Sample records for water retention model

  1. Modelling Soil Water Retention for Weed Seed Germination Sensitivity to Water Potential

    Directory of Open Access Journals (Sweden)

    W. John Bullied


    Full Text Available Soil water retention is important for the study of water availability to germinating weed seeds. Six soil water retention models (Campbell, Brooks-Corey, four- and five-parameter van Genuchten, Tani, and Russo with residual soil water parameter derivations were evaluated to describe water retention for weed seed germination at minimum threshold soil water potential for three hillslope positions. The Campbell, Brooks-Corey, and four-parameter van Genuchten model with modified or estimated forms of the residual parameter had superior but similar data fit. The Campbell model underestimated water retention at a potential less than −0.5 MPa for the upper hillslope that could result in underestimating seed germination. The Tani and Russo models overestimated water retention at a potential less than −0.1 MPa for all hillslope positions. Model selection and residual parameter specification are important for weed seed germination by representing water retention at the level of minimum threshold water potential for germination. Weed seed germination models driven by the hydrothermal soil environment rely on the best-fitting soil water retention model to produce dynamic predictions of seed germination.

  2. Water retention of rigid soils from a two-factor model for clay

    CERN Document Server

    Chertkov, V Y


    Water retention is one of the key soil characteristics. Available models of soil water retention relate to the curve-fitting type. The objective of this work is to suggest a physical model of water retention (drying branch) for soils with a rigid matrix. "Physical" means the prediction based on the a priori measured or estimated soil parameters with a clear physical meaning. We rely on the two-factor model of clay that takes into account the factors of capillarity and shrinkage. The key points of the model to be proposed are some weak pseudo shrinkage that the rigid soils demonstrate according to their experimental water retention curves, and some specific properties of the rigid grain matrix. The three input parameters for prediction of soil water retention with the rigid grain matrix include inter-grain porosity, as well as maximum and minimum grain sizes. The comparison between measured and predicted sand water retention curves for four different sands is promising.

  3. Water retention behaviour of compacted bentonites: experimental observations and constitutive model

    Directory of Open Access Journals (Sweden)

    Dieudonne Anne-Catherine


    Full Text Available Bentonite-based materials are studied as potential barriers for the geological disposal of radioactive waste. In this context, the hydro-mechanical behaviour of the engineered barrier is first characterized by free swelling conditions followed by constant volume conditions. This paper presents an experimental study conducted in order to characterize the water retention behaviour of a compacted MX-80 bentonite/sand mixture. Then, based on observations of the material double structure and the water retention mechanisms in compacted bentonites, a new water retention model is proposed. The model considers adsorbed water in the microstructure and capillary water in the aggregate-porosity. The model is calibrated and validated against the experimental data. It is used for better understanding competing effects between volume change and water uptake observed during hydration under free swelling conditions.

  4. Modelling soil anaerobiosis from water retention characteristics and soil respiration

    NARCIS (Netherlands)

    Schurgers, G.; Dörsch, P.; Bakken, L.; Leffelaar, P.A.; Egil Haugen, L.


    Oxygen is a prerequisite for some and an inhibitor to other microbial functions in soils, hence the temporal and spatial distribution of oxygen within the soil matrix is crucial in soil biogeochemistry and soil biology. Various attempts have been made to model the anaerobic fraction of the soil

  5. A complete soil hydraulic model accounting for capillary and adsorptive water retention, capillary and film conductivity, and hysteresis

    NARCIS (Netherlands)

    Sakai, Masaru; Van Genuchten, Martinus Th; Alazba, A. A.; Setiawan, Budi Indra; Minasny, Budiman


    A soil hydraulic model that considers capillary hysteretic and adsorptive water retention as well as capillary and film conductivity covering the complete soil moisture range is presented. The model was obtained by incorporating the capillary hysteresis model of Parker and Lenhard into the hydraulic

  6. Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content

    DEFF Research Database (Denmark)

    Chen, Chong; Hu, Kelin; Arthur, Emmanuel


    curves of soils and to predict SWRCs at the dry end using the hygroscopic water content at a relative humidity of 50% (θRH50). The Oswin model yielded satisfactory fits to dry-end SWRCs for soils dominated by both 2:1 and 1:1 clay minerals. Compared with the Oswin model, the Campbell and Shiozawa model...... combined with the Kelvin equation (CS-K) produced better fits to dry-end SWRCs of soils dominated by 2:1 clays but provided poor fits for soils dominated by 1:1 clays. The shape parameter α of the Oswin model was dependent on clay mineral type, and approximate values of 0.29 and 0.57 were obtained...... for soils dominated by 2:1 and 1:1 clays, respectively. Comparison of the Oswin model combined with the Kelvin equation, with water potential estimated from θRH50 (Oswin-KRH50), CS model combined with the Arthur equation (CS-A), and CS-K model, with water potential obtained from θRH50 (CS-KRH50) indicated...

  7. Study on hydraulic property models for water retention and unsaturated hydraulic conductivity in MATSIRO with representation of water table dynamics (United States)

    Yoshida, N.; Oki, T.


    Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west

  8. Identification of potential soil water retention using hydric numerical model at arid regions by land-use changes

    Directory of Open Access Journals (Sweden)

    Mohamed Abu-hashim


    Full Text Available Assessment of soil water retention in arid region is an input required parameter in precision water management at large scale. Investigations were carried out in Tanta catchment in the middle Nile Delta, Egypt (30° 45 N, 30° 55 E, where collecting soil samples covered different hydrological soil groups and land-uses. Based on the natural resource conservation service curve number model (NRCS-CN, CN approach was used to investigate the effect of spatio-temporal variations of different land-uses on soil water retention. Potential soil water retention from 1990 to 2015 was reduced by 118.1 m3 per hectare with decreasing cropland area. Urbanization encroachment from 1990 to 2015 was increased by 2.13% by decreasing cropland with 15.3% (5300 ha in 2015. This resulted in losing the potential soil water retention by 625,968.42 m3 water for the whole catchment area. Impact of land degradation was pronounced, where 2.65%, 29.35%, and 1.11% of the initial crop land-use in 1990 were converted to bare soil, fallow, and urban area, respectively in 2015. Implementation of (S value of the NRCS-CN model with GIS technique provides useful measure to identify land-use changes of potential water storage capacity at catchment scale.

  9. Evaluation of the water retention curve of Abidjan Quaternary aquifer ...

    African Journals Online (AJOL)

    Methods and Results: The water retention curve is difficult to measure in situ on large sites like this aquifer. Kovac's modified model to predict the water retention curve is tested. Predicted curves are compared with in situ measurements points. The results show that, overall, the model predicts well the water retention curves.

  10. Thermodynamic assessment of the effect of strongly swelling polymer hydrogels on the water retention capacity of model porous media (United States)

    Sadovnikova, N. B.; Smagin, A. V.; Sidorova, M. A.


    The effect of different rates and fractions of strongly swelling polymer hydrogel (SSPH) based on radiation-grafted polyacrylamide on the water retention capacity and structural state of model porous media in the form of quartz sand fractions with different degrees of dispersion has been studied. The water retention curve (WRC) of sandy porous media obtained by the capillarimetric method has been used as a basic thermodynamic parameter. An original method has been proposed for the comparative study of the effect of SSPHs on the WRC based on the approximation of data by the nonlinear van Genuchten function followed by differential analysis. Equations are given for the calculation of capillary water capacity and structural curves of pore size distribution. SSPH concentrations in the range 0.05-0.2% of enclosing material weight reliably increase the water retention capacity of sandy fractions and the total, capillary, and field capacities (determined by the Voronin secant method) by 2-3 times; as well as the range of available water and the contents of fine macropores and mesopores. Factors limiting the swelling of SSPHs in model porous media have been revealed.

  11. Modeling gravity effects on water retention and gas transport characteristics in plant growth substrates

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Jones, Scott B.; Tuller, Markus


    Growing plants to facilitate life in outer space, for example on the International Space Station (ISS) or at planned deep-space human outposts on the Moon or Mars, has received much attention with regard to NASA’s advanced life support system research. With the objective of in situ resource...... utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions....... Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air...

  12. Molecular modelling studies of clay-exopolysaccharide complexes: Soil aggregation and water retention phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Henao, Lina J. [Centre de Recherches sur les Macromolecules Vegetales (CERMAV-CNRS), BP53, 38041 Grenoble cedex 9 (France); Mazeau, Karim, E-mail: [Centre de Recherches sur les Macromolecules Vegetales (CERMAV-CNRS), BP53, 38041 Grenoble cedex 9 (France)


    In soils, the bacterial exopolysaccharides (EPS) aggregate mineral particles, enhancing their cohesion and their ability to retain water. These phenomena have been studied at the atomic scale by molecular modelling; we have considered seven rhizospheric polysaccharides interacting with the basal surfaces of montmorillonite. Models accounted for the aggregation phenomena induced by EPS: some segments of the polysaccharide were adsorbed on the mineral surfaces while others formed loops and bridges linking two surfaces. Adsorption energies were favourable and depended mostly on the interacting area. Cohesion of aggregates was estimated by the adhesion work, predicted values differed from one EPS to the other, suggesting that the chemical structure influences interaction strength with the mineral surface. Mechanisms of water uptake and release have also been investigated: hydration energies revealed that EPS strongly retain water at low water concentrations.

  13. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE–GNM and analysis of performance

    NARCIS (Netherlands)

    Beusen, A.H.W.; van Beek, L.P.H.; Bouwman, Lex; Mogollon, J.M.; Middelburg, J.B.M.


    The Integrated Model to Assess the Global Environment–Global Nutrient Model (IMAGE–GNM) is a global distributed, spatially explicit model using hydrology as the basis for describing nitrogen (N) and phosphorus (P) delivery to surface water, transport and in-stream retention in rivers, lakes,

  14. Predicting the scanning branches of hysteretic soil water-retention capacity with use of the method of mathematical modeling (United States)

    Terleev, V.; Ginevsky, R.; Lazarev, V.; Nikonorov, A.; Togo, I.; Topaj, A.; Moiseev, K.; Abakumov, E.; Melnichuk, A.; Dunaieva, I.


    A mathematical model of the hysteresis of the water-retention capacity of the soil is proposed. The parameters of the model are interpreted within the framework of physical concepts of the structure and capillary properties of soil pores. On the basis of the model, a computer program with an interface that allows for dialogue with the user is developed. The program has some of options: visualization of experimental data; identification of the model parameters with use of measured data by means of an optimizing algorithm; graphical presentation of the hysteresis loop with application of the assigned parameters. Using the program, computational experiments were carried out, which consisted in verifying the identifiability of the model parameters from data on the main branches, and also in testing the ability to predict the scanning branches of the hysteresis loop. For the experiments, literature data on two sandy soils were used. The absence of an “artificial pump effect” is proved. A sufficiently high accuracy of the prediction of the scanning branches of the hysteresis loop has been achieved in comparison with the three models of the precursors. The practical importance of the proposed model and computer program, which is developed on its basis, is to ensure the calculation of precision irrigation rates. The application of such rates in irrigation farming will help to prevent excess moisture from flowing beyond the root layer of the soil and, thus, minimize the unproductive loss of irrigation water and agrochemicals, as well as reduce the risk of groundwater contamination and natural water eutrophication.

  15. Retention Models on Core-Shell Columns. (United States)

    Jandera, Pavel; Hájek, Tomáš; Růžičková, Marie


    A thin, active shell layer on core-shell columns provides high efficiency in HPLC at moderately high pressures. We revisited three models of mobile phase effects on retention for core-shell columns in mixed aqueous-organic mobile phases: linear solvent strength and Snyder-Soczewiński two-parameter models and a three-parameter model. For some compounds, two-parameter models show minor deviations from linearity due to neglect of possible minor retention in pure weak solvent, which is compensated for in the three-parameter model, which does not explicitly assume either the adsorption or the partition retention mechanism in normal- or reversed-phase systems. The model retention equation can be formulated as a function of solute retention factors of nonionic compounds in pure organic solvent and in pure water (or aqueous buffer) and of the volume fraction of an either aqueous or organic solvent component in a two-component mobile phase. With core-shell columns, the impervious solid core does not participate in the retention process. Hence, the thermodynamic retention factors, defined as the ratio of the mass of the analyte mass contained in the stationary phase to its mass in the mobile phase in the column, should not include the particle core volume. The values of the thermodynamic factors are lower than the retention factors determined using a convention including the inert core in the stationary phase. However, both conventions produce correct results if consistently used to predict the effects of changing mobile phase composition on retention. We compared three types of core-shell columns with C18-, phenyl-hexyl-, and biphenyl-bonded phases. The core-shell columns with phenyl-hexyl- and biphenyl-bonded ligands provided lower errors in two-parameter model predictions for alkylbenzenes, phenolic acids, and flavonoid compounds in comparison with C18-bonded ligands.

  16. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water - description of IMAGE-GNM and analysis of performance (United States)

    Beusen, A. H. W.; Van Beek, L. P. H.; Bouwman, A. F.; Mogollón, J. M.; Middelburg, J. J.


    The Integrated Model to Assess the Global Environment-Global Nutrient Model (IMAGE-GNM) is a global distributed, spatially explicit model using hydrology as the basis for describing nitrogen (N) and phosphorus (P) delivery to surface water, transport and in-stream retention in rivers, lakes, wetlands and reservoirs. It is part of the integrated assessment model IMAGE, which studies the interaction between society and the environment over prolonged time periods. In the IMAGE-GNM model, grid cells receive water with dissolved and suspended N and P from upstream grid cells; inside grid cells, N and P are delivered to water bodies via diffuse sources (surface runoff, shallow and deep groundwater, riparian zones; litterfall in floodplains; atmospheric deposition) and point sources (wastewater); N and P retention in a water body is calculated on the basis of the residence time of the water and nutrient uptake velocity; subsequently, water and nutrients are transported to downstream grid cells. Differences between model results and observed concentrations for a range of global rivers are acceptable given the global scale of the uncalibrated model. Sensitivity analysis with data for the year 2000 showed that runoff is a major factor for N and P delivery, retention and river export. For both N and P, uptake velocity and all factors used to compute the subgrid in-stream retention are important for total in-stream retention and river export. Soil N budgets, wastewater and all factors determining litterfall in floodplains are important for N delivery to surface water. For P the factors that determine the P content of the soil (soil P content and bulk density) are important factors for delivery and river export.

  17. Water retention curve for hydrate‐bearing sediments

    National Research Council Canada - National Science Library

    Dai, Sheng; Santamarina, J. Carlos


    .... The determination of the water retention curve for hydrate‐bearing sediments faces experimental difficulties, and most studies assume constant water retention curves regardless of hydrate saturation...

  18. Surface water retention systems for cattail production as a biofuel. (United States)

    Berry, Pamela; Yassin, Fuad; Grosshans, Richard; Lindenschmidt, Karl-Erich


    Surface water retention systems act to reduce nutrient pollution by collecting excess nutrients within a watershed via runoff. Harvesting aquatic biomass, such as the invasive cattail, from retention systems removes nutrients absorbed by the plant from the ecosystem permanently. Harvested biomass can be used as a renewable energy source in place of fossil fuels, offsetting carbon emissions. The purpose of this research was to simulate cattail harvest from surface water retention systems to determine their ability to provide suitable growing conditions with annual fluctuations in water availability. The economic and environmental benefits associated with nutrient removal and carbon offsets were also calculated and monetized. A proposed upstream and existing downstream water retention system in southern Manitoba were modelled using a system dynamics model with streamflow inputs provided by a physical hydrologic model, Modélisation Environmentale Communautaire - Surface and Hydrology (MESH). Harvesting cattail and other unconventional feedstocks, such as reeds, sedges, and grasses, from retention systems provided a viable revenue stream for landowners over a ten-year period. This practice generates income for landowners via biomass and carbon credit production on otherwise underutilized marginal cropland invaded with cattail. The economic benefits promote wetland habitat restoration while managing cattail growth to maintain biodiversity. Excess nitrogen and phosphorus are also removed from the ecosystem, reducing downstream nutrient loading. Utilizing surface water retention systems for cattail harvest is a best management strategy for nutrient retention on the landscape and improving agricultural resilience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Water Retention: Relieve This Premenstrual Symptom (United States)

    ... for you? Here's help to feel better. Premenstrual water retention is likely caused by fluctuations in your hormones. Your diet also might play a role. Most women who menstruate experience symptoms ...

  20. Estimation of Soil Water Retention Curve Using Fractal Dimension ...

    African Journals Online (AJOL)



    Dec 1, 2017 ... al., 2001). Modern hydrological models require information on hydraulic conductivity and soil-water retention characteristics. All hydraulic properties, the soil-water characteristics, hydraulic conductivity and soil-water diffusivity (SWD) are closely related to the geometry of a porous media (Brooks and Corey,.

  1. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils (United States)

    Pollacco, Joseph Alexander Paul; Webb, Trevor; McNeill, Stephen; Hu, Wei; Carrick, Sam; Hewitt, Allan; Lilburne, Linda


    Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h), and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs). Because it is usually more difficult to describe Ks than θ(h) from pedotransfer functions, Pollacco et al. (2013) developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h). This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen-Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1) the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map) and (2) further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h) for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal model provides an

  2. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils

    Directory of Open Access Journals (Sweden)

    J. A. P. Pollacco


    Full Text Available Descriptions of soil hydraulic properties, such as the soil moisture retention curve, θ(h, and saturated hydraulic conductivities, Ks, are a prerequisite for hydrological models. Since the measurement of Ks is expensive, it is frequently derived from statistical pedotransfer functions (PTFs. Because it is usually more difficult to describe Ks than θ(h from pedotransfer functions, Pollacco et al. (2013 developed a physical unimodal model to compute Ks solely from hydraulic parameters derived from the Kosugi θ(h. This unimodal Ks model, which is based on a unimodal Kosugi soil pore-size distribution, was developed by combining the approach of Hagen–Poiseuille with Darcy's law and by introducing three tortuosity parameters. We report here on (1 the suitability of the Pollacco unimodal Ks model to predict Ks for a range of New Zealand soils from the New Zealand soil database (S-map and (2 further adaptations to this model to adapt it to dual-porosity structured soils by computing the soil water flux through a continuous function of an improved bimodal pore-size distribution. The improved bimodal Ks model was tested with a New Zealand data set derived from historical measurements of Ks and θ(h for a range of soils derived from sandstone and siltstone. The Ks data were collected using a small core size of 10 cm diameter, causing large uncertainty in replicate measurements. Predictions of Ks were further improved by distinguishing topsoils from subsoil. Nevertheless, as expected, stratifying the data with soil texture only slightly improved the predictions of the physical Ks models because the Ks model is based on pore-size distribution and the calibrated parameters were obtained within the physically feasible range. The improvements made to the unimodal Ks model by using the new bimodal Ks model are modest when compared to the unimodal model, which is explained by the poor accuracy of measured total porosity. Nevertheless, the new bimodal

  3. Water retention in mushroom during sustainable processing

    NARCIS (Netherlands)

    Paudel, E.


