WorldWideScience

Sample records for water stress conditions

  1. Assessing maize foliar water stress levels under field conditions ...

    African Journals Online (AJOL)

    Assessing maize foliar water stress levels under field conditions using in-situ ... is non-destructive to the crops as opposed to other traditional ground-based methods. ... water indices that could monitor the water status at leaf level on maize (Zea ... about AJOL · AJOL's Partners · Contact AJOL · Terms and Conditions of Use.

  2. Growth and Eco-Physiological Performance of Cotton Under Water Stress Conditions

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-yan; Isoda Akihiro; LI Mao-song; WANG Dao-long

    2007-01-01

    A cotton cultivar Xinluzao 8 was grown under four levels of water stress treatments (normal irrigation, slight, mild and severe water stress) from the initial reproductive growth stage in Shihezi, Xinjiang, China, in 2002, to evaluate the growth and eco-physiological performances. Under water stress conditions, the transpiration ability decreased while the leaf temperature increased. Although the relative leaf water content decreased as water stress increased, the differences among the treatments were small, indicating that cotton has high ability in maintaining water in leaf. The stomatal density increased as water stress increased, while the maximum stomatal aperture reduced only in the severest stressed plants.The time of the maximum stomatal aperture was delayed in the mild and severe stressed plants. When severe stress occurred, the stomata were kept open until the transpiration decreased to nearly zero, suggesting that the stomata might not be the main factor in adjusting transpiration in cotton. Cotton plant has high adaptation ability to water stress conditions because of decrease in both stomatal conductance and hydraulic conductance from soil-to-leaf pathway. The actual quantum yield of photosystem Ⅱ (PS Ⅱ) decreased under water stress conditions, while the maximum quantum yield of PS Ⅱ did not vary among treatments, suggesting that PS Ⅱ would not be damaged by water stress. The total dry weight reduced as water stress increased.

  3. Some Weeds Community Percent in Response to Pumice Application on Soil under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    Davoud Zarehaghi

    2016-02-01

    Full Text Available A factorial experiment (using RCBD design with three replications was conducted in 2014 at the University of Tabriz-Iran, in order to determine the effects of pumice application (P1, P2, P3 and P4: control, 30, 60 and 90 tons per ha on soil and water stress (I1, I2 and I3: 100%, 70% and 50% water requirement calculated from class A pan, respectively on dominante weeds community percent. Results showed that community percent of weed species changed as a result of water stress and pumice application on soil. Distributions of Chenopodium album and Malva sylvestris were sensitive to water stress but, Amaranthus retroflexus and Solanum nigrum were neutral to water stress. In contrast, Amaranthus retroflexus, Cardaria draba, Setaria viridis, Sisymbrium irio, Xanthium strumarium, Convolvulus arvensis and Salsola rigida distribution were resistant to water stress. Community percent of Chenopodium album as sensitive species to water stress and Salsola rigida as resistance species to water stress positively affected by pumice application especially under water stress condition. Amaranthus retroflexus, Xanthium strumarium and Convolvulus arvensis were positively affected by pumice application under well and limited water supply conditions. In contrast, Cardaria draba, Sisymbrium irio and Solanum nigrum negatively affected by pumice under water stress and it had positive effect on community of these species under well watering conditions. Thus, application of pumice and water stress are two factors which change weed community precent.

  4. Optimization of Water Allocation between Different Crops in Water Stress Conditions in Qazvin Irrigation Network

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammad khani

    2017-06-01

    minimum productivity index. Therefore, in water deficit conditions, the priority of water distribution in all options is for tomatoes and the last priority for sugar beets. In all of the options, wheat, barley and canola ascend in productivity index and corn and sugar beets descend in productivity index. Conclusion: Studying water- production index shows that considering instructions will result in optimal productivity that in turn will increase production and network total income. Optimal model results show that drought effects can be satisfied with optimal and targeted management in allocating water, so that network total income has not reduced in stress occurrences compared to network net income. Optimization method in model development has been selected according to aim of model and it is proposed that model results to be assessed by non- linear optimization methods. It is proposed that, different scenarios of climate are studied in region according to climate changes and optimal allocation of water is prepared according to the effect of these scenarios on temperature increase, raining decrease and products water need increase in present cultivation method. For model efficiency increase, it is proposed that using neural networks capabilities, intelligent prediction of the input discharge to the network is done and the possibility of comprehensive management and timely combining of network with water allocation optimal model is provided.

  5. Response of Maize to Nutrients Foliar Application Under Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    N. A. Sajedi

    2009-01-01

    Full Text Available Problem statement: To investigate the effect of nutrient application on agronomical characteristic and water use efficiency under water deficit stress of hybrid maize 704, an experiment was arranged in a split plot factorial based on a complete randomized block design with four replicates in the research station of Islamic Azad University-Arak Branch, Iran in 2007. Approach: Main factors studied were four irrigation levels including irrigation equal to crop water requirement, water deficit stress at eight-leaf stage (V8, stage of blister (R2 and stage of filling grain in the main plot. Combined levels of selenium treatment (without and with application 20 g ha-1 were applied 2 weeks before execution of water stress treatment and micronutrients (without and with application that was provided by specific fertilizer for maize called "Biomin", which contained Fe, Zn, Cu, Mn, B, Mo and Mg in the form of foliar application at six-leaf stage and 1 week before tasseling stage at the rate of 2 L ha-1 were situated in sub plots. Results: Results indicated that effect of water deficit stress on 1000 grain weight, grain yield, harvest index and water use efficiency at different growth stages was significant at 1% level. Water deficit stress decreased grain yield 33% in grain filling stage as compared with control. Using selenium increased mentioned traits but the increase was non significant. Effects of twofold interactions of water deficit stress and selenium showed that using selenium in water deficit stress condition increased measured traits as compared with treatment without selenium. A negative antagonistic interaction was found between selenium and micronutrients on some measured traits. In between treatments of water deficit stress, highest grain yield (8159.33 kg ha-1 was obtained from combined treatment of water deficit stress at eight-leaf stage with selenium application and without micronutrients which compared with treatment of irrigation equal

  6. QTL mapping of protein content and seed characteristics under water-stress conditions in sunflower.

    Science.gov (United States)

    Ebrahimi, A; Maury, P; Berger, M; Calmon, A; Grieu, P; Sarrafi, A

    2009-05-01

    The purpose of this study was to identify genomic regions controlling seed protein content, kernel and hull weights, and seed density in water-stress conditions in sunflower (Helianthus annuus L.). The experiments consisted of a split-plot design (water treatment and recombinant inbred lines) with three blocks in two environments (greenhouse and field). High significant variation was observed between genotypes for all traits as well as for water treatment x genotype interaction. Several specific and nonspecific QTLs were detected for all traits under well-watered and water-stress conditions. Two SSR markers, ORS671_2 and HA2714, linked to protein content were identified that have no interaction with water treatments in greenhouse conditions. We also detected the E35M60_4 marker associated with kernel weight that had no interaction with water treatments. A specific QTL for protein content was detected with important phenotypic variance (17%) under water-stress conditions. Overlapping QTLs for protein content and seed density were identified in linkage group 15. This region probably has a peliotropic effect on protein content and seed density. QTLs for protein content colocated with grain weight traits were also identified.

  7. THE ACTIVITY OF ARABIDOSPIS DLL PROMOTER IN TRANSGENIC TOBACCO PLANTS UNDER WATER STRESS CONDITIONS

    Directory of Open Access Journals (Sweden)

    Zuzana Polóniová

    2014-02-01

    Full Text Available In this work we used the Cre/loxP recombination system to study the activity of the Arabidopsis DLL promoter under water stress treatment. For this, the T-DNA containing the Cre/loxP self-excision recombination cassette was introduced into tobacco genome via A. tumefaciens LBA 4404. The expression of the cre gene was regulated by the DLL promoter. On activity of the DLL the Cre recombinase was expected to remove Cre/loxP cassette. Transgenic nature of regenerated transgenic T0 tobacco plantlets was proved by GUS and PCR analyses. The selected 10 transgenic T0 plants were subjected to the water stress analyses under in vitro as well as under in vivo conditions. The osmotic stress experiments were performed with 10 % PEG and 100 mmol.l-1 mannitol (individually. The activity of the DLL was evaluated after 24 hours. For drought stress experiments, the watering was withheld for 10 days. The activity of the DLL was monitored using PCR approach. Under given abiotic stress conditions, no activity of the DLL was observed. The DLL promoter remained stable. It points out the DLL as the promoter with precise control of the gene expression with wide usability in plant biotechnology.

  8. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-02-21

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.

  9. Temporal versus spatial variation in leaf reflectance under changing water stress conditions

    Science.gov (United States)

    Cohen, Warren B.

    1991-01-01

    Leaf reflectance changes associated with changes in water stress were analyzed in two separate experiments. Results indicate that the variation in reflectance among collections of leaves of a given species all at the same level of water stress is at least as great as the variation in reflectance associated with changes in water stress for a given leaf collection of that species. The implications is that results from leaf reflectance-water stress studies have only limited applicability to the remote sensing of plant canopy water stress.

  10. Physiological response of Pinus halepensis needles under ozone and water stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Manes, F.; Donato, E. [Univ. of Rome ' La Sapienza' , Dept. of Plant Biology, Rome (Italy); Vitale, M. [Univ. of Molise, Dept. of Environmental Sciences, Isernia (Italy)

    2001-07-01

    The aim of this study was to evaluate how physiological processes of potted Pinus halepensis plants, grown under controlled conditions, were affected by ozone (O{sub 3}) and/or water stress, integrating the gas exchange and biochemical data with fluorescence OJIP polyphasic transient data. Plants submitted to only water stress (T{sub 1}) and with ozone (T{sub 3}) showed a strong decrease in stomatal conductance and gas exchange, coinciding with a reduction of maximum yield of photochemistry ({rho}{sub po}) and very negative values of leaf water potential. Simultaneously, a great increase of both PSII antenna size, indicated by absorption per reaction centre, and electron transport per reaction centre were found. The reduction of photosynthesis in the O{sub 3}-treated plants (T{sub 2}) by a slowing down of the Calvin cycle was supported by the increase of related fluorescence parameters such as relative variable fluorescence, heat de-excitation constant, energy de-excitation by spillover, and the decrease of {rho}{sub po}. We suggest an antagonistic effect between the two stresses to explain the delayed ozone-induced decrease of stomatal conductance values for T{sub 3} with respect to T{sub 1} plants, by an alteration of the physiological mechanisms of stomatal opening, which involve the increase of intra-cellular free-calcium induced by ABA under co-occurring water shortage. We emphasise the importance of considering the intensity of the individual stress factor in studies concerning the interaction of stresses. (au)

  11. Dissecting Maize Productivity: Ideotypes Associated with Grain Yield under Drought Stress and Well-watered Conditions

    Institute of Scientific and Technical Information of China (English)

    Jill E.Cairns; Ciro Sanchez; Mateo Vargas; Raziel Ordo(n)ez; Jose Luis Araus

    2012-01-01

    To increase maize (Zea mays L.) yields in drought-prone environments and offset predicted maize yield losses under future climates,the development of improved breeding pipelines using a multi-disciplinary approach is essential.Elucidating key growth processes will provide opportunities to improve drought breeding progress through the identification of key phenotypic traits,ideotypes,and donors.In this study,we tested a large set of tropical and subtropical maize inbreds and single cross hybrids under reproductive stage drought stress and well-watered conditions.Patterns of biomass production,senescence,and plant water status were measured throughout the crop cycle.Under drought stress,early biomass production prior to anthesis was important for inbred yield,while delayed senescence was important for hybrid yield.Under well-watered conditions,the ability to maintain a high biomass throughout the growing cycle was crucial for inbred yield,while a stay-green pattern was important for hybrid yield.While new quantitative phenotyping tools such as spectral reflectance (Normalized Difference Vegetation Index,NDVI) allowed for the characterization of growth and senescence patterns as well as yield,qualitative measurements of canopy senescence were also found to be associated with grain yield.

  12. Estimation of diversity and combining abilities in Helianthus annuus L. under water stress and normal conditions.

    Science.gov (United States)

    Saba, M; Khan, F A; Sadaqat, H A; Rana, I A

    2016-10-24

    Sunflower cannot produce high yields under water-limiting conditions. The aim of the present study was to prevent the impediments on yield and to develop varieties with high-yield potential under water scarce conditions. For achieving this objective, it is necessary to detect parents with desirable traits that mainly depend on the action of genes controlling the trait under improvement, combining ability, and genetic makeup of the parents. Heterosis can also be used to pool the desirable genes from genetically divergent varieties and these divergent parents could be detected by molecular studies. Ten tolerant and five susceptible tester lines were selected, crossed, and tested for genetic diversity using simple sequence repeat primers. We identified two parents (A-10.8 and G-60) that showed maximum (46.7%) genetic dissimilarity. On an average 3.1 alleles per locus were detected for twenty pair of primers. Evaluation of mean values revealed that under stress conditions the mean performances of the genotypes were reduced for all traits under study. Parent A-10.8 was consistent as a good general combiner for achene yield per plant under both non-stress and stress conditions. Line A-10.8 in the hybrid A-10.8 x G-60 proved to be a good combiner as it showed negative specific combining ability (SCA) effects for plant height and internodal length and positive SCA effects for head weight, achene yield per plant, and membrane stability index. Valuable information on gene action, combining ability, and heterosis was generated, which could be used in further breeding programs.

  13. Effect of potassium chloride supplementation in drinking water on broiler performance under heat stress conditions.

    Science.gov (United States)

    Ahmad, T; Khalid, T; Mushtaq, T; Mirza, M A; Nadeem, A; Babar, M E; Ahmad, G

    2008-07-01

    The effect of water supplementation of KCl on performance of heat-stressed Hubbard broilers was evaluated in the present experiment. The 3 experimental treatments (i.e., control, 0.3 and 0.6% KCl) were allocated to 3 replicates of 15 birds each. The control group was kept on dugout tap water, whereas the other 2 groups were supplied water supplemented with 0.3 and 0.6% KCl (wt/vol) by supplementing 3 and 6 g of KCl, respectively, per liter of drinking water. Broilers were provided ad libitum access to feed and water for the experimental period of 7 to 42 d of age and kept in open-sided house. The birds were reared under continuous thermostress (minimum 28.2 +/- 1.02 and maximum 37.5 +/- 0.78 degrees C) environment. Supplementing drinking water with 0.6% KCl reduced panting-phase blood pH to 7.31 and significantly increased live BW gain by 14.5 (P = 0.036) and 7.9% (P = 0.029) at 28 and 42 d of age, respectively, relative to control. An improved (P = 0.04) feed:gain and lowered body temperature were noted in groups supplemented with 0.6% KCl as compared with control and 0.3% KCl. Enhanced physiological adaptation with 0.6% KCl was evidenced by a more favorable pH during the panting phase in the present study. These findings demonstrated a possibility of better broiler live performance through KCl supplementation under conditions of severe heat stress (35 to 38 degrees C).

  14. Genetic analysis of yield and yield related traits in sunflower (Helianthus annuus L. under well-watered and water-stressed conditions

    Directory of Open Access Journals (Sweden)

    Darvishzadeh Reza

    2014-01-01

    Full Text Available Drought stress is one of the factors which influence sunflower (Helianthus annuus L. production. Breeding for tolerance to drought stress has become a major focus. In the present investigation, combining ability, gene action and genetic analysis of several characteristics were studied in six pure lines of sunflower and their 15 hybrids. The materials were evaluated in two separate experiments using a randomized complete block design (RCBD with three replications in two states (well-watered and water-stressed under controlled conditions. Comparison of mean values exhibited that under water- stressed condition the average performance of sunflower genotypes were decreased for all studied traits. In well-watered condition the highest value for seed yield per plant (SY was observed in the cross 'LR4´LR25', whereas in water-stressed condition the highest value for this trait was observed in the hybrid 'C104´LR25'. Combining ability analysis revealed that most of agronomical traits such as head diameter, number of achene per head, head weight and seed yield inherited differently in stressed and non-stressed conditions. In water-stressed conditions, the non-additive effects played a more important role for controlling the number of achene per head (NA, seed yield per plant (SY, head diameter (HD, and days from flowering to physiological maturity (DFM than additive. Based on results yield improvement for water-stressed conditions requires selection under drought conditions. In well-watered condition, the cross 'LR4´C10' showed the best SCA value for seed yield per plant (SY. In water-stressed conditions, 'RHA266´C100' had the highest SCA for seed yield per plant (SY and number of achene (NA per head.

  15. Influence of Growth Regulators on Secondary Metabolites of Medicinally Important Oil Yielding Plant Simarouba glauca DC. under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    Awate P.D.

    2014-03-01

    Full Text Available One year old seedlings of Simarouba glauca were subjected to water stress for 4, 8, 12 and 16 days. The foliar sprays of 50 ppm salicylic acid (SA and 10 ppm Putriscine, Gamma amino butyric acid (GABA and Abscisic acid (ABA were applied before and after water stress. It was observed that polyphenols, tannins, alkaloid and flavonoid contents were increased with increasing water stress treatments. Foliar applications of growth regulators ameliorate water stress and exhibits induction of secondary metabolites like coumarins, sterols, xanthoproteins, cardiac glycosides and saponins. It was also noticed that foliar application of SA, GABA, ABA considerably increases all these secondary metabolites which will help to improve the medicinal potential of Simarouba glauca under water stressed condition.

  16. Correlation and Quantitative Trait Loci Analyses of Total Chlorophyll Content and Photosynthetic Rate of Rice (Oryza sativa) under Water Stress and Well-watered Conditions

    Institute of Scientific and Technical Information of China (English)

    Song-Ping Hu; Ying Zhou; Lin Zhang; Xiu-Dong Zhu; Lin Li; Li-Jun Luo; Guo-Lan Liu; Qing-Ming Zhou

    2009-01-01

    well-watered conditions. These QTLs explained 34.37% and 18.41% of the phenotypic variation in water stress and well-watered conditions, respectively. In total, CC was largely controlled by main QTLs, and PR was mainly controlled by epistatic QTL pairs.

  17. The Effect of Water Stress and Polymer on Water Use Efficiency, Yield and several Morphological Traits of Sunflower under Greenhouse Condition

    OpenAIRE

    Hossein NAZARLI; Mohammad Reza ZARDASHTI; Reza DARVISHZADEH; Solmaz NAJAFI

    2010-01-01

    In many part of Iran, the reproductive growth stages of sunflower (Helianthus annuus L.) are exposed to water deficit stress. Therefore, the investigation of irrigation management in the farm conditions is a necessary element for increasing irrigation efficiency and decreasing water losses. The objective of present study was to investigate the effect of different rates of super absorbent polymer and levels of water stress on water use efficiency (WUE), yield and some morphological traits of s...

  18. Nonlinear Creep Model for Deep Rock under High Stress and High Pore Water Pressure Condition

    Directory of Open Access Journals (Sweden)

    Xie Yuanguang

    2016-05-01

    Full Text Available Conventional triaxial compression creep experiments for deep sandstone under high confining pressure and high pore water pressure were carried out, in order to predict the creep response of deep rock under these conditions. A nonlinear viscoelastic-plastic creep constitutive model was proposed based on the experimental results. The theory of component model was used as a basis for the formulation of this model. First, by using mathematical fitting and analogy, a new nonlinear viscous component was introduced based on the properties of the creep curves during the tertiary stage. Second, a timer component to judge whether the creep can get into the tertiary stage was presented. Finally, a nonlinear creep model was proposed. Results showed good agreement between theory curves from the nonlinear creep model and experimental data. This model can be applied to predict deep rock creep responses under high stress and high pore water pressure conditions. Hence, the obtained conclusions in this study are beneficial to deep rock engineering.

  19. Effect of plant growth promoting micro organisms on increasing water use efficiency of alfalfa in water-stress conditions

    Directory of Open Access Journals (Sweden)

    M. Zafari

    2015-11-01

    Full Text Available In order to study the effect of bacterial growth on water use efficiency of alfalfa, a greenhouse experiment, as factorial based on completely randomized blocks design with three replications, was conducted at Faculty of Agriculture, University of Mohaghegh Ardabili, Ardabil, Iran, in 2012. Treatments consisted of 3 levels of water stress (75, 55 and 35% of field capacity and seed inoculation at 4 levels (no inoculation (control, inoculation with mycorhhiza G. mosseae, inoculation with rhyzobium S. meliloti, and inoculation with combination of mycorhhiza and rhyzobium. Results showed that water stress and seed inoculation have significant effect (P&le0.01 on leaf nutrients content. Water stress reduced absorption of phosphorus (23%, potassium (8%, iron (4% and increased sodium absorption (14% in non-inoculated seeds. Inoculation of seeds reduced stress effects and combined inoculation had the highest effect. Stomatal conductance and water use efficiency were affected (P&le0.01 by inoculation and water stress. Stomatal conductance was decreased during the stress period and seed inoculation with mycorhhiza G. mosseae was most effective on increasing stomatal conductance (47% at the highest level of stress. Water use efficiency increased as a result of water stress and inoculation. The highest value of water use efficiency (0.166 mg/kg was obtained in the combined inoculation with 35% field capacity treatment. Results of regression equations showed that during the inoculation, contribution of phosphorus and potassium in regulation of stomatal conductance was increased and contribution of sodium was decreased.  However, during the stress period, the share of potassium and sodium was increased in stomatal conductance and the share of phosphorus was reduced. Also, stress increased the role of stomatal conductance in water use efficiency. However, inoculation reduced the role of stomatal conductance in water use efficiency.

  20. Correlation and quantitative trait loci analyses of total chlorophyll content and photosynthetic rate of rice (Oryza sativa) under water stress and well-watered conditions.

    Science.gov (United States)

    Hu, Song-Ping; Zhou, Ying; Zhang, Lin; Zhu, Xiu-Dong; Li, Lin; Luo, Li-Jun; Liu, Guo-Lan; Zhou, Qing-Ming

    2009-09-01

    In order to explore the relevant molecular genetic mechanisms of photosynthetic rate (PR) and chlorophyll content (CC) in rice (Oryza sativa L.), we conducted a series of related experiments using a population of recombinant inbred lines (Zhenshan97B x IRAT109). We found a significant correlation between CC and PR (R= 0.19**) in well-watered conditions, but no significant correlation during water stress (r= 0.08). We detected 13 main quantitative trait loci (QTLs) located on chromosomes 1, 2, 3, 4, 5, 6, and 10, which were associated with CC, including six QTLs located on chromosomes 1, 2, 3, 4, and 5 during water stress, and seven QTLs located on chromosomes 2, 3, 4, 6, and 10 in well-watered conditions. These QTLs explained 47.39% of phenotypic variation during water stress and 56.19% in well-watered conditions. We detected four main QTLs associated with PR; three of them (qPR2, qPR10, qPR11) were located on chromosomes 2, 10, and 11 during water stress, and one (qPR10) was located on chromosome 10 in well-watered conditions. These QTLs explained 34.37% and 18.41% of the phenotypic variation in water stress and well-watered conditions, respectively. In total, CC was largely controlled by main QTLs, and PR was mainly controlled by epistatic QTL pairs.

  1. Comparative Metabolome Profile between Tobacco and Soybean Grown under Water-Stressed Conditions.

    Science.gov (United States)

    Rabara, Roel C; Tripathi, Prateek; Rushton, Paul J

    2017-01-01

    Understanding how plants respond to water deficit is important in order to develop crops tolerant to drought. In this study, we compare two large metabolomics datasets where we employed a nontargeted metabolomics approach to elucidate metabolic pathways perturbed by progressive dehydration in tobacco and soybean plants. The two datasets were created using the same strategy to create water deficit conditions and an identical metabolomics pipeline. Comparisons between the two datasets therefore reveal common responses between the two species, responses specific to one of the species, responses that occur in both root and leaf tissues, and responses that are specific to one tissue. Stomatal closure is the immediate response of the plant and this did not coincide with accumulation of abscisic acid. A total of 116 and 140 metabolites were observed in tobacco leaves and roots, respectively, while 241 and 207 were observed in soybean leaves and roots, respectively. Accumulation of metabolites is significantly correlated with the extent of dehydration in both species. Among the metabolites that show increases that are restricted to just one plant, 4-hydroxy-2-oxoglutaric acid (KHG) in tobacco roots and coumestrol in soybean roots show the highest tissue-specific accumulation. The comparisons of these two large nontargeted metabolomics datasets provide novel information and suggest that KHG will be a useful marker for drought stress for some members of Solanaceae and coumestrol for some legume species.

  2. Comparative Metabolome Profile between Tobacco and Soybean Grown under Water-Stressed Conditions

    Directory of Open Access Journals (Sweden)

    Roel C. Rabara

    2017-01-01

    Full Text Available Understanding how plants respond to water deficit is important in order to develop crops tolerant to drought. In this study, we compare two large metabolomics datasets where we employed a nontargeted metabolomics approach to elucidate metabolic pathways perturbed by progressive dehydration in tobacco and soybean plants. The two datasets were created using the same strategy to create water deficit conditions and an identical metabolomics pipeline. Comparisons between the two datasets therefore reveal common responses between the two species, responses specific to one of the species, responses that occur in both root and leaf tissues, and responses that are specific to one tissue. Stomatal closure is the immediate response of the plant and this did not coincide with accumulation of abscisic acid. A total of 116 and 140 metabolites were observed in tobacco leaves and roots, respectively, while 241 and 207 were observed in soybean leaves and roots, respectively. Accumulation of metabolites is significantly correlated with the extent of dehydration in both species. Among the metabolites that show increases that are restricted to just one plant, 4-hydroxy-2-oxoglutaric acid (KHG in tobacco roots and coumestrol in soybean roots show the highest tissue-specific accumulation. The comparisons of these two large nontargeted metabolomics datasets provide novel information and suggest that KHG will be a useful marker for drought stress for some members of Solanaceae and coumestrol for some legume species.

  3. Statistical analysis of short-term water stress conditions at Riggs Creek OzFlux tower site

    Science.gov (United States)

    Azmi, Mohammad; Rüdiger, Christoph; Walker, Jeffrey P.

    2016-08-01

    A large range of indices and proxies are available to describe the water stress conditions of an area subject to different applications, which have varying capabilities and limitations depending on the prevailing local climatic conditions and land cover. The present study uses a range of spatio-temporally high-resolution (daily and within daily) data sources to evaluate a number of drought indices (DIs) for the Riggs Creek OzFlux tower site in southeastern Australia. Therefore, the main aim of this study is to evaluate the statistical characteristics of individual DIs subject to short-term water stress conditions. In order to derive a more general and therefore representative DI, a new criterion is required to specify the statistical similarity between each pair of indices to allow determining the dominant drought types along with their representative DIs. The results show that the monitoring of water stress at this case study area can be achieved by evaluating the individual behaviour of three clusters of (i) vegetation conditions, (ii) water availability and (iii) water consumptions. This indicates that it is not necessary to assess all individual DIs one by one to derive a comprehensive and informative data set about the water stress of an area; instead, this can be achieved by analysing one of the DIs from each cluster or deriving a new combinatory index for each cluster, based on established combination methods.

  4. Growth, physiology and yield of durum wheat (Triticum durum) treated with sewage sludge under water stress conditions.

    Science.gov (United States)

    Boudjabi, Sonia; Kribaa, Mohammed; Chenchouni, Haroun

    2015-01-01

    In arid and semi-arid areas, low soil fertility and water deficit considerably limit crop production. The use of sewage sludge as an organic amendment could contribute to the improvement of soil fertility and hence the agronomic production. The study aims to highlight the behaviour of durum wheat to the application of sewage sludge associated with water stress. The assessment focused on morphophysiological parameters of the wheat plant and yield. Under greenhouse conditions, the variety Mohamed Ben Bachir was treated by four water stress levels (100 %, 80 %, 50 % and 30 %). Each stress level comprised five fertilizer treatments: 20, 50 and 100 t/ha of dry sludge, 35 kg/ha of urea, and a control with no fertilization. Results revealed a significant loss in water content and chlorophyll a in leaves. Water stress negatively affected the development of wheat plants by reducing significantly seed yield, leaf area and biomass produced. Plant's responses to water stress manifested by an accumulation of proline and a decrease in total phosphorus. However, the increasing doses of sewage sludge limited the effect of water stress. Our findings showed an increase in the amount of chlorophyll pigments, leaf area, total phosphorus, biomass and yield. In addition, excessive accumulation of proline (1.11 ± 1.03 µg/g DM) was recorded as a result of the high concentration of sludge (100 t/ha DM). The application of sewage sludge is beneficial for the wheat crop, but the high accumulation of proline in plants treated with high dose of sludge suggests to properly consider this fact. The application of sludge should be used with caution in soils where water is limited. Because the combined effect of these two factors could result in a fatal osmotic stress to crop development.

  5. AgRISTARS: Early warning and crop condition assessment. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions

    Science.gov (United States)

    Wiegand, C. L. (Principal Investigator); Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J.

    1981-01-01

    Emissive (10.5 to 12.5 microns) and reflective (0.55 to 1.1 microns) data for ten day scenes and infrared data for six night scenes of southern Texas were analyzed for plant cover, soil temperature, freeze, water stress, and evapotranspiration. Heat capacity mapping mission radiometric temperatures were: within 2 C of dewpoint temperatures, significantly correlated with variables important in evapotranspiration, and related to freeze severity and planting depth soil temperatures.

  6. A study on the inoculated root of Sorghum vulgare by mycorrhiza under the water stress condition

    Directory of Open Access Journals (Sweden)

    Omid Alizadeh

    2011-12-01

    Full Text Available An experiment was carried out to determine the symbiotic effect of mycorrhiza on the yieldand root characteristics of Sorghum vulgare under water stress. The experiment was carried out in afactorial test using a Randomized Complete Block Design (RCBD in three replications. Treatmentswere conducted base on drought stress in four levels and mycorrhiza were applied in two ranges M1(inoculated by mycorrhiza and M0 (non-mycorrhiza. The Results showed that, the drought stress hadsignificant influences on dry matter of shoot, length of the root and percentage of the mycorrhizacolonization. It seemed that, the mycorrhiza had significantly increased the biomass of sorghum byinfluences on the root characteristics, such as: root length, colonization and root/shoot ratio.

  7. Cluster and principle component analyses of maize accessions under normal and water stress conditions

    Directory of Open Access Journals (Sweden)

    Mustafa Hafiz Saad Bin

    2015-01-01

    Full Text Available In the current set of an experiment, forty maize genotypes were assessed for drought associated traits. For evaluation of these traits, PC and correlation analyses were employed to obtain suitable parents that can be further exploited in future breeding programmes. Correlation analysis revealed some important associations among the traits studied. Fresh root length had positive and significant associations, but leaf temperature had a significant negative correlation with root density at both 40% and 100% moisture levels while root density had negative association at 100% and positive correlation at 40% moisture level with chlorophyll content. The positive correlation among these yield contributing traits suggested that these characters are important for direct selection of drought tolerant high yielding genotypes. Principal component (PC analysis showed first 4 PCs having Eigen value >1 explaining 86.7% and 88.4% of the total variation at 40% and 100% moisture levels respectively with different drought related traits. Cluster analysis classified 40 accessions into four divergent groups. The members of clusters 1 and 2 may be combined in future breeding programmes to obtain genotypes/hybrids that can perform well under drought stress conditions. Members of cluster 3 may be selected on the basis of root density, leaf temperature, dry root weight and root shoot ratio by weight and can be combined with members of cluster 4 due to higher leaf temperature and root shoot ratio by length. The results showed that the germplasm having a wide genetic diversity can be thus utilized for future breeding programme to obtain drought tolerant maize genotypes/ hybrids for adaptation to water scarce areas.

  8. Jasmonic acid interacts with abscisic acid to regulate plant responses to water stress conditions

    Science.gov (United States)

    de Ollas, Carlos; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2015-01-01

    Phytohormones are key players in signaling environmental stress conditions. Hormone profiling together with proline accumulation were studied in leaves and roots of different mutant lines of Arabidopsis. Regulation of proline accumulation in this system seems complex and JA-deficient (jar1-1) and JA-insensitive (jai1) lines accumulating high levels of proline despite their very low ABA levels seems to discard an ABA-dependent response. However, the pattern of proline accumulation in jai1 seedlings parallels that of ABA. Under stress conditions, there is an opposite pattern of ABA accumulation in roots of jar1-1/coi1-16 (in which ABA only slightly increase) and jai1 (in which ABA increase is even higher than in WT plants). This also makes JA-ABA crosstalk complex and discards any lineal pathway that could explain this hormonal interaction. PMID:26340066

  9. Crop and soil-water stress coefficients of tomato in the glass-greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Z. Razmi

    2011-12-01

    Full Text Available In order to determine the actual evapotranspiration of tomato in the greenhouse, crop and soil-water stress coefficients were surveyed. To compare the actual evapotranspiration at different irrigation intervals (1, 2, 4, 6 and 8-day, a completely randomized blocks design with four replications was performed. The present study was carried out in a greenhouse covered by 4 mm thick glass. Maximum and minimum temperatures and solar radiation were measured inside the greenhouse once in 24 h. Relative humidity was measured in the greenhouse once in 2 h. Microclimate data were measured in a metrological station, 100 m from the greenhouse, simultaneously, at outside the greenhouse. Reference crop evapotranspiration was calculated by FAO Penman-Monteith method for inside and outside of the greenhouse. Results indicated that the reference evapotranspiration in the inside of the greenhouse was 73% of outside the greenhouse. The actual evapotranspiration of tomato for inside of the greenhouse was determined by using the water balance method. By using the pergeometer and albidometer data, the crop coefficient for inside the greenhouse at three different stages (development, mid, and end of growth was determined as 0.85, 1.0 and 0.77, respectively. Soil-water stress coefficient, with readily available coefficient of 0.7, was determined to be in the range of 0.53 to 0.98 for all the treatments. This coefficient was 0.88 for water-stressed 4-day treatment, and reduced to 0.72 for 8-day treatment.

  10. Farmer Resettlements and Water Energy Stresses Arising From Aggravating Drought Conditions in Mahaweli River Watershed, Sri Lanka

    Science.gov (United States)

    Thabrew, L.

    2012-12-01

    Climate change is expected to cause significant changes in water quantity and water quality in river basins throughout the world, with particularly significant impacts in developing regions. Climate change effects are often exacerbated by other simultaneous activities in developing countries, such as population growth, reliance on subsistence agriculture, and expanding provision of electricity. Each of these activities requires access to readily-available freshwater. For example, population growth requires more water for irrigation as food production needs increase. Additionally, water is needed for generating electricity in hydropower facilities as well as other facilities, which require water to run steam turbines or to cool facilities. As such, many developing countries face the real and immediate need to anticipate and adapt to climatic stresses on water resources in both the agricultural and residential sectors. Water withdrawal in both of these sectors is largely driven by individual behaviors, such as electricity use in the home and irrigation practices on farmland, aggregated at the household, community, and regional level. Our ongoing project in Sri Lanka focuses on understanding aforementioned issues in coupled natural and human systems in the Mahaweli River Watershed (MWR) to inform decision-makers to streamline policies and strategies for effective adaptation to worsening drought conditions. MWR produces more than 60% of the rice demand and nearly 40% of the energy requirement of the country. Although irrigation is currently the sector that withdraws the most water, with government plans for resettling farmer communities and developing new urban centers in the region by 2030, electricity production is expected to compete for water against irrigation in the future. Thus, understanding the water-energy nexus is crucial to planning for conservation and efficiency. Through a pilot survey conducted by our interdisciplinary research team, in five locations in

  11. Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions.

    Science.gov (United States)

    González, Rodrigo M; Ricardi, Martiniano M; Iusem, Norberto D

    2013-08-01

    Tolerance to water deficits was evolutionarily relevant to the conquest of land by primitive plants. In this context, epigenetic events may have played important roles in the establishment of drought stress responses. We decided to inspect epigenetic marks in the plant organ that is crucial in the sensing of drought stress: the root. Using tomato as a crop model plant, we detected the methylated epialleles of Asr2, a protein-coding gene widespread in the plant kingdom and thought to alleviate restricted water availability. We found 3 contexts (CG, CNG, and CNN) of methylated cytosines in the regulatory region of Solanum lycopersicum Asr2 but only one context (CG) in the gene body. To test the hypothesis of a link between epigenetics marks and the adaptation of plants to drought, we explored the cytosine methylation status of Asr2 in the root resulting from water-deficit stress conditions. We found that a brief exposure to simulated drought conditions caused the removal of methyl marks in the regulatory region at 77 of the 142 CNN sites. In addition, the study of histone modifications around this model gene in the roots revealed that the distal regulatory region was rich in H3K27me3 but that its abundance did not change as a consequence of stress. Additionally, under normal conditions, both the regulatory and coding regions contained the typically repressive H3K9me2 mark, which was lost after 30 min of water deprivation. As analogously conjectured for the paralogous gene Asr1, rapidly acquired new Asr2 epialleles in somatic cells due to desiccation might be stable enough and heritable through the germ line across generations, thereby efficiently contributing to constitutive, adaptive gene expression during the evolution of desiccation-tolerant populations or species.

  12. Effect of magnetic field and silver nanoparticles on yield and water use efficiency of Carum copticum under water stress conditions

    Directory of Open Access Journals (Sweden)

    Seghatoleslami Mohammadjavad

    2015-03-01

    Full Text Available Normally the productivity of cropping systems in arid and semi- arid regions is very low. The sustainable agricultural systems try to find out environmental friendly technologies based on physical and biological treatments to increase crop production. In this study two irrigation treatments (control and water stress and six methods of fertilizer treatment (control, NPK-F, using magnetic band- M, using silver nano particles- N, M+N and M+N+50% F on performance of ajowan were compared. Results showed that treatments with magnetic field or base fertilizer had more yield compared to the control and silver nanoparticles (N treatments. Application of silver nanoparticles had no positive effect on yield. The highest seed and biomass WUE achieved in base fertilizer or magnetic field treatments. Under water stress treatment, seed WUE significantly increased. In conclusion magnetic field exposure, probably by encourage nutrient uptake efficiency could be applied to reduce fertilizer requirement. On the other hand the cultivation of plants under low MF could be an alternative way of WUE improving.

  13. Dry Matter Accumulation and Remobilization in Grain Sorghum Genotypes (Sorghum bicolor L. Moench (underNormal and Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Beheshti

    2011-02-01

    Full Text Available Abstract Production, remobilization and accumulation of assimilates in crops especially under water stress are essential factors for determination and studying the yield differences of species and cultivars. Field experiment was conducted using a split plot design based on a randomized complete block design with 3 replication s during 2007 growing season in agricultural research station (Khorasan Agricultural and Natural Resource Research Center, Mashhad-Iran. Main plots were consisted of 2 levels of water, water deficit after anthesis and normal condition (with out water stress and factorial arrangement of photosynthesis status (non desiccation and chemical desiccation with potassium iodide and 3 grain sorghum genotypes (Sepide, M5 and M2 promising lines were assigned to sub plots. Results of variance analysis showed, that the effects of water stress on dry matter accumulation, efficiency of remobilization (REE, percent of remobilization (REP, biologic yield were significant in (p≤0.01 (and grain yield (economic yield was significant in p≤0.05, respectively. Water deficit caused an increase of 10.08%, 24.45 % and 12.43% in dry matter accumulation, percent of remobilization and efficiency of remobilization, respectively as compared to normal conditions. This in turn was led to decrease in seed yield, biological yield and harvest index by 36.38%, 5.43% and 31.60%, respectively. The effect of disturbance in current photosynthesis was significant in all of traits and caused the increase of 15.58%, 17.5% and 36.62% in dry matter accumulation, efficiency of remobilization and percent of remobilization, respectively. The role of remobilization was crucial in sorghum genotypes. Interaction between factors showed that highest dry matter accumulation, percentage of remobilization and efficiency of remobilization was in drought stress and disturbance in current photosynthesis and was 16.62%, 62.54 and 24.60%, respectively and was significantly

  14. Degradation of indomethacin in river water under stress and non-stress laboratory conditions: degradation products, long-term evolution and adsorption to sediment.

    Science.gov (United States)

    Jiménez, Juan J; Sánchez, María I; Pardo, Rafael; Muñoz, Beatriz E

    2017-01-01

    The pharmaceutical compound indomethacin is not totally removed in wastewater treatment plants, whose effluents flow into aquatic environments; concentrations in the 0.1-100ng/L range are commonly found in surface waters, and its fate is unknown. Here, biological, photochemical and thermal degradation assays were conducted under stress and non-stress conditions to estimate its degradation rate in river water and establish its degradation products over time. The results revealed that direct sunlight irradiation promoted the complete degradation of indomethacin (2μg/L) in less than 6hr, but indomethacin was detected over a period of 4months when water was kept under the natural day-night cycle and the exposure to sunlight was partially limited, as occurs inside a body of water. The biological degradation in water was negligible, while the hydrolysis at pH7.8 was slow. Residues were monitored by ultra-pressure liquid chromatography/quadrupole time-of-flight/mass spectrometry after solid-phase extraction, and six degradation products were found; their structures were proposed based on the molecular formulae and fragmentation observed in high-resolution tandem mass spectra. 4-Chlorobenzoic and 2-acetamido-5-methoxybenzoic acids were the long-term transformation products, persisting for at least 30weeks in water kept under non-stress conditions. Furthermore, the degradation in the presence of sediment was also monitored over time, with some differences being noted. The adsorption coefficients of indomethacin and degradation products on river sediment were calculated; long-term degradation products did not have significant adsorption to sediment. Copyright © 2016. Published by Elsevier B.V.

  15. The Effect of Water Stress and Polymer on Water Use Efficiency, Yield and several Morphological Traits of Sunflower under Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    Hossein NAZARLI

    2010-12-01

    Full Text Available In many part of Iran, the reproductive growth stages of sunflower (Helianthus annuus L. are exposed to water deficit stress. Therefore, the investigation of irrigation management in the farm conditions is a necessary element for increasing irrigation efficiency and decreasing water losses. The objective of present study was to investigate the effect of different rates of super absorbent polymer and levels of water stress on water use efficiency (WUE, yield and some morphological traits of sunflower (cultivar Master. Factorial experiment was carried out in completely randomized design with 3 replications. Factors were water stress in three levels (irrigation in 0.75; 0.50 and 0.25% of field capacity and super absorbent polymer in five levels (0; 0.75; 0.150; 2.25; 3 g/kg of soil. Super absorbent polymer was added in eight leaves stage of sunflower to pots in deepness of roots development. Water stress treatment was also applied in this growth stage of sunflower. For stress application, pots were weighted every day and irrigated when soil water received to 0.75; 0.50 and 0.25 of field capacity, respectively. The results of ANOVA indicated that the effect of different rates of super absorbent polymer and different rates of consumed water in all traits were significant. ANOVA also revealed that the interactive effects of two mentioned factors were significant except for seed yield trait. Polynomial model based on the ANOVA results was fitted for each trait. The results indicated that water stress significantly convert in decreasing the number of leaves per plant, chlorophyll content, 100 weight of seeds, seed yield and WUE in sunflower, whereas the application of super absorbent polymer moderated the negative effect of deficit irrigation, especially in high rates of polymer (2.25 and 3 g/kg of soil. The above mentioned rates of polymer have the best effect to all characteristics of sunflower in all levels of water stress treatment. The findings

  16. Effects of arbuscular mycorrhizal fungi on leaf solutes and root absorption areas of trifoliate orange seedlings under water stress conditions

    Institute of Scientific and Technical Information of China (English)

    WU Qiangsheng; XIA Renxue

    2006-01-01

    The effects of the arbuscular mycorrhizal (AM)fungus Glomus mosseae on plant growth,leaf solutes and root absorption area of trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings were studied in potted culture under water stress conditions.Inoculation with G.mosseae increased plant height,stem diameter,leaf area,shoot dry weight,root dry weight and plant dry weight,when the soil water content was 20%,16% and 12%.AM inoculation also promoted the active and total absorption area of root system and absorption of phosphorus from the rhizosphere,enhanced the content of soluble sugar in leaves and roots,and reduced proline content in leaves.AM seedlings had higher plant water use efficiency and higher drought tolerance than non-AM seedlings.Effects of G.mosseae inoculation on trifoliate orange seedlings under 20% and 16% soil water content were more significant than under 12% soil water content.AM infection was severely restrained by 12% soil water content.Thus,effects of AM fungi on plants were probably positively related to the extent of root colonization by AM fungi.The mechanism of AM fungi in enhancing drought resistance of host plants ascribed to greater osmotic adjustment and greater absorption area of root system by AM colonization.

  17. Highlighting the differential role of leaf paraheliotropism in two Mediterranean Cistus species under drought stress and well-watered conditions.

    Science.gov (United States)

    Puglielli, Giacomo; Redondo-Gómez, Susana; Gratani, Loretta; Mateos-Naranjo, Enrique

    2017-06-01

    The differential degree by which paraheliotropism may counterbalance the deleterious impact of high irradiance between congeneric species in relation to different water availabilities has been poorly investigated. We followed the evolution of gas exchange, quenching analysis and OJIP parameters in restrained (R) and free (F) to move leaves of Cistus monspeliensis (CM) and Cistus salvifolius (CS) under drought stress (WS) and well-watered conditions (WW). Concerning gas exchange parameters, leaf restriction effect was overall not significant in CM except in apparent carboxylation efficiency (Ce) under WS, while CS showed a significant sensitivity of maximum net photosynthetic rate (Amax), stomatal conductance (gs) and Ce even under WW. The recovery analysis highlighted also a faster gs recovery in F leaves. Furthermore, in both the species, restriction affected photon allocation pathways especially in terms of light-regulated and light-independent constitutive non-photochemical energy dissipation under WW, ultimately affecting electron transport rate (ETR). Nevertheless, the OJIP analysis provided us evidences that CM was characterized by a down-regulation of ETR while an impairment occurs in CS. In CM this was due to its ability to modify a certain fraction of reaction centers thus resulting in a higher capability for dissipation of excess light energy under well-watered conditions, not affecting electron transport efficiency. This response was not observed in CS. Overall, we demonstrated that congeneric species, even mostly sharing the same physiological targets, differ in the degree by which leaf movements help to counterbalance the negative effect of the high irradiance in relation with the amount of water available. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Effects of Cycocel on Morphological Traits, Nitrogen and Potassium Content of Basil Plants under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Rezaei Estakhroeih

    2016-10-01

    Full Text Available Introduction Basil (Ocimum basilicum is an annual plant which belongs to the Lamiaceae family. It used as a drug, spice and fresh vegetable. Drought stress is one of the important limiting factors of plant growth. Water stress has significant effects on morphological and biochemical characteristics of purple Basil. As the soil water content decreases, the plant height, stem diameter, number and area of leaves, leaf area index (LAI, herb yield and leaf chlorophyll contents (a,b and total chlorophyll decrease, as well. However, the amounts of anthocyanin and proline increase. Cycocel (CCC which chemically called chlormequat chloride is an alkylating agent and a quaternary ammonium salt.. Cycocel is used as plant growth regulator. Application of Cycocel increases the number of siliques/ plant, seed yield and dry matter produced of oilseed rape. Cycocel application decreases the plant height and increases the yield level and protein percentage of seed in faba bean. This research was performed to investigate the effect of Cycocel on morphological characteristics, the percentage of nitrogen and potassium of basil plants under drought stress conditions Materials and Methods This research has been conducted in the research station of Shahid Bahonar University of Kerman with 56o 58' E longitude, 30o 15' N latitude, and 1753.8 altitudes. According to the regional information from 1952 to 2005, the average temperature was 17.1 o C, the average rainfall was 154.1 mm, the average annual relative humidity is 32%, and the climate of Kerman according to De Martonne method is semiarid. A split plot experiment based on RCBD with three replications was employed. Three levels of irrigation, including 50 (severe stress (I3, 75 (mild stress (I2 and 100 (full irrigation (I1 percent of crop water requirement were assigned to the main plots while five levels of Cycocel application (zero (control, 500, 1000, 1500, 2000 milligrams per litre were assigned to the sub

  19. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [south Texas

    Science.gov (United States)

    Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1981-01-01

    Emissive and reflective data for 10 days, and IR data for 6 nights in south Texas scenes were analyzed after procedures were developed for removing cloud-affected data. HCMM radiometric temperatures were: within 2 C of dewpoint temperatures on nights when air temperature approached dewpoint temperatures; significantly correlated with variables important in evapotranspiration; and, related to freeze severity and planting depth soil temperatures. Vegetation greenness indexes calculated from visible and reflective IR bands of NOAA-6 to -9 meteorological satellites will be useful in the AgRISTARS program for seasonal crop development, crop condition, and drought applications.

  20. Remote detection of water stress conditions via a diurnal photochemical reflectance index (PRI) improves yield prediction in rainfed wheat

    Science.gov (United States)

    Magney, T. S.; Vierling, L. A.; Eitel, J.

    2014-12-01

    Employing remotely sensed techniques to quantify the existence and magnitude of midday photosynthetic downregulation using the photochemical reflectance index (PRI) may reveal new information about plant responses to abiotic stressors in space and time. However, the interpretation and application of the PRI can be confounded because of its sensitivity to several variables changing at the diurnal (e.g., irradiation, shadow fraction) and seasonal (e.g., leaf area, chlorophyll and carotene pigment concentrations, irradiation) time scales. We explored different techniques to correct the PRI for variations in canopy structure and relative chlorophyll content (ChlR) using highly temporally resolved (frequency = five minutes) in-situ radiometric measurements of PRI and the Normalized Difference Vegetation Index (NDVI) over eight soft white spring wheat (Triticum aestivum L.)field plots under varying nitrogen and soil water conditions over two seasons. Our results suggest that the influence of seasonal variation in canopy ChlR and LAI on the diurnally measured PRI (PRIdiurnal) can be minimized using simple correction techniques, therefore improving the strength of PRI as a tool to quantify abiotic stressors such as daily changes in soil volumetric water content (SVWC), and vapor pressure deficit (VPD). PRIdiurnal responded strongly to available nitrogen, and linearly tracked seasonal changes in SVWC, VPD, and stomatal conductance (gc). Utilizing the PRI as an indicator of stress, yield predictions significantly over greenness indices such as the NDVI. This study provides insight towards the future interpretation and scaling of PRI to quantify rapid changes in photosynthesis, and as an indicator of plant stress.

  1. Favorable Alleles for Stem Water-Soluble Carbohydrates Identified by Association Analysis Contribute to Grain Weight under Drought Stress Conditions in Wheat

    Science.gov (United States)

    Li, Runzhi; Chang, Xiaoping; Jing, Ruilian

    2015-01-01

    Drought is a major environmental constraint to crop distribution and productivity. Stem water-soluble carbohydrates (WSC) buffer wheat grain yield against conditions unfavorable for photosynthesis during the grain filling stage. In this study, 262 winter wheat accessions and 209 genome-wide SSR markers were collected and used to undertake association analysis based on a mixed linear model (MLM). The WSC in different internodes at three growth stages and 1000-grain weight (TGW) were investigated under four environmental regimes (well-watered, drought stress during the whole growth period, and two levels of terminal drought stress imposed by chemical desiccation under the well-watered and drought stress during the whole growth period conditions). Under diverse drought stress conditions, WSC in lower internodes showed significant positive correlations with TGW, especially at the flowering stage under well-watered conditions and at grain filling under drought stress. Sixteen novel WSC-favorable alleles were identified, and five of them contributed to significantly higher TGW. In addition, pyramiding WSC favorable alleles was not only effective for obtaining accessions with higher WSC, but also for enhancing TGW under different water regimes. During the past fifty years of wheat breeding, WSC was selected incidentally. The average number of favorable WSC alleles increased from 1.13 in the pre-1960 period to 4.41 in the post-2000 period. The results indicate a high potential for using marker-assisted selection to pyramid WSC favorable alleles in improving WSC and TGW in wheat. PMID:25768726

  2. Favorable alleles for stem water-soluble carbohydrates identified by association analysis contribute to grain weight under drought stress conditions in wheat.

    Directory of Open Access Journals (Sweden)

    Weiyu Li

    Full Text Available Drought is a major environmental constraint to crop distribution and productivity. Stem water-soluble carbohydrates (WSC buffer wheat grain yield against conditions unfavorable for photosynthesis during the grain filling stage. In this study, 262 winter wheat accessions and 209 genome-wide SSR markers were collected and used to undertake association analysis based on a mixed linear model (MLM. The WSC in different internodes at three growth stages and 1000-grain weight (TGW were investigated under four environmental regimes (well-watered, drought stress during the whole growth period, and two levels of terminal drought stress imposed by chemical desiccation under the well-watered and drought stress during the whole growth period conditions. Under diverse drought stress conditions, WSC in lower internodes showed significant positive correlations with TGW, especially at the flowering stage under well-watered conditions and at grain filling under drought stress. Sixteen novel WSC-favorable alleles were identified, and five of them contributed to significantly higher TGW. In addition, pyramiding WSC favorable alleles was not only effective for obtaining accessions with higher WSC, but also for enhancing TGW under different water regimes. During the past fifty years of wheat breeding, WSC was selected incidentally. The average number of favorable WSC alleles increased from 1.13 in the pre-1960 period to 4.41 in the post-2000 period. The results indicate a high potential for using marker-assisted selection to pyramid WSC favorable alleles in improving WSC and TGW in wheat.

  3. Evaluation of Biofertilizer “Myco-green” on Water Relation and Efficiency of Potato Minituber Production in Drought Stress Condition

    Directory of Open Access Journals (Sweden)

    K. Parvizi

    2016-02-01

    Full Text Available Introduction Today biological fertilizers are suitable substitutes for chemical manure. Hence they can improve soil fertility in sustainable agriculture system (Mandal et al, 2007. Moreover, in some composition they are accompanied with plant growth promoting rhizibacteria (PGPR, namely Pseudomonas and some Bacillus species. These bacteria can improve growth rate of the plants by some physiological aspects namely, cidrophore acid production, increasing endogenously phytohormone and helping more phosphor absorption and fixation of biological nitrogen (Tilack et al., 2005. The symbiosis of mycorrhiza with plants confers numerous benefits to host plants including improved plant growth and mineral nutrient absorption, tolerance to diseases and stresses such as drought, temperature fluctuation, metal toxicity, salinity and other adverse conditions (Fortin et al, 2002. Ryan et al, (2003 and Smith and Reed, (2008.Mycorrhizal plants are capable of absorbing more water in lower potential of water as compared with non-mycorrhizal plants (Sanchez and Blanco, 2001. Micro propagation of potato by micro and mini tubers have been established for improving multiplication rate and possibility of reserving some more stock plants as germplasm. Multiplication of the minitubers already have been accompanied by lower establishment that causes low vigor and performance of the plant. This experiment was performedto study the effect of biological manure accompanied with mycorrhiza and plant growth promoting rhizobacteria on water relationship and vigor of the plantlets derived from minituber in water stress condition. Material and Methods Myco-green is produced by Peat grow company in Malaysia and has been spreading in floriculture, seed beds, vegetable crops, seedling plant of oil palm and many other plants. The experiment was performedatthe University of International Technology Mara Sarawak (UITM. As first step, soil bed composition was combined with peat and perlite

  4. Effects of fuzzless cottonseed phenotype on cottonseed nutrient composition in near isogenic cotton (Gossypium hirsutum L. mutant lines under well-watered and water stress conditions

    Directory of Open Access Journals (Sweden)

    Nacer eBellaloui

    2013-12-01

    Full Text Available There is no information available on the effect of fuzzless seed trait on cottonseed nutrient composition (minerals, N, S, protein, and oil under drought stress. The objective of this research was to investigate the effect of the fuzzless seed trait on cottonseed nutrients using four sets of near-isogenic lines (NILs. Each set consists of two lines that share the same genetic background, but differ in seed fuzziness (fuzzy, F; fuzzless, N. The near isogenic lines will enable us to compare the effect of the trait without confounding the genotypic background effects. We hypothesized that since the fuzzless trait involved in fiber initiation development, and was reported to be involved in biochemical, molecular, and genetic processes, this trait may also alter cottonseed nutrient composition. Results showed that NIL sets accumulated different levels of minerals in seeds and leaves, and the fuzzless trait (NF in most of the lines altered seed and leaf mineral accumulations when compared with fuzzy lines (FN or the control line. For example, K, P, Mg, Cu, and Na concentrations in seeds were higher in MD N and STV N than in their equivalent MD F and STV F lines. Leaf concentrations of Ca, K, Mg, S, B, Cu, and Fe in MD N lines were higher than MD F line. Lower levels of nutrients in seeds and leaves were observed under water stress conditions, especially Ca, Mg, N, and B in seeds. Generally and with few exceptions, seed protein was higher in fuzzy lines that in fuzzless lines; however, seed oil was higher in fuzzless lines than in fuzzy lines. Our research demonstrated that fuzzless trait altered the composition and level of nutrients in seed and leaves in well watered and water stressed plants. Differences in protein and oil between fuzzy and fuzzless seeds may indicate alteration in nitrogen and carbon fixation and metabolism. The differential accumulation of seed nutrients in this germplasm could be used by cotton breeders to select for higher

  5. Role of boron nutrient in nodules growth and nitrogen fixation rates in soybean genotypes under water stress conditions

    Science.gov (United States)

    Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...

  6. Pelletization of seeds of Raphanus sativus L. cv. Redondo Gigante with graphite for germination under water stress conditions

    Directory of Open Access Journals (Sweden)

    Nobel Penteado Freitas

    2000-01-01

    Full Text Available The effect of water stress on germination of radish seeds is dependent on the presence of light. The effect of pelletization of radish seeds with powdered graphite on the tolerance to water stress under light was analysed. White light and far-red lights were filtered by graphite increasing slightly the tolerance of pelleted seeds to water stress of -0.77MPa. Although red light also inhibited seed germination the graphite had no effect. We propose the pelletization of seeds of Raphanus sativus, at least in cv redondo gigante with graphite as a pratice before planting to increase the tolerance to water stress.O efeito do estresse hídrico é dependente da presença de luz em sementes de rabanete. O efeito da peletização com grafite em pó foi analisado. Luz branca e vermelho-extremo são filtradas pelo grafite aumentando parcialmente a tolerância ao estresse hídrico de -0,77MPa em sementes peletizadas. Embora a luz vermelha também iniba a germinação em condições de estresse a peletização não teve efeito. Nós propomos a peletização de sementes de Raphanus saivus L. cv. redondo gigante como uma prática antes do plantio para aumentar a tolerância ao estresse hídrico.

  7. Transcriptome Profiling of the Potato (Solanum tuberosum L.) Plant under Drought Stress and Water-Stimulus Conditions.

