to take into account future changes in water availability in African river basins.

  18. Field measurement of soil water repellency and its impact on water flow under different vegetation

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Hallett, P. D.; Feeney, D. S.; Ďugová, O.; Šír, Miloslav; Tesař, Miroslav

    2007-01-01

    Roč. 62, č. 5 (2007), s. 537-541 ISSN 0006-3088 R&D Projects: GA ČR GA205/05/2312 Institutional research plan: CEZ:AV0Z20600510 Keywords : vegetation * sandy soil * water repellency * hydraulic conductivity Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.207, year: 2007

  19. Water electrolysis system refurbishment and testing

    Science.gov (United States)

    Greenough, B. M.

    1972-01-01

    The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.

  20. CLASSIFICATION OF THE MGR SITE WATER SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) site water system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  1. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature.

    Science.gov (United States)

    Loubet, Philippe; Roux, Philippe; Loiseau, Eleonore; Bellon-Maurel, Veronique

    2014-12-15

    Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. [Maintenance and monitoring of water treatment system].

    Science.gov (United States)

    Pontoriero, G; Pozzoni, P; Tentori, F; Scaravilli, P; Locatelli, F

    2005-01-01

    Water treatment systems must be submitted to maintenance, disinfections and monitoring periodically. The aim of this review is to analyze how these processes must complement each other in order to preserve the efficiency of the system and optimize the dialysis fluid quality. The correct working of the preparatory process (pre-treatment) and the final phase of depuration (reverse osmosis) of the system need a periodic preventive maintenance and the regular substitution of worn or exhausted components (i.e. the salt of softeners' brine tank, cartridge filters, activated carbon of carbon tanks) by a competent and trained staff. The membranes of reverse osmosis and the water distribution system, including dialysis machine connections, should be submitted to dis-infections at least monthly. For this purpose it is possible to use chemical and physical agents according to manufacturer' recommendations. Each dialysis unit should predispose a monitoring program designed to check the effectiveness of technical working, maintenance and disinfections and the achievement of chemical and microbiological standards taken as a reference. Generally, the correct composition of purified water is monitored by continuous measuring of conductivity, controlling bacteriological cultures and endotoxin levels (monthly) and checking water contaminants (every 6-12 months). During pre-treatment, water hardness (after softeners) and total chlorine (after chlorine tank) should be checked periodically. Recently the Italian Society of Nephrology has developed clinical guidelines for water and dialysis solutions aimed at suggesting rational procedures for production and monitoring of dialysis fluids. It is hopeful that the application of these guidelines will lead to a positive cultural change and to an improvement in dialysis fluid quality.

  3. Framework for continuous performance improvement in small drinking water systems.

    Science.gov (United States)

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-01-01

    Continuous performance improvement (CPI) can be a useful approach to overcome water quality problems impacting small communities. Small drinking water systems (SDWSs) struggle to meet regulatory requirements and often lack the economic and human resource flexibility for immediate improvement. A CPI framework is developed to provide SDWS managers and operators an approach to gauge their current performance against similar systems and to track performance improvement from the implementation of the new technologies or innovations into the future. The proposed CPI framework incorporates the use of a water quality index (WQI) and functional performance benchmarking to evaluate and compare drinking water quality performance of an individual water utility against that of a representative benchmark. The results are then used to identify and prioritize the most vulnerable water quality indicators and subsequently identify and prioritize performance improvement strategies. The proposed CPI framework has been demonstrated using data collected from SDWSs in the province of Newfoundland and Labrador (NL), Canada and using the Canadian Council of Ministers of the Environment (CCME) WQI. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Sustainable Energy, Water and Environmental Systems

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg; Duic, Neven

    2014-01-01

    This issue presents research results from the 8th Conference on Sustainable Development of Energy, Water and Environment Systems – SDEWES - held in Dubrovnik, Croatia in 2013. Topics covered here include the energy situation in the Middle East with a focus in Cyprus and Israel, energy planning me...

  5. Prototype solar heating and hot water system

    Science.gov (United States)

    1977-01-01

    Progress is reported in the development of a solar heating and hot water system which uses a pyramidal optics solar concentrator for heating, and consists of the following subsystems: collector, control, transport, and site data acquisition. Improvements made in the components and subsystems are discussed.

  6. Water distribution systems design optimisation using metaheuristics ...

    African Journals Online (AJOL)

    The topic of multi-objective water distribution systems (WDS) design optimisation using metaheuristics is investigated, comparing numerous modern metaheuristics, including several multi-objective evolutionary algorithms, an estimation of distribution algorithm and a recent hyperheuristic named AMALGAM (an evolutionary ...