    This thesis deals with the understanding of the water holding capacity of mushroom, in the context of a redesign of their industrial processing. For designing food process the retention of food quality is of the utmost importance. Water holding capacity is an important quality aspect of mushrooms. A

  4. Scales of water retention dynamics observed in eroded Luvisols (United States)

    Gerke, Horst H.; Herbrich, Marcus


    Soil pore structure is known to change dynamically due to swelling and shrinkage, wetting and drying or tillage operations. For erosion-affected soils with truncated profiles and due to soil management changes, the water retention dynamics could be even more complex. The objective was to separate shorter-term hysteretic from longer-term seasonal dynamics in field-measured water retention data of eroded Luvisols. Tensiometers and TDR sensors were installed in 10, 30, and 50 cm depths of six lysimeter soil monoliths from two field sites. The water content and suction data of three years (2012-2014) allowed identifying drying and wetting periods for which separate parameters of the van Genuchten (VG) retention function were fitted. The water retention curves of the initial or main drying in spring were generally steeper than those obtained in the lab. During intra-seasonal wet/dry cycles, steepness increased and the saturated VG parameter successively decreased; these data indicated a limitation in re-wetting with dry/wet cycles. The water retention of an annual maximum drying curve increased in the three years with the pH-values due to changes in the soil management. When dealing with soils of cultivated arable landscapes, water flow modelling should consider management-induced gradual changes in hydraulic properties in addition to hysteresis and seasonal dynamics. The disentangling of dry/wet cycles from highly-resolved time series' may help identifying processes responsible for retention dynamics.

  5. Water retention in mushroom during sustainable processing


    Paudel, E.


    This thesis deals with the understanding of the water holding capacity of mushroom, in the context of a redesign of their industrial processing. For designing food process the retention of food quality is of the utmost importance. Water holding capacity is an important quality aspect of mushrooms. A convenient process design methodology which accounts also for product quality is Conceptual Process Design (CPD). An approach to follow CPD methodology is first to explore, the material properties...

  6. Multi-criteria decision making development of ion chromatographic method for determination of inorganic anions in oilfield waters based on artificial neural networks retention model. (United States)

    Stefanović, Stefica Cerjan; Bolanča, Tomislav; Luša, Melita; Ukić, Sime; Rogošić, Marko


    This paper describes the development of ad hoc methodology for determination of inorganic anions in oilfield water, since their composition often significantly differs from the average (concentration of components and/or matrix). Therefore, fast and reliable method development has to be performed in order to ensure the monitoring of desired properties under new conditions. The method development was based on computer assisted multi-criteria decision making strategy. The used criteria were: maximal value of objective functions used, maximal robustness of the separation method, minimal analysis time, and maximal retention distance between two nearest components. Artificial neural networks were used for modeling of anion retention. The reliability of developed method was extensively tested by the validation of performance characteristics. Based on validation results, the developed method shows satisfactory performance characteristics, proving the successful application of computer assisted methodology in the described case study. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Comparison Of Selected Pedotransfer Functions For The Determination Of Soil Water Retention Curves


    Kupec Michal; Stradiot Peter; Rehák Štefan


    Soil water retention curves were measured using a sandbox and the pressure plate extractor method on undisturbed soil samples from the Borská Lowland. The basic soil properties (e.g. soil texture, dry bulk density) of the samples were determined. The soil water retention curve was described using the van Genuchten model (Van Genuchten, 1980). The parameters of the model were obtained using the RETC program (Van Genuchten et al., 1991). For the determination of the soil water retention curve p...

  8. Water Retention Curves of Opalinus Clay

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Romero, F. J.


    The water retention curve of Opalinus clay samples was determined under different conditions: total and matric suction, stress or no-stress conditions, wetting and drying paths. Through the fitting of these results to the van Genuchten expression the P parameter, related to the air entry value (AEV), was obtained. The AEV is the suction value above which air is able to enter the pores of the sample, and consequently, above which 2-phase flow can take place in the soil pore structure. The samples used in this research came from two different boreholes, BHT-1 and BHG-D1, but the behaviour of them did not depend on their location, what was probably due to the fact that both were drilled in the shay facies of the Opalinus clay. There was not a distinct difference between the results obtained under total or matric suctions. In the drying paths, both the water contents and the degrees of saturation tended to be higher when total suction was applied, however the reverse trend was observed for the water contents reached in wetting paths. As well, no clear difference was observed in the water retention curves obtained in odometers under matric and total suctions, what points to the osmotic component of suction in Opalinus clay not being significant. Overall, the water contents were lower and the degrees of saturation higher when suction was applied under vertical stress, what would indicate that the water retention capacity was lower under 8 MPa vertical stress than under free volume conditions. This vertical stress value is slightly higher than the maximum in situ stress. Also, the samples showed hysteresis according to the expected behaviour, i.e. the water contents for a given suction were higher during a drying path than during a wetting path. The P values obtained were between 6 and 34 MPa, and tended to be higher for the samples tested under stress, in drying paths and when total suction was used. The air entry value calculated from the mercury intrusion porosimetry

  9. Evaluation of compost influence on soil water retention


    Pavel Zemánek


    The experiment was focused on evaluation of influence of compost application on soil water retention. Soil retention is a major soil water property that governs soil functioning as a ecosystem. Soil moisture forms a major buffer against flooding, and water capacity in subsoil is a major factor for plant growth. The effects of changes in soil water retention depend on the proportions of the textural components and the amount of organic carbon present in the soil. During seasons of 2009 and 201...

  10. Wildfire impacts on soil-water retention in the Colorado Front Range, United States (United States)

    Ebel, Brian A.


    This work examined the plot-scale differences in soil-water retention caused by wildfire in the area of the 2010 Fourmile Canyon Fire in the Colorado Front Range, United States. We measured soil-water retention curves on intact cores and repacked samples, soil particle-size distributions, and organic matter content. Estimates were also made of plant-available water based on the soil-water retention curves. Parameters for use in soil-hydraulic property models were estimated; these parameters can be used in unsaturated flow modeling for comparing burned and unburned watersheds. The primary driver for measured differences in soil-water retention in burned and unburned soils was organic matter content and not soil-particle size distribution. The tendency for unburned south-facing soils to have greater organic matter content than unburned north-facing soils in this field area may explain why unburned south-facing soils had greater soil-water retention than unburned north-facing soils. Our results suggest that high-severity wildfire can “homogenize” soil-water retention across the landscape by erasing soil-water retention differences resulting from organic matter content, which for this site may be affected by slope aspect. This homogenization could have important implications for ecohydrology and plant succession/recovery in burned areas, which could be a factor in dictating the window of vulnerability of the landscape to flash floods and erosion that are a common consequence of wildfire.

  11. Liquid water flow and retention on the Greenland Ice Sheet in the regional climate model HIRHAM5: local and large-scale impacts (United States)

    Langen, Peter L.; Fausto, Robert S.; Vandecrux, Baptiste; Mottram, Ruth H.; Box, Jason E.


    To improve Greenland Ice Sheet surface mass balance (SMB) simulation, the subsurface scheme of the HIRHAM5 regional climate model was extended to include snow densification, varying hydraulic conductivity, irreducible water saturation and other effects on snow liquid water percolation and retention. Sensitivity experiments to investigate the effects of the additions and the impact of different parameterization choices are presented. Compared with 68 accumulation area ice cores, the simulated mean annual net accumulation bias is -5% (correlation coefficient of 0.90). Modeled SMB in the ablation area compares favorably with 1041 PROMICE observations with regression slope of 0.95-0.97 (depending on model configuration), correlation coefficient of 0.75-0.86 and mean bias -3%. Weighting ablation area SMB biases at low- and high-elevation with the amount of runoff from these areas, we estimate ice sheet-wide mass loss biases in the ablation area at -5% and -7% using observed (MODIS-derived) and internally calculated albedo, respectively. Comparison with observed melt day counts shows that patterns of spatial (correlation 0.9) and temporal (correlation coefficient of 0.9) variability are realistically represented in the simulations. However, the model tends to underestimate the magnitude of inter-annual variability (regression slope 0.7) and overestimate that of spatial variability (slope 1.2). In terms of subsurface temperature structure and occurrence of perennial firn aquifers and perched ice layers, the most important model choices are the albedo implementation and irreducible water saturation parameterization. At one percolation area location, for instance, the internally calculated albedo yields too high subsurface temperatures below 5 m, but when using an implementation of irreducible saturation allowing higher values, an ice layer forms in 2011, reducing the deep warm bias in subsequent years. On the other hand, prior to the formation of the ice layer, observed

  12. Increase in weight and water retention on overfeeding dogs. (United States)

    Golob, P; O'Connor, W J; Potts, D J


    Dogs, kept in metabolism cages, were weighed daily and the daily water intake, urine volume and evaporative loss of water measured or calculated. When the daily meal was doubled, the weight increased in two phases: during the first 4 d the increase in weight was more than could be accounted for by the deposition of protein, glycogen and fat so that water retention must have occurred; after the fourth day the increase in weight was slower and could have been due to the deposition of solids, without water retention. When carbohydrate was added to the meal either as starch or glucose, the increase in weight in the first 3 d was more than the weight of the added carbohydrate, showing water retention. After the third day the slower increase in weight could be explained by the deposition of solids. When the daily meal was supplemented with fat, increase in weight occurred uniformly throughout the period of overfeeding and was equal to or less than the added fat. There was thus no evidence for water retention. Addition of meat to the daily meal caused an increase in weight larger than the fat and protein of the extra meat. Meat therefore caused water retention. The results indicate that during overfeeding, deposition in the body of protein and glycogen, but not fat, determines water retention.

  13. Potential possibilities of water retention in agricultural loess catchments

    Directory of Open Access Journals (Sweden)

    Zubala Tomasz


    Full Text Available The growing water deficit and the increased demand for water, as well as economic problems and inadequate spatial planning in many regions indicate a necessity of developing more effective rules of programming and realisation of works concerning the water management in small catchments. The paper presents a sample analysis of the possibilities of increasing water retention in the agricultural loess catchments with periodic streams. The scope of the study included the determination of physical parameters of selected sub-catchments (geometry, soil cover, land use, etc. and of the sources of threat to water resources, resulting from construction and geomorphological conditions. Pre-design assumptions of dammings were developed, taking into account anti-erosion protective measures, and treatments increasing the landscape retention of water were proposed. Creating surface retention objects should be an important source of water in simplified agroecosystems, especially in regions, where productivity to a great extent depends on natural weather conditions. Proper management of the fourth-order loess basin of the Ciemięga River (area of about 150 km2, the presence of 50 lateral valleys could give a temporary reservoir retention reaching 500 thousand m3. Farmers should be encouraged to seek “own water sources” (including the accumulation of water within wasteland, using appropriate economic instruments (tax reliefs for the documented volume of retained water, e.g. in small retention reservoirs.

  14. A model of nursing student retention. (United States)

    Shelton, Elisabeth N


    A model of nursing student retention was studied in nontraditional, associate degree nursing students. Student retention was defined as persistence, or choosing to continue in a nursing program, and successful academic performance, or meeting the necessary academic standards to continue in a nursing program. The model shows the interaction of background variables, internal psychological processes, and external supports, and their relationships to persistence and academic performance. Participants were 458 nontraditional associate degree nursing students. There were significant differences in background variables between students who persisted and those who withdrew voluntarily or failed academically. Perceived faculty support was related to both persistence and academic performance, such that students with higher perceived faculty support were more likely to continue in a nursing program until graduation and were more likely to be successful academically. Students with higher perceived faculty support also had higher outcome expectations of earning an associate degree in nursing.

  15. Water retention capacity of tissue cultured plants

    NARCIS (Netherlands)

    Klerk, de G.J.M.; Wijnhoven, F.


    Leaves rapidly close their stomata after detachment resulting in a strong reduction of water loss. It has been reported that detached leaves of in vitro produced plants show continuous water loss indicating that they are unable to close the stomata properly and/or that their cuticle is

  16. Effect of water and salt content on protein solubility and water retention of meat preblends. (United States)

    Kenney, P B; Hunt, M C


    Different preblend water contents at a constant ionic strength were investigated to determine if increasing water availability would increase protein solubility and water retention in meat preblends. Four salt levels (0, 2, 4 and 8%) and four water levels (0, 20, 40 and 80% formulation water) were used with ground bovine semimembranosus muscle that had been frozen once. Ground muscle was mixed with either NaCl alone (0% formulation water) or NaCl and brine (20, 40 and 80% formulation water) for the 2, 4 and 8% NaCl treatments. Distilled water was used for the 0% NaCl treatment. The mixtures were stored at 5°C for 12 h. Following storage, the water/brine content was standardized, and protein solubility and water retention were measured. Elevating the water content of preblends, in which the salt concentration had been standardized, increased the water retained during centrifugation (P water retention. Copyright © 1990. Published by Elsevier Ltd.

  17. Comparison Of Selected Pedotransfer Functions For The Determination Of Soil Water Retention Curves

    Directory of Open Access Journals (Sweden)

    Kupec Michal


    Full Text Available Soil water retention curves were measured using a sandbox and the pressure plate extractor method on undisturbed soil samples from the Borská Lowland. The basic soil properties (e.g. soil texture, dry bulk density of the samples were determined. The soil water retention curve was described using the van Genuchten model (Van Genuchten, 1980. The parameters of the model were obtained using the RETC program (Van Genuchten et al., 1991. For the determination of the soil water retention curve parameters, two pedotransfer functions (PTF were also used that were derived for this area by Skalová (2003 and the Rosetta computer program (Schaap et al., 2001. The performance of the PTFs was characterized using the mean difference and root mean square error.

  18. Using Entropy to Quantify Soil Structure from Water Retention and Texture Data (United States)

    Gimenez, D.; Yoon, S.-W.


    Soil structure embodies complex interactions between particle sizes (texture) and environmental factors that lead to the formation of structural units of different sizes and shapes. Water retention curves of structured soils reflect those interactions on the distribution and connectivity of pores. The main hypothesis of this work is that a measure of soil structure is given by the entropic distance between pore systems resulting from the same particle size distribution arranged randomly (reference distribution) and in structural units. It was also hypothesized that such distance can be derived from water retention curves by assuming that the reference and structured pore systems follow lognormal distributions and that textural pore systems are the result of random arrangements of particles sizes. Reference pore size distributions were obtained from texture using an empirical model to convert from particle to pore size distributions. Soil clods were sampled in triplicate from each of 24 horizons of soil profiles under forest and agriculture management. Disturbed samples were collected to measure texture and organic matter. Soil clods were used to measure bulk density and water retention by the hanging column and pressure extractor methods (7 points between -0.3 to -10 kPa). Clods were then disturbed and water retention measured on packed soil (13 points between-0.3 to -1500 kPa on disturbed samples). Water retention data were fit with the Kosugi lognormal water retention model and the parameters from the model used to calculate the entropic or Kullback-Leibler Distance (KLD) between measured and reference pore size distributions. Values of KLD estimated from undisturbed clods were significantly (Pquantitative measure of the effect of soil structure on pore size distribution.

  19. Self-curing concrete types; water retention and durability

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa


    This study was carried out to compare among concretes without or with silica fume (SF along with chemical type of shrinkage reducing admixture, polyethylene-glycol (Ch, and leca as self-curing agents for water retention even at elevated temperature (50 °C and their durability. The cement content of 400 kg/m3, silica fume of 15% by weight of cement, polyethylene-glycol of 2% by weight of cement, pre-saturated lightweight aggregate (leca 15% by volume of sand and water with Ch/binder ratio of 0.4 were selected in this study. Some of the physical and mechanical properties were determined periodically up to 28 days in case of exposure to air curing in temperature of (25 °C and (50 °C while up to 6 months of exposure to 5% of carbon dioxide and wet/dry cycles in 8% of sodium chloride for durability study. The concrete mass loss and the volumetric water absorption were measured, to evaluate the water retention of the investigated concretes. Silica fume concrete either without or with Ch gave the best results under all curing regimes; significant water retention and good durability properties.

  20. Soil Water Retention and Relative Permeability for Full Range of Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.


    Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to capillary forces only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified with six datasets from the literature. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but under-estimate the conductivity while the extended models match the retention and conductivity measurements well.

  1. An Economic Assessment of Local Farm Multi-Purpose Surface Water Retention Systems under Future Climate Uncertainty

    Directory of Open Access Journals (Sweden)

    Pamela Berry


    Full Text Available Regions dependent on agricultural production are concerned about the uncertainty associated with climate change. Extreme drought and flooding events are predicted to occur with greater frequency, requiring mitigation strategies to reduce their negative impacts. Multi-purpose local farm water retention systems can reduce water stress during drought periods by supporting irrigation. The retention systems’ capture of excess spring runoff and extreme rainfall events also reduces flood potential downstream. Retention systems may also be used for biomass production and nutrient retention. A sub-watershed scale retention system was analysed using a dynamic simulation model to predict the economic advantages in the future. Irrigated crops using water from the downstream reservoir at Pelly’s Lake, Manitoba, Canada, experienced a net decrease in gross margin in the future due to the associated irrigation and reservoir infrastructure costs. However, the multi-purpose benefits of the retention system at Pelly’s Lake of avoided flood damages, nutrient retention, carbon sequestration, and biomass production provide an economic benefit of $25,507.00/hectare of retention system/year. Multi-purpose retention systems under future climate uncertainty provide economic and environmental gains when used to avoid flood damages, for nutrient retention and carbon sequestration, and biomass production. The revenue gained from these functions can support farmers willing to invest in irrigation while providing economic and environmental benefits to the region.

  2. Peat properties and water retention in boreal forested peatlands subject to wildfire (United States)

    Thompson, Dan K.; Waddington, James M.