    Science.gov (United States)

    Gong, Lei; Zhang, Hongxia; Gan, Xiaoyan; Zhang, Li; Chen, Yuchao; Nie, Fengjie; Shi, Lei; Li, Miao; Guo, Zhiqian; Zhang, Guohui; Song, Yuxia

    2015-01-01

    Drought stress can seriously affect tuberization, yield and quality of potato plant. However, the precise molecular mechanisms governing potato stolon's response to drought stress and water supply are not very well understood. In this work, a potato (Solanum tuberosum L.) variant, Ningshu 4, was subjected to severe drought stress treatment (DT) and re-watering treatment (RWT) at tuber bulking stage. Strand-specific cDNA libraries of stolon materials were constructed for paired-end transcriptome sequencing analyses and differentially expressed gene (DEG) examination. In comparison to untreated-control (CT) plants, 3189 and 1797 DEGs were identified in DT and RWT plants and 4154 solely expressed DEGs were screened out from these two comparison groups. Interestingly, 263 genes showed opposite expression patterns in DT and RWT plants. Among them, genes homologous to Protein Phosphatase 2C (PP2C), Aspartic protease in guard cell 1 (ASPG1), auxin-responsive protein, Arabidopsis pseudo response regualtor 2 (APRR2), GA stimulated transcripts in Arabidopsis 6 (GASA6), Calmodulin-like protein 19 (CML19), abscisic acid 8'-hydroxylases and calcium-transporting ATPase, et al. were related with drought-stress and water stimulus response. Sixteen DEGs involved in starch synthesis, accumulation and tuber formation exhibited significantly different expression upon re-watering. In addition, 1630, 1527 and 1596 transcription factor encoding genes were detected in CT, DT and RWT. DEGs of ERF, bHLH, MYB, NAC, WRKY, C2H2, bZIP and HD-ZIP families accounted for 50% in three comparison groups, respectively. Furthermore, characteristics of 565 gene ontology (GO) and 108 Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) were analyzed with the 4154 DEGs. All these results suggest that the drought- and water-stimulus response could be implemented by the regulated expression of metabolic pathway DEGs, and these genes were involved in the endogenous hormone biosynthesis and signal

  8. Effect of Chemical and Biological Phosphorus on Antioxidant Enzymes Activity and Some Biochemical Traits of Spring Safflower (Carthamus tinctorius L. under Water Deficit Stress Conditions

    Directory of Open Access Journals (Sweden)

    S. Heshmati

    2016-05-01

    Full Text Available To study the effects of biological and chemical phosphorus on antioxidant enzyme activity in safflower under water deficit conditions, an experiment was conducted in 2012 at the Research Field of the Faculty of Agriculture, Shahed University, Tehran, Iran. The experimental design was a split-factorial with three replicates. The main factor was the three levels of irrigation treatment: full irrigation (irrigation up to 50% soil moisture depletion relative to field capacity, water stress in the vegetative and flowering stages (irrigation up to 75% soil moisture depletion relative to field capacity. The sub-factor was the six treatments resulting from three levels of phosphate chemical fertilizer (0, 50, and 100 kg ha-1 Triple Super Phosphate, each at two levels of Barvar-2 bio-fertilizer (with and without inoculation with Barvar-2. According to the results of our experiment, antioxidant enzyme activity is affected by high levels of chemical phosphorus when there is no inoculation with biofertilizer (Barvar 2 under water stress in the vegetative and flowering stages. The results showed that inoculation with Barvar 2 in the absence of added chemical phosphorus increases the catalase activity and soluble protein concentration under drought stress in the vegetative and flowering stages. Also, using chemical phosphorus followed by Barvar 2 led to increase in the polyphenol oxidase activity and superoxide dismutase activity under these conditions. Inoculation with Barvar 2 in the absence of added chemical phosphorus significantly decreased the amount of malondialdehyde under stress condition at the flowering stage. It was demonstrated that inoculation with a biological fertilizer (Barvar 2 followed by application of a chemical phosphorus fertilizer under drought conditions could decrease the detrimental effects of drought stress on spring safflower.

  9. In-silico analysis of water and carbon relations under stress conditions. A multi-scale perspective centered on fruit

    Directory of Open Access Journals (Sweden)

    Valentina eBALDAZZI

    2013-12-01

    Full Text Available Fruit development, from its early stages, is the result of a complex network of interacting processes, at different scales. These include cell division, cell expansion but also nutrient transports from the plant and exchanges with the environment. In the presence of nutrients limitation, in particular, the plant reacts as whole, by modifying its architecture, metabolism and reproductive strategy, determining the resources available for fruits development, which in turn affects the overall source-sink balance of the system.Here we present an integrated model of tomato that explicitly accounts for early developmental changes (from cell division to harvest, and use it to investigate the impact of water deficit and carbon limitation on nutrient fluxes and fruit growth, in both dry and fresh mass. Variability in fruit response is analyzed at two different scales: among trusses, at the plant level and within the cells population, at the fruit scale. Results show that the effect of stress on individual cells strongly depends on their age, size and uptake capabilities and that the timing of stress application, together with the fruit position on the plant, is crucial to determine the final phenotypic outcome. Water deficit and carbon depletion impacted either source size, source activity or sink strength with contrasted effects on fruit growth. An important prediction of the model is the major role of symplasmic transport of carbon in early stage of fruit development, as a catalyst of cells and fruit growth.

  10. The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under greenhouse conditions.

    Science.gov (United States)

    Liddycoat, Scott M; Greenberg, Bruce M; Wolyn, David J

    2009-04-01

    Plant growth-promoting rhizobacteria (PGPR) can have positive effects on vigour and productivity, especially under stress conditions. In asparagus (Asparagus officinalis L.) field culture, seeds are planted in high-density nurseries, and 1-year-old crowns are transplanted to production fields. Performance can be negatively affected by water stress, transplant shock, and disease pressure on wounded roots. PGPR inoculation has the potential to alleviate some of the stresses incurred in the production system. In this study, the effects of PGPR (Pseudomonas spp.) treatment were determined on 3-week-old greenhouse-grown seedlings and germinating seeds of 2 asparagus cultivars. The pots were irrigated to a predetermined level that resulted in optimum growth or the plants were subjected to drought or flooding stress for 8 weeks. The cultivars responded differently to PGPR: single inoculations of seedlings enhanced growth of 'Guelph Millennium' under optimum conditions and 'Jersey Giant' seedlings under drought stress. Seed inoculations with PGPR resulted in a positive response only for 'Guelph Millennium', for which both single or multiple inoculations enhanced plant growth under drought stress.

  11. [The ultrastructure of Leydig cells under the influence of drinking mineral water and electromagnetic radiation under the stress conditions in the rats].

    Science.gov (United States)

    Geniatulina, M S; Korolev, Yu N; Nikulina, L A

    2016-01-01

    The objective of the present study was elucidate the peculiar features of low-intensity electromagnetic radiation (LI EMR) and mineral water (MW) on the ultrastructure of rat Leydig cells under conditions of immobilization stress. The experiments were carried out on outbred male rats with the use of electron microscopy. It has been demonstrated that the prophylactic consumption of drinking sulfate-containing mineral water and the application low-intensity electromagnetic radiation (with the flow power density of 1 mcW/cm2 and frequency around 1,000 Hz) or the combination of these two modalities under conditions of immobilization stress reduced the degree of ultrastructural derangement in the rat Leydig cells and stimulated the development of regenerative processes. In the cases of the single-factor impact, drinking mineral water exerted more pronounced action than low-intensity electromagnetic radiation on mitochondrial regeneration. In case of the simultaneous application of the two factors their protective action on the Leydig cells was much more conspicuous than that of either of them applied alone. It is concluded that drinking sulfate-containing mineral water in combination with the application of low-intensity electromagnetic radiation enhances resistance of the rat Leydig cells to stress.

  12. Effect of sensitization and cold work on stress corrosion susceptibility of austenitic stainless steels in boiling water reactor (BWR) and pressurized water reactor (PWR) conditions

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, H.; Aho-Mantila, I.

    1981-05-01

    The influence of metallurgical variables on stress corrosion cracking of austenitic stainless steels, in particular AISI 304 and OX18H10T, was examined in O/sub 2/ enriched BWR conditions (8 ppm O/sub 2/) and in typical PWR conditions. Cracking susceptibility in BWR conditions is especially sensitive to alpha martensite content and sensitization. Cracking in alpha martensite compounds is intergranular and transgranular and it can not be related to sensitization. Sensitization induces cracking only in creviced conditions (double U-bend specimens) in AISI 304 steels. In creviced conditions OX18H10T steel exhibits cracking in solution annealed, stabilized and sensitized conditions. The sensitized material is most susceptible. Cracking in solution annealed and stabilized OX18H10T steel is intergranular and transgranular. In PWR conditions (O/sub 2/ content 2 ppb) no cracking is observed. (ESA)

  13. Acclimation of leaf cohorts expanded under light and water stresses: an adaptive mechanism of Eucryphia cordifolia to face changes in climatic conditions?

    Science.gov (United States)

    Morales, Loreto V; Coopman, Rafael E; Rojas, Roke; Escandón, Antonio B; Flexas, Jaume; Galmés, Jeroni; García-Plazaola, José I; Gago, Jorge; Cabrera, Hernán M; Corcuera, Luis J

    2014-12-01

    Eucryphia cordifolia Cav. is a long-lived evergreen tree species, commonly found as a canopy emergent tree in the Chilean temperate rain forest. This species displays successive leaf cohorts throughout the entire growing season. Thus, full leaf expansion occurs under different environmental conditions during growing such as air temperature, vapor pressure deficit and the progress of moderate water stress (WS). These climate variations can be reflected as differences in anatomical and physiological characteristics among leaf cohorts. Thus, we investigated the potential adaptive role of different co-existing leaf cohorts in seedlings grown under shade, drought stress or a combination of the two. Photosynthetic and anatomical traits were measured in the first displayed leaf cohort and in a subsequent leaf cohort generated during the mid-season. Although most anatomical and photosynthetic pigments did not vary between cohorts, photosynthetic acclimation did occur in the leaf cohort and was mainly driven by biochemical processes such as leaf nitrogen content, Rubisco carboxylation capacity and maximal Photosystem II electron transport rather than CO2 diffusion conductance. Cohort acclimation could be relevant in the context of climate change, as this temperate rainforest will likely face some degree of summer WS even under low light conditions. We suggest that the acclimation of the photosynthetic capacity among current leaf cohorts represents a well-tuned mechanism helping E. cordifolia seedlings to face a single stress like shade or drought stress, but is insufficient to cope with simultaneous stresses.

  14. The Effect of Vermicompost and Mycorrhizal Inoculation on Grain Yield and some Physiological Characteristics of Soybean (Glycine max L. under Water Stress Condition

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri nia

    2017-03-01

    Full Text Available Introduction Moisture limitation is considered as one of the important limiting factors in soybean growth. Drought stress affects different aspects of soybean growth through making anatomical, physiological and biochemical changes (Tarumingkeng & Coto, 2003. Under dry tension condition, there will be a disturbance in transmitting nutrients, but some useful soil fungi such as mycorrhiza improve production of crops under stress through forming colonies in the root and boosting water and nutrient absorption (Al-Karaki et al., 2004. Using vermicompost in sustainable agriculture strengthens support and activities of beneficial soil microorganisms (such as mycorrhizal fungi and phosphate solubilizing microorganisms in order to provide nutrients required by plants like nitrogen, phosphorus and soluble potassium as well as improving the growth and performance of the crops (Arancon et al., 2004. Materials and methods In order to investigate the effects of vermicompost and mycorrhiza fertilizers on grain yield and some physiological characteristics of soybean under water stress condition an experiment was conducted at Agricultural Research Center of Khorramabad during 2013. The field experiment was carried out based on a randomized complete blocks design arranged in split-plot with four replications. The experiment treatments including irrigation in three levels (after 60, 120 and 180 mm evaporation from pan class A pan, nutrient management in six levels (non-use of vermicompost and mycorhiza fertilizer, inoculated with mycorrhiza fertilizer, consumption of 5 and 10 t.ha-1 vermicompost, consumption of 5 and 10 t.ha-1 vermicompost with mycorrhiza were respectively as the main plots and sub. In current study, RWC, LAI, SPAD were measured during 59 days after planting at the beginning of podding of the control treatment. The temperature of plant leaves were measured by the thermometer (model TM-958 LUTRON infrared Thermometers. To analyze the growth of

  15. Effect of Silicon application on Morpho-physiological Characteristics, Grain Yield and Nutrient Content of Bread Wheat under Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2015-03-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics, yield and yield components, and grain mineral contents of bread wheat (Triticum aestivum under water stress condition, an experiment was conducted in Ramin Agriculture and Natural Resources University, Khuzestan, in 2012. The experiment was arranged in split-plots design in RCBD (Completely Randomized Blocks Design with three replications. Treatments consisted of drought stress (irrigation after 25, 50 and 75% depletion of Available Water Content in main plots and silicon (0, 10, 20 and 30 Kg Si ha-1 arranged in sub-plots. Results showed that the effect of drought stress was significant on most traits and led to the increase of electrolyte leakage (EL, cuticular wax, leaf and grain silicon content and grain nitrogen content. But drought led to negative impacts on grain yield and its components, and leaf potassium content, i.e. moderate and severe stresses reduced yield by 17% and 38% compared to control, respectively. Effect of silicon application was significant on all traits except for spike per square meter. Silicon had the greatest impact on EL and led to 35% decrease in this trait. Also, silicon led to increase in leaf and grain silicon contents and grain K content and grain yield and yield components, when applied at 30 kg ha-1. Generally, application of 30 kg ha-1 of silicon led to 6 and 14% increases of grain yield at the presence of moderate and severe drought stresses, respectively. Thus, given the abundance of silicon it can be used as an ameliorating element for planting bread wheat in drought-prone conditions.

  16. Effects of Satureja khuzistanica essential oils in drinking water on mortality, production performance, water intake, and organ weights in broiler chickens reared under heat stress condition.

    Science.gov (United States)

    Khosravinia, H

    2015-11-01

    An experiment was conducted to examine the effects on mortality, production performance, water intake (WI), and organ weight of Satureja khuzistanica essential oil (SkEO) using 720 1-day-old Arian broiler chicks in a 42-day trial. Experimental treatments were addition of 0 (control(-)), 200, 300, 400, and 500 mg/L SkEO or 500 mg/L polysorbate 80 (control(+)) into drinking water. The birds were kept under natural ambient temperatures 4 to 6 °C above standard recommendation from days 22 to 42 of age. Addition of SkEO into drinking water at 200 and 500 mg/L decreased weight gain (P  0.05). Supplementation of drinking water with 200, 300, 400, and 500 mg/L SkEO resulted in a 0.47, 4.40, 8.60, and 12.93% decrease in WI, respectively, from days 1 to 42 of age. The calculated European broiler index was greater for the birds received 400 mg/L of SkEO in their drinking water compared with that of the other birds (P water for heat-stressed broiler chickens improves economic efficiency possibly by promoting digestion process, creating miniscule improvement in FCR and lowered mortality rate.

  17. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Soppet, William K.; Majumdar, Saurin; Natesan, Krishnamurti

    2016-12-15

    Highlights: • Use of intermittent renewable-energy source in power grid is becoming a trend. • Gird load-following can leads to variable power demand from Nuclear power plant. • Reactor components can be stressed differently under gird load-following mode. • Estimation of stress–strain state under grid load-following condition is essential. - Abstract: In this paper, we present thermal–mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal–mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress–strain states are significantly higher in case of presence of crack than without crack. The stress–strain state under grid load following condition are more realistic compared to the stress–strain state estimated assuming simplified transients.

  18. Effects of Satureja khuzistanica essential oils in drinking water on mortality, production performance, water intake, and organ weights in broiler chickens reared under heat stress condition

    Science.gov (United States)

    Khosravinia, H.

    2015-11-01

    An experiment was conducted to examine the effects on mortality, production performance, water intake (WI), and organ weight of Satureja khuzistanica essential oil (SkEO) using 720 1-day-old Arian broiler chicks in a 42-day trial. Experimental treatments were addition of 0 (control-), 200, 300, 400, and 500 mg/L SkEO or 500 mg/L polysorbate 80 (control+) into drinking water. The birds were kept under natural ambient temperatures 4 to 6 °C above standard recommendation from days 22 to 42 of age. Addition of SkEO into drinking water at 200 and 500 mg/L decreased weight gain ( P 0.05). Supplementation of drinking water with 200, 300, 400, and 500 mg/L SkEO resulted in a 0.47, 4.40, 8.60, and 12.93 % decrease in WI, respectively, from days 1 to 42 of age. The calculated European broiler index was greater for the birds received 400 mg/L of SkEO in their drinking water compared with that of the other birds ( P stressed broiler chickens improves economic efficiency possibly by promoting digestion process, creating miniscule improvement in FCR and lowered mortality rate.

  19. Effective stress coefficient for uniaxial strain condition

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke

    2012-01-01

    the reason for change in effective stress coefficient under stress. Our model suggests that change in effective stress coefficient will be higher at uniaxial stress condition than at hydrostatic condition. We derived equations from the original definition of Biot to estimate effective stress coefficient from...... one dimensional rock mechanical deformation. We further investigated the effect of boundary condition on the stress dependency of effective stress coefficient and discussed its application in reservoir study. As stress field in the reservoirs are most unlikely to be hydrostatic, effective stress...

  20. Effective stress coefficient for uniaxial strain condition

    DEFF Research Database (Denmark)

    Alam, M.M.; Fabricius, I.L.

    2012-01-01

    one dimensional rock mechanical deformation. We further investigated the effect of boundary condition on the stress dependency of effective stress coefficient and discussed its application in reservoir study. As stress field in the reservoirs are most unlikely to be hydrostatic, effective stress...... determined under uniaxial strain condition will be more relevant in reservoir studies. Copyright 2012 ARMA, American Rock Mechanics Association....

  1. Assessing the regulation of leaf redox status under water stress conditions in Arabidopsis thaliana: Col-0 ecotype (wild-type and vtc-2), expressing mitochondrial and cytosolic roGFP1.

    Science.gov (United States)

    Brossa, Ricard; Pintó-Marijuan, Marta; Jiang, Keni; Alegre, Leonor; Feldman, Lewis J

    2013-07-01

    Using Arabidopsis plants Col-0 and vtc2 transformed with a redox sensitive green fluorescent protein, (c-roGFP) and (m-roGFP), we investigated the effects of a progressive water stress and re-watering on the redox status of the cytosol and the mitochondria. Our results establish that water stress affects redox status differently in these two compartments, depending on phenotype and leaf age, furthermore we conclude that ascorbate plays a pivotal role in mediating redox status homeostasis and that Col-0 Arabidopsis subjected to water stress increase the synthesis of ascorbate suggesting that ascorbate may play a role in buffering changes in redox status in the mitochondria and the cytosol, with the presumed buffering capacity of ascorbate being more noticeable in young compared with mature leaves. Re-watering of water-stressed plants was paralleled by a return of both the redox status and ascorbate to the levels of well-watered plants. In contrast to the effects of water stress on ascorbate levels, there were no significant changes in the levels of glutathione, thereby suggesting that the regeneration and increase in ascorbate in water-stressed plants may occur by other processes in addition to the regeneration of ascorbate via the glutathione. Under water stress in vtc2 lines it was observed stronger differences in redox status in relation to leaf age, than due to water stress conditions compared with Col-0 plants. In the vtc2 an increase in DHA was observed in water-stressed plants. Furthermore, this work confirms the accuracy and sensitivity of the roGFP1 biosensor as a reporter for variations in water stress-associated changes in redox potentials.

  2. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR); Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua hirviente (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes C, P

    2003-07-01

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O{sub 2}; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  3. Mitigation of Water Stress on Apple Trees under Rotational Irrigation Conditions by Increasing the Application Rate of Organic Fertilizers to Sandy Soils

    Science.gov (United States)

    Hamed, Lamy Mamdoh Mohamed; Ramadan Eid, Abdelraouf; Mohsmed Rabie Abdellatif Abdelaziz, Adel; Fathy Abdelsalam Essa, El-Sayed

    2016-04-01

    Egypt, as part of Mediterranean regions, is characterized by irregular and low rainfall amount which varies between (30-150 mm.year-1), and characterized also by high temperature which increase the rate of evapotranspiration from the cultivated soil. On the other hand, New reclaimed soils are mostly occupies around 84 % of total area of Egypt, which is mainly sandy soils. These soils generally characterized by low water capacity holding, soil organic matter, and weak in nutrients retention. Under these conditions which have a great influence on crop production, there is a great needing to increase the crop water use efficiency and increasing of nutrient retention in sandy soils. In this context, two field experiments were carried out on sand soil located in north Cairo-Egypt at the experimental farm of National Research Center, El-NUBARIA, (latitude 30° 30' N, and longitude 30° 19' E). The effect of compost rates on soil hydraulic characteristics, fruit yields, quality traits, and water use efficiency and productivity of apple tree (Apple Anna Cultivar), was studied under deficit irrigation conditions. Four rates of compost [I1: control, I2: 12 ton.ha-1., I3: 24 ton.ha-1., I4: 36 ton.ha-1. and I5:48 ton.ha-1.] were applied under irrigation frequencies of (IF1 :once per week; IF2 :twice per week, IF3 :three times per week). The obtained results indicated that by increasing the application rate of compost, the available water capacity and saturated water content of sandy soil have been enhanced. In the same time, the fruit yield, quality traits and water productivity were increased by increasing the application rate of compost. It is worthy to mention that the I5IF3 treatment gave the highest values of fruit yield, quality traits and water productivity, whereas I1IF1 treatment gave the lowest values of all the above mentioned variables. As result, for apple cultivation in El-NUBARIA region, the recommended rate of compost is 48 ton.ha-1 and irrigation frequency

  4. Effective stress coefficient for uniaxial strain condition

    DEFF Research Database (Denmark)

    Alam, Mohammad Monzurul; Fabricius, Ida Lykke

    2012-01-01

    one dimensional rock mechanical deformation. We further investigated the effect of boundary condition on the stress dependency of effective stress coefficient and discussed its application in reservoir study. As stress field in the reservoirs are most unlikely to be hydrostatic, effective stress...

  5. Phosphorus absorption and use efficiency by Lotus spp. under water stress conditions in two soils: A pot experiment

    Directory of Open Access Journals (Sweden)

    Carolina Castillo

    2013-03-01

    Full Text Available The response to P and water deficiencies of forage Lotus species has not been sufficiently studied in the Andisol and Vertisol soil orders in Chile's marginal areas. A pot experiment under cover was carried out between October 2007 and March 2008 to study the effects of P and soil water availability (SWA on DM production, P absorption, and P use efficiency in Lotus spp. The experiment included three Lotus (L. corniculatus L., L. tenuis Waldst. & Kit. ex Willd., and L. uliginosus Schkuhr species, two soils (Andisol and Vertisol, two contrasting P levels (low and high, and two SWA levels (10% and 100%. A completely randomized design with a 3 x 2 x 2 x 2 factorial arrangement with four replicates was used. Accumulated shoot and root DM, P absorption and efficiency, and arbuscular mycorrhizal (AM colonization were measured. Phosphorus absorption was significantly higher in Andisol with 100% SWA and high P in the three species, which was reflected in P efficiency where the species exhibited higher P absorption efficiency (PAE and P utilization efficiency (PUE with low P, and mean of the three species with low P and high SWA. When the P level was low, L. uliginosus showed the highest PAE and L. corniculatus exhibited the highest PUE. Phosphorus efficiency was also influenced by AM colonization since on the average mycorrhization in the three species was significantly higher in the low P treatments. Differences existed among species for DM production, response to P, P absorption, PAE, and PUE.

  6. Water Stress Projection Modeling

    Science.gov (United States)

    2016-09-01

    facility. Stationing analysis done with climate forecasting in mind recognizes an unpredictable future, while striving to best prepare for the...to support additional growth. This attribute places a threshold ca- pacity on water supply and treatment, which may be related to treat- ment plant ...et al. 2013). 3.3 Military impacts reduced water Extreme weather events such as droughts, floods, snow, and ice storms have significant impacts on

  7. Physiological factors affecting intrinsic water use efficiency of potato clones within a dihaploid mapping population under well-watered and drought-stressed conditions

    DEFF Research Database (Denmark)

    Topbjerg, Henrik Bak; Kaminski, Kacper Piotr; Markussen, Bo

    2014-01-01

    Optimizing crops water use is essential for ensuring food production under future climate scenarios. Therefore, new cultivars that are capable of maintaining production under limited water resource are needed. This study screened for clonal differences in intrinsic water use efficiency (WUEi...... isotope composition (δ15N) in the leaf biomass, but did not relate to stomatal conductance (gs) and carbon isotope composition (δ13C) in the leaf biomass. An was found to correlate significantly with leaf nitrogen concentration ([N]leaf) and chlorophyll content index (CCI) under WW. Leaf abscisic acid...... concentration did not correspond to the changes in gs, indicating that other factors might have been involved in controlling gs among the different clones. Collectively, the clonal differences in WUEi were attributed mainly to the variation in An, which in turn was influenced by plant N metabolism. Clones...

  8. Growth and physiological responses to water and nutrient stress in ...

    African Journals Online (AJOL)

    Growth and physiological responses to water and nutrient stress in oil palm. ... conditions) and to two nutrient regimes (with or without fertilization) of oil ... Moreover, deficiency of both water and nutrients in combination had the greatest impact ...

  9. Global monthly water stress: 2. Water demand and severity of water stress

    OpenAIRE

    Wada, Yoshihide; Van Beek, L. P. H.; Viviroli, Daniel; Dürr, Hans H.; Weingartner, Rolf; Bierkens, Marc F. P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted with global monthly water demand. Water demand is defined here as the volume of water required by users to satisfy their needs. Water demand is calculated for the benchmark year of 2000 and contras...

  10. Global monthly water stress: 2. Water demand and severity of water stress

    OpenAIRE

    Wada, Yoshihide; Beek, L. P. H.; Viviroli, Daniel; Dürr, Hans H; Weingartner, Rolf; Bierkens, Marc F.P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted with global monthly water demand. Water demand is defined here as the volume of water required by users to satisfy their needs. Water demand is calculated for the benchmark year of 2000 and contras...

  11. Effect of Super Absorbent Application on Antioxidant Enzyme Activities in Canola (Brassica napus L.) Cultivars under Water Stress Conditions

    OpenAIRE

    H. R. Tohidi-Moghadam; A. H. Shirani-Rad; G. Nour-Mohammadi; D. Habibi; M. Mashhadi-Akbar-Boojar

    2009-01-01

    Problem statement: Drought stress significantly limits Canola (Brassica napus L.) growth and crop productivity. Hence, efficient management of soil moisture and study metabolic changes which occur in response to drought is important for agricultural production of this Crop. Approach: For a better understanding of drought tolerance mechanisms and improving soil water content management strategies, an experiment was laid out in a randomized complete block des...

  12. Alleviation of osmotic stress of water and salt in germination and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... Generally, salt stress causes both osmotic stress and ionic stress ... environmental stress conditions, such as drought, chilling, and high light ..... chickpea seeds on seedling growth and carbohydrate metabolism under water ...

  13. Genetic control and combining ability of flag leaf area and relative water content traits of bread wheat cultivars under drought stress condition

    Directory of Open Access Journals (Sweden)

    Golparvar Ahmad Reza

    2013-01-01

    Full Text Available In order to compare mode of inheritance, combining ability, heterosis and gene action in genetic control of traits flag leaf area, relative water content and grain filling rate of bread wheat under drought stress, a study was conducted on 8 cultivars using of Griffing’s method2 in fixed model. Mean square of general combining ability was significant also for all traits and mean square of specific combining ability was significant also for all traits except relative water content of leaf which show importance of both additive and dominant effects of genes in heredity of these traits under stress. GCA to SCA mean square ratio was significant for none of traits. Results of this study showed that non additive effects of genes were more important than additive effect for all traits. According to results we can understand that genetic improvement of mentioned traits will have low genetic efficiency by selection from the best crosses of early generations. Then it is better to delay selection until advanced generations and increase in heritability of these traits.

  14. [The combined action of drinking mineral water and low-intensity electromagnetic radiation under the immobilization stress conditions (an experimental study)].

    Science.gov (United States)

    Korolev, Yu N; Bobrovnitsky, I P; Geniatulina, M S; Mikhailik, L V; Nikulina, L A; Bobkova, A S; Yakovlev, M Yu

    2015-01-01

    The present study carried out on white male rats in experiments with the use of biochemical, radioimmunological, and electron- microscopic methods. It was shown that the combined treatment with potable mineral water (MV) and low-intensity electromagnetic radiation (LIEMR) of ultrahigh frequency (power density less than 1 pW/cm2, the frequency about 1000 MHz) facilitated the activation of metabolic and intracellular regenerative processes in the liver and testes. One of the advantages of the combined application of MV and LIEMR over the single-factor treatment manifested itself as the weakening of stress reactions, the increase in the frequency of the plastic processes, and the more harmonious development of different forms of intracellular regeneration. The results of the study provide a deeper insight ino the mechanisms underlying the combined actions of drinking mineral water and low-intensity electromagnetic radiation; also, they justify the application of these factors for the protection of the reproductive system and the entire body from stress-induced disorders.

  15. Methyl Jasmonate Reduces Water Stress in Strawberry.

    Science.gov (United States)

    Wang

    1999-11-01

    The effect of methyl jasmonate (MJ) on changes of oxygen-scavenging enzyme activities and membrane lipid composition was studied in strawberry leaves under water stress. Under water stress, MJ treatment reduced the increase of peroxidase (EC 1.11.1.7; POD) activity, maintained higher catalase (EC 1.11.1.6; CAT) and superoxide dismutase (EC 1.15.1.1; SOD) activities, and ascorbic acid content. In addition, MJ treatment reduced transpiration and membrane-lipid peroxidation as expressed by malondialdehyde (MDA) content, lessened the reduction of membrane lipids, glycolipids [monogalactosyl diglyceride (MGDG), digalactosyl diglyceride (DGDG)], and phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylinositol (PI)]. In water-deficit conditions, MJ treatment also alleviated the decline in the degree of fatty acid unsaturation and the ratio of linolenic (18:3) to linoleic acid (18:2). These results indicate that MJ treatment appears to alter the metabolism of strawberry plants rendering the tissue better able to withstand water stress.

  16. The Effects of Water Deficit Stress on Physiological and Biochemical Changes of Medicinal Plants Ocimum basilicum L. under Climatic Conditions in Ardabil, Iran

    Directory of Open Access Journals (Sweden)

    Ahmad Afkari

    2016-09-01

    Full Text Available Basil (Ocimum basilicum L. is an important medicinal and aromatic plant which is cultivated throughout the world and investigation the effects of important agronomic factors on its quantitative and qualitative yield are necessary.This research was conducted in the years 2013-2014 in agricultural farm of Mr. Abedini in the village Mahmoud Abad of Namin city functions, (Ardabil, Iran, as factorial experiment in a completely randomized block design by 3 replications. The experimental treatments were water deficit stress (D1=70, D2=140 and D3= 210 mm evaporation from pan class A as category factors and three levels of nitrogen fertilizer in the form of urea (N1= 0, N2 = 50, N3 = 100 kg/ha.The results showed that the most ratio of the essential oils of basil obtained in the first and the second harvests (2.37% and 1.81%, respectively in the treatment of without nitrogen fertilizer and the lowest ratio of the essential oils of basil was in the first and second harvests (1.43% and 1.69%, respectively in the treatment of 100 kg/ha nitrogen fertilizer. Interactions of water deficit stress and nitrogen fertilizer on dry matter yield per unit area was significant at total of two harvests (total yield; and the highest dry matter yield was observed in treatments of D1= 70 mm evaporation and 100 kg/ha nitrogen fertilizer (1000.01 kg of dry matter per hectare, and the lowest ratio was achieved in treatments of D3=210 mm evaporation without the use of fertilizer (516.43 kg of dry matter per hectare. On the other hand the results indicated that interactions of water deficit stress and nitrogen fertilizer on essential oil yield per unit area was not significant at the first harvest, the second harvest and total yield. However, the highest essential oil yield was obtained at the first harvest, the second harvest and total yield, (9.08, 7.54 and 15.21 l/ha, respectively in the treatments of D1=70 mm evaporation and nitrogen fertilizer of 100 kg/ ha as well as the

  17. Is Terzaghi’s effective stress a stress variable under seepage conditions?

    Institute of Scientific and Technical Information of China (English)

    雷国辉; 赵仲辉; 吴宏伟

    2015-01-01

    From the continuum mechanics perspective, an attempt was made to clarify the role of Terzaghi’s effective stress in the theoretical analysis of saturated soil subjected to seepage. The necessity of performing a coupled hydromechanical analysis to solve the seepage−deformation interaction problem was illustrated by examining the equations of static equilibrium among the effective stress, seepage force, pore-water pressure and total stress. The conceptual definition of stress variable that satisfies the principles of continuum mechanics is applied in the coupled hydromechanical analysis. It is shown that Terzaghi’s effective stress is in fact not a stress variable under seepage conditions, and the seepage force acting on the soil skeleton cannot be viewed as a body force. This offers a clue to the underlying cause of a paradox between the real Pascal’s hydrostatic state and the hydrostatic state predicted by a class of continuum hydromechanical theories.

  18. Quantifying Water Stress Using Total Water Volumes and GRACE

    Science.gov (United States)

    Richey, A. S.; Famiglietti, J. S.; Druffel-Rodriguez, R.

    2011-12-01

    Water will follow oil as the next critical resource leading to unrest and uprisings globally. To better manage this threat, an improved understanding of the distribution of water stress is required today. This study builds upon previous efforts to characterize water stress by improving both the quantification of human water use and the definition of water availability. Current statistics on human water use are often outdated or inaccurately reported nationally, especially for groundwater. This study improves these estimates by defining human water use in two ways. First, we use NASA's Gravity Recovery and Climate Experiment (GRACE) to isolate the anthropogenic signal in water storage anomalies, which we equate to water use. Second, we quantify an ideal water demand by using average water requirements for the domestic, industrial, and agricultural water use sectors. Water availability has traditionally been limited to "renewable" water, which ignores large, stored water sources that humans use. We compare water stress estimates derived using either renewable water or the total volume of water globally. We use the best-available data to quantify total aquifer and surface water volumes, as compared to groundwater recharge and surface water runoff from land-surface models. The work presented here should provide a more realistic image of water stress by explicitly quantifying groundwater, defining water availability as total water supply, and using GRACE to more accurately quantify water use.

  19. Emotional memory consolidation under lower versus higher stress conditions

    Directory of Open Access Journals (Sweden)

    Inna eKogan

    2010-12-01

    Full Text Available An exposure to stress can enhance memory for emotionally arousing experiences. The phenomenon is suggested to be amygdala-dependent and in accordance with that view the amygdala was found to modulate mnemonic processes in other brain regions. Previously, we illustrated increased amygdala activation and reduced activation of CA1 following spatial learning under high versus low emotionality conditions. When spatial learning was followed by reversal training interference, impaired retention was detected only under high emotionality conditions. Here we further evaluate the potential implications of the difference in the level of amygdala activation on the quality of the memory formed under these stress conditions. We attempted to affect spatial memory consolidation under low or high stress conditions by either introducing a foot shock interference following massed training in the water maze; by manipulating the threshold for acquisition employing either brief (3 trials or full (12 trials training sessions; or by employing a spaced training (over three days rather than massed training protocol. The current findings reveal that under heightened emotionality, the process of consolidation seems to become less effective and more vulnerable to interference; however, when memory consolidation is not interrupted, retention is improved. These differential effects might underlie the complex interactions of stress, and, particularly, of traumatic stress with memory formation processes.

  20. Water aging reverses residual stresses in hydrophilic dental composites.

    Science.gov (United States)

    Park, J W; Ferracane, J L

    2014-02-01

    Dental composites develop residual stresses during polymerization due to shrinkage. These stresses may change with time because of relaxation and water sorption in the oral environment. This phenomenon is likely dependent on the composition of the materials, specifically their hydrophilic characteristics, and could result in deleterious stresses on restorative materials and tooth structure. The purpose of this experiment was to use the thin ring-slitting method to compare the residual stress generated within composite materials of varying hydrophilicity when aged in wet and dry conditions after polymerization. Water sorption, solubility, elastic modulus, and residual stresses were measured in 6 commercial composites/cements aged in water and dry conditions. The self-adhesive resin cement showed the highest water sorption and solubility. All composites showed initial residual contraction stresses, which were maintained when aged dry. Residual stresses in 2 of the self-adhesive cements and the polyacid-modified composite aged in wet conditions resulted in a net expansion. This experiment verified that residual shrinkage stresses in dental composites can be reversed during aging in water, resulting in a net expansion, with the effect directly related to their hydrophilic properties.

  1. Bioactive compounds in potatoes: Accumulation under drought stress conditions

    Directory of Open Access Journals (Sweden)

    Christina B. Wegener

    2015-03-01

    Full Text Available Background: Potato (Solanum tuberosum is a valuable source of bioactive compounds. Besides starch, crude fibre, amino acids (AAS, vitamins and minerals, the tubers contain diverse phenolic compounds. These phenolics and AAS confer anti-oxidant protection against reactiveoxygen species, tissue damage, and diseases like atherosclerosis, renal failure, diabetes mellitus,and cancer. Climate change and drought stress may become a major risk for crop production worldwide, resulting in reduced access for those who depend on the nutritional value of this staple crop. Objective: The aim of this study is to determine the effect of drought stress on water, lipid soluble antioxidants, anthocyanins (Ac, soluble phenols, proteins, free AAS, peroxidase (POD and lipid acyl hydrolase activity (LAH in tuber tissue. Methods: The study was carried out on three potato genotypes comprising one yellow-fleshed cultivar and two purple breeding clones. The plants were grown in pots (from April to September in a glasshouse with sufficient water supply and under drought stress conditions. After harvest, the tubers of both variants were analysed for antioxidants measured as ascorbic acid (ACE and Trolox equivalent (TXE using a photo-chemiluminescent method. Amounts of anthocyanins (Ac, soluble phenols, proteins, as well as POD and LAH activities were analysed using a UV photometer. Finally, free AAS were measured by HPLC. Results: The results revealed that drought stress significantly reduces tuber yield, but has no significant effect on antioxidants, Ac, soluble phenols and POD. Drought stress significantly increased the levels of soluble protein (P < 0.0001 and LAH (P < 0.001. Also, total amounts of free AAS were higher in the drought stressed tubers (+34.2%, on average than in the tubers grown with a sufficient water supply. Above all, proline was elevated due to drought stress.

  2. Elasticplastic discs under plane stress conditions

    CERN Document Server

    Alexandrov, Sergey

    2015-01-01

    This Volume presents a unified approach to calculate the plane stress distribution of stress and strain in thin elastic/plastic discs subject to various loading conditions. There is a vast amount of literature on analytical and semi-analytical solutions for such discs obeying Tresca’s yield criterion and its associated flow rule. On the other hand, most of analytical and semi-analytical solutions for Mises yield criterion are based on the deformation theory of plasticity. A distinguished feature of the solutions given in the present volume is that the flow theory of plasticity and Mises yield criterion are adopted. The solutions are semi-analytical in the sense that numerical methods are only necessary to evaluate ordinary integrals and solve transcendental equations. The book shows that under certain conditions solutions based on the deformation and flow theories of plasticity coincide. All the solutions are illustrated with numerical examples. The goal of the book is to provide the reader with a vision an...

  3. [Influence endophytic bacteria to promote plants growth in stress conditions].

    Science.gov (United States)

    Napora, Anna; Kacprzak, Małgorzata; Nowak, Kamil; Grobelak, Anna

    2015-01-01

    The growth of plants under stress conditions is often assisted by microorganisms colonizing the rhizosphere (the root zone of the highest microbial activity). One of the most important bacterial groups to encourage the growth of plants (PGPB) are endophytes. These microorganisms penetrate living cells of plants and there they lead the microbiological activity as endosymbionts. These microorganisms can effectively promote the growth of plants under stress conditions and stimulate biochemical activities: nitrogen fixation, production of growth hormones (auxins, cytokinins and gibberellins), reduction of the high concentration of ethylene as well as facilitation of the collection plant minerals and water. This paper is an attempt to summarize the current state of knowledge about the biochemical activity of bacterial endophytes.

  4. WaterWatch -- Current Water Resources Conditions

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — WaterWatch (http://waterwatch.usgs.gov) is a U.S. Geological Survey (USGS) World Wide Web site that displays maps, graphs, and tables describing real-time, recent,...

  5. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    Directory of Open Access Journals (Sweden)

    Krzysztof Klamkowski

    2006-12-01

    Full Text Available The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’ under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Water stress was imposed by reducing the irrigation according to substratum moisture readings. Water stressed plants had the lowest values of water potential and showed strong decrease in gas exchange rate. Also, biomass and leaf area were the lowest in this group of plants. No differences in the length of root system were observed between control and water stressed plants. The lack of water in growing medium resulted also in a decrease of density and reduction of dimensions of stomata on plant leaves. These changes contribute to optimizing the use of assimilates and water use efficiency in periods when water availability is decreased.

  6. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    Directory of Open Access Journals (Sweden)

    Krzysztof Klamkowski

    2006-01-01

    Full Text Available The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’ under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Water stress was imposed by reducing the irrigation according to substratum moisture readings. Water stressed plants had the lowest values of water potential and showed strong decrease in gas exchange rate. Also, biomass and leaf area were the lowest in this group of plants. No differences in the length of root system were observed between control and water stressed plants. The lack of water in growing medium resulted also in a decrease of density and reduction of dimensions of stomata on plant leaves.These changes contribute to optimizing the use of assimilates and water use efficiency in periods when water availability is decreased.

  7. Morphological and Physiological Responses of Strawberry Plants to Water Stress

    OpenAIRE

    Krzysztof Klamkowski; Waldemar Treder

    2006-01-01

    The most of previous studies have been focused on the effect of water stress on plant yielding. However, the conditions in which plants grow from the moment of planting might affect their morphology and physiological response. The aim of this study was to examine the effect of water deficiency on growth and plant physiological response of strawberry (Fragaria x ananassa Duch. cv. ‘Salut’) under greenhouse conditions. The plants were grown in plastic containers filled with peat substratum. Wat...

  8. Effect of copper deficiency and of water stress on the microstructure of tomato leaf surface

    OpenAIRE

    Barbara Dyki; Jan Borowski; Waldemar Kowalczyk

    2013-01-01

    The reaction of tomato plants cv. Tukan F1 to copper deficiency and to water stress was compared. Plants grown in copper deficiency and in conditions of water stress were significantly smaller than controls. They had also lower turgor. The epidermis cells of the upper side leaf in the plants growing in copper deficiency or water stress conditions were smaller than in control plants. However the stomata and trichomes number of leaves plants with copper or water deficiency grown were bigger in ...

  9. Water Replacement Schedules in Heat Stress

    Science.gov (United States)

    Londeree, Ben R.; and others

    1969-01-01

    Although early ingestion of cold water appears to lead to greater relief from heat stress during physical exertion than late ingestion, this difference is reduced toward the end of an hour's work in high heat and humidity. (CK)

  10. Physical Conditioning through Water Exercises.

    Science.gov (United States)

    Conrad, C. Carson

    This document describes activities in an aquatic program designed for an individual in sound health. Instructions for performing each activity are given in step-by-step outline form. The activities are arranged under the following categories: standing water drills; pool-side standing drills; gutter holding drills; bobbing (various forms);…

  11. Root water extraction under combined water and osmotic stress

    NARCIS (Netherlands)

    Jong van Lier, de Q.; Dam, van J.C.; Metselaar, K.

    2009-01-01

    Using a numerical implicit model for root water extraction by a single root in a symmetric radial flow problem, based on the Richards equation and the combined convection-dispersion equation, we investigated some aspects of the response of root water uptake to combined water and osmotic stress. The

  12. Effective stress coefficient for uniaxial strain condition

    DEFF Research Database (Denmark)

    Alam, M.M.; Fabricius, I.L.

    2012-01-01

    The effective stress coefficient, introduced by Biot, is used for predicting effective stress or pore pressure in the subsurface. It is not a constant value. It is different for different types of sediment and it is stress dependent. We used a model, based on contact between the grains to describ...

  13. [Changes of rat gastric mucosal barrier under stress conditions].

    Science.gov (United States)

    Zhan, Xianbao; Li, Zhaoshen; Cui, Zhongmin; Duan, Yimin; Nie, Shinan; Liu, Jing; Xu, Guoming

    2002-06-01

    OBJECTIVE To explore the changes of rat gastric mucosal barrier under conditions of water immersion restraint stress. METHODS Eighty rats were randomly divided into Group A (20 rats), B (40 rats) and C (20 rats) after being fasted for 24 hours. And then Group A was divided into two subgroups with ten rats in each. The two subgroups in Group A were given normal saline or omeprazole respectively while under the stress condition. The changes of gastric acid or bicarbonate secretion were determined. Group B (40 rats) were randomly divided into four subgroups,which were subgroup control, 1h, 2h and 4h after beginning of the stress. The quantity of glandular mucosal adherent mucus, the thickness of mucus gel layer and ulcer index were measured after stress in Group B. The glandular mucosal samples were labeled by Lanthanum and observed by transmission electromicroscopy. Group C was randomly divided into two subgroups in the same way with Group A. And each subgroup received normal saline or omeprazole respectively H(+) loss in gastric lumen was calculated by determining the difference of acidity between lavage and drainage fluid H(+) concentration. RESULTS It was found that gastric alkaline secretion decreased progressively (P omeprazole subgroup, the amount of H(+) loss (micromol) was 7.46 +/- 1.22, 4.56 +/- 0.35, 3.11 +/- 0.81, 2.32 +/- 1.42 and 2.13 +/- 1.60, which decreased progressively, however still higher than those in normal saline subgroup (P "bicarbonate secretion is inhibited; gastric barrier is damaged; and hydrogen permeability through gastric mucosal barrier increases under stress conditions.

  14. Water stress in global transboundary river basins: significance of upstream water use on downstream stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world’s transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. We found that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  15. Water Stress in Global Transboundary River Basins: Significance of Upstream Water Use on Downstream Stress

    Science.gov (United States)

    Munia, H.; Guillaume, J. H. A.; Mirumachi, N.; Porkka,M.; Wada, Yoshihide; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analyzed in many of these international river basins, this has not been systematically done at the global scale using coherent and comparable datasets. In this study, we aim to assess the change in downstream water stress due to upstream water use in the world's transboundary river basins. Water stress was first calculated considering only local water use of each sub-basin based on country-basin mesh, then compared with the situation when upstream water use was subtracted from downstream water availability. Wefound that water stress was generally already high when considering only local water use, affecting 0.95-1.44 billion people or 33%-51% of the population in transboundary river basins. After accounting for upstream water use, stress level increased by at least 1 percentage-point for 30-65 sub-basins, affecting 0.29-1.13 billion people. Altogether 288 out of 298 middle-stream and downstream sub-basin areas experienced some change in stress level. Further, we assessed whether there is a link between increased water stress due to upstream water use and the number of conflictive and cooperative events in the transboundary river basins, as captured by two prominent databases. No direct relationship was found. This supports the argument that conflicts and cooperation events originate from a combination of different drivers, among which upstream-induced water stress may play a role. Our findings contribute to better understanding of upstream-downstream dynamics in water stress to help address water allocation problems.

  16. Research on the Effects of Water Stress on Growth Traits and Water Use Efficiency of Winter Wheat

    OpenAIRE

    Sun Shuhong; Liu Ling; Yang Shusheng

    2015-01-01

    This research about the effects of water stress at different growth stages on the crop growth traits has a practical significance in guiding water-saving irrigation. The box test method is adopted to test the water stress of winter wheat at different stages, observe the plant height, leaf area and yield, and analyze the water use efficiency under the condition of water stress. The results show that the water stress in each growth period will play an inhibiting role in the plant height and lea...

  17. Psychological conditions of adaptation to professional stress

    Directory of Open Access Journals (Sweden)

    Nina Tereshenko

    2015-05-01

    Full Text Available The article presents the results of empirical studies of the occupational stress and adaptation. The study shows that the process of adaptation to stress affect the socio-psychological characteristics. Constructive ways of behavior are: the choice of cooperation, a strong desire to be with people, taking responsibility and decision-making.

  18. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [Lower Rio Grande Valley Test Site: Weslaco, Texas; Falco Reservoir and the Gulf of Mexico

    Science.gov (United States)

    Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. HCMM day/night coverage 12 hours apart cannot be obtained at 26 deg N latitude; nor have any pairs 36 hours apart been obtained. A day-IR scene and a night scene for two different dates were analyzed. A profile across the test site for the same latitude shows that the two profiles are near mirror images of each other over land surfaces and that the temperature of two large water bodies, Falcon Reservoir and the Gulf of Mexico, are nearly identical on two dates. During the time interval between overpasses, the vegetative cover remained static due to winter dormancy. The data suggest that day/night temperature differences measured weeks apart may yield meaningful information about the contrast between daytime maximum and nighttime minimum temperatures for a given site.

  19. A Three-Dimensional Index for Characterizing Crop Water Stress

    Directory of Open Access Journals (Sweden)

    Jessica A. Torrion

    2014-05-01

    Full Text Available The application of remotely sensed estimates of canopy minus air temperature (Tc-Ta for detecting crop water stress can be limited in semi-arid regions, because of the lack of full ground cover (GC at water-critical crop stages. Thus, soil background may restrict water stress interpretation by thermal remote sensing. For partial GC, the combination of plant canopy temperature and surrounding soil temperature in an image pixel is expressed as surface temperature (Ts. Soil brightness (SB for an image scene varies with surface soil moisture. This study evaluates SB, GC and Ts-Ta and determines a fusion approach to assess crop water stress. The study was conducted (2007 and 2008 on a commercial scale, center pivot irrigated research site in the Texas High Plains. High-resolution aircraft-based imagery (red, near-infrared and thermal was acquired on clear days. The GC and SB were derived using the Perpendicular Vegetation Index approach. The Ts-Ta was derived using an array of ground Ts sensors, thermal imagery and weather station air temperature. The Ts-Ta, GC and SB were fused using the hue, saturation, intensity method, respectively. Results showed that this method can be used to assess water stress in reference to the differential irrigation plots and corresponding yield without the use of additional energy balance calculation for water stress in partial GC conditions.

  20. Physical-chemistry aspects of water in steam turbines associated with material stress and electrochemical assessment of the AISI 403 to simulate real condition

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, D.S.; Franco, C.V.; Godinho, J.F.; Frech, W.A.; Sonai, G.G. [Univ. Federal de Santa Catarina, Florianopolis (Brazil); Torres, L.A.M.; Ellwanger, A.R.F. [Tractebel Energia, Capivari de Baixo (Brazil)

    2009-07-01

    This study described a methodology developed to prevent the occurrence of corrosion failure in steam turbines. The methodology was developed after the failure of a turbine blade at a plant in Brazil. Deposits were collected from various locations along the turbine blade path and analyzed. A turbine deposit collector and simulator was installed to determine the concentrations of steam impurities. Samples were collected from the low pressure turbine at the crossover point and from the polishing station and analyzed using inductive coupled plasma-mass spectrometry (ICP-MS) in order to determine if sodium levels exceeded 3 ppb. Filters were weighed in order to determine the accumulation of impurities. A 3-electrode system was used to determine the influence of chloride ions. The design of the system's condensate polisher beds was modified in order to improve condensate effluent conductivity. The condensate treatment procedure lowered the concentrations of salt impurities and established a monitoring methodology for water and steam used at the plant. It was concluded that the methodology can be used to to reduce inspection intervals and increase system reliability. 10 refs., 1 tab., 7 figs.

  1. Research on the Effects of Water Stress on Growth Traits and Water Use Efficiency of Winter Wheat

    Directory of Open Access Journals (Sweden)

    Sun Shuhong

    2015-01-01

    Full Text Available This research about the effects of water stress at different growth stages on the crop growth traits has a practical significance in guiding water-saving irrigation. The box test method is adopted to test the water stress of winter wheat at different stages, observe the plant height, leaf area and yield, and analyze the water use efficiency under the condition of water stress. The results show that the water stress in each growth period will play an inhibiting role in the plant height and leaf area of winter wheat; the water stress duration at a single stage is relatively short, and rehydration crop has a certain compensatory growth without making a big difference; the continuous water stress stage plays a significantly inhibiting role in the plant height and leaf area.; water stress has a largest effect on the plant height in the elongation period; the heading period suffers from water stress, so the leaf area decreases rapidly; water stress at a single stage in the appropriate period can increase water use efficiency. Regulated deficit irrigation can reduce luxury water consumption, which has a little effect on the yield and plays a guiding role in water saving and stable yield.

  2. Photosynthetic efficiency of Pedunculate oak seedlings under simulated water stress

    Directory of Open Access Journals (Sweden)

    Popović Zorica

    2010-01-01

    Full Text Available Photosynthetic performance of seedlings of Quercus robur exposed to short-term water stress in the laboratory conditions was assessed through the method of induced fluorometry. The substrate for seedlings was clayey loam, with the dominant texture fraction made of silt, followed by clay and fine sand, with total porosity 68.2%. Seedlings were separated in two groups: control (C (soil water regime in pots was maintained at the level of field water capacity and treated (water-stressed, WS (soil water regime was maintained in the range of wilting point and lentocapillary capacity. The photosynthetic efficiency was 0.642±0.25 and 0.522±0.024 (WS and C, respectively, which was mostly due to transplantation disturbances and sporadic leaf chlorosis. During the experiment Fv/Fm decreased in both groups (0.551±0.0100 and 0.427±0.018 in C and WS, respectively. Our results showed significant differences between stressed and control group, in regard to both observed parameters (Fv/Fm and T½. Photosynthetic efficiency of pedunculate oak seedlings was significantly affected by short-term water stress, but to a lesser extent than by sufficient watering.

  3. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions.

    Science.gov (United States)

    Desclos, Marie; Dubousset, Lucie; Etienne, Philippe; Le Caherec, Françoise; Satoh, Hiroyushi; Bonnefoy, Josette; Ourry, Alain; Avice, Jean-Christophe

    2008-08-01

    Despite its water-soluble chlorophyll-binding protein (WSCP) function, the putative trypsin inhibitor (TI) activity of the Brassica napus drought 22 kD (BnD22) protein and its physiological function in young leaves during leaf nitrogen (N) remobilization promoted by stressful conditions remains an enigma. Therefore, our objectives were to determine (1) if BnD22 is related to the 19-kD TI previously detected in B. napus young leaves, and (2) if the levels of BnD22 transcripts, BnD22 protein, and TI activity in young leaves are associated with plant responses to stress conditions (N starvation and methyl jasmonate [MeJA] treatments) that are able to modulate leaf senescence. Compared to control, N starvation delayed initiation of senescence and induced 19-kD TI activity in the young leaves. After 3 d with MeJA, the 19-kD TI activity was 7-fold higher than the control. Using two-dimensional electrophoresis gel, TI activity, and electrospray ionization liquid chromatography tandem mass spectrometry analysis, it was demonstrated that two 19-kD proteins with isoelectric points 5.0 and 5.1 harboring TI activity correspond to BnD22 perfectly. BnD22 gene expression, TI activities, and BnD22 protein presented similar patterns. Using polyclonal anti-WSCP antibodies of Brassica oleracea, six polypeptides separated by two-dimensional electrophoresis were detected in young leaves treated with MeJA. Electrospray ionization liquid chromatography tandem mass spectrometry analysis of six polypeptides confirms their homologies with WSCP. Results suggest that BnD22 possesses dual functions (WSCP and TI) that lead to the protection of younger tissues from adverse conditions by maintaining metabolism (protein integrity and photosynthesis). By sustaining sink growth of stressed plants, BnD22 may contribute to a better utilization of recycling N from sources, a physiological trait that improves N-use efficiency.

  4. Identification of Water Stress in Citrus Leaves Using Sensing Technologies

    Directory of Open Access Journals (Sweden)

    Reza Ehsani

    2013-11-01

    Full Text Available Water stress is a serious concern in the citrus industry due to its effect on citrus quality and yield. A sensor system for early detection will allow rapid implementation of control measures and management decisions to reduce any adverse effects. Laser-induced breakdown spectroscopy (LIBS presents a potentially suitable technique for early stress detection through elemental profile analysis of the citrus leaves. It is anticipated that the physiological change in plants due to stress will induce changes in the element profile. The major goal of this study was to evaluate the performance of laser-induced breakdown spectroscopy as a method of water stress detection for potential use in the citrus industry. In this work, two levels of water stress were applied to Cleopatra (Cleo mandarin, Carrizo citrange, and Shekwasha seedlings under the controlled conditions of a greenhouse. Leaves collected from the healthy and stressed plants were analyzed using LIBS, as well as with a spectroradiometer (visible-near infrared spectroscopy and a thermal camera (thermal infrared. Statistical classification of healthy and stressed samples revealed that the LIBS data could be classified with an overall accuracy of 80% using a Naïve-Bayes and bagged decision tree-based classifiers. These accuracies were lower than the classification accuracies acquired from visible-near infrared spectra. An accuracy of 93% and higher was achieved using a bagged decision tree with visible-near infrared spectral reflectance data.

  5. Response mechanisms of Brachiaria brizantha cultivars to water deficit stress

    Directory of Open Access Journals (Sweden)

    Patricia Menezes Santos

    2013-11-01

    Full Text Available Two cultivars of Brachiaria brizantha (Hochst ex. A. Rich Stapf. (Syn. Urochloa were evaluated for their adaptation to water deficit and the stress response mechanisms in a greenhouse experiment. The experimental design was in completely randomized blocks with a 2 × 2 × 4 factorial arrangement. The Marandu and BRS Piatã cultivars were evaluated under two water availability conditions, with or without water restriction. The harvests were carried out 0, 7, 14 and 28 days after the start of water restriction. For both cultivars, the water deficit stress caused a reduction in shoot biomass and leaf area and an increase in the percentage of roots in the deeper soil layers. The B. brizantha cv. Marandu reached critical levels of leaf water potential in a shorter period of water restriction than did the B. brizantha cv. BRS Piatã. The osmoregulation and deepening of the root system are mechanisms of adaptation to water stress observed in both Marandu and BRS Piatã cultivars. Besides that, the Marandu cultivar also increases its leaf senescence and, consequentially, decreases its leaf area, as a response to water deficit.

  6. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Alleviation of Water Stress Effects on MR220 Rice by Application of Periodical Water Stress and Potassium Fertilization

    Directory of Open Access Journals (Sweden)

    Nurul Amalina Mohd Zain

    2014-02-01

    Full Text Available The use of periodical water stress and potassium fertilization may enhance rice tolerance to drought stress and improve the crop’s instantaneous water use efficiency without much yield reduction. This study was conducted to assess the effects of different periodical water stress combined with potassium fertilization regimes on growth, yield, leaf gas exchanges and biochemical changes in rice grown in pots and compare them with standard local rice grower practices. Five treatments including (1 standard local grower’s practice (control, 80CF = 80 kg K2O/ha + control flooding; (2 120PW15 = 120 kg K2O/ha + periodical water stress for 15 days; (3 120DS15V = 120 kg K2O/ha + drought stress for 15 days during the vegetative stage; (4 120DS25V = 120 kg K2O/ha + drought stress for 25 days and (5 120DS15R = 120 kg K2O/ha + drought stress for 15 days during the reproductive stage, were evaluated in this experiment. Control and 120PW15 treatments were stopped at 100 DAS, and continuously saturated conditions were applied until harvest. It was found that rice under 120PW15 treatment showed tolerance to drought stress evidenced by increased water use efficiency, peroxidase (POX, catalase (CAT and proline levels, maximum efficiency of photosystem II (fv/fm and lower minimal fluorescence (fo, compared to other treatments. Path coefficient analysis revealed that most of parameters contribute directly rather than indirectly to rice yield. In this experiment, there were four factors that are directly involved with rice yield: grain soluble sugar, photosynthesis, water use efficiency and total chlorophyll content. The residual factors affecting rice yield are observed to be quite low in the experiment (0.350, confirming that rice yield was mostly influenced by the parameters measured during the study.