  7. Solar Energy and Other Appropriate Technologies for Small Potable Water Systems in Puerto Rico

    Science.gov (United States)

    This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change...

  8. Water Quality in Small Community Distribution Systems. A Reference Guide for Operators

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) has developed this reference guide to assist the operators and managers of small- and medium-sized public water systems. This compilation provides a comprehensive picture of the impact of the water distribution system network on dist...

  9. Water column separation in power plant circulating water systems

    International Nuclear Information System (INIS)

    Papadakis, C.N.

    1977-01-01

    Power plant circulating water system condensers operate with a siphon. Column separation is a common occurence in such condensers during low pressure transients. The assumptions that no gas evolves from solution leads to very conservative values of maximum pressures upon rejoining of separated column. A less conservative method led to the development of a macroscopic mathematical model including the presence of air and vapor in a cavity which forms at the top of the condenser. The method of characteristics is used to solve the equations. A case study is analyzed to illustrate the applicability of the developed mathematical model and to provide comparisons of the results obtained

  10. Radiological environmental risk associated with different water management systems in amang processing in Malaysia

    International Nuclear Information System (INIS)

    Ismail, B.; Yasir, M.S.; Redzuwan, Y.; Amran, A.M.

    2003-01-01

    The processing of amang (tin-tailing) for its valuable minerals have shown that it technologically enhanced naturally occurring radioactive materials, and has a potential of impacting the environment. Large volume of water is used to extract these valuable minerals from amang. Three types of water management systems are used by amang plants, i.e. Open Water System (OWS), Close Water System Man-made (CWS mm) and Close Water System Natural (CWSn). A study was carried out to determine the radiological environmental risk associated with these different water management systems in amang processing in Malaysia. The parameters studied were pH of water, Water Quality Indices, and uranium ad thorium concentrations in water and sediments. Three different sampling locations were selected for each water management system, i.e. the source, the receiver and related reference water bodies. Results obtained showed that amang reduces the pH and contaminates the water. However, OWS appears have the least radiological environmental impact. On the contrary both CWS (man-made and natural) pose a potential environmental risk if great care are not given to the treatment of accumulated sediment and contaminated water before discharge into the environment

  11. Impacts of invading alien plant species on water flows at stand and catchment scales

    Science.gov (United States)

    Le Maitre, D. C.; Gush, M. B.; Dzikiti, S.

    2015-01-01

    There have been many studies of the diverse impacts of invasions by alien plants but few have assessed impacts on water resources. We reviewed the information on the impacts of invasions on surface runoff and groundwater resources at stand to catchment scales and covering a full annual cycle. Most of the research is South African so the emphasis is on South Africa's major invaders with data from commercial forest plantations where relevant. Catchment studies worldwide have shown that changes in vegetation structure and the physiology of the dominant plant species result in changes in surface runoff and groundwater discharge, whether they involve native or alien plant species. Where there is little change in vegetation structure [e.g. leaf area (index), height, rooting depth and seasonality] the effects of invasions generally are small or undetectable. In South Africa, the most important woody invaders typically are taller and deeper rooted than the native species. The impacts of changes in evaporation (and thus runoff) in dryland settings are constrained by water availability to the plants and, thus, by rainfall. Where the dryland invaders are evergreen and the native vegetation (grass) is seasonal, the increases can reach 300–400 mm/year. Where the native vegetation is evergreen (shrublands) the increases are ∼200–300 mm/year. Where water availability is greater (riparian settings or shallow water tables), invading tree water-use can reach 1.5–2.0 times that of the same species in a dryland setting. So, riparian invasions have a much greater impact per unit area invaded than dryland invasions. The available data are scattered and incomplete, and there are many gaps and issues that must be addressed before a thorough understanding of the impacts at the site scale can be gained and used in extrapolating to watershed scales, and in converting changes in flows to water supply system yields. PMID:25935861

  12. Impacts of invading alien plant species on water flows at stand and catchment scales.

    Science.gov (United States)