    Peat cores from a recently burned peatland and one over 75 years since fire in Alberta, Canada were analyzed for physical properties and water retention. Wildfire exposed denser peat at the peat surface, more so in hollow than hummock microforms. Water retention in peat has implications for postfire Sphagnum regeneration, as this more dense peat requires smaller volumes of water loss before a critical growth-inhibiting pore-water pressure of -100 mb is reached. Simulations of water retention after fire showed that hollow microforms are at a higher risk of losing low-density surface peat, which moderates water table (WT) declines via high specific yield. Exposure of dense peat to the surface after fire increases surface moisture under a constant WT. The net effect of decreasing specific yield and increasing water retention at the surface has implications on hydrologic stability and resilience of boreal peatlands to future wildfire risk under a changing climate. Earth system models incorporating wildfire disturbance in boreal peatlands would benefit from the inclusion of these hydrological feedbacks in this globally significant carbon reservoir.

  3. An economic assessment of local farm multi-purpose surface water retention systems in a Canadian Prairie setting (United States)

    Berry, Pamela; Yassin, Fuad; Belcher, Kenneth; Lindenschmidt, Karl-Erich


    There is a need to explore more sustainable approaches to water management on the Canadian Prairies. Retention pond installation schemes designed to capture surface water may be a viable option that would reduce water stress during drought periods by providing water for irrigation. The retention systems would serve to capture excess spring runoff and extreme rainfall events, reducing flood potential downstream. Additionally, retention ponds may be used for biomass production and nutrient retention. The purpose of this research was to investigate the economic viability of adopting local farm surface water retention systems as a strategic water management strategy. A retention pond was analyzed using a dynamic simulation model to predict its storage capacity, installation and upkeep cost, and economic advantage to farmers when used for irrigation. While irrigation application increased crop revenue, the cost of irrigation and reservoir infrastructure and installation costs were too high for the farmer to experience a positive net revenue. Farmers who harvest cattails from retention systems for biomass and available carbon offset credits can gain 642.70/hectare of harvestable cattail/year. Cattail harvest also removes phosphorus and nitrogen, providing a monetized impact of 7014/hectare of harvestable cattail/year. The removal of phosphorus, nitrogen, carbon, and avoided flooding damages of the retention basin itself provide an additional 17,730-18,470/hectare of retention system/year. The recommended use of retention systems is for avoided flood damages, nutrient retention, and biomass production. The revenue gained from these functions can support farmers wanting to invest in irrigation while providing economic and environmental benefits to the region.

  4. An economic assessment of local farm multi-purpose surface water retention systems in a Canadian Prairie setting (United States)

    Berry, Pamela; Yassin, Fuad; Belcher, Kenneth; Lindenschmidt, Karl-Erich


    There is a need to explore more sustainable approaches to water management on the Canadian Prairies. Retention pond installation schemes designed to capture surface water may be a viable option that would reduce water stress during drought periods by providing water for irrigation. The retention systems would serve to capture excess spring runoff and extreme rainfall events, reducing flood potential downstream. Additionally, retention ponds may be used for biomass production and nutrient retention. The purpose of this research was to investigate the economic viability of adopting local farm surface water retention systems as a strategic water management strategy. A retention pond was analyzed using a dynamic simulation model to predict its storage capacity, installation and upkeep cost, and economic advantage to farmers when used for irrigation. While irrigation application increased crop revenue, the cost of irrigation and reservoir infrastructure and installation costs were too high for the farmer to experience a positive net revenue. Farmers who harvest cattails from retention systems for biomass and available carbon offset credits can gain 642.70/hectare of harvestable cattail/year. Cattail harvest also removes phosphorus and nitrogen, providing a monetized impact of 7014/hectare of harvestable cattail/year. The removal of phosphorus, nitrogen, carbon, and avoided flooding damages of the retention basin itself provide an additional 17,730-18,470/hectare of retention system/year. The recommended use of retention systems is for avoided flood damages, nutrient retention, and biomass production. The revenue gained from these functions can support farmers wanting to invest in irrigation while providing economic and environmental benefits to the region.

  5. A simple method for determining the critical point of the soil water retention curve

    DEFF Research Database (Denmark)

    Chen, Chong; Hu, Kelin; Ren, Tusheng


    he transition point between capillary water and adsorbed water, which is the critical point Pc [defined by the critical matric potential (ψc) and the critical water content (θc)] of the soil water retention curve (SWRC), demarcates the energy and water content region where flow is dominated...... by capillarity or liquid film flow. Accurate estimation of Pc is crucial for modeling water movement in the vadose zone. By modeling the dry-end (matric potential –104.2 cm H2O) sections of the SWRC using the models of Campbell and Shiozawa, and of van Genuchten......, a fixed tangent line method was developed to estimate Pc as an alternative to the commonly used flexible tangent line method. The relationships between Pc, and particle-size distribution and specific surface area (SSA) were analyzed. For 27 soils with various textures, the mean RMSE of water content from...

  6. Analysis of heavy soils water retention curves with respect to volume changes (United States)

    Kandra, B.; Tall, A.; Gomboš, M.; Pavelková, D.


    This work analyses the problem of measuring water retention curves in heavy soils. The results present the differences between soil water retention curves measured in soil samples collected from the selected localities of the Czech and Slovak area. In the drying process, the results showed an increased rate of soil shrinkage depending on clay content and water content. The rate of shrinkage affected the results of the water retention curves points measurement.

  7. Modeling Coast Redwood Variable Retention Management Regimes (United States)

    John-Pascal Berrill; Kevin O' Hara


    Variable retention is a flexible silvicultural system that provides forest managers with an alternative to clearcutting. While much of the standing volume is removed in one harvesting operation, residual stems are retained to provide structural complexity and wildlife habitat functions, or to accrue volume before removal during subsequent stand entries. The residual...

  8. Soil Water Thermodynamic to Unify Water Retention Curve by Pressure Plates and Tensiometer

    Directory of Open Access Journals (Sweden)

    Erik eBraudeau


    Full Text Available The pressure plate method is a standard method for measuring the pF curves, also called soil water retention curves, in a large soil moisture range from saturation to a dry state corresponding to a tension pressure of near 1500 kPa. However, the pressure plate can only provide discrete water retention curves represented by a dozen measured points. In contrast, the measurement of the soil water retention curves by tensiometer is direct and continuous, but limited to the range of the tensiometer reading: from saturation to near 70-80 kPa. The two methods stem from two very different concepts of measurement and the compatibility of both methods has never been demonstrated. The recently established thermodynamic formulation of the pedostructure water retention curve, will allow the compatibility of the two curves to be studied, both theoretically and experimentally. This constitutes the object of the present article. We found that the pressure plate method provides accurate measurement points of the pedostructure water retention curve h(W, conceptually the same as that accurately measured by the tensiometer. However, contrarily to what is usually thought, h is not equal to the applied air pressure on the sample, but rather, is proportional to its logarithm, in agreement with the thermodynamic theory developed in the article. The pF curve and soil water retention curve, as well as their methods of measurement are unified in a same physical theory. It is the theory of the soil medium organization (pedostructure and its interaction with water. We show also how the hydrostructural parameters of the theoretical curve equation can be estimated from any measured curve, whatever the method of measurement. An application example using published pF curves is given.

  9. Colloidal suspensions hydrodynamic retention mechanisms in model porous media; Mecanismes de retention hydrodynamique de suspensions colloidales en milieux poreux modeles

    Energy Technology Data Exchange (ETDEWEB)

    Salehi, N.


    This study deals with the retention mechanisms of colloidal particles in porous media flows, and the subsequent reduction in permeability in the case of stable and non adsorbing colloids. It combines experimental results and modelling. This study has been realised with stable dispersion of monodispersed carboxylate polystyrene latexes negatively charged injected through negatively charged polycarbonate membranes having mono-sized cylindrical pores. The mean particle diameter is smaller than the mean pore diameter. Both batch and flow experiments in Nuclepore membranes have been done. The results of batch experiments have proved no adsorption of the colloidal latex particles on the surface of the Nuclepore membranes without flow at low salinity. In flow experiments at low particle concentration, only deposition on the upstream side of the membrane have been induced by hydrodynamic forces even for non adsorbing particles without creating any permeability reduction. The retention levels are zero at low and high Peclet numbers with a maximum at intermediate values. Partial plugging was observed at higher colloid concentration even at low salinity without any upstream surface deposition. The modelling of plugging processes is achieved by considering the particle concentration, fluid rate and ratio between the mean pore diameter and the mean particle diameter. This study can be particularly useful in the fields of water treatment and of restoration of lands following radioactive contamination. (author). 96 refs., 99 figs., 29 tabs.

  10. Prediction of soil water retention properties using pore-size distribution and porosity

    National Research Council Canada - National Science Library

    Beckett, Christopher T.S; Augarde, Charles E


    .... This paper presents a method that builds on previous techniques by incorporating porosity and particles of different sizes, shapes, and separation distances to predict soil water retention properties...

  11. Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria (United States)

    Thomas, Matthew A.; Mirus, Benjamin B.; Collins, Brian D.; Lu, Ning; Godt, Jonathan W.


    Rainfall-induced shallow landsliding is a persistent hazard to human life and property. Despite the observed connection between infiltration through the unsaturated zone and shallow landslide initiation, there is considerable uncertainty in how estimates of unsaturated soil-water retention properties affect slope stability assessment. This source of uncertainty is critical to evaluating the utility of physics-based hydrologic modeling as a tool for landslide early warning. We employ a numerical model of variably saturated groundwater flow parameterized with an ensemble of texture-, laboratory-, and field-based estimates of soil-water retention properties for an extensively monitored landslide-prone site in the San Francisco Bay Area, CA, USA. Simulations of soil-water content, pore-water pressure, and the resultant factor of safety show considerable variability across and within these different parameter estimation techniques. In particular, we demonstrate that with the same permeability structure imposed across all simulations, the variability in soil-water retention properties strongly influences predictions of positive pore-water pressure coincident with widespread shallow landsliding. We also find that the ensemble of soil-water retention properties imposes an order-of-magnitude and nearly two-fold variability in seasonal and event-scale landslide susceptibility, respectively. Despite the reduced factor of safety uncertainty during wet conditions, parameters that control the dry end of the soil-water retention function markedly impact the ability of a hydrologic model to capture soil-water content dynamics observed in the field. These results suggest that variability in soil-water retention properties should be considered for objective physics-based simulation of landslide early warning criteria.

  12. Mini Tensiometer-Time Domain Reflectometry Coil Probe for Measuring Soil Water Retention Properties

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Kawamoto, Ken; Karunarathna, Anurudda Kumara


    -time domain reflectometry (T-TDR) coil probes, 6-mm wide and 32-mm long. The coil probes were calibrated against a conventional three-rod probe and were used for measuring θ for a aggregated volcanic ash soil (VAS) and a uniform sand. A commonly-used dielectric mixing model did not accurately describe......Time domain reflectometry (TDR) is used widely for measuring soil-water content. New TDR coil probe technology facilitates the development of small, nondestructive probes for simultaneous measurement of soil-water content (θ) and soil-water potential (ψ). In this study we developed mini tensiometer...... between measured soil-water retention curves (ψ > –100 cm H2O) by the new T-TDR coil probes and independent measurements by the hanging water column method....


    Water retention of mineral soil is often well predicted using algorithms (pedotransfer functions) with basic soil properties but the spatial variability of these properties has not been well characterized. A further source of uncertainty is that water retention by volcanic soils...

  14. Analysis of change of retention capacity of a small water reservoir (United States)

    Výleta, R.; Danáčová, M.; Valent, P.


    This study is focused on the analysis of the changes of retention capacity of a small water reservoir induced by intensive erosion and sedimentation processes. The water reservoir is situated near the village of Vrbovce in the Western part of Slovakia, and the analysis is carried out for a period 2008-2017. The data used to build a digital elevation model (DEM) of the reservoir’s bed came from a terrain measurement, utilizing an acoustic Doppler current profiler (ADCP) to measure the water depth in the reservoir. The DEM was used to quantify the soil loss from agricultural land situated within the basin of the reservoir. The ability of the water reservoir to transform a design flood with a return period of 100 years is evaluated for both design (2008) and current conditions (2017). The results show that the small water reservoir is a subject to siltation, with sediments comprised of fine soil particles transported from nearby agricultural land. The ability of the water reservoir to transform a 100-year flood has not changed significantly. The reduction of the reservoir’s retention capacity should be systematically and regularly monitored in order to adjust its operational manual and improve its efficiency.

  15. Quantitative structure-retention relationship modeling of gas chromatographic retention times based on thermodynamic data. (United States)

    Ebrahimi-Najafabadi, Heshmatollah; McGinitie, Teague M; Harynuk, James J


    Thermodynamic parameters of ΔH(T0), ΔS(T0), and ΔCP for 156 compounds comprising alkanes, alkyl halides and alcohols were determined for a 5% phenyl 95% methyl stationary phase. The determination of thermodynamic parameters relies on a Nelder-Mead simplex optimization to rapidly obtain the parameters. Two methodologies of external and leave one out cross validations were applied to assess the robustness of the estimations of thermodynamic parameters. The largest absolute errors in predicted retention time across all temperature ramps and all compounds were 1.5 and 0.3s for external and internal sets, respectively. The possibility of an in silico extension of the thermodynamic library was tested using a quantitative structure-retention relationship (QSRR) methodology. The estimated thermodynamic parameters were utilized to develop QSRR models. Individual partial least squares (PLS) models were developed for each of the three classes of the molecules. R(2) values for the test sets of all models across all temperature ramps were larger than 0.99 and the average of relative errors in retention time predictions of the test sets for alkanes, alcohols, and alkyl halides were 1.8%, 2.4%, and 2.5%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Testing the shape-similarity hypothesis between particle-size distribution and water retention for Sicilian soils

    Directory of Open Access Journals (Sweden)

    Chiara Antinoro


    Full Text Available Application of the Arya and Paris (AP model to estimate the soil water retention curve requires a detailed description of the particlesize distribution (PSD but limited experimental PSD data are generally determined by the conventional sieve-hydrometer (SH method. Detailed PSDs can be obtained by fitting a continuous model to SH data or performing measurements by the laser diffraction (LD method. The AP model was applied to 40 Sicilian soils for which the PSD was measured by both the SH and LD methods. The scale factor was set equal to 1.38 (procedure AP1 or estimated by a logistical model with parameters gathered from literature (procedure AP2. For both SH and LD data, procedure AP2 allowed a more accurate prediction of the water retention than procedure AP1, confirming that it is not convenient to use a unique value of  for soils that are very different in texture. Despite the differences in PSDs obtained by the SH and LD methods, the water retention predicted by a given procedure (AP1 or AP2 using SH or LD data was characterized by the same level of accuracy. Discrepancies in the estimated water retention from the two PSD measurement methods were attributed to underestimation of the finest diameter frequency obtained by the LD method. Analysis also showed that the soil water retention estimated using the SH method was affected by an estimation bias that could be corrected by an optimization procedure (OPT. Comparison of a-distributions and water retention shape indices obtained by the two methods (SH or LD indicated that the shape-similarity hypothesis is better verified if the traditional sieve-hydrometer data are used to apply the AP model. The optimization procedure allowed more accurate predictions of the water retention curves than the traditional AP1 and AP2 procedures. Therefore, OPT can be considered a valid alternative to the more complex logistical model for estimating the water retention curve of Sicilian soils.

  17. Pedotransfer functions to estimate water retention parameters of soils in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre Hugo Cezar Barros


    Full Text Available Pedotransfer functions (PTF were developed to estimate the parameters (α, n, θr and θs of the van Genuchten model (1980 to describe soil water retention curves. The data came from various sources, mainly from studies conducted by universities in Northeast Brazil, by the Brazilian Agricultural Research Corporation (Embrapa and by a corporation for the development of the São Francisco and Parnaíba river basins (Codevasf, totaling 786 retention curves, which were divided into two data sets: 85 % for the development of PTFs, and 15 % for testing and validation, considered independent data. Aside from the development of general PTFs for all soils together, specific PTFs were developed for the soil classes Ultisols, Oxisols, Entisols, and Alfisols by multiple regression techniques, using a stepwise procedure (forward and backward to select the best predictors. Two types of PTFs were developed: the first included all predictors (soil density, proportions of sand, silt, clay, and organic matter, and the second only the proportions of sand, silt and clay. The evaluation of adequacy of the PTFs was based on the correlation coefficient (R and Willmott index (d. To evaluate the PTF for the moisture content at specific pressure heads, we used the root mean square error (RMSE. The PTF-predicted retention curve is relatively poor, except for the residual water content. The inclusion of organic matter as a PTF predictor improved the prediction of parameter a of van Genuchten. The performance of soil-class-specific PTFs was not better than of the general PTF. Except for the water content of saturated soil estimated by particle size distribution, the tested models for water content prediction at specific pressure heads proved satisfactory. Predictions of water content at pressure heads more negative than -0.6 m, using a PTF considering particle size distribution, are only slightly lower than those obtained by PTFs including bulk density and organic matter

  18. Characterization of Soil-Water Retention with Coarse Fragments in ...

    African Journals Online (AJOL)

    The presence of coarse fragments can have profound impact on soil moisture retention characteristics. The study was conducted to assess the effects of coarse fragments on the moisture retention characteristics of 16 soil series, developed over five different parent materials in the Densu basin. Soil profiles were excavated ...

  19. Deactivation of nanoscale zero-valent iron by humic acid and by retention in water. (United States)

    Kim, Do-Gun; Hwang, Yu-Hoon; Shin, Hang-Sik; Ko, Seok-Oh


    The effects of the deactivation of nanoscale zero-valent iron (NZVI), induced by humic acid (HA) and by the retention of NZVI in water, on nitrate reduction were investigated using a kinetic study. Both the nitrate removal and generation of ammonia were significantly inhibited as the HA adsorption amount and retention time were increased. However, HA removal was greatly enhanced when the NZVI was used after 1 d or 25 d of retention in water. The results are caused by the formation of iron oxides/hydroxides, which increased the specific surface area and the degree of NZVI aggregation which was observed by transmission electron microscopy (TEM). However, the nitrate reduction was greater at the beginning of reaction in the presence of HA when fresh NZVI was used, because of the enhanced electron transfer by the HA in bulk phase and on NZVI surface as train sequences. The pseudo second order adsorption kinetic equation incorporating deactivation and a Langmuir-Hinshelwood (LH) type kinetic equation provided accurate descriptions of the nitrate removal and ammonia generation, respectively. The deactivation constant and the reaction rate constant of the LH type kinetic equation were strongly correlated with the HA amount accumulated on NZVI. These results suggest that the HA accumulation on the NZVI surface reactive sites plays the dominant role in the inhibition and the inhibition can be described successfully using the deactivation model. The HA accumulation on NZVI was verified using TEM.