  8. Stress differentially affects fear conditioning in men and women.

    Science.gov (United States)

    Merz, Christian Josef; Wolf, Oliver Tobias; Schweckendiek, Jan; Klucken, Tim; Vaitl, Dieter; Stark, Rudolf

    2013-11-01

    Stress and fear conditioning processes are both important vulnerability factors in the development of psychiatric disorders. In behavioral studies considerable sex differences in fear learning have been observed after increases of the stress hormone cortisol. But neuroimaging experiments, which give insights into the neurobiological correlates of stress × sex interactions in fear conditioning, are lacking so far. In the current functional magnetic resonance imaging (fMRI) study, we tested whether a psychosocial stressor (Trier Social Stress Test) compared to a control condition influenced subsequent fear conditioning in 48 men and 48 women taking oral contraceptives (OCs). One of two pictures of a geometrical figure was always paired (conditioned stimulus, CS+) or never paired (CS-) with an electrical stimulation (unconditioned stimulus). BOLD responses as well as skin conductance responses were assessed. Sex-independently, stress enhanced the CS+/CS- differentiation in the hippocampus in early acquisition but attenuated conditioned responses in the medial frontal cortex in late acquisition. In early acquisition, stress reduced the CS+/CS- differentiation in the nucleus accumbens in men, but enhanced it in OC women. In late acquisition, the same pattern (reduction in men, enhancement in OC women) was found in the amygdala as well as in the anterior cingulate. Thus, psychosocial stress impaired the neuronal correlates of fear learning and expression in men, but facilitated them in OC women. A sex-specific modulation of fear conditioning after stress might contribute to the divergent prevalence of men and women in developing psychiatric disorders.

  9. Heat-resistant protein expression during germination of maize seeds under water stress.

    Science.gov (United States)

    Abreu, V M; Silva Neta, I C; Von Pinho, E V R; Naves, G M F; Guimarães, R M; Santos, H O; Von Pinho, R G

    2016-08-12

    Low water availability is one of the factors that limit agricultural crop development, and hence the development of genotypes with increased water stress tolerance is a challenge in plant breeding programs. Heat-resistant proteins have been widely studied, and are reported to participate in various developmental processes and to accumulate in response to stress. This study aimed to evaluate heat-resistant protein expression under water stress conditions during the germination of maize seed inbreed lines differing in their water stress tolerance. Maize seed lines 91 and 64 were soaked in 0, -0.3, -0.6, and -0.9 MPa water potential for 0, 6, 12, 18, and 24 h. Line 91 is considered more water stress-tolerant than line 64. The analysis of heat-resistant protein expression was made by gel electrophoresis and spectrophotometry. In general, higher expression of heat-resistant proteins was observed in seeds from line 64 subjected to shorter soaking periods and lower water potentials. However, in the water stress-tolerant line 91, a higher expression was observed in seeds that were subjected to -0.3 and -0.6 MPa water potentials. In the absence of water stress, heat-resistant protein expression was reduced with increasing soaking period. Thus, there was a difference in heat-resistant protein expression among the seed lines differing in water stress tolerance. Increased heat-resistant protein expression was observed in seeds from line 91 when subjected to water stress conditions for longer soaking periods.

  10. WATER CONDITIONING FOR FOOD INDUSTRY USES

    Directory of Open Access Journals (Sweden)

    RAISA NASTAS

    2011-03-01

    Full Text Available Water conditioning for food industry uses. Tap (drinkingwater from many localities of Moldova doesn’t always correspond to the “Sanitarystandards for drinking water quality” or to the requirements of the “Regulation fornon-alcoholic beverages”, requiring the need for additional purification/conditioning. This paper presents research regarding the removal/adsorption of themain pollutants in tap water (iron, manganese, aluminum, humic substances,trihalomethanes on supports of local carbon adsorbents made from vegetableproducts (stones of peach and plum, walnut shells. Experiments were performedin dynamic conditions in columns of carbon adsorbents. As work solutions wasused tap water where pollutants have been introduced in amounts equivalent to 3maximum allowable concentrations. Carbonaceous adsorbents used forremoval/adsorption of pollutants in dynamic conditions, reveal a capacity of up to1:400 volumes adsorbent: solution before breakthrough. Combined filter, utilizingactive carbons, was constructed and tested for conditioning of tap water forbeverage and food production. The results demonstrated efficient remove oforganic substances and heavy metals by filtering of about 700 volumes of waterper volume of filter.

  11. Evaluation of tolerance to water stress in beans

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Köop

    2012-09-01

    Full Text Available The goal of this study was to evaluate the genotypes of beans, and to sort them into groups that are tolerant and sensitive to water stress, by assessing their morphological characteristics for use in blocks of crosses and the study of gene expression. We evaluated nine bean genotypes: IAPAR 14, IAPAR 81, Pérola, IPR Colibri, IPR Juriti, IPR Chopim, IPR Gralha, and IPR Tiziu IPR Uirapuru. The genotypes were subjected to two irrigation conditions: i irrigation water as needed throughout the culture cycle and ii irrigation water as needed until the appearance of the first bud, followed by no irrigation water for 15 days. The experimental design was in randomized blocks with three replications. The characteristics evaluated were: i plant height; ii stem diameter, iii number of pods per plant, iv number of grains per pod, v root length and vi root dry mass. Stem diameter should not be used to determine if bean genotypes are tolerant or susceptible to water shortages. The results for the Pérola genotype were the highest for most of the characteristics evaluated, and, for this reason, it was classified as tolerant to water stress during flowering. The genotypes IAPAR and 81 IPR Juriti had the lowest results for the most features and were classified as susceptible to water stress during flowering.

  12. Modeling the response of peach fruit growth to water stress.

    Science.gov (United States)

    Génard, M; Huguet, J G

    1996-04-01

    We applied a semi-mechanistic model of fresh matter accumulation to peach fruit during the stage of rapid mesocarp development. The model, which is based on simple hypotheses of fluid flows into and out of the fruit, assumes that solution flow into the fruit increases with fruit weight and transpiration per unit weight, and decreases with the maximum daily shrinkage of the trunk, which was used as an indicator of water stress. Fruit transpiration was assumed to increase with fruit size and with radiation. Fruit respiration was considered to be related to fruit growth and to temperature. The model simulates variability in growth among fruits according to climatic conditions, degree of water stress and weight of the fruit at the beginning of the simulation. We used data obtained from well-watered and water-stressed trees grown in containers to estimate model parameters and to test the model. There was close agreement between the simulated and measured values. A sensitivity analysis showed that initial fruit weight partly determined the variation in growth among fruits. The analysis also indicated that there was an optimal irradiance for fruit growth and that the effect of high global radiation on growth varied according to the stage of fruit development. Water stress, which was the most important factor influencing fruit growth, rapidly depressed growth, particularly when applied late in the season.

  13. Global monthly water stress: II. Water demand and severity of water

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Viviroli, D.; Dürr, H.H.; Weingartner, R.; Bierkens, M.F.P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted

  14. Global monthly water stress: II. Water demand and severity of water

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Viviroli, D.; Dürr, H.H.; Weingartner, R.; Bierkens, M.F.P.

    2011-01-01

    This paper assesses global water stress at a finer temporal scale compared to conventional assessments. To calculate time series of global water stress at a monthly time scale, global water availability, as obtained from simulations of monthly river discharge from the companion paper, is confronted

  15. Influence of selenium in drought-stressed wheat plants under greenhouse and field conditions

    Directory of Open Access Journals (Sweden)

    Roghieh HAJIBOLAND

    2015-11-01

    Full Text Available Effects of selenium (Na2SeO4 was studied in two wheat genotypes under well-watered and drought conditions in greenhouse (15 µg Se L-1 and field (20-60 60 g ha-1 experiments. Application of Se improved dry matter and grain yield under both well-watered and drought conditions. Se increased leaf concentration of pigments and photosynthesis rate under both well-watered and drought conditions. Our results indicated that Se alleviates drought stress via increased photosynthesis rate, protection of leaf photochemical events, accumulation of organic osmolytes and improvement of water use efficiency. Under well-watered condition, Se-mediated growth improvement was associated with higher photosynthesis rate and water use efficiency, greater root length and diameter, and higher leaf water content.

  16. Transcriptome profiling of tobacco under water deficit conditions

    Directory of Open Access Journals (Sweden)

    Roel C. Rabara

    2015-09-01

    Full Text Available Drought is one of the limiting environmental factors that affect crop production. Understanding the molecular basis of how plants respond to this water deficit stress is key to developing drought tolerant crops. In this study we generated time course-based transcriptome profiles of tobacco plants under water deficit conditions using microarray technology. In this paper, we describe in detail the experimental procedures and analyses performed in our study. The data set we generated (available in the NCBI/GEO database under GSE67434 has been analysed to identify genes that are involved in the regulation of tobacco's responses to drought.

  17. Phosphatidic acid, a versatile water-stress signal in roots

    Directory of Open Access Journals (Sweden)

    Fionn eMcLoughlin

    2013-12-01

    Full Text Available Adequate water supply is of utmost importance for growth and reproduction of plants. In order to cope with water deprivation, plants have to adapt their development and metabolism to ensure survival. To maximize water use efficiency, plants use a large array of signaling mediators such as hormones, protein kinases and phosphatases, Ca2+, reactive oxygen species and low abundant phospholipids that together form complex signaling cascades. Phosphatidic acid (PA is a signaling lipid that rapidly accumulates in response to a wide array of abiotic stress stimuli. PA formation provides the cell with spatial and transient information about the external environment by acting as a protein-docking site in cellular membranes. PA reportedly binds to a number of proteins that play a role during water limiting conditions, such as drought and salinity and has been shown to play an important role in maintaining root system architecture. Members of two osmotic stress-activated protein kinase families, sucrose non-fermenting 1-related protein kinase 2 (SnRK2 and mitogen activated protein kinases (MAPKs were recently shown bind PA and are also involved in the maintenance of root system architecture and salinity stress tolerance. In addition, PA regulates several proteins involved in abscisic acid (ABA-signaling. PA-dependent recruitment of glyceraldehyde-3-phosphate dehydrogenase (GAPDH under water limiting conditions indicates a role in regulating metabolic processes. Finally, a recent study also shows the PA recruits the clathrin heavy chain and a potassium channel subunit, hinting towards additional roles in cellular trafficking and potassium homeostasis. Taken together, the rapidly increasing number of proteins reported to interact with PA implies a broad role for this versatile signaling phospholipid in mediating salt and water stress responses.

  18. The effect of water on thermal stresses in polymer composites

    Science.gov (United States)

    Sullivan, Roy M.

    1994-01-01

    The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.

  19. Effect of copper deficiency and of water stress on the microstructure of tomato leaf surface

    Directory of Open Access Journals (Sweden)

    Barbara Dyki

    2013-12-01

    Full Text Available The reaction of tomato plants cv. Tukan F1 to copper deficiency and to water stress was compared. Plants grown in copper deficiency and in conditions of water stress were significantly smaller than controls. They had also lower turgor. The epidermis cells of the upper side leaf in the plants growing in copper deficiency or water stress conditions were smaller than in control plants. However the stomata and trichomes number of leaves plants with copper or water deficiency grown were bigger in comparision with control. The pores of stomata were always larger in leaves of control plants than in other objects.

  20. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  1. Memory Testing Under Different Stress Conditions: An Industrial Evaluation

    CERN Document Server

    Majhi, Ananta K; Gronthoud, Guido; Lousberg, Maurice; Eichenberger, Stefan; Bowen, Fred

    2011-01-01

    This paper presents the effectiveness of various stress conditions (mainly voltage and frequency) on detecting the resistive shorts and open defects in deep sub-micron embedded memories in an industrial environment. Simulation studies on very-low voltage, high voltage and at-speed testing show the need of the stress conditions for high quality products; i.e., low defect-per-million (DPM) level, which is driving the semiconductor market today. The above test conditions have been validated to screen out bad devices on real silicon (a test-chip) built on CMOS 0.18 um technology. IFA (inductive fault analysis) based simulation technique leads to an efficient fault coverage and DPM estimator, which helps the customers upfront to make decisions on test algorithm implementations under different stress conditions in order to reduce the number of test escapes.

  2. The Response of Winter Wheat Root to the Period and the After-Effect of Soil Water Stress

    Institute of Scientific and Technical Information of China (English)

    YANG Gui-yu; LUO Yuan-pei; LI Bao-guo; LIU Xiao-ying

    2006-01-01

    To reveal the period and after-effect of soil water stress on winter wheat, the article employs the experiment results carried out in the greenhouse. The results showed that the root-restricted weights varied with stress degrees and stress times during and after water stressing. In the course of stress, the chief reason resticting the weight of root was the stress intensity at this time, and that of severe stress treatment was larger than that of mild stress treatment. After water stress was relieved, the results of the after-effect of soil water stress on root growth were that, the stress intensity of short-time and mild stress was larger than that of long-time and severe stress. Comparing two-stage stress intensities, root-restricted weight resulted from after-effect intensity of stress under all of the short-time treatment, and the mild and the long-time stress treatments, while that resulted from the period stress intensity under the severe and the long-time stress treatments.In general, the effects of water stress on root were attributed to the three factors, a formed basis in the previous stage, the after-effect of water condition before this stage and influence of water in this stage, which lead to the characters of root in the whole growth stage.

  3. Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions.

    Science.gov (United States)

    Abbaspour, H; Saeidi-Sar, S; Afshari, H; Abdel-Wahhab, M A

    2012-05-01

    The influence of Glomus etunicatum colonization on plant growth and drought tolerance of 3-month-old Pistacia vera seedlings in potted culture was studied in two different water treatments. The arbuscular mycorrhiza (AM) inoculation and plant growth (including plant shoot and root weight, leaf area, and total chlorophyll) were higher for well-watered than for water-stressed plants. The growth of AM-treated seedlings was higher than non-AM-treatment regardless of water status. P, K, Zn and Cu contents in AM-treated shoots were greater than those in non-AM shoots under well-watered conditions and drought stress. N and Ca content were higher under drought stress, while AM symbiosis did not affect the Mg content. The contents of soluble sugars, proteins, flavonoid and proline were higher in mycorrhizal than non-mycorrhizal-treated plants under the whole water regime. AM colonization increased the activities of peroxidase enzyme in treatments, but did not affect the catalase activity in shoots and roots under well-watered conditions and drought stress. We conclude that AM colonization improved the drought tolerance of P. vera seedlings by increasing the accumulation of osmotic adjustment compounds, nutritional and antioxidant enzyme activity. It appears that AM formation enhanced the drought tolerance of pistachio plants, which increased host biomass and plant growth.

  4. Yield, quality and biochemical properties of various strawberry cultivars under water stress.

    Science.gov (United States)

    Adak, Nafiye; Gubbuk, Hamide; Tetik, Nedim

    2017-06-05

    Although strawberry (Fragaria x ananassa Duch.) species are sensitive to abiotic stress conditions, some cultivars are known to be tolerant to different environmental conditions. We examined the response of different strawberry cultivars to water stress conditions in terms of yield, quality and biochemical features. The trial was conducted under two different irrigation regimes: in grow bags containing cocopeat (control, 30%; water stress, 15% drainage) with four different cultivars (Camarosa, Albion, Amiga and Rubygem). Fruit weight declined by 59.72% and the yield per unit area by 63.62% under water stress conditions as compared to control. Albion and Rubygem were found to be more tolerant and Amiga the most sensitive in terms of yield under stress conditions. Water stress increased all biochemical features in fruits such as total phenol, total anthocyanin, antioxidant activity and sugar contents. Among the cultivars, glucose and fructose was higher in Albion. Considering the rise in global warming, identification of resistant and tolerant cultivars to stress conditions are crucial for future breeding programmes. Our results showed that some of the fruit's physical features were affected negatively by stress conditions whereas many of the biochemical features such as total anthocyanin content, total phenolic content and antioxidant activity were positively modulated. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Differential responses of plumbagin content in Plumbago zeylanica L. (Chitrak under controlled water stress treatments

    Directory of Open Access Journals (Sweden)

    Kharadi R.

    2011-12-01

    Full Text Available A pot experiment was conducted on Plumbago zeylanica L. (Chitrak under controlled water stress environment in greenhouse during the kharif season. The experiment was laid out in completely randomized design with five treatments of different water stress levels i.e. control, 20%, 40%, 60% and 80% and four replications. Out of five stress levels, 80% water stress has influenced root length, dry herbage, plumbagin, potassium and proline content. In control conditions the plant height, number of leaf, total leaf area, stomatal conductance, transpiration rate, photosynthesis, CO2 utilization, H2O utilization and chlorophyll were found to be maximum. The impact of water stress on plumbagin content has shown increase trend with respect to different water stress levels that is maximum at 80 % and minimum at control.

  6. Hydrologic Conditions in Kansas, water year 2015

    Science.gov (United States)

    May, Madison R.

    2016-03-31

    The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local agencies, maintains a long-term network of hydrologic monitoring sites in Kansas. In 2015, the network included about 200 real-time streamgages (hereafter referred to as “gages”), 12 real-time reservoir-level monitoring stations, and 30 groundwater-level monitoring wells. These data and associated analyses provide a unique overview of hydrologic conditions and help improve the understanding of Kansas’s water resources.Real-time data are verified by the USGS throughout the year with regular measurements of streamflow, lake levels, and groundwater levels. These data are used in protecting life and property; and managing water resources for agricultural, industrial, public supply, ecological, and recreational purposes. Yearly hydrologic conditions are characterized by comparing statistical analyses of current and historical water year (WY) data for the period of record. A WY is the 12-month period from October 1 through September 30 and is designated by the year in which it ends.

  7. Diallel analysis in white oat cultivars subjected to water stress.

    Directory of Open Access Journals (Sweden)

    Guilherme Ribeiro

    2011-01-01

    Full Text Available The goal of this work was to determine the combining ability of three white oat parental genotypes (UPF 18, URS21and URS 22 and to estimate the heterosis of F1 hybrids in two conditions, with and without water stress. The results indicate a largeeffect of the environment on the evaluated characters (cycle, leaf area, plant stature, grain yield per plant, main panicle weight andnumber of grains of the main panicle. The condition without stress was the most efficient for the selection of superior genotypes.Based on the general and specific combining ability, the cultivar URS 22 was shown to be indicated for cycle and stature reduction,while UPF 18 lead to increases in leaf area, main panicle weight and number of grains of the main panicle. The specific cross URS22 x URS 21 was the best for the selection of superior genotypes.

  8. Association between neuroticism and amygdala responsivity emerges under stressful conditions.

    Science.gov (United States)

    Everaerd, Daphne; Klumpers, Floris; van Wingen, Guido; Tendolkar, Indira; Fernández, Guillén

    2015-05-15

    Increased amygdala reactivity in response to salient stimuli is seen in patients with affective disorders, in healthy subjects at risk for these disorders, and in stressed individuals, making it a prime target for mechanistic studies into the pathophysiology of affective disorders. However, whereas individual differences in neuroticism are thought to modulate the effect of stress on mental health, the mechanistic link between stress, neuroticism and amygdala responsivity is unknown. Thus, we studied the relationship between experimentally induced stress, individual differences in neuroticism, and amygdala responsivity. To this end, fearful and happy faces were presented to a large cohort of young, healthy males (n=120) in two separate functional MRI sessions (stress versus control) in a randomized, controlled cross-over design. We revealed that amygdala reactivity was modulated by an interaction between the factors of stress, neuroticism, and the emotional valence of the facial stimuli. Follow-up analysis showed that neuroticism selectively enhanced amygdala responses to fearful faces in the stress condition. Thus, we show that stress unmasks an association between neuroticism and amygdala responsivity to potentially threatening stimuli. This effect constitutes a possible mechanistic link within the complex pathophysiology of affective disorders, and our novel approach appears suitable for further studies targeting the underlying mechanisms.

  9. Enhancement of wind stress evaluation method under storm conditions

    Science.gov (United States)

    Chen, Yingjian; Yu, Xiping

    2016-12-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  10. An Integrated Analysis of Changes in Water Stress in Europe

    DEFF Research Database (Denmark)

    Henrichs, T.; Lehner, B.; Alcamo, J.

    2002-01-01

    that today high water stress exists in one-fifth of European river basin area. Under a scenario projection, increases in water use throughout Eastern Europe are accompanied by decreases in water availability in most of Southern Europe--combining these trends leads to a marked increase in water stress......Future changes in water availability with climate change and changes in water use due to socio-economic development are to occur in parallel. In an integrated analysis we bring together these aspects of global change in a consistent manner, and analyse the water stress situation in Europe. We find...

  11. WATER CONDITION IN CELLS OF CHLORELLA

    Directory of Open Access Journals (Sweden)

    I. V. Kuznetsova

    2015-01-01

    Full Text Available The water condition in cages of the paste of chlorella was investigated by the method of thermogravimetric analysis. With increasing heating rate endothermic effect corresponding to the dehydration process is shifted towards higher temperatures. Temperature intervals of chlorella dehydration are defined at rate of heating 2 К/min - 308-368 K, 5 К/min - 323-403 K, and 10 К/min - 348-403 K. Quantitative characteristics of kinetic unequal water in chlorella have been received for each step (∆, ∆Т, a mass fraction (w, energy of activation (Еа. This process is similar to the process of the dehydration in ion exchange membranes. The derived kinetic characteristics give the possibility to define an optimum temperature interval and rate of drying microalgae for the purpose of increase of periods of storage in the form of paste or a solid substance for the further use as the bioadditive. In addition the presence of three types of water chlorella in a cell set according to NMR with pulsed magnetic field gradient. Since free water is involved in biochemical, chemical and microbiological processes, it is desirable to remove during drying of the preparation. The resulting temperature range of 323-343 K (step 2 at a heating rate of 2 K / min corresponds to a temperature range of drying the chlorella in a production environment. It should be noted that the highest number of algae in a tightly-water (the last stage. Apparently, this is determined by a unique cell structure. Temperature ranges dehydration process are not clear and vary depending on the heating rate, which is fully in line with previous studies of thermal analysis for grains, vegetables and bakery products.

  12. Synergistic Effect of Selenium Addition and Water Stress on Melilotus officinalis L. Mineral Content

    Directory of Open Access Journals (Sweden)

    Panagiota KOSTOPOULOU

    2015-12-01

    Full Text Available The objective of this study was to examine the combined effects of selenium (Se enrichment and water stress on the accumulation of available macro- and micronutrients in Melilotus officinalis L. aerial parts. Plants of M. officinalis were subjected to three levels of Se addition (0, 1 and 3 mg Se L-1 water and to two water treatments: a full irrigation and b limited irrigation (water stress. The above ground biomass (stems and leaves was analyzed for Se, potassium (K, sodium (Na, magnesium (Mg, iron (Fe, copper (Cu, calcium (Ca, manganese (Mn and zinc (Zn. Se addition differentially affected the K, Mg and Ca content of M. officinalis aerial parts, while it led to the reduction of the micronutrients Cu, Fe and Mn. Water stress resulted in the increase of K, Na, Mg, Ca and Cu, and to the decrease of the Fe, Zn and Mn content. An interaction between selenium addition and water treatment was more notable for Ca and Mg, which decreased under water stress at low Se level and for Zn and Cu, which increased under water stress at high Se level. According to our findings, Se-induced increased accumulation of some inorganic ions in the aerial parts of this species under water stress conditions could serve as a means to alleviate the adverse impact of water deficit on important metabolic processes, enhancing M. officinalis tolerance to water stress.

  13. Water stress induces overexpression of superoxide dismutases that ...

    African Journals Online (AJOL)

    SERVER

    2007-09-05

    Sep 5, 2007 ... aim of this study was to determine the effect of water stress on superoxide ... In the same time, photosynthesis characteristics were deter- ... tion rate per reaction centre. ..... Factors affecting the enhancement of oxidative stress.

  14. Conditionally pathogenic fungi in recreational waters

    Directory of Open Access Journals (Sweden)

    Matavulj Milan N.

    2005-01-01

    Full Text Available The improvement of health and life conditions depends on various environmental factors. The exposition to organic and inorganic pollutants, as well as to the broad spectar of microorganisms is one of these factors. Medically important fungi have been increasing their number recently especially in urban and in recreational zones. Some of them, first of all molds and yeasts, are involved by different means in causing more or less serious diseases of man and animals. Frequency of alergic symptoms and human mycotic lesions increased significantly during last decades. Such phenomena have provoked more scientific attention recently. According to the available literature data, micro-fungi, causing mycoses and "environmental" fungi too could be considered as an important factor of health risk, being neglected and underestimated so far, especially in analyses of safe use of recreational waters and surrounding areas, among them swimming pools, river and sea beaches. On the basis of such statement there arises conclusion that water and ground of recreational zones could serve as vectors in transmission pathways of potentially or conditionally pathogenic fungi, being dangerous especially for immunocompromised individuals, which suggests inclusion of qualitative and quantitative composition of fungal community into a continual monitoring of hygienic status of recreational zones.

  15. Comment on 'Shang S. 2012. Calculating actual crop evapotranspiration under soil water stress conditions with appropriate numerical methods and time step. Hydrological Processes 26: 3338-3343. DOI: 10.1002/hyp.8405'

    Science.gov (United States)

    Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James

    2014-01-01

    A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.

  16. Zymomonas with improved xylose utilization in stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Caimi, Perry G; Emptage, Mark; Li, Xu; Viitanen, Paul V; Chou, Yat-Chen; Franden, Mary Ann; Zhang, Min

    2013-06-18

    Strains of xylose utilizing Zymomonas with improved xylose utilization and ethanol production during fermentation in stress conditions were obtained using an adaptation method. The adaptation involved continuously growing xylose utilizing Zymomonas in media containing high sugars, acetic acid, ammonia, and ethanol.

  17. Biomass production, photosynthesis, and leaf water relations of Spartina alterniflora under moderate water stress.

    Science.gov (United States)

    Hessini, Kamel; Ghandour, Mohamed; Albouchi, Ali; Soltani, Abdelaziz; Werner, Koyro Hans; Abdelly, Chedly

    2008-05-01

    The perennial smooth cordgrass, Spartina alterniflora, has been successfully introduced in salty ecosystems for revegetation or agricultural use. However, it remains unclear whether it can be introduced in arid ecosystems. The aim of this study was to investigate the physiological response of this species to water deficiency in a climate-controlled greenhouse. The experiment consisted of two levels of irrigation modes, 100 and 50% field capacities (FC). Although growth, photosynthesis, and stomatal conductance of plants with 50% FC were reduced at 90 days from the start of the experiment, all of the plants survived. The water-stressed plants exhibited osmotic adjustment and an increase in the maximum elastic modulus that is assumed to be effective to enhance the driving force for water extraction from the soil with small leaf water loss. An increase in the water use efficiency was also found in the water-stressed plants, which could contribute to the maintenance of leaf water status under drought conditions. It can be concluded that S. alterniflora has the capacity to maintain leaf water status and thus survive in arid environment.

  18. Estimating ecological water stress caused by anthropogenic uses in the US Great Lakes region

    Science.gov (United States)

    Alian, S.; Mayer, A. S.; Maclean, A.; Watkins, D. W., Jr.; Gyawali, R.; Mirchi, A.

    2016-12-01

    Anthropocentric water resources management that prioritizes socio-economic growth can cause harmful ecological water stress by depriving aquatic ecosystems of the water needed to sustain habitats. It is important to better understand the impacts of water withdrawal by different economic sectors (e.g., agriculture, power utilities, manufacturing, etc.), withdrawal sources, and extent of return flow (i.e., return of water to river system) at different spatial and temporal scales in order to characterize potentially harmful streamflow disturbances, and to inform water management. Herein, GIS technology is used to characterize and map ecological water stress in the Great Lakes region by compiling and analyzing water withdrawal data for different use categories. An integrative geospatial method is developed to quantify catchment scale streamflow disturbance as the sum of flow depletion and return flow, and propagate it along the stream network in order to calculate water stress index as function of consumptive use and impacted streamflow. Results for the Kalamazoo River Watershed, Michigan, illustrate that although average annual and July water stress is generally relatively low, protective management actions may be necessary in a significant number of catchments, especially in urban catchments with very high water stress. Water stress is significantly higher under low flow conditions, indicating the need to adjust withdrawals to reduce adverse resource impacts on sensitive streams.

  19. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Science.gov (United States)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  20. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  1. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    2011-02-01

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  2. Aplicación de urea foliar al cultivo de trigo en antesis bajo condiciones de estrés hídrico Wheat foliar urea application at anthesis under water stress conditions

    Directory of Open Access Journals (Sweden)

    Guillermo Adrián Divito

    2008-07-01

    .141 kg ha-1.The foliar nitrogen (N applications in the period from leaf flag to anthesis enable yield optimization and/or to improve grain quality, but can generate phytotoxicity that impacts negatively on both parameters. The aim of this work was to evaluate the effect of N rates, fertilization moments and the use of a urease activity inhibitor in foliar urea applications at anthesis under water stress conditions. The experiment was carried out during 2006 in Balcarce, Buenos Aires, in a wheat crop with 80 kg ha-1 of diamonic phosphate applied at planting and 120 kg ha-1 of urea applied at tillering. Three foliar N rates applied at anthesis (30, 40 and 50 kg ha-1; three application moments (morning, mid-day and afternoon and the addition or not of a urease inhibitor, n(n-butyl thiophosphoric tiamide (NBPT, were evaluated in a randomized complete block design with a factorial arrangement of the treatments. A check treatment without N and without NBPT was included in the experiment. The wheat crop suffered water stress after the foliar application period. The application of increasing foliar N rates generated reductions in the greenness index (IV values at 5, 8 and 14 days post fertilization (DPF. At 2 DPF, the addition of foliar urea caused reductions in the photosynthetically active radiation interception (RFAint due to phytotoxicity effects (80 and 67% reductions for the check and fertilized treatments, respectively, but at 28 DPF fertilized treatments surpassed the check (55 and 40%, respectively, being the rate of 50 kg ha-1 the one which intercepted the smallest proportion of radiation among fertilized treatments. Wheat yield and protein content of fertilized treatments were slightly greater than the check plots in spite of crop damage due to foliar fertilization coinciding with the critical period when yield is defined. Both parameters were not affected by the moment or rate of N fertilization although NBPT addition increased the yield slightly (4,027 and 4,141 kg

  3. Analysis of the Citrullus colocynthis transcriptome during water deficit stress.

    Science.gov (United States)

    Wang, Zhuoyu; Hu, Hongtao; Goertzen, Leslie R; McElroy, J Scott; Dane, Fenny

    2014-01-01

    Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress.

  4. Screening for Osmotic Stress Responses in Rice Varieties under Drought Condition

    Directory of Open Access Journals (Sweden)

    Simon Swapna

    2017-09-01

    Full Text Available Drought is the major abiotic stress factor that limits rice production worldwide. To evaluate the osmotic stress responses in rice varieties under drought condition, a total of 42 high-yielding rice varieties were collected from various research stations of Kerala Agricultural University in India. The experimental setup comprises of initial hydroponic treatments at different osmotic potentials, artificially induced by desired strengths of polyethylene glycol (PEG6000, and followed by the pot planted experiments in the rain-out-zone. The activities of antioxidant enzymes, relative water content, cell membrane stability, photosynthetic pigments, proline content, along with plant growth parameters of the varieties under drought condition were evaluated. Moreover, the standard scores of these rice varieties were assessed under stress and recovery conditions based on the scoring scale of the Standard Evaluation System for rice. Among the 42 rice varieties, we identified 2 rice varieties, Swarnaprabha and Kattamodan, with less leaf rolling, better drought recovery ability as well as relative water content, increased membrane stability index, osmolyte accumulation, and antioxidant enzyme activities pointed towards their degree of tolerance to drought stress. The positive adaptive responses of these rice varieties towards drought stress can be used in the genetic improvement of rice drought resistance breeding program.

  5. [LIFE CONDITIONS: NON-SPECIFIC STRESS INDICATORS AND DENTOALVEOLAR PATHOLOGIES].

    Science.gov (United States)

    Mosticone, Romina; Pescucci, Lisa; Porreca, Flavia

    2015-01-01

    Trauma, diseases, diet, daily work and environmental factors shape bodies. From birth to death, these processes leave on the skeleton markers that can be recognized and studied, thus providing an overview of the health conditions of past populations. The present work analyzes data collected in seven necropolises. During our study, we exploited nonspecific stress and dental pathologies as key indicators of health conditions. In particula; we analyzed the three most common indicators of stress: porotic hyperostosis; enamel hypoplasia; and Harris lines on shins. Additionally, we examined the most important dental alveolar pathologies, including carious lesions, periodontal diseases, antemortem tooth loss, abscesses, and calculi. The data we analyzed suggest that, despite the different urban and suburban origins, all the samples belong to a middle-range or low social class, whose living conditions were modest. The only necropolis which stands out is Casal Bertone Mausoleo, where the samples present the lowest frequencies with respect to both the stress indicators and the oral pathologies, suggesting better living conditions.

  6. Resistance of functional Lactobacillus plantarum strains against food stress conditions.

    Science.gov (United States)

    Ferrando, Verónica; Quiberoni, Andrea; Reinhemer, Jorge; Suárez, Viviana

    2015-06-01

    The survival of three Lactobacillus plantarum strains (Lp 790, Lp 813 and Lp 998) with functional properties was studied taking into account their resistance to thermal, osmotic and oxidative stress factors. Stress treatments applied were: 52 °C-15 min (Phosphate Buffer pH 7, thermal shock), H2O2 0.1% (p/v) - 30 min (oxidative shock) and NaCl aqueous solution at 17, 25 and 30% (p/v) (room temperature - 1 h, osmotic shock). The osmotic stress was also evaluated on cell growth in MRS broth added of 2, 4, 6, 8 and 10% (p/v) of NaCl, during 20 h at 30 °C. The cell thermal adaptation was performed in MRS broth, selecting 45 °C for 30 min as final conditions for all strains. Two strains (Lp 813 and Lp 998) showed, in general, similar behaviour against the three stress factors, being clearly more resistant than Lp 790. An evident difference in growth kinetics in presence of NaCl was observed between Lp 998 and Lp 813, Lp998 showing a higher optical density (OD570nm) than Lp 813 at the end of the assay. Selected thermal adaptation improved by 2 log orders the thermal resistance of both strains, but cell growth in presence of NaCl was enhanced only in Lp 813. Oxidative resistance was not affected with this thermal pre-treatment. These results demonstrate the relevance of cell technological resistance when selecting presumptive "probiotic" cultures, since different stress factors might considerably affect viability or/and performance of the strains. The incidence of stress conditions on functional properties of the strains used in this work are currently under research in our group.

  7. Improving macroscopic modeling of the effect of water and osmotic stresses on root water uptake.

    Science.gov (United States)

    Jorda Guerra, Helena; Vanderborght, Jan

    2015-04-01

    Accurate modeling of water and salt stresses on root water uptake is critical for predicting impacts of global change and climate variability on crop production and soil water balances. Soil-hydrological models use reduction functions to represent the effect of osmotic stress in transpiration. However, these functions, which were developed empirically, present limitations in relation to the time and spatial scale at which they need to be used, fail to include compensation processes and do not agree on how water and salt stresses interact. This research intends to develop a macroscopic reduction function for water and osmotic stresses based on biophysical knowledge. Simulation experiments are conducted for a range of atmospheric conditions, soil and plant properties, irrigation water quality and scheduling using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system (Schröder et al., 2013). The effect of salt concentrations on water flow in the soil-root system is accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. In a first step, simulation experiments are carried out in a soil volume around a single root segment. We discuss how the simulation setup can be defined so as to represent: (i) certain characteristics of the root system such as rooting depth and root length density, (ii) plant transpiration rate, (iii) leaching fraction of the irrigation, and (iii) salinity of the irrigation water. The output of these simulation experiments gives a first insight in the effect of salinity on transpiration and on the relation between the bulk salinity in the soil voxel, which is used in macroscopic salt stress functions of models that do not resolve processes at the root segment scale, and the salinity at the soil-root interface, which determines the actual

  8. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    Directory of Open Access Journals (Sweden)

    Y. Wada

    2011-12-01

    Full Text Available During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960–2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which are subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes, wetlands and reservoirs by means of the global hydrological model PCR-GLOBWB. We thus define blue water stress by comparing blue water availability with corresponding net total blue water demand by means of the commonly used, Water Scarcity Index. The results show a drastic increase in the global population living under water-stressed conditions (i.e. moderate to high water stress due to growing water demand, primarily for irrigation, which has more than doubled from 1708/818 to 3708/1832 km3 yr−1 (gross/net over the period 1960–2000. We estimate that 800 million people or 27% of the global population were living under water-stressed conditions for 1960. This number is eventually increased to 2.6 billion or 43% for 2000. Our results indicate that increased water demand is a decisive factor for heightened water stress in various regions such as India and North China, enhancing the intensity of water stress up to 200%, while climate variability is often a main determinant of extreme events. However, our results also suggest

  9. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    Science.gov (United States)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2011-12-01

    During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960-2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which are subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes, wetlands and reservoirs by means of the global hydrological model PCR-GLOBWB. We thus define blue water stress by comparing blue water availability with corresponding net total blue water demand by means of the commonly used, Water Scarcity Index. The results show a drastic increase in the global population living under water-stressed conditions (i.e. moderate to high water stress) due to growing water demand, primarily for irrigation, which has more than doubled from 1708/818 to 3708/1832 km3 yr-1 (gross/net) over the period 1960-2000. We estimate that 800 million people or 27% of the global population were living under water-stressed conditions for 1960. This number is eventually increased to 2.6 billion or 43% for 2000. Our results indicate that increased water demand is a decisive factor for heightened water stress in various regions such as India and North China, enhancing the intensity of water stress up to 200%, while climate variability is often a main determinant of extreme events. However, our results also suggest that in several emerging and developing economies

  10. Anatomical Modifications in two Juncus Species under Salt Stress Conditions

    Directory of Open Access Journals (Sweden)

    Mohamad Al HASSAN

    2015-12-01

    Full Text Available The anatomic structure of roots and culms of two Juncus species with different degrees of salt tolerance was analysed in plants grown for two months under salt stress (NaCl treatments and in control, non-treated plants. The aim of the study was not only to compare the anatomical structures of a halophyte (J. acutus and a related glycophyte (J. articulatus, but mostly to assess whether salt stress induced anatomical modifications, by identifying differences between control and treated plants. Several slight differences have been indeed detected, in terms of endodermis type, development of aerenchyma and extent of sclerenchyma in perivascular sheaths. The role of Casparian endodermis was here discussed in relation to its complex implications in controlling salt influx at the root level that is an efficient mechanism involved in halophytes. Aerenchyma is a common feature found in marshy halophytes, allowing them to survive naturally under flooding conditions; however, when occurring in non-waterlogged plants, as is the case of this study, it should be regarded as a genetically, constitutive adaptation rather than an inducible one. Nevertheless, such anatomic modifications should be regarded as mere alterations due to stress – that is, as stress responses – and not as truly adaptations to salinity. In this context, the nature of these modifications – either considered as adaptations or damage indicators of salt stress – should be further reconsidered.

  11. Anticipating on amplifying water stress: Optimal crop production supported by anticipatory water management

    Science.gov (United States)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Simons, Gijs

    2015-04-01

    Agricultural crop yields depend largely on the soil moisture conditions in the root zone. Drought but especially an excess of water in the root zone and herewith limited availability of soil oxygen reduces crop yield. With ongoing climate change, more prolonged dry periods alternate with more intensive rainfall events, which changes soil moisture dynamics. With unaltered water management practices, reduced crop yield due to both drought stress and waterlogging will increase. Therefore, both farmers and water management authorities need to be provided with opportunities to reduce risks of decreasing crop yields. In The Netherlands, agricultural production of crops represents a market exceeding 2 billion euros annually. Given the increased variability in meteorological conditions and the resulting larger variations in soil moisture contents, it is of large economic importance to provide farmers and water management authorities with tools to mitigate risks of reduced crop yield by anticipatory water management, both at field and at regional scale. We provide the development and the field application of a decision support system (DSS), which allows to optimize crop yield by timely anticipation on drought and waterlogging situations. By using this DSS, we will minimize plant water stress through automated drainage and irrigation management. In order to optimize soil moisture conditions for crop growth, the interacting processes in the soil-plant-atmosphere system need to be considered explicitly. Our study comprises both the set-up and application of the DSS on a pilot plot in The Netherlands, in order to evaluate its implementation into daily agricultural practice. The DSS focusses on anticipatory water management at the field scale, i.e. the unit scale of interest to a farmer. We combine parallel field measurements ('observe'), process-based model simulations ('predict'), and the novel Climate Adaptive Drainage (CAD) system ('adjust') to optimize soil moisture

  12. [Responses of tomato leaf photosynthesis to rapid water stress].

    Science.gov (United States)

    Han, Guo-Jun; Chen, Nian-lai; Huang, Hai-xia; Zhang, Ping; Zhang, Kai; Guo, Yan-hong

    2013-04-01

    By using polyethylene glycol (PEG-6000) solution to regulate the water potential of tomato (Lycopersicon esculentum) rhizosphere to simulate water stress, this paper studied the dynamic changes of net photosynthetic rate, dark respiratory rate and CO2 compensatory concentration of detached tomato leaves in the process of photosynthetic induction. Under 1000 micromol m-2 s-1 of light induction, the time required to reach the maximum net photosynthetic rate of water-stressed tomato leaves was shortened by 1/3, while the stomatal conductance was increased by 1.5 times, as compared to the non-stress control. Also, the light saturation point (LSP) of water-stressed tomato leaves was lowered by 65% to 85%, and the light compensation point (LCP) was increased by 75% to 100%, suggesting that the effective range of light utilized by tomato leaves was reduced. Furthermore, water stress decreased the maximum photosynthetic capacity of tomato leaves by 40%, but increased the dark respiration rate by about 45% . It was suggested that rapid water stress made the stomata of tomato leaves quickly opened, without initial photosynthetic induction stage. In conclusion, water stress could induce the decrease of plant light-energy use efficiency and potential, being the main reason for the decrease of plant productivity, and stomatal regulation could be the main physiological mechanism of tomato plants to adapt to rapid water stress.

  13. Integrated Water Resources Management, institutions and livelihoods under stress: bottom-up perspectives from Zimbabwe

    OpenAIRE

    Mabiza, C.C.

    2013-01-01

    The majority of people in Limpopo river basin depend on rainfed agriculture. Unfortunately the Limpopo is water scarce, and parts of the basin such as the Mzingwane catchment are under stress in terms of agro-ecological and socio-politico-economic conditions. Integrated Water Resources Management (IWRM) has been adopted in the river basin in an attempt to improve water resources management. However, it is not known whether, or how, IWRM has improved practices in water resources management and...

  14. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    Science.gov (United States)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  15. Water level influences on body condition of Geophagus brasiliensis (Perciformes: Cichlidae in a Brazilian oligotrophic reservoir

    Directory of Open Access Journals (Sweden)

    Alejandra Filippo Gonzalez Neves dos Santos

    Full Text Available Effects of water level fluctuations on body condition of Geophagus brasiliensis were studied in a 30 km² Brazilian oligotrophic reservoir. Physiological condition (K and gonadosomatic index (GSI were compared according to water level (low and high. Females' best conditions were associated to higher resources availability during high water, since gonad development did not change between low and high water. Males' condition did not change between water levels, while the highest gonad development occurred in low water. Females presented higher reproductive investment than males, which allocated most of energy for somatic development. This strategy could be a mechanism to undergo the stress caused by oligotrophic characteristics of the reservoir enhanced during low water level.

  16. The behavior of Kevlar fibers under environmental-stress conditions

    Science.gov (United States)

    Perry, Mark Charles

    There are a myriad of mechanisms by which polymers can degrade and fail. It is therefore important to understand the physical mechanics, chemistry, their interactions, and kinetics. This pursuit becomes more than just "academic" because these mechanisms might just change with service conditions (i.e. environment and loading). If one does not understand these processes from the molecular to macroscopic scale it would be exceedingly difficult to gain information from accelerated testing because the mechanisms just might change from one condition to another. The purpose of this study was to probe these processes on scales ranging from molecular to macroscopic in environmental stress conditions. This study reports the results of environmental-stress degradation of Kevlar 49 fibers. The environmental agent of focus was the ubiquitous air pollutant complex NOsb{x}. Other materials and environments were investigated to a lesser extent for purposes of comparison. Mechanical property (i.e., short-term strength, modulus, and creep lifetime) degradation was examined using single fiber, yarn, and epoxy coated yarn (composite) specimens under environmental-stress conditions. Optical and scanning electron microscopes were employed to examine and compare the appearance of fracture features resulting from the various testing conditions. Atomic force microscopy augmented these studies with detailed topographical mappings and measures of the fracture surface frictional and modulus properties. Molecular processes (i.e., chain scission and other mechanical-chemical reactions) were probed by measures of changes in viscosity average molecular weight and the infrared spectra. It was demonstrated that environmental-stress degradation effects do occur in the Kevlar-NOsb{x} gas system. Strength decay in environmentally exposed unloaded fibers was demonstrated and a synergistic response in creep reduced fiber lifetimes by three orders of magnitude at moderate loadings. That is to say, the

  17. Coal gasification with water under supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    A.A. Vostrikov; S.A. Psarov; D.Yu. Dubov; O.N. Fedyaeva; M.Ya. Sokol [Russian Academy of Sciences, Novosibirsk (Russian Federastion). Kutateladze Institute of Thermophysics, Siberian Division

    2007-08-15

    The conversion of an array of coal particles in supercritical water (SCW) was studied in a semibatch reactor at a pressure of 30 MPa, 500-750{sup o}C, and a reaction time of 1-12 min. The bulk conversion, surface conversion, and random pore models were used to describe the conversion. The quantitative composition of reaction products was determined, and the dependence of the rate of reaction on the degree of coal conversion, reaction time, and reaction temperature was obtained on the assumption of a first-order reaction and the Arrhenius function. It was found that the gasification of coal under SCW conditions without the addition of oxidizing agents is a weakly endothermic process. The addition of CO{sub 2} to SCW decreased the rate of conversion and increased the yield of CO. It was found that, at a 90% conversion of the organic matter of coal (OMC) in a flow of SCW in a time of 2 min, the process power was 26 W/g per gram of OMC.

  18. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions.

    Science.gov (United States)

    Grover, Minakshi; Madhubala, R; Ali, Sk Z; Yadav, S K; Venkateswarlu, B

    2014-09-01

    Microorganisms isolated from stressed ecosystem may prove as ideal candidates for development of bio-inoculants for stressed agricultural production systems. In the present study, moisture stress tolerant rhizobacteria were isolated from the rhizosphere of sorghum, pigeonpea, and cowpea grown under semiarid conditions in India. Four isolates KB122, KB129, KB133, and KB142 from sorghum rhizosphere exhibited plant growth promoting traits and tolerance to salinity, high temperature, and moisture stress. These isolates were identified as Bacillus spp. by 16S rDNA sequence analysis. The strains were evaluated for growth promotion of sorghum seedlings under two different moisture stress conditions (set-I, continuous 50% soil water holding capacity (WHC) throughout the experiment and set-II, 75% soil WHC for 27 days followed by no irrigation for 5 days) under greenhouse conditions. Plate count and scanning electron microscope studies indicated successful root surface colonization by inoculated bacteria. Plants inoculated with Bacillus spp. strains showed better growth in terms of shoot length and root biomass with dark greenish leaves due to high chlorophyll content while un-inoculated plants showed rolling of the leaves, stunted appearance, and wilting under both stress conditions. Inoculation also improved leaf relative water content and soil moisture content. However, variation in proline and sugar content in the different treatments under two stress conditions indicated differential effect of microbial treatments on plant physiological parameters under stress conditions.

  19. Integrated Water Resources Management, institutions and livelihoods under stress: bottom-up perspectives from Zimbabwe

    NARCIS (Netherlands)

    Mabiza, C.C.

    2013-01-01

    The majority of people in Limpopo river basin depend on rainfed agriculture. Unfortunately the Limpopo is water scarce, and parts of the basin such as the Mzingwane catchment are under stress in terms of agro-ecological and socio-politico-economic conditions. Integrated Water Resources Management (I

  20. Integrated Water Resources Management, institutions and livelihoods under stress: Bottom-up perspectives from Zimbabwe

    NARCIS (Netherlands)

    Mabiza, C.C.

    2013-01-01

    The majority of people in Limpopo river basin depend on rainfed agriculture. Unfortunately the Limpopo is water scarce, and parts of the basin such as the Mzingwane catchment are under stress in terms of agro-ecological and socio-politico-economic conditions. Integrated Water Resources Management (I

  1. Germinação de sementes de Melaleuca quinquenervia em condições de estresse hídrico e salino Germination of Melaleuca quinquenervia seeds under water and salt stress conditions

    Directory of Open Access Journals (Sweden)

    C.C. Martins

    2011-03-01

    Full Text Available O comportamento invasivo de Melaleuca quinquenervia em áreas úmidas deve-se à sua estratégia de regeneração agressiva, que está alicerçada na produção de sementes em massa. O conhecimento da fisiologia da germinação de sementes de plantas daninhas pode contribuir significativamente para o desenvolvimento de estratégias de manejo. O objetivo deste trabalho foi avaliar os possíveis efeitos dos estresses hídrico e salino na germinação de sementes de M. quinquenervia. A semeadura foi realizada com quatro repetições de 0,05 g de sementes em papel umedecido com soluções nos potenciais osmóticos de 0,0; -0,2; -0,4; e -0,8 MPa, induzidos com polietilenoglicol (PEG 6000 e NaCl. O teste de germinação foi conduzido a 25 ºC na presença de luz. Avaliou-se a primeira contagem do teste aos sete dias após a semeadura e, semanalmente, a germinação (plântulas normais até os 28 dias. Foi calculado o índice de velocidade de germinação. A análise dos resultados permitiu a conclusão de que o estresse hídrico acarreta maior redução na velocidade de germinação e na germinação acumulada de sementes de M. quinquenervia do que o estresse salino e, independentemente da substância utilizada para indução do estresse, o limite para germinação está entre -0,4 e -0,8MPa.The invasive behavior of Melaleuca quinquenervia in wetlands seems attributable to its inherently aggressive regeneration strategies associated to massive seed production. The knowledge of the germination physiology of weed seeds can contribute significantly to the development of strategies for their management. This work aimed to evaluate the possible effects of water and salt stress on the germination of M. quinquenervia seeds. Four replications with 0.05 g of seeds were sown in paper moistened with solutions with the potential of 0.0; -0.2; -0.4 and -0.8 MPa, induced with polyethylene glycol (PEG 6000 and NaCl. Germination test was carried out at 25 ºC in the

  2. Effects of Nutrients Foliar Application on Agrophysiological Characteristics of Maize under Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    Nour Ali SAJEDI

    2010-09-01

    Full Text Available To investigate effects of nutrients foliar application on agrophysiological characteristics of maize hybrid �KSC 704� water deficit stress conditions, an experiment was arranged in a split plot factorial based on a randomized complete block design with four replications to the Research Station of Islamic Azad University-Arak Branch, Iran in 2007-2008. Main factors studied were four irrigation levels including irrigation equal to crop water requirement, water deficit stress at eight-leaf stage (V8, blister stage (R2 and filling grain stage (R4 in the main plot. Combined levels of selenium treatment (without and with application 20 gha-1 and micronutrients (without and with application 2 lha-1 were situated in sub plots. Results showed that water deficit stress decreased grain yield 19.7% in blister stage as compared with control. Using selenium increased relative content water at R2 and R4 stages significantly. Using selenium in water deficit stress condition increased measured traits except plant height as compared with treatment without selenium. A negative antagonistic interaction was found between selenium and micronutrients on some measured traits. Between treatments of water deficit stress, highest grain yield equal 6799.52 and 6736.97 kgha-1 was obtained from combined treatments of water deficit stress at eight-leaf stage+without selenium+without micronutrients and water deficit stress at eight-leaf stage+selenium+without micronutrients respectively which compared with treatment of irrigation equal to crop water requirement+selenium+microelements did not differ significant. According to the results of experiment, it is concluded that with micronutrients fertilizer spray under optimum irrigation and selenium spray under water deficit obtain optimum yield.

  3. Effects of Application of Nitrogen, Potassium and Glycinebetaine on Alleviation of Water Stress to Summer Maize

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A pot experiment was conducted under water deficit and adequate water-supplied conditions with two maize genetypic varieties (Shaandan 9 and Shaandan 911) to study the effects of nitrogen, potassium and glycinebetaine (GlyBet) on the dry matter and grain yields as well as water use efficiency (WUE). Determinations were made at different stages of the two varieties for revealing the function of these factors in increasing plant resistance to drought. Results showed that under a water-stressed condition, dry matter and grain yield were significantly reduced. However, the response of the two varieties to water stress was different: Shaandan 9 was significantly higher in dry matter and grain yields, and therefore could be regarded as a drought-resistant variety compared to Shaandan 911.Application of nitrogen, potassium and glycinebetaine raised dry matter and grain yield to different levels, and thereby alleviated the water stress and increased water use efficiency. These effects were higher for Shaandan 911 than for Shaandan 9. Under water-stressed conditions, application of N fertilizer, either at low rate or at high rate, significantly increased dry matter, grain yield and water use efficiency.A significant different effect was found for Shaandan 911 between N rates, but not so for Shaandan9. However,with supplemental water supply, effects of N fertilization were obviously decreased, showing that in addition to supplying nutrient, N fertilizer has a function in increasing drought-resistance of the crop. Potassium and glycinebetaine exhibited a remarkable function in increasing dry matter and grain yields as well as water use efficiency under water stress while such effects were obviously declined, even vanished, with supplemental water supply, indicating the important contribution of these factors in rise of drought-resistance ability of a crop.

  4. Effects of Different Levels of Water Stress on Leaf Water Potential, Stomatal Resistance, Protein and Chlorophyll Content and Certain Anti-oxidative Enzymes in Tomato Plants

    Institute of Scientific and Technical Information of China (English)

    Hatem Zgallai; Kathy Steppe; Raoul Lemeur

    2006-01-01

    A greenhouse experiment was performed in order to investigate the effects of different levels of water stress on leaf water potential (ψw), stomatal resistance (rs), protein content and chlorophyll (Chi) content of tomato plants (Lycopersicon esculentum Mill. cv. Nikita). Water stress was induced by adding polyethylene glycol (PEG 6 000) to the nutrient solution to reduce the osmotic potential (ψs). We investigated the behavior of anti-oxidant enzymes, such as catalase (CAT) and superoxide dismutase (SOD), during the development of water stress. Moderate and severe water stress (i.e.ψs= -0.51 and -1.22 MPa, respectively) caused a decrease in ψw for all treated (water-stressed) plants compared with control plants, with the reduction being more pronounced for severely stressed plants. In addition, rs was significantly affected by the induced water stress and a decrease in leaf soluble proteins and Chi content was observed. Whereas CAT activity remained constant, SOD activity was increased in water-stressed plants compared with unstressed plants. These results indicate the possible role of SOD as an anti-oxidant protector system for plants under water stress conditions. Moreover, it suggests the possibility of using this enzyme as an additional screening criterion for detecting water stress in plants.

  5. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.

    Science.gov (United States)

    Bellante, Gabriel J; Powell, Scott L; Lawrence, Rick L; Repasky, Kevin S; Dougher, Tracy

    2014-01-01

    Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.

  6. Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.

    Directory of Open Access Journals (Sweden)

    Gabriel J Bellante

    Full Text Available Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa to one of four possible treatment groups: 1 a CO2 injection group; 2 a water stress group; 3 an interaction group that was subjected to both water stress and CO2 injection; or 4 a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87 for the classification tree analysis and 83% (Kappa of 0.77 for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.

  7. WATER STRESS RESPONSE ON THE ENZYMATIC ACTIVITY IN COWPEA NODULES

    Directory of Open Access Journals (Sweden)

    Figueiredo Márcia do Vale B.

    2001-01-01

    Full Text Available A greenhouse experiment was carried out aiming to study the effect of water stress on metabolic activity of cowpea nodules at different plant development stages. Cowpea plants were grown in pots with yellow latosol soil under three different matric potentials treatments: -7.0 (control-S1, -70.0 (S2 and <-85.0 KPa (S3. The experimental design was randomized blocks with sub-divided plots, each plot containing a different degree of water stress, divided in sub-plots for the four different developmental stages: E1 (0-15, E2 (15-30, E3 (20-35 and E4 (30-45 days after emmergence. Water stress treatments were applied by monitoring soil water potential using a set of porous cups. The effect of water stress was most harmful to cowpea when it was applied at E2 than at other symbiotic process stages. Shoot/root ratio decreased from 2.61 to 2.14 when matric potential treatment was <-85.0 and -70.0 KPa respectively. There was a reduction in the glutamine synthetase activity and phosphoenolpyruvate carboxilase activity with increased stress, while glutamine synthase activity was the enzyme most sensitive to water stress. Glutamate dehydrogenase activity increased in more negative matric potential, indicating that this enzyme is sufficiently activitye under water stress.

  8. An Integrated Analysis of Changes in Water Stress in Europe

    DEFF Research Database (Denmark)

    Henrichs, T.; Lehner, B.; Alcamo, J.

    2002-01-01

    Future changes in water availability with climate change and changes in water use due to socio-economic development are to occur in parallel. In an integrated analysis we bring together these aspects of global change in a consistent manner, and analyse the water stress situation in Europe. We find...

  9. THE EFFECT OF WATER STRESS ON SOME TRAITS OF WINTER BARLEY CULTIVARS DURING EARLY STAGES OF PLANT GROWTH

    Directory of Open Access Journals (Sweden)

    Smiljana Goreta Ban

    2017-01-01

    Full Text Available We conducted research on the effects of exposing barley plants to short water stress deficiency through their early growth stage. The measurements and parallel analyses of relative water content (RWC, the mass of the whole plant, leaf mass, root percentage, total root length and length of root fractions with plants exposed to stress (water deficit and with plants which were not exposed to water deficit have been conducted. Ten varieties were included in this research. The overall average of relative water content (RWC measured in winter barley varieties was 97.5% under non-stressful conditions, and 66.1% under stressful conditions. An average difference between non-stressful and stressful conditions of plant mass was 61.2 mg, leaf mass 42.5 mg, RWC 31.4%, root mass 18.5 mg and total root length 129 cm. Relative losses under effect of water stress were lower at smaller (finer root fractions. Significant differences among the examined barley varieties cultivated under or without the water stress were found for plant mass, leaf mass, root mass, total root length and root fractions. Varieties with the lowest losses in leaf and plant mass are Titan, Arturio and Bingo. Also, the varieties Titan, Bingo and Rex had the lowest losses of root length and mass under water stress during the early growth stage.