    Le Maitre, D C; Gush, M B; Dzikiti, S

    2015-05-01

    There have been many studies of the diverse impacts of invasions by alien plants but few have assessed impacts on water resources. We reviewed the information on the impacts of invasions on surface runoff and groundwater resources at stand to catchment scales and covering a full annual cycle. Most of the research is South African so the emphasis is on South Africa's major invaders with data from commercial forest plantations where relevant. Catchment studies worldwide have shown that changes in vegetation structure and the physiology of the dominant plant species result in changes in surface runoff and groundwater discharge, whether they involve native or alien plant species. Where there is little change in vegetation structure [e.g. leaf area (index), height, rooting depth and seasonality] the effects of invasions generally are small or undetectable. In South Africa, the most important woody invaders typically are taller and deeper rooted than the native species. The impacts of changes in evaporation (and thus runoff) in dryland settings are constrained by water availability to the plants and, thus, by rainfall. Where the dryland invaders are evergreen and the native vegetation (grass) is seasonal, the increases can reach 300-400 mm/year. Where the native vegetation is evergreen (shrublands) the increases are ∼200-300 mm/year. Where water availability is greater (riparian settings or shallow water tables), invading tree water-use can reach 1.5-2.0 times that of the same species in a dryland setting. So, riparian invasions have a much greater impact per unit area invaded than dryland invasions. The available data are scattered and incomplete, and there are many gaps and issues that must be addressed before a thorough understanding of the impacts at the site scale can be gained and used in extrapolating to watershed scales, and in converting changes in flows to water supply system yields. Published by Oxford University Press on behalf of the Annals of Botany

  13. Sulphate content of the Muntimpa dam water and its impact on water quality

    International Nuclear Information System (INIS)

    Tembo, F; Shitumbanuma, V; Simukanga, S; Mudenda, G; Chileshe, P; Mulenga, S; Phiri, Y

    2004-01-01

    This article presents results of a study of the quality of water from Muntimpa Dam, a reservior of waste mine water released from the processing of copper and cobalt ores by Konkola Copper Mines(KCM) Plc in Chingola. The mine water is discharged into the local Muntimpa stream, a possible source of drinking and domestic water for the local population. The purpose of the study was to determine levels of sulphate in the dam and stream water and recommend possible methods of partial sulphate removal to levels below the recommended statutory limits and secondly, to assess the impact of high sulphate levels on water quality. Study methods included the sampling of water from the Muntimpa dam and catchment area. Stream water samples were collected about 5m from the stream banks while water samples from the dam were randomly collected from the near the centre of the dam at a depth of 50cm. Laboratory methods involved the determination of physical and chemical properties of the water using standard analytical techniques. Results of the study indicate that both total (2470mg/l) and available (1965mg/l) sulphate concentrations are higher than the recommended statutory limit for the discharge of sulphates into natural streams of 1500mg/l. From the study it is concluded that water in Muntimpa dam and stream is not suitable for drinking and other domestic use due to the high sulphate levels. From theorectical considerations, it was established that sulphate reduction could be achieved by addition of lime, which however had the consquence of increasing the pH of the water in excess of the recommended Zambian statutory value of nine, and would thus require an additional process to reduce the pH. (author)

  14. Nitrification in Chloraminated Drinking Water Distribution Systems: Factors Affecting Occurrence

    Science.gov (United States)

    Drinking water distribution systems with ammonia present from either naturally occurring ammonia or ammonia addition during chloramination are at risk for nitrification. Nitrification in drinking water distribution systems is undesirable and may result in water quality degradatio...

  15. Real-Time System for Water Modeling and Management

    Science.gov (United States)

    Lee, J.; Zhao, T.; David, C. H.; Minsker, B.

    2012-12-01

    Working closely with the Texas Commission on Environmental Quality (TCEQ) and the University of Texas at Austin (UT-Austin), we are developing a real-time system for water modeling and management using advanced cyberinfrastructure, data integration and geospatial visualization, and numerical modeling. The state of Texas suffered a severe drought in 2011 that cost the state $7.62 billion in agricultural losses (crops and livestock). Devastating situations such as this could potentially be avoided with better water modeling and management strategies that incorporate state of the art simulation and digital data integration. The goal of the project is to prototype a near-real-time decision support system for river modeling and management in Texas that can serve as a national and international model to promote more sustainable and resilient water systems. The system uses National Weather Service current and predicted precipitation data as input to the Noah-MP Land Surface model, which forecasts runoff, soil moisture, evapotranspiration, and water table levels given land surface features. These results are then used by a river model called RAPID, along with an error model currently under development at UT-Austin, to forecast stream flows in the rivers. Model forecasts are visualized as a Web application for TCEQ decision makers, who issue water diversion (withdrawal) permits and any needed drought restrictions; permit holders; and reservoir operation managers. Users will be able to adjust model parameters to predict the impacts of alternative curtailment scenarios or weather forecasts. A real-time optimization system under development will help TCEQ to identify optimal curtailment strategies to minimize impacts on permit holders and protect health and safety. To develop the system we have implemented RAPID as a remotely-executed modeling service using the Cyberintegrator workflow system with input data downloaded from the North American Land Data Assimilation System. The