  20. Structure stability and water retention near saturation characteristics as affected by soil texture, and polyacrylamide concentration (United States)

    Mamedov, Amrakh I.; Ekberli, Imanverdi A.; Ozturk, Hasan S.; Wagner, Larry E.; Norton, Darrell L.; Levy, Guy J.


    Studying the effects of soil properties and amendment application on soil structure stability is important for the development of effective soil management and conservation practices for sustaining semi-arid soil and water quality under climate change scenarios. Two sets of experiments were conducted to evaluate the effects of soil texture and soil amendment polyacrylamide (PAM) rate on soil structural stability expressed in terms of near saturation soil water retention and aggregate stability using the high energy (0-5 J kg-1) moisture characteristic (HEMC) method. Contribution of (i) soil type were assessed using 30 soil samples varying in texture from sandy to clay taken from long term cultivated lands, covering a range of crop and land management practices, and (ii) anionic PAM concentration (0, 10, 25, 50, 100 & 200 mg l-1) were tested on selected loam and clay soils. The water retention curves of slow and fast wetted soil samples were characterized by a modified van Genuchten (1980) model that provides (i) model parameters α and n, which represent the location of the inflection point and the steepness of the S-shaped water retention curves, and (ii) a composite soil structure index (SI =VDP/MS; VDP-volume of drainable pores, MS-modal suction). The studied treatments had, generally, considerable effects on the shape of the water retention curves (α and n). Soil type, PAM concentration and their interaction had significantly effects on the stability indices (SI, VDP and MS) and the model parameters (α and n). The SI and α increased, and ndecreased exponentially with the increase in soil clay content and PAM concentration, but the shape of curves were soil texture and management dependent, since predominant changes were observed in the various range of studied macropores (pore size > 60 μm). An exponential type of relationship existed between SI and α and n. Effect of PAM contribution and wetting condition was more pronounced in the loam soil at low PAM

  1. Solute-free water retention in preascitic cirrhotic rats following intravenous water loading. (United States)

    Sansoe, G; Aragno, M; Smedile, A; Rizzetto, M; Rosina, F


    Increased extracellular fluid volume (ECF) characterizes compensated cirrhosis. To identify the mechanisms of fluid retention in cirrhosis through clearance methods, 10 control and 10 preascitic rats with CCl(4)-induced cirrhosis were studied following i.v. loading with 1 ml 5% glucose solution. Glomerular filtration rate and renal plasma flow were evaluated through inulin and para-aminohippurate clearances; water and electrolyte handling was assessed measuring urine and plasma osmolarity, electrolyte excretions, and tubular solute-free water reabsorption (TFWR = osmolar clearance minus urinary output); ECF was assessed through hormonal status determination. After water loading, cirrhotic rats had increased ECF (lower plasma renin activity and aldosterone and higher atrial natriuretic peptide levels, all Ploop (i.e. increased values of TFWR for any given value of osmolar clearance). Trans-tubular potassium gradient in medullary collecting duct was similar in the two groups (P=0.55), ruling out aldosterone-dependent sodium retention and potassium hyper-secretion. In experimental preascitic cirrhosis NaCl retention in the ascending limb of Henle's loop increases medullary interstitial tonicity leading to vasopressin-independent water back-diffusion in thin descending limb of Henle's loop and collecting duct.

  2. Spatial targeting of conservation tillage to improve water quality and carbon retention benefits

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.; Sheng, C. [Guelph Univ., ON (Canada). Dept. of Geography; Voroney, P. [Guelph Univ., ON (Canada). Dept. of Land Resource Science


    Conservation tillage reduces soil erosion and improves water quality in agricultural watersheds. However, the benefits of conservation tillage in carbon sequestration are the subject of controversy. Public funds are provided to farms to encourage the adoption of conservation tillage. Given the economic costs, the targeting of areas likely to achieve the greatest environmental benefits has become an important policy-making issue. A geographic information system (GIS) based modelling framework which integrated hydrologic, soil organic matter, and farm models to evaluate the spatial targeting of conservation tillage was presented. A case study applying the framework in the Fairchild Creek watershed in Ontario indicated that targeting conservation tillage based on sediment abatement goals can achieve comparable carbon retention benefits in terms of the percentage reduction of base carbon losses. Targeted subcatchments for conservation tillage varied across the watershed based on benefit to cost ratios. Conservation tillage patterns based on carbon retention goals showed similar results to sediment abatement goals but slight differences were observed because of different carbon content in the soils. The results indicated that sediment abatement may be used as an indicator in setting up program goals. The impacts of conservation programs can then be evaluated based on calibrated and validated hydrologic models in conjunction with monitoring data. Results also showed that setting carbon retention may lead to higher costs in order to achieve corresponding sediment abatement benefits. Carbon retention may not be suitable for setting as a stand-alone environmental goal for conservation programs because of the difficulties in verifying the impacts and the discrepancies between carbon and sediment benefits. It was concluded that the modelling results have important policy implications for the design of conservation stewardship programs that aim to achieve environmental

  3. Prediction of shear strength of unsaturated pyroclastic ashes from water retention curves (United States)

    Comegna, Luca; Damiano, Emilia; Gargano, Rudy; Greco, Roberto; Palladino, Mario; Romano, Nunzio


    Pyroclastic deposits covering steep slopes, characteristic of large mountainous areas of Campania (southern Italy), are often affected by shallow landslides triggered by rainfall. The equilibrium of such deposits is in fact usually guaranteed by the contribution to soil shear strength offered by soil suction, which decreases when soil approaches saturation. More specifically, soil suction exerts a compressive stress on solid particles, which increases shear strength thanks to friction. In this study, the model of Lu et al. (2010), which assumes that the fraction of soil suction effectively transmitted to solid particles is proportional to the degree of saturation of the soil, and a recently proposed model, based on the assumption that suction is transmitted to soil solid particles only through their wet external surface (Greco and Gargano, 2015), are applied to predict soil suction stress of pyroclastic ashes from their water retention curve. This latter is modeled by means of the equation of van Genuchten (1980), as well as by means of the model of Romano et al. (2011), which assumes a bimodal distribution of pore dimensions. Experimental data of shear strength of pyroclastic ashes from various sites in Campania are compared with the values of shear strength predicted with the various tested models. The investigated soils are loose silty sands, characterized by a porosity larger than 0.7, friction angle ranging between 36° and 38°, and small or even null cohesion. In all cases, the best agreement between modeled and experimental shear strength is obtained by means of the model of Greco and Gargano, applied with the adoption of the bimodal water retention model of Romano et al. The obtained results highlight the importance of accurate modeling soil suction stress to correctly predict landslide triggering conditions in slopes covered with shallow unsaturated granular deposits. References Greco R, Gargano R. A novel equation for determining the suction stress of

  4. Water absorption and retention of porous ceramics fabricated by waste resources


    Tomoaki, KATO; Masayoshi, Ohashi; Masayoshi, Fuji; Minoru, Takahashi


    Several counter measures have been carried out for mitigating heat island effect. One of those is installing on top of the roof with base materials having planted vegetation. The base materials are required good water absorption and retention which is necessary for the plant to survive. Therefore, in this study, we investigate the relationship between water absorption and water retention within the pore structures of porous ceramics. The raw materials of the ceramics were used waste resources...

  5. Definition and experimental determination of a soil-water retention surface


    Salager, Simon; El Youssoufi, Moulay Saïd; Saix, Christian


    International audience; This paper deals with the definition and determination methods of the soil-water retention surface (SWRS), which is the tool used to present the hydromechanical behaviour of soils to highlight both the effect of suction on the change in water and total volumes and the effect of deformation with respect to the water retention capability. An experimental method is introduced to determine the SWRS and applied to a clayey silty sand. The determination of this surface is ba...

  6. Biopartitioning micellar chromatography separation methods: modelling quantitative retention-activity relationships of cephalosporins. (United States)

    Wu, Li-Ping; Ye, Li-Ming; Chen, Cong; Wu, Jia-Qi; Chen, Yu


    In this article, recent applications of chromatographic systems, particularly biopartitioning micellar chromatography (BMC) systems based on amphiphilic structures, have been reported. The aim is to take a look at the capability of quantitative retention-activity relationship (QRAR) models with BMC to describe and/or estimate the bioactivity of cephalosporins. Better qualification of BMC systems was obtained according to the octanol-water partition coefficient (log P); the bioactivity parameters (Lag-T, T(1/2beta), F%, T(1/a), P%, AUC and C(max)) were correlated with the retention factors of cephalosporins processed by Alltech-chromstation software, and the classical data were compared with the predictive values based on QRAR models. The results indicate that using only one descriptor (the retention factor, k) to explain the pharmacokinetic and pharmacodynamic properties of cephalosporins is adequate, and this in vitro approach is an advanced tool for pharmacodynamics research. Copyright (c) 2008 John Wiley & Sons, Ltd.

  7. Rice straw biochar affects water retention and air movement in a sand-textured tropical soil

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Ahmed, Fauziatu


    sampling times, soil water retention was significantly higher (20–150%) for the BC treatment due to increased fraction of smaller pores (Although there was no consistent effect of BC on air-filled porosity, BC significantly reduced air permeability and gas....../w) on water retention, gas transport and structure of a sand-textured tropical soil. We sampled 3 months and 15 months after BC application and measured wet- and dry-region soil water retention, air permeability and gas diffusivity at selected matric potentials. At all measured potentials and for both...

  8. Modelling sediment export, retention and reservoir sedimentation in drylands with the WASA-SED model

    Directory of Open Access Journals (Sweden)

    E. N. Mueller


    Full Text Available Current soil erosion and reservoir sedimentation modelling at the meso-scale is still faced with intrinsic problems with regard to open scaling questions, data demand, computational efficiency and deficient implementations of retention and re-mobilisation processes for the river and reservoir networks. To overcome some limitations of current modelling approaches, the semi-process-based, spatially semi-distributed modelling framework WASA-SED (Vers. 1 was developed for water and sediment transport in large dryland catchments. The WASA-SED model simulates the runoff and erosion processes at the hillslope scale, the transport and retention processes of suspended and bedload fluxes in the river reaches and the retention and remobilisation processes of sediments in reservoirs. The modelling tool enables the evaluation of management options both for sustainable land-use change scenarios to reduce erosion in the headwater catchments as well as adequate reservoir management options to lessen sedimentation in large reservoirs and reservoir networks. The model concept, its spatial discretisation scheme and the numerical components of the hillslope, river and reservoir processes are described and a model application for the meso-scale dryland catchment Isábena in the Spanish Pre-Pyrenees (445 km2 is presented to demonstrate the capabilities, strengths and limits of the model framework. The example application showed that the model was able to reproduce runoff and sediment transport dynamics of highly erodible headwater badlands, the transient storage of sediments in the dryland river system, the bed elevation changes of the 93 hm3 Barasona reservoir due to sedimentation as well as the life expectancy of the reservoir under different management options.

  9. Particle retention in porous media: Applications to water injectivity decline

    Energy Technology Data Exchange (ETDEWEB)

    Wennberg, Kjell Erik


    This thesis studies the problem of migration and deposition of colloidal particles within porous media, theoretically and by computerized simulation. Special emphasis is put on the prediction of injectivity decline in water injection wells due to inherent particles in the injection water. The study of particle deposition within porous media requires a correct prediction of the deposition rate or filtration coefficient. A thorough review of the modeling approaches used in the past are combined with new ideas in order to arrive at an improved model for the prediction of the filtration coefficient. A new way of determining the transition time for the dominant deposition mechanism to change from internal deposition to external cake formation is proposed. From this fundamental theory, equations are given for water injectivity decline predictions. A computer program called WID for water injectivity decline predictions was developed. Using water quality, formation properties, injection rate/pressure and completion information as input, WID predicts decline in vertical and horizontal injection wells with openhole, perforated and fractured completions. The calculations agree fairly well with field data; in some cases the agreement is excellent. A poor match in a few cases indicates that more mechanisms may be responsible for injectivity decline than those presently accounted for by the simulator. The second part of the study deals with a theoretical investigation of the multi-dimensional nature of particle deposition in porous media. 112 refs., 100 figs., 9 tabs.

  10. Prediction of the soil water retention curve for structured soil from saturation to oven-dryness

    DEFF Research Database (Denmark)

    Karup, Dan; Møldrup, Per; Tuller, Markus


    The soil water retention curve (SWRC) is the most fundamental soil hydraulic function required for modelling soil–plant–atmospheric water flow and transport processes. The SWRC is intimately linked to the distribution of the size of pores, the composition of the solid phase and the soil specific....... In this research we evaluated a new two-stage approach developed recently to predict the SWRC based onmeasurements for disturbed repacked soil samples. Our study involved undisturbed structured soil and took into account the effects of bulk density, organic matter content and particle-size distribution....... Independently measured SWRCs for 171 undisturbed soil samples with organic matter contents that ranged from 3 to 14% were used for model validation. The results indicate that consideration of the silt and organic matter fractions, in addition to the clay fraction, improved predictions for the dry-end SWRC...

  11. Comparison of Optimization and Two-point Methods in Estimation of Soil Water Retention Curve (United States)

    Ghanbarian-Alavijeh, B.; Liaghat, A. M.; Huang, G.


    Soil water retention curve (SWRC) is one of the soil hydraulic properties in which its direct measurement is time consuming and expensive. Since, its measurement is unavoidable in study of environmental sciences i.e. investigation of unsaturated hydraulic conductivity and solute transport, in this study the attempt is to predict soil water retention curve from two measured points. By using Cresswell and Paydar (1996) method (two-point method) and an optimization method developed in this study on the basis of two points of SWRC, parameters of Tyler and Wheatcraft (1990) model (fractal dimension and air entry value) were estimated and then water content at different matric potentials were estimated and compared with their measured values (n=180). For each method, we used both 3 and 1500 kPa (case 1) and 33 and 1500 kPa (case 2) as two points of SWRC. The calculated RMSE values showed that in the Creswell and Paydar (1996) method, there exists no significant difference between case 1 and case 2. However, the calculated RMSE value in case 2 (2.35) was slightly less than case 1 (2.37). The results also showed that the developed optimization method in this study had significantly less RMSE values for cases 1 (1.63) and 2 (1.33) rather than Cresswell and Paydar (1996) method.

  12. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil. (United States)

    Zhuang, Wenhua; Li, Longguo; Liu, Chao


    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%.

  13. [Screening of water retention agent for moisture content regulation in the biocover of municipal landfill]. (United States)

    Lu, Wen-jing; Mou, Zi-shen; Zhu, Yong; Wang, Hong-tao; Zhao, Chen-xi


    Synthetic materials of polyacrylamide (PAM) are known as the flocculating agent as well as water retention agents. In this study, ten types of water-soluble PAM as well as four types of water-insoluble ones were selected and the influences of relative molecular weight, ion types, charge density and particle size on water retention and service life were determined. Based on the results, evaluation method for performance of water retention agent was established and two optimal PAM (water-insoluble JB and water-soluble WSN20) were screened for further study. It showed that JB increased the degree of hydration of testing soil for 32% compared with that of control. Moreover, multiple-step-outflow test using municipal waste showed that addition of JB (0.1%) had significantly effect on its moisture characteristic curve as evidenced by increasing of equilibrium moisture content over 12% under high matrix potential.

  14. A two level hierarchical model of protein retention in ion exchange chromatography. (United States)

    Salvalaglio, Matteo; Paloni, Matteo; Guelat, Bertrand; Morbidelli, Massimo; Cavallotti, Carlo


    Predicting protein retention in ion exchange chromatography (IEX) from first principles is a fascinating perspective. In this work a two level hierarchical modeling strategy is proposed in order to calculate protein retention factors. Model predictions are tested against experimental data measured for Lysozyme and Chymotrypsinogen A in IEX columns as a function of ionic strength and pH. At the highest level of accuracy Molecular Dynamics (MD) simulations in explicit water are used to determine the interaction free energy between each of the two proteins and the IEX stationary phase for a reference pH and ionic strength. At a lower level of accuracy a linear response model based on an implicit treatment of solvation and adopting a static protein structure is used to calculate interaction free energies for the full range of pHs and ionic strengths considered. A scaling coefficient, determined comparing MD and implicit solvent simulations, is then introduced in order to correct the linear response model for errors induced by the adoption of a static protein structure. The calculated free energies are then used to compute protein retention factors, which can be directly compared with experimental data. The possibility to introduce a third level of accuracy is explored testing the predictions of a semiempirical model. A quantitative agreement between the predicted and measured protein retention factors is obtained using the coupled MD-linear response models, supporting the reliability of the proposed approach. The model allows quantifying the electrostatic, van der Waals, and conformational contributions to the interaction free energies. A good agreement between experiments and model is obtained also using the semiempirical model that, although requiring parameterization over higher level models or experimental data, proves to be useful in order to rapidly determine protein retention factors across wide pH and ionic strength ranges as it is computationally inexpensive

  15. Soil water retention at varying matric potentials following repeated wetting with modestly saline-sodic water and subsequent air drying

    Energy Technology Data Exchange (ETDEWEB)

    Browning, L.S.; Hershberger, K.R.; Bauder, J.W. [Montana State University, Bozeman, MT (United States). Dept. of Land Resources & Environmental Science


    Coal bed natural gas (CBNG) development in the Powder River (PR) Basin produces modestly saline, highly sodic wastewater. This study assessed impacts of wetting four textural groups (0-11%, 12-22%, 23 -33%, and > 33% clay (g clay/100 g soil) x 100%))with simulated PR or CBNG water on water retention. Soils received the following treatments with each water quality: a single wetting event, five wetting and drying events, or five wetting and drying events followed by leaching with salt-free water. Treated samples were then resaturated with the final treatment water and equilibrated to -10, -33, -100, -500, or -1,500 kPa. At all potentials, soil water retention increased significantly with increasing clay content. Drought-prone soils lost water-holding capacity between saturation and field capacity with repeated wetting and drying, whereas finer textured soils withstood this treatment better and had increased water-retention capacity at lower matric potentials.