  10. Cold water aquifer storage. [air conditioning

    Science.gov (United States)

    Reddell, D. L.; Davison, R. R.; Harris, W. B.

    1980-01-01

    A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered.

  11. Understanding Water-Stress Responses in Soybean Using Hydroponics System—A Systems Biology Perspective

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C.; Shulaev, Vladimir; Shen, Qingxi J.; Rushton, Paul J.

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue. PMID:26734044

  12. Understanding Water-Stress Responses in Soybean Using Hydroponics System-A Systems Biology Perspective.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Shulaev, Vladimir; Shen, Qingxi J; Rushton, Paul J

    2015-01-01

    The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us toward the right candidates, if not completely help us to resolve the issue.

  13. Understanding water-stress responses in Soybean using Hydroponics system - A Systems Biology Perspective

    Directory of Open Access Journals (Sweden)

    Prateek eTripathi

    2015-12-01

    Full Text Available The deleterious changes in environmental conditions such as water stress bring physiological and biochemical changes in plants, which results in crop loss. Thus, combating water stress is important for crop improvement to manage the needs of growing population. Utilization of hydroponics system in growing plants is questionable to some researchers, as it does not represent an actual field condition. However, trying to address a complex problem like water stress we have to utilize a simpler growing condition like the hydroponics system wherein every input given to the plants can be controlled. With the advent of high-throughput technologies, it is still challenging to address all levels of the genetic machinery whether a gene, protein, metabolite, and promoter. Thus, using a system of reduced complexity like hydroponics can certainly direct us towards the right candidates, if not completely help us to resolve the issue.

  14. On the interaction of UV-B radiation (280-315 mm) with water stress in crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Balakumar, T.; Vincent, V.H.B. (Univ of Stress Physiology and Plant Biochemistry, Dept. of Botany, The American College, Madurai (India)); Paliwal, K. (Dept. of Plant Sciences, Madurai Kamaraj Univ., Madurai (India))

    1993-01-01

    Cowpea (Vigna unguiculata L. Walp.) seedlings (3-day-old) were subjected to 4 kinds of experimental treatments: (1) control without exposure to any stress (-D-UV), (2) moderate water stress with no UV-B irradiation (+D-UV), (3) no water stress but exposure to UV-B radiation (-D+UV), and (4) moderate water stress and exposure to UV-B (+D+UV). UV-B and drought stress in the combined form elicited beneficial effects on the morphological and growth characteristics, and a few additive inhibitory effects in some functional processes. An increase in the specific leaf weight (SLW) was observed in the combination of stresses, which could be a defence mechanism against UV-B. The combination of stresses promoted the synthesis of anthocyanins and phenolic compounds. The responses of plants to the combination of stresses indicate that during simultaneous exposure of plants to multiple stresses, one form of stress could minimize the damage by the other. The enhancement of superoxide dismutase (SOD) and catalase activities appear to serve as acclimation mechanisms to scavenge the toxic, free radicals of oxygen produced under stress conditions. However, the inhibition in nitrate metabolism was greater in the combined stresses than in either of the stresses imposed separately. The results of this study illustrate that the interaction of stresses during simultaneous multiple stress conditions brings out certain beneficial effects. (au).

  15. Water Productivity under Drought Conditions Estimated Using SEEA-Water

    Directory of Open Access Journals (Sweden)

    María M. Borrego-Marín

    2016-04-01

    Full Text Available This paper analyzes the impact of droughts on agricultural water productivity in the period 2004–2012 in the Guadalquivir River Basin using the System of Environmental-Economic Accounting for Water (SEEA-Water. Relevant events in this period include two meteorological droughts (2005 and 2012, the implementation of the Drought Management Plan by the basin's water authority (2006, 2007 and 2008, and the effects of irrigated area modernization (water-saving investment. Results show that SEEA-Water can be used to study the productivity of water and the economic impact of the different droughts. Furthermore, the results reflect the fact that irrigated agriculture (which makes up 65% of the gross value added, or GVA, of the total primary sector has considerably higher water productivity than rain-fed agriculture. Additionally, this paper separately examines blue water productivity and total water productivity within irrigated agriculture, finding an average productivity of 1.33 EUR/m3 and 0.48 EUR/m3, respectively.

  16. Understanding Vocalization Might Help to Assess Stressful Conditions in Piglets

    Directory of Open Access Journals (Sweden)

    Diego Pereira Neves

    2013-09-01

    Full Text Available Assessing pigs’ welfare is one of the most challenging subjects in intensive pig farming. Animal vocalization analysis is a noninvasive procedure and may be used as a tool for assessing animal welfare status. The objective of this research was to identify stress conditions in piglets reared in farrowing pens through their vocalization. Vocal signals were collected from 40 animals under the following situations: normal (baseline, feeling cold, in pain, and feeling hunger. A unidirectional microphone positioned about 15 cm from the animals’ mouth was used for recording the acoustic signals. The microphone was connected to a digital recorder, where the signals were digitized at the 44,100 Hz frequency. The collected sounds were edited and analyzed. The J48 decision tree algorithm available at the Weka® data mining software was used for stress classification. It was possible to categorize diverse conditions from the piglets’ vocalization during the farrowing phase (pain, cold and hunger, with an accuracy rate of 81.12%. Results indicated that vocalization might be an effective welfare indicator, and it could be applied for assessing distress from pain, cold and hunger in farrowing piglets.

  17. Transient water stress in a vegetation canopy - Simulations and measurements

    Science.gov (United States)

    Carlson, Toby N.; Belles, James E.; Gillies, Robert R.

    1991-01-01

    Consideration is given to observational and modeling evidence of transient water stress, the effects of the transpiration plateau on the canopy radiometric temperature, and the factors responsible for the onset of the transpiration plateau, such as soil moisture. Attention is also given to the point at which the transient stress can be detected by remote measurement of surface temperature.

  18. The Response of Rice Root to Time Course Water Deficit Stress-Two Dimensional Electrophoresis Approach

    Directory of Open Access Journals (Sweden)

    Mahmood Toorchi

    2015-11-01

    Full Text Available Rice (Oryza sativa L. is the staple food of more than half of the population worldwide. Water deficit stress is one of the harsh limiting factors for successful production of crops. Rice during its growing period comes a cross different environmental hazards like drought stress. Recent advance in molecular physiology are promising for more progress in increasing rice yield by identification of novel candidate proteins for drought tolerance. To investigate the effect of water deficit on rice root protein expression pattern, an experiment was conducted in completely randomize design with four replications. With holding water for 24, 36 and 48 hours along with control constituted the experimental treatments. The experiment was conducted in growth chamber under controlled condition and root samples, after stress imposition, were harvested for two-dimensional electrophorese (2-DE. Proteome analysis of root tissue by 2-DE indicated that out of 135 protein spots diagnosed by Coomassie blue staining, 14 spots showed significant expression change under water deficit condition, seven of them at 1% and the other seven at 5% probability levels. Differentially changed proteins were taken into account for search in data bank using isoelectric point and molecular weight to identify the most probable responsive proteins. Up- regulation of ferredoxin oxidoreductase at first 24 hour after applying stress indicates the main role of this protein in reducing water deficit stress effects. On the other hand ribosomal proteins, GAP-3 and ATP synthase were down regulated under water deficit stress. Fructose 1,6-bisphosphate aldolase, glucose- 6-phosphate dehydrogenase and chitinase down regulated up to 36 h of stress imposition but, were later up- regulated by prolonging stress up to 48 h. It could be inferred the plant tries to decrease the effect of oxidative stress.

  19. Cytokinin Activity in Water-stressed Shoots 1

    Science.gov (United States)

    Itai, Chanan; Vaadia, Yoash

    1971-01-01

    Water stress applied to the plant shoot through enhanced evaporative demands reduced cytokinin activity in extracts of xylem exudate and leaves. This reduction resembled the changes in cytokinin activity caused by water stress applied to the root. Cytokinin activity in detached wilting leaves decreased rapidly. Recovery took place after several hours in a humid chamber. Experiments with 14C-kinetin indicated that the mechanism of the inactivation and its reversal involve a chemical transformation of the cytokinin molecule. PMID:16657585

  20. Assessment of Initial Test Conditions for Experiments to Assess Irradiation Assisted Stress Corrosion Cracking Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Jeremy T [ORNL; Gussev, Maxim N [ORNL

    2011-04-01

    Irradiation-assisted stress corrosion cracking is a key materials degradation issue in today s nuclear power reactor fleet and affects critical structural components within the reactor core. The effects of increased exposure to irradiation, stress, and/or coolant can substantially increase susceptibility to stress-corrosion cracking of austenitic steels in high-temperature water environments. . Despite 30 years of experience, the underlying mechanisms of IASCC are unknown. Extended service conditions will increase the exposure to irradiation, stress, and corrosive environment for all core internal components. The objective of this effort within the Light Water Reactor Sustainability program is to evaluate the response and mechanisms of IASCC in austenitic stainless steels with single variable experiments. A series of high-value irradiated specimens has been acquired from the past international research programs, providing a valuable opportunity to examine the mechanisms of IASCC. This batch of irradiated specimens has been received and inventoried. In addition, visual examination and sample cleaning has been completed. Microhardness testing has been performed on these specimens. All samples show evidence of hardening, as expected, although the degree of hardening has saturated and no trend with dose is observed. Further, the change in hardening can be converted to changes in mechanical properties. The calculated yield stress is consistent with previous data from light water reactor conditions. In addition, some evidence of changes in deformation mode was identified via examination of the microhardness indents. This analysis may provide further insights into the deformation mode under larger scale tests. Finally, swelling analysis was performed using immersion density methods. Most alloys showed some evidence of swelling, consistent with the expected trends for this class of alloy. The Hf-doped alloy showed densification rather than swelling. This observation may be

  1. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    Directory of Open Access Journals (Sweden)

    Y. Wada

    2011-08-01

    Full Text Available During the past decades, human water use more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water scarcity considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960–2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which is subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes and reservoirs by means of the global hydrological model PCR-GLOBWB. The results show a drastic increase in the global population living under water-stressed conditions (i.e., moderate to high water stress due to the growing water demand, primarily for irrigation, which more than doubled from 1708/818 to 3708/1832 km3 yr−1 (gross/net over the period 1960–2000. We estimate that 800 million people or 27 % of the global population were under water-stressed conditions for 1960. This number increased to 2.6 billion or 43 % for 2000. Our results indicate that increased water demand is the decisive factor for the heightened water stress, enhancing the intensity of water stress up to 200 %, while climate variability is often the main determinant of onsets for extreme events, i.e. major droughts. However, our results also suggest that in several emerging and developing economies (e.g., India, Turkey, Romania and Cuba some of the past observed droughts were anthropogenically driven due to increased water demand rather than being climate

  2. Ground-water conditions in Utah, spring of 2009

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Rowland, Ryan C.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Nielson, Ashley; Eacret, Robert J.; Myers, Andrew; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2009-01-01

    This is the forty-sixth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions. This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2008. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights. utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/ GW2009.pdf.

  3. Ground-water conditions in Utah, spring of 2008

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Fisher, Martel J.; Freeman, Michael L.; Downhour, Paul; Wilkowske, C.D.; Eacret, Robert J.; Enright, Michael; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.

    2008-01-01

    This is the forty-fifth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2007. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah.gov/techinfo/ and http://ut.water.usgs.gov/publications/GW2008.pdf.

  4. Ground-water conditions in Utah, spring of 2007

    Science.gov (United States)

    Burden, Carole B.; Allen, David V.; Danner, M.R.; Enright, Michael; Cillessen, J.L.; Gerner, S.J.; Eacret, Robert J.; Downhour, Paul; Slaugh, Bradley A.; Swenson, Robert L.; Howells, James H.; Christiansen, Howard K.; Fisher, Martel J.

    2007-01-01

    This is the forty-fourth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2006. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, and the Utah Department of Environmental Quality, Division of Water Quality. This report is available online at http://www.waterrights.utah. gov/ and http://ut.water.usgs.gov/newUTAH/GW2007.pdf.

  5. In silico analysis of ESTs from roots of Rangpur lime (Citrus limonia Osbeck under water stress

    Directory of Open Access Journals (Sweden)

    Raquel L. Boscariol-Camargo

    2007-01-01

    Full Text Available CitEST project resulted in the construction of cDNA libraries from different Citrus sp. tissues under various physiological conditions. Among them, plantlets of Rangpur lime were exposed to hydroponic conditions with and without water stress using PEG6000. RNA from roots was obtained and generated a total of 4,130 valid cDNA reads, with 2,020 from the non-stressed condition and 2,110 from the stressed set. Bioinformatic analyses measured the frequency of each read in the libraries and yielded an in silico transcriptional profile for each condition. A total of 40 contigs were differentially expressed and allowed to detect up-regulated homologue sequences to well known genes involved in stress response, such as aquaporins, dehydrin, sucrose synthase, and proline-related synthase. Some sequences could not be classified by using FunCat and remained with an unknown function. A large number of sequences presented high similarities to annotated genes involved with cell energy, protein synthesis and cellular transport, suggesting that Rangpur lime may sustain active cell growth under stressed condition. The presence of membrane transporters and cell signaling components could be an indication of a coordinated morphological adaptation and biochemical response during drought, helping to explain the higher tolerance of this rootstock to water stress.

  6. How do membrane proteins sense water stress?

    NARCIS (Netherlands)

    Poolman, Bert; Blount, Paul; Folgering, Joost H.A.; Friesen, Robert H.E.; Moe, Paul C.; Heide, Tiemen van der

    2002-01-01

    Maintenance of cell turgor is a prerequisite for almost any form of life as it provides a mechanical force for the expansion of the cell envelope. As changes in extracellular osmolality will have similar physicochemical effects on cells from all biological kingdoms, the responses to osmotic stress m

  7. How do membrane proteins sense water stress?

    NARCIS (Netherlands)

    Poolman, Bert; Blount, Paul; Folgering, Joost H.A.; Friesen, Robert H.E.; Moe, Paul C.; Heide, Tiemen van der

    2002-01-01

    Maintenance of cell turgor is a prerequisite for almost any form of life as it provides a mechanical force for the expansion of the cell envelope. As changes in extracellular osmolality will have similar physicochemical effects on cells from all biological kingdoms, the responses to osmotic stress

  8. FHL2 regulates hematopoietic stem cell functions under stress conditions

    Science.gov (United States)

    Hou, Yu; Wang, Xiaoqin; Li, LiPing; Fan, Rong; Chen, Ju; Zhu, Tongyu; Li, Wen; Jiang, Yanwen; Mittal, Nupur; Wu, Wenshu; Peace, David; Qian, Zhijian

    2014-01-01

    FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated down-regulation of cyclin dependent kinase (CDK)-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under control of a tissue specific promoter in hematopoietic cells and it is down-regulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that down-regulation of FHL2 frequently occurs in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients, raising a possibility that FHL2 down-regulation plays a role in the pathogenesis of myeloid malignancies. PMID:25179730

  9. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  10. Condition Assessment for Drinking Water Transmission and Distribution Mains

    Science.gov (United States)

    This project seeks to improve the capability to characterize the condition of water infrastructure. The integrity of buried drinking water mains is critical, as it influences water quality, losses, pressure and cost. This research complements the U.S. Environmental Protection A...

  11. Liquid Water Structure from Anomalous Density under Ambient Condition

    Institute of Scientific and Technical Information of China (English)

    SUN Qiang; ZHENG Hai-Fei

    2006-01-01

    @@ From discussion of the structure of liquid water, we deduce that water under ambient condition is mainly composed of ice Ih-like molecular clusters and clathrate-like molecular clusters. The water molecular clusters remain in a state of chemical equilibrium (reversible clustering reactions). This structural model can be demonstrated by quantitative study on anomalous density with increasing temperature at ambient pressure.

  12. The dissociation constant of water at extreme conditions

    Science.gov (United States)

    Gonzalez-Vazquez, Otto; Giacomazzi, Luigi; Pinilla, C.; Scandolo, Sandro

    2013-06-01

    Only one out of 107 water molecules is dissociated in liquid water at ambient conditions, but the concentration of dissociated molecules increases with pressure ad temperature, and water eventually reaches a fully dissociated state when pressure exceeds 50-100 GPa and temperature reaches a few thousand Kelvin. The behavior of the dissociation constant of water (pKa) at conditions intermediate between ambient and the fully dissociated state is poorly known. Yet, the water pKa is a parameter of primary importance in the aqueous geochemistry as it controls the solubility of ions in geological fluids. We present results of molecular dynamics calculations of the pKa water at extreme conditions. Free-energy differences between the undissociated and the dissociated state are calculated by thermodynamic integration along the dissociation path. The calculations are based on a recently developed all-atom polarizable force-field for water, parametrized on density-functional theory calculations.

  13. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    Science.gov (United States)

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  14. Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits.

    Science.gov (United States)

    Bengough, A Glyn; McKenzie, B M; Hallett, P D; Valentine, T A

    2011-01-01

    Root elongation in drying soil is generally limited by a combination of mechanical impedance and water stress. Relationships between root elongation rate, water stress (matric potential), and mechanical impedance (penetration resistance) are reviewed, detailing the interactions between these closely related stresses. Root elongation is typically halved in repacked soils with penetrometer resistances >0.8-2 MPa, in the absence of water stress. Root elongation is halved by matric potentials drier than about -0.5 MPa in the absence of mechanical impedance. The likelihood of each stress limiting root elongation is discussed in relation to the soil strength characteristics of arable soils. A survey of 19 soils, with textures ranging from loamy sand to silty clay loam, found that ∼10% of penetration resistances were >2 MPa at a matric potential of -10 kPa, rising to nearly 50% >2 MPa at - 200 kPa. This suggests that mechanical impedance is often a major limitation to root elongation in these soils even under moderately wet conditions, and is important to consider in breeding programmes for drought-resistant crops. Root tip traits that may improve root penetration are considered with respect to overcoming the external (soil) and internal (cell wall) pressures resisting elongation. The potential role of root hairs in mechanically anchoring root tips is considered theoretically, and is judged particularly relevant to roots growing in biopores or from a loose seed bed into a compacted layer of soil.

  15. Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley.

    Science.gov (United States)

    Suprunova, Tatiana; Krugman, Tamar; Distelfeld, Assaf; Fahima, Tzion; Nevo, Eviatar; Korol, Abraham

    2007-05-01

    Drought is one of the most severe stresses limiting plant growth and yield. Genes involved in water stress tolerance of wild barley (Hordeum spontaneoum), the progenitor of cultivated barley, were investigated using genotypes contrasting in their response to water stress. Gene expression profiles of water-stress tolerant vs. water-stress sensitive wild barley genotypes, under severe dehydration stress applied at the seedling stage, were compared using cDNA-AFLP analysis. Of the 1100 transcript-derived fragments (TDFs) amplified about 70 displayed differential expression between control and stress conditions. Eleven of them showed clear difference (up- or down-regulation) between tolerant and susceptible genotypes. These TDFs were isolated, sequenced and tested by RT-PCR. The differential expression of seven TDFs was confirmed by RT-PCR, and TDF-4 was selected as a promising candidate gene for water-stress tolerance. The corresponding gene, designated Hsdr4 (Hordeum spontaneum dehydration-responsive), was sequenced and the transcribed and flanking regions were determined. The deduced amino acid sequence has similarity to the rice Rho-GTPase-activating protein-like with a Sec14 p-like lipid-binding domain. Analysis of Hsdr4 promoter region that was isolated by screening a barley BAC library, revealed a new putative miniature inverted-repeat transposable element (MITE), and several potential stress-related binding sites for transcription factors (MYC, MYB, LTRE, and GT-1), suggesting a role of the Hsdr4 gene in plant tolerance to dehydration stress. Furthermore, the Hsdr4 gene was mapped using wild barley mapping population to the long arm of chromosome 3H between markers EBmac541 and EBmag705, within a region that previously was shown to affect osmotic adaptation in barley.

  16. Effects of displacement boundary conditions on thermal deformation in thermal stress problems

    Directory of Open Access Journals (Sweden)

    S. Y. Kwak

    2013-05-01

    Full Text Available Most computational structural engineers are paying more attention to applying loads rather than to DBCs (Displacement Boundary Conditions because most static stable mechanical structures are working under already prescribed displacement boundary conditions. In all of the computational analysis of solving a system of algebraic equations, such as FEM (Finite Element Method, three translational and three rotational degrees of freedom (DOF should be constrained (by applying DBCs before solving the system of algebraic equation in order to prevent rigid body motions of the analysis results (singular problem. However, it is very difficult for an inexperienced engineer or designer to apply proper DBCs in the case of thermal stress analysis where no prescribed DBCs or constraints exist, for example in water quenching for heat treatment. Moreover, improper DBCs cause incorrect solutions in thermal stress analysis, such as stress concentration or unreasonable deformation phases. To avoid these problems, we studied a technique which performs the thermal stress analysis without any DBCs; and then removes rigid body motions from the deformation results in a post process step as the need arises. The proposed technique makes it easy to apply DBCs and prevent the error caused by improper DBCs. We proved it was mathematically possible to solve a system of algebraic equations without a step of applying DBCs. We also compared the analysis results with those of a traditional procedure for real castings.

  17. Liquid organomineral fertilizer containing humic substances on soybean grown under water stress

    Directory of Open Access Journals (Sweden)

    Marcelo R. V. Prado

    2016-05-01

    Full Text Available ABSTRACT This study evaluated the effect of an organomineral fertilizer enriched with humic substances on soybean grown under water stress. The experiment was performed in a greenhouse using a Red Latosol (Oxisol with adequate fertility as substrate, in which soybean plants were cultivated with and without water stress. The experimental design was randomized blocks, in a 2 x 5 factorial scheme (two moisture levels and five fertilizer doses: 0, 1, 2, 4 and 8 mL dm-3, totaling 10 treatments, with four replicates. The organomineral fertilizer was applied in the soil 21 days after plant emergence and the water regimes were established one week thereafter. The fertilizer was not able to attenuate the effects of water stress, reducing soybean grain yield by more than 50% compared with plants cultivated under no stress. Fertilizer doses caused positive response on soybean nutrition and grain yield and, under water stress condition, the most efficient dose was 5.4 mL dm-3. There were lower leaf concentrations of nitrogen, phosphorus and potassium and higher concentrations of sulfur in plants under stress. Humic substances favor the absorption of micronutrients.

  18. Crop modeling: Studying the effect of water stress on the driving forces governing plant water potential

    Science.gov (United States)

    van Emmerik, T. H. M.; Mirfenderesgi, G.; Bohrer, G.; Steele-Dunne, S. C.; Van De Giesen, N.

    2015-12-01

    Water stress is one of the most important environmental factors that influence plant water dynamics. To prevent excessive water loss and physiological damage, plants can regulate transpiration by adjusting the stomatal aperture. This enhances survival, but also reduced photosynthesis and productivity. During periods of low water availability, stomatal regulation is a trade-off between optimization of either survival or production. Water stress defence mechanisms lead to significant changes in plant dynamics, e.g. leaf and stem water content. Recent research has shown that water content in a corn canopy can change up to 30% diurnally as a result of water stress, which has a considerable influence on radar backscatter from a corn canopy [1]. This highlighted the potential of water stress detection using radar. To fully explore the potential of water stress monitoring using radar, we need to understand the driving forces governing plant water potential. For this study, the recently developed the Finite-Element Tree-Crown Hydrodynamic model version 2 (FETCH2) model is applied to a corn canopy. FETCH2 is developed to resolve the hydrodynamic processes within a plant using the porous media analogy, allowing investigation of the influence of environmental stress factors on plant dynamics such as transpiration, photosynthesis, stomatal conductance, and leaf and stem water content. The model is parameterized and evaluated using a detailed dataset obtained during a three-month field experiment in Flevoland, the Netherlands, on a corn canopy. [1] van Emmerik, T., S. Steele-Dunne, J. Judge and N. van de Giesen: "Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter of Maize During Water Stress", Geosciences and Remote Sensing, IEEE Transactions on, vol. 52, issue 7, doi: 10.1109/TGRS.2014.2386142, 2015.

  19. Ground-water conditions in Utah, spring of 2003

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2003-01-01

    This is the fortieth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2002. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  20. Ground-water conditions in Utah, spring of 2002

    Science.gov (United States)

    Burden, Carole B.; Enright, Michael; Danner, M.R.; Fisher, M.J.; Haraden, Peter L.; Kenney, T.A.; Wilkowske, C.D.; Eacret, Robert J.; Downhour, Paul; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.

    2002-01-01

    This is the thirty-ninth in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources and Division of Water Rights, provide data to enable interested parties to maintain awareness of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, precipitation, streamflow, and chemical quality of water. Information on well construction included in this report refers only to wells constructed for new appropriations of ground water. Supplementary data are included in reports of this series only for those years or areas which are important to a discussion of changing ground-water conditions and for which applicable data are available.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 2001. Most of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights and Division of Water Resources.

  1. Effect of phytoliths for mitigating water stress in durum wheat.

    Science.gov (United States)

    Meunier, Jean Dominique; Barboni, Doris; Anwar-Ul-Haq, Muhammad; Levard, Clément; Chaurand, Perrine; Vidal, Vladimir; Grauby, Olivier; Huc, Roland; Laffont-Schwob, Isabelle; Rabier, Jacques; Keller, Catherine

    2017-07-01

    The role of silicon (Si) in alleviating biotic and abiotic stresses in crops is well evidenced by empirical studies; however, the mechanisms by which it works are still poorly known. The aim of this study is to determine whether or not phytolith composition and distribution in wheat are affected by drought and, if so, why. Durum wheat was grown using hydroponics in the presence of polyethylene glycol (PEG)-6000 to perform a water-stress simulation. We developed an original method for in situ analysis of phytoliths in leaves via X-ray imaging. PEG was efficient in inhibiting water uptake by roots and creating stress, and prevented a small fraction of Si from being accumulated in the shoots. The application of Si with PEG maintained shoot and root fresh weights (FW) and relative water content at higher values than for plants without Si, especially at PEG 12%. Our data show that, under water stress in the presence of Si, accumulation of phytoliths over the veins provides better support to the leaf, thus allowing for a better development of the whole plant than in the absence of Si. The development of silicified trichomes in durum wheat depends primarily on the availability of Si in soil and is not an adaptation to water stress. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Modelling the spectral response of the desert tree Prosopis tamarugo to water stress

    NARCIS (Netherlands)

    Chávez Oyanadel, R.O.; Clevers, J.G.P.W.; Herold, M.; Ortiz, M.; Acevedo, E.

    2013-01-01

    In this paper, we carried out a laboratory experiment to study changes in canopy reflectance of Tamarugo plants under controlled water stress. Tamarugo (Prosopis tamarugo Phil.) is an endemic and endangered tree species adapted to the hyper-arid conditions of the Atacama Desert, Northern Chile. Obse

  3. Developmental reaction norms for water stressed seedlings of succulent cacti.

    Science.gov (United States)

    Rosas, Ulises; Zhou, Royce W; Castillo, Guillermo; Collazo-Ortega, Margarita

    2012-01-01

    Succulent cacti are remarkable plants with capabilities to withstand long periods of drought. However, their adult success is contingent on the early seedling stages, when plants are highly susceptible to the environment. To better understand their early coping strategies in a challenging environment, two developmental aspects (anatomy and morphology) in Polaskia chichipe and Echinocactus platyacanthus were studied in the context of developmental reaction norms under drought conditions. The morphology was evaluated using landmark based morphometrics and Principal Component Analysis, which gave three main trends of the variation in each species. The anatomy was quantified as number and area of xylem vessels. The quantitative relationship between morphology and anatomy in early stages of development, as a response to drought was revealed in these two species. Qualitatively, collapsible cells and collapsible parenchyma tissue were observed in seedlings of both species, more often in those subjected to water stress. These tissues were located inside the epidermis, resembling a web of collapsible-cell groups surrounding turgid cells, vascular bundles, and spanned across the pith. Occasionally the groups formed a continuum stretching from the epidermis towards the vasculature. Integrating the morphology and the anatomy in a developmental context as a response to environmental conditions provides a better understanding of the organism's dynamics, adaptation, and plasticity.

  4. Developmental reaction norms for water stressed seedlings of succulent cacti.

    Directory of Open Access Journals (Sweden)

    Ulises Rosas

    Full Text Available Succulent cacti are remarkable plants with capabilities to withstand long periods of drought. However, their adult success is contingent on the early seedling stages, when plants are highly susceptible to the environment. To better understand their early coping strategies in a challenging environment, two developmental aspects (anatomy and morphology in Polaskia chichipe and Echinocactus platyacanthus were studied in the context of developmental reaction norms under drought conditions. The morphology was evaluated using landmark based morphometrics and Principal Component Analysis, which gave three main trends of the variation in each species. The anatomy was quantified as number and area of xylem vessels. The quantitative relationship between morphology and anatomy in early stages of development, as a response to drought was revealed in these two species. Qualitatively, collapsible cells and collapsible parenchyma tissue were observed in seedlings of both species, more often in those subjected to water stress. These tissues were located inside the epidermis, resembling a web of collapsible-cell groups surrounding turgid cells, vascular bundles, and spanned across the pith. Occasionally the groups formed a continuum stretching from the epidermis towards the vasculature. Integrating the morphology and the anatomy in a developmental context as a response to environmental conditions provides a better understanding of the organism's dynamics, adaptation, and plasticity.

  5. Climatic and anthropogenic changes in Western Switzerland: Impacts on water stress.

    Science.gov (United States)

    Milano, Marianne; Reynard, Emmanuel; Köplin, Nina; Weingartner, Rolf

    2015-12-01

    Recent observed hydro-climatic changes in mountainous areas are of concern as they may directly affect capacity to fulfill water needs. The canton of Vaud in Western Switzerland is an example of such a region as it has experienced water shortage episodes during the past decade. Based on an integrated modeling framework, this study explores how hydro-climatic conditions and water needs could evolve in mountain environments and assesses their potential impacts on water stress by the 2060 horizon. Flows were simulated based on a daily semi-distributed hydrological model. Future changes were derived from Swiss climate scenarios based on two regional climate models. Regarding water needs, the authorities of the canton of Vaud provided a population growth scenario while irrigation and livestock trends followed a business-as-usual scenario. Currently, the canton of Vaud experiences moderate water stress from June to August, except in its Alpine area where no stress is noted. In the 2060 horizon, water needs could exceed 80% of the rivers' available resources in low- to mid-altitude environments in mid-summer. This arises from the combination of drier and warmer climate that leads to longer and more severe low flows, and increasing urban (+40%) and irrigation (+25%) water needs. Highlighting regional differences supports the development of sustainable development pathways to reduce water tensions. Based on a quantitative assessment, this study also calls for broader impact studies including water quality issues.

  6. Bridge Pressure Flow Scour at Clear Water Threshold Condition

    Institute of Scientific and Technical Information of China (English)

    GUO Junke; KERENYI Kornel; PAGAN-ORTIZ Jorge E; FLORA Kevin

    2009-01-01

    Bridge pressure flow scour at clear water threshold condition is studied theoretically and experimentally. The flume experiments reveal that the measured scour profiles under a bridge are more or less 2-dimensional; all the measured scour profiles can be described by two similarity equations, where the horizontal distance is scaled by the deck width while the local scour by the maximum scour depth; the maximum scour position is located just under the bridge about 15% deck width from the downstream deck edge; the scour begins at about one deck width upstream the bridge while the deposition occurs at about 2.5 deck widths downstream the bridge; and the maximum scour depth decreases with increas-ing sediment size, but increases with deck inundation. The theoretical analysis shows that: bridge scour can be divided into three cases, i.e. downstream unsubmerged, partially submerged, and totally submerged. For downstream unsubmerged flows, the maximum bridge scour depth is an open-channel problem where the conventional methods in terms of critical velocity or bed shear stress can be applied; for partially and totally submerged flows, the equilibrium maximum scour depth can be described by a scour and an inundation similarity number, which has been confirmed by experiments with two decks and two sediment sizes. For application, a design and field evaluation procedure with examples is presented, including the maximum scour depth and scour profile.

  7. Measuring Bus Drivers' Occupational Stress Under Changing Working Conditions

    NARCIS (Netherlands)

    Hlotova, Y.; Cats, O.; Meijer, S.A.

    2014-01-01

    Stress is an immense problem in modern society; approximately half of all occupational illnesses are directly or indirectly related to stress. The work of a bus driver is typically associated with high stress levels that negatively influence individual well-being as well as workforce management. The

  8. Measuring Bus Drivers' Occupational Stress Under Changing Working Conditions

    NARCIS (Netherlands)

    Hlotova, Y.; Cats, O.; Meijer, S.A.

    2014-01-01

    Stress is an immense problem in modern society; approximately half of all occupational illnesses are directly or indirectly related to stress. The work of a bus driver is typically associated with high stress levels that negatively influence individual well-being as well as workforce management. The

  9. Water stress before harvest of pepper-rosmarin

    Directory of Open Access Journals (Sweden)

    Ivan Caldeira Almeida Alvarenga

    2011-07-01

    Full Text Available The objective of this work was to assess the effect of different periods of water stress before harvest of pepper-rosmarin (Lippia sidoides on the contents of essential oil and flavonoids. The experiment was carried out during 270 days of cultivation, with drainage lysimeters, in a completely randomized block design with five treatments: 0, 2, 4, 6, and 8 days of water suppression before harvest, with four replicates. Fresh and dry matter yield, essential oil content, total flavonoids content, and water potential and temperature of leaves were determined. There was a decrease of approximately 50% in oil content and of 60% in total flavonoid content with the reduction of leaf water potential in 0.3 MPa. Essential oil is more sensitive to water stress than total flavonoids.

  10. Adjusted nutrition of tomato with potassium and zinc in drought stress conditions induced by polyethylene glycol 6000 in hydroponic culture

    Directory of Open Access Journals (Sweden)

    F. S. Sadoogh

    2014-07-01

    Full Text Available In drought stress conditions, besides the inhibition of water uptake, the plant nutrients availability and uptake are also limited. Proper nutrition is known as a management procedure for plant production under different environmental-stress conditions. Generally, the combined effects of drought and deficiency of potassium and zinc on plant water content and some physiological parameters reduce yield quantity and quality. This investigation was conducted to assess the interactive effect of different levels of potassium as KNO3 (0.6, 3 and 6 mM and zinc as ZnSO4 (0, 1 and 2 μM, under drought stress conditions induced with PEG 6000 (0, 55 and 110 g/L PEG 6000 on some water status indices and physiological parameters of tomato in hydroponic culture. The results showed that interaction of drought, potassium and zinc on shoot and root dry weight, leaf chlorophyll and proline content and percentage of root ion leakage was significant. Both potassium and zinc improved water status of the plants; however the effect of zinc on leaf water potential was not significant. Drought stress increased the chlorophyll content and decreased the sulfhydryl groups. Application of a high level of potassium in the nutrient solution increased root ion leakage.

  11. Diverging sensitivity of soil water stress to changing snowmelt timing in the Western U.S.

    Science.gov (United States)

    Harpold, Adrian A.

    2016-06-01

    Altered snowpack regimes from regional warming threaten mountain ecosystems with greater water stress and increased likelihood of vegetation disturbance. The sensitivity of vegetation to changing snowpack conditions is strongly mediated by soil water storage, yet a framework to identify areas sensitive to changing snowpack regimes is lacking. In this study we ask two questions: (1) How will changing snowmelt alter the duration of soil water stress and length of the soil-mediated growing season (shortened to water stress and growing season, respectively)? and (2) What site characteristics increase the sensitivity of water stress and growing season duration to changes in snowmelt? We compiled soil moisture at 5, 20 and 50 cm depths from 62 SNOTEL sites with > 5 years of records and detailed soil properties. Soil water stress was estimated based on measured wilting point water content. The day of snow disappearance consistently explained the greatest variability in water stress across all site-years and within individual sites, while summer precipitation explained the most variability in growing season length. On average, a one day earlier snow disappearance resulted in 0.62 days greater water stress and 36 of 62 sites had significant relationships between snow disappearance and water stress. Despite earlier snow disappearance leading to greater water stress at nearly all sites, earlier snow disappearance led to both significant increases (4 of 62) and decreases (5 of 62) in growing season length. Satellite derived vegetation greenness confirmed site-dependent changes could both increase and reduce maximum annual vegetation greenness with earlier snow disappearance. A simple soil moisture model demonstrated the potential for diverging growing season length with earlier snow disappearance was more likely in areas with finer soil texture, greater rooting depth, greater potential evapotranspiration, and greater precipitation. More work is needed to understand the role of

  12. Chlorine stress mediates microbial surface attachment in drinking water systems.

    Science.gov (United States)

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  13. Water stress and social vulnerability in the southern United States, 2010-2040

    Science.gov (United States)

    cassandra Johnson-Gaither; John Schelhas; Wayne Zipperer; Ge Sun; Peter V. Caldwell; Neelam Poudyal

    2014-01-01

    Water scarcities are striking in semiarid, subregions of the Southern United States such as Oklahoma and western Texas (Glennon 2009, Sabo et al. 2010). In Texas, water stress has been a constant concern since the 1950s when the state experienced severe drought conditions (Moore 2005). The nearly 2000-mile Rio Grande River, which forms part of the Texas–Mexico border,...

  14. Water stress augments silicon-mediated resistance of susceptible sugarcane cultivars to the stalk borer Eldana saccharina (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Kvedaras, O L; Keeping, M G; Goebel, F-R; Byrne, M J

    2007-04-01

    Silicon (Si) can improve resistance of plants to insect attack and may also enhance tolerance of water stress. This study tested if Si-mediated host plant resistance to insect attack was augmented by water stress. Four sugarcane cultivars, two resistant (N21, N33) and two susceptible (N26, N11) to Eldana saccharina Walker were grown in a pot trial in Si-deficient river sand, with (Si+) and without (Si-) calcium silicate. To induce water stress, irrigation to half the trial was reduced after 8.5 months. The trial was artificially infested with E. saccharina eggs after water reduction and harvested 66 days later. Silicon treated, stressed and non-stressed plants of the same cultivar did not differ appreciably in Si content. Decreases in numbers of borers recovered and stalk damage were not associated with comparable increases in rind hardness in Si+ cane, particularly in water-stressed susceptible cultivars. Overall, Si+ plants displayed increased resistance to E. saccharina attack compared with Si- plants. Borer recoveries were significantly lower in stressed Si+ cane compared with either stressed Si- or non-stressed Si- and Si+ cane. Generally, fewer borers were recovered from resistant cultivars than susceptible cultivars. Stalk damage was significantly lower in Si+ cane than in Si- cane, for N21, N11 and N26. Stalk damage was significantly less in Si+ combined susceptible cultivars than in Si- combined susceptible cultivars under non-stressed and especially stressed conditions. In general, the reduction in borer numbers and stalk damage in Si+ plants was greater for water-stressed cane than non-stressed cane, particularly for susceptible sugarcane cultivars. The hypothesis that Si affords greater protection against E. saccharina borer attack in water-stressed sugarcane than in non-stressed cane and that this benefit is greatly enhanced in susceptible cultivars is supported. A possible active role for soluble Si in defence against E. saccharina is proposed.

  15. The Financial Stress Index: Identification of Systemic Risk Conditions

    Directory of Open Access Journals (Sweden)

    Mikhail V. Oet

    2015-09-01

    Full Text Available This paper develops a financial stress measure for the United States, the Cleveland Financial Stress Index (CFSI. The index is based on publicly available data describing a six-market partition of the financial system comprising credit, funding, real estate, securitization, foreign exchange, and equity markets. This paper improves upon existing stress measures by objectively selecting between several index weighting methodologies across a variety of monitoring frequencies through comparison against a volatility-based benchmark series. The resulting measure facilitates the decomposition of stress to identify disruptions in specific markets and provides insight into historical stress regimes.

  16. Vibration pore water pressure characteristics of saturated fine sand under partially drained condition

    Institute of Scientific and Technical Information of China (English)

    王炳辉; 陈国兴

    2008-01-01

    Vibration pore water pressure characteristics of saturated fine sand under partially drained condition were investigated through stress-controlled cyclic triaxial tests employed varied fine content of samples and loading frequency. In order to simulate the partially drained condition, one-way drainage for sample was implemented when cyclic loading was applied. The results show that the vibration pore water pressure’s response leads the axial stress and axial strain responses, and is lagged behind or simultaneous with axial strain-rate’s response for all samples in this research. In addition, the satisfactory linear relationship between vibration pore water pressure amplitude and axial strain-rate amplitude is also obtained. It means that the direct cause of vibration pore water pressure generation under partially drained conditions is not the axial stress or axial strain but the axial strain-rate. The lag-phase between pore water pressure and axial strain-rate increases with the increase of the fine content or the loading frequency.

  17. Responses of the seedlings of five dominant tree species in Changbai Mountain to soil water stress

    Institute of Scientific and Technical Information of China (English)

    DAI Li-min; LI Qiu-rong; WANG Miao; JI Lan-zhu

    2003-01-01

    Soil water stress was studied on the potted seedlings of five dominant tree species (Pinus koraienes Sieb.et Zucc., Fraxinus mandshurica Rupr., Juglans mandshurica Maxim, Tilia amurensis Rupr. and Quercus mongolica Fisch.ex Turcz) from the broadleaved/Korean pine forest in Changbai Mountain. Leaf growth, water transpiration and photosynthesis were compared for each species under three soil moisture conditions: 85%-100% (high water, CK), 65%-85% (Medium water, MW) and 45%-65% (low water, LW) of 37.4% water-holding capacity in field. The results showed that the characteristic of typical drought-resistance of the leaves is significantly developed. The net photosynthetic rate and water use efficiency of Fraxinus mandshurica were higher in MW than those in CK. But for the other four species, the net photosynthetic rate and water use efficiency in CK were lower than those in MW and LW. The transpiration rate responding to soil moistures varied from species to species.

  18. Airborne thermography for crop water stress assessment

    Science.gov (United States)

    Millard, J. P.; Idso, S. B.; Reginato, R. J.; Jackson, R. D.; Ehrler, W. L.; Goettelman, R. C.

    1977-01-01

    Aircraft overflights to obtain canopy temperatures of six differentially irrigated plots of durum wheat were made at Phoenix, Arizona on 1 and 29 April 1976. The data were acquired by a Texas Instruments model RS-25 infrared line scanner operating in the 8 to 14 micrometer bandpass region. Concurrently, plant water tension was measured on the ground with the Scholander pressure bomb technique. The results indicated that canopy temperatures acquired by aircraft about an hour and a half past solar noon correlated well with presunrise plant water tension - a parameter directly related to plant growth and development. The aircraft data also showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over the more spotty view obtained by ground-operated infrared thermometers.

  19. Electrophysiological assessment of water stress in fruit-bearing woody plants.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Tapia, Franco; Gurovich, Luis A

    2014-06-15

    Development and evaluation of a real-time plant water stress sensor, based on the electrophysiological behavior of fruit-bearing woody plants is presented. Continuous electric potentials are measured in tree trunks for different irrigation schedules, inducing variable water stress conditions; results are discussed in relation to soil water content and micro-atmospheric evaporative demand, determined continuously by conventional sensors, correlating this information with tree electric potential measurements. Systematic and differentiable patterns of electric potentials for water-stressed and no-stressed trees in 2 fruit species are presented. Early detection and recovery dynamics of water stress conditions can also be monitored with these electrophysiology sensors, which enable continuous and non-destructive measurements for efficient irrigation scheduling throughout the year. The experiment is developed under controlled conditions, in Faraday cages located at a greenhouse area, both in Persea americana and Prunus domestica plants. Soil moisture evolution is controlled using capacitance sensors and solar radiation, temperature, relative humidity, wind intensity and direction are continuously registered with accurate weather sensors, in a micro-agrometeorological automatic station located at the experimental site. The electrophysiological sensor has two stainless steel electrodes (measuring/reference), inserted on the stem; a high precision Keithley 2701 digital multimeter is used to measure plant electrical signals; an algorithm written in MatLab(®), allows correlating the signal to environmental variables. An electric cyclic behavior is observed (circadian cycle) in the experimental plants. For non-irrigated plants, the electrical signal shows a time positive slope and then, a negative slope after restarting irrigation throughout a rather extended recovery process, before reaching a stable electrical signal with zero slope. Well-watered plants presented a

  20. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Grondin, Alexandre; Mauleon, Ramil; Vadez, Vincent; Henry, Amelia

    2016-02-01

    Aquaporin activity and root anatomy may affect root hydraulic properties under drought stress. To better understand the function of aquaporins in rice root water fluxes under drought, we studied the root hydraulic conductivity (Lpr) and root sap exudation rate (Sr) in the presence or absence of an aquaporin inhibitor (azide) under well-watered conditions and following drought stress in six diverse rice varieties. Varieties varied in Lpr and Sr under both conditions. The contribution of aquaporins to Lpr was generally high (up to 79% under well-watered conditions and 85% under drought stress) and differentially regulated under drought. Aquaporin contribution to Sr increased in most varieties after drought, suggesting a crucial role for aquaporins in osmotic water fluxes during drought and recovery. Furthermore, root plasma membrane aquaporin (PIP) expression and root anatomical properties were correlated with hydraulic traits. Three chromosome regions highly correlated with hydraulic traits of the OryzaSNP panel were identified, but did not co-locate with known aquaporins. These results therefore highlight the importance of aquaporins in the rice root radial water pathway, but emphasize the complex range of additional mechanisms related to root water fluxes and drought response.

  1. Failure mechanism and stability control technology of rock surrounding a roadway in complex stress conditions

    Institute of Scientific and Technical Information of China (English)

    Yu Yang; Bai Jianbiao; Chen Ke; Wang Xiangyu; Xiao Tongqiang; Chen Yong

    2011-01-01

    To solve the problem of supporting three downhill coal structures in the Yongan Coal Mine of Shanxi Jincheng,we studied the regular development of stress and plastic zones and characteristics of deformation of rock surrounding roadway groups after a period of roadway driving,mining one side as well as mining both sides,we used FLAC3D for our numerical and theoretical analyses.Field test were carried out,where we revealed the deformation mechanism of roadways and its coal pillars in complex stress conditions.We proposed a roadway stability control technology using backwall grouting with high-water rapid hardening material and combined support with bolt and cable anchoring after mining both sides.Our field practices showed that deformation of rock surrounding roadways can be controlled with this technology.

  2. Root water uptake under non-uniform transient salinity and water stress

    NARCIS (Netherlands)

    Homaee, M.

    1999-01-01

    The study described in this thesis focuses on the quantitative understanding of water uptake by roots under separate and combined salinity and water stresses. The major difficulty in solving Richards' equation stems from the lack of a sink term function that adequately describes root water uptake. F

  3. Potential foraging decisions by a desert ungulate to balance water and nutrient intake in a water-stressed environment

    Science.gov (United States)

    Gedir, Jay V.; Cain, James W.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Morgart, John R.

    2016-01-01

    Arid climates have unpredictable precipitation patterns, and wildlife managers often provide supplemental water to help desert ungulates endure the hottest, driest periods. When surface water is unavailable, the only source of water for ungulates comes from the forage they consume, and they must make resourceful foraging decisions to meet their requirements. We compared two desert bighorn sheep (Ovis canadensis nelsoni) populations in Arizona, USA: a treatment population with supplemental water removed during treatment, and a control population. We examined whether sheep altered their seasonal diets without supplemental water. We calculated water and nutrient intake and metabolic water production from dry matter intake and forage moisture and nitrogen content, to determine whether sheep could meet their seasonal daily water and nutrient requirements solely from forage. Diets of sheep were higher in protein (all seasons) and moisture (autumn and winter) during treatment compared to pretreatment. During treatment, sheep diet composition was similar between the treatment and control populations, which suggests, under the climatic conditions of this study, water removal did not influence sheep diets. We estimated that under drought conditions, without any surface water available (although small ephemeral potholes would contain water after rains), female and male sheep would be unable to meet their daily water requirements in all seasons, except winter, when reproductive females had a nitrogen deficit. We determined that sheep could achieve water and nutrient balances in all seasons by shifting their total diet proportions by 8–55% from lower to higher moisture and nitrogen forage species. We elucidate how seasonal forage quality and foraging decisions by desert ungulates allow them to cope with their xeric and uncertain environment, and suggest that, with the forage conditions observed in our study area during this study period, providing supplemental water during

  4. Response of Short Duration Tropical Legumes and Maize to Water Stress: A Glasshouse Study

    Directory of Open Access Journals (Sweden)

    Hossain Sohrawardy

    2014-01-01

    Full Text Available The study was conducted as a pot experiment in the tropical glasshouse to evaluate the response of grain legumes (Phaseolus vulgaris, Vigna unguiculata, and Lablab purpureus in comparison to maize (Zea mays and estimate their potential and performance. Two experiments were established using completely randomized design. Physiological measurements (stomatal conductance, photosynthetic activities, and transpiration rates were measured using LCpro instrument. Scholander bomb was used for the measurement of plant cell water potential. Significant difference was observed in different plant species with increase of different water regimes. Among the legumes, L. purpureus showed better response in water stressed conditions. At the beginning, in dry watered treatment the photosynthetic rate was below 0 µmol m−2 s−1 and in fully watered condition it was 48 µmol m−2 s−1. In dry treatment, total dry weight was 10 g/pot and in fully watered condition it was near to 20 g/pot in P. vulgaris. The study concludes that water stress condition should be taken into consideration for such type of crop cultivation in arid and semiarid regions.

  5. Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates.

    Science.gov (United States)

    Jacquet, Jean-Sébastien; Bosc, Alexandre; O'Grady, Anthony; Jactel, Hervé

    2014-04-01

    Climate change is expected to increase both pest insect damage and the occurrence of severe drought. There is therefore a need to better understand the combined effects of biotic and abiotic damage on tree growth in order to predict the multi-factorial effect of climate change on forest ecosystem productivity. Indeed, the effect of stress interactions on tree growth is an increasingly important topic that greatly lacks experiments and data, and it is unlikely that the impact of combined stresses can be extrapolated from the outcomes of studies that focused on a single stress. We developed an original manipulative study under real field conditions where we applied artificial defoliation and induced water stress on 10-year-old (∼10 m high) maritime pine trees (Pinus pinaster Ait.). Tree response to combined stresses was quantitatively assessed following tree secondary growth and carbohydrate pools. Such a design allowed us to address the crucial question of combined stresses on trees under stand conditions, sharing soil supplies with neighboring trees. Our initial hypotheses were that (i) moderate defoliation can limit the impact of water stress on tree growth through reduced transpiration demand by a tree canopy partly defoliated and that (ii) defoliation results in reduced non-structural carbohydrate (NSC) pools, affecting tree tolerance to drought. Our results showed additive effects of defoliation and water stress on tree growth and contradict our initial hypothesis. Indeed, under stand conditions, we found that partial defoliation does not limit the impact of water stress through reduced transpiration. Our study also highlighted that, even if NSC in all organs were affected by defoliation, tree response to water stress was not triggered. We found that stem NSC were maintained or increased during the entire growing season, supporting literature-based hypotheses such as an active maintenance of the hydraulic system or another limiting resource for tree growth

  6. Growth and carbon assimilation limitations in Ricinus communis (Euphorbiaceae under soil water stress conditions Crescimento e limitações à assimilação de carbono em Ricinus communis (Euphorbiaceae sob condições de estresse hídrico do solo

    Directory of Open Access Journals (Sweden)

    Tanise Luisa Sausen

    2010-09-01

    Full Text Available Water availability may influence plant carbon gain and growth, with large impacts on plant yield. Ricinus communis (L., a drought resistant species, is a crop with increasing economic importance in Brazil, due to its use in chemical industry and for the production of biofuels. Some of the mechanisms involved in this drought resistance were analyzed in this study by imposing progressive water stress to pot-grown plants under glasshouse conditions. Water withholding for 53 days decreased soil water gravimetric content and the leaf water potential. Plant growth was negatively and significantly reduced by increasing soil water deficits. With irrigation suspension, carbon assimilation and transpiration were reduced and remained mostly constant throughout the day. Analysis of A/Ci curves showed increased stomatal limitation, indicating that limitation imposed by stomatal closure is the main factor responsible for photosynthesis reduction. Carboxylation efficiency and electron transport rate were not affected by water stress up to 15 days after withholding water. Drought resistance of castor bean seems to be related to a pronounced, early growth response, an efficient stomatal control and the capacity to keep high net CO2 fixation rates under water stress conditions.A disponibilidade hídrica pode influenciar o ganho de carbono e o crescimento, com grande impacto na produtividade das plantas. Ricinus communis (L., uma espécie resistente à seca, é uma cultura de grande importância econômica no Brasil, devido ao seu uso na indústria química e para a produção de biocombustíveis. Alguns dos mecanismos envolvidos na resistência à seca desta espécie foram analisados através de um progressivo estresse hídrico em plantas cultivadas em vasos sob condições de casa de vegetação. A suspensão da irrigação por 53 dias decresceu o conteúdo gravimétrico de água no solo e o potencial hídrico das folhas. O crescimento das plantas foi

  7. Condition, use, and management of water resources among ...

    African Journals Online (AJOL)

    Agadaga

    2012-09-17

    Sep 17, 2012 ... ISSN 1996-0786 ©2012 Academic Journals. Full Length Research Paper. Condition, use ... The study recommends that strong assistance is required in ... gender relations in using, managing and controlling water resources.

  8. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L..

    Directory of Open Access Journals (Sweden)

    Inga Mewis

    Full Text Available Little is known about how drought stress influences plant secondary metabolite accumulation and how this affects plant defense against different aphids. We therefore cultivated Arabidopsis thaliana (L. plants under well-watered, drought, and water-logged conditions. Two aphid species were selected for this study: the generalist Myzus persicae (Sulzer and the crucifer specialist Brevicoryne brassicae (L.. Metabolite concentrations in the phloem sap, which influence aphid growth, changed particularly under drought stress. Levels of sucrose and several amino acids, such as glutamic acid, proline, isoleucine, and lysine increased, while concentrations of 4-methoxyindol-3-ylmethyl glucosinolate decreased. M. persicae population growth was highest on plants under drought stress conditions. However, B. brassicae did not profit from improved phloem sap quality under drought stress and performed equally in all water treatments. Water stress and aphids generally had an opposite effect on the accumulation of secondary metabolites in the plant rosettes. Drought stress and water-logging led to increased aliphatic glucosinolate and flavonoid levels. Conversely, aphid feeding, especially of M. persicae, reduced levels of flavonoids and glucosinolates in the plants. Correspondingly, transcript levels of aliphatic biosynthetic genes decreased after feeding of both aphid species. Contrary to M. persicae, drought stress did not promote population growth of B. brassicae on these plants. The specialist aphid induced expression of CYP79B2, CYP79B3, and PAD3 with corresponding accumulation of indolyl glucosinolates and camalexin. This was distinct from M. persicae, which did not elicit similarly strong camalexin accumulation, which led to the hypothesis of a specific defense adaptations against the specialist aphid.

  9. Transgenic tobacco plants expressing BoRS1 gene from Brassica oleracea var. acephala show enhanced tolerance to water stress

    Indian Academy of Sciences (India)

    Dongqin Tang; Hongmei Qian; Lingxia Zhao; Danfeng Huang; Kexuan Tang

    2005-12-01

    Water stress is by far the leading environmental stress limiting crop yields worldwide. Genetic engineering techniques hold great promise for developing crop cultivars with high tolerance to water stress. In this study, the Brassica oleracea var. acephala BoRS1 gene was transferred into tobacco through Agrobacterium-mediated leaf disc transformation. The transgenic status and transgene expression of the transgenic plants was confirmed by polymerase chain reaction (PCR) analysis, Southern hybridization and semi-quantitative one step RT-PCR analysis respectively. Subsequently, the growth status under water stress, and physiological responses to water stress of transgenic tobacco were studied. The results showed that the transgenic plants exhibited better growth status under water stress condition compared to the untransformed control plants. In physiological assessment of water tolerance, transgenic plants showed more dry matter accumulation and maintained significantly higher levels of leaf chlorophyll content along with increasing levels of water stress than the untransformed control plants. This study shows that BoRS1 is a candidate gene in the engineering of crops for enhanced water stress tolerance.

  10. Influence of water stress on Botryosphaeriaceae disease expression in grapevines

    Directory of Open Access Journals (Sweden)

    Jan VAN NIEKERK

    2011-12-01

    Full Text Available Several species in Botryosphaeriaceae have been associated with grapevine trunk diseases. To evaluate the effect of water stress on infection of grapevines by Botryosphaeriaceae spp., 1-year-old Shiraz/101-14 Mgt nursery grapevine plants were planted in plastic potting bags and placed outdoors under shade netting. Five weeks after planting, vines were pruned and the pruning wounds inoculated with spore suspensions of Neofusicoccum australe, Neofusicoccum parvum, Lasiodiplodia theobromae or Diplodia seriata. Control treatments consisted of applications of sterile water or a Trichoderma harzianum spore suspension. Stem inoculations were done by inserting a colonised or uncolonised agar plug into a wound made in each stem. Four different irrigation regimes were introduced 12 weeks after planting to simulate varying degrees of water stress. Measurements of stomatal conductance, photosynthetic rate and leaf spectrometry were made to monitor physiological stress. Eight months after inoculation, vines were uprooted and the root, shoot and plant mass of each vine determined. Lesions observed in the inoculated pruning wounds and stems were also measured. Vines subjected to the lowest irrigation regime were significantly smaller than optimally irrigated vines. Water stressed vines also had significantly lower photosynthetic rates and levels of stomatal conductance compared with vines receiving optimal irrigation, indicating that these plants experienced significantly higher levels of physiological stress. The mean lesion length was significantly longer in the pruning wounds and stems of plants subjected to the lowest irrigation regime, with lesion length declining linearly with increasing irrigation volume. These results clearly indicate that when a grapevine is exposed to water stress, colonisation and disease expression by Botryosphaeriaceae spp. are much more severe.

  11. Ground-water conditions in Whisky Flat, Mineral County, Nevada

    Science.gov (United States)

    Eakin, T.E.; Robinson, T.W.

    1950-01-01

    As a part of the State-wide cooperative program between the Office of the State Engineer of Nevada and the U.S. Geological Survey, the Ground Water Branch of the Geological Survey made a reconnaissance study of ground-water conditions in Whisky Flat, Mineral County, Nevada.

  12. Condition Assessment Technologies for Water Transmission and Distribution Systems

    Science.gov (United States)

    As part of the U.S. Environmental Protection Agency’s (EPA’s) Aging Water Infrastructure Research Program, this research was conducted to identify and characterize the state of the technology for structural condition assessment of drinking water transmission and distribution syst...