  16. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    Science.gov (United States)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  17. Tracking an atmospheric river in a warmer climate: from water vapor to economic impacts

    Science.gov (United States)

    Dominguez, Francina; Dall'erba, Sandy; Huang, Shuyi; Avelino, Andre; Mehran, Ali; Hu, Huancui; Schmidt, Arthur; Schick, Lawrence; Lettenmaier, Dennis

    2018-03-01

    Atmospheric rivers (ARs) account for more than 75 % of heavy precipitation events and nearly all of the extreme flooding events along the Olympic Mountains and western Cascade Mountains of western Washington state. In a warmer climate, ARs in this region are projected to become more frequent and intense, primarily due to increases in atmospheric water vapor. However, it is unclear how the changes in water vapor transport will affect regional flooding and associated economic impacts. In this work we present an integrated modeling system to quantify the atmospheric-hydrologic-hydraulic and economic impacts of the December 2007 AR event that impacted the Chehalis River basin in western Washington. We use the modeling system to project impacts under a hypothetical scenario in which the same December 2007 event occurs in a warmer climate. This method allows us to incorporate different types of uncertainty, including (a) alternative future radiative forcings, (b) different responses of the climate system to future radiative forcings and (c) different responses of the surface hydrologic system. In the warming scenario, AR integrated vapor transport increases; however, these changes do not translate into generalized increases in precipitation throughout the basin. The changes in precipitation translate into spatially heterogeneous changes in sub-basin runoff and increased streamflow along the entire Chehalis main stem. Economic losses due to stock damages increase moderately, but losses in terms of business interruption are significant. Our integrated modeling tool provides communities in the Chehalis region with a range of possible future physical and economic impacts associated with AR flooding.

  18. Water-quality impacts from climate-induced forest die-off

    Science.gov (United States)

    Mikkelson, Kristin M.; Dickenson, Eric R. V.; Maxwell, Reed M.; McCray, John E.; Sharp, Jonathan O.

    2013-03-01

    Increased ecosystem susceptibility to pests and other stressors has been attributed to climate change, resulting in unprecedented tree mortality from insect infestations. In turn, large-scale tree die-off alters physical and biogeochemical processes, such as organic matter decay and hydrologic flow paths, that could enhance leaching of natural organic matter to soil and surface waters and increase potential formation of harmful drinking water disinfection by-products (DBPs). Whereas previous studies have investigated water-quantity alterations due to climate-induced, forest die-off, impacts on water quality are unclear. Here, water-quality data sets from water-treatment facilities in Colorado were analysed to determine whether the municipal water supply has been perturbed by tree mortality. Results demonstrate higher total organic carbon concentrations along with significantly more DBPs at water-treatment facilities using mountain-pine-beetle-infested source waters when contrasted with those using water from control watersheds. In addition to this differentiation between watersheds, DBP concentrations demonstrated an increase within mountain pine beetle watersheds related to the degree of infestation. Disproportionate DBP increases and seasonal decoupling of peak DBP and total organic carbon concentrations further suggest that the total organic carbon composition is being altered in these systems.

  19. Investigation of impact of water type on borate ore flotation.

    Science.gov (United States)

    Ozkan, S G; Acar, A

    2004-04-01

    In this work, the impact of water type on borate ore flotation was investigated, while various physical parameters during flotation were considered in order to compare the results. Two different colemanite samples from Emet deposits of Turkey, named as Emet-A and Emet-B contained 44% B(2)O(3) and 40% B(2)O(3), respectively. The flotation tests were performed at feed particle size range of -210 +20 microm. Optimal consumption values for the reagents were determined as 2000 gt(-1) for AeroPromoter R825 from Cytec Company, a sulphonate type collector, 1500 gt(-1) for Procol CA927 from Allied Colloids Company, a sulphosuccinamate type collector and 100 gt(-1) for AeroFrother 70 from Cytec Company, an alcohol-type frother. In the tests, the impeller speed of the Denver-type flotation machine was set to 1200 rpm and the samples were fed into a litre cell at 25% solid/liquid ratio and at natural pH value of the slurry at room temperature. The flotation results obtained from the tests with use of tap water, demineralised water and the artificial water prepared with Ca(2+) and Mg(2+) cations deliberately added into demineralised water were compared to each other in optimal flotation conditions.

  20. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    Science.gov (United States)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is th