    Energy Technology Data Exchange (ETDEWEB)

    J.B. Case


    The distribution of seepage in the proposed repository will be highly variable due in part to variations in the spatial distribution of percolations. The performance of the drip shield and the backfill system may divert the water flux around the waste packages to the invert. Diversion will occur along the drift surface, within the backfill, at the drip shield, and at the Waste Package (WP) surface, even after the drip shield and WP have been breached by corrosion. The purpose and objective of this Analysis and Modeling Report (AMR) are to develop a conceptual model and constitutive properties for bounding the volume and rate of seepage water that flows around the drip shield (CRWMS M&O 1999c). This analysis model is to be compatible with the selected repository conceptual design (Wilkins and Heath, 1999) and will be used to evaluate the performance of the Engineered Barrier System (EBS), and to provide input to the EBS Water Distribution and Removal Model. This model supports the Engineered Barrier System (EBS) postclosure performance assessment for the Site Recommendation (SR). This document characterizes the hydrological constitutive properties of the backfill and invert materials (Section 6.2) and a third material that represents a mixture of the two. These include the Overton Sand which is selected as a backfill (Section 5.2), crushed tuff which is selected as the invert (Section 5.1), and a combined material (Sections 5.9 and 5.10) which has retention and hydraulic conductivity properties intermediate to the selected materials for the backfill and the invert. The properties include the grain size distribution, the dry bulk density and porosity, the moisture retention, the intrinsic permeability, the relative permeability, and the material thermal properties. The van Genuchten relationships with curve fit parameters are used to define the basic retention relationship of moisture potential to volumetric moisture content, and the basic relationship of unsaturated

  17. Effects of Superabsorbent Polymers on the Hydraulic Parameters and Water Retention Properties of Soil

    Directory of Open Access Journals (Sweden)

    Renkuan Liao


    Full Text Available Superabsorbent polymers (SAPs are widely applied in dryland agriculture. However, their functional property of repeated absorption and release of soil water exerts periodic effects on the hydraulic parameters and water-retention properties of soil, and as this property gradually diminishes with time, its effects tend to be unstable. During the 120-day continuous soil cultivation experiment described in this paper, horizontal soil column infiltration and high-speed centrifugation tests were conducted on SAP-treated soil to measure unsaturated diffusivity D and soil water characteristic curves. The experimental results suggest that the SAP increased the water retaining capacity of soil sections where the suction pressure was between 0 and 3,000 cm. The SAP significantly obstructed water diffusion in the soil in the early days of the experiment, but the effect gradually decreased in the later period. The average decrease in water diffusivity in the treatment groups fell from 76.6% at 0 days to 1.2% at 120 days. This research also provided parameters of time-varying functions that describe the unsaturated diffusivity D and unsaturated hydraulic conductivity K of soils under the effects of SAPs; in future research, these functions can be used to construct water movement models applicable to SAP-treated soil.

  18. Soil water retention measurements using a combined tensiometer-coiled time domain reflectometry probe

    DEFF Research Database (Denmark)

    Vaz, C.M.P.; Hopmans, J.W.; Macedo, A.


    0.98. In addition, the mixing model approach, adapted for the tensiometer-coiled TDR probe, was successful in explaining the functional form of the coiled TDR data with about 30% of the coiled-TDR probe measurement explained by the bulk soil dielectric constant. This new TDR development provides......The objective of the presented study was to develop a single probe that can be used to determine soil water retention curves in both laboratory and field conditions, by including a coiled time domain reflectometry (TDR) probe around the porous cup of a standard tensiometer. The combined tensiometer......-silica sand], Columbia [Coarse-loamy, mixed, superactive, nonacid, thermic Oxyaquic Xerofluvents], Lincoln sandy loam (sandy, mixed, thermic Typic Ustifluvents), and a washed sand - SR130) was measured with the combined tensiometer-coiled TDR probe (coil) as a function of the soil water content (0...

  19. Estimating Soil Water Retention Curve Using The Particle Size Distribution Based on Fractal Approach

    Directory of Open Access Journals (Sweden)

    M.M. Chari


    Full Text Available Introduction: Water and soil retention curve is one of the most important properties of porous media to obtain in a laboratory retention curve and time associated with errors. For this reason, researchers have proposed techniques that help them to more easily acquired characteristic curve. One of these methods is the use of fractal geometry. Determining the relationship between particle size distribution fractal dimension (DPSD and fractal dimension retention curve (DSWRC can be useful. However, the full information of many soil data is not available from the grading curve and only three components (clay, silt and sand are measured.In recent decades, the use of fractal geometry as a useful tool and a bridge between the physical concept models and experimental parameters have been used.Due to the fact that both the solid phase of soil and soil pore space themselves are relatively similar, each of them can express different fractal characteristics of the soil . Materials and Methods: This study aims to determine DPSD using data soon found in the soil and creates a relationship between DPSD and DSWRC .To do this selection, 54 samples from Northern Iran and the six classes loam, clay loam, clay loam, sandy clay, silty loam and sandy loam were classified. To get the fractal dimension (DSWRC Tyler and Wheatcraft (27 retention curve equation was used.Alsothe fractal dimension particle size distribution (DPSD using equation Tyler and Wheatcraft (28 is obtained.To determine the grading curve in the range of 1 to 1000 micron particle radius of the percentage amounts of clay, silt and sand soil, the method by Skaggs et al (24 using the following equation was used. DPSD developed using gradation curves (Dm1 and three points (sand, silt and clay (Dm2, respectively. After determining the fractal dimension and fractal dimension retention curve gradation curve, regression relationship between fractal dimension is created. Results and Discussion: The results

  20. Effectiveness of using pedo-transfer functions to quantify the spatial variability of soil water retention characteristics (United States)

    Romano, Nunzio; Santini, Alessandro


    Accurate knowledge of soil hydraulic properties is of crucial importance for reliable applications of recently developed distributed models to environmental studies and land-use planning. To provide such information in a cost-effective way, indirect estimation of water transport parameters from easily measurable or already available soil data using pedo-transfer functions (PTFs) is becoming increasingly popular. However, distributed hydrological modeling requires that soil hydraulic characterization also takes account of the description of spatial variability. The objective of this study was to evaluate some published PTFs in the light of their ability to quantify the spatial structure and variability of soil water retention adequately. Four PTFs were tested: two provided only values of water content at specific pressure potentials (PTF Group A), whereas the remaining two estimated the parameters of closed-form relations describing the water retention function (PTF Group B). Measured data for testing were obtained from undisturbed soil samples taken from the top layer of different soils along a 5 km transect with constant spacing of 50 m. Overall, summary statistics and sample distributions of the PTF-estimated retention characteristics at selected pressure potentials are close to those of the retention variables used as reference for comparisons. The largest discrepancies are related to the use of PTFs pertaining to Group A. Although the quality of kriged interpolations based on soil property data obtained by simplified methodologies still gives cause for concern, results show that the structure of spatial variability exhibited by the variables considered along the study transect is described well enough when using PTFs for determining soil water retention characteristics.

  1. Simple models for the effect of aliphatic alcohol additives on the retention in reversed-phase liquid chromatography. (United States)

    Nikitas, P; Pappa-Louisi, A; Agrafiotou, P; Fasoula, S


    Four retention models for the effect of aliphatic alcohol additives on the retention of analytes in reversed-phase liquid chromatography have been developed following either a semi-thermodynamic treatment or an empirical approach. Their performance was tested using the experimental retention times of six non-polar analytes (alkylbenzenes) and ten o-phthalaldehyde derivatives of amino acids under different isocratic chromatographic runs when a small amount of ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol or 1-heptanol was added to methanol/water mixtures containing a constant amount of methanol. It was shown that for the structurally simple alkylbenzenes all the models can be adopted for retention prediction with good results. In contrast, just one out of four models, that with the fewest approximations, predicts satisfactorily the retention properties of amino acids derivatives. However, the most interesting feature is that this model can predict the effect of an alcohol-additive on the retention properties of solutes, even if this additive was not used in chromatographic runs done for the fitting procedure, provided that it belongs to the same homologous series of alkanols. This feature is also observed in all models described the retention of alkylbenzenes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils. (United States)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.


    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  3. Network modelling of fluid retention behaviour in unsaturated soils

    Directory of Open Access Journals (Sweden)

    Athanasiadis Ignatios


    Full Text Available The paper describes discrete modelling of the retention behaviour of unsaturated porous materials. A network approach is used within a statistical volume element (SVE, suitable for subsequent use in hydro-mechanical analysis and incorporation within multi-scale numerical modelling. The soil pore structure is modelled by a network of cylindrical pipes connecting spheres, with the spheres representing soil voids and the pipes representing inter-connecting throats. The locations of pipes and spheres are determined by a Voronoi tessellation of the domain. Original aspects of the modelling include a form of periodic boundary condition implementation applied for the first time to this type of network, a new pore volume scaling technique to provide more realistic modelling and a new procedure for initiating drying or wetting paths in a network model employing periodic boundary conditions. Model simulations, employing two linear cumulative probability distributions to represent the distributions of sphere and pipe radii, are presented for the retention behaviour reported from a mercury porosimetry test on a sandstone.

  4. Post-main Sequence Evolution of Icy Minor Planets: Implications for Water Retention and White Dwarf Pollution (United States)

    Malamud, Uri; Perets, Hagai B.


    Most observations of polluted white dwarf atmospheres are consistent with accretion of water-depleted planetary material. Among tens of known cases, merely two involve accretion of objects that contain a considerable mass fraction of water. The purpose of this study is to investigate the relative scarcity of these detections. Based on a new and highly detailed model, we evaluate the retention of water inside icy minor planets during the high-luminosity stellar evolution that follows the main sequence. Our model fully considers the thermal, physical, and chemical evolution of icy bodies, following their internal differentiation as well as water depletion, from the moment of their birth and through all stellar evolution phases preceding the formation of the white dwarf. We also account for different initial compositions and formation times. Our results differ from previous studies, which have either underestimated or overestimated water retention. We show that water can survive in a variety of circumstances and in great quantities, and therefore other possibilities are discussed in order to explain the infrequency of water detection. We predict that the sequence of accretion is such that water accretes earlier, and more rapidly, than the rest of the silicate disk, considerably reducing the chance of its detection in H-dominated atmospheres. In He-dominated atmospheres, the scarcity of water detections could be observationally biased. It implies that the accreted material is typically intrinsically dry, which may be the result of the inside-out depopulation sequence of minor planets.

  5. The Campbell Soil-Water Retention Function: Predictions Using Visible Near-Infrared Spectroscopy or Soil Fines

    DEFF Research Database (Denmark)

    Chrysodonta, Zampela Pittaki; Møldrup, Per; Hermansen, Cecilie

    The unsaturated hydraulic conductivity is one of the most uncertain soil properties while, at the same time, it is essential for modelling water and solute movement in the vadose zone. The Campbell soil-water retention function and its b parameter (pore-size distribution index) is a simple method......-infrared spectroscopy (vis-NIR) measurements will be highly useful. To enable this, we suggest to anchor the Campbell retention model not at water saturation but rather with a reference point at the volumetric water content at -1000 cm H2O of soil-water matric potential (pF 3). The soil-water content at the reference...... wavelengths to Campbell b and volumetric water content at pF 3. The volumetric water content at pF 3 and Campbell b could both be well predicted from soil fines content and vis-NIR measurements. The hereby predicted Campbell function anchored at pF 3 using both methods, compared closely with measured water...

  6. The Effect of Supplemental Instruction on Retention: A Bivariate Probit Model (United States)

    Bowles, Tyler J.; Jones, Jason


    Single equation regression models have been used to test the effect of Supplemental Instruction (SI) on student retention. These models, however, fail to account for the two salient features of SI attendance and retention: (1) both SI attendance and retention are categorical variables, and (2) are jointly determined endogenous variables. Adopting…

  7. Nitrogen retention and water balance in animals fed medium protein ...

    African Journals Online (AJOL)

    libitum with restricted water consumption was studied. During the 8-day digestibility trial, 3 groups of five animals each were subjected to 30%, 50% and 100% water supply, with concomitant jugular blood samples taken daily to monitor their hydration status. Water loss via the urine reflects the animals water intake, thus ...

  8. Studies with Water Absorbing Polymers: II Nitrogen Retention ...

    African Journals Online (AJOL)

    Agrogel is a water absorbing polymer that swells and forms gelatinous mass with water. The mass can retain water and nutrients and release it slowly over time. These characteristics have stimulated interest in their use, especially for greenhouse crop production, where watering is frequent resulting in leaching of soil ...

  9. A national model concept for nutrient loading and retention calculations in Denmark (DK-NP) (United States)

    Kronvang, Brian; Windolf, Jørgen; Larsen, Søren; Thodsen, Hans; Bøgestrand, Jens; Ovesen, Niels


    A new model concept has been developed that enables a harmonised calculation of monthly total nitrogen (N) and total phosphorus (P) loadings of surface waters in Denmark. The model concept utilises data from a network of downstream monitoring stations in Danish streams established back in 1989 (coastal loading network). Today it consists of 113 monitoring stations covering 49% of the Danish land area. The remaining of the land area is unmonitored and hitherto different regional methods have been utilised to estimate N and P loadings. The new model concept includes a meta-model for calculation of runoff from ungauged areas (DK-Q). The core of the model concept is two statistical models predicting discharge weighted concentrations of total N and total P from diffuse sources (mainly agriculture) that has been developed from monitoring results from 80 catchments for N and 24 catchments for P, the latter having water sampling being conducted continuously with automatic samplers for an 8-years period. The statistical models has been utilised to estimate the diffuse nutrient loadings to freshwater from a series of 25 km2 catchments in the ungauged parts of Denmark by multiplying the monthly model estimated discharge-weighted concentrations with DK-Q modelled monthly runoff values. For validation reasons the N model has been applied to the gauged areas as well and deviations between monitored and model estimated total N loadings have been evaluated in different Georegions and for specific monitored catchments. The model concept also includes new procedures for estimating retention of N and P in streams, rivers, wetlands and lakes. In the case of 611 larger lakes the lake specific N retentions have been modelled chaining all lakes and catchments within a watershed and modelling incoming water and N for use in a N-retention model. Stream, river and wetland retention is modelled utilising simple retention rates for the different types after having depicted and assessed the

  10. Retention of radium from thermal waters on sand filters and adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Elejalde, C. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain)]. E-mail:; Herranz, M. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Legarda, F. [Dpto. de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Romero, F. [Dpto. de Ingenieria Quimica y del Medio Ambiente, Escuela Tecnica Superior de Ingenieria, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Baeza, A. [Dpto. de Fisica, Facultad de Veterinaria, Universidad de Extremadura, Avda. Universidad s/n, 10071 Caceres (Spain)


    This study was focussed on laboratory experiences of retention of radium from one thermal water on sand filters and adsorbents, trying to find an easy method for the elimination in drinkable waters polluted with this natural radio-nuclide. A thermal water from Cantabria (Spain) was selected for this work. Retention experiences were made with columns of 35 mm of diameter containing 15 cm layers of washed river sand or 4 cm layers of zeolite A3, passing known volumes of thermal water at flows between 4 and 40 ml/min with control of the retained radium by determining the amount in the water after the treatment. The statistical analysis of data suggests that retention depends on the flow and the volume passed through the columns. As additional adsorbents were used kaolin and a clay rich in illite. Jar-test experiences were made agitating known weights of adsorbents with the selected thermal water, with addition of flocculants and determination of radium in filtrated water after the treatment. Data suggest that retention is related to the weight of adsorbent used, but important quantities of radium seem remain in solution for higher amounts of adsorbents, according to the statistical treatment of data. The elution of retained radium from columns or adsorbents, previously used in experiences, should be the aim of a future research.

  11. Water retention and availability in soils of the State of Santa Catarina-Brazil: effect of textural classes, soil classes and lithology

    Directory of Open Access Journals (Sweden)

    André da Costa


    Full Text Available The retention and availability of water in the soil vary according to the soil characteristics and determine plant growth. Thus, the aim of this study was to evaluate water retention and availability in the soils of the State of Santa Catarina, Brazil, according to the textural class, soil class and lithology. The surface and subsurface horizons of 44 profiles were sampled in different regions of the State and different cover crops to determine field capacity, permanent wilting point, available water content, particle size, and organic matter content. Water retention and availability between the horizons were compared in a mixed model, considering the textural classes, the soil classes and lithology as fixed factors and profiles as random factors. It may be concluded that water retention is greater in silty or clayey soils and that the organic matter content is higher, especially in Humic Cambisols, Nitisols and Ferralsol developed from igneous or sedimentary rocks. Water availability is greater in loam-textured soils, with high organic matter content, especially in soils of humic character. It is lower in the sandy texture class, especially in Arenosols formed from recent alluvial deposits or in gravelly soils derived from granite. The greater water availability in the surface horizons, with more organic matter than in the subsurface layers, illustrates the importance of organic matter for water retention and availability.

  12. Column-centrifugation method for determining water retention curves of soils and disperse sediments (United States)

    Smagin, A. V.


    A new instrumental method was proposed for the rapid estimation of the water-retention capacity of soils and sediments. The method is based on the use of a centrifugal field to remove water from distributed soil columns. In distinction from the classical method of high columns, the use of a centrifugal force field stronger than the gravity field allowed reducing the height of the soil samples from several meters to 10-20 cm (the typical size of centrifuge bags). In distinction from equilibrium centrifugation, the proposed method obtained an almost continuous water retention curve during the rotation of the soil column only at one-two centrifuge speeds. The procedure was simple in use, had high accuracy, and obtained reliable relationships between the capillary-sorption water potential and the soil water content in a wide range from the total water capacity to the wilting point.

  13. Models for prediction of retention in nonsuppressed ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Jenke, D.R.; Pagenkopf, G.K.


    The retention behavior of Br/sup -/, NO/sub 3//sup -/, Cl/sup -/, SO/sub 4//sup 2 -/, and S/sub 2/O/sub 3//sup 2 -/ in nonsuppressed ion chromatography is studied as a function of changing eluent composition. Three models, multiple species eluent, single species eluent, and single interaction sites, are utilized to predict chromatographic behavior. While all three are based on a thermodynamic equilibrium consideration of the ion exchange process, they differ in their characterization of the analyte/eluent competition or the ion/resin interaction. Despite this difference in approach, all three models effectively characterize the behavior of the analytes under elution conditions which are of practical importance. The relative utility of each model is discussed. 17 references, 4 tables.

  14. Pore-Scale Effects of Soil Structure And Microbial EPS Production On Soil Water Retention (United States)

    Orner, E.; Anderson, E.; Rubinstein, R. L.; Chau, J. F.; Shor, L. M.; Gage, D. J.