  13. Condition Assessment of Drinking Water Transmission and Distribution Systems

    Science.gov (United States)

    Condition assessment of water transmission and distribution mains is the collection of data and information through direct and/or indirect methods, followed by analysis of the data and information, to make a determination of the current and/or future structural, water quality, an...

  14. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  15. Coupling conditions for the shallow water equations on a network

    CERN Document Server

    Caputo, Jean-Guy; Gleyse, Bernard

    2015-01-01

    We study numerically and analytically how nonlinear shallow water waves propagate in a fork. Using a homothetic reduction procedure, conservation laws and numerical analysis in a 2D domain, we obtain angle dependent coupling conditions for the water height and the velocity. We compare these to the ones for a class of scalar nonlinear wave equations for which the angle plays no role.

  16. AFM Structural Characterization of Drinking Water Biofilm under Physiological Conditions

    Science.gov (United States)

    Due to the complexity of mixed culture drinking water biofilm, direct visual observation under in situ conditions has been challenging. In this study, atomic force microscopy (AFM) revealed the three dimensional morphology and arrangement of drinking water relevant biofilm in air...

  17. Effects of water stress on the composition and immunoreactive properties of gliadins from two wheat cultivars: Nawra and Tonacja.

    Science.gov (United States)

    Brzozowski, Bartosz; Stasiewicz, Katarzyna

    2017-03-01

    Water shortage during wheat vegetation causes changes in the composition of gliadins in grains, which can lead to changes in their immunoreactive properties. The investigated wheat cultivars exposed to water stress accumulated significantly lower amounts (P Water shortage results in a decreased share of αβ and γ fractions in total gliadins. Grains of wheat cultivated under water stress contain significantly higher (P Water stress promotes an increase in the share of P and Q/E residues in gliadins. In protein samples R5 antibodies recognized increased amounts of gliadins matching the QQPFP sequence. Wheat proteins also reacted with IgE antibodies isolated from subjects allergic to gluten. Cultivation of wheat under conditions of water stress results in the qualitative and quantitative changes of gliadins by increasing their immunoreactivity. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Differential Sensitivity of Macrocarpa and Microcarpa Types of Chickpea (Cicer arietinum L.) to Water Stress: Association of Contrasting Stress Response with Oxidative Injury

    Institute of Scientific and Technical Information of China (English)

    Harsh Nayyar; Smita Singh; Satwinder Kaur; Sanjeev Kumar; Hari D. Upadhyaya

    2006-01-01

    Chickpea (Cicer arietinum L.) is particularly sensitive to water stress at its reproductive phase and, under conditions of water stress, will abort flowers and pods, thus reducing yield potential. There are two types of chickpea: (i) Macrocarpa ("Kabuli"), which has large, rams head-shaped, light brown seeds; and (ii)Microcarpa ("Desi"), which has small, angular and dark-brown seeds. Relatively speaking, "Kabuli" has been reported to be more sensitive to water stress than "Desi". The underlying mechanisms associated with contrasting sensitivity to water stress at the metabolic level are not well understood. We hypothesized that one of the reasons for contrasting water stress sensitivity in the two types of chickpea may be a variation in oxidative injury. In the present study, plants of both types were water stressed at the reproductive stage for 14 d. As a result of the stress, the "Kabuli" type exhibited an 80% reduction in seed yield over control compared with a 64% reduction observed for the "Desi" type. The decrease in leaf water potential (Ψw) was faster in the "Kabuli" compared with the "Desi" type. At the end of the water stress period, Ψ was reduced to -2.9 and -3.1 MPa in the "Desi" and "Kabuli" types, respectively, without any significant difference between them. On the last day of stress, "Kabuli" experienced 20% more membrane injury than "Desi". The chlorophyll content and photosynthetic rate were significantly greater in "Desi"compared with "Kabuli". The malondialdehyde and H2O2 content were markedly higher at the end of the water stress in "Kabuli" compared with "Desi", indicating greater oxidative stress in the former. Levels of anti-oxidants, such as ascorbic acid and glutathione, were significantly higher in "Desi" than "Kabuli".Superoxide dismutase and catalase activity did not differ significantly between the two types of chickpea,whereas on the 10th day, the activities of ascorbate peroxidase, dehydroascorbate reductase, and glutathione

  19. Rootstock alleviates PEG-induced water stress in grafted pepper seedlings: physiological responses.

    Science.gov (United States)

    Penella, Consuelo; Nebauer, Sergio G; Bautista, Alberto San; López-Galarza, Salvador; Calatayud, Ángeles

    2014-06-15

    Recent studies have shown that tolerance to abiotic stress, including water stress, is improved by grafting. In a previous work, we took advantage of the natural variability of Capsicum spp. and selected accessions tolerant and sensitive to water stress as rootstocks. The behavior of commercial cultivar 'Verset' seedlings grafted onto the selected rootstocks at two levels of water stress provoked by adding 3.5 and 7% PEG (polyethylene glycol) was examined over 14 days. The objective was to identify the physiological traits responsible for the tolerance provided by the rootstock in order to determine if the tolerance is based on the maintenance of the water relations under water stress or through the activation of protective mechanisms. To achieve this goal, various physiological parameters were measured, including: water relations; proline accumulation; gas exchange; chlorophyll fluorescence; nitrate reductase activity; and antioxidant capacity. Our results indicate that the effect of water stress on the measured parameters depends on the duration and intensity of the stress level, as well as the rootstock used. Under control conditions (0% PEG) all plant combinations showed similar values for all measured parameters. In general terms, PEG provoked a strong decrease in the gas exchange parameters in the cultivar grafted onto the sensitive accessions, as also observed in the ungrafted plants. This effect was related to lower relative water content in the plants, provoked by an inefficient osmotic adjustment that was dependent on reduced proline accumulation. At the end of the experiment, chronic photoinhibition was observed in these plants. However, the plants grafted onto the tolerant rootstocks, despite the reduction in photosynthetic rate, maintained the protective capacity of the photosynthetic machinery mediated by osmotic adjustment (based on higher proline content). In addition, water stress limited uptake and further NO3(-) transfer to the leaves. Increased

  20. Non-destructive Phenotyping to Identify Brachiaria Hybrids Tolerant to Waterlogging Stress under Field Conditions.

    Science.gov (United States)

    Jiménez, Juan de la Cruz; Cardoso, Juan A; Leiva, Luisa F; Gil, Juanita; Forero, Manuel G; Worthington, Margaret L; Miles, John W; Rao, Idupulapati M

    2017-01-01

    Brachiaria grasses are sown in tropical regions around the world, especially in the Neotropics, to improve livestock production. Waterlogging is a major constraint to the productivity and persistence of Brachiaria grasses during the rainy season. While some Brachiaria cultivars are moderately tolerant to seasonal waterlogging, none of the commercial cultivars combines superior yield potential and nutritional quality with a high level of waterlogging tolerance. The Brachiaria breeding program at the International Center for Tropical Agriculture, has been using recurrent selection for the past two decades to combine forage yield with resistance to biotic and abiotic stress factors. The main objective of this study was to test the suitability of normalized difference vegetation index (NDVI) and image-based phenotyping as non-destructive approaches to identify Brachiaria hybrids tolerant to waterlogging stress under field conditions. Nineteen promising hybrid selections from the breeding program and three commercial checks were evaluated for their tolerance to waterlogging under field conditions. The waterlogging treatment was imposed by applying and maintaining water to 3 cm above soil surface. Plant performance was determined non-destructively using proximal sensing and image-based phenotyping and also destructively via harvesting for comparison. Image analysis of projected green and dead areas, NDVI and shoot biomass were positively correlated (r ≥ 0.8). Our results indicate that image analysis and NDVI can serve as non-destructive screening approaches for the identification of Brachiaria hybrids tolerant to waterlogging stress.

  1. Non-destructive Phenotyping to Identify Brachiaria Hybrids Tolerant to Waterlogging Stress under Field Conditions

    Science.gov (United States)

    Jiménez, Juan de la Cruz; Cardoso, Juan A.; Leiva, Luisa F.; Gil, Juanita; Forero, Manuel G.; Worthington, Margaret L.; Miles, John W.; Rao, Idupulapati M.

    2017-01-01

    Brachiaria grasses are sown in tropical regions around the world, especially in the Neotropics, to improve livestock production. Waterlogging is a major constraint to the productivity and persistence of Brachiaria grasses during the rainy season. While some Brachiaria cultivars are moderately tolerant to seasonal waterlogging, none of the commercial cultivars combines superior yield potential and nutritional quality with a high level of waterlogging tolerance. The Brachiaria breeding program at the International Center for Tropical Agriculture, has been using recurrent selection for the past two decades to combine forage yield with resistance to biotic and abiotic stress factors. The main objective of this study was to test the suitability of normalized difference vegetation index (NDVI) and image-based phenotyping as non-destructive approaches to identify Brachiaria hybrids tolerant to waterlogging stress under field conditions. Nineteen promising hybrid selections from the breeding program and three commercial checks were evaluated for their tolerance to waterlogging under field conditions. The waterlogging treatment was imposed by applying and maintaining water to 3 cm above soil surface. Plant performance was determined non-destructively using proximal sensing and image-based phenotyping and also destructively via harvesting for comparison. Image analysis of projected green and dead areas, NDVI and shoot biomass were positively correlated (r ≥ 0.8). Our results indicate that image analysis and NDVI can serve as non-destructive screening approaches for the identification of Brachiaria hybrids tolerant to waterlogging stress. PMID:28243249

  2. Stress – an underestimated hazard in water sports

    Directory of Open Access Journals (Sweden)

    Remlein Małgorzata

    2015-12-01

    Full Text Available Strong wind, low temperature, intense current and poor visibility under water are the most common stress inducing factors in individuals practising water sports. Stress is a state of agitation, which can be caused both by external and internal factors. Its objective is to mobilise one’s physical and psychological capabilities, thus it is a favourable reaction especially in crisis situations when such full mobilisation enables one to cope. Psychological stress is usually evoked by the occurrence of an atypical situation, exceeding one’s handling capacity. It can be induced by seeing real or imagined danger in the surroundings, as well as by external pressure related to a task interpreted as too difficult or exceeding one’s capabilities. Internal pressure appears when a person feels insecure in a given situation, when they cannot solve a problem or they feel discomfort due to their inability to meet the expectations of others, for instance, to perform a particular dive, or because of the money spent on this purpose or the invested time. Physical stress is usually an organism’s response to the environmental impacts. This article presents and discusses factors which have an effect on stress intensification, as well as providing a characterisation of selected psychological and medical theories of stress.

  3. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has n

  4. Water stress in global transboundary river basins : Significance of upstream water use on downstream stress

    NARCIS (Netherlands)

    Munia, H.; Guillaume, J. H A; Mirumachi, N.; Porkka, M.; Wada, Y.|info:eu-repo/dai/nl/341387819; Kummu, M.

    2016-01-01

    Growing population and water demand have increased pressure on water resources in various parts of the globe, including many transboundary river basins. While the impacts of upstream water use on downstream water availability have been analysed in many of these international river basins, this has

  5. Effects of Swim Stress on Neophobia and Reconditioning Using a Conditioned Taste Aversion Procedure

    Science.gov (United States)

    Walker, Jennifer M.; Ramsey, Ashley K.; Fowler, Stephanie W.; Schachtman, Todd R.

    2012-01-01

    Previous research has found that swim stress during a classical conditioning trial attenuates conditioned taste aversion (CTA). In the current study, rats were used to examine the effects of inescapable swim stress on the habituation of neophobia to a flavored solution and reacquisition of an extinguished conditioned taste aversion. In Experiment…

  6. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  7. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Institute of Scientific and Technical Information of China (English)

    Ramin; Lotfi; Mohammad; Pessarakli; Puriya; Gharavi-Kouchebagh; Hossein; Khoshvaghti

    2015-01-01

    The ameliorative effect of fulvic acid(0, 300, and 600 mg L-1) on photosystem II and antioxidant enzyme activity of the rapeseed(Brassica napus L.) plant under water stress(60, 100, and 140 mm evaporation from class A pan) was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid(FA) improved the maximum quantum efficiency of PSII(Fv/Fm)and performance index(PI) of plants under both well-watered and limited-water conditions. The time span from Foto Fmand the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species(ROS) is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  8. Physiological responses of Brassica napus to fulvic acid under water stress:Chlorophyll a fluorescence and antioxidant enzyme activity

    Institute of Scientific and Technical Information of China (English)

    Ramin Lotfi; Mohammad Pessarakli; Puriya Gharavi-Kouchebagh; Hossein Khoshvaghti

    2015-01-01

    The ameliorative effect of fulvic acid (0, 300, and 600 mg L−1) on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L.) plant under water stress (60, 100, and 140 mm evaporation from class A pan) was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA) improved the maximum quantum efficiency of PSII (Fv/Fm) and performance index (PI) of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS) is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  9. Water stress strengthens mutualism among ants, trees, and scale insects.

    Directory of Open Access Journals (Sweden)

    Elizabeth G Pringle

    2013-11-01

    Full Text Available Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant-plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant-plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism.

  10. Water stress strengthens mutualism among ants, trees, and scale insects.

    Science.gov (United States)

    Pringle, Elizabeth G; Akçay, Erol; Raab, Ted K; Dirzo, Rodolfo; Gordon, Deborah M

    2013-11-01

    Abiotic environmental variables strongly affect the outcomes of species interactions. For example, mutualistic interactions between species are often stronger when resources are limited. The effect might be indirect: water stress on plants can lead to carbon stress, which could alter carbon-mediated plant mutualisms. In mutualistic ant-plant symbioses, plants host ant colonies that defend them against herbivores. Here we show that the partners' investments in a widespread ant-plant symbiosis increase with water stress across 26 sites along a Mesoamerican precipitation gradient. At lower precipitation levels, Cordia alliodora trees invest more carbon in Azteca ants via phloem-feeding scale insects that provide the ants with sugars, and the ants provide better defense of the carbon-producing leaves. Under water stress, the trees have smaller carbon pools. A model of the carbon trade-offs for the mutualistic partners shows that the observed strategies can arise from the carbon costs of rare but extreme events of herbivory in the rainy season. Thus, water limitation, together with the risk of herbivory, increases the strength of a carbon-based mutualism.

  11. Assessing water stress of desert vegetation using remote sensing : the case of the Tamarugo forest in the Atacama Desert (Northern Chile)

    NARCIS (Netherlands)

    Chávez Oyanadel, R.O.

    2014-01-01

    Water stress assessment of natural vegetation plays a key role in water management of desert ecosystems. It allows scientists and managers to relate water extraction rates to changes in vegetation water condition, and consequently to define safe water extraction rates for maintaining a healthy

  12. Assessing water stress of desert vegetation using remote sensing : the case of the Tamarugo forest in the Atacama Desert (Northern Chile)

    NARCIS (Netherlands)

    Chávez Oyanadel, R.O.

    2014-01-01

    Water stress assessment of natural vegetation plays a key role in water management of desert ecosystems. It allows scientists and managers to relate water extraction rates to changes in vegetation water condition, and consequently to define safe water extraction rates for maintaining a healthy ecosy

  13. Effect of silicon application on physiological characteristics and growth of wheat (Triticum aestivum L. under drought stress condition

    Directory of Open Access Journals (Sweden)

    A. Karmollachaab

    2016-05-01

    Full Text Available In order to investigate the effect of silicon application on some physiological characteristics and growth of Wheat (Triticum aestivum L. under late drought stress condition, an experiment was conducted at the Agriculture and Natural Resources University of Ramin, Khuzestan during year 2012. The experiment was conducted in the open environment as factorial randomized complete block design with three levels of drought stress (irrigation after 25, 50 and 75% depletion of available water content as the first factor and four levels of silicon (0, 10, 20 and 30 mg Si.kg-1 soil as the second factor with three replications. The results showed that drought stress imposed a negative significant effect on all traits. The drought stress led to increased electrolyte leakage and proline content, cuticular wax, leaf silicon concentration, superoxide dismutase activity (SOD and grain potassium were decreased. The severe drought stress has most effect on electrolyte leakage (up to 53%. The application of silicon except the shoot/root parameter, on all characters have been affected so that application of 30 mg Si.kg-1 soil led to decrease electrolyte leakage up to 22.5% and increased SOD activity, proline content, cuticular wax grain K and flag leaf Si concentration, 25, 12.8, 21, 17 and 30% compared to control, respectively. In general, the results showed a positive effect of silicon on wheat plant under stress conditions that were higher than no stress condition.

  14. A Study on the Residual Stress Improvement of PWSCC(Primary Water Stress Corrosion Cracking) in DMW(Dissimilar Metal Weld)

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Sik; Kim, Seok Hun; Lee, Seung Gun [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Park, Heung Bae [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of)

    2010-10-15

    Since 2000s, most of the cracks are found in welds, especially in (DMW) dissimilar metal welds such as pressurizer safety relief nozzle, reactor head penetration, reactor bottom mounted instrumentation (BMI), and reactor nozzles. Even the cracks are revealed as a primary water stress corrosion cracking (PWSCC), it is difficult to find the cracks by current non destructive examination. The PWSCC is occurred by three incident factors, such as susceptible material, environmental corrosive condition, and welding residual stress. If one of the three factors can be erased or decreased, the PWSCC could be prevented. In this study, we performed residual stress analysis for DMW and several residual stress improvement methods. As the preventive methods of PWSCC, we used laser peening(IP) method, inlay weld(IW) method, and induction heating stress improvement(IHSI) method. The effect of residual stress improvement for preventive methods was compared and discussed by finite element modeling and residual stress of repaired DMW

  15. Alterations in the growth and adhesion pattern of Vero cells induced by nutritional stress conditions.

    Science.gov (United States)

    Genari, S C; Gomes, L; Wada, M L

    1998-01-01

    The pattern of growth, adhesion and protein synthesis in Vero cells submitted to nutritional stress conditions was investigated. The control cells presented a characteristic pattern, with monolayer growth, while the stressed cells presented multilayered growth, with aggregate or spheroid formation which detached on the flask surface and continued their growth in another region. In the soft agar assay, with reduced amount of nutrients, only the stressed cells presented growth, indicating physical and nutritional independence. A 44-kDa protein was observed in stressed cells and was absent in non-stressed cells. The adhesion index and fibronectin synthesis and distribution were altered in stressed cells. After confluence, control cells presented fibronectin accumulation in lateral cell-cell contact regions, while this fibronectin accumulation pattern was not observed in stressed cells. These alterations may be responsible for the multilayered growth and decreased adhesion index observed in stressed cells which were transformed by nutritional stress conditions.

  16. Thermal infrared as a tool to detect tree water stress in a coniferous forest

    Science.gov (United States)

    Nourtier, M.; Chanzy, A.; Bes, B.; Davi, H.; Hanocq, J. F.; Mariotte, N.; Sappe, G.

    2009-04-01

    In the context of climatic change, species area may move and so, a study of forest species vulnerability is on interest. In Mediterranean regions, trees can suffer of water stress due to drought during summer. Responses to environmental constraints are delayed in forest so it is necessary to anticipate risks in order to adapt management. It would be therefore interesting to localize areas where trees might be vulnerable to water stress. To detect such areas, the idea developed in this study is to map the severity of water stress, which may be linked to soil. Because vegetation surface temperature is linked to transpiration and so to water stress, the relevance of thermal infrared as a tool to detect water stress was explored. Past studies about surface temperature of forests at the planting scale did not lead to conclusive results. At this scale, important spatial and temporal variations of surface temperature, with a magnitude of about 10°C, can be registered but there is possibly a sizeable contribution of the undergrowth (Duchemin, 1998a, 1998b). In the other hand, important stress are not detectable, probably due to meteorological conditions (Pierce et al., 1990). During spring and summer 2008, an experimentation was carried out on the silver fir (Abies alba) forest of Mont Ventoux (south of France) to evaluate temporal variations at tree scale of the surface temperature in relation to water stress and climatic conditions. Two sites and three trees were chosen for measurements of surface temperature with a view to have different levels of water stress. Transpiration deficit is characterised by the ratio of actual transpiration to potential transpiration which is computed by the ISBA model (Noilhan et al., 1989) implemented by climatic observations made at the top of tree canopy. Sap flow measurements needed to calculate this ratio were completed on different trees of the sites. Climatic datas also allows building reference temperature and then surface

  17. Back-casting global water stress: Reconstruction of past water demand and climate variability

    Science.gov (United States)

    Wada, Y.; van Beek, L. P.; Bierkens, M. F.

    2010-12-01

    Water scarcity, caused by an existing regional imbalance of water availability and water demand, poses a serious environmental issue to the global society. Since the late 1990s, several studies have quantified blue water stress at the global scale by using the global hydrological models to simulate blue water availability (i.e., surface freshwater in rivers, lakes and reservoirs) which is confronted against water demand to compute water stress. While these assessments have identified regions suffering from current water stress and vulnerable to future water scarcity due to the effects of the climate change and prone to frequent droughts (e.g., Australia, Central and West USA, India, North-East China, Pakistan), the development of past water stress with the influences of population and economic growth and expanding irrigated area has not yet been quantified, which might give an important implication for the future assessment of water stress. Here, we developed a method to reconstruct past water demand from agricultural (i.e., irrigation and livestock), industrial and domestic (i.e., households and municipalities) sector over the period 1960 to 2001, which was used to contrast transient effects in its development against climate variability in the severity of water stress. Agricultural water demand was estimated based on past extents of irrigated area and livestock densities. We developed a simple algorithm to approximate the past economic development based on GDP, energy and household consumption and electricity production, which was subsequently used together with population numbers to estimate industrial and domestic water demand. Desalinated water use and groundwater abstraction were additionally calculated over the same period, the latter being proportional to water demand. Various annual country statistics were used but resulted estimates were gridded at a spatial resolution of 0.5° and disaggregated into a monthly temporal scale as it can be expected that

  18. Flux Balance Analysis of Escherichia coli under Temperature and pH Stress Conditions

    KAUST Repository

    Xu, Xiaopeng

    2015-05-12

    An interesting discovery in biology is that most genes in an organism are dispensable. That means these genes have minor effects on survival of the organism in standard laboratory conditions. One explanation of this discovery is that some genes play important roles in specific conditions and are essential genes under those conditions. E. coli is a model organism, which is widely used. It can adapt to many stress conditions, including temperature, pH, osmotic, antibiotic, etc. Underlying mechanisms and associated genes of each stress condition responses are usually different. In our analysis, we combined protein abundance data and mutant conditional fitness data into E. coli constraint-based metabolic models to study conditionally essential metabolic genes under temperature and pH stress conditions. Flux Balance Analysis was employed as the modeling method to analysis these data. We discovered lists of metabolic genes, which are E. coli dispensable genes, but conditionally essential under some stress conditions. Among these conditionally essential genes, atpA in low pH stress and nhaA in high pH stress found experimental evidences from previous studies. Our study provides new conditionally essential gene candidates for biologists to explore stress condition mechanisms.

  19. Combined effects of water stress and pollution on macroinvertebrate and fish assemblages in a Mediterranean intermittent river.

    Science.gov (United States)

    Kalogianni, Eleni; Vourka, Aikaterini; Karaouzas, Ioannis; Vardakas, Leonidas; Laschou, Sofia; Skoulikidis, Nikolaos Th

    2017-12-15

    Water stress is a key stressor in Mediterranean intermittent rivers exacerbating the negative effects of other stressors, such as pollutants, with multiple effects on different river biota. The current study aimed to determine the response of macroinvertebrate and fish assemblages to instream habitat and water chemistry, at the microhabitat scale and at different levels of water stress and pollution, in an intermittent Mediterranean river. Sampling was conducted at high and low summer discharge, at two consecutive years, and included four reaches that were targeted for their different levels of water stress and pollution. Overall, the macroinvertebrate fauna of Evrotas River indicated high resilience to intermittency, however, variation in community structure and composition occurred under acute water stress, due to habitat alteration and change in water physico-chemistry, i.e. water temperature increase. The combined effects of pollution and high water stress had, however, pronounced effects on species richness, abundance and community structure in the pollution impacted reach, where pollution sensitive taxa were almost extirpated. Fish response to drought, in reaches free of pollution, consisted of an increase in the abundance of the two small limnophilic species, coupled with their shift to faster flowing riffle habitats, and a reduction in the abundance of the larger, rheophilic species. In the pollution impacted reach, however, the combination of pollution and high water stress led to hypoxic conditions assumed to be the leading cause of the almost complete elimination of the fish assemblage. In contrast, the perennial Evrotas reaches with relatively stable physicochemical conditions, though affected hydrologically by drought, appear to function as refugia for fish during high water stress. When comparing the response of the two biotic groups to combined acute water stress and pollution, it is evident that macroinvertebrates were negatively impacted, but fish

  20. Effects of Arbuscular Mycorrhiza Fungi on Growth Characteristics of Dactylis glomerata L. under Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    Apostolos P. KYRIAZOPOULOS

    2014-06-01

    Full Text Available Limited information is available regarding the selection of effective mycorrhizae and the exploitation of their beneficial effects on the enhancement of the forage production of Dactylis glomerata under the predicted warmer and drier conditions in the Mediterranean region. The objective of this study was to test the effects of Glomus intraradices, Glomus mosseae and their mix inoculation on growth characteristics and dry matter production of Dactylis glomerata in relation to full and limited irrigation. The experiment was conducted in Orestiada, Northeastern Greece. Limited irrigation significantly decreased yield and yield components of Dactylis glomerataover the full irrigation. Drought stressed plants had significantly higher root dry weight as a response for better survival under water deficit conditions. The Arbuscular mycorrhizal fungi (AMF inoculated plants had significant higher shoot dry weight, tiller height and number of leaves in comparison to the non-inoculated plants. On the contrary, under drought stress conditions all AMF plants had lower root dry weights than control plants. Among the studied mycorrhizae species, Glomus intraradices performed better than Glomus mosseae and their mixture as it increased S/R ratio, tiller height and number of leaves.

  1. Evaluation of the Crystallization Tendency of Commercially Available Amorphous Tacrolimus Formulations Exposed to Different Stress Conditions.

    Science.gov (United States)

    Trasi, Niraj S; Purohit, Hitesh S; Taylor, Lynne S

    2017-07-07

    Tacrolimus, an immunosuppressant, is a poorly water soluble compound whereby the commercially available capsule formulations contain the drug in amorphous form. The goal of this study was to evaluate the robustness of the innovator product and five generic formulations to crystallization following storage at stress conditions. Products were purchased from a pharmacy and stored at 40°C/75% relative humidity (RH), open dish conditions. Crystallinity was determined using X-ray diffraction. The quantity of the ingredients in the formulations were determined using different approaches and the various factors that might cause instability in the formulations were studied. After 4 weeks of open dish storage at 40°C/75% RH, one of the generic formulations showed evidence of tacrolimus crystallization. Further investigations revealed batch-to-batch variations in crystallization tendency with the extent of crystallinity varying between 50 and 100% for different batches. Crystallization was also observed at lower storage temperatures (30°C) when the RH was maintained at 75%. It was found that crystallization could be induced in a model formulation by wet granulating an ethanolic solution of the drug with lactose and drying at 60-70°C followed by exposure to stress conditions. It seems probable that the generic that was susceptible to crystallization contains amorphous drug physically mixed with polymeric excipients, rather than as an amorphous solid dispersion. This study highlights the importance of considering the manufacturing process on the stability of the resultant amorphous product.

  2. Transcriptome Dynamics of Pseudomonas putida KT2440 under Water Stress

    DEFF Research Database (Denmark)

    Gülez, Gamze; Dechesne, Arnaud; Workman, Christopher;

    2012-01-01

    Water deprivation can be a major stressor to microbial life in surface and subsurface soil. In unsaturated soils, the matric potential (Ψm) is often the main component of the water potential, which measures the thermodynamic availability of water. A low matric potential usually translates...... into water forming thin liquid films in the soil pores. Little is known of how bacteria respond to such conditions, where, in addition to facing water deprivation that might impair their metabolism, they have to adapt their dispersal strategy as swimming motility may be compromised. Using the pressurized...

  3. Remote sensing leaf water stress in coffee (Coffea arabica) using secondary effects of water absorption and random forests

    Science.gov (United States)

    Chemura, Abel; Mutanga, Onisimo; Dube, Timothy

    2017-08-01

    Water management is an important component in agriculture, particularly for perennial tree crops such as coffee. Proper detection and monitoring of water stress therefore plays an important role not only in mitigating the associated adverse impacts on crop growth and productivity but also in reducing expensive and environmentally unsustainable irrigation practices. Current methods for water stress detection in coffee production mainly involve monitoring plant physiological characteristics and soil conditions. In this study, we tested the ability of selected wavebands in the VIS/NIR range to predict plant water content (PWC) in coffee using the random forest algorithm. An experiment was set up such that coffee plants were exposed to different levels of water stress and reflectance and plant water content measured. In selecting appropriate parameters, cross-correlation identified 11 wavebands, reflectance difference identified 16 and reflectance sensitivity identified 22 variables related to PWC. Only three wavebands (485 nm, 670 nm and 885 nm) were identified by at least two methods as significant. The selected wavebands were trained (n = 36) and tested on independent data (n = 24) after being integrated into the random forest algorithm to predict coffee PWC. The results showed that the reflectance sensitivity selected bands performed the best in water stress detection (r = 0.87, RMSE = 4.91% and pBias = 0.9%), when compared to reflectance difference (r = 0.79, RMSE = 6.19 and pBias = 2.5%) and cross-correlation selected wavebands (r = 0.75, RMSE = 6.52 and pBias = 1.6). These results indicate that it is possible to reliably predict PWC using wavebands in the VIS/NIR range that correspond with many of the available multispectral scanners using random forests and further research at field and landscape scale is required to operationalize these findings.

  4. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    Science.gov (United States)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  5. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply

    NARCIS (Netherlands)

    Garcia, A.L.; Marcelis, L.F.M.; Garcia-Sanchez, F.; Nicolas, N.; Martinez, V.

    2007-01-01

    The responses of water relations, stomatal conductance (g(s)) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the

  6. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply

    NARCIS (Netherlands)

    Garcia, A.L.; Marcelis, L.F.M.; Garcia-Sanchez, F.; Nicolas, N.; Martinez, V.

    2007-01-01

    The responses of water relations, stomatal conductance (g(s)) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the w

  7. Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood.

    Science.gov (United States)

    Oomen, Charlotte A; Soeters, Heleen; Audureau, Nathalie; Vermunt, Lisa; van Hasselt, Felisa N; Manders, Erik M M; Joëls, Marian; Lucassen, Paul J; Krugers, Harm

    2010-05-12

    Early life stress increases the risk for developing stress-related pathologies later in life. Recent studies in rats suggest that mild early life stress, rather than being overall unfavorable, may program the hippocampus such that it is optimally adapted to a stressful context later in life. Here, we tested whether this principle of "adaptive programming" also holds under severely adverse early life conditions, i.e., 24 h of maternal deprivation (MD), a model for maternal neglect. In young adult male rats subjected to MD on postnatal day 3, we observed reduced levels of adult hippocampal neurogenesis as measured by cell proliferation, cell survival, and neuronal differentiation. Also, mature dentate granule cells showed a change in their dendritic morphology that was most noticeable in the proximal part of the dendritic tree. Lasting structural changes due to MD were paralleled by impaired water maze acquisition but did not affect long-term potentiation in the dentate gyrus. Importantly, in the presence of high levels of the stress hormone corticosterone, even long-term potentiation in the dentate gyrus of MD animals was facilitated. In addition to this, contextual learning in a high-stress environment was enhanced in MD rats. These morphological, electrophysiological, and behavioral observations show that even a severely adverse early life environment does not evolve into overall impaired hippocampal functionality later in life. Rather, adversity early in life can prepare the organism to perform optimally under conditions associated with high corticosteroid levels in adulthood.

  8. Modelling soil water content variations under drought stress on soil column cropped with winter wheat

    Directory of Open Access Journals (Sweden)

    Csorba Szilveszter

    2014-12-01

    Full Text Available Mathematical models are effective tools for evaluating the impact of predicted climate change on agricultural production, but it is difficult to test their applicability to future weather conditions. We applied the SWAP model to assess its applicability to climate conditions, differing from those, for which the model was developed. We used a database obtained from a winter wheat drought stress experiment. Winter wheat was grown in six soil columns, three having optimal water supply (NS, while three were kept under drought-stressed conditions (S. The SWAP model was successfully calibrated against measured values of potential evapotranspiration (PET, potential evaporation (PE and total amount of water (TSW in the soil columns. The Nash-Sutcliffe model efficiency coefficient (N-S for TWS for the stressed columns was 0.92. For the NS treatment, we applied temporally variable soil hydraulic properties because of soil consolidation caused by regular irrigation. This approach improved the N-S values for the wetting-drying cycle from -1.77 to 0.54. We concluded that the model could be used for assessing the effects of climate change on soil water regime. Our results indicate that soil water balance studies should put more focus on the time variability of structuredependent soil properties.

  9. Analysis of thermal stresses in horizontal delivery water heaters

    Science.gov (United States)

    Bilan, A. V.; Plotnikov, P. N.

    2016-11-01

    Analysis of thermal stresses in tubes and a compensator, taking into account water heating in each heater bunch and temperature at which its mounting is implemented, and of stresses on pressure is presented. The 3D-model of the horizontal delivery water heater of PSG-4900-0.3-1.14 type is used. The tube plate is represented as the 3D-body with 6863 holes with offset center of the perforated area, the steam space shell is represented as a cylindrical casing, the bottoms of water chambers are considered as elliptical casings, the four-lens compensator is represented in the form of toroidal casings, and the tubes are considered as beams operating in tensile-compression and bending in two planes. Calculations were carried out for different temperatures of superheated steam and a steam space shell, respectively, as well as designs with compensator and without it. Various temperature values of the tubes on the passes were calculated and set. The studies were carried out taking into account nonaxis-symmetrical spacing the tube plate and compensator deformation. The calculation results of tensile-compression stresses in the tubes are presented. Furthermore, the central tubes experience compressive stresses, whose maximal values take place on the border between the tubes of the fourth and of the first passes. For its decrease, it is recommended to increase the distance between the tubes of these passes. The tension stresses in the peripheral tubes are the maximal stresses. To reduce the stresses and, therefore, increase service life of the delivery water heater at using wet or superheated (not more than by 30-50°C) steam in it (the larger value refers to the brass tubes and the water pressure of 1.6-2.5 MPa), it is necessary to recommend the noncompensatory design at using the steam superheated by more than 30-50°C (at Ural Turbine Works, it is the turbines of T-250/300-23.5 and T-113/145-12.4 types with intermediate superheating) and to recommend the installation of the

  10. How plants cope with water stress in the field. Photosynthesis and growth.

    Science.gov (United States)

    Chaves, M M; Pereira, J S; Maroco, J; Rodrigues, M L; Ricardo, C P P; Osório, M L; Carvalho, I; Faria, T; Pinheiro, C

    2002-06-01

    Plants are often subjected to periods of soil and atmospheric water deficit during their life cycle. The frequency of such phenomena is likely to increase in the future even outside today's arid/semi-arid regions. Plant responses to water scarcity are complex, involving deleterious and/or adaptive changes, and under field conditions these responses can be synergistically or antagonistically modified by the superimposition of other stresses. This complexity is illustrated using examples of woody and herbaceous species mostly from Mediterranean-type ecosystems, with strategies ranging from drought-avoidance, as in winter/spring annuals or in deep-rooted perennials, to the stress resistance of sclerophylls. Differences among species that can be traced to different capacities for water acquisition, rather than to differences in metabolism at a given water status, are described. Changes in the root : shoot ratio or the temporary accumulation of reserves in the stem are accompanied by alterations in nitrogen and carbon metabolism, the fine regulation of which is still largely unknown. At the leaf level, the dissipation of excitation energy through processes other than photosynthetic C-metabolism is an important defence mechanism under conditions of water stress and is accompanied by down-regulation of photochemistry and, in the longer term, of carbon metabolism.

  11. Confronting Future Risks of Global Water Stress and Sustainability: Avoided Changes Versus Adaptive Actions

    Science.gov (United States)

    Schlosser, C. A.; Strzepek, K. M.; Gao, X.; Fant, C.; Paltsev, S.; Monier, E.; Sokolov, A. P.; Winchester, N.; Chen, H.; Kicklighter, D. W.; Ejaz, Q.

    2016-12-01

    . Nevertheless, globally speaking the scenarios indicate that going into the latter half of the twentieth century, approximately one-and-a-half billion additional people will experience at least moderately stressed water conditions worldwide and of that 1 billion will be at least will be living within regions under heavily stressed water conditions.

  12. Water stress detection in the Amazon using radar

    Science.gov (United States)

    van Emmerik, Tim; Steele-Dunne, Susan; Paget, Aaron; Oliveira, Rafael S.; Bittencourt, Paulo R. L.; Barros, Fernanda de V.; van de Giesen, Nick

    2017-07-01

    The Amazon rainforest plays an important role in the global water and carbon cycle, and though it is predicted to continue drying in the future, the effect of drought remains uncertain. Developments in remote sensing missions now facilitate large-scale observations. The RapidScat scatterometer (Ku band) mounted on the International Space Station observes the Earth in a non-Sun-synchronous orbit, which allows for studying changes in the diurnal cycle of radar backscatter over the Amazon. Diurnal cycles in backscatter are significantly affected by the state of the canopy, especially during periods of increased water stress. We use RapidScat backscatter time series and water deficit measurements from dendrometers in 20 trees during a 9 month period to relate variations in backscatter to increased tree water deficit. Morning radar bacskcatter dropped significantly with increased tree water deficit measured with dendrometers. This provides unique observational evidence that demonstrates the sensitivity of radar backscatter to vegetation water stress, highlighting the potential of drought detection and monitoring using radar.

  13. Reactive oxygen species regulate leaf pulvinus abscission zone cell separation in response to water-deficit stress in cassava.

    Science.gov (United States)

    Liao, Wenbin; Wang, Gan; Li, Yayun; Wang, Bin; Zhang, Peng; Peng, Ming

    2016-01-01

    Cassava (Manihot esculenta Crantz) plant resists water-deficit stress by shedding leaves leading to adaptive water-deficit condition. Transcriptomic, physiological, cellular, molecular, metabolic, and transgenic methods were used to study the mechanism of cassava abscission zone (AZ) cell separation under water-deficit stress. Microscopic observation indicated that AZ cell separation initiated at the later stages during water-deficit stress. Transcriptome profiling of AZ suggested that differential expression genes of AZ under stress mainly participate in reactive oxygen species (ROS) pathway. The key genes involved in hydrogen peroxide biosynthesis and metabolism showed significantly higher expression levels in AZ than non-separating tissues adjacent to the AZ under stress. Significantly higher levels of hydrogen peroxide correlated with hydrogen peroxide biosynthesis related genes and AZ cell separation was detected by microscopic observation, colorimetric detection and GC-MS analyses under stress. Co-overexpression of the ROS-scavenging proteins SOD and CAT1 in cassava decreased the levels of hydrogen peroxide in AZ under water-deficit stress. The cell separation of the pulvinus AZ also delayed in co-overexpression of the ROS-scavenging proteins SOD and CAT1 plants both in vitro and at the plant level. Together, the results indicated that ROS play an important regulatory role in the process of cassava leaf abscission under water-deficit stress.

  14. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.).

    Science.gov (United States)

    Anand, Anjali; Nagarajan, Shantha; Verma, A P S; Joshi, D K; Pathak, P C; Bhardwaj, Jyotsna

    2012-02-01

    The effect of magnetic field (MF) treatments of maize (Zea mays L.) var. Ganga Safed 2 seeds on the growth, leaf water status, photosynthesis and antioxidant enzyme system under soil water stress was investigated under greenhouse conditions. The seeds were exposed to static MFs of 100 and 200 mT for 2 and 1 h, respectively. The treated seeds were sown in sand beds for seven days and transplanted in pots that were maintained at -0.03, -0.2 and -0.4 MPa soil water potentials under greenhouse conditions. MF exposure of seeds significantly enhanced all growth parameters, compared to the control seedlings. The significant increase in root parameters in seedlings from magnetically-exposed seeds resulted in maintenance of better leaf water status in terms of increase in leaf water potential, turgor potential and relative water content. Photosynthesis, stomatal conductance and chlorophyll content increased in plants from treated seeds, compared to control under irrigated and mild stress condition. Leaves from plants of magnetically-treated seeds showed decreased levels of hydrogen peroxide and antioxidant defense system enzymes (peroxidases, catalase and superoxide dismutase) under moisture stress conditions, when compared with untreated controls. Mild stress of -0.2 MPa induced a stimulating effect on functional root parameters, especially in 200 mT treated seedlings which can be exploited profitably for rain fed conditions. Our results suggested that MF treatment (100 mT for 2 h and 200 for 1 h) of maize seeds enhanced the seedling growth, leaf water status, photosynthesis rate and lowered the antioxidant defense system of seedlings under soil water stress. Thus, pre sowing static magnetic field treatment of seeds can be effectively used for improving growth under water stress.

  15. Summary of hydrologic conditions in Kansas, 2013 water year

    Science.gov (United States)

    Peters, Arin J.; Rasmussen, Teresa J.

    2014-01-01

    The U.S. Geological Survey (USGS) Kansas Water Science Center (KSWSC), in cooperation with local, State, and other Federal agencies, maintains a long-term network of hydrologic monitoring gages in the State of Kansas. These include 195 real-time streamflow-gaging stations (herein gages) and 12 real-time reservoir-level monitoring stations. These data and associated analysis, accumulated for many years, provide a unique overview of hydrologic conditions and help improve our understanding of our water resources.

  16. Time-dependent polymer rheology under constant stress and under constant shear conditions.

    Science.gov (United States)

    Lee, K. H.; Brodkey, R. S.

    1971-01-01

    A kinetic rate theory previously presented for describing non-Newtonian phenomena has been further modified to predict the flow behavior of viscoelastic materials under constant stress conditions. The thixotropic shear stress or shear rate is predicted by the kinetic theory, and the experimental stress or shear rate is obtained by modifying the thixotropic value by a stress or shear rate retardation term. The retardation term stems from a Maxwellian approach for stress retardation. In order to test the validity of this approach, transient and steady-state data were obtained for two solutions of polymethylmethacrylate in diethylphthalate. Both constant stress measurements and constant shear rate data were taken over a broad range.

  17. Sensing stress: stress detection from physiological variables in controlled and uncontrolled conditions

    NARCIS (Netherlands)

    Wijsman, J.L.P

    2014-01-01

    Recently, general concern about work-related stress is increasing. Chronic stress induces a number of mental and physical health problems that impact personal life, organizations and society. Timely detection and reduction of stress could prevent these health problems and their negative effects.

  18. Effects of sucrose concentration and water deprivation on Pavlovian conditioning and responding for conditioned reinforcement.

    Science.gov (United States)

    Tabbara, Rayane I; Maddux, Jean-Marie N; Beharry, Priscilla F; Iannuzzi, Jessica; Chaudhri, Nadia

    2016-04-01

    An appetitive Pavlovian conditioned stimulus (CS) can predict an unconditioned stimulus (US) and acquire incentive salience. We tested the hypothesis that US intensity and motivational state of the subject would influence Pavlovian learning and impact the attribution of incentive salience to an appetitive Pavlovian CS. To this end, we examined the effects of sucrose concentration and water deprivation on the acquisition of Pavlovian conditioning and responding for a conditioned reinforcer. Male Long-Evans rats (Harlan; 220-240 g) receiving 3% (3S) or 20% (20S) sucrose were either non-water deprived or given water for 1 hr per day. During Pavlovian conditioning sessions, half the rats in each concentration and deprivation condition received a 10-s CS paired with 0.2 ml of sucrose (16 trials/session; 3.2 ml/session). The remainder received unpaired CS and US presentations. Entries into a port where sucrose was delivered were recorded. Next, responding for conditioned reinforcement was tested, wherein pressing an active lever produced the CS and pressing an inactive lever had no consequences. CS-elicited port entries increased, and latency to the first CS-elicited port entry decreased across sessions in paired groups. Water deprivation augmented these effects, whereas sucrose concentration had no significant impact on behavior. Responding for conditioned reinforcement was observed in the 20S water-deprived, paired group. Thus, water deprivation can facilitate the acquisition of Pavlovian conditioning, potentially by enhancing motivational state, and a high-intensity US and a high motivational state can interact to heighten the attribution of incentive salience to an appetitive Pavlovian CS. (PsycINFO Database Record

  19. Computation of Water-Stress Ratio in Western Nigeria

    Directory of Open Access Journals (Sweden)

    Philipa Omamhe Idogho

    2012-09-01

    Full Text Available An increasing world population exerts a continually growing demand on usable freshwater resources. Access to water plays a key role in development; it supports human life in direct consumption, agricultural uses and industrial activities. Time and drudgery involved to access safe drinking water resulted to loss of human resources and capital, thus affecting nearly every household life. This paper focuses on the determination of water-stressed ratio using Integrated Water Measurement Tool (IWMT. Structured simple time analysis and Adjusted composite index approaches were employed to compute (IWMT values in all the sampled areas. Variables such as access to safe water coverage, water availability and use of water were considered. IWMT values from the two approaches show that Ese-Odo is the most water-scarce region with least IWMT values of 14.1 (Adjusted composite index: ACI and highest value of 2.6 minsl -1 (Structured simple time analysis: SSA, while Owo, Ondo-West and Ose local government areas experience fair distribution of protected water supply with IWMT values of 1.05 minsl -1 , 20.8; 1.00 minsl -1 , 17.2; and 0.55 minsl -1 , 16.9 respectively. The results obtained indicate that constructive investments in water and sanitation would reduce proportion of household income spent in sourcing for safe drinking water, prevention of water-related diseases and in turn improves productivity. However, this paper concludes that top-down technical approach must be balanced with a bottom-up mechanism in order to derive realistic systems to prevent persistent water scarcity, shortage and to draw realistic adaption measures.

  20. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress.

    Science.gov (United States)

    Saia, Sergio; Amato, Gaetano; Frenda, Alfonso Salvatore; Giambalvo, Dario; Ruisi, Paolo

    2014-01-01

    Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N) fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season) on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions) or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment.

  1. Influence of arbuscular mycorrhizae on biomass production and nitrogen fixation of berseem clover plants subjected to water stress.

    Directory of Open Access Journals (Sweden)

    Sergio Saia

    Full Text Available Several studies, performed mainly in pots, have shown that arbuscular mycorrhizal symbiosis can mitigate the negative effects of water stress on plant growth. No information is available about the effects of arbuscular mycorrhizal symbiosis on berseem clover growth and nitrogen (N fixation under conditions of water shortage. A field experiment was conducted in a hilly area of inner Sicily, Italy, to determine whether symbiosis with AM fungi can mitigate the detrimental effects of drought stress (which in the Mediterranean often occurs during the late period of the growing season on forage yield and symbiotic N2 fixation of berseem clover. Soil was either left under water stress (i.e., rain-fed conditions or the crop was well-watered. Mycorrhization treatments consisted of inoculation of berseem clover seeds with arbuscular mycorrhizal spores or suppression of arbuscular mycorrhizal symbiosis by means of fungicide treatments. Nitrogen biological fixation was assessed using the 15N-isotope dilution technique. Arbuscular mycorrhizal symbiosis was able to mitigate the negative effect of water stress on berseem clover grown in a typical semiarid Mediterranean environment. In fact, under water stress conditions, arbuscular mycorrhizal symbiosis resulted in increases in total biomass, N content, and N fixation, whereas no effect of crop mycorrhization was observed in the well-watered treatment.

  2. Characteristics of water relations in seedling of Machilus yunnanensis and Cinnamomum camphora under soil drought condition

    Institute of Scientific and Technical Information of China (English)

    TANG Tian-tian; ZHAO Lin-sen

    2006-01-01

    The soil drought stress experiment in different durations (no watering within 3d, 6d, 9d, 11d individually) was conducted to study the drought-resistant capacity of one-year-old seedlings for the native tree species (Machilus yunnanensis) in Yunnan Province and the introduced tree species (Cinnamomum camphora). The leaf water potential, chlorophyll content, proline content and plasma membrane permeability for two species seedlings were measured in different soil drought conditions. The results showed that, on the 9th day of drought stress, the leaf water potential of two species decreased obviously, whereas the free proline content and plasma membrane permeability increased sharply. On the 11th day, the leaf water potential of C. camphora seedlings was lower than that of M. yunnanensis seedlings; the plasma membrane permeability in C. camphora seedling leaves increased much more than that in M. yunnanensis seedling leaves, which showed that the injury to the former by soil drought stress was more severe than that to the latter. The free proline content in M. yunnanensis seedling leaves continued to increase on the 11th day, but that in the C. camphora seedling leaves started to drop obviously, indicating that the reduction of osmotic regulation substance in C. camphora seedling leaves after the 11th day was unable to maintain the osmotic balance between the plasma system and its surroundings and the water loss occurred inevitably. Comprehensively, M. yunnanensis seedlings enhanced the drought-resistance in the course of soil drought stress by maintaining higher leaf water potential and by increasing osmotic regulation substance to promote cell plasma concentration and maintain membrane structure integrity so as to reduce water loss. The subordination function index evaluated with fuzzy mathematic theory also showed that the drought-resistant capacity ofM. yunnanensis seedlings was stronger than that of C. camphora seedlings.

  3. Validation of reference genes from Eucalyptus spp. under different stress conditions

    Directory of Open Access Journals (Sweden)

    Moura Jullyana Cristina Magalhães Silva

    2012-11-01

    Full Text Available Abstract Background The genus Eucalyptus consists of approximately 600 species and subspecies and has a physiological plasticity that allows some species to propagate in different regions of the world. Eucalyptus is a major source of cellulose for paper manufacturing, and its cultivation is limited by weather conditions, particularly water stress and low temperatures. Gene expression studies using quantitative reverse transcription polymerase chain reaction (qPCR require reference genes, which must have stable expression to facilitate the comparison of the results from analyses using different species, tissues, and treatments. Such studies have been limited in eucalyptus. Results Eucalyptus globulus Labill, Eucalyptus urograndis (hybrid from Eucalyptus urophylla S.T. Blake X Eucalyptus grandis Hill ex-Maiden and E. uroglobulus (hybrid from E. urograndis X E. globulus were subjected to different treatments, including water deficiency and stress recovery, low temperatures, presence or absence of light, and their respective controls. Except for treatment with light, which examined the seedling hypocotyl or apical portion of the stem, the expression analyses were conducted in the apical and basal parts of the stem. To select the best pair of genes, the bioinformatics tools GeNorm and NormFinder were compared. Comprehensive analyses that did not differentiate between species, treatments, or tissue types, showed that IDH (isocitrate dehydrogenase, SAND (SAND protein, ACT (actin, and A-Tub (α-tubulin genes were the most stable. IDH was the most stable gene in all of the treatments. Conclusion Comparing these results with those of other studies on eucalyptus, we concluded that five genes are stable in different species and experimental conditions: IDH, SAND, ACT, A-Tub, and UBQ (ubiquitin. It is usually recommended a minimum of two reference genes is expression analysis; therefore, we propose that IDH and two others genes among the five identified

  4. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Berry, C.J. [Westinghouse Savannah River Company, AIKEN, SC (United States); Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  5. Spectral Transmission Studies of Ocean Water Under Different Sea Conditions

    Directory of Open Access Journals (Sweden)

    S. K. Gupta

    1984-01-01

    Full Text Available Propagation of electro-magnetic radiation through the atmosphere and the sea depends upon different physical processes. The atmosphere is primarily a scattering medium. In the case of sea water, however, both absorption and scattering account for its spectral attenuation characteristics. The sea surface determines the transition of radiation at the air-water boundary. The spatial and temporal variations in the sea conditions make it a very complex medium for theoretical predictions. The paper reports various parameters relevant to the study of spectral transmission of ocean water under different seaconditions.1.

  6. Does morphological and anatomical plasticity during the vegetative stage make wheat more tolerant of water deficit stress than rice?

    Science.gov (United States)

    Kadam, Niteen N; Yin, Xinyou; Bindraban, Prem S; Struik, Paul C; Jagadish, Krishna S V

    2015-04-01

    Water scarcity and the increasing severity of water deficit stress are major challenges to sustaining irrigated rice (Oryza sativa) production. Despite the technologies developed to reduce the water requirement, rice growth is seriously constrained under water deficit stress compared with other dryland cereals such as wheat (Triticum aestivum). We exposed rice cultivars with contrasting responses to water deficit stress and wheat cultivars well adapted to water-limited conditions to the same moisture stress during vegetative growth to unravel the whole-plant (shoot and root morphology) and organ/tissue (root anatomy) responses. Wheat cultivars followed a water-conserving strategy by reducing specific leaf area and developing thicker roots and moderate tillering. In contrast, rice 'IR64' and 'Apo' adopted a rapid water acquisition strategy through thinner roots under water deficit stress. Root diameter, stele and xylem diameter, and xylem number were more responsive and varied with different positions along the nodal root under water deficit stress in wheat, whereas they were relatively conserved in rice cultivars. Increased metaxylem diameter and lower metaxylem number near the root tips and exactly the opposite phenomena at the root-shoot junction facilitated the efficient use of available soil moisture in wheat. Tolerant rice 'Nagina 22' had an advantage in root morphological and anatomical attributes over cultivars IR64 and Apo but lacked plasticity, unlike wheat cultivars exposed to water deficit stress. The key traits determining the adaptation of wheat to dryland conditions have been summarized and discussed. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Analysis of the mechanic characteristics of the damage propagation of rock under triaxial stress condition

    Institute of Scientific and Technical Information of China (English)

    Yang Geng-She

    2001-01-01

    The advanced computerized tomography is applied to study the damage propagaation of rock. The real-time CT scanning is carried out to the damage propagation of rock under triaxial stress condition. The demage propegation constitutive relation of rock under triaxial stress condition is analyzed at last.

  8. Compositions and methods for providing plants with tolerance to abiotic stress conditions

    KAUST Repository

    Hirt, Heribert

    2017-07-27

    It has been discovered that the desert endophytic bacterium SA187 SA187 can provide resistance or tolerance to abiotic stress conditions to seeds or plants. Compositions containing SA187 can be used to enhance plant development and yield under environmental stress conditions.

  9. Effects of swim stress on latent inhibition using a conditioned taste aversion procedure.

    Science.gov (United States)

    Smith, Shawn; Fieser, Sarah; Jones, Jennifer; Schachtman, Todd R

    2008-10-20

    Rats were used to examine the effects of inescapable swim stress on latent inhibition using a conditioned taste aversion procedure. Subjects were subjected to inescapable swim after each of three saccharin taste preexposures and saccharin was later paired with LiCl. The ability of swim to influence latent inhibition was assessed on subsequent saccharin test trials. Swim stress significantly attenuated latent inhibition. The implications of these results regarding the effects of swim stress on conditioned taste aversion are discussed.

  10. Seasonal Water Storage, the Resulting Deformation and Stress, and Occurrence of Earthquakes in California

    Science.gov (United States)

    Johnson, C. W.; Burgmann, R.; Fu, Y.; Dutilleul, P.

    2015-12-01

    In California the accumulated winter snow pack in the Sierra Nevada, reservoirs and groundwater water storage in the Central Valley follow an annual periodic cycle and each contribute to the resulting surface deformation, which can be observed using GPS time series. The ongoing drought conditions in the western U.S. amplify the observed uplift signal as the Earth's crust responds to the mass changes associated with the water loss. The near surface hydrological mass loss can result in annual stress changes of ~1kPa at seismogenic depths. Similarly, small static stress perturbations have previously been associated with changes in earthquake activity. Periodicity analysis of earthquake catalog time series suggest that periods of 4-, 6-, 12-, and 14.24-months are statistically significant in regions of California, and provide documentation for the modulation of earthquake populations at periods of natural loading cycles. Knowledge of what governs the timing of earthquakes is essential to understanding the nature of the earthquake cycle. If small static stress changes influence the timing of earthquakes, then one could expect that events will occur more rapidly during periods of greater external load increases. To test this hypothesis we develop a loading model using GPS derived surface water storage for California and calculate the stress change at seismogenic depths for different faulting geometries. We then evaluate the degree of correlation between the stress models and the seismicity taking into consideration the variable amplitude of stress cycles, the orientation of transient load stress with respect to the background stress field, and the geometry of active faults revealed by focal mechanisms.

  11. Ground-water conditions and studies in Georgia, 2001

    Science.gov (United States)

    Leeth, David C.; Clarke, John S.; Craigg, Steven D.; Wipperfurth, Caryl J.

    2003-01-01

    The U.S. Geological Survey (USGS) collects ground-water data and conducts studies to monitor hydrologic conditions, to better define ground-water resources, and address problems related to water supply and water quality. Data collected as part of ground-water studies include geologic, geophysical, hydraulic property, water level, and water quality. A ground-water-level network has been established throughout most of the State of Georgia, and ground-water-quality networks have been established in the cities of Albany, Savannah, and Brunswick and in Camden County, Georgia. Ground-water levels are monitored continuously in a network of wells completed in major aquifers of the State. This network includes 17 wells in the surficial aquifer, 12 wells in the upper and lower Brunswick aquifers, 73 wells in the Upper Floridan aquifer, 10 wells in the Lower Floridan aquifer and underlying units, 12 wells in the Claiborne aquifer, 1 well in the Gordon aquifer, 11 wells in the Clayton aquifer, 11 wells in the Cretaceous aquifer system, 2 wells in Paleozoic-rock aquifers, and 7 wells in crystalline-rock aquifers. In this report, data from these 156 wells were evaluated to determine whether mean-annual ground-water levels were within, below, or above the normal range during 2001, based on summary statistics for the period of record. Information from these summaries indicates that water levels during 2001 were below normal in almost all aquifers monitored, largely reflecting climatic effects from drought and pumping. In addition, water-level hydrographs for selected wells indicate that water levels have declined during the past 5 years (since 1997) in almost all aquifers monitored, with water levels in some wells falling below historical lows. In addition to continuous water-level data, periodic measurements taken in 52 wells in the Camden County-Charlton County area, and 65 wells in the city of Albany-Dougherty County area were used to construct potentiometric-surface maps for

  12. Will climate change exacerbate water stress in Central Asia?

    DEFF Research Database (Denmark)

    Siegfried, Tobias; Bernauer, Thomas; Guiennet, Renaud

    2012-01-01

    unstable Fergana Valley. Targeted infrastructural developments will be required in the region. If the current mismanagement of water and energy resources can be replaced with more effective resource allocation mechanisms through the strengthening of transboundary institutions, Central Asia will be able......Millions of people in the geopolitically important region of Central Asia depend on water from snow- and glacier-melt driven international rivers, most of all the Syr Darya and Amu Darya. The riparian countries of these rivers have experienced recurring water allocation conflicts ever since...... the Soviet Union collapsed. Will climate change exacerbate water stress and thus conflicts? We have developed a coupled climate, land-ice and rainfall-runoff model for the Syr Darya to quantify impacts and show that climatic changes are likely to have consequences on runoff seasonality due to earlier snow...