    Climate-induced changes to the hydrological cycle will increase the frequency of extreme weather events including powerful storms and prolonged droughts. Moving forward, one of the major factors limiting primary productivity in terrestrial ecosystems will be sub-optimal soil moisture. We focus here on the ability of soils to retain moisture under drying conditions. A soil's ability to retain moisture is influenced by many factors including its texture, its structure, and the activities of soil microbes. In soil microcosms, the addition of small amounts of microbially-produced extracellular polymeric substances (EPS) can dramatically shift moisture retention curves. The objective of this research is to better understand how soil structure and EPS may act together to retain moisture in unsaturated soils. Replicate micromodels with exactly-conserved 2-D physical geometry were initially filled with aqueous suspensions of one of two types of bacteria: one mutant was ultra- muccoid and the other was non-muccoid. Replicate micromodels were held at a fixed, external, relative humidity, and the position of the air-water interface was imaged over time as water evaporates. There was no forced convection of air or water inside the micromodels: drying was achieved by water evaporation and diffusion alone. We used a fully automated, inverted microscope to image replicate drying lanes each with dimensions of 1 mm x 10 mm. A complete set of images was collected every 30 minutes for 30 hours. The results show devices loaded with the highly muccoid strain remained >40% hydrated for 13 h, while devices loaded with the non-muccoid remained >40% hydrated for only 6 h, and were completely dry by 13 h. Current work is comparing interfacial water fluxes in structured and unstructured settings, and is attempting to model the synergistic effects of soil structure and EPS content on moisture retention in real soils. This research may allow more accurate description of naturally

  15. Thermodynamic modeling of protein retention in mixed-mode chromatography: An extended model for isocratic and dual gradient elution chromatography. (United States)

    Lee, Yi Feng; Graalfs, Heiner; Frech, Christian


    An extended model is developed to describe protein retention in mixed-mode chromatography based on thermodynamic principles. Special features are the incorporation of pH dependence of the ionic interaction on a mixed-mode resin and the addition of a water term into the model which enables one to describe the total number of water molecules released at the hydrophobic interfaces upon protein-ligand binding. Examples are presented on how to determine the model parameters using isocratic elution chromatography. Four mixed-mode anion-exchanger prototype resins with different surface chemistries and ligand densities were tested using isocratic elution of two monoclonal antibodies at different pH values (7-10) and encompassed a wide range of NaCl concentrations (0-5M). U-shape mixed-mode retention curves were observed for all four resins. By taking into account of the deprotonation and protonation of the weak cationic functional groups in these mixed-mode anion-exchanger prototype resins, conditions which favor protein-ligand binding via mixed-mode strong cationic ligands as well as conditions which favor protein-ligand binding via both mixed-mode strong cationic ligands and non-hydrophobic weak cationic ligands were identified. The changes in the retention curves with pH, salt, protein, and ligand can be described very well by the extended model using meaningful thermodynamic parameters like Gibbs energy, number of ionic and hydrophobic interactions, total number of released water molecules as well as modulator interaction constant. Furthermore, the fitted model parameters based on isocratic elution data can also be used to predict protein retention in dual salt-pH gradient elution chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Storm Water Management Model (SWMM) | Science Inventory ... (United States)

    Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Regulations that require the retention and/or treatment of frequent, small storms that dominate runoff volumes and pollutant loads are becoming more common. The U.S. Environmental Protection Agency (EPA) developed the Storm Water Management Model (SWMM) to help support local, state, and national stormwater management objectives to reduce runoff through infiltration and retention. SWMM was first developed in 1971 and has undergone several major upgrades since then. To inform the public on EPA's green infrastructure models.

  17. Sample dimensions effect on prediction of soil water retention curve and saturated hydraulic conductivity (United States)

    Soil water retention curve (SWRC) and saturated hydraulic conductivity (SHC) are key hydraulic properties for unsaturated zone hydrology and groundwater. Not only are the SWRC and SHC measurements time-consuming, their results are scale dependent. Although prediction of the SWRC and SHC from availab...

  18. Prediction of the saturated hydraulic conductivity from Brooks and Corey’s water retention parameters

    NARCIS (Netherlands)

    Nasta, P.; Vrugt, J.A.; Romano, N.


    Prediction of flow through variably saturated porous media requires accurate knowledge of the soil hydraulic properties, namely the water retention function (WRF) and the hydraulic conductivity function (HCF). Unfortunately, direct measurement of the HCF is time consuming and expensive. In this

  19. Opioid analgetics retention-pharmacologic activity models using biopartitioning micellar chromatography. (United States)

    Quiñones-Torrelo, C; Sagrado, S; Villanueva-Camañas, R M; Medina-Hernández, M J


    Opioids are drugs used in medicine for pain control. In this paper, retention-pharmacokinetics and retention-pharmacodynamics relationships of opioids are proposed and statistically validated. These models are based on the compound retention in the biopartitioning micellar chromatography system (BMC), a new methodology which has successfully been used to develop QRAR models for many other families of compounds. The obtained results are compared to the traditional QSAR models using lipophilicity data. The adequacy of QRAR models is due to the fact that the characteristics of the compounds such as the hydrophobicity, electronic charge and steric effects determine both their retention in BMC and their pharmacokinetic and pharmacodynamic behavior.

  20. Thermodynamic evaluation of the impact of strongly swelling polymer hydrogels with ionic silver on the water retention capacity of sandy substrate (United States)

    Smagin, A. V.


    The impact of two types of strongly swelling polymer hydrogel (SSPH) on the water retention capacity of quartz sand in pure water and Ag+ solutions (10-100 mg/l) has been studied by using a centrifugation method in a wide range of thermodynamic water potential (Gibbs energy) from 0 to 3030 J/kg. The experimental data for the water retention curves (WRC) were estimated by the van Genuchten model. Both hydrogels - the Aquasorb preparation (Germany) with hydrophilic properties and high degree of swelling in pure water (700-1000 g H2O/g) and the new Russian amphiphilic SSPH with a peat filler (degree of swelling 500-700 g H2O/g) were very effective as water adsorbing soil conditioners in relatively small doses from 0.05 to 0.3% per mass of dry (105°C) soil substrate. The water retention capacity of sandy substrate increases under the influence of SSPH with 2-3 times up to the level of native loamy sands and loams. Adding Ag+ to the water solution results just for the highest concentration of SSPH (0.3%) and iconic silver (100 mg/l) in a significant decrease of the water retention in the soil-gel compositions.

  1. Multi-decadal water-table manipulation alters peatland hydraulic structure and moisture retention. (United States)

    Moore, Paul; Morris, Paul; Waddington, James


    Peatlands are a globally important store of freshwater and soil carbon. However, there is a concern that these water and carbon stores may be at risk due to climate change as vapour pressure deficits, evapotranspiration and summer moisture deficits are expected to increase, leading to greater water table (WT) drawdown in northern continental regions where peatlands are prevalent. We argue that in order to evaluate the hydrological response (i.e. changes in WT level, storage, surface moisture availability, and moss evaporation) of peatlands under future climate change scenarios, the hydrophysical properties of peat and disparities between microforms must be well understood. A peatland complex disturbed by berm construction in the 1950's was used to examine the long-term impact of WT manipulation on peatland hydraulic properties and moisture retention at three adjacent sites with increasing average depth to WT (WET, INTermediate reference, and DRY). All three sites exhibited a strong depth dependence for hydraulic conductivity, specific yield, and bulk density. Moreover, the effect of microform on near-surface peat properties tended to be greater than the site effect. Bulk density was found to explain a high amount of variance (r2 > 0.69) in moisture retention across a range of pore water pressures (-15 to -500 cm H2O), where bulk density tended to be higher in hollows. The estimated residual water content for surface Sphagnum samples, while on average lower in hummocks (0.082 m3 m-3) versus hollows (0.087 m3 m-3), increased from WET (0.058 m3 m-3) to INT (0.088 m3 m-3) to DRY (0.108 m3 m-3) which has important implications for moisture stress under conditions of persistent WT drawdown. While we did not observe significant differences between sites, we did observe a greater proportional coverage and greater relative height of hummocks at the drier sites. Given the potential importance of microtopographic succession for altering peatland hydraulic structure, our

  2. Monitoring and Assessment of Water Retention Measures in Agricultural Land (United States)

    Výleta, Roman; Danáčová, Michaela; Škrinár, Andrej; Fencík, Róbert; Hlavčová, Kamila


    One of the most interesting events, from the environmental impact point of view, is the huge storm rainfall at which soil degradation processes occur. In Slovakia, agricultural areas with a higher slope have been recently increasingly denudated by water erosion processes. Areas having regular problems with muddy floods and denudation of soil particles have been currently identified. This phenomenon has long-term adverse consequences in the agricultural landscape, especially the decline in soil fertility, the influence on soil type and the reduction of depth of the soil profile. In the case of storm rainfall or long-term precipitation, soil particles are being transported and deposited at the foot of the slope, but in many cases the large amounts of sediment are transported by water in the form of muddy floods, while putting settlements and industrial zones at risk, along with contamination and clogging of watercourses and water reservoirs. These unfavourable phenomena may be prevented by appropriate management and application of technical measures, such as water level ditches, erosion-control weirs, terraces and others. The study deals with determination of the soil loss and denudation of soil particles caused by water erosion, as well as with determination of the volume of the surface runoff created by the regional torrential rains in the area of the village of Sobotište. The research is based on the analysis of flood and erosion-control measures implemented in this area. Monitoring of these level ditches for protection against muddy floods has been carried out since 2015 using UAV technology and terrestrial laser scanning. Monitoring is aimed on determination of the volume of the ditch, changes in its capacity and shape in each year. The study evaluates both the effectiveness of these measures to reduce the surface runoff as well as the amount of eroded soil particles depending on climatological conditions. The results of the research point to the good

  3. Assessment of pedotransfer functions for estimating soil water retention curves for the amazon region

    Directory of Open Access Journals (Sweden)

    João Carlos Medeiros


    Full Text Available Knowledge of the soil water retention curve (SWRC is essential for understanding and modeling hydraulic processes in the soil. However, direct determination of the SWRC is time consuming and costly. In addition, it requires a large number of samples, due to the high spatial and temporal variability of soil hydraulic properties. An alternative is the use of models, called pedotransfer functions (PTFs, which estimate the SWRC from easy-to-measure properties. The aim of this paper was to test the accuracy of 16 point or parametric PTFs reported in the literature on different soils from the south and southeast of the State of Pará, Brazil. The PTFs tested were proposed by Pidgeon (1972, Lal (1979, Aina & Periaswamy (1985, Arruda et al. (1987, Dijkerman (1988, Vereecken et al. (1989, Batjes (1996, van den Berg et al. (1997, Tomasella et al. (2000, Hodnett & Tomasella (2002, Oliveira et al. (2002, and Barros (2010. We used a database that includes soil texture (sand, silt, and clay, bulk density, soil organic carbon, soil pH, cation exchange capacity, and the SWRC. Most of the PTFs tested did not show good performance in estimating the SWRC. The parametric PTFs, however, performed better than the point PTFs in assessing the SWRC in the tested region. Among the parametric PTFs, those proposed by Tomasella et al. (2000 achieved the best accuracy in estimating the empirical parameters of the van Genuchten (1980 model, especially when tested in the top soil layer.

  4. Post main sequence evolution of icy minor planets: water retention and white dwarf pollution (United States)

    Malamud, Uri; Perets, Hagai


    We investigate the evolution of icy minor planets from the moment of their birth and through the all evolutionary stages of their host stars, including the main sequence, red giant branch and asymptotic giant branch phases. We then asses the degree of water retention in planetary systems around white dwarf, as a function of various parameters. We consider progenitor stars of different masses and metallicities. We also consider minor planets of various sizes, initial orbital distances, compositions and formation times. Our results indicate that water can survive to the white dwarf stage in a variety of circumstances, especially around G, F, A and even some B type stars. We discuss the significance of water retention with respect to white dwarf pollution and also for planet habitability.

  5. Stochastic modeling of Cryptosporidium parvum to predict transport, retention, and downstream exposure (United States)

    Drummond, J. D.; Boano, F.; Atwill, E. R.; Li, X.; Harter, T.; Packman, A. I.


    Rivers are a means of rapid and long-distance transmission of pathogenic microorganisms from upstream terrestrial sources. Thus, significant fluxes of pathogen loads from agricultural lands can occur due to transport in surface waters. Pathogens enter streams and rivers in a variety of processes, notably overland flow, shallow groundwater discharge, and direct inputs from host populations such as humans and other vertebrate species. Viruses, bacteria, and parasites can enter a stream and persist in the environment for varying amounts of time. Of particular concern is the protozoal parasite, Cryptosporidium parvum, which can remain infective for weeks to months under cool and moist conditions, with the infectious state (oocysts) largely resistant to chlorination. In order to manage water-borne diseases more effectively we need to better predict how microbes behave in freshwater systems, particularly how they are transported downstream in rivers and in the process interact with the streambed and other solid surfaces. Microbes continuously immobilize and resuspend during downstream transport due to a variety of processes, such as gravitational settling, attachment to in-stream structures such as submerged macrophytes, and hyporheic exchange and filtration within underlying sediments. These various interactions result in a wide range of microbial residence times in the streambed and therefore influence the persistence of pathogenic microbes in the stream environment. We developed a stochastic mobile-immobile model to describe these microbial transport and retention processes in streams and rivers that also accounts for microbial inactivation. We used the model to assess the transport, retention, and inactivation of C. parvum within stream environments, specifically under representative flow conditions of California streams where C. parvum exposure can be at higher risk due to agricultural nonpoint sources. The results demonstrate that the combination of stream reach

  6. Towards a chromatographic similarity index to establish localized quantitative structure-retention models for retention prediction: Use of retention factor ratio. (United States)

    Tyteca, Eva; Talebi, Mohammad; Amos, Ruth; Park, Soo Hyun; Taraji, Maryam; Wen, Yabin; Szucs, Roman; Pohl, Christopher A; Dolan, John W; Haddad, Paul R


    Quantitative Structure-Retention Relationships (QSRR) have the potential to speed up the screening phase of chromatographic method development as the initial exploratory experiments are replaced by prediction of analyte retention based solely on the structure of the molecule. The present study offers further proof-of-concept of localized QSRR modelling, in which the retention of any given compound is predicted using only the most chromatographically similar compounds in the available dataset. To this end, each compound in the dataset was sequentially removed from the database and individually utilized as a test analyte. In this study, we propose the retention factor k as the most relevant chromatographic similarity measure and compare it with the Tanimoto index, the most popular similarity measure based on chemical structure. Prediction error was reduced by up to 8 fold when QSRR was based only on chromatographically similar compounds rather than using the entire dataset. The study therefore shows that the design of a practically useful structural similarity index should select the same compounds in the dataset as does the k-similarity filter in order to establish accurate predictive localized QSRR models. While low average prediction errors (Mean Absolute Error (MAE)1min) and significant deviations from the reference slope of 1.0. The Tanomoto similarity index therefore appears to have limited general utility in QSRR studies. Future studies therefore aim at designing a more appropriate chromatographic similarity index that can then be applied for unknown compounds (that is, compounds which have not been tested previously on the chromatographic system used, but for which the chemical structures are known). Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  7. Soil water retention curves for the major soil types of the Kruger National Park

    Directory of Open Access Journals (Sweden)

    Robert Buitenwerf


    Full Text Available Soil water potential is crucial to plant transpiration and thus to carbon cycling and biosphere–atmosphere interactions, yet it is difficult to measure in the field. Volumetric and gravimetric water contents are easy and cheap to measure in the field, but can be a poor proxy of plant-available water. Soil water content can be transformed to water potential using soil moisture retention curves. We provide empirically derived soil moisture retention curves for seven soil types in the Kruger National Park, South Africa. Site-specific curves produced excellent estimates of soil water potential from soil water content values. Curves from soils derived from the same geological substrate were similar, potentially allowing for the use of one curve for basalt soils and another for granite soils. It is anticipated that this dataset will help hydrologists and ecophysiologists understand water dynamics, carbon cycling and biosphere–atmosphere interactions under current and changing climatic conditions in the region.

  8. An employer brand predictive model for talent attraction and retention

    Directory of Open Access Journals (Sweden)

    Annelize Botha


    Full Text Available Orientation: In an ever shrinking global talent pool organisations use employer brand to attract and retain talent, however, in the absence of theoretical pointers, many organisations are losing out on a powerful business tool by not developing or maintaining their employer brand correctly. Research purpose: This study explores the current state of knowledge about employer brand and identifies the various employer brand building blocks which are conceptually integrated in a predictive model.Motivation for the study: The need for scientific progress though the accurate representation of a set of employer brand phenomena and propositions, which can be empirically tested, motivated this study.Research design, approach and method: This study was nonempirical in approach and searched for linkages between theoretical concepts by making use of relevant contextual data. Theoretical propositions which explain the identified linkages were developed for purpose of further empirical research.Main findings: Key findings suggested that employer brand is influenced by target group needs, a differentiated Employer Value Proposition (EVP, the people strategy, brand consistency, communication of the employer brand and measurement of Human Resources (HR employer branding efforts.Practical/managerial implications: The predictive model provides corporate leaders and their human resource functionaries a theoretical pointer relative to employer brand which could guide more effective talent attraction and retention decisions.Contribution/value add: This study adds to the small base of research available on employer brand and contributes to both scientific progress as well as an improved practical understanding of factors which influence employer brand.