  13. A method for canopy water content estimation for highly vegetated surfaces-shortwave infrared perpendicular water stress index

    Institute of Scientific and Technical Information of China (English)

    GHULAM; Abduwasit; LI; Zhao-Liang; QIN; QiMing; TONG; QingXi; WANG; JiHua; KASIMU; Alimujiang; ZHU; Lin

    2007-01-01

    In this paper, a new method for canopy water content (FMC) estimation for highly vegetated surfaces- shortwave infrared perpendicular water stress index (SPSI) is developed using NIR, SWIR wavelengths of Enhanced Thematic Mapper Plus (ETM+) on the basis of spectral features and distribution of surface targets with different water conditions in NIR-SWIR spectral space. The developed method is further explored with radiative transfer simulations using PROSPECT, Lillesaeter, SailH and 6S. It is evident from the results of validation derived from satellite synchronous field measurements that SPSI is highly correlated with FMC, coefficient of determination (R squared) and root mean square error are 0.79 and 26.41%. The paper concludes that SPSI has a potential in vegetation water content estimation in terms of FMC.

  14. Stress Coefficients for Soil Water Balance Combined with Water Stress Indicators for Irrigation Scheduling of Woody Crops

    Directory of Open Access Journals (Sweden)

    Maria Isabel Ferreira

    2017-06-01

    Full Text Available There are several causes for the failure of empirical models to estimate soil water depletion and to calculate irrigation depths, and the problem is particularly critical in tall, uneven, deficit irrigated (DI crops in Mediterranean climates. Locally measured indicators that quantify water status are useful for addressing those causes and providing feed-back information for improving the adequacy of simple models. Because of their high aerodynamic resistance, the canopy conductance of woody crops is an important factor in determining evapotranspiration (ET, and accurate stress coefficient (Ks values are needed to quantify the impact of stomatal closure on ET. A brief overview of basic general principles for irrigation scheduling is presented with emphasis on DI applications that require Ks modelling. The limitations of existing technology related to scheduling of woody crops are discussed, including the shortcomings of plant-based approaches. In relation to soil water deficit and/or predawn leaf water potential, several woody crop Ks functions are presented in a secondary analysis. Whenever the total and readily available water data were available, a simple Ks model was tested. The ultimate aim of this discussion is to illustrate the central concept: that a combination of simple ET models and water stress indicators is required for scheduling irrigation of deep-rooted woody crops.

  15. Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600

    Science.gov (United States)

    Panter, J.; Viguier, B.; Cloué, J.-M.; Foucault, M.; Combrade, P.; Andrieu, E.

    2006-01-01

    In the present study alloy 600 was tested in simulated pressurised water reactor (PWR) primary water, at 360 °C, under an hydrogen partial pressure of 30 kPa. These testing conditions correspond to the maximum sensitivity of alloy 600 to crack initiation. The resulting oxidised structures (corrosion scale and underlying metal) were characterised. A chromium rich oxide layer was revealed, the underlying metal being chromium depleted. In addition, analysis of the chemical composition of the metal close to the oxide scale had allowed to detect oxygen under the oxide scale and particularly in a triple grain boundary. Implication of such a finding on the crack initiation of alloy 600 is discussed. Significant diminution of the crack initiation time was observed for sample oxidised before stress corrosion tests. In view of these results, a mechanism for stress corrosion crack initiation of alloy 600 in PWR primary water was proposed.

  16. Plasma membrane proteomics in the maize primary root growth zone: novel insights into root growth adaptation to water stress.

    Science.gov (United States)

    Voothuluru, Priyamvada; Anderson, Jeffrey C; Sharp, Robert E; Peck, Scott C

    2016-09-01

    Previous work on maize (Zea mays L.) primary root growth under water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. These responses involve spatially differential and coordinated regulation of osmotic adjustment, modification of cell wall extensibility, and other cellular growth processes that are required for root growth under water-stressed conditions. As the interface between the cytoplasm and the apoplast (including the cell wall), the plasma membrane likely plays critical roles in these responses. Using a simplified method for enrichment of plasma membrane proteins, the developmental distribution of plasma membrane proteins was analysed in the growth zone of well-watered and water-stressed maize primary roots. The results identified 432 proteins with differential abundances in well-watered and water-stressed roots. The majority of changes involved region-specific patterns of response, and the identities of the water stress-responsive proteins suggest involvement in diverse biological processes including modification of sugar and nutrient transport, ion homeostasis, lipid metabolism, and cell wall composition. Integration of the distinct, region-specific plasma membrane protein abundance patterns with results from previous physiological, transcriptomic and cell wall proteomic studies reveals novel insights into root growth adaptation to water stress.

  17. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.

    Science.gov (United States)

    Mathieu, L; Bertrand, I; Abe, Y; Angel, E; Block, J C; Skali-Lami, S; Francius, G

    2014-05-15

    Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., 600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200 μm(3)). Changes in the cohesive

  18. Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index

    Science.gov (United States)

    Precision irrigation management in wine grape production is hindered by the lack of a reliable method to easily quantify and monitor vine water status. Mild to moderate water stress is desirable in wine grape for controlling vine vigor and optimizing fruit yield and quality. A crop water stress ind...

  19. [Effects of water stress and nitrogen fertilization on peanut root morphological development and leaf physiological activities].

    Science.gov (United States)

    Ding, Hong; Zhang, Zhi-meng; Dai, Liang-xiang; Ci, Dun-wei; Qin, Fei-fei; Song, Wen-wu; Liu, Meng-juan; Fu, Xiao

    2015-02-01

    Taking 'Huayu 22' peanut as test material, effect of soil water content and nitrogen fertilization on the leaf physiological activities and root morphological characteristics of peanut plants were analyzed. Two levels of soil water condition were: (1) well-watered condition and (2) moderate water stress, and three levels of nitrogen were: (1) none nitrogen (N0), (2) moderate nitrogen (N1, 90 kg · hm(-2)) and (3) high nitrogen (N2, 180 kg · hm(-2)). The results showed that N1 significantly increased the peanut yield under two water conditions, but showed no significant effect on harvest index compared with N0. Under water stress condition, N1 had no significant effects on total root biomass and total root length, but the total root surface area was remarkably increased. The nitrogen fertilization significantly increased the root length and root surface area in 20-40 cm soil layer, and N2 significantly increased the root biomass and root surface area in the soil layer below 40 cm. The application of nitrogen remarkably increased CAT and POD activities in leaf, while MDA content was decreased with the increase of nitrogen level. Under well-watered condition, the root biomass, root length and root surface area in the soil layer below 40 cm and total root surface area were significantly reduced by nitrogen application, however, only N1 could increase leaf protective enzyme activities. Correlation analysis showed that the root length in 20-40 cm soil layer and SOD, CAT, POD activities in leaf were highly significantly related with peanut yield.

  20. Effect of Water Stress and Source Limitation on Accumulation and Remobilization of Photoassimilates in Wheat Genotypes

    Directory of Open Access Journals (Sweden)

    M Ezzat Ahmadi

    2012-02-01

    Full Text Available In order to study dry matter accumulation in different developmental stages and photoassimilates remobilization in bread wheat genotypes, a field experiment was carried out using a split split plot design based on a randomized complete block design with three replications in Torogh Agricultural and Natural Resources Research Station (Mashhad, Iran in 2006-2007 and 2007-2008. Main plots were assigned to two levels of water stress treatments; D1: optimum irrigation, and D2: cessation of watering from anthesis to maturity stages. Sub plots were assigned to eight bread wheat genotypes: 9103, 9116, 9203, 9205, 9207, 9212, C-81-10, and Cross Shahi; and source limitations with two levels; P1: no source limitation and P2: inhibition of current photosynthesis from anthesis were in sub-sub plots. Results of combined analysis showed that, grain yield, accumulation of dry matter in different developmental stages (soft dough stage and physiological maturity stage, amount of remobilized dry matter (DMT, remobilization efficiency (RE, remobilization percentage (CPAAG, canopy temperature depression (CTD and leaf relative water content (RWC in anthesis and grain watering stages was significantly affected by water stress treatment. Water stress increased DMT, RE, and CPAAG by 15%, 18%, and 50.6%, respectively; compared with well-watered treatment. Current photosynthesis inhibition increased CPAAG by 43.1%, and decreased DMT and RE by 44% and 60.8%, respectively; compared with P1 treatment. Postanthesis water stress and current photosynthesis inhibition caused source and sink limitations, and decreased CTD and RWC. Considering that C-81-10, 9103 and 9116 genotypes showed the highest grain yield and translocated dry matter under different moisture conditions; thus, these genotypes could be introduced as promising lines in breeding programs for arid and semi-arid regions. Significantly positive correlations between CTD and RWC with grain yield, particularly at grain

  1. Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate.

    Science.gov (United States)

    Jubany-Marí, T; Munné-Bosch, S; Alegre, L

    2010-05-01

    Abiotic stresses, such as drought, can increase the production of reactive oxygen species (ROS) in plants. An increase in ROS levels can provoke a partial or severe oxidation of cellular components inducing redox status changes, so continuous control of ROS and therefore of their metabolism is decisive under stress conditions. The present work focuses on the contribution of one pro-oxidant, hydrogen peroxide (H(2)O(2)) and one antioxidant, ascorbate (AA) and its redox status, in the control of plant responses to drought-oxidative stress in resistant plants growing in field conditions. After a general introduction to the concept of drought and oxidative stress and its relationship, we describe the role of H(2)O(2) in drought stress responses, emphasizing the importance of studies in H(2)O(2) subcellular localization, needed for a better understanding of its role in plant responses to stress. Although more studies are needed in the study of changes of redox status in plants subjected to stress, the AA pools and its redox status can be indicative of its involvement as a part of cellular mechanisms by which the plant respond to drought-induced oxidative stress. The mechanism of resistance and/or tolerance to drought-oxidative stress is complex, especially when studies are carried out in plants growing in field conditions, where an interaction of stresses occurs. This study sheds light on the mechanisms of plant responses to water-oxidative stress in plants growing in the field.

  2. Oxidation behavior of Incoloy 800 under simulated supercritical water conditions

    Energy Technology Data Exchange (ETDEWEB)

    Fulger, M. [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania)], E-mail: manuela.fulger@nuclear.ro; Ohai, D.; Mihalache, M.; Pantiru, M. [Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni (Romania); Malinovschi, V. [University of Pitesti, Research Center for Advanced Materials, Targul din Vale Street, No. 1, 110040 Pitesti (Romania)

    2009-03-31

    For a correct design of supercritical water-cooled reactor (SCWR) components, data regarding the behavior of candidate materials in supercritical water are necessary. Corrosion has been identified as a critical problem because the high temperature and the oxidative nature of supercritical water may accelerate the corrosion kinetics. The goal of this paper is to investigate the oxidation behavior of Incoloy 800 exposed in autoclaves under supercritical water conditions for up to 1440 h. The exposure conditions (thermal deaerated water, temperatures of 723, 773, 823 and 873 K and a pressure of 25 MPa) have been selected as relevant for a supercritical power plant concept. To investigate the structural changes of the oxide films, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX) and electrochemical impedance spectroscopy (EIS) analyses were used. Results show changes in the oxides chemical composition, microstructure and thickness versus testing conditions (pressure, temperature and time). The oxide films are composed of two layers: an outer layer enriched in Fe oxide and an inner layer enriched in Cr and Ni oxides corresponding to small cavities supposedly due to internal oxidation.

  3. Hydrologic conditions in Florida during Water Year 2008

    Science.gov (United States)

    Verdi, Richard J.; Holt, Sandra L.; Irvin, Ronald B.; Fulcher, David L.

    2010-01-01

    Record-high and record-low hydrologic conditions occurred during water year 2008 (October 1, 2007-September 30, 2008). Record-low levels were caused by a continuation of the 2007 water year drought conditions into the 2008 water year and persisting until summer rainfall. The gage at the Santa Fe River near Fort White site recorded record-low monthly mean discharges in October and November 2007. The previous records for this site were set in 1956 and 2002, respectively. Record-high conditions in northeast and northwest Florida were caused by the rainfall and runoff associated with Tropical Storm Fay. For example, St. Mary's River near Macclenny recorded a new record-high monthly mean discharge in August 2008. The previous record for this site was set in 1945. Lake Okeechobee in south Florida reached new minimum monthly mean lake levels since monitoring began in 1912 from October to March during the 2008 water year. Some wells throughout northwest and south Florida registered period-of-record lowest daily maximum water levels.

  4. Role of Bradyrhizobium japonicum induced by genistein on soybean stressed by water deficit

    Energy Technology Data Exchange (ETDEWEB)

    Napoles, M. C.; Guevara, E.; Montero, F.; Roosi, A.; Ferreira, A.

    2009-07-01

    Abstract The soybean (Glycine max (L.) Merr.) is a crop mainly grown under rain fed conditions although irrigation is increasingly being used. Water deficiency is the main factor limiting seed production. The symbiosis process is also negatively affected by water stress. The isoflavone genistein have been recognized as a powerful inducer of Nod factors production by Bradyrhizobium and its addition to inocula has been shown to increase nodule number and promote soybean nitrogen (N) fixation at low temperatures. This study looks for answers about the possible role of genistein in countering the stress on nodulation produced by water deficit in soybeans. Bradyrhizobium japonicum SEMIA 5079 was grown in culture media induced or not induced with genistein. Inocula were applied to plants growing at different moisture levels. The effect of the treatments on nodulation and N content was evaluated. An improved response to drought stress was observed when the bacteria were grown in presence of genistein as a Nod factors inducer. Nodulation values under moisture stress differed from 8.9 nodules plant{sup -}1 with genistein at 10 {mu}M to 1.8 nodules plant{sup -}1 when no inducer was used. Genistein reduced the negative effect on nodulation caused by water deficiency. (Author) 43 refs.

  5. Plant water-stress parameterization determines the strength of land-atmosphere coupling

    Science.gov (United States)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; Ouwersloot, Huug G.; Peters, Wouter

    2016-04-01

    Land-surface models that are currently used in numerical weather predictions models and earth system models all assume various plant water-stress parameterizations. We investigate the impact of this variety of parametrizations on the performance of atmospheric models. For this, we use a conceptual framework where a convective atmospheric boundary-layer (ABL) model is coupled to a daytime model for the land surface fluxes of carbon, water, and energy. We first validate our coupled model for a set of surface and upper-atmospheric diurnal observations over a grown maize field in the Netherlands. We then perform a sensitivity analysis of this coupled land-atmosphere system by varying the modeled plant water-stress response from a very insensitive to a sensitive response during dry soil conditions. We first propose and verify a feedback diagram that ties plant water-stress response and large-scale atmospheric conditions to the diurnal cycles of ABL CO2, humidity and temperature. Based on our undertanstanding of the diurnal coupled system, we then explore the impact of the assumed water-stress reponse for the development of a dry spell on a synoptic time scale. We find that during a progressive 3-week soil drying caused by evapotranspiration, an insensitive plant will dampen atmospheric heating because the vegetation continues to transpire while soil moisture is available. In contrast, the sensitive plant reduces its transpiration to prevent soil moisture depletion. But when absolute soil moisture comes close to wilting point, the insensitive plant will suddenly close its stomata causing a switch to a land-atmosphere coupling regime dominated by sensible heat exchange. We find that in both cases, our modeled progressive soil moisture depletion contributes to further atmospheric warming up to 6 K, reduced photosynthesis up to 89 %, and CO2 enrichment up to 30 ppm, but the full impact is strongly delayed for the insensitive plant. Finally, we demonstrate that the assumed

  6. Sea water air conditioning : a cost effective alternative

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F. [Arab Academy for Science, Technology and Maritime Transport, Alexandria (Egypt). Dept. of Mechanical Engineering, College of Engineering and Technology; Saeid, L. [National Gas Company, Cairo (Egypt). GIS and Design Section

    2009-07-01

    The 2 main types of air conditioning systems are vapor compression systems which are electrically operated, and absorption systems which are heat operated. This paper presented a new air conditioning technique for use in the Middle East. The Sea Water Air Conditioning (SWAC) system uses deep cold ocean and sea water as a renewable energy source to air-condition buildings. A technical and economical assessment was performed to determine the advantages of the SWAC system over conventional vapor compression systems to air-condition hotels and resorts at a new tourists resort in Egypt. Meteorological data for the region was used to estimate the gross cooling load for the hotels using the HVAC Load Explorer program. The major components of the SWAC system were sized and analyzed to the determine its operational performance and to estimate the probable costs. The economic analysis was based on two different methods, notably the net present value (NPV) and the simple pay back method. Three options were investigated in the economic study. The first was the use of a conventional air conditioning system to provide a baseline for the other options being investigated. The second option was the use of deep sea water only, and the third option involved the use of a hybrid system using both a sea water air conditioning system and a conventional chiller in series. The SWAC system was the preferred option for its minimum net present value as well as the short pay back period. The energy savings approached 80 per cent of conventional air-conditioners. It was concluded that in addition to reducing electricity use, the SWAC systems can contribute to a reduction in greenhouse gases. 11 refs., 7 tabs., 6 figs.

  7. Weekly Water Stress Monitoring in a Savannah Environment using a new Data Fusion Drought Index

    Science.gov (United States)

    Azmi, M.; Rudiger, C.; Walker, J. P.

    2015-12-01

    Due to the increasing pressure on water resources, water stress monitoring has become one of the most significant issues in water resources planning and management, especially during periods of extreme climate conditions. The present study compares the performance of four currently used data fusion based drought indices (DFDIs) to evaluate the weekly water stress at the Howard Springs OzFlux Tower in Northern Australia, covering a 3-year period from January 2011 to December 2013. In addition, a new DFDI has been developed and applied to address the individual shortcomings of the traditional indices. The proposed DFDI comprehensively considers all types of drought through a selection of indices and proxies associated with each drought type (water, vegetation etc). Here, weekly data from three different data sources (OzFlux Network, Asia-Pacific Water Monitor, and MODIS-Terra satellite) were utilized for the evaluations. To derive the new DFDI, an appropriate set of individual standardized drought indices (SDIs) was derived, that are categorized through an advanced clustering method. For two groups in which the clustered SDIs best reflected the water availability and vegetation conditions, the variables are aggregated based on an averaging between the standardized first principal components of three different multivariate methods of PCA, FA and ICA. Then, considering those aggregated indices as well as the classifications of months into dry/wet and active/non-active, the time series of the proposed DFDI is finalized. A comparison, employing the Spearman correlation coefficient, between the proposed index and the traditional data fusion based indices shows a range of correlations from 0.46 to 0.85. The results underline that the proposed index can be more reliable in compare to the previous indices, due to simultaneously relating hydro-meteorological and ecological concepts to define the actual water stress throughout the study area.

  8. Vitality of Complex Water Governance Systems: Condition and Evolution

    NARCIS (Netherlands)

    J. Edelenbos (Jurian); I.F. van Meerkerk (Ingmar); C. van Leeuwen (Corniel)

    2014-01-01

    markdownabstractIn this article the evolution of vitality of social systems in water governance processes, approached as social-ecological systems, is studied. Vitality as well as conditions for vitality are theorized and measured in two cases of the Dutch southwest Delta region. Different patterns

  9. [Cardioprotective properties of new glutamic acid derivative under stress conditions].

    Science.gov (United States)

    Perfilova, V N; Sadikova, N V; Berestovitskaia, V M; Vasil'eva, O S

    2014-01-01

    The effect of new glutamic acid derivative on the cardiac ino- and chronotropic functions has been studied in experiments on rats exposed to 24-hour immobilization-and-pain stress. It is established that glutamic acid derivative RGPU-238 (glufimet) at a dose of 28.7 mg/kg increases the increment of myocardial contractility and relaxation rates and left ventricular pressure in stress-tested animals by 13 1,1, 72.4, and 118.6%, respectively, as compared to the control group during the test for adrenoreactivity. Compound RGPU-238 increases the increment of the maximum intensity of myocardium functioning by 196.5 % at 30 sec of isometric workload as compared to the control group. The cardioprotective effect of compound RGPU-238 is 1.5 - 2 times higher than that of the reference drug phenibut.

  10. Water stress and crop load effects on fruit fresh and dry weights in peach (Prunus persica).

    Science.gov (United States)

    Berman, M E; DeJong, T M

    1996-10-01

    Effects of water stress on fruit fresh and dry weights were investigated in peach trees, Prunus persica (L.) Batsch., with varying crop loads: light, moderate and heavy. In well-watered controls, tree water status was independent of crop load. In trees receiving reduced irrigation, the degree of water stress increased with increasing crop load. Water stress induced fruit fresh weight reductions at all crop loads. Fruit dry weight was not reduced by water stress in trees having light to moderate crop loads, indicating that the degree of water stress imposed did not affect the dry weight sink strength of fruit. Water-stressed trees with heavy crop loads had significantly reduced fruit dry weights, which were likely due to carbohydrate source limitations resulting from large crop carbon demands and water stress limitations on photosynthesis.

  11. Osmosis-induced swelling of Eurobitum bituminized radioactive waste in constant total stress conditions

    Science.gov (United States)

    Valcke, E.; Marien, A.; Smets, S.; Li, X.; Mokni, N.; Olivella, S.; Sillen, X.

    2010-11-01

    In geological disposal conditions, contact of Eurobitum bituminized radioactive waste, which contains high amounts of the hygroscopic and highly soluble NaNO 3, with groundwater will result in water uptake and swelling of the waste, and in subsequent leaching of the embedded NaNO 3 and radionuclides. The swelling of and the NaNO 3 leaching from non-radioactive Eurobitum samples, comprised between two stainless steel filters and in contact with 0.1 M KOH, was studied in restricted (semi-confined) swelling conditions, i.e. under a constant total stress, or counterpressure, of 2.2, 3.3, or 4.4 MPa ( i.e. oedometer conditions). Four tests were stopped after hydration times between 800 and 1500 days, and the samples were analyzed by micro-focus X-ray Computer Tomography (μCT) and by Environmental Scanning Electron Microscopy (ESEM). The complete set of data enabled a consistent interpretation of the observations and lead to an improved understanding of the phenomenology of the water uptake, swelling, and NaNO 3 leaching in restricted swelling conditions. Under the studied conditions, the bituminous matrix surrounding the NaNO 3 crystals and pores with NaNO 3 solution behaved as a highly efficient semi-permeable membrane, i.e. osmotic processes occurred. In the main part of the leached layers, a high average NaNO 3 concentration and related to this a high osmotic pressure prevailed, explaining why in the studied range the swelling was not measurably affected by the counterpressure. At the interface with the stainless steel filters, a low permeable re-compressed bitumen layer was formed, contributing to the slow release of NaNO 3 compared to the water uptake rate. A fully coupled Chemo-Hydro-Mechanical (CHM) constitutive model has been developed that integrates the key processes involved and that reproduces satisfactorily the results; this is presented in another work. Combination of the experimental and the modelling study allow to conclude that under semi

  12. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation.

    Science.gov (United States)

    Rangel, Drauzio E N; Braga, Gilberto U L; Fernandes, Éverton K K; Keyser, Chad A; Hallsworth, John E; Roberts, Donald W

    2015-08-01

    The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.

  13. Calcification intensity in planktonic Foraminifera reflects ambient conditions irrespective of environmental stress

    Directory of Open Access Journals (Sweden)

    M. F. G. Weinkauf

    2013-07-01

    Full Text Available Planktonic Foraminifera are important marine calcifiers, and the ongoing change in the oceanic carbon system makes it essential to understand the influence of environmental factors on the biomineralisation of their shells. The amount of calcite deposited by planktonic Foraminifera during calcification has been hypothesized to reflect a range of environmental factors. However, it has never been assessed whether their calcification only passively responds to the conditions of the ambient seawater or whether it reflects changes in resource allocation due to physiological stress. To disentangle these two end-member scenarios, an experiment is required where the two processes are separated. A natural analogue to such an experiment occurred during the deposition of the Mediterranean sapropels, where large changes in surface water composition and stratification at the onset of the sapropel deposition were decoupled from local extinctions of planktonic Foraminifera species. We take advantage of this natural experiment and investigate the reaction of calcification intensity, expressed as size-normalized weight (SNW, of four species of planktonic Foraminifera to changing conditions during the onset of Sapropel S5 (126–121 ka in a sediment core from the Levantine Basin. We observe a significant relationship between SNW and surface water properties, as reflected by stable isotopes in the calcite of Foraminifera shells, but we failed to observe any reaction of calcification intensity on ecological stress during times of decreasing abundance culminating in local extinction. The reaction of calcification intensity to surface water perturbation at the onset of the sapropel was observed only in surface dwelling species, but all species calcified more strongly prior to the sapropel deposition and less strongly within the sapropel than at comparable conditions during the present day. These results indicate that the high-salinity environment of the glacial

  14. Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and Antioxidant Compounds in Cherry Tomato

    Directory of Open Access Journals (Sweden)

    Mohamad AL HASSAN

    2015-04-01

    Full Text Available The effects of salt and water stress on growth and several stress markers were investigated in cherry tomato plants. Some growth parameters (stem length and number of leaves and chlorophyll contents were determined every third day during plant growth, and leaf material was collected after 25 and 33 days of treatment. Both stresses inhibited plant growth; chlorophyll levels, however, decreased only in response to high NaCl concentrations. Proline contents largely increased in leaves of stressed plants, reaching levels high enough to play a major role in cellular osmotic adjustment. Despite reports indicating that tomato does not synthesize glycine betaine, the stress-induced accumulation of this osmolyte was detected in cherry tomato, albeit at lower concentration than that of proline. Therefore, it appears that the plants are able to synthesise glycine betaine as a secondary osmolyte under strong stress conditions. Total sugars levels, on the contrary, decreased in stress-treated plants. Both stress treatments caused secondary oxidative stress in the plants, as indicated by a significant increase in malondialdehyde (MDA contents. Water stress led to an increase in total phenolics and flavonoid contents and a reduction of carotenoid levels in the leaves; flavonoids also increased under high salinity conditions.

  15. Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions

    NARCIS (Netherlands)

    Azcón, R.; Medina, A.

    2010-01-01

    Plant growth is limited in arid and/or contaminated sites due to the adverse conditions coming from heavy metal (HM) contamination and/or water stress. Moreover, soils from these areas are generally characterised by poor soil structure, low water-holding capacity, lack of organic matter and nutrient

  16. Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions

    NARCIS (Netherlands)

    Azcón, R.; Medina, A.

    2010-01-01

    Plant growth is limited in arid and/or contaminated sites due to the adverse conditions coming from heavy metal (HM) contamination and/or water stress. Moreover, soils from these areas are generally characterised by poor soil structure, low water-holding capacity, lack of organic matter and nutrient

  17. Identification of quantitative trait loci for four morphologic traits under water stress in rice(Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Late season drought coinciding with the rice booting to heading stage affects the development of plant height,panicle exsertion,and flag leaf size,and causes significant yield loss.In this study,a recombinant inbred line population derived from a cross between paddy and upland cultivars was used for data collection of the morphologic traits under well water and drought stress conditions.bought stress was applied at the stage of panicle initiation in the field in 2002 and at the booting stage in PVC pipes in 2003.The data from stress con ditions and their ratios(tait measured under stress condition/trait measured under well water condition)or differences(trait measured under stress condition minus trait measured under well water condition)were used for OTL analysis.Totally,17 and 36 QTLs for these traits were identified in 2002 and 2003,respectively,which explained a range of 2.58%-29.82%Of the phenotypic variation.Among them,six QTLs were commonly identified in the two years,suggesting that the drought stress in the two years was different.The genetic basis of these traits will provide useful information for improving rice late season drought resistance,and their application as indirect indices in rice late season drought resistance screening was also discussed.

  18. Survival and weight change among adult individuals of Periplaneta americana (Linnaeus, 1758 (Blattaria, Blattidae subject to various stress conditions

    Directory of Open Access Journals (Sweden)

    Jucelio Peter Duarte

    2015-03-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2015v28n2p103 Periplaneta americana is a species of great importance to public health, since it can act as a vector of many pathogens and it reaches large populations in urban environments. This is probably due to its ability to resist starvation and desiccation. This study aimed to evaluate the effects of absence of water and food on survival and weight change among adult P. americana individuals and check whether the initial weight of individuals influences on their survival. Four groups having twenty P. americana couples were formed and subject to: I no water or food; II no food; III no water; and IV control group. Insects were isolated according to the groups, which were weighed at the beginning and end of the stress conditions. They remained under these conditions until all individuals in each test group were dead. Stress conditions caused reduction in survival time when compared to the control group. Adults with higher body mass survived longer when deprived only of food, while among those lacking water, weight had no influence on survival. Total weight loss was greater among individuals deprived of water than those deprived only of food.

  19. An innovative pot system for monitoring the effects of water stress on grapevines and grape quality

    Science.gov (United States)

    Puccioni, Sergio; Leprini, Marco; Mocali, Stefano; Perria, Rita; Priori, Simone; Storchi, Paolo; Zombardo, Alessandra; Costantini, Edoardo

    2016-04-01

    The advantage of a pot system is the possibility to control many variables and factors with a large number of replicates, obtaining statistically significant results in only one year of experimentation. An innovative pot system for the monitoring of grapevine water stress was set up. The system consists of 99 pots of 70 liters, filled by 3 different soils collected from premium vineyards of the Chianti Classico district (Tuscany). The soils showed different texture (clay-loam, loam and sandy-loam), different gravel and carbonate content, and different available water capacity (AWC). The same soils had been field monitored for grapevine water stress; therefore it was possible to compare the grapevine behaviour both in pot and in field conditions. The grapevine cultivar was Pinot noir clone ENTAV 115, which can be used to investigate the genetic expression in response to environmental factors, since its genome has been sequenced. Different rootstocks theses were compared: not grafted, 1103 Paulsen and M101-14. Each combination rootstock-soil was repeated 9 times. Every pot was equipped for drip irrigation and with electrodes for soil moisture determination by TDR. A non-stop automated control unit recorded meteorological data (temperature and rainfalls), soil temperature and water potential on 9 selected pots. These 9 selected pots were also used to calibrate a model for soil water volume/tension curve. Soil, leaves and grapes samples from each pot were collected for microbial community determination, through NGS analysis. A preliminary study was based on testing the ability of the system to simulate the natural growing conditions of the grapevines. Therefore the grape performances of the potted plants were compared to those of plants cultivated in the vineyards where the soils were taken. In July 2015 three levels of water supply were tested during 5 weeks (up to veraison) in order to study the effects of water stress on the plants and the grape. Later, all the pots

  20. Hydrologic Conditions in Florida during Water Year 2007

    Science.gov (United States)

    Verdi, Richard Jay; Tomlinson, Stewart A.; Irvin, Ronald B.; Fulcher, David L.

    2009-01-01

    Record-high and record-low hydrologic conditions occurred during water year 2007 (October 1, 2006 - September 30, 2007) based on analyses of precipitation, surface-water flows, lake elevations, and ground-water levels. For example, the streamgage at Suwannee River at White Springs in northwest Florida recorded an annual streamflow of 103 cubic feet per second during 2007, or about 6 percent of the period-of-record average since monitoring began in 1906. Lake Okeechobee in south Florida reached record-low elevations (8.82 feet on July 2) since monitoring began in 1912. Several wells throughout the State registered period-of-record lowest daily maximum water levels.

  1. In-situ stress measurements and stress change monitoring to monitor overburden caving behaviour and hydraulic fracture pre-conditioning

    Institute of Scientific and Technical Information of China (English)

    Puller Jesse W.; Mills Ken W.; Jeffrey Rob G.; Walker Rick J.

    2016-01-01

    A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage potential windblast and periodic caving hazards associated with these conglomerate strata, the in-situ stresses in the conglomerate were measured using ANZI strain cells and the overcoring method of stress relief. Changes in stress associated with abutment loading and placement of hydraulic fractures were also measured using ANZI strain cells installed from the surface and from underground. Overcore stress mea-surements have indicated that the vertical stress is the lowest principal stress so that hydraulic fractures placed ahead of mining form horizontally and so provide effective pre-conditioning to promote caving of the conglomerate strata. Monitoring of stress changes in the overburden strata during longwall retreat was undertaken at two different locations at the mine. The monitoring indicated stress changes were evi-dent 150 m ahead of the longwall face and abutment loading reached a maximum increase of about 7.5 MPa. The stresses ahead of mining change gradually with distance to the approaching longwall and in a direction consistent with the horizontal in-situ stresses. There was no evidence in the stress change monitoring results to indicate significant cyclical forward abutment loading ahead of the face. The for-ward abutment load determined from the stress change monitoring is consistent with the weight of over-burden strata overhanging the goaf indicated by subsidence monitoring.

  2. Effect of arbuscular mycorrhizal inoculation on water status and photosynthesis of Populus cathayana males and females under water stress.

    Science.gov (United States)

    Li, Zhen; Wu, Na; Liu, Ting; Chen, Hui; Tang, Ming

    2015-02-27

    Drought is one of the most serious environmental limitations for poplar growth. Although the ways in which plants deal with water stress and the effects of arbuscular mycorrhizal (AM) formation have been well documented, little is known about how the male and female plants of Populus cathayana respond to drought and AM formation. We also aimed to investigate the potential role of AM fungi in maintaining gender balance. We tested the impact of drought and AM formation on water status and photosynthesis. The results suggested that both sexes showed similar responses to water stress: drought decreased the growth of stem length (GSL), growth of ground diameter (GGD), relative water content (RWC), increased the relative electrolyte leakage (REL), and limited the photosynthesis and chlorophyll fluorescence indexes. However, the responses of the two sexes to drought and AM formation differed to some extent. AM formation had positive effects on RWC, photosynthesis and the intrinsic water use efficiency (WUEi) but negative effects on the REL of males and females, especially under drought. AM formation enhanced the maximum quantum yield of photosystem II (PSII) (Fv/Fm), the actual quantum yield of PSII (ΦPSII), non-photochemical quenching (qN) and photochemical quenching (qP) under drought conditions, and had no significant effects under well-watered conditions except on the qP of males. Principal component analysis showed that males were significantly more drought tolerant than females, and AM formation enhanced drought tolerance, particularly among males, which suggested that AM fungi are beneficial for ecological stability and for P. cathayana survival under drought conditions.

  3. A Research of Stress over Medical Employees which is Caused by Job Conditions in Sivas

    Directory of Open Access Journals (Sweden)

    Cüneyt Tokmak

    2011-03-01

    Full Text Available Stress that almost everybody can experience in their lifetime is a state of discomfort which is caused by several components and which can influence the quality of life in a negative way. Especially the complications in the job conditions that are faced by the employees can be sources of stress. In this study, it is aimed to reveal whether the job conditions cause stress over health employees or not. It is also aimed to discover whether the effect of job conditions on employees alter depending on diverse criteria (gender, age, organization, income level, marital status. In this study, field survey method is used and a questionnaire is applied over a total of 456 people who work for private and public medical establishments in Sivas. As a result, it is revealed that job conditions cause a medium level stress and employees working for private medical establishments face less stress in comparison to the employees working for public establishments.

  4. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. IV. Discussion of real cases

    Science.gov (United States)

    Laio, F.; Porporato, A.; Fernandez-Illescas, C. P.; Rodriguez-Iturbe, I.

    Three water-controlled ecosystems are studied here using the stochastic description of soil moisture dynamics and vegetation water stress proposed in Part II (F. Laio, A. Porporato, L. Ridolfi, I. Rodriguez-Iturbe, Adv. Water Res. 24 (7) (2001) 707-723) and Part III (A. Porporato, F. Laio, L. Ridolfi, I. Rodriguez-Iturbe, Adv. Water Res. 24 (7) (2001) 725-744) of this series of papers. In the savanna of Nylsvley (South Africa) the very diverse physiological characteristics of the existing plants give rise to different strategies of soil moisture exploitation. Notwithstanding these differences, the vegetation water stress for all the species turns out to be very similar, suggesting that coexistence might be attained also through differentiation of water use. The case of the savanna of Southern Texas points out how rooting depth and interannual rainfall variability can impact soil moisture dynamics and vegetation water stress. Because of the different responses to water stress of trees and grasses, external climatic forcing could be at the origin of the dynamic equilibrium allowing coexistence in this ecosystem. Finally, the analysis of a short grass steppe in Colorado provides an interesting example of the so-called inverse texture effect, whereby preferential conditions for vegetation are dependent on soil texture and rainfall. Sites which are more favorable during wet conditions may become less suitable to the same vegetation type during drier years. Such an effect is important to explain the predominance of existing species, as well as to investigate their reproductive strategies.

  5. Hydro-mechanical behaviour of sandy silt under generalised stress conditions

    Directory of Open Access Journals (Sweden)

    Romero Enrique

    2016-01-01

    Full Text Available This paper presents results on the deformation response of an artificially prepared sand-silt mixture in a hollow cylinder apparatus. The wetting stage was performed under constant mean net stress (p″=200 kPa and deviatoric stress (q=200 kPa but at different intermediate principal stresses (controlled through the principal stress parameter b=(σ2-σ3/(σ1-σ3 and with values b=0, 0.5 and 0.8. Shear strength tests were first performed at constant mean net stress, different Lode angles and water contents (as-compacted and saturated to ensure that the aforementioned stress state could be applied at the as-compacted water content. Consistent shear strength results were obtained when compared to triaxial compression and extension results at different water contents, which allowed defining the variation of the critical state line with Lode angle and suction. The soaking results indicated that collapse under constant mean and deviatoric stresses was larger when the intermediate stress coincided with the minor one, i.e. under conventional axi-symetric triaxial compression state (b=0. This is a consequence of the dominant shear strains that occurred during saturation when the stress point reached the critical state line at b=0.5 and 0.8.

  6. Post-operative stress fractures complicating surgery for painful forefoot conditions.

    Science.gov (United States)

    Edwards, Max R; Jack, Christopher; Jones, Gareth G; Singh, Samrendu K

    2010-01-01

    A stress fracture is caused by repetitive or unusual loading of a bone leading to mechanical failure. Fatigue type stress fractures occur in normal bone exposed to abnormally high repetitive loads, whereas insufficiency type stress fractures occur in abnormal bone exposed to normal loads. We describe three cases of insufficiency stress fractures that have complicated surgery for painful forefoot conditions. The diagnosis and management of these cases are discussed. Stress fractures should be included in the differential diagnosis of any patient who continues or develops pain after surgery to the forefoot.

  7. Estimating yields of salt- and water-stressed forages with remote sensing in the visible and near infrared.

    Science.gov (United States)

    Poss, J A; Russell, W B; Grieve, C M

    2006-01-01

    In arid irrigated regions, the proportion of crop production under deficit irrigation with poorer quality water is increasing as demand for fresh water soars and efforts to prevent saline water table development occur. Remote sensing technology to quantify salinity and water stress effects on forage yield can be an important tool to address yield loss potential when deficit irrigating with poor water quality. Two important forages, alfalfa (Medicago sativa L.) and tall wheatgrass (Agropyron elongatum L.), were grown in a volumetric lysimeter facility where rootzone salinity and water content were varied and monitored. Ground-based hyperspectral canopy reflectance in the visible and near infrared (NIR) were related to forage yields from a broad range of salinity and water stress conditions. Canopy reflectance spectra were obtained in the 350- to 1000-nm region from two viewing angles (nadir view, 45 degrees from nadir). Nadir view vegetation indices (VI) were not as strongly correlated with leaf area index changes attributed to water and salinity stress treatments for both alfalfa and wheatgrass. From a list of 71 VIs, two were selected for a multiple linear-regression model that estimated yield under varying salinity and water stress conditions. With data obtained during the second harvest of a three-harvest 100-d growing period, regression coefficients for each crop were developed and then used with the model to estimate fresh weights for preceding and succeeding harvests during the same 100-d interval. The model accounted for 72% of the variation in yields in wheatgrass and 94% in yields of alfalfa within the same salinity and water stress treatment period. The model successfully predicted yield in three out of four cases when applied to the first and third harvest yields. Correlations between indices and yield increased as canopy development progressed. Growth reductions attributed to simultaneous salinity and water stress were well characterized, but the

  8. The role of corticosteroids and stress in chronic pain conditions.

    Science.gov (United States)

    McEwen, Bruce S; Kalia, Madhu

    2010-10-01

    The relationship between corticosteroids (endogenous and exogenous) and stress is well known, as is the use of steroids as concomitant treatment in pain management during acute inflammation. In the past, steroids have not been considered the first line of treatment in pain management. In this review, we examine new scientific and clinical evidence that demonstrates the direct role that steroids play in the generation and clinical management of chronic pain. We will discuss the new findings demonstrating the fact that steroids and related mediators produce paradoxical effects on pain such as analgesia, hyperalgesia, and even placebo analgesia. In addition, we will examine the physiologic effect of stress, high allostatic load, and idiopathic disease states such as chronic fatigue syndrome, fibromyalgia, irritable bowel syndrome, and burnout. The recently observed positive relationship between glutaminergic activity in the insula and clinical pain will be examined in the context of understanding the central role of steroids in chronic pain. The complex role of the hypothalamic-pituitary-adrenal axis in pain will be discussed as well as other heterogeneous forms of chronic pain that involve many components of the central nervous system. Components of the hypothalamic-pituitary-adrenal axis have paradoxical effects on certain types of pain that are dependent on dose and on site (whether peripheral or central) and mode of application. Recent studies on glia have shown that they prolong a state of neuronal hypersensitization in the dorsal root ganglia by releasing growth factors and other substances that act on the immune system. We will discuss the implication of these new findings directly linking pain to steroids, stress, and key higher brain regions in the context of future therapeutic targets.

  9. Assessing Maize Foliar Water Stress Levels Under Field Conditions ...

    African Journals Online (AJOL)

    The RF is a machine learning algorithm that has the potential of handling huge data sets of large predictor variable .... Machine Learning 45(1), 5-32. .... Suo, X.M., Y.T. Jiang, M. Yang, S.K. Li, K.R. Wang and C.T. Wang, 2010: Artificial neural network to predict leaf population chlorophyll content from cotton plant images.

  10. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence.

    Science.gov (United States)

    Lee, Jung-Eun; Frankenberg, Christian; van der Tol, Christiaan; Berry, Joseph A; Guanter, Luis; Boyce, C Kevin; Fisher, Joshua B; Morrow, Eric; Worden, John R; Asefi, Salvi; Badgley, Grayson; Saatchi, Sassan

    2013-06-22

    It is unclear to what extent seasonal water stress impacts on plant productivity over Amazonia. Using new Greenhouse gases Observing SATellite (GOSAT) satellite measurements of sun-induced chlorophyll fluorescence, we show that midday fluorescence varies with water availability, both of which decrease in the dry season over Amazonian regions with substantial dry season length, suggesting a parallel decrease in gross primary production (GPP). Using additional SeaWinds Scatterometer onboard QuikSCAT satellite measurements of canopy water content, we found a concomitant decrease in daily storage of canopy water content within branches and leaves during the dry season, supporting our conclusion. A large part (r(2) = 0.75) of the variance in observed monthly midday fluorescence from GOSAT is explained by water stress over moderately stressed evergreen forests over Amazonia, which is reproduced by model simulations that include a full physiological representation of photosynthesis and fluorescence. The strong relationship between GOSAT and model fluorescence (r(2) = 0.79) was obtained using a fixed leaf area index, indicating that GPP changes are more related to environmental conditions than chlorophyll contents. When the dry season extended to drought in 2010 over Amazonia, midday basin-wide GPP was reduced by 15 per cent compared with 2009.

  11. Impacts of water stress, environment and rootstock on the diurnal behaviour of stem water potential and leaf conductance in pistachio (Pistacia vera L.

    Directory of Open Access Journals (Sweden)

    Houssem Memmi

    2016-06-01

    Full Text Available Little information is available on the diurnal behaviour of water potential and leaf conductance on pistachio trees despite their relevance to fine tune irrigation strategies. Mature pistachio trees were subject to simultaneous measurements of stem water potential (Ψx and leaf conductance (gl during the day, at three important periods of the irrigation season. Trees were grown on three different rootstocks and water regimes. An initial baseline relating Ψx to air vapor pressure deficit (VPD is presented for irrigation scheduling in pistachio. Ψx was closely correlated with VPD but with a different fit according to the degree of water stress. No evidence of the variation of Ψx in relation to the phenology of the tree was observed. Furthermore, midday Ψx showed more accuracy to indicate a situation of water stress than predawn water potential. Under well irrigated conditions, gl was positively correlated with VPD during stage II of growth reaching its peak when VPD reached its maximum value (around 4 kPa. This behaviour changed during stage III of fruit growth suggesting a reliance of stomatal behaviour to the phenological stage independently to the tree water status. The levels of water stress reached were translated in a slow recovery of tree water status and leaf conductance (more than 40 days. Regarding rootstocks, P. integerrima showed little adaptation to water shortage compared to the two other rootstocks under the studied conditions.

  12. Impacts of water stress, environment and rootstock on the diurnal behaviour of stem water potential and leaf conductance in pistachio (Pistacia vera L.)

    Energy Technology Data Exchange (ETDEWEB)

    Memmi, H.; Couceiro, J.F.; Gijón, C.; Pérez-López, D.

    2016-11-01

    Little information is available on the diurnal behaviour of water potential and leaf conductance on pistachio trees despite their relevance to fine tune irrigation strategies. Mature pistachio trees were subject to simultaneous measurements of stem water potential (Ψx) and leaf conductance (gl) during the day, at three important periods of the irrigation season. Trees were grown on three different rootstocks and water regimes. An initial baseline relating Ψx to air vapor pressure deficit (VPD) is presented for irrigation scheduling in pistachio. Ψx was closely correlated with VPD but with a different fit according to the degree of water stress. No evidence of the variation of Ψx in relation to the phenology of the tree was observed. Furthermore, midday Ψx showed more accuracy to indicate a situation of water stress than predawn water potential. Under well irrigated conditions, gl was positively correlated with VPD during stage II of growth reaching its peak when VPD reached its maximum value (around 4 kPa). This behaviour changed during stage III of fruit growth suggesting a reliance of stomatal behaviour to the phenological stage independently to the tree water status. The levels of water stress reached were translated in a slow recovery of tree water status and leaf conductance (more than 40 days). Regarding rootstocks, P. integerrima showed little adaptation to water shortage compared to the two other rootstocks under the studied conditions. (Author)

  13. Effect of Glomus versiforme inoculation on reactive oxygen metabolism of Citrus tangerine leaves exposed to water stress

    Institute of Scientific and Technical Information of China (English)

    WU Qiangsheng; ZOU Yingning; XIA Renxue

    2007-01-01

    In a potted greenhouse experiment,Citrus tangerine Hort.ex Tanaka was inoculated with arbuscular mycorrhizal (AM) fungus,Glomus versiforme (Karsten)Berch,or non-AM fungus as control.Arbuscular mycorrhizal and non-AM seedlings were grown tmder well-watered or water-stressed conditions after 97 days of acclimation.The reactive oxygen metabolism of C.tangerine leaves was studied in order to elucidate whether AM symbiosis affects enzymatic and non-enzymatic antioxidants.The results showed that water stress caused a decrement of 33% for the colonization of G.versiforme on C.tangerine roots.Under well-watered and water-stressed conditions,G.versiforme inoculation increased the leaf phosphorus (P) content by 45% and 27%,and decreased the leaf malondialdehyde and hydrogen peroxide contents by 25% and 21%,and 16% and 16%,respectively,compared with the control.Inoculation with G.versiforme enhanced the activities of leaf superoxide dismutase,peroxidase,catalase and ascorbate peroxidase,and increased the contents of leaf soluble protein,ascorbate and total ascorbate notably,regardless of soil moisture conditions.Under water-stressed conditions,G.versiforme inoculation decreased the leaf superoxide anion radical (O2-) content by 31%.It is concluded that drought resistance of C.tangerine leaves is enhanced due to the improvement of reactive oxygen metabolism after G.versiforme inoculation.

  14. Water-CO2 Mixtures Under Extreme Conditions

    Science.gov (United States)

    Plattner, D. L.; Somayazulu, M.

    2010-12-01

    In situ high pressure-temperature Raman spectroscopy was used to investigate the formation of clathrates in water-CO2 mixtures and to study the chemical interactions between water and CO2 at supercritical conditions. Diamond anvil cell’s (DAC) were loaded with ruby, water, CO2, and a gold plated gasket. Quartz was later added to the cell as a pressure sensor for supercritical phase analysis. At 25 °C and within the pressure range of 0.8 to 2.6 GPa, no clathrate was observed. Our results confirm recent findings which also dispute claims of clathrate existence at our conditions. A decrease in the temperature required to reach the supercritical phase of water-CO2 mixtures was observed from 0.35 GPa to 4.5 GPa. Furthermore, at 4.4 GPa and 290 °C, a chemical reaction between CO2 and water occurred. The resulting compound has a Raman peak with a frequency shift of 1000 cm-1. This reaction and the compound it produces are of great interest and are currently being investigated.

  15. Evaluation of water-stress tolerance of Acala SJ 2 and Auburn 2 cotton cultivars in a phenotyping platform

    Directory of Open Access Journals (Sweden)

    Cleber Morais Guimarães

    2017-08-01

    Full Text Available Due to the current scarcity of water, which may be aggravated by climate changes, it is important to develop cultivars tolerant to water stress. For this, information regarding the variability of the tolerance of cultivars to this stress is required. This information can be obtained by using phenotyping platforms, which allow a large-scale and automated assessment of crop traits related to productivity under water stress. This study took place in a greenhouse and used a phenotyping platform to evaluate some agronomic and physiological traits of two cotton cultivars with differing tolerances to this stress. The experiment was performed in a randomized block design, in a split-plot scheme with four replicates. The main plots were composed of five water regimes and the subplots of two cultivars, Acala SJ 2 and Auburn 2. The water regimes consisted of a well-irrigated treatment (daily replacement of 100% of evapotranspired water and four water restriction regimes (20%, 40%, 60% and 80% of evapotranspired water at the well-irrigated treatment. The phenotyping platform and protocol (different percentages of daily replacement of evapotranspired water employed were suitable to the evaluated cotton cultivars for water-stress tolerance, and allowed the determination of the cultivar most tolerant (Acala SJ 2 and of the cultivar most sensitive (Auburn 2 to water stress. ‘Acala SJ 2’ displayed better physiological and agronomic traits in all water regimes, including higher root density in the upper soil layer, as well as higher water use than ‘Auburn 2’, which explained its higher seed yield under the conditions employed.

  16. Effect of water deprivation on baseline and stress-induced corticosterone levels in the Children's python (Antaresia childreni).

    Science.gov (United States)

    Dupoué, Andréaz; Angelier, Frédéric; Lourdais, Olivier; Bonnet, Xavier; Brischoux, François

    2014-02-01

    Corticosterone (CORT) secretion is influenced by endogenous factors (e.g., physiological status) and environmental stressors (e.g., ambient temperature). Heretofore, the impact of water deprivation on CORT plasma levels has not been thoroughly investigated. However, both baseline CORT and stress-induced CORT are expected to respond to water deprivation not only because of hydric stress per se, but also because CORT is an important mineralocorticoid in vertebrates. We assessed the effects of water deprivation on baseline CORT and stress-induced CORT, in Children's pythons (Antaresia childreni), a species that experiences seasonal droughts in natural conditions. We imposed a 52-day water deprivation on a group of unfed Children's pythons (i.e., water-deprived treatment) and provided water ad libitum to another group (i.e., control treatment). We examined body mass variations throughout the experiment, and baseline CORT and stress-induced CORT at the end of the treatments. Relative body mass loss averaged ~10% in pythons without water, a value 2 to 4 times higher compared to control snakes. Following re-exposition to water, pythons from the water-deprived treatment drank readily and abundantly and attained a body mass similar to pythons from the control treatment. Together, these results suggest a substantial dehydration as a consequence of water deprivation. Interestingly, stress-induced but not baseline CORT level was significantly higher in water-deprived snakes, suggesting that baseline CORT might not respond to this degree of dehydration. Therefore, possible mineralocorticoid role of CORT needs to be clarified in snakes. Because dehydration usually induces adjustments (reduced movements, lowered body temperature) to limit water loss, and decreases locomotor performances, elevated stress-induced CORT in water-deprived snakes might therefore compensate for altered locomotor performances. Future studies should test this hypothesis.

  17. Grape Composition under Abiotic Constrains: Water Stress and Salinity.

    Science.gov (United States)

    Mirás-Avalos, José M; Intrigliolo, Diego S

    2017-01-01

    Water stress and increasing soil salt concentration represent the most common abiotic constrains that exert a negative impact on Mediterranean vineyards performance. However, several studies have proven that deficit irrigation strategies are able to improve grape composition. In contrast, irrigation with saline waters negatively affected yield and grape composition, although the magnitude of these effects depended on the cultivar, rootstock, phenological stage when water was applied, as well as on the salt concentration in the irrigation water. In this context, agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be achieved. In this paper, we briefly reviewed the main findings obtained regarding the effects of deficit irrigation strategies, as well as irrigation with saline water, on the berry composition of both red and white cultivars, as well as on the final wine. A meta-analysis was performed using published data for red and white varieties; a general liner model accounting for the effects of cultivar, rootstock, and midday stem water potential was able to explain up to 90% of the variability in the dataset, depending on the selected variable. In both red and white cultivars, berry weight, must titratable acidity and pH were fairly well simulated, whereas the goodness-of-fit for wine attributes was better for white cultivars.

  18. Grape Composition under Abiotic Constrains: Water Stress and Salinity

    Directory of Open Access Journals (Sweden)

    José M. Mirás-Avalos

    2017-05-01

    Full Text Available Water stress and increasing soil salt concentration represent the most common abiotic constrains that exert a negative impact on Mediterranean vineyards performance. However, several studies have proven that deficit irrigation strategies are able to improve grape composition. In contrast, irrigation with saline waters negatively affected yield and grape composition, although the magnitude of these effects depended on the cultivar, rootstock, phenological stage when water was applied, as well as on the salt concentration in the irrigation water. In this context, agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be achieved. In this paper, we briefly reviewed the main findings obtained regarding the effects of deficit irrigation strategies, as well as irrigation with saline water, on the berry composition of both red and white cultivars, as well as on the final wine. A meta-analysis was performed using published data for red and white varieties; a general liner model accounting for the effects of cultivar, rootstock, and midday stem water potential was able to explain up to 90% of the variability in the dataset, depending on the selected variable. In both red and white cultivars, berry weight, must titratable acidity and pH were fairly well simulated, whereas the goodness-of-fit for wine attributes was better for white cultivars.

  19. Quantitative trait loci for rooting pattern traits of common beans grown under drought stress versus non-stress conditions

    NARCIS (Netherlands)

    Asfaw, A.; Blair, M.W.

    2012-01-01

    Drought is the major abiotic constraint contributing to yield reduction in common bean (Phaseolus vulgaris L.) worldwide. An increasing scarcity of water in the future will make improving adaptation to drought stress a major objective of most crop breeding efforts. Drought avoidance by increased

  20. Quantitative trait loci for rooting pattern traits of common beans grown under drought stress versus non-stress conditions

    NARCIS (Netherlands)

    Asfaw, A.; Blair, M.W.

    2012-01-01

    Drought is the major abiotic constraint contributing to yield reduction in common bean (Phaseolus vulgaris L.) worldwide. An increasing scarcity of water in the future will make improving adaptation to drought stress a major objective of most crop breeding efforts. Drought avoidance by increased ext

  1. The Existing Regulatory Conditions for 'Energy Smart Water Utilities'

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe

    2014-01-01

    with the ‘full-cost-recovery principle’ – are discouraging investments in new energy-related technologies. There are also restrictions on the water utilities production of renewable energy – including rules on mandatory ownership unbundling. In section 6 of this chapter there is a short conclusion on the current...... conditions. Based on these facts, the resource efficiency and low–carbon policy of the EU as well as the EU’s rules of relevance for the utilities are highlighted in section 4. It is concluded that the current EU legislation makes it possible for the Member States to promote energy–smart water utilities...

  2. Combined effects of ozone and water stress on alfalfa growth and yield. [Medicago sativa L

    Energy Technology Data Exchange (ETDEWEB)

    Temple, P.J.; Benoit, L.F.; Lennox, R.W.; Reagan, C.A.; Taylor, O.C.

    A 2-yr study (1984 and 1985) designed to determine the interactive effects of ozone (O/sub 3/) and water stress on alfalfa (Medicago sativa L. cv. WL-514) was conducted in Shafter, CA. The objectives of this study were to develop O/sub 3/ dose-yield response functions for alfalfa, to determine how water stress could alter these functions, and to describe the cumulative effects of multiple-year exposures to O/sub 3/ on this perennial crop. Field-grown alfalfa, raised under normally irrigated (NI) or water-stressed (WS) conditions in open-top chambers, was exposed to five O/sub 3/ treatments including charcoal-filtered (CF), nonfiltered (NF), and NF plus an additional 33, 67, or 100% of ambient O/sub 3/ concentrations. Ambient O/sub 3/ concentrations averaged 0.049 ..mu..L L/sup -1/ in 1984 and 0.042 ..mu..L L/sup -1/ in 1985 for the seasonal 12-h (0900-2100) means from April to October. Water stress reduced total seasonal yield about 10% in 1984 and 27% in 1985. Ozone significantly reduced yields in both years, and the interactions between O/sub 3/ and water stress was statistically significant in 1985 and for combined 1984 and 1985 years. Ozone dose-alfalfa yield loss functions were homogeneous between 1984 and 1985 and no evidence of a cumulative effect of multiple-year exposure to O/sub 3/ was found on top growth. However, crown (underground stem) weights were significantly reduced by O/sub 3/, suggesting that continued exposure to O/sub 3/ could shorten the productive life of alfalfa stands, in addition to its effect on yield.

  3. Effects of stress conditions on rheological properties of granular soil in large triaxial rheology laboratory tests

    Institute of Scientific and Technical Information of China (English)

    陈晓斌; 张家生; 刘宝琛; 唐孟雄

    2008-01-01

    In order to study the rheological properties of red stone granular soil,a series of rheological experiments were executed on large tri-axial rheological apparatus.Under 100,200 and 300 kPa confining stress conditions,the rheological tests were carried out.These experiment results showed that the stress conditions,especially the stress level were the critical influencing factors of the rheological deformation properties.Under the low stress level(S=0.1),the granular soil showed the elastic properties,and there was no obvious rheological deformation.Under the middle stress level(0.2stress level(S>0.8) creep curves showed the non-linear viscous plastic rheological properties.Especially,under the stress level of S=1.0,the accelerated rheological phase of creep curves occurred at early time with a trend of failure.The stress level had obvious effects on the final rheological deformation of the soil sample,and the final rheological deformation increments nonlinearly increased with stress level.The final rheological deformation increment and step was little under low stress level,while it became large under high stress level,which showed the nonlinearly rheological properties of the granular soil.The confining pressure also had direct effects on final rheological deformation,and the final rheological deformation linearly increased with confining pressure increments.