  9. Saturated hydraulic conductivity and soil water retention properties across a soil-slope transition (United States)

    Mohanty, Binayak P.; Mousli, Zak


    The hydraulic properties of soil and their spatial structures are important for understanding soil moisture dynamics, land surface and subsurface hydrology, and contaminant transport. We investigated whether landscape features, including relative position on a slope, contribute to the variability of soil hydraulic properties in a complex terrain of a glacial till material. Using 396 undisturbed soil cores collected along two orthogonal transects, we measured saturated hydraulic conductivity (Ksat) and soil water retention functions at two (15 and 30 cm) depths across a glacial till landscape in central Iowa that encompassed two soil types (Nicollet loam with 1-3% slope on the hilltop position and Clarion loam with 2-5% slope on the shoulder position). The van Genuchten-Mualem model was fitted to the experimental data using the RETC optimization computer code. At the 15 cm depth a statistical comparison indicated significant differences in Ksat, saturated water content (θs), water content at permanent wilting point (θ15,000) and van Genuchten fitting parameters (α and n) between soil types and landscape positions. At the 30 cm depth, θs, θ15,000, and residual water content (θr) were found to be significantly different across the soil-slope transition. Available water content (θ333-15,000) did not show any significant difference across the soil-slope transition for either depth. No clear directional trend was observed, with some exceptions for Ksat, θs, and α on specific transect limbs and depths. Drifts in the soil hydraulic parameters due to soil-slope transition were removed using a mean-polishing approach. Geostatistical analyses of these parameters showed several important characteristics including the following: (1) The spatial correlation lengths and semivariogram patterns of the independently measured (or estimated) loge Ksat and θs at 30-cm depth matched extremely well; (2) better spatial structures with large correlation lengths were observed for

  10. Biochar amendment to coarse sandy subsoil improves root growth and increases water retention

    DEFF Research Database (Denmark)

    Bruun, Esben; Petersen, C. T.; Hansen, E.


    barley (Hordeum vulgare cv. Anakin) was grown in soil columns (diameter: 30 cm) prepared with 25 cm topsoil, 75 cm biochar-amended subsoil, and 30 cm un-amended subsoil lowermost placed on an impervious surface. Low-temperature gasification straw-biochar (at 0, 0.50, 1.0, 2.0, and 4.0 wt%) and slow......Crop yields and yield potentials on Danish coarse sandy soils are strongly limited due to restricted root growth and poor water and nutrient retention. We investigated if biochar amendment to subsoil can improve root development in barley and significantly increase soil water retention. Spring...... residues from bioenergy technologies such as straw-biochar is a promising option. © 2014 British Society of Soil Science....

  11. Lace-Espana experimental programme on the retention of aerosols in water pools

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, M. J.; Gomez, F. J.; Melches, I.; Martin, M.; Lopez, M.


    A matrix of eleven experiments on aerosol retention behaviour in submerged beds and suppression pools in water- cooled reactors under severe accident conditions has been performed, for these experiments, an intermediate scales, multi-purpose facility was set up at CIEMAT (Madrid). The facility includes various systems: aerosol generation (Csl), mixing section, injection line and pool-vessel (8 m{sup 3} ), as well as the corresponding aerosol instrumentation and a process control and data acquisition system. Some parameters have been varied in order to study their influence in the DF: steam/noncondensable ratio in the accidental mixture (0.1 to 0.9), particle size, flow rate (two regimes: bubble and jet) and injector geometry (mono orifice and multi orifice). On the other hand, some parameters have been kept constant along the experiments; pool geometry (diameter, water level), water temperature, pressure in the atmosphere above the water, submergence, injection temperature and injection time. A rapid decrease in the DF is observed as the proportion of particles measuring less than 1 {mu}m increases. Retention decreases in the case of smaller particles and considerably higher in the case of larger particles. It has been also possible to observe the influence of the injected steam fraction. Experiments with greater fraction than the saturation fraction have greater DF than those ones with smaller fractions. The jet regime with horizontal injection and the multi orifice geometry would appear to show a somewhat higher capacity of retention than those in the bubble regime under similar conditions. It would be necessary to confirm this greater capacity for retention by means of additional experimental data. This work, performed by the LACE-Espana Consortium, has been carried out in the frame of the European Commissions Shared Cost Action Programme on Reactor Safety 1988-91 on a contractual basis. (Author)18 refs.

  12. Soil-water retention curve and beginning of monitoring in Tierra Blanca Joven (TBJ)


    Chávez, José A.; López, Reynaldo; Kopecky, Lubomir; Landaverde, José


    In El Salvador during the rainy season or when major earthquakes occur, the areas covered by the volcanic tephras Tierra Blanca Joven (TBJ) suffer mass movements, liquefaction and erosion; causing important en- vironmental, social and economic losses. To start the characterization of these unsaturated soils, suction values of a fall unit of TBJ were obtained using pressure plate, centrifuge and filter paper to build a Soil-Water Retention Curve. The use of this curve into finite elements soft...





    Top-quality food produce and high profitability in processing requires high quality in raw materials. Therefore, to achieve these objectives, it is imperative to know the properties of the war materials, and the factors that influence these properties.The properties of the meat directly involved in increasing economic efficiency and final produce quality are the so-called technological properties: hydration capacity and water retention capacity of meat. These properties are determined by some...

  14. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai


    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... treatments. Six months after the last biochar application, intact and disturbed soil samples were collected for analyses. Soil water retention was measured from −1 kPa to −100 kPa using tension tables and ceramic plates and from −10 MPa to −480 MPa using a Vapor Sorption Analyzer. Soil specific area......+2012). Although a similar trend of increased water retention was observed from −100 MPa to −480 MPa, there was little difference among the different biochar rates. Increases in soil specific surface area for biochar treatments were consistent with rates and slurry application. Apparent hysteresis of the dry...

  15. A hydrologic retention system and water quality monitoring program for a human decomposition research facility: concept and design. (United States)

    Wozniak, Jeffrey R; Thies, Monte L; Bytheway, Joan A; Lutterschmidt, William I


    Forensic taphonomy is an essential research field; however, the decomposition of human cadavers at forensic science facilities may lead to nutrient loading and the introduction of unique biological compounds to adjacent areas. The infrastructure of a water retention system may provide a mechanism for the biogeochemical processing and retention of nutrients and compounds, ensuring the control of runoff from forensic facilities. This work provides a proof of concept for a hydrologic retention system and an autonomous water quality monitoring program designed to mitigate runoff from The Southeast Texas Applied Forensic Science (STAFS) Facility. Water samples collected along a sample transect were analyzed for total phosphorous, total nitrogen, NO3-, NO2-, NH4, F(-), and Cl(-). Preliminary water quality analyses confirm the overall effectiveness of the water retention system. These results are discussed with relation to how this infrastructure can be expanded upon to monitor additional, more novel, byproducts of forensic science research facilities. © 2014 American Academy of Forensic Sciences.

  16. A New Approach to Modelling Student Retention through an Application of Complexity Thinking (United States)

    Forsman, Jonas; Linder, Cedric; Moll, Rachel; Fraser, Duncan; Andersson, Staffan


    Complexity thinking is relatively new to education research and has rarely been used to examine complex issues in physics and engineering education. Issues in higher education such as student retention have been approached from a multiplicity of perspectives and are recognized as complex. The complex system of student retention modelling in higher…

  17. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity

    DEFF Research Database (Denmark)

    Nielsen, G D; Søderberg, U; Jørgensen, Poul Jørgen


    Two studies were performed to examine the influence of fasting and food intake on the absorption and retention of nickel added to drinking water and to determine if nickel sensitization played any role in this regard. First, eight nonallergic male volunteers fasted overnight before being given...... nickel in drinking water (12 micrograms Ni/kg) and, at different time intervals, standardized 1400-kJ portions of scrambled eggs. When nickel was ingested in water 30 min or 1 h prior to the meal, peak nickel concentrations in serum occurred 1 h after the water intake, and the peak was 13-fold higher...... than the one seen 1 h after simultaneous intake of nickel-containing water and scrambled eggs. In the latter case, a smaller, delayed peak occurred 3 h after the meal. Median urinary nickel excretion half-times varied between 19.9 and 26.7 h. Within 3 days, the amount of nickel excreted corresponded...

  18. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura


    In situ measurements of soil suction and water content in deep soil layers still represent an experimental challenge. Mostly developed within agriculture related disciplines, field techniques for the identification of soil retention behaviour have been so far employed in the geotechnical context...... instruments to characterise deep soil layers. Multi-depth installations have been successfully carried out using two different sensors to measure the soil suction and water content up to 7m from the soil surface. Preliminary laboratory investigations were also shown to provide a reasonable benchmark...

  19. Increased Milk Protein Concentration in a Rehydration Drink Enhances Fluid Retention Caused by Water Reabsorption in Rats. (United States)

    Ito, Kentaro; Saito, Yuri; Ashida, Kinya; Yamaji, Taketo; Itoh, Hiroyuki; Oda, Munehiro


    A fluid-retention effect is required for beverages that are designed to prevent dehydration. That is, fluid absorbed from the intestines should not be excreted quickly; long-term retention is desirable. Here, we focused on the effect of milk protein on fluid retention, and propose a new effective oral rehydration method that can be used daily for preventing dehydration. We first evaluated the effects of different concentrations of milk protein on fluid retention by measuring the urinary volumes of rats fed fluid containing milk protein at concentrations of 1, 5, and 10%. We next compared the fluid-retention effect of milk protein-enriched drink (MPD) with those of distilled water (DW) and a sports drink (SD) by the same method. Third, to investigate the mechanism of fluid retention, we measured plasma insulin changes in rats after ingesting these three drinks. We found that the addition of milk protein at 5 or 10% reduced urinary volume in a dose-dependent manner. Ingestion of the MPD containing 4.6% milk protein resulted in lower urinary volumes than DW and SD. MPD also showed a higher water reabsorption rate in the kidneys and higher concentrations of plasma insulin than DW and SD. These results suggest that increasing milk protein concentration in a beverage enhances fluid retention, which may allow the possibility to develop rehydration beverages that are more effective than SDs. In addition, insulin-modifying renal water reabsorption may contribute to the fluid-retention effect of MPD.

  20. Modelos de ajuste e métodos para a determinação da curva de retenção de água de um Latossolo-vermelho-amarelo Adjustment models and methods for determining the soil water retention curve of a red-yellow Latosol

    Directory of Open Access Journals (Sweden)

    Wanderley Andrade Costa


    Full Text Available A caracterização da capacidade de retenção de água de um solo é fundamental para a descrição do fluxo de água através dele e para o adequado manejo da irrigação. São apresentadas comparações entre curvas de retenção de água do solo: ajustadas pelos modelos propostos por van Genuchten e por Hutson & Cass; obtidas pelo método do WP4 usando processo de umedecimento e de secagem; obtidas pelo método da centrífuga utilizando amostras deformadas e indeformadas; e obtidas pelo WP4 e centrífuga, usando um processo de secagem e amostra deformada. Amostras deformadas e indeformadas foram coletadas com trados específicos em um Latossolo Vermelho-Amarelo (LVA, textura argilosa. Foram determinadas as propriedades hídricas do solo necessárias à elaboração das curvas de retenção de água obtidas por análise de regressão. O modelo de van Genuchten possibilitou o melhor ajuste nas diversas situações estudadas. Considerando o processo de secagem, o teor de água útil obtido superou em 13 % o resultado do processo de umedecimento e evidenciou reduzido efeito de histerese. A amostra deformada apresentou-se com um teor de água útil superior 61,7 % ao valor obtido para a amostra indeformada. Entre os métodos estudados, verificou-se que aquele que usa o WP4 subestimou os dados obtidos pela centrífuga. Verificou-se que há diferenças entre amostra deformada e indeformada e os métodos utilizados na obtenção da curva de retenção.The characterization of the soil water retention capacity is fundamental for an adequate irrigation management and water flow description. We present comparisons of soil water retention curves adjusted in distinct ways: by the models proposed by van Genuchten and by Hutson & Cass; by the WP4 method in a wetting and drying process; by the centrifuge method using disturbed as well as undisturbed soil samples; and by the WP4 and centrifuge using a drying process and disturbed soil samples. Disturbed and

  1. Retention of contaminants in northern natural peatlands treating mine waste waters (United States)

    Palmer, Katharina; Ronkanen, Anna-Kaisa; Klöve, Björn


    The mining industry in Finland is growing, leading to an increasing number of working and proposed mine sites. As a consequence, the amount of mine waste waters created is likewise increasing. This poses a great challenge for water management and purification, as these mine waste waters can lead to severe environmental and health consequences when released to receiving water bodies untreated. In the past years, the use of natural peatlands for cost-effective passive waste water treatment has been increasing. In this study, the fate of mine water contaminants in a treatment peatland receiving process waters from the Kittilä gold mine was investigated. Special attention was paid to the fate of potentially harmful substances such as arsenic, antimony or nickel. During the 4 years of operation, the peatland removed contaminants from process waters at varying efficiencies. While arsenic, antimony and nickel were retained at high efficiencies (>80% retention), other contaminants such as zinc, sulfate or iron were not retained or even leaching from the peatland. Soil samples taken in 2013 showed a linear increase of arsenic, antimony and nickel concentration in the peatland as compared to earlier sampling times, in agreement with the good retention efficiencies for those contaminants. Measured concentrations exceeded guideline values for contaminated soils, indicating that the prolonged use of treatment peatlands leads to high soil contamination and restrict further uses of the peatlands without remediation measures. Soil and pore water samples were taken along a transect with varying distance from the process water distribution ditch and analyzed for total and more easily mobile concentrations of contaminants (peat soil) as well as total and dissolved contaminants (water samples). Concentrations of contaminants such as arsenic, manganese or antimony in peat and pore water samples were highest near the distribution ditch and decreased with increasing distance from the

  2. Application of the Denitrification-Decomposition Model to Predict Carbon Dioxide Emissions under Alternative Straw Retention Methods

    Directory of Open Access Journals (Sweden)

    Can Chen


    Full Text Available Straw retention has been shown to reduce carbon dioxide (CO2 emission from agricultural soils. But it remains a big challenge for models to effectively predict CO2 emission fluxes under different straw retention methods. We used maize season data in the Griffith region, Australia, to test whether the denitrification-decomposition (DNDC model could simulate annual CO2 emission. We also identified driving factors of CO2 emission by correlation analysis and path analysis. We show that the DNDC model was able to simulate CO2 emission under alternative straw retention scenarios. The correlation coefficients between simulated and observed daily values for treatments of straw burn and straw incorporation were 0.74 and 0.82, respectively, in the straw retention period and 0.72 and 0.83, respectively, in the crop growth period. The results also show that simulated values of annual CO2 emission for straw burn and straw incorporation were 3.45 t C ha−1 y−1 and 2.13 t C ha−1 y−1, respectively. In addition the DNDC model was found to be more suitable in simulating CO2 mission fluxes under straw incorporation. Finally the standard multiple regression describing the relationship between CO2 emissions and factors found that soil mean temperature (SMT, daily mean temperature (Tmean, and water-filled pore space (WFPS were significant.

  3. Approaching the Challenge of Student Retention through the Lens of Quality Control: A Conceptual Model of University Business Student Retention Utilizing Six Sigma (United States)

    Jenicke, Lawrence O.; Holmes, Monica C.; Pisani, Michael J.


    Student retention in higher education is a major issue as academic institutions compete for fewer students and face declining enrollments. A conceptual model of applying the quality improvement methodology of Six Sigma to the problem of undergraduate student retention in a college of business is presented. Improvement techniques such as cause and…


    Directory of Open Access Journals (Sweden)

    Rinaldi Idroes


    Full Text Available Some factors such as the changes of the stationary phase, temperature, pH-value, mobile-phase composition and flow rate play a crucial role in effecting the sensitivity of retention times in high performance liquid chromatography (HPLC system. Utilizing a retention index system is one of the methods to minimize those effects. Besides the mentioned factors, dead-time influences on determining the retention index as well. In comparison with Gas Chromatography (GC, the retention Index determination method in HPLC is still widely discussed, due to the difficulty of utilizing n-alkane as standard. In addition, the solutes in HPLC interact with the mobile-phase, thus the retention behavior also depend on the mobile-phase. Actually, It is difficult to use n-alkanes in HPLC as standards in case of some considerable problems, due to they are very non polar but also large retention times which lack of chromophores. Therefore, using n-alkane in routine analysis could be inconvenient. In comparison with n-alkanes, the alkylarylketones homologous series are stable compounds, commercially available and easily detected by a UV detector. This paper introduces Determination of Kovats Retention Index in the HPLC using Alkylarylketone homologous series and then is connected with n-alkane as a frame of reference. Steroids were used as test substance for calculating Kovats retention index values in acetonitrile/water system.   Keywords: Kovats Retention Index, RP- HPLC, n-alkane, alkylarylketone

  5. Using a Dynamic Retention Model to Analyze the Impact of Aviation Career Continuation Pay on the Retention of Naval Aviators (United States)


    will be ready for potential battle. In 2007, RAND Corporation published “The Dynamic Retention Model for Air Force Officers.” In the past, the...VRC (E‐2C Hawkeye)  $0    $5,000  VRC (C‐2A  Greyhound )  $0    $5,000  Table 1. Aviator Bonus Amounts for Fiscal Years 2011 and 2012 In 2012, the...format designed by the RAND Corporation for use with the DRM, the final data set also consisted of commissioning source, length of the initial

  6. Retention, Persistence, and Enrollment Management: An Exploration of Organizational Models (United States)

    Bartlett, Stacy A.


    Low student retention and persistence continues to be a major problem within American higher education (Elkins, Braxton, & James, 2000; Kalsbeek & Hossler, 2010; Kezar, 2004; Tinto, 2006-2007). Less is known about the institutional organizational behavior influence on student persistence (Berger, 2001-2002); and while enrollment management…


    Directory of Open Access Journals (Sweden)

    Joanna Ewa Szczykowska


    Full Text Available Dam retention reservoirs created on the rivers play a special role as an environmentally friendly forms of stopping and slowing of water runoff. The aim of this study was to evaluate the quality of water flowing into small retention reservoirs in terms of the concentration of total phosphorus and phosphates. The study involved three small retention reservoirs located in the municipalities of: Bransk, Dubicze Cerkiewne and Kleszczele in Podlasie region. Selection of the research facilities was made due to the similarity in the soil management type within catchment of the flowing watercourse, retained water utilization ways, and a small surface of reservoirs. Watercourse reaching the reservoir provides biogens along with water, which directly affect the water quality resulting in high concentrations in water, either indirectly by initiating or accelerating the process of degradation of the reservoir and the loss of its usability. Given the concentration of total phosphorus, it can be said that only in the case of 20.8% of water samples from Nurzec river feeding the Otapy-Kiersnówek reservoir, about 25% of water samples of Orlanka river feeding Bachmaty reservoir, and 17% of samples taken from the watercourse supplying Repczyce reservoir, corresponded to values specified for the second class in the current Regulation of the Minister of the Environment [Regulation 2014]. It can be assumed that this situation is caused by a long-term fertilization using manure, which in consequence led to the oversaturation of soils and phosphorus compounds penetration into the river waters in areas used for agricultural purposes. Especially in the early spring periods, rising temperature together with rainfall caused soil thawing resulting in increasing concentrations of contaminants carried along with the washed soil particles during the surface and subsurface runoff. Values of TSI(TP calculated for Otapy-Kiersnówek reservoir amounted to 112.4 in hydrological

  8. Gastric emptying of water in children with severe functional fecal retention

    Directory of Open Access Journals (Sweden)

    V.P.I. Fernandes

    Full Text Available The objective of this study was to evaluate gastric emptying (GE in pediatric patients with functional constipation. GE delay has been reported in adults with functional constipation. Gastric emptying studies were performed in 22 children with chronic constipation, fecal retention and fecal incontinence, while presenting fecal retention and after resuming regular bowel movements. Patients (18 boys, median age: 10 years; range: 7.2 to 12.7 years were evaluated in a tertiary pediatric gastroenterology clinic. Gastric half-emptying time of water (reference range: 12 ± 3 min was measured using a radionuclide technique immediately after first patient evaluation, when they presented fecal impaction (GE1, and when they achieved regular bowel movements (GE2, 12 ± 5 weeks after GE1. At study admission, 21 patients had reported dyspeptic symptoms, which were completely relieved after resuming regular bowel movements. Medians (and interquartile ranges for GE1 and GE2 were not significantly different [27.0 (16 and 27.5 (21 min, respectively (P = 0.10]. Delayed GE seems to be a common feature among children with chronic constipation and fecal retention. Resuming satisfactory bowel function and improvement in dyspeptic symptoms did not result in normalization of GE data.