  4. Chemical reaction between water vapor and stressed glass

    Science.gov (United States)

    Soga, N.; Okamoto, T.; Hanada, T.; Kunugi, M.

    1979-01-01

    The crack velocity in soda-lime silicate glass was determined at room temperature at water-vapor pressures of 10 to 0.04 torr using the double torsion technique. A precracked glass specimen (70 x 16 x 1.6 mm) was placed in a vacuum chamber containing a four-point bending test apparatus. The plotted experimental results show that the crack propagation curve in water agrees fairly well with that of Wiederhorn (1967). Attention is given to the effect of water vapor pressure on crack velocity at K(I) = 550,000 N/m to the 3/2 power, with (Wiederhorn's data) or without N2 present. The plotted results reveal that the present crack velocity is about two orders of magnitude higher than that of Wiederhorn at high water-vapor conditions, but the difference decreases as the water-vapor concentration diminishes or the crack velocity slows down.

  5. Cytokinins induce transcriptional reprograming and improve Arabidopsis plant performance under drought and salt stress conditions.

    Directory of Open Access Journals (Sweden)

    Natali Shirron

    2016-10-01

    Full Text Available In nature, annual plants respond to abiotic stresses by activating a specific genetic program leading to early flowering and accelerated senescence. Although, in nature, this phenomenon supports survival under unfavorable environmental conditions, it may have negative agro-economic impacts on crop productivity. Overcoming this genetic programing by cytokinins (CK has recently been shown in transgenic plants that overproduce CK. These transgenic plants displayed a significant increase in plant productivity under drought stress conditions. We investigated the role of CK in reverting the transcriptional program that is activated under abiotic stress conditions and allowing sustainable plant growth. We employed 2 complementary approaches: Ectopic overexpression of CK, and applying exogenous CK to detached Arabidopsis leaves. Transgenic Arabidopsis plants transformed with the isopentyltransferase (IPT gene under the regulation of the senescence associated receptor kinase (SARK promoter displayed a significant drought resistance. A transcriptomic analysis using RNA sequencing was performed to explore the response mechanisms under elevated CK levels during salinity stress. This analysis showed that under such stress, CK triggered transcriptional reprograming that resulted in attenuated stress-dependent inhibition of vegetative growth and delayed premature plant senescence. Our data suggest that elevated CK levels led to stress tolerance by retaining the expression of genes associated with plant growth and metabolism whose expression typically decreases under stress conditions. In conclusion, we hypothesize that CK allows sustainable plant growth under unfavorable environmental conditions by activating gene expression related to growth processes and by preventing the expression of genes related to the activation of premature senescence.

  6. Effects of ozone and water stress on canopy temperature, water use, and water use efficiency of alfalfa

    Energy Technology Data Exchange (ETDEWEB)

    Temple, P.J. (Univ. of California, Riverside (USA)); Benoit, L.F. (Univ. of California, Davis (USA))

    Ozone (O{sub 3}) and soil water deficit are two environmental stresses that significantly affect the growth and yield of alfalfa (Medicago sativa L). However, little is known of the responses of field-grown alfalfa to O{sub 3}, and the effects of the interaction between O{sub 3} and water stress on canopy temperature and water relations of alfalfa have not been previously reported. The objective of this 2-yr study was to determine the interactive effects of O{sub 3} and soil water deficits on canopy temperatures, water use, and water use efficiency (WUE) of alfalfa. Alfalfa (cv. WL-514) was grown in 30-3- by 5.5-m plots on Wasco sandy loam (coarse-loamy, mixed, nonacid, thermic Typic Torriorthents) in Shafter, CA, and was exposed in open-top chambers to five levels of O{sub 3} for 12 h daily, from March to October of 1984 and 1985. Ozone treatments ranged from charcoal-filtered air (CF) to twice ambient O{sub 3} concentrations. Each plot received either normal amounts of irrigation (NI) or 30% less than normal (WS). Canopy temperature-air temperature differentials ({Tc}-T{sub a}) were significantly reduced by water stress an average of 27.9% in 1984 and 44.0% in 1985. Ozone also significantly reduced {Tc}-T{sub a} by 31% in NI and 37% in WS plots in 1984, but in 1985 O{sub 3} had no effect on {Tc}-T{sub a}. Water use, rate of soil water depletion, or depth of effective rooting zone were not affected by O{sub 3}, whereas water stress significantly reduced all three. Water use efficiency was significantly reduced by O{sub 3}, averaging 12% lower in nonfiltered compared with CF plots. The effects of O{sub 3} on WUE were attributed to premature senescence and abscission of older alfalfa leaves.

  7. Understanding freeze stress in biological tissues: Thermodynamics of interfacial water

    Energy Technology Data Exchange (ETDEWEB)

    Olien, C. Robert [USDA-ARS (retired), Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824-1325 (United States); Livingston, David P. [USDA and North Carolina State University, Crop Science, 840 Method Road, Unit 3, Raleigh, NC 27502 (United States)]. E-mail: dpl@unity.ncsu.edu

    2006-12-01

    A thermodynamic approach to distinguish forms of freeze energy that injure plants as the temperature decreases is developed. The pattern resulting from this analysis dictated the sequence of thermal requirements for water to exist as an independent state. Improvement of freezing tolerance in biological systems depends on identification of a specific form of stress, just as control of a disease depends on identification of the pathogen causing the disease. The forms of energy that stress hydrated systems as temperature decreases begin with disruption of biological function from chill injury that occurs above freezing. Initiation of non-equilibrium freezing with sufficient free energy to drive disruptive effects can occur in a supercooled system. As the temperature continues to decrease and freezing occurs in an equilibrium manner, adhesion at hydrated interfaces contributes to disruptive effects as protoplasts contract by freeze-dehydration. If protective systems are able to prevent injury from direct interactions with ice, passive effects of freeze-dehydration may cause injury at lower temperatures. The temperature range in which an injury occurs is an indicator of the form of energy causing stress. The form of energy is thus a primary guide for selection of a protective mechanism. An interatomic force model whose response to temperature change corresponds with the enthalpy pattern might help define freeze stress from a unique perspective.

  8. Water Stress Effect on Cell Wall Components of Maize (Zea mays Bran

    Directory of Open Access Journals (Sweden)

    Eleazar LUGO-CRUZ

    2016-03-01

    Full Text Available In México, around 82% of the total production of maize is grown under rainfed conditions leading to a water stress environment which affects physiologic and biochemical process of the plant. Maize bran is a composited plant material consisting mainly in aleurone layer, testa and pericarp; the cell walls of these tissues are composed of proteins, non-starch polysaccharides, phenolic acids and lignin which are potential bioactive substances for human nutrition. In this research it was investigated the effect of water stress on cell wall components in the bran of three genotypes of maize by applying irrigation and water stress treatments. The content of protein, lignin, arabinoxylans, total phenols and phenolic acids was performed in the bran of ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ genotypes. Water stress applied through grain development stage increased protein levels of ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ in 4.05, 16.13 and 0.40% respectively. Respecting to lignin content, water stress increased levels at 1.28, 2.26 and 4.24% for ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ, respectively. Arabinoxylans content also increased in water stress treatment at levels of 1.28, 2.26 and 3.66% in ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ. On the other hand, water stress treatment decreased the levels of total phenols and hydroxycinnamic acids in the three maize hybrids analysed. Reduction of total phenols was 35.34, 5.59 and 31.57% for ʽCebúʼ, ʽDK2027ʼ and ʽDK2034ʼ, respectively. In addition, the levels of t-ferulic, c-ferulic and p-coumaric acids decreased 17.74, 23.93, 29.83% in ʽCebúʼ, 8.92, 8.62, 24.03% in ʽDK2027ʼ and 13.66, 11.03, 10.38% in ʽDK2034ʼ respectively.

  9. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions.

    Science.gov (United States)

    Ruíz-Sánchez, Michel; Armada, Elisabet; Muñoz, Yaumara; García de Salamone, Inés E; Aroca, Ricardo; Ruíz-Lozano, Juan Manuel; Azcón, Rosario

    2011-07-01

    The response of rice plants to inoculation with an arbuscular mycorrhizal (AM) fungus, Azospirillum brasilense, or combination of both microorganisms, was assayed under well-watered or drought stress conditions. Water deficit treatment was imposed by reducing the amount of water added, but AM plants, with a significantly higher biomass, received the same amount of water as non-AM plants, with a poor biomass. Thus, the water stress treatment was more severe for AM plants than for non-AM plants. The results showed that AM colonization significantly enhanced rice growth under both water conditions, although the greatest rice development was reached in plants dually inoculated under well-watered conditions. Water level did not affect the efficiency of photosystem II, but both AM and A. brasilense inoculations increased this value. AM colonization increased stomatal conductance, particularly when associated with A. brasilense, which enhanced this parameter by 80% under drought conditions and by 35% under well-watered conditions as compared to single AM plants. Exposure of AM rice to drought stress decreased the high levels of glutathione that AM plants exhibited under well-watered conditions, while drought had no effect on the ascorbate content. The decrease of glutathione content in AM plants under drought stress conditions led to enhance lipid peroxidation. On the other hand, inoculation with the AM fungus itself increased ascorbate and proline as protective compounds to cope with the harmful effects of water limitation. Inoculation with A. brasilense also enhanced ascorbate accumulation, reaching a similar level as in AM plants. These results showed that, in spite of the fact that drought stress imposed by AM treatments was considerably more severe than non-AM treatments, rice plants benefited not only from the AM symbiosis but also from A. brasilense root colonization, regardless of the watering level. However, the beneficial effects of A. brasilense on most of the

  10. Bulk water phase and biofilm growth in drinking water at low nutrient conditions

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    to quantify the effect of retention times at hydraulic conditions similar to those in drinking water distribution networks. Water and pipe wall samples were taken and examined during the experiment. The pipes had been exposed to drinking water at approximately 131C, for at least 385 days to allow......In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used...... the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day1. The bulk water phase bacteria exhibited a higher activity than the biofilmbacteria in terms of culturability, cell-specific ATP content...

  11. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot

    Directory of Open Access Journals (Sweden)

    Alejandro eBecerra-Moreno

    2015-10-01

    Full Text Available Abstract: The application of postharvest abiotic stresses is an effective strategy to activate the primary and secondary metabolism of plants inducing the accumulation of antioxidant phenolic compounds. In the present study, the effect of water stress applied alone and in combination with wounding stress on the activation of primary (shikimic acid and secondary (phenylpropanoid metabolic pathways related with the accumulation of phenolic compound in plants was evaluated. Carrot (Daucus carota was used as model system for this study, and the effect of abiotic stresses was evaluated at the gene expression level and on the accumulation of metabolites. As control of the study, whole carrots were stored under the same conditions. Results demonstrated that water stress activated the primary and secondary metabolism of carrots, favoring the lignification process. Likewise, wounding stress induced higher activation of the primary and secondary metabolism of carrots as compared to water stress alone, leading to higher accumulation of shikimic acid, phenolic compounds and lignin. Additional water stress applied on wounded carrots exerted a synergistic effect on the wound-response at the gene expression level. For instance, when wounded carrots were treated with water stress, the tissue showed 20- and 14-fold increases in the relative expression of 3-deoxy-D-arabino-heptulosanate synthase and phenylalanine ammonia-lyase genes, respectively. However, since lignification was increased, lower accumulation of phenolic compounds was detected. Indicatively, at 48 h of storage, wounded carrots treated with water stress showed ~31% lower levels of phenolic compounds and ~23% higher lignin content as compared with wounded controls. In the present study, it was demonstrated that water stress is one of the pivotal mechanism of the wound-response in carrot. Results allowed the elucidation of strategies to induce the accumulation of specific primary or secondary

  12. Induction of bioactive compound composition from marine microalgae (Lyngbya sp.) by using different stress condition

    Institute of Scientific and Technical Information of China (English)

    Nurul Farhana Rosly; Rabeah Adawiyah Abdul Razak; Palaniselvam Kuppusamy; Mashitah M. Yusoff; Natanamurugaraj Govindan

    2013-01-01

    Objective: To the effect of salinity stress on the production of microalgae (Lyngbya sp.) and chlorophyll pigments in the growth medium.Methods:Stress was investigated by using green algae strains Lyngbya sp. in response to change bioactive compounds without any modification of cell growth and biomass production rate. The different stress conditions like 10%-40% were analyzed.Results:During the stress condition, various biochemical and microbiological assays were monitored. The photochemical composition was evaluated by GC-MS studies. The studies expressed that 30% higher salinity stress was suitable for high phytochemical production rate including chlorophyll content.Conclusions:Our study indicates the wide range of salinity stress to enhance the growth on microalgae culture and enhance the production of major secondary metabolites.

  13. Resilience under conditions of extreme stress: a multilevel perspective.

    Science.gov (United States)

    Cicchetti, Dante

    2010-10-01

    Resilience has been conceptualized as a dynamic developmental process encompassing the attainment of positive adaptation within the context of significant threat, severe adversity, or trauma. Until the past decade, the empirical study of resilience predominantly focused on behavioral and psychosocial correlates of, and contributors to, the phenomenon and did not examine neurobiological or genetic correlates of and contributors to resilience. Technological advances in molecular genetics and neuroimaging, and in measuring other biological aspects of behavior, have made it more feasible to begin to conduct research on pathways to resilient functioning from a multilevel perspective. Child maltreatment constitutes a profound immersion in severe stress that challenges and frequently impairs development across diverse domains of biological and psychological functioning. Research on the determinants of resilience in maltreated children is presented as an illustration of empirical work that is moving from single-level to multilevel investigations of competent functioning in the face of adversity and trauma. These include studies of personality, neural, neuroendocrine, and molecular genetic contributors to resilient adaptation. Analogous to neural plasticity that takes place in response to brain injury, it is conjectured that it may be possible to conceptualize resilience as the ability of individuals to recover functioning after exposure to extreme stress. Multilevel randomized control prevention and intervention trials have substantial potential for facilitating the promotion of resilient functioning in diverse high-risk populations that have experienced significant adversity. Determining the multiple levels at which change is engendered through randomized control trials will provide insight into the mechanisms of change, the extent to which neural plasticity may be promoted, and the interrelations between biological and psychological processes in the development of

  14. Pore Water Pressure Response of a Soil Subjected to Traffic Loading under Saturated and Unsaturated Conditions

    Science.gov (United States)

    Cary, Carlos

    This study presents the results of one of the first attempts to characterize the pore water pressure response of soils subjected to traffic loading under saturated and unsaturated conditions. It is widely known that pore water pressure develops within the soil pores as a response to external stimulus. Also, it has been recognized that the development of pores water pressure contributes to the degradation of the resilient modulus of unbound materials. In the last decades several efforts have been directed to model the effect of air and water pore pressures upon resilient modulus. However, none of them consider dynamic variations in pressures but rather are based on equilibrium values corresponding to initial conditions. The measurement of this response is challenging especially in soils under unsaturated conditions. Models are needed not only to overcome testing limitations but also to understand the dynamic behavior of internal pore pressures that under critical conditions may even lead to failure. A testing program was conducted to characterize the pore water pressure response of a low plasticity fine clayey sand subjected to dynamic loading. The bulk stress, initial matric suction and dwelling time parameters were controlled and their effects were analyzed. The results were used to attempt models capable of predicting the accumulated excess pore pressure at any given time during the traffic loading and unloading phases. Important findings regarding the influence of the controlled variables challenge common beliefs. The accumulated excess pore water pressure was found to be higher for unsaturated soil specimens than for saturated soil specimens. The maximum pore water pressure always increased when the high bulk stress level was applied. Higher dwelling time was found to decelerate the accumulation of pore water pressure. In addition, it was found that the higher the dwelling time, the lower the maximum pore water pressure. It was concluded that upon further

  15. The Existing Regulatory Conditions for 'Energy Smart Water Utilities'

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe

    2014-01-01

    conditions. Based on these facts, the resource efficiency and low–carbon policy of the EU as well as the EU’s rules of relevance for the utilities are highlighted in section 4. It is concluded that the current EU legislation makes it possible for the Member States to promote energy–smart water utilities...... of the national regulatory design and the problems related to legal barriers are illustrated in section 5 with examples from Danish legislation. The Danish regulatory style is more inflexible than necessary. The benchmarking model and price-cap systems – established as mandatory legal conditions together...

  16. Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases.

    Science.gov (United States)

    Rubio, Maria C; González, Esther M; Minchin, Frank R; Webb, K. Judith; Arrese-Igor, Cesar; Ramos, Javier; Becana, Manuel

    2002-08-01

    The antioxidant composition and relative water stress tolerance of nodulated alfalfa plants (Medicago sativa L. x Sinorhizobium meliloti 102F78) of the elite genotype N4 and three derived transgenic lines have been studied in detail. These transgenic lines overproduced, respectively, Mn-containing superoxide dismutase (SOD) in the mitochondria of leaves and nodules, MnSOD in the chloroplasts, and FeSOD in the chloroplasts. In general for all lines, water stress caused moderate decreases in MnSOD and FeSOD activities in both leaves and nodules, but had distinct tissue-dependent effects on the activities of the peroxide-scavenging enzymes. During water stress, with a few exceptions, ascorbate peroxidase and catalase activities increased moderately in leaves but decreased in nodules. At mild water stress, transgenic lines showed, on average, 20% higher photosynthetic activity than the parental line, which suggests a superior tolerance of transgenic plants under these conditions. However, the untransformed and the transgenic plants performed similarly during moderate and severe water stress and recovery with respect to important markers of metabolic activity and of oxidative stress in leaves and nodules. We conclude that the base genotype used for transformation and the background SOD isozymic composition may have a profound effect on the relative tolerance of the transgenic lines to abiotic stress.

  17. From microgravity to osmotic conditions: mechanical integration of plant cells in response to stress

    Science.gov (United States)

    Wojtaszek, Przemyslaw; Kasprowicz, Anna; Michalak, Michal; Janczara, Renata; Volkmann, Dieter; Baluska, Frantisek

    Chemical reactions and interactions between molecules are commonly thought of as being at the basis of Life. Research of recent years, however, is more and more evidently indicating that physical forces are profoundly affecting the functioning of life at all levels of its organiza-tion. To detect and to respond to such forces, plant cells need to be integrated mechanically. Cell walls are the outermost functional zone of plant cells. They surround the individual cells, and also form a part of the apoplast. In cell suspensions, cell walls are embedded in the cul-ture medium which can be considered as a superapoplast. Through physical and chemical interactions they provide a basis for the structural and functional cell wall-plasma membrane-cytoskeleton (WMC) continuum spanning the whole cell. Here, the working of WMC contin-uum, and the participation of signalling molecules, like NO, would be presented in the context of plant responses to stress. In addition, the effects of the changing composition of WMC continuum will be considered, with particular attention paid to the modifications of the WMC components. Plant cells are normally adapted to changing osmotic conditions, resulting from variable wa-ter availability. The appearance of the osmotic stress activates adaptory mechanisms. If the strength of osmotic stress grows relatively slowly over longer period of time, the cells are able to adapt to conditions that are lethal to non-adapted cells. During stepwise adaptation of tobacco BY-2 suspension cells to the presence of various osmotically active agents, cells diverged into independent, osmoticum type-specific lines. In response to ionic agents (NaCl, KCl), the adhe-sive properties were increased and randomly dividing cells formed clumps, while cells adapted to nonionic osmotica (mannitol, sorbitol, PEG) revealed ordered pattern of precisely positioned cell divisions, resulting in the formation of long cell files. Changes in the growth patterns were accompanied by

  18. Summary of hydrologic conditions in Kansas, water year 2016

    Science.gov (United States)

    Louen, Justin M.

    2017-04-06

    The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local agencies, maintains a long-term network of hydrologic monitoring sites in Kansas. Real-time data are collected at 216 streamgage sites and are verified throughout the year with regular measurements of streamflow made by USGS personnel. Annual assessments of hydrologic conditions are made by comparing statistical analyses of current and historical water year (WY) data for the period of record. A WY is the 12-month period from October 1 through September 30 and is designated by the calendar year in which the period ends. Long-term monitoring of hydrologic conditions in Kansas provides critical information for water-supply management, flood forecasting, reservoir operations, irrigation scheduling, bridge and culvert design, ecological monitoring, and many other uses.

  19. Ferruginous conditions dominated later neoproterozoic deep-water chemistry.

    Science.gov (United States)

    Canfield, Donald E; Poulton, Simon W; Knoll, Andrew H; Narbonne, Guy M; Ross, Gerry; Goldberg, Tatiana; Strauss, Harald

    2008-08-15

    Earth's surface chemical environment has evolved from an early anoxic condition to the oxic state we have today. Transitional between an earlier Proterozoic world with widespread deep-water anoxia and a Phanerozoic world with large oxygen-utilizing animals, the Neoproterozoic Era [1000 to 542 million years ago (Ma)] plays a key role in this history. The details of Neoproterozoic Earth surface oxygenation, however, remain unclear. We report that through much of the later Neoproterozoic (<742 +/- 6 Ma), anoxia remained widespread beneath the mixed layer of the oceans; deeper water masses were sometimes sulfidic but were mainly Fe2+-enriched. These ferruginous conditions marked a return to ocean chemistry not seen for more than one billion years of Earth history.

  20. Influence of stress on fear memory processes in an aversive differential conditioning paradigm in humans.

    Science.gov (United States)

    Bentz, Dorothée; Michael, Tanja; Wilhelm, Frank H; Hartmann, Francina R; Kunz, Sabrina; von Rohr, Isabelle R Rudolf; de Quervain, Dominique J-F

    2013-07-01

    It is widely assumed that learning and memory processes play an important role in the pathogenesis, expression, maintenance and therapy of anxiety disorders, such as phobias or post-traumatic stress disorder (PTSD). Memory retrieval is involved in symptom expression and maintenance of these disorders, while memory extinction is believed to be the underlying mechanism of behavioral exposure therapy of anxiety disorders. There is abundant evidence that stress and stress hormones can reduce memory retrieval of emotional information, whereas they enhance memory consolidation of extinction training. In this study we aimed at investigating if stress affects these memory processes in a fear conditioning paradigm in healthy human subjects. On day 1, fear memory was acquired through a standard differential fear conditioning procedure. On day 2 (24h after fear acquisition), participants either underwent a stressful cold pressor test (CPT) or a control condition, 20 min before memory retrieval testing and extinction training. Possible prolonged effects of the stress manipulation were investigated on day 3 (48 h after fear acquisition), when memory retrieval and extinction were tested again. On day 2, men in the stress group showed a robust cortisol response to stress and showed lower unconditioned stimulus (US) expectancy ratings than men in the control group. This reduction in fear memory retrieval was maintained on day 3. In women, who showed a significantly smaller cortisol response to stress than men, no stress effects on fear memory retrieval were observed. No group differences were observed with respect to extinction. In conclusion, the present study provides evidence that stress can reduce memory retrieval of conditioned fear in men. Our findings may contribute to the understanding of the effects of stress and glucocorticoids on fear symptoms in anxiety disorders and suggest that such effects may be sex-specific.

  1. Quantifying Responses of Winter Wheat Physiological Processes to Soil Water Stress for Use in Growth Simulation Modeling

    Institute of Scientific and Technical Information of China (English)

    HU Ji-Chao; CAO Wei-Xing; ZHANG Jia-Bao; JIANG Dong; FENG Jie

    2004-01-01

    A deep understanding of crop-water eco-physiological relations is the basis for quantifying plant physiological responses to soil water stress. Pot experiments were conducted to investigate the winter wheat crop-water relations under both drought and waterlogging conditions in two sequential growing seasons from 2000 to 2002, and then the data were used to develop and validate models simulating the responses of winter wheat growth to drought and waterlogging stress. The experiment consisted of four treatments, waterlogging (keep 1 to 2 cm water layer depth above soil surface), control (70%-80% field capacity), light drought (40%-50% field capacity) and severe drought (30%-40% field capacity) with six replicates at five stages in the 2000-2001 growth season. Three soil water content treatments (waterlogging, control and drought) with two replicates were designed in the 2001-2002 growth season. Waterlogging and control treatments are the same as in the 2000-2001 growth season. For the drought treatment, no water was supplied and the soil moisture decreased from field capacity to wilting point. Leaf net photosynthetic rate, transpiration rate, predawn leaf water potential, soil water potential, soil water content and dry matter weight of individual organs were measured. Based on crop-water eco-physiological relations, drought and waterlogging stress factors for winter wheat growth simulation model were put forward. Drought stress factors integrated soil water availability, the sensitivity of different development stages and the difference between physiological processes (such as photosynthesis, transpiration and partitioning). The quantification of waterlogging stress factor considered different crop species, soil water status, waterlogging days and sensitivity at different growth stages. Data sets from the pot experiments revealed favorable performance reliability for the simulation sub-models with the drought and waterlogging stress factors.

  2. Cowpea bean production under water stress using hydrogels

    Directory of Open Access Journals (Sweden)

    Marília Barcelos Souza Lopes

    2017-03-01

    Full Text Available The population increase and the need of intensifying food production, coupled with the scarcity of water resources, have led to the search of alternatives that reduce consumption and optimize the water use during cultivation. In this context, hydrogels become a strategy in agricultural management, due to their water retention capacity in the soil and availability to plants. This study aimed at evaluating the efficiency of hydrogels on the development and production of cowpea bean ('Sempre-verde' cultivar under water stress, in a greenhouse. The experiment was performed in a randomized block design, with five replications, in a 4 x 5 factorial scheme, consisting of four types of hydrogel (Hydroplan-EB HyA, with granulometry of 1-3 mm; Hydroplan-EB HyB, with granulometry of 0.5-1 mm; Hydroplan-EB HyC, with granulometry < 0.5 mm; Polim-Agri, with granulometry of 1-0.5 mm and five concentrations (0 g pot-1; 1.5 g pot-1; 3 g pot-1; 4.5 g pot-1; 6 g pot-1. The following traits were evaluated: number of pods per plant, number of grains per pod and grain yield. The highest concentration (6 g pot-1 resulted in a higher number of pods and yield for all the hydrogels, especially for HyC and Polim-Agro, which presented 7.4 pods plant-1 and 7.0 pods plant-1, with yield of 15.43 g plant-1 and 16.68 g plant-1, respectively. The use of hydrogel shows to be efficient for reducing yield losses under water stress.

  3. Comparison of corn yield response to plant water stress caused by salinity and by drought

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.

    2004-01-01

    The effect of water stress on corn yield was studied in a salinity experiment and in a drought experiment. The plant water status was determined by measuring the pre-dawn leaf water potential regularly during the whole growing season and expressed by the water stress day index (WSDI). The yield resp

  4. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes

    Science.gov (United States)

    2015-01-01

    Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F) and fuzzless (N) cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality). Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B) and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs) grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity) and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions). Foliar B was applied at a rate of 1.8 kg B ha-1 as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural) B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition. PMID:26098564

  5. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes.

    Science.gov (United States)

    Bellaloui, Nacer; Turley, Rickie B; Stetina, Salliana R

    2015-01-01

    Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F) and fuzzless (N) cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality). Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B) and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs) grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity) and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions). Foliar B was applied at a rate of 1.8 kg B ha(-1) as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural) B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition.

  6. Water Stress and Foliar Boron Application Altered Cell Wall Boron and Seed Nutrition in Near-Isogenic Cotton Lines Expressing Fuzzy and Fuzzless Seed Phenotypes.

    Directory of Open Access Journals (Sweden)

    Nacer Bellaloui

    Full Text Available Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F and fuzzless (N cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality. Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions. Foliar B was applied at a rate of 1.8 kg B ha(-1 as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition.

  7. Water Quality Conditions at Tributary Projects in the Omaha District

    Science.gov (United States)

    2012-02-01

    e.g., hydrogen sulfide , methane, etc.). Most fish and other intolerant aquatic life cannot inhabit water with less than 4 to 5 mg/l dissolved...substances (e.g., phosphorus, metals, sulfides , etc.) as the reduced conditions intensify and result in the production of toxic and caustic substances...Chlorophyll-a, Total Phosphorus, Total Nitrogen) No No TMDL to be developed Conestoga Reservoir Yes Aquatic Life, Aesthetics, Recreation Algae Toxins

  8. Hydrodynamic boundary condition of water on hydrophobic surfaces.

    Science.gov (United States)

    Schaeffel, David; Yordanov, Stoyan; Schmelzeisen, Marcus; Yamamoto, Tetsuya; Kappl, Michael; Schmitz, Roman; Dünweg, Burkhard; Butt, Hans-Jürgen; Koynov, Kaloian

    2013-05-01

    By combining total internal reflection fluorescence cross-correlation spectroscopy with Brownian dynamics simulations, we were able to measure the hydrodynamic boundary condition of water flowing over a smooth solid surface with exceptional accuracy. We analyzed the flow of aqueous electrolytes over glass coated with a layer of poly(dimethylsiloxane) (advancing contact angle Θ = 108°) or perfluorosilane (Θ = 113°). Within an error of better than 10 nm the slip length was indistinguishable from zero on all surfaces.

  9. Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (Zucc.)

    NARCIS (Netherlands)

    Araya, A.; Stroosnijder, L.; Girmay, G.; Keesstra, S.D.

    2011-01-01

    In the semi-arid region of Tigray, Northen Ethiopia a two season experiment was conducted to measure evapotranspiration, estimate yield response to water stress and derive the crop coefficient of teff using the single crop coefficient approach with simple, locally made lysimeters and field plots. Du

  10. Physiological responses of selected African sorghum landraces to progressive water stress and re-watering

    CSIR Research Space (South Africa)

    Devnarain, N

    2016-03-01

    Full Text Available stress treatments and a moderate re-watered treatment on day 7. Plant height, soil moisture, and LWC were measured during harvests. Chlorophyll, carotenoid, and proline contents were quantified. All five genotypes maintained LWC above 80% during mild...

  11. Measurement of heat stress conditions at cow level and comparison to climate conditions at stationary locations inside a dairy barn.

    Science.gov (United States)

    Schüller, Laura K; Heuwieser, Wolfgang

    2016-08-01

    The objectives of this study were to examine heat stress conditions at cow level and to investigate the relationship to the climate conditions at 5 different stationary locations inside a dairy barn. In addition, we compared the climate conditions at cow level between primiparous and multiparous cows for a period of 1 week after regrouping. The temperature-humidity index (THI) differed significantly between all stationary loggers. The lowest THI was measured at the window logger in the experimental stall and the highest THI was measured at the central logger in the experimental stall. The THI at the mobile cow loggers was 2·33 THI points higher than at the stationary loggers. Furthermore, the mean daily THI was higher at the mobile cow loggers than at the stationary loggers on all experimental days. The THI in the experimental pen was 0·44 THI points lower when the experimental cow group was located inside the milking parlour. The THI measured at the mobile cow loggers was 1·63 THI points higher when the experimental cow group was located inside the milking parlour. However, there was no significant difference for all climate variables between primiparous and multiparous cows. These results indicate, there is a wide range of climate conditions inside a dairy barn and especially areas with a great distance to a fresh air supply have an increased risk for the occurrence of heat stress conditions. Furthermore, the heat stress conditions are even higher at cow level and cows not only influence their climatic environment, but also generate microclimates within different locations inside the barn. Therefore climate conditions should be obtained at cow level to evaluate the heat stress conditions that dairy cows are actually exposed to.

  12. Polymerization contraction stress in resin-tooth bonds under hydrated and dehydrated conditions

    NARCIS (Netherlands)

    M. Hashimoto; K. Nakamura; A.J. Feilzer

    2009-01-01

    Objective: This study hypothesizes that, with enamel or dentin as a bonding substrate, intrinsic water affects the development of polymerization contraction stress in the bonds of self-etching adhesives during bonding. Materials and methods: The influence of the water content in dentin and enamel (w

  13. Polymerization contraction stress in resin-tooth bonds under hydrated and dehydrated conditions

    NARCIS (Netherlands)

    Hashimoto, M.; Nakamura, K.; Feilzer, A.J.

    2009-01-01

    Objective: This study hypothesizes that, with enamel or dentin as a bonding substrate, intrinsic water affects the development of polymerization contraction stress in the bonds of self-etching adhesives during bonding. Materials and methods: The influence of the water content in dentin and enamel

  14. Abiotic stress growth conditions induce different responses in kernel iron concentration across genotypically distinct maize inbred varieties.

    Science.gov (United States)

    Kandianis, Catherine B; Michenfelder, Abigail S; Simmons, Susan J; Grusak, Michael A; Stapleton, Ann E

    2013-01-01

    The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks.

  15. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera Grown under Water Stress.

    Directory of Open Access Journals (Sweden)

    Carlos Salinas

    Full Text Available Aloe barbadensis Miller (Aloe vera has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC. There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported.

  16. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress

    Science.gov (United States)

    Salinas, Carlos; Cardemil, Liliana

    2016-01-01

    Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported. PMID:27454873

  17. Structural Modifications of Fructans in Aloe barbadensis Miller (Aloe Vera) Grown under Water Stress.

    Science.gov (United States)

    Salinas, Carlos; Handford, Michael; Pauly, Markus; Dupree, Paul; Cardemil, Liliana

    2016-01-01

    Aloe barbadensis Miller (Aloe vera) has a Crassulaceae acid metabolism which grants the plant great tolerance to water restrictions. Carbohydrates such as acemannans and fructans are among the molecules responsible for tolerating water deficit in other plant species. Nevertheless, fructans, which are prebiotic compounds, have not been described nor studied in Aloe vera, whose leaf gel is known to possess beneficial pharmaceutical, nutritional and cosmetic properties. As Aloe vera is frequently cultivated in semi-arid conditions, like those found in northern Chile, we investigated the effect of water deficit on fructan composition and structure. For this, plants were subjected to different irrigation regimes of 100%, 75%, 50% and 25% field capacity (FC). There was a significant increase in the total sugars, soluble sugars and oligo and polyfructans in plants subjected to water deficit, compared to the control condition (100% FC) in both leaf tips and bases. The amounts of fructans were also greater in the bases compared to the leaf tips in all water treatments. Fructans also increase in degree of polymerization with increasing water deficit. Glycosidic linkage analyses by GC-MS, led to the conclusion that there are structural differences between the fructans present in the leaves of control plants with respect to plants irrigated with 50% and 25% FC. Therefore, in non-stressed plants, the inulin, neo-inulin and neo-levan type of fructans predominate, while in the most stressful conditions for the plant, Aloe vera also synthesizes fructans with a more branched structure, the neofructans. To our knowledge, the synthesis and the protective role of neo-fructans under extreme water deficit has not been previously reported.

  18. Avoid population growth to reduce water stress and food demand. Prof. Malin Falkenmark on water, food and population.

    Science.gov (United States)

    1996-01-01

    Global food security is closely linked to the overall availability of water. In some regions of the world, water scarcity will increasingly constrain crop production, forcing a dependency upon food imports. This problem will be particularly acute in dry-climate countries with rapid population growth. Water availability is therefore a fundamental condition for socioeconomic development which requires policymaker attention. Crops depend upon soil moisture and aquifers and rivers. Poor rainfalls and depleted aquifers threaten crop yields. The larger the population, the more water is needed for social and economic needs, including irrigation. However, water for irrigation competes with the water needs of households and industry. Recent research indicates that many dry-climate countries are moving farther away from the possibility of food self-sufficiency. These countries should study their comparative advantages to determine what to export in exchange for food imports from the sub-humid and humid regions of the world. Governments should also promote family planning and the small family norm with the goal of reducing water stress and food demand.

  19. Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida

    DEFF Research Database (Denmark)

    Bojanovic, Klara; D'Arrigo, Isotta; Long, Katherine

    2017-01-01

    Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of...

  20. Lag phase of Salmonella enterica under osmotic stress conditions.

    Science.gov (United States)

    Zhou, K; George, S M; Métris, A; Li, P L; Baranyi, J

    2011-03-01

    Salmonella enterica serovar Typhimurium was grown at salt concentrations ranging from 0.5 to 7.5% in minimal medium with and without added osmoprotectant and in a rich medium. In minimal medium, the cells showed an initial decline period, and consequently the definition of the lag time of the resultant log count curve was revised. The model of Baranyi and Roberts (Int. J. Food Microbiol. 23:277-294, 1994) was modified to take into account the initial decline period, based on the assumption that the log count curve of the total population was the sum of a dying and a surviving-then-growing subpopulation. The lag time was defined as the lag of the surviving subpopulation. It was modeled by means of a parameter quantifying the biochemical work the surviving cells carry out during this phase, the "work to be done." The logarithms of the maximum specific growth rates as a function of the water activity in the three media differed only by additive constants, which gave a theoretical basis for bias factors characterizing the relationships between different media. Models for the lag and the "work to be done" as a function of the water activity showed similar properties, but in rich medium above 5% salt concentrations, the data showed a maximum for this work. An accurate description of the lag time is important to avoid food wastage, which is an issue of increasing significance in the food industry, while maintaining food safety standards.

  1. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress.

    Science.gov (United States)

    Hsieh, Tsai-Hung; Lee, Jent-turn; Charng, Yee-yung; Chan, Ming-Tsair

    2002-10-01

    A DNA cassette containing an Arabidopsis C repeat/dehydration-responsive element binding factor 1 (CBF1) cDNA and a nos terminator, driven by a cauliflower mosaic virus 35S promoter, was transformed into the tomato (Lycopersicon esculentum) genome. These transgenic tomato plants were more resistant to water deficit stress than the wild-type plants. The transgenic plants exhibited growth retardation by showing dwarf phenotype, and the fruit and seed numbers and fresh weight of the transgenic tomato plants were apparently less than those of the wild-type plants. Exogenous gibberellic acid treatment reversed the growth retardation and enhanced growth of transgenic tomato plants, but did not affect the level of water deficit resistance. The stomata of the transgenic CBF1 tomato plants closed more rapidly than the wild type after water deficit treatment with or without gibberellic acid pretreatment. The transgenic tomato plants contained higher levels of Pro than those of the wild-type plants under normal or water deficit conditions. Subtractive hybridization was used to isolate the responsive genes to heterologous CBF1 in transgenic tomato plants and the CAT1 (CATALASE1) was characterized. Catalase activity increased, and hydrogen peroxide concentration decreased in transgenic tomato plants compared with the wild-type plants with or without water deficit stress. These results indicated that the heterologous Arabidopsis CBF1 can confer water deficit resistance in transgenic tomato plants.

  2. Water level influences on body condition of Geophagus brasiliensis (Perciformes: Cichlidae in a Brazilian oligotrophic reservoir

    Directory of Open Access Journals (Sweden)

    Alejandra Filippo Gonzalez Neves dos Santos

    2004-09-01

    Full Text Available Effects of water level fluctuations on body condition of Geophagus brasiliensis were studied in a 30 km² Brazilian oligotrophic reservoir. Physiological condition (K and gonadosomatic index (GSI were compared according to water level (low and high. Females' best conditions were associated to higher resources availability during high water, since gonad development did not change between low and high water. Males' condition did not change between water levels, while the highest gonad development occurred in low water. Females presented higher reproductive investment than males, which allocated most of energy for somatic development. This strategy could be a mechanism to undergo the stress caused by oligotrophic characteristics of the reservoir enhanced during low water level.Efeitos do nível da água na condição de Geophagus brasiliensis foram analisados em um reservatório oligotrófico. A condição fisiológica (K e o índice gonadossomático (IGS foram comparados entre os níveis da água (baixo e alto. Melhores condições de fêmeas foram associadas a maiores disponibilidades de recursos no nível alto, já que o desenvolvimento gonadal não variou. Não foram registradas diferenças na condição de machos, contudo maiores valores de IGS ocorreram no nível baixo. Fêmeas apresentaram elevado investimento reprodutivo, enquanto machos investiram mais no desenvolvimento somático. Tal estratégia pode ser um mecanismo para suportar o estresse causado pelas características oligotróficas do reservatório, intensificadas durante o período de níveis baixos da água.

  3. VIBRATORY STRESS, SOLIDIFICATION AND MICROSTRUCTURE OF WELDMENTS UNDER VIBRATORY WELDING CONDITION-A REVIEW

    Directory of Open Access Journals (Sweden)

    AKANKSHA VERMA,

    2011-06-01

    Full Text Available Welding processes induce a state of residual stress into materials and jobs. This poses a series of problems, in terms of dimensional stability, corrosion cracking, reduced fatigue life and structural integrity . Thermal cycle produced near weld line generates residual stress and inhomogeneous plastic deformation in weldments. Understanding of grain nucleation and grain growth becomes necessary that are influenced under welding conditions. After completion of nucleation, the solidification process will continue with nucleus growth .With vibratory weld conditioning, the enhancement of weld metal microstructure can be achieved. The mechanical properties, level of residual stresses, and deformation can also be affected . Structural changes of the welds prepared under vibratory conditions affects the mechanical properties of the welds. The vibration duringwelding benefits energy absorbed in impact toughness test of weld metal and improves fracture behavior. This paper presents the microstructure, solidification behaviour and residual stress relaxation under vibratory welding condition.

  4. Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions.

    Science.gov (United States)

    deVries, Maya S; Webb, Summer J; Tu, Jenny; Cory, Esther; Morgan, Victoria; Sah, Robert L; Deheyn, Dimitri D; Taylor, Jennifer R A

    2016-12-15

    Calcified marine organisms typically experience increased oxidative stress and changes in mineralization in response to ocean acidification and warming conditions. These effects could hinder the potency of animal weapons, such as the mantis shrimp's raptorial appendage. The mechanical properties of this calcified weapon enable extremely powerful punches to be delivered to prey and aggressors. We examined oxidative stress and exoskeleton structure, mineral content, and mechanical properties of the raptorial appendage and the carapace under long-term ocean acidification and warming conditions. The predatory appendage had significantly higher % Mg under ocean acidification conditions, while oxidative stress levels as well as the % Ca and mechanical properties of the appendage remained unchanged. Thus, mantis shrimp tolerate expanded ranges of pH and temperature without experiencing oxidative stress or functional changes to their weapons. Our findings suggest that these powerful predators will not be hindered under future ocean conditions.

  5. 1-Aminocyclopropane-1-Carboxylic Acid Transported from Roots to Shoots Promotes Leaf Abscission in Cleopatra Mandarin (Citrus reshni Hort. ex Tan.) Seedlings Rehydrated after Water Stress.

    Science.gov (United States)

    Tudela, D; Primo-Millo, E

    1992-09-01

    The effect of water stress and subsequent rehydration on 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase activity, ethylene production, and leaf abscission was studied in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings. Leaf abscission occurred when drought-stressed plants were allowed to rehydrate, whereas no abscission was observed in plants under water stress conditions. In roots of water-stressed plants, a high ACC accumulation and an increase in ACC synthase activity were observed. Neither increase in ACC content nor significant ethylene production were detected in leaves of water-stressed plants. After rehydration, a sharp rise in ACC content and ethylene production was observed in leaves of water-stressed plants. Content of ACC in xylem fluid was 10-fold higher in plants rehydrated for 2 h after water stress than in nonstressed plants. Leaf abscission induced by rehydration after drought stress was inhibited when roots or shoots were treated before water stress with aminooxyacetic acid (AOA, inhibitor of ACC synthase) or cobalt ion (inhibitor of ethylene-forming enzyme), respectively. However, AOA treatments to shoots did not suppress leaf abscission. The data indicate that water stress promotes ACC synthesis in roots of Cleopatra mandarin seedlings. Rehydration of plants results in ACC transport to the shoots, where it is oxidized to ethylene. Subsequently, this ethylene induces leaf abscission.

  6. Early Age Thermal Conditioning Improves Broiler Chick's Response to Acute Heat Stress at Marketing Age

    Directory of Open Access Journals (Sweden)

    Ahmed M. Hassan

    2012-01-01

    Full Text Available Problem statement: Acute heat stress at marketing age especially in broiler chickens raised in open houses with reduced means of heat exchange leads to economic losses. The objective of this study was to determine beneficial effects of early age thermal conditioning in reducing adverse effects of acute heat stress and decrease losses. Approach: Ninety one day-old broiler chicks were randomly assigned to one of three treatments (n = 30: (1 control (normally raised, (2 early age thermal conditioning (exposed to temperature of 40±1°C for 24 h at 5th day of age, then raised as control chicks and (3 chronic stress (exposed to 33±2°C from day one till 6 weeks of age. At 42nd day of age, all chicks were subjected to acute heat stress of 39±2°C for 2 h. Blood samples were collected from all groups before and after exposure to acute heat stress. Results: Blood pH increased in both controls and thermally-conditioned chicks after exposure to acute heat stress coinciding with significant decrease in blood carbon dioxide pressure (pCo2 in controls only. Blood potassium level decreased in controls, while in thermally-conditioned or chronically-stressed no significant changes were observed. Blood sodium level showed a trend toward decreased levels in controls while a trend toward increased levels was observed in both thermally-conditioned and chronically-stressed birds. Importantly, significant reductions were observed in total erythrocyte count and hemoglobin level in chronically-stressed birds as compared to other groups before and after acute stress exposure. Hetrophil/lymphocyte ratio increased in both controls and thermally-conditioned chicks after acute heat exposure, but not in chronically-stressed birds. Conclusion: When exposed to acute heat stress at marketing age, chicks subjected to early age thermal conditioning responded very similar to birds adapted to chronic heat stress indicating a protective role of early age thermal conditioning.

  7. Influence of Water Stress on Endogenous Hormone Contents and Cell Damage of Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    Chunrong Wang; Aifang Yang; Haiying Yin; Juren Zhang

    2008-01-01

    Phytohormones play critical roles In regulating plant responses to stress. We Investigated the effects of water stress Induced by adding 12% (w/v) polyethylene glycol to the root medium on the levels of abscisic acid (ABA), indole-3-acid (IAA), zeatin (ZT), and gibberellin3 (GA3) in maize leaves. The results suggested that water stress had significant effects on the four hormone levels. There was a transient increase in the IAA content during the initial stage of adaptation to water stress in maize leaves, but it dropped sharply thereafter in response to water stress. ABA content increased dramatically in maize leaves after 24 h of exposure to water stress, and then the high levels of ABA were maintained to the end, The contents Of ZT and GA3 rapidly declined in maize leaves subjected to water stress. The effects of water stress on chlorophyll content, electrolyte leakage and malondialdehyde levels in maize leaves were also studied. The variation of cell damage was negatively correlated with ZT and GA3 levels in maize leaves under water stress. Thus, we explored the roles of ZT and GA3 on the growth of maize seedlings under water stress by exogenous application. It is possible that both ZT and GA3 were effective in protecting maize seedlings from water stress, which would be of great importance for the improvement of drought tolerance in maize by genetic manipulation.

  8. WATER TABLE AND REDOX CONDITIONS IN DEEP TROPICAL PEAT

    Institute of Scientific and Technical Information of China (English)

    Hajah Dulima Jali

    2007-01-01

    Redox potential in the well developed tropical peat swamp in Brunei was studied for a year. Generally the redox potential measurements showed a large variation, ranging from -234 mV to 727 mV. The expected rise in redox values did not take place following the drop of water table during the dry months of June to September. The redox value at 100 cm depth indicated that the soil remained reduced throughout the year in spite of the lowering of water table below 150 cm in all sites during dry period. Similarly the redox values did not decrease rapidly following flooding when the water table rose to the surface. This phenomenon could be attributed to the topography of the peat dome which facilitated the fast lateral movement of water and thus promoted oxygen supply down the peat profile, though not great enough to reach the 100 cm depth. The rapid lateral flow of water in the outer Alan batu site facilitated aeration, but in the inner sites remained which was reduced because of the slower water movement. The slower initiation of the reducing condition was likely due to the presence of nitrate which has accumulated as a result of ammonium oxidation during the relatively long aerobic period. Differences in the distribution of redox potential with depth are possibly explained by the different permeability of peat affecting flow patterns and residence time of water. The nature and compactibility of the peat might have slowed the diffusion rates of O2 into the lower layer. Though the bulk density of the peat was low, the composition of the peat might influence the peat permeability and hydraulic conductivity. The tree trunks are not decomposed or large branches must have lowered permeability compared to the other peat material.

  9. Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions.

    Science.gov (United States)

    Li, Xuemei; Bu, Ning; Li, Yueying; Ma, Lianju; Xin, Shigang; Zhang, Lihong

    2012-04-30

    An endophytic fungus was tested in rice (Oryza sativa L.) exposed to four levels of lead (Pb) stress (0, 50, 100 and 200 μM) to assess effects on plant growth, photosynthesis and antioxidant enzyme activity. Under Pb stress conditions, endophyte-infected seedlings had greater shoot length but lower root length compared to non-infected controls, and endophyte-infected seedlings had greater dry weight in the 50 and 100 μM Pb treatments. Under Pb stress conditions, chlorophyll and carotenoid levels were significantly higher in the endophyte-infected seedlings. Net photosynthetic rate, transpiration rate and water use efficiency were significantly higher in endophyte-infected seedlings in the 50 and 100 μM Pb treatments. In addition, chlorophyll fluorescence parameters Fv/Fm and Fv/Fo were higher in the infected seedlings compared to the non-infected seedlings under Pb stress. Malondialdehyde accumulation was induced by Pb stress, and it was present in higher concentration in non-infected seedlings under higher concentrations of Pb (100 and 200 μM). Antioxidant activity was either higher or unchanged in the infected seedlings due to responses to the different Pb concentrations. These results suggest that the endophytic fungus improved rice growth under moderate Pb levels by enhancing photosynthesis and antioxidant activity relative to non-infected rice.

  10. Effects of stress and sex on acquisition and consolidation of human fear conditioning

    OpenAIRE

    Zorawski, Michael; Blanding, Nineequa Q.; Kuhn, Cynthia M.; LaBar, Kevin S.

    2006-01-01

    We examined the relationship between stress hormone (cortisol) release and acquisition and consolidation of conditioned fear learning in healthy adults. Participants underwent acquisition of differential fear conditioning, and consolidation was assessed in a 24-h delayed extinction test. The acquisition phase was immediately followed by an 11-min psychosocial stress period (arithmetic test combined with a public speech). Salivary cortisol was sampled at various time points before and after ac...

  11. Thermal characteristics investigation of high voltage grounded gate-LDMOS under ESD stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sun Weifeng; Qian Qinsong; Wang Wen; Yi Yangbo, E-mail: swffrog@seu.edu.c [National ASIC System Engineering Research Center, Southeast University, Nanjing 210096 (China)

    2009-10-15

    The thermal characteristics of high voltage gg-LDMOS under ESD stress conditions are investigated in detail based on the Sentaurus process and device simulators. The total heat and lattice temperature distributions along the Si-SiO{sub 2} interface under different stress conditions are presented and the physical mechanisms are discussed in detail. The influence of structure parameters on peak lattice temperature is also discussed, which is useful for designers to optimize the parameters of LDMSO for better ESD performance.

  12. Thermal characteristics investigation of high voltage grounded gate-LDMOS under ESD stress conditions

    Institute of Scientific and Technical Information of China (English)

    Sun Weifeng; Qian Qinsong; Wang Wen; Yi Yangbo

    2009-01-01

    The thermal characteristics of high voltage gg-LDMOS under ESD stress conditions are investigated in detail based on the Sentaurus process and device simulators. The total heat and lattice temperature distributions along the Si-SiO_2 interface under different stress conditions are presented and the physical mechanisms are discussed in detail. The influence of structure parameters on peak lattice temperature is also discussed, which is useful for designers to optimize the parameters of LDMSO for better ESD performance.

  13. Common QTL Affect the Rate of Tomato Seed Germination under Different Stress and Nonstress Conditions

    OpenAIRE

    Foolad, Majid R.; Subbiah, Prakash; Zhang, Liping

    2007-01-01

    The purpose of this study was to determine whether the rates of tomato seed germination under different stress and nonstress conditions were under common genetic controls by examining quantitative trait loci (QTL) affecting such traits. Seeds of BC1 progeny of a cross between a slow-germinating tomato breeding line and a rapid-germinating tomato wild accession were evaluated for germination under nonstress as well as cold, salt, and drought stress conditions. In each treatment, the most rapid...

  14. The Equilibrium and Growth Stability of Winter Wheat Root and Shoot Under Different Soil Water Conditions

    Institute of Scientific and Technical Information of China (English)

    GAO Zhi-hong; CHEN Xiao-yuan; LUO Yuan-pei

    2007-01-01

    The equilibrium between root, shoot and growth stability under different soil water conditions were investigated in a tube experiment of winter wheat. The water supplying treatments included: sufficient irrigation at whole growth phase, moderate deficiency irrigation at whole growth phase, serious deficiency irrigation at whole growth phase, sufficient irrigation at jointing stage, tillering stage, flowering stage, and fillering respectively, after moderate and serious water deficit during their previous growth stage. Root and shoot biomass were measured. On the basis of the cooperative root-shoot interactions model, the equilibrium and growth stability were studied on the strength of the kinetics system theory. There was only one varying equilibrium point between the root and shoot over the life time of the winter wheat plant. Water stress prolonged the duration of stable growth, the more serious the water deficit, the longer the period of stable growth.The duration of stable growth was shortened and that of unstable growth was prolonged after water recovery. The growth behavior of the plants exposed to moderate water deficit shifted from stable to unstable until the end of the growth,after rewatering at flowering. In the life-time of the crop, the root and shoot had been adjusting themselves in structure and function so as to maintain an equilibrium, but could not achieve the equilibrium state for long. They were always in an unbalanced state from the beginning to the end of growth. This was the essence of root-shoot equilibrium. Water stress inhibited the function of root and shoot, reduced root shoot interactions, and as a result, the plant growth gradually tended to stabilize. Rewatering enhanced root shoot interactions, prolonged duration of instable growth. Rewatering at flowering could upset the inherent relativity during the long time of stable growth from flowering to filling stage, thus leading to unstable growth and enhanced dry matter accumulating rate

  15. Antioxidant activity of polyphenols of adzuki bean (Vigna angularis germinated in abiotic stress conditions

    Directory of Open Access Journals (Sweden)

    Urszula Złotek

    2015-03-01

    Full Text Available Background. Adzuki sprouts are one of more valuable but still underappreciated dietary supplements which may be considered as functional food. Sprouting reduces anti-nutritional factors and increases the bioavailability of macro and micronutrients and also affects phytochemical levels. Exposure of plants to abiotic stresses results in change in production of phytochemical compounds. The aim of this study was to assess the content and antioxidant properties of phenolic in adzuki bean seeds germinated in selected abiotic stress conditions. Material and methods. Adzuki bean seeds were germinated in different abiotic stress conditions: thermal, osmotic and oxidative. The content of phenolics in adzuki bean seeds coat extracts and antioxidant activity Fe2+ chelating ability and neutralization of the free radicals generated from DPPH and ABTS were determined. Results. All applied stress conditions (except for thermal stress have caused decrease the content of the analysed phenolic fractions. The lowest amounts of polyphenols in extracts of sprouts obtained in oxidative stress conditions were observed. The highest ability to neutralize free radicals generated with ABTS and DPPH have extracts from sprouts germinated under thermal stress 39.94 and 13.20 μmol TEAC/g d.w., respectively. The lowest – sprouts obtained in oxidative stress conditions (18.2 and 9.72 μmol TEAC/g d.w.. The highest ability to chelate Fe2+ has been shown by the extract from adzuki bean seeds coat subjected to thermal stress (7.06 % and the lowest control extract (3.08%. Conclusions. It can be concluded that only thermal stress contributes to the improvement of antioxidant activity of extracts obtained from adzuki bean seeds coat.

  16. Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress.

    Science.gov (United States)

    Rapala-Kozik, Maria; Kowalska, Ewa; Ostrowska, Katarzyna

    2008-01-01

    The responses of plants to abiotic stress involve the up-regulation of numerous metabolic pathways, including several major routes that engage thiamine diphosphate (TDP)-dependent enzymes. This suggests that the metabolism of thiamine (vitamin B1) and its phosphate esters in plants may be modulated under various stress conditions. In the present study, Zea mays seedlings were used as a model system to analyse for any relation between the plant response to abiotic stress and the properties of thiamine biosynthesis and activation. Conditions of drought, high salt, and oxidative stress were induced by polyethylene glycol, sodium chloride, and hydrogen peroxide, respectively. The expected increases in the abscisic acid levels and in the activities of antioxidant enzymes including catalase, ascorbate peroxidase, and glutathione reductase were found under each stress condition. The total thiamine compound content in the maize seedling leaves increased under each stress condition applied, with the strongest effects on these levels observed under the oxidative stress treatment. This increase was also found to be associated with changes in the relative distribution of free thiamine, thiamine monophosphate (TMP), and TDP. Surprisingly, the activity of the thiamine synthesizing enzyme, TMP synthase, responded poorly to abiotic stress, in contrast to the significant enhancement found for the activities of the TDP synthesizing enzyme, thiamine pyrophosphokinase, and a number of the TDP/TMP phosphatases. Finally, a moderate increase in the activity of transketolase, one of the major TDP-dependent enzymes, was detectable under conditions of salt and oxidative stress. These findings suggest a role of thiamine metabolism in the plant response to environmental stress.

  17. Experimental study of choking flow of water at supercritical conditions

    Science.gov (United States)

    Muftuoglu, Altan

    Future nuclear reactors will operate at a coolant pressure close to 25 MPa and at outlet temperatures ranging from 500°C to 625°C. As a result, the outlet flow enthalpy in future Supercritical Water-Cooled Reactors (SCWR) will be much higher than those of actual ones which can increase overall nuclear plant efficiencies up to 48%. However, under such flow conditions, the thermal-hydraulic behavior of supercritical water is not fully known, e.g., pressure drop, forced convection and heat transfer deterioration, critical and blowdown flow rate, etc. Up to now, only a very limited number of studies have been performed under supercritical conditions. Moreover, these studies are conducted at conditions that are not representative of future SCWRs. In addition, existing choked flow data have been collected from experiments at atmospheric discharge pressure conditions and in most cases by using working fluids different than water which constrain researchers to analyze the data correctly. In particular, the knowledge of critical (choked) discharge of supercritical fluids is mandatory to perform nuclear reactor safety analyses and to design key mechanical components (e.g., control and safety relief valves, etc.). Hence, an experimental supercritical water facility has been built at Ecole Polytechnique de Montreal which allows researchers to perform choking flow experiments under supercritical conditions. The facility can also be used to carry out heat transfer and pressure drop experiments under supercritical conditions. In this thesis, we present the results obtained at this facility using a test section that contains a 1 mm inside diameter, 3.17 mm long orifice plate with sharp edges. Thus, 545 choking flow of water data points are obtained under supercritical conditions for flow pressures ranging from 22.1 MPa to 32.1 MPa, flow temperatures ranging from 50°C to 502°C and for discharge pressures from 0.1 MPa to 3.6 MPa. Obtained data are compared with the data given in

  18. The influence of acute stress on the regulation of conditioned fear

    Directory of Open Access Journals (Sweden)

    Candace M. Raio

    2015-01-01

    Full Text Available Fear learning and regulation is a prominent model for describing the pathogenesis of anxiety disorders and stress-related psychopathology. Fear expression can be modulated using a number of regulatory strategies, including extinction, cognitive emotion regulation, avoidance strategies and reconsolidation. In this review, we examine research investigating the effects of acute stress and stress hormones on these regulatory techniques. We focus on what is known about the impact of stress on the ability to flexibly regulate fear responses that are acquired through Pavlovian fear conditioning. Our primary aim is to explore the impact of stress on fear regulation in humans. Given this, we focus on techniques where stress has been linked to alterations of fear regulation in humans (extinction and emotion regulation, and briefly discuss other techniques (avoidance and reconsolidation where the impact of stress or stress hormones have been mainly explored in animal models. These investigations reveal that acute stress may impair the persistent inhibition of fear, presumably by altering prefrontal cortex function. Characterizing the effects of stress on fear regulation is critical for understanding the boundaries within which existing regulation strategies are viable in everyday life and can better inform treatment options for those who suffer from anxiety and stress-related psychopathology.

  19. Water accounting for stressed river basins based on water resources management models.

    Science.gov (United States)

    Pedro-Monzonís, María; Solera, Abel; Ferrer, Javier; Andreu, Joaquín; Estrela, Teodoro

    2016-09-15

    Water planning and the Integrated Water Resources Management (IWRM) represent the best way to help decision makers to identify and choose the most adequate alternatives among other possible ones. The System of Environmental-Economic Accounting for Water (SEEA-W) is displayed as a tool for the building of water balances in a river basin, providing a standard approach to achieve comparability of the results between different territories. The target of this paper is to present the building up of a tool that enables the combined use of hydrological models and water resources models to fill in the SEEA-W tables. At every step of the modelling chain, we are capable to build the asset accounts and the physical water supply and use tables according to SEEA-W approach along with an estimation of the water services costs. The case study is the Jucar River Basin District (RBD), located in the eastern part of the Iberian Peninsula in Spain which as in other many Mediterranean basins is currently water-stressed. To guide this work we have used PATRICAL model in combination with AQUATOOL Decision Support System (DSS). The results indicate that for the average year the total use of water in the district amounts to 15,143hm(3)/year, being the Total Water Renewable Water Resources 3909hm(3)/year. On the other hand, the water service costs in Jucar RBD amounts to 1634 million € per year at constant 2012 prices. It is noteworthy that 9% of these costs correspond to non-conventional resources, such as desalinated water, reused water and water transferred from other regions.

  20. Development of a Hyperspectral Index for Detection of Initial Water Stress in Eastern Hemlock (Tsuga Canadensis)

    Science.gov (United States)

    Wiener, M. J.; Rock, B. N.

    2008-12-01

    Hemlock woolly adelgid (Adelges tsugae Annand) is an invasive insect pathogen that is causing significant mortality in existing eastern hemlock (Tsuga canadensis Carriere) stands across the Northeastern USA. Unchecked, A. tsugae will continue to decimate hemlock forests, initiating irreversible ecological alterations. Hemlock survival is dependent upon site conditions, where trees in mesic environments tend to decline at slower rates than trees in xeric ones. In addition, A. tsugae has been reported to restrict xylem flow in hemlock needles, potentially causing foliar drying. There has been little research on the ability of remote sensing tools to detect eastern hemlock water stress, a key factor in resistance to A. tsugae. In this study, 2007 hemlock needles were collected from 10 sites across the northeast and subjected to simulated water stress in order to determine the applicability of multispectral and hyperspectral indices in diagnosing hemlock water stress. Samples were dried in an oven at 65° C in two time groups: 60 minutes and 300 minutes. Spectral scans by a Visible Infrared Intelligent Spectrometer (VIRIS) in addition to percent water loss measurements were made at regular intervals throughout the drying period. Results include the rapid formation of reflectance peaks at 530 nm, 590 nm, and 644 nm which may be used to create hyperspectral water stress indices tailored to hemlocks that are extremely accurate in predicting both initial (R644/R669 r2=.773, p<.0001; Normalized R644/R669 r2=.801, p<.0001) and long-term (R644/R669 r2=.864, p<.0001; Normalized R644/R669 r2=.889, p<.0001) water stress. These findings can provide a significant tool in current management efforts of the HWA, by identifying both hemlock stands under environmental water stress, which are likely prone to infestation, in addition to regions under the initial stages of infestation. As a result, conservationists and forest managers will be afforded an opportunity to direct control

  1. The stability of chalk during flooding of carbonated sea water at reservoir in-situ conditions

    Science.gov (United States)

    Nermoen, Anders; Korsnes, Reidar I.; Madland, Merete V.

    2014-05-01

    Injection of CO2 into carbonate oil reservoirs has been proposed as a possible utilization of the captured CO2 due to its capability to enhance the oil recovery. For offshore reservoirs such as Ekofisk and Valhall it has been discussed to alternate the CO2 and sea water injection (WAG) to reduce costs and keep the beneficial effects of both sea water (SSW) and gas injection. Water and CO2 mix to form carbonic acids that enhance the solubility of carbonates, thus a serious concern has been raised upon the potential de-stabilization of the reservoirs during CO2 injection. In this study we focus on how carbonated sea water alters the mechanical integrity of carbonate rocks both to evaluate safety of carbon storage sites and in the planning of production strategies in producing oil fields since enhanced compaction may have both detrimental and beneficial effects. Here we will present results from long term experiments (approx. half year each) performed on Kansas outcrop chalk (38-41% porosity), which serves as model material to understand the physical and chemical interplaying processes taking place in chalk reservoirs. All tests are performed at uni-axial strain conditions, meaning that the confining radial stresses are automatically adjusted to ensure zero radial strain. The tests are performed at in-situ conditions and run through a series of stages that mimic the reservoir history at both Ekofisk and Valhall fields. We observe the strain response caused by the injected brine. The experimental stages are: (a) axial stress build-up by pore pressure depletion to stresses above yield with NaCl-brine which is inert to the chalk; (b) uni-axial creep at constant axial stresses with NaCl-brine; (c) sea water injection; and (d) injection of carbonated water (SSW+CO2) at various mixture concentrations. Two test series were performed in which the pore pressure was increased (re-pressurized) before stage (c) to explore the stress dependency of the fluid induced strain

  2. Leaf Responses of Micropropagated Apple Plants to Water Stress: Changes in Endogenous Hormones and Their Influence on Carbohydrate Metabolism

    Institute of Scientific and Technical Information of China (English)

    LI Tian-hong; LI Shao-hua

    2007-01-01

    The changes in the concentrations of endogenous hormones and their influence on carbohydrate metabolism in leaves of micropropagated Fuji apple plants were studied under water deficiency stress. The results showed that water stress induced a rapid increase in the concentration of abscisic acid (ABA) and led to a decrease in concentrations of both zeatin and gibberellins (GAs). The concentration of indole-3-acetic acid (IAA) changed in an independent manner, which was not correlated with the different levels of water stress. With regard to the carbohydrates, the contents of sorbitol and sucrose increased, whereas the content of starch decreased. The increase in the concentration of ABA was significantly correlated with both the increase in the activity of aldose-6-phosphate reductase (A6PR) and the decrease in the activity of sorbitol dehydrogenase (SDH), indicating that ABA played a regulatory role in sorbitol metabolism. The concentration of ABA was positively correlated to the activity of sucrose-phosphate synthase (SPS) but negatively correlated to the activities of acid invertase (AI) and ADP-glucose-pyrophosphorylase (ADPGppase) in water-stressed plants, which indicated that ABA promoted sucrose synthesis and inhibited sucrose degradation and starch synthesis at the same time. Under conditions of water stress, the decrease in the level of zeatin was accompanied by a decrease in the activities of SDH and ADPGPPase. GAs concentration showed positive correlation with ADPGPPase activity. IAA showed no significant correlation with any of the enzymes tested in this study. The results of this study suggested that ABA might be one of the key factors regulating the distribution of carbohydrates under water stress. The metabolism of sorbitol and starch under conditions of water stress might be regulated by the combined action of many plant hormones.

  3. Use of response surface methodology to optimise environmental stress conditions on Penicillium glabrum, a food spoilage mould.

    Science.gov (United States)

    Nevarez, Laurent; Vasseur, Valérie; Debaets, Stella; Barbier, Georges

    2010-01-01

    Fungi are ubiquitous microorganisms often associated with spoilage and biodeterioration of a large variety of foods and feedstuffs. Their growth may be influenced by temporary changes in intrinsic or environmental factors such as temperature, water activity, pH, preservatives, atmosphere composition, all of which may represent potential sources of stress. Molecular-based analyses of their physiological responses to environmental conditions would help to better manage the risk of alteration and potential toxicity of food products. However, before investigating molecular stress responses, appropriate experimental stress conditions must be precisely defined. Penicillium glabrum is a filamentous fungus widely present in the environment and frequently isolated in the food processing industry as a contaminant of numerous products. Using response surface methodology, the present study evaluated the influence of two environmental factors (temperature and pH) on P. glabrum growth to determine 'optimised' environmental stress conditions. For thermal and pH shocks, a large range of conditions was applied by varying factor intensity and exposure time according to a two-factorial central composite design. Temperature and exposure duration varied from 30 to 50 °C and from 10 min to 230 min, respectively. The effects of interaction between both variables were observed on fungal growth. For pH, the duration of exposure, from 10 to 230 min, had no significant effect on fungal growth. Experiments were thus carried out on a range of pH from 0.15 to 12.50 for a single exposure time of 240 min. Based on fungal growth results, a thermal shock of 120 min at 40 °C or a pH shock of 240 min at 1.50 or 9.00 may therefore be useful to investigate stress responses to non-optimal conditions.

  4. Impact of diurnal variation in vegetation water content on radar backscatter from maize during water stress

    NARCIS (Netherlands)

    Van Emmerik, T.H.M.; Dunne, S.C.; Judge, J.; van de Giesen, N.C.

    2014-01-01

    Microwave backscatter from vegetated surfaces is influenced by vegetation structure and vegetation water content (VWC), which varies with meteorological conditions and moisture in the root zone. Radar backscatter observations are used for many vegetation and soil moisture monitoring applications und

  5. Response of Thematic Mapper bands to plant water stress

    Science.gov (United States)

    Cibula, W. G.; Zetka, E. F.; Rickman, D. L.

    1992-01-01

    Changes in leaf reflectance as water content decreases have been hypothesized to occur in the 1.55-1.75 and 2.08-2.35 micron wavelength regions. To evaluate this hypothesis, studies were conducted on ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L.), which were grown in a controlled, outdoor situation. Both fully-watered control beds and water-stressed beds were periodically examined with a spectroradiometer calibrated against a reflectance reference of polytetrafluoroethylene. The observed changes correspond to those predicted by stochastic leaf models employed by other investigators (leaf reflection increases in the 1.55-1.75 micron region as leaf water content decreases). Although the percentage changes in TM bands 1-3 are nearly as great as those found in TM bands 5 and 7, the absolute values of reflectance change are much lower. It is believed that these patterns are probably characteristic of a broad range of vegetation types. In terms of phenomena detection, these patterns should be considered in any practical remote sensing sensor scenario.

  6. Ultrastructural and physiological changes induced by different stress conditions on the human parasite Trypanosoma cruzi.

    Science.gov (United States)

    Pérez-Morales, Deyanira; Hernández, Karla Daniela Rodríguez; Martínez, Ignacio; Agredano-Moreno, Lourdes Teresa; Jiménez-García, Luis Felipe; Espinoza, Bertha

    2017-01-01

    Trypanosoma cruzi is the etiological agent of Chagas disease. The life cycle of this protozoan parasite is digenetic because it alternates its different developmental forms through two hosts, a vector insect and a vertebrate host. As a result, the parasites are exposed to sudden and drastic environmental changes causing cellular stress. The stress response to some types of stress has been studied in T. cruzi, mainly at the molecular level; however, data about ultrastructure and physiological state of the cells in stress conditions are scarce or null. In this work, we analyzed the morphological, ultrastructural, and physiological changes produced on T. cruzi epimastigotes when they were exposed to acid, nutritional, heat, and oxidative stress. Clear morphological changes were observed, but the physiological conditions varied depending on the type of stress. The maintenance of the physiological state was severely affected by heat shock, acidic, nutritional, and oxidative stress. According to the surprising observed growth recovery after damage by stress alterations, different adaptations from the parasite to these harsh conditions were suggested. Particular cellular death pathways are discussed.

  7. Evaluation of some advanced wheat lines (F7 in normal and drought stress conditions

    Directory of Open Access Journals (Sweden)

    R. Nikseresht

    2016-05-01

    Full Text Available For assessment of drought stress effects on agro characteristics of 30 lines and 6 wheat cultivars and for introducing of drought tolerant and susceptible ones one trial were established using split plot base of randomized complete block design with two replications, main plots were stress and non-stress condition and sub plots contain 30 lines and six wheat cultivars in the check trial, irrigation the farm was done with the normal regime, but in stress trial for germination of seeds and one irrigation in Isfand to the end of rooting the farm was irrigated. Within and end of growth season we measured some agronomic and morphological characters such as yield and its component, height, peduncle length, and etc. Responses of cultivars under stress and non-stress conditions were' different, for example drought stress reduced yield. In spite of this general yield reducing, we found some line, such as 2, 29, 23 had relatively high yield (in tree levels. In order to final evaluate using Factor Analysis, Principal Component, Cluster Analysis .Factor Analysis indicated that four important factors accounted for about 80.245 and 79.624 percent of the total variation among traits in normal and drought stress conditions. With cluster analysis of 36 lines and cultivar using Ward procedure based on Euclidean distance were grouped in 4 distance cluster.

  8. Comparative leaf proteomics of drought-tolerant and-susceptible peanut in response to water stress

    Science.gov (United States)

    Water stress (WS) predisposes peanut plants to fungal infection resulting in pre-harvest aflatoxin contamination. Major changes during water stress including oxidative stress, lead to destruction of photosynthetic apparatus and other macromolecules within cells. Two peanut cultivars with diverse dro...

  9. Living under stressful conditions: Fish life history strategies across environmental gradients in estuaries

    Science.gov (United States)

    Teichert, Nils; Pasquaud, Stéphanie; Borja, Angel; Chust, Guillem; Uriarte, Ainhize; Lepage, Mario

    2017-03-01

    The life history strategies of fishes can be defined by specific combinations of demographic traits that influence species performances depending on environmental features. Hence, the constraints imposed by the local conditions restrict the range of successful strategies by excluding species poorly adapted. In the present study, we compared the demographic strategies of fish caught in 47 estuaries of the North East Atlantic coast, aiming to determine the specific attributes of resident species and test for changes in trait associations along the environmental gradients. Eight demographic traits were considered to project our findings within a conceptual triangular model, composed on three endpoint strategies: (i) periodic (large size, long generation time, high fecundity); (ii) opportunistic (small size, short generation time, high reproductive effort); and (iii) equilibrium (low fecundity, large egg size, parental care). We demonstrated that various life history strategies co-exist in estuaries, but equilibrium species were scarce and restricted to euhaline open-water. Resident species form a specialised assemblage adapted to high spatiotemporal variability of estuarine conditions, i.e. opportunistic attributes associated with parental care. Even with these singular attributes, our findings revealed changes in distribution of resident species across the estuarine gradients linked to their life history traits. Among other patterns, the diversity of life history strategies significantly decreased from euhaline to oligohaline areas and along gradient of human disturbances. These trends were associated with a convergence of species traits toward short generation times, suggesting that long-lived species with late maturation are more severely impacted by disturbance and environmental stress.

  10. Evidence for a role of claudin 2 as a proximal tubular stress responsive paracellular water channel

    Energy Technology Data Exchange (ETDEWEB)

    Wilmes, Anja, E-mail: Anja.Wilmes@i-med.ac.at; Aschauer, Lydia; Limonciel, Alice; Pfaller, Walter; Jennings, Paul

    2014-09-01

    Claudins are the major proteins of the tight junctions and the composition of claudin subtypes is decisive for the selective permeability of the paracellular route and thus tissue specific function. Their regulation is complex and subject to interference by several factors, including oxidative stress. Here we show that exposure of cultured human proximal tubule cells (RPTEC/TERT1) to the immunosuppressive drug cyclosporine A (CsA) induces an increase in transepithelial electrical resistance (TEER), a decrease in dome formation (on solid growth supports) and a decrease in water transport (on microporous growth supports). In addition, CsA induced a dramatic decrease in the mRNA for the pore forming claudins -2 and -10, and the main subunits of the Na{sup +}/K{sup +} ATPase. Knock down of claudin 2 by shRNA had no discernable effect on TEER or dome formation but severely attenuated apical to basolateral water reabsorption when cultured on microporous filters. Generation of an osmotic gradient in the basolateral compartment rescued water transport in claudin 2 knock down cells. Inhibition of Na{sup +}/K{sup +} ATPase with ouabain prevented dome formation in both cell types. Taken together these results provide strong evidence that dome formation is primarily due to transcellular water transport following a solute osmotic gradient. However, in RPTEC/TERT1 cells cultured on filters under iso-osmotic conditions, water transport is primarily paracellular, most likely due to local increases in osmolarity in the intercellular space. In conclusion, this study provides strong evidence that claudin 2 is involved in paracellular water transport and that claudin 2 expression is sensitive to compound induced cellular stress. - Highlights: • Cyclosporine A increased TEER and decreased water transport in RPTEC/TERT1 cells. • Claudins 2 and 10 were decreased in response to cyclosporine A. • Knock down of claudin 2 inhibited water transport in proximal tubular cells. • We

  11. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions.

    Science.gov (United States)

    Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Park, Hyeyoung; Jeon, Hyo Seon; Kim, Han Byul; Jeon, Beom S; Park, Kwang Suk

    2016-03-15

    Tremor characteristics-amplitude and frequency components-are primary quantitative clinical factors for diagnosis and monitoring of tremors. Few studies have investigated how different patient's conditions affect tremor frequency characteristics in Parkinson's disease (PD). Here, we analyzed tremor characteristics under resting-state and stress-state conditions. Tremor was recorded using an accelerometer on the finger, under resting-state and stress-state (calculation task) conditions, during rest tremor and postural tremor. The changes of peak power, peak frequency, mean frequency, and distribution of power spectral density (PSD) of tremor were evaluated across conditions. Patients whose tremors were considered more than "mild" were selected, for both rest (n=67) and postural (n=25) tremor. Stress resulted in both greater peak powers and higher peak frequencies for rest tremor (pcharacteristics, namely a lower frequency as amplitude increases, are different in stressful condition. Patient's conditions directly affect neural oscillations related to tremor frequencies. Therefore, tremor characteristics in PD should be systematically standardized across patient's conditions such as attention and stress levels.

  12. Microbiological composition of untreated water during different weather conditions

    Directory of Open Access Journals (Sweden)

    Adna Bešić

    2011-09-01

    Full Text Available Introduction: Water can support the growth of different microorganisms which may result in contamination. Therefore, the microbiological examination is required for testing the hygienic probity of water. In the study of microbial composition of untreated, natural spring and mineral water differences in the presence and number of bacteria during the two periods, winter and summer, are detectable.Methods: In our study, we analyzed and compared the following parameters, specified in the Rulebook: total bacteria and total aerobic bacteria (ml/22 and 37°C, total Coliform bacteria and Coliforms of fecalorigin (MPN/100ml, fecal streptococci as Streptococcus faecalis  (MPN/100ml, Proteus spp (MPN/100ml, and Pseudomonas aeruginosa (MPN/100 ml Sulphoreducing Clostridia (cfu / ml. The paper is a retrospective study in which we processed data related to the period of 2005-2009 year. While working, we used the descriptive-analytical comparative statistical treatment.Results: The obtained results show statistically significant differences in the microbial composition of untreated water in the two observed periods,Conclusions: Findings were consequence of different weather conditions in these periods, which imply a number of other variable factors.

  13. Effect of phosphate solubilizing microorganisms on quantitative and qualitative characteristics of maize (Zea mays L.) under water deficit stress.

    Science.gov (United States)

    Ehteshami, S M R; Aghaalikhani, M; Khavazi, K; Chaichi, M R

    2007-10-15

    The effect of seed inoculation by phosphate solubilizing microorganisms on growth, yield and nutrient uptake of maize (Zea mays L. SC. 704) was studied in a field experiment. Positive effect on plant growth, nutrient uptake, grain yield and yield components in maize plants was recorded in the treatment receiving mixed inoculum of Glomus intraradices (AM) and Pseudomonas fluorescens (Pf). Co-inoculation treatment significantly increased grain yield, yield components, harvest index, grain N and P, soil available P, root colonization percentage and crop WUE under water deficit stress. In some of investigated characteristics under well-watered conditions, chemical fertilizer treatment was higher than double inoculated treatments, but this difference was not significant. Seed inoculation only with AM positively affected the measured parameters as amount as co-inoculated treatments. According to the results showed in contrast to the inoculated treatments with AM+Pf and AM, the application of alone Pf caused a comparatively poor response. Therefore, this microorganism needs to a complement for its activity in soil. All of measured parameters in inoculated treatments were higher than uninoculated treatments under water deficit stress conditions. Furthermore, the investigated characteristics of co-inoculated plants under severe water deficit stress conditions were significantly lower than co-inoculated plants under well-watered and moderate-stressed conditions. Therefore it could be stated, these microorganisms need more time to fix and establishing themselves in soil. The present finding showed that phosphate-solubilizing microorganisms can interact positively in promoting plant growth as well as P uptake of maize plants, leading to plant tolerance improving under water deficit stress conditions.

  14. Evaluation Physiological Characteristics and Grain Yield Canola Cultivars under end Seasonal Drought Stress in Weather Condition of Ahvaz

    Directory of Open Access Journals (Sweden)

    A Seyed Ahmadi

    2015-07-01

    Full Text Available To evaluate canola cultivars response to physiological characteristics and grain yield end seasonal drought stress in weather condition of Ahvaz, farm experiments were done at research farm of Khuzestan agriculture and natural resources center. During 2007-2008 and 2008-2009 crop years. Farm test comprised drought stress was done as split plot form with randomize complete block design with four replication, treatments consist of drought stress (main factor including 50, 60 and 70 percent of water use content, which was applied from early heading stage until physiological maturity, and three spring canola cultivar including Shirali, Hayola 401 and R.G.S. were considered as sub plots. Measurements include biological yield, grain yield, harvesting index, number of pod per plant 1000 grain weight, number of grain in pod, plant height, and stem diameter, oil and protein percentage. Results showed that drought stress reduced significantly grain yield, biological yield, harvest index and the average of reduction of them during 2 years for per unit reduce moisture from 50% to 70% were 2, 1.35, and 0.81 percent, respectively. During two years, 1000 grain weight, number of pods per plant and number of grain per pod reduced 27, 36 and 20 percent, respectively. Terminal Drought stress reduced significantly plant height, stem diameter, stem number per plant and pod length, this reduced were 12, 46, 36 and 14 percent, respectively. Stem diameter, and stem number per plant reduced more than other characteristics. In this study oil grain decreased 12 % and protein grain increased 18.5% but oil and protein yield decreased 44.9% and 27.1% respectively..Finally, in weather condition of Khuzestan, terminal drought stress on February and March in which has simultaneous with early flowering stage and filling seed, significantly, reduced yield and compounded yield and affects on stem growth and qualities oil and protein negatively. Therefore, with irrigation

  15. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some

  16. Sea/Lake Water Air Conditioning at Naval Facilities.

    Science.gov (United States)

    1980-05-01

    r-AO89 262 CIVIL ENGINEERING LAS (NAVY) PONT HUJENEME CA F/6 13/1 SEA/LAKF WATER AIR CONDITIONING AT N4AVAL FACILITIES.u MAY S0 .J B CIAN...AROICC. Brooklyn NY: CO; C’ode (NP (LCDR ATJ Stewart): C’ode 10)28. RDT&ELO. Philadelphia PA: Code III (Castranovo) Philadelphia. PA: Design Div. (R...Governor’s Council On Energy) NEW MEXICO SOLAR ENERGY INST. Dr. Zwibcl Las Cruces NM NY CITY COMMUNITY COLLEGE BROOKLYN , NY (LIBRARY) NYS ENERGY OFFICE

  17. Degradation of toxaphene in water during anaerobic and aerobic conditions.

    Science.gov (United States)

    LacayoR, M; van Bavel, B; Mattiasson, B

    2004-08-01

    The degradation of technical toxaphene in water with two kinds of bioreactors operating in sequence was studied. One packed bed reactor was filled with Poraver (foam glass particles) running at anaerobic conditions and one suspended carrier biofilm reactor working aerobically. Chemical oxygen demand (COD), chloride, sulphate, pH, dissolved oxygen, total toxaphene and specific toxaphene isomers were measured. After 6 weeks approx. 87% of the total toxaphene was degraded reaching 98% by week 39. The majority of the conversion took place in the anaerobic reactor. The concentrations of toxaphene isomers with more chlorine substituents decreased more rapidly than for isomers with less chlorine substituents.

  18. Infrared Thermometry to Estimate Crop Water Stress Index and Water Use of Irrigated Maize in Northeastern Colorado

    Directory of Open Access Journals (Sweden)

    Neil C. Hansen

    2012-11-01

    Full Text Available With an increasing demand of fresh water resources in arid/semi-arid parts of the world, researchers and practitioners are relying more than ever on remote sensing techniques for monitoring and evaluating crop water status and for estimating crop water use or crop actual evapotranspiration (ETa. In this present study, infrared thermometry was used in conjunction with a few weather parameters to develop non-water-stressed and non-transpiring baselines for irrigated maize in a semi-arid region of Colorado in the western USA. A remote sensing-based Crop Water Stress Index (CWSI was then estimated for four hourly periods each day during 5 August to 2 September 2011 (29 days. The estimated CWSI was smallest during the 10:00–11:00 a.m. and largest during the 12:00–13:00 p.m. hours. Plotting volumetric water content of the topsoil vs. CWSI revealed that there is a high correlation between the two parameters during the analyzed period. CWSI values were also used to estimate maize actual transpiration (Ta. Ta estimates were more influenced by crop biomass rather than irrigation depths alone, mainly due to the fact that the effects of deficit irrigation were largely masked by the significant precipitation during the growing season. During the study period, applying an independent remotely sensed energy balance model showed that maize ETa was 159 mm, 30% larger than CWSI-Ta (122 mm and 9% smaller than standard-condition maize ET (174 mm.

  19. Conditioned stress prevents cue-primed cocaine reinstatement only in stress-responsive rats.

    Science.gov (United States)

    Hadad, Natalie A; Wu, Lizhen; Hiller, Helmut; Krause, Eric G; Schwendt, Marek; Knackstedt, Lori A

    2016-07-01

    Neurobiological mechanisms underlying comorbid posttraumatic stress disorder (PTSD) and cocaine use disorder (CUD) are unknown. We aimed to develop an animal model of PTSD + CUD to examine the neurobiology underlying cocaine-seeking in the presence of PTSD comorbidity. Rats were exposed to cat urine once for 10-minutes and tested for anxiety-like behaviors one week later. Subsequently, rats underwent long-access (LgA) cocaine self-administration and extinction training. Rats were re-exposed to the trauma context and then immediately tested for cue-primed reinstatement of cocaine-seeking. Plasma and brains were collected afterwards for corticosterone assays and real-time qPCR analysis. Urine-exposed (UE; n = 23) and controls not exposed to urine (Ctrl; n = 11) did not differ in elevated plus maze behavior, but UE rats displayed significantly reduced habituation of the acoustic startle response (ASR) relative to Ctrl rats. A median split of ASR habituation scores was used to classify stress-responsive rats. UE rats (n = 10) self-administered more cocaine on Day 1 of LgA than control rats (Ctrl + Coc; n = 8). Re-exposure to the trauma context prevented cocaine reinstatement only in stress-responsive rats. Ctrl + Coc rats had lower plasma corticosterone concentrations than Ctrls, and decreased gene expression of corticotropin releasing hormone (CRH) and Glcci1 in the hippocampus. Rats that self-administered cocaine displayed greater CRH expression in the amygdala that was independent of urine exposure. While we did not find that cat urine exposure induced a PTSD-like phenotype in our rats, the present study underscores the need to separate stressed rats into cohorts based on anxiety-like behavior in order to study individual vulnerability to PTSD + CUD.

  20. Modelling the spectral response of the desert tree Prosopis tamarugo to water stress

    Science.gov (United States)

    Chávez, R. O.; Clevers, J. G. P. W.; Herold, M.; Ortiz, M.; Acevedo, E.

    2013-04-01

    In this paper, we carried out a laboratory experiment to study changes in canopy reflectance of Tamarugo plants under controlled water stress. Tamarugo (Prosopis tamarugo Phil.) is an endemic and endangered tree species adapted to the hyper-arid conditions of the Atacama Desert, Northern Chile. Observed variation in reflectance during the day (due to leaf movements) as well as changes over the experimental period (due to water stress) were successfully modelled by using the Soil-Leaf-Canopy (SLC) radiative transfer model. Empirical canopy reflectance changes were mostly explained by the parameters leaf area index (LAI), leaf inclination distribution function (LIDF) and equivalent water thickness (EWT) as shown by the SLC simulations. Diurnal leaf movements observed in Tamarugo plants (as adaptation to decrease direct solar irradiation at the hottest time of the day) had an important effect on canopy reflectance and were explained by the LIDF parameter. The results suggest that remote sensing based assessment of this desert tree should consider LAI and canopy water content (CWC) as water stress indicators. Consequently, we tested fifteen different vegetation indices and spectral absorption features proposed in literature for detecting changes of LAI and CWC, considering the effect of LIDF variations. A sensitivity analysis was carried out using SLC simulations with a broad range of LAI, LIDF and EWT values. The Water Index was the most sensitive remote sensing feature for estimating CWC for values less than 0.036 g/cm2, while the area under the curve for the spectral range 910-1070 nm was most sensitive for values higher than 0.036 g/cm2. The red-edge chlorophyll index (CIred-edge) performed the best for estimating LAI. Diurnal leaf movements had an effect on all remote sensing features tested, particularly on those for detecting changes in CWC.

  1. Evaluation and Genetic Polymorphism studies of Jatropha (Jatropha curcus for Water Stress Tolerance

    Directory of Open Access Journals (Sweden)

    Borse Tushar

    2010-05-01

    Full Text Available Jatropha (Jatropha curcus is an alternative resource for biodiesel. To boost the rural economy in sustainable manner it is estimated that 30 Million hector plantation may replace current use of fossil fuel. Although Jatropha has an inbuilt ability to grow under water limited conditions, scanty information is available about natural genetic variation for water stress tolerance. Three local genotypes from Pune district were collected and initially screened by imparting artificial stress using PEG – 6000. Seedlings were subjected to increasing concentration of PEG – 6000 (30, 60, 90, 120 and 150 gm/l to study effect on growth parameters.The root growth, number of secondary roots, true leaf expansion at morphological level and palisade mesophyll height, xylem vessel expansion at anatomical level showed drastic negative impact as compared to control. It is worth to note that local germplasm performance was categorized into susceptible group as compared to tolerant genotype [Chattisgadh Selection] indicating need for genetic improvement. These genotypes were further studied at molecular level with RAPD and ISSR markers to amplify genetic variation. Polymorphic bands from Chattisgadh selection genotype are being evaluated for their usefulness as markers for water stress tolerance.

  2. Initial development and chemical components of sugarcane under water stress associated with arbuscular mycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Carmem C. M. de Sousa

    2015-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the effects of water stress levels in the soil and a mix (or: a mixed inoculum of four species: Claroideoglomus etunicatum, Gigasporas rosea, Acaulospora longula, Fuscutata heterogama of arbuscular mycorrhizal fungi (AMF on initial vegetative growth, fresh and dry biomass production, root colonization, phosphorus, proteins, enzymes and amino acid of the sugarcane variety RB 857515 under greenhouse conditions. The experiment was set in a randomized block design in a 2 x 2 factorial scheme with four treatments (T1 - 50% PC - pot capacity, with AMF; T2 - 100% PC with AMF; T3 - 50% PC without AMF; T4 - 100% PC without AMF with 16 replicates. The water stress level of 50% PC decreased stem diameter and shoot and root fresh weight of sugarcane plants, as well as AMF in the soil and in plant roots. However, AMF and the water stress level of 50% PC, separately or combined, did not affect plant height, number of leaves, dry matter and contents of phosphorus, total soluble proteins, catalase, ascorbate peroxidase, polyphenoloxidase, peroxidase and proline of the sugarcane variety RB857515.

  3. Evaluation and Bulked Segregant Analysis of Major Yield QTL qtl12.1 Introgressed into Indigenous Elite Line for Low Water Availability under Water Stress

    Institute of Scientific and Technical Information of China (English)

    N.Manikanda BOOPATHI; Gat SWAPNASHRI; P.KAVITHA; S.SATHISH; R.NITHYA; Wickneswari RATNAM; Arvind KUMAR

    2013-01-01

    Near isogenic lines carrying large-effect QTL (qtl12.1),which has a consistent influence on grain yield under upland drought stress conditions in a wide range of environments,were evaluated under water stress in the fields.The line which gave higher yield under drought was crossed with a local elite line,PMK3,and forwarded to F2:3 generation.Significant variation was found among the F2:3 lines for agronomic traits under water stress in the fields.Low to high broad sense heritability (H) for investigated traits was also found.Water stress indicators such as leaf rolling and leaf drying were negatively correlated with plant height,biomass and grain yield under stress.Bulked segregant analysis (BSA) was performed with the markers in the vicinity of qtl12.1,and RM27933 was found to be segregated perfectly well in individual components of drought resistant and drought susceptible bulks which were bulked based on yield under water stress among F2:3 lines.Hence,this simple and breeder friendly marker,RM27933,may be useful as a potentially valuable candidate marker for the transfer of the QTL qtl12.1 in the regional breeding program.Bioinformatic analysis of the DNA sequence of the qtl12.1 region was also done to identify and analyze positional candidate genes associated with this QTL and to ascertain the putative molecular basis of qtl12.1.

  4. Early developmental conditions affect stress response in juvenile but not in adult house sparrows (Passer domesticus).

    Science.gov (United States)

    Lendvai, Adám Z; Loiseau, Claire; Sorci, Gabriele; Chastel, Olivier

    2009-01-01

    The short- and long-term consequences of developmental conditions on fitness have received growing attention because the environmental conditions during early life may influence growth, condition at independence, recruitment, reproductive success or survival. We tested here, in a natural house sparrow population, if early conditions during nestling stage affected the stress response of the birds (i) shortly after fledging and (ii) next year, during their first breeding. We experimentally manipulated brood size to mimic different rearing conditions, creating reduced (-2 chicks) and enlarged broods (+2 chicks), while in a third group brood size was not manipulated. Nestling nutrition state decreased with post-manipulation brood sizes as indicated by lower body mass. Fledglings with higher body mass at the age of ten days showed lower stress response than birds that were leaner at the same age. Fledglings reared in large broods showed a higher response to stress protocol than chicks from small broods, and this effect was in significant interaction with the age of fledglings at capture. This interaction indicates that the effects of the brood size became gradually smaller as the fledglings grew older and were further from their nestling period. The effects of early conditions vanished by the next year: the stress response of adult first time breeders was unrelated to the brood size they fledged from. These results suggest that stress response may reflect the actual state of an individual, rather than its developmental history.

  5. The Stimulating Effects of Rewatering on Leaf Area of Winter Wheat Suffering Water Stress

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-ying; LUO Yuan-pei; SHI Yuan-chun

    2002-01-01

    After water stress at various levels and durations at different growth stages, rewatering could greatly stimulate the leaf area development of winter wheat. The results showed that the stimulation effect changed with water stress time, degree and duration. Rewatering under earlier stress had greater stimulation effect on leaf area than that under later stress. Higher stimulation effect was observed under severe water stress than that under moderate stress. Longer duration of stress resulted in low stimulation effect. In spite of the greater stimulation effect under severe and longer stress, the final leaf area in these situations was lower than that under moderate stress and shorter duration. Whenever the stress occurred, the stimulating effect was due to the increase of the leaf area of the tillers. Once the leaf on the main stem emerged during stress period,rewatering had no effect on its size, and consequently its leaf area. The stimulation of rewateirng on leaf area contributed to the final grain yield by 45% under moderate stress, and 67% under severe stress. Although the stimulation partly compensated for the loss during stress, the final leaf area and the grain yield could not reach the level without water stress.

  6. Acute immobilization stress following contextual fear conditioning reduces fear memory: timing is essential.

    Science.gov (United States)

    Uwaya, Akemi; Lee, Hyunjin; Park, Jonghyuk; Lee, Hosung; Muto, Junko; Nakajima, Sanae; Ohta, Shigeo; Mikami, Toshio

    2016-02-24

    Histone acetylation is regulated in response to stress and plays an important role in learning and memory. Chronic stress is known to deteriorate cognition, whereas acute stress facilitates memory formation. However, whether acute stress facilitates memory formation when it is applied after fear stimulation is not yet known. Therefore, this study aimed to investigate the effect of acute stress applied after fear training on memory formation, mRNA expression of brain-derived neurotrophic factor (BDNF), epigenetic regulation of BDNF expression, and corticosterone level in mice in vivo. Mice were subjected to acute immobilization stress for 30 min at 60 or 90 min after contextual fear conditioning training, and acetylation of histone 3 at lysine 14 (H3K14) and level of corticosterone were measured using western blot analysis and enzyme-linked immunosorbent assay (ELISA), respectively. A freezing behavior test was performed 24 h after training, and mRNA expression of BDNF was measured using real-time polymerase chain reactions. Different groups of mice were used for each test. Freezing behavior significantly decreased with the down-regulation of BDNF mRNA expression caused by acute immobilization stress at 60 min after fear conditioning training owing to the reduction of H3K14 acetylation. However, BDNF mRNA expression and H3K14 acetylation were not reduced in animals subjected to immobilization stress at 90 min after the training. Further, the corticosterone level was significantly high in mice subjected to immobilization stress at 60 min after the training. Acute immobilization stress for 30 min at 60 min after fear conditioning training impaired memory formation and reduced BDNF mRNA expression and H3K14 acetylation in the hippocampus of mice owing to the high level of corticosterone.

  7. Effects of Stress and Sex on Acquisition and Consolidation of Human Fear Conditioning

    Science.gov (United States)

    Kuhn, Cynthia M.; LaBar, Kevin S.; Zorawski, Michael; Blanding, Nineequa Q.

    2006-01-01

    We examined the relationship between stress hormone (cortisol) release and acquisition and consolidation of conditioned fear learning in healthy adults. Participants underwent acquisition of differential fear conditioning, and consolidation was assessed in a 24-h delayed extinction test. The acquisition phase was immediately followed by an 11-min…

  8. A theoretical model of virtual water trade under increasing water scarcity conditions

    Science.gov (United States)

    de Vos, Lotte; Pande, Saket

    2016-04-01

    This paper proposes a virtual water trade model to obtain a better understanding of how hydro-climatic change affects societies through changes in virtual water trade. In previous studies it has been shown that global trade patterns can be influenced by water scarcity and vice-versa. The extent to which this relationship holds is still a topic under discussion. With the model introduced in this paper, the dynamics behind these trade patterns are further explored. First, a model is constructed of a society suffering from an increase in water scarcity. This model is shown to be capable of replicating patterns of technological, population, production and consumption per capita changes. In order to incorporate the effects of globalization and trade, the model has been extended to a toy model of virtual water trade between two societies. The two societies are represented by overlapping generations models. The individuals of each generation provide the labour needed for the production of the composite goods. In addition to this labour, water and technology are also incorporated as factors of production. There are two goods being produced; one is labour intensive and the other water intensive. Trade emerges from the principle of comparative advantage, with differences in labour-abundance and water resources availability between the two societies. Using this model of two societies interconnected by trade, it is examined how trade of water-intensive commodities alters under changing scarcity conditions. In particular we explore the conditions under which trade emerges, and to what extent. Furthermore, we present the conditions for the sustainable development within these two societies.

  9. Examining adaptations to water stress among farming households in Sri Lanka's dry zone.

    Science.gov (United States)

    Williams, Nicholas E; Carrico, Amanda

    2017-02-16

    Climate change is increasing water scarcity in Sri Lanka. Whether these changes will undermine national-level food security depends upon the ability of the small-scale farmers that dominate rice production and the institutions that support them to overcome the challenges presented by changing water availability. Analyzing household survey data, this research identifies household, institutional, and agroecological factors that influence how water-stressed farmers are working to adapt to changing conditions and how the strategies they employ impact rice yields. Paralleling studies conducted elsewhere, we identified institutional factors as particularly relevant in farmer adaptation decisions. Notably, our research identified farmers' use of hybrid seed varietals as the only local climate adaptation strategy to positively correlate with farmers' rice yields. These findings provide insight into additional factors pertinent to successful agricultural adaptation and offer encouraging evidence for policies that promote plant breeding and distribution in Sri Lanka as a means to buffer the food system to climate change-exacerbated drought.

  10. Literature Survey on the Stress Corrosion Cracking of Low-Alloy Steels in High Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P

    2002-02-01

    The present report is a summary of a literature survey on the stress corrosion cracking (SCC) behaviour/ mechanisms in low-alloy steels (LAS) in high-temperature water with special emphasis to primary-pressure-boundary components of boiling water reactors (BWR). A brief overview on the current state of knowledge concerning SCC of low-alloy reactor pressure vessel and piping steels under BWR conditions is given. After a short introduction on general aspects of SCC, the main influence parameter and available quantitative literature data concerning SCC of LAS in high-temperature water are discussed on a phenomenological basis followed by a summary of the most popular SCC models for this corrosion system. The BWR operating experience and service cracking incidents are discussed with respect to the existing laboratory data and background knowledge. Finally, the most important open questions and topics for further experimental investigations are outlined. (author)

  11. Stress corrosion cracking behavior of annealed and cold worked 316L stainless steel in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Sáez-Maderuelo, A., E-mail: alberto.saez@ciemat.es; Gómez-Briceño, D.

    2016-10-15

    Highlights: • The alloy 316L is susceptible to stress corrosion cracking in supercritical water. • The susceptibility of alloy 316L increases with temperature and plastic deformation. • Dynamic strain ageing processes may be active in the material. - Abstract: The supercritical water reactor (SCWR) is one of the more promising designs considered by the Generation IV International Forum due to its high thermal efficiency and improving security. To build this reactor, standardized structural materials used in light water reactors (LWR), like austenitic stainless steels, have been proposed. These kind of materials have shown an optimum behavior to stress corrosion cracking (SCC) under LWR conditions except when they are cold worked. It is known that physicochemical properties of water change sharply with pressure and temperature inside of the supercritical region. Owing to this situation, there are several doubts about the behavior of candidate materials like austenitic stainless steel 316L to SCC in the SCWR conditions. In this work, alloy 316L was studied in deaerated SCW at two different temperatures (400 °C and 500 °C) and at 25 MPa in order to determine how changes in this variable influence the resistance of this material to SCC. The influence of plastic deformation in the behavior of alloy 316L to SCC in SCW was also studied at both temperatures. Results obtained from these tests have shown that alloy 316L is susceptible to SCC in supercritical water reactor conditions where the susceptibility of this alloy increases with temperature. Moreover, prior plastic deformation of 316L SS increased its susceptibility to environmental cracking in SCW.

  12. Leaf Water Relations and Net Gas Exchange Responses of Salinized Carrizo Citrange Seedlings during Drought Stress and Recovery

    Science.gov (United States)

    Pérez-Pérez, J. G.; Syvertsen, J. P.; Botía, P.; García-Sánchez, F.

    2007-01-01

    Background and Aims Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis × Poncirus trifoliata. Methods Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl− and Na+ were measured. Key Results Salinity increased leaf Cl− and Na+ concentrations and decreased osmotic potential (Ψπ) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO2 assimilation rate (ACO2) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower ACO2 was related to low RWC, whereas in salinized plants decreased ACO2 was related to high levels of leaf Cl− and Na+. ACO2 recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl−, Na+ and quaternary ammonium compounds after recovery. High leaf levels of Cl− and Na+ after recovery apparently came from the roots

  13. NMR Study of Water Distribution inside Tomato Cells: Effects of Water Stress

    OpenAIRE

    Musse, M.; Cambert, M.; Mariette, F.

    2010-01-01

    Tomato pericarp tissue was studied by low-field nuclear magnetic res-onance (NMR) relaxometry. Two kinds of experiments were performed to inves-tigate the correlation between multi-exponential NMR relaxation and the subcellular compartments. The longitudinal (T 1 ) versus transverse (T 2 ) relaxation times were first measured on fresh samples and then the transverse relaxation time was measured on samples exposed to water stress. Four signal components were found in all experiments. The resul...

  14. Hydrologic conditions, recharge, and baseline water quality of the surficial aquifer system at Jekyll Island, Georgia, 2012-13

    Science.gov (United States)

    Gordon, Debbie W.; Torak, Lynn J.

    2016-03-08

    An increase of groundwater withdrawals from the surficial aquifer system on Jekyll Island, Georgia, prompted an investigation of hydrologic conditions and water quality by the U.S. Geological Survey during October 2012 through December 2013. The study demonstrated the importance of rainfall as the island’s main source of recharge to maintain freshwater resources by replenishing the water table from the effects of hydrologic stresses, primarily evapotranspiration and pumping. Groundwater-flow directions, recharge, and water quality of the water-table zone on the island were investigated by installing 26 shallow wells and three pond staff gages to monitor groundwater levels and water quality in the water-table zone. Climatic data from Brunswick, Georgia, were used to calculate potential maximum recharge to the water-table zone on Jekyll Island. A weather station located on the island provided only precipitation data. Additional meteorological data from the island would enhance potential evapotranspiration estimates for recharge calculations.

  15. The Effect of Water Stress on the Gas Exchange Parameters, Productivity and Seed Health of Buckwheat (Fagopyrum esculentum Moench

    Directory of Open Access Journals (Sweden)

    Agnieszka Pszczółkowska

    2012-12-01

    Full Text Available The present pot experiment studied the effect of different soil moisture contents (60 - 70% CWC (capillary water capacity - control; 30 - 35% CWC - water stress on buckwheat productivity, the gas exchange parameters and health of buckwheat nuts. It was found that water deficit affected adversely certain biometric features investigated (plant height, number of nuts per cluster and caused a decrease in seed weight per plant. It was also shown that water stress reduced the values of the investigated gas exchange parameters (photosynthesis rate, transpiration rate, intercellular-space CO2 concentration, and stomatal conductance relative to the control treatment. Different soil moisture contents did not have a clear effect on fungal colonization of seeds. The multiplex PCR assays did not enable the detection of the genes responsible for mycotoxin synthesis. Under water deficit conditions, an increase was found in the content of albumin and globulin fractions as well as of glutelin fractions.

  16. Physiological Traits Associated with Wheat Yield Potential and Performance under Water-Stress in a Mediterranean Environment

    Science.gov (United States)

    del Pozo, Alejandro; Yáñez, Alejandra; Matus, Iván A.; Tapia, Gerardo; Castillo, Dalma; Sanchez-Jardón, Laura; Araus, José L.

    2016-01-01

    Different physiological traits have been proposed as key traits associated with yield potential as well as performance under water stress. The aim of this paper is to examine the genotypic variability of leaf chlorophyll, stem water-soluble carbohydrate content and carbon isotope discrimination (Δ13C), and their relationship with grain yield (GY) and other agronomical traits, under contrasting water conditions in a Mediterranean environment. The study was performed on a large collection of 384 wheat genotypes grown under water stress (WS, rainfed), mild water stress (MWS, deficit irrigation), and full irrigation (FI). The average GY of two growing seasons was 2.4, 4.8, and 8.9 Mg ha−1 under WS, MWS, and FI, respectively. Chlorophyll content at anthesis was positively correlated with GY (except under FI in 2011) and the agronomical components kernels per spike (KS) and thousand kernel weight (TKW). The WSC content at anthesis (WSCCa) was negatively correlated with spikes per square meter (SM2), but positively correlated with KS and TKW under WS and FI conditions. As a consequence, the relationships between WSCCa with GY were low or not significant. Therefore, selecting for high stem WSC would not necessary lead to genotypes of GY potential. The relationship between Δ13C and GY was positive under FI and MWS but negative under severe WS (in 2011), indicating higher water use under yield potential and MWS conditions. PMID:27458470

  17. Sustainable water use and management options in a water-stressed river basin in Kenya

    Science.gov (United States)

    Hirpa, Feyera; Dadson, Simon; Dyer, Ellen; Barbour, Emily; Charles, Katrina; Hope, Robert

    2017-04-01

    Sustainable water resource is critical for maintaining healthy ecosystems and supporting socio-economic sectors. Hydro-climatic change and variability, population growth as well as new infrastructure developments create water security risks. Therefore, evidence-based management decisions are necessary to improve water security and meet the future water demands of multiple competing sectors. In this work we perform water resource modelling in order to investigate the impact of increasing water demand (expanding agriculture, booming industry, growing population) on the sustainable water use in Turkwel river basin, located in arid north-western Kenya. We test different management options to determine those that meet the water demands of the concerned sectors whilst minimising environmental impact. We perform scenario analysis using Water Evaluation And Planning (WEAP) model to explore different ranges of climate conditions, population growth rates, irrigation scale, reservoir operations, and economic development. The results can be used as a scientific guideline for the policy makers who decide the alternative management options that ensure the sustainable water use in the basin. The work is part of the REACH - improving water security for the poor program (http://reachwater.org.uk/), aiming to support a pathway to sustainable growth and poverty reduction

  18. Crop water-stress assessment using an airborne thermal scanner

    Science.gov (United States)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  19. Dentin tubule invasion by Enterococcus faecalis under stress conditions ex vivo.

    Science.gov (United States)

    Ran, Shujun; Gu, Shensheng; Wang, Jia; Zhu, Cailian; Liang, Jingping

    2015-08-21

    Enterococcus faecalis is the species most frequently isolated from failed endodontic treatments because it can survive under stress conditions imposed by root canal treatment. The objective of this study was to determine the ability of E. faecalis to invade dentine tubules under alkaline and energy-starvation stress and to explore the potential mechanisms. Roots from single-rooted human teeth were infected with E. faecalis under alkaline and energy-starvation stress conditions. After 4 wk of culture, samples were processed to establish the tubule-penetration distance. In addition, the hydrophobicity of E. faecalis cells under these conditions was analysed and the expression of genes involved in adhesion was quantified by real-time quantitative PCR. Culture of E. faecalis under alkaline and energy-starvation stress conditions resulted in a marked reduction of tubule-penetration distance, a significant increase in hydrophobicity of the bacterial surface, and marked down-regulation of most adhesin genes compared with E. faecalis cultured in tryptic soy broth. The results indicate that the dentine tubule invasion ability of E. faecalis was markedly decreased under alkaline and glucose-starvation stress conditions, possibly because of the increase of hydrophobicity and down-regulation of some adhesion genes.

  20. Monitoring psychosocial stress at work: development of the Psychosocial Working Conditions Questionnaire.

    Science.gov (United States)

    Widerszal-Bazyl, M; Cieślak, R

    2000-01-01

    Many studies on the impact of psychosocial working conditions on health prove that psychosocial stress at work is an important risk factor endangering workers' health. Thus it should be constantly monitored like other work hazards. The paper presents a newly developed instrument for stress monitoring called the Psychosocial Working Conditions Questionnaire (PWC). Its structure is based on Robert Karasek's model of job stress (Karasek, 1979; Karasek & Theorell, 1990). It consists of 3 main scales Job Demands, Job Control, Social Support and 2 additional scales adapted from the Occupational Stress Questionnaire (Elo, Leppanen, Lindstrom, & Ropponen, 1992), Well-Being and Desired Changes. The study of 8 occupational groups (bank and insurance specialists, middle medical personnel, construction workers, shop assistants, government and self-government administration officers, computer scientists, public transport drivers, teachers, N = 3,669) indicates that PWC has satisfactory psychometrics parameters. Norms for the 8 groups were developed.

  1. Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions

    Science.gov (United States)

    Pham, Ngoc H.; Voronov, Roman S.; Tummala, Naga Rajesh; Papavassiliou, Dimitrios V.

    2014-03-01

    In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.

  2. Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions.

    Science.gov (United States)

    Pham, Ngoc H; Voronov, Roman S; Tummala, Naga Rajesh; Papavassiliou, Dimitrios V

    2014-03-01

    In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.

  3. Effects of Water Deficit Stress on Several Quantitative and Qualitative Characteristics of Canola (Brassica napus L. Cultivars

    Directory of Open Access Journals (Sweden)

    Mohammad HOSSEINI

    2011-08-01

    Full Text Available Water deficit stress considered as one of the most important limiting factors for oil seed canola (Brassica napus L. growth and productivity in Iran. To evaluate the effects of water deficit stress on some qualitative and quantitative characteristics of canola cultivars, this experiment in a greenhouse trial carried out as factorial based on completely randomized design with three replications in Shahid Chamran University of Ahwaz (Iran. Canola cultivars, including ‘Hyola 308’, ‘Hyola 401’ and ‘RGS 003’ as first factor, and the second one was three levels of water deficit stress, including stress at early stem elongation stage to early flowering (D1, early flowering stage to early emergence of sacs (D2, beginning of stem elongation stage to early emergence of sacs (D3 and normal irrigation (C, as check. Results showed that the interaction between water deficit stress and cultivars affected biological yield, seed oil yields and harvest index (p≤0.01, dry matter and economic yield (p≤0.05. Water deficit stress reduced grain oil yields. ‘Hyola 308’ under stress at beginning stem elongation stage to early flowering had the lowest oil yields (1.1 g plants-1 and ‘Hyola 401’ under non-stress conditions showed highest oil yields (4.3 g plants-1. The decrease of oil yields at the flowering stage to stem elongation stage was more than the other stages. In addition, water deficit stress reduced harvest index in the three stress levels due to reduced economic yield and reduced biological yield. Stress susceptibility index for ‘Hyola 401’ at the beginning of stem elongation stage to early emergence of sacs was 0.914 and the ‘Hyola 308’ showed 1.12 at the beginning of stem elongation stage to early emergence of sacs respectively, which it can implies that ‘Hyola 308’ is more sensitive than ‘Hyola 401’ to water deficit stress.

  4. Effects of water stress and high temperature on photosynthetic rates of two species of Prosopis.

    Science.gov (United States)

    Delatorre, Jose; Pinto, Manuel; Cardemil, Liliana

    2008-08-21

    The main aim of this research was to compare the photosynthetic responses of two species of Prosopis, Prosopis chilensis (algarrobo) and Prosopis tamarugo (tamarugo) subjected to heat and water stress, to determine how heat shock or water deficit, either individually or combined, affect the photosynthesis of these two species. The photosynthetic rates expressed as a function of photon flow density (PFD) were determined by the O(2) liberated, in seedlings of tamarugo and algarrobo subjected to two water potentials: -0.3 MPa and -2.5 MPa and to three temperatures: 25 degrees C, 35 degrees C and 40 degrees C. Light response curves were constructed to obtain light compensation and light saturation points, maximum photosynthetic rates, quantum yields and dark respiration rates. The photochemical efficiency as the F(v)/F(m) ratio and the amount of RUBISCO were also determined under heat shock, water deficit, and under the combined action of both stress. Photosynthetic rates at a light intensity higher than 500 micromole photons m(-2)s(-1) were not significantly different (P>0.05) between species when measured at 25 degrees C under the same water potential. The maximum photosynthetic rates decreased with temperature in both species and with water deficit in algarrobo. At 40 degrees C and -2.5 MPa, the photosynthetic rate of algarrobo fell to 72% of that of tamarugo. The quantum yield decreased in algarrobo with temperature and water deficit and it was reduced by 50% when the conditions were 40 degrees C and -2.5 MPa. Dark respiration increased by 62% respect to the control at 40 degrees C in tamarugo while remained unchanged in algarrobo. The photochemical efficiency decreased with both, high temperature and water deficit, without differences between species. RUBISCO content increased in algarrobo 35 degrees C. Water deficit reduced the amount of RUBISCO in both species. The results of this work support the conclusion that in both Prosopis species, the interaction between

  5. Effect of stressful conditions on the functional state of blood eritroid cells

    Directory of Open Access Journals (Sweden)

    O. A. Nykyforova

    2011-10-01

    Full Text Available The influence of alimentary stress-factors – NaCl and cholesterol – on the osmotic resistance of rats’ erythrocytes has been studied. The results demonstrate more significant deviations in erythrocytes’ osmotic resistance of animals under the stress load of NaCl in comparison with the alimentary cholesterol load. NaCl significantly worsened the erythrocytes’ stability. Under such conditions the metabolic consequences arised for both the organism and cardiovascular system.

  6. Examining Adaptations to Water Stress Among Farming Households in Sri Lanka's Dry Zone

    Science.gov (United States)

    Williams, N. E.; Carrico, A.

    2016-12-01

    Climate change is increasing water scarcity in Sri Lanka's primary rice-farming zone. Whether these changes will undermine the national-level food security that Sri Lanka has worked to develop since their independence depends upon the ability of the small-scale farmers that dominate rice production and the institutions that support them to overcome the challenges presented by changing water availability. Using household survey data collected in 13 rice farming communities throughout Sri Lanka, this research explores how water stressed farmers are working to adapt to changing conditions and how the strategies they employ impact rice yields. Our analyses reveal that farmers' abilities to access irrigation infrastructure is the most important factor shaping the rice yields of water stressed Sri Lanka farmers. Notably, however, our research also identified farmers' use of hybrid, 'short duration' seed varietals to be the only climate adaptation strategy being promoted by agricultural extension services to have a significant positive impact on farmers' yields. These findings provide encouraging evidence for policies that promote plant breeding and distribution in Sri Lanka as a means to buffer the food system to climate change.

  7. Organic solutes in coconut palm seedlings under water and salt stresses

    Directory of Open Access Journals (Sweden)

    Alexandre R. A. da Silva

    Full Text Available ABSTRACT The objective of this study was to investigate the biochemical mechanisms associated with isolated and/or concurrent actions of drought and soil salinity in seedlings of coconut tree, through the accumulation of organic solutes (soluble carbohydrates, soluble amino N and free proline in leaves and roots. The experiment, conducted in a protected environment, in Fortaleza, Brazil, in a randomized block design, in a split-plot arrangement, evaluated the effects of different levels of water stress (plots by imposing distinct percentages of replacement of water losses through crop potential evapotranspiration - ETpc (20, 40, 60, 80 and 100%, associated with subplots consisting of increasing levels of soil salinity in saturation extract (1.72, 6.25, 25.80 and 40.70 dS m-1 provided by the soils collected in the Irrigated Perimeter of Morada Nova. Salinity did not change the concentration of organic solutes; however, there were increases in leaf and root levels of free proline in response to water stress, which contributes to the osmoregulation and/or osmoprotection of the species under adverse conditions of water supply.

  8. Analytical and experimental investigation of chlorine decay in water supply systems under unsteady hydraulic conditions

    DEFF Research Database (Denmark)

    Aisopou, Angeliki; Stoianov, Ivan; Graham, Nigel;

    2013-01-01

    coefficient is defined which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. By coupling novel inst