  9. An assessment of the BEST procedure to estimate the soil water retention curve (United States)

    Castellini, Mirko; Di Prima, Simone; Iovino, Massimo


    The Beerkan Estimation of Soil Transfer parameters (BEST) procedure represents a very attractive method to accurately and quickly obtain a complete hydraulic characterization of the soil (Lassabatère et al., 2006). However, further investigations are needed to check the prediction reliability of soil water retention curve (Castellini et al., 2016). Four soils with different physical properties (texture, bulk density, porosity and stoniness) were considered in this investigation. Sites of measurement were located at Palermo University (PAL site) and Villabate (VIL site) in Sicily, Arborea (ARB site) in Sardinia and in Foggia (FOG site), Apulia. For a given site, BEST procedure was applied and the water retention curve was estimated using the available BEST-algorithms (i.e., slope, intercept and steady), and the reference values of the infiltration constants (β=0.6 and γ=0.75) were considered. The water retention curves estimated by BEST were then compared with those obtained in laboratory by the evaporation method (Wind, 1968). About ten experiments were carried out with both methods. A sensitivity analysis of the constants β and γ within their feasible range of variability (0.1appears questionable. The linear regression between the soil water retention curves of BEST-slope and BEST-intercept (note that the same result is obtained with BEST-steady, due to a purely analytical reason) vs. lab method showed the following main results: i) the BEST procedure generally tends to underestimate the soil water retention (the exception was the PAL site); depending on the soil and algorithmic, the root mean square differences, RMSD obtained with BEST and lab method ranged between 0.028 cm3/cm3 (VIL, BEST-slope) and 0.082 cm3/cm3(FOG, BEST-intercept/steady); highest RMSD values (0.124-0.140 cm3/cm3) were obtained in the PAL site; ii) depending on the soil, BEST-slope generally determined lowest RMSD values (by a factor of 1.2-2.1); iii) when the whole variability range of


    Energy Technology Data Exchange (ETDEWEB)

    J.B. Case


    The drainage of water from the emplacement drift is essential for the performance of the EBS. The unsaturated flow properties of the surrounding rock matrix and fractures determine how well the water will be naturally drained. To enhance natural drainage, it may be necessary to introduce engineered drainage features (e.g. drilled holes in the drifts), that will ensure communication of the flow into the fracture system. The purpose of the Water Drainage Model is to quantify and evaluate the capability of the drift to remove water naturally, using the selected conceptual repository design as a basis (CRWMS M&O, 1999d). The analysis will provide input to the Water Distribution and Removal Model of the EBS. The model is intended to be used to provide postclosure analysis of temperatures and drainage from the EBS. It has been determined that drainage from the EBS is a factor important to the postclosure safety case.

  11. Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model. (United States)

    Park, Soo Hyun; Haddad, Paul R; Talebi, Mohammad; Tyteca, Eva; Amos, Ruth I J; Szucs, Roman; Dolan, John W; Pohl, Christopher A


    Quantitative Structure-Retention Relationships (QSRRs) represent a popular technique to predict the retention times of analytes, based on molecular descriptors encoding the chemical structures of the analytes. The linear solvent strength (LSS) model relating the retention factor, k to the eluent concentration (log k=a-blog [eluent]), is a well-known and accurate retention model in ion chromatography (IC). In this work, QSRRs for inorganic and small organic anions were used to predict the regression parameters a and b in the LSS model (and hence retention times) for these analytes under a wide range of eluent conditions, based solely on their chemical structures. This approach was performed on retention data of inorganic and small organic anions from the "Virtual Column" software (Thermo Fisher Scientific). These retention data were recalibrated via a "porting" methodology on three columns (AS20, AS19, and AS11HC), prior to the QSRR modeling. This provided retention data more applicable on recently produced columns which may exhibit changes of column behavior due to batch-to-batch variability. Molecular descriptors for the analytes were calculated with Dragon software using the geometry-optimized molecular structures, employing the AM1 semi-empirical method. An optimal subset of molecular descriptors was then selected using an evolutionary algorithm (EA). Finally, the QSRR models were generated by multiple linear regression (MLR). As a result, six QSRR models with good predictive performance were successfully derived for a- and b-values on three columns (R(2)>0.98 and RMSE0.7 and RMSEP<0.4). Moreover, it was demonstrated that the obtained QSRR models for the a- and b-values can predict the retention times for new analytes with good accuracy and predictability (R(2) of 0.98, RMSE of 0.89min, Qext(F3)(2) of 0.96 and RMSEP of 1.18min). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Hydro-mechanical paths within unsaturated compacted soil framed through water retention surfaces

    Directory of Open Access Journals (Sweden)

    Pelizzari Benjamin


    Full Text Available Compaction is a key issue of modern earthworks... From sustainable development, a need arise of using materials for compaction under given conditions that would normally be avoid due to unpredictable pathologies. The application of compaction on fine grained soils, without a change of gravimetric water content, lead to very important modifications of the void ratio and hence suction. Therefore the hydro-mechanical behaviour of fine grained soil need to be rendered around three variables: suction, void ratio, saturation degree or water content. The barring capacity of the soil is assessed through Penetrometers (In-situ manual penetrometer, CBR in order to assess gains through compaction. The three states variables are then assessed for in situ and frame through water retention surfaces, realized from Proctor tests, in which compaction effect and path could be described.

  13. Assessment of water retention function as tool to improve integrated watershed management (case study of Poprad river basin, Slovakia). (United States)

    Šatalová, Barbora; Kenderessy, Pavol


    The presented study concentrates on assessing the ecosystem function of water retention. The water retention function is defined as the ability of the landscape to retain water, slow runoff and encourage water infiltration. The water retention function was expressed by calculating the hydric significance (HS) indicator. This method is based on scoring the individual input parameters according to their overall impact on watershed hydrology. The study was conducted on a sample area of Poprad River basin. The final results presented a spatial distribution of hydric function within the watershed classified according to its significance into four classes (from limited to excellent significance). A breakdown of the results on the level of elementary watersheds was used in order to examine those with low hydric function. The results showed a significant influence of land-use on retention function; however, this impact could be limited by extreme precipitation or high soil water saturation. The methodology of hydric significance represents an innovative approach towards assessment of ecosystem function of water retention on regional level. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs


    Ma, Weimin; Yuan, Yidan; Sehgal, Bal Raj


    A historical review of in-vessel melt retention (IVR) is given, which is a severe accident mitigation measure extensively applied in Generation III pressurized water reactors (PWRs). The idea of IVR actually originated from the back-fitting of the Generation II reactor Loviisa VVER-440 in order to cope with the core-melt risk. It was then employed in the new deigns such as Westinghouse AP1000, the Korean APR1400 as well as Chinese advanced PWR designs HPR1000 and CAP1400. The most influential...


    Directory of Open Access Journals (Sweden)



    Full Text Available Top-quality food produce and high profitability in processing requires high quality in raw materials. Therefore, to achieve these objectives, it is imperative to know the properties of the war materials, and the factors that influence these properties.The properties of the meat directly involved in increasing economic efficiency and final produce quality are the so-called technological properties: hydration capacity and water retention capacity of meat. These properties are determined by some factors belonging to the intrinsic quality of meat, animal slaughter methods, technological operations applied to the meat, and the auxiliary materials used.

  16. Nitrate retention in riparian ground water at natural and elevated nitrate levels in north central Minnesota. (United States)

    Duff, John H; Jackman, Alan P; Triska, Frank J; Sheibley, Richard W; Avanzino, Ronald J


    The relationship between local ground water flows and NO(3)(-) transport to the channel was examined in three well transects from a natural, wooded riparian zone adjacent to the Shingobee River, MN. The hillslope ground water originated as recharge from intermittently grazed pasture up slope of the site. In the hillslope transect perpendicular to the stream, ground water NO(3)(-) concentrations decreased from approximately 3 mg N L(-1) beneath the ridge (80 m from the channel) to 0.01 to 1.0 mg N L(-1) at wells 1 to 3 m from the channel. The Cl(-) concentrations and NO(3)/Cl ratios decreased toward the channel indicating NO(3)(-) dilution and biotic retention. In the bankside well transect parallel to the stream, two distinct ground water environments were observed: an alluvial environment upstream of a relict beaver dam influenced by stream water and a hillslope environment downstream of the relict beaver dam. Nitrate was elevated to levels representative of agricultural runoff in a third well transect located approximately 5 m from the stream to assess the effectiveness of the riparian zone as a NO(3)(-) sink. Subsurface NO(3)(-) injections revealed transport of up to 15 mg N L(-1) was nearly conservative in the alluvial riparian environment. Addition of glucose stimulated dissolved oxygen uptake and promoted NO(3)(-) retention under both background and elevated NO(3)(-) levels in summer and winter. Disappearance of added NO(3)(-) was followed by transient NO(2)(-) formation and, in the presence of C(2)H(2), by N(2)O formation, demonstrating potential denitrification. Under current land use, most NO(3)(-) associated with local ground water is biotically retained or diluted before reaching the channel. However, elevating NO(3)(-) levels through agricultural cultivation would likely result in increased NO(3)(-) transport to the channel.

  17. A Model of U.S. Army Officer Retention Behavior (United States)


    the natural logarithm of wages as a function of experience, ex- perience squared, race, gender , and educational variables. Table 2 lists the to the condition of the civilian labor market. Retention behavior also varies by source of commission, gender , race, and marital status. Finally...framework simply by specifying that the individual considers the entire future time path of military and civilian income in a rational way. In particular

  18. Pedotransfer functions to estimate retention and availability of water in soils of the state of Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    André da Costa


    Full Text Available Studies on water retention and availability are scarce for subtropical or humid temperate climate regions of the southern hemisphere. The aims of this study were to evaluate the relations of the soil physical, chemical, and mineralogical properties with water retention and availability for the generation and validation of continuous point pedotransfer functions (PTFs for soils of the State of Santa Catarina (SC in the South of Brazil. Horizons of 44 profiles were sampled in areas under different cover crops and regions of SC, to determine: field capacity (FC, 10 kPa, permanent wilting point (PWP, 1,500 kPa, available water content (AW, by difference, saturated hydraulic conductivity, bulk density, aggregate stability, particle size distribution (seven classes, organic matter content, and particle density. Chemical and mineralogical properties were obtained from the literature. Spearman's rank correlation analysis and path analysis were used in the statistical analyses. The point PTFs for estimation of FC, PWP and AW were generated for the soil surface and subsurface through multiple regression analysis, followed by robust regression analysis, using two sets of predictive variables. Soils with finer texture and/or greater organic matter content retain more moisture, and organic matter is the property that mainly controls the water availability to plants in soil surface horizons. Path analysis was useful in understanding the relationships between soil properties for FC, PWP and AW. The predictive power of the generated PTFs to estimate FC and PWP was good for all horizons, while AW was best estimated by more complex models with better prediction for the surface horizons of soils in Santa Catarina.

  19. Using the theory of reasoned action to model retention in rural primary care physicians. (United States)

    Feeley, Thomas Hugh


    Much research attention has focused on medical students', residents', and physicians' decisions to join a rural practice, but far fewer studies have examined retention of rural primary care physicians. The current review uses Fishbein and Ajzen's Theory of Reasoned Action (TRA) to organize the literature on the predictors and correlates of retention of rural practicing physicians. TRA suggests turnover behavior is directly predicted by one's turnover intentions, which are, in turn, predicted by one's attitudes about rural practice and perceptions of salient others' (eg, spouse's) attitudes about rural practice and rural living. Narrative literature review of scholarship in predicting and understanding predictors and correlates of rural physician retention. The TRA model provides a useful conceptual model to organize the literature on rural physician retention. Physicians' subjective norms regarding rural practice are an important source of influence in the decision to remain or leave one's position, and this relation should be more fully examined in future research.

  20. Stream Water Quality Model (United States)

    U.S. Environmental Protection Agency — QUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987).

  1. Water Retention, Gas Transport, and Pore Network Complexity during Short-Term Regeneration of Soil Structure

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Schjønning, Per


    , and smectite) amended with organic material (7.5 Mg ha−1). The newly formed structure was compared with that of sieved, repacked (SR) and natural intact samples described in previous studies. Assessment and comparison of structural complexity and organization was done using water retention (pore size......: smectite structural complexity, quantified by soil gas diffusivity, air permeability, and derived pore network indices, was greater for incubated than SR samples. For illitic soils, incubated samples had lower water content and higher air......Soil structure maintains prime importance in determining the ability of soils to carry out essential ecosystem functions and services. This study quantified the newly formed structure of 22-mo field-incubated physically disturbed (2-mm sieved) samples of varying clay mineralogy (illite, kaolinite...


    Directory of Open Access Journals (Sweden)

    Joanna Szczykowska


    Full Text Available The necessity and purposefulness of the investments related to water retention are justified mostly due to the preservation of the environment equilibrium as well as due to its farming, anti-flood, landscape and recreation aspects. Reasonable water management where various forms of retention are used gives large chances for the mitigation of the effects of unfavorable phenomena related to its insufficient amount. The creation of plans regarding the formation of reservoirs accumulating water is not necessarily synonymous with their realization. The reason of problems connected with the implementation of plans regarding the formation of new reservoirs lies mainly in financial measures and in problems with obtaining them. Water deficit in Poland is the reason for which the principles of its national usage need to be complied with. Realization of plans at both Voivodeship and municipality level that are focused on small retention will contribute to considerable increase in the retention capacity and will enable considerable increase in available resources in hydrographic catchments of both the characterized area and the entire country. The paper presents the characteristics of the present state and assumes the perspective development of small water retention in the Podlaskie Voivodeship using the example of the Podlaskie Voivodeship.

  3. WATGIS: A GIS-Based Lumped Parameter Water Quality Model (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya


    A Geographic Information System (GIS)­based, lumped parameter water quality model was developed to estimate the spatial and temporal nitrogen­loading patterns for lower coastal plain watersheds in eastern North Carolina. The model uses a spatially distributed delivery ratio (DR) parameter to account for nitrogen retention or loss along a drainage network. Delivery...

  4. Selective interference with image retention and generation: evidence for the workspace model. (United States)

    van der Meulen, Marian; Logie, Robert H; Della Sala, Sergio


    We address three types of model of the relationship between working memory (WM) and long-term memory (LTM): (a) the gateway model, in which WM acts as a gateway between perceptual input and LTM; (b) the unitary model, in which WM is seen as the currently activated areas of LTM; and (c) the workspace model, in which perceptual input activates LTM, and WM acts as a separate workspace for processing and temporary retention of these activated traces. Predictions of these models were tested, focusing on visuospatial working memory and using dual-task methodology to combine two main tasks (visual short-term retention and image generation) with two interference tasks (irrelevant pictures and spatial tapping). The pictures selectively disrupted performance on the generation task, whereas the tapping selectively interfered with the retention task. Results are consistent with the predictions of the workspace model.

  5. Water uptake on polar stationary phases under conditions for hydrophilic interaction chromatography and its relation to solute retention. (United States)

    Dinh, Ngoc Phuoc; Jonsson, Tobias; Irgum, Knut


    Since water associated with the stationary phase surface appears to be the essence of the retention mechanism in hydrophilic interaction chromatography (HILIC), we developed a method to characterize the water-absorbing capabilities of twelve different HILIC stationary phases. Adsorption isotherms for non-modified and monomerically functionalized silica phases adhered to a pattern of monolayer formation followed by multilayer adsorption, whereas water uptake on polymerically functionalized silica stationary phases showed the characteristics of formation and swelling of hydrogels. Water accumulation was affected by adding ammonium acetate as buffer electrolyte and by replacing 5% of the acetonitrile with tertiary solvents capable of hydrogen bonding such as methanol or tetrahydrofuran. The relationship between water uptake and retention mechanism was investigated by studying the correlations between retention factors of neutral analytes and the phase ratios of HILIC columns, calculated either from the surface area (adsorption) or the volume of the water layer enriched from the acetonitrile/water eluent (partitioning). These studies made it evident that adsorption and partitioning actually coexist as retention promoters for neutral solutes in the water concentration regime normally encountered in HILIC. Which factors that dominates is dependent on the nature of the solute, the stationary phase, and the eluting conditions. Copyright © 2013. Published by Elsevier B.V.

  6. Determination of the water retention of peat soils in the range of the permanent wilting point. (United States)

    Nünning, Lena; Bechtold, Michel; Dettmann, Ullrich; Piayda, Arndt; Tiemeyer, Bärbel; Durner, Wolfgang


    Global coverage of peatlands decreases due to the use of peat for horticulture and to the drainage of peatlands for agriculture and forestry. While alternatives for peat in horticulture exist, profitable agriculture on peatlands and climate protection are far more difficult to combine. A controlled water management that is optimized to stabilize yields while reducing peat degradation provides a promising path in this direction. For this goal, profound knowledge of hydraulic properties of organic soil is essential, for which, however, literature is scarce. This study aimed to compare different methods to determine the water retention of organic soils in the dry range (pF 3 to 4.5). Three common methods were compared: two pressure based apparatus (ceramic plate vs. membrane, Eijkelkamp) and a dew point potentiameter (WP4C, Decagon Devices), which is based on the equilibrium of soil water potential and air humidity. Two different types of organic soil samples were analyzed: i) samples wet from the field and ii) samples that were rewetted after oven-drying. Additional WP4C measurements were performed at samples from standard evaporation experiments directly after they have been finished. Results were: 1) no systematic differences between pressure apparatus and WP4C measurements, 2) however, high moisture variability of the samples from the pressure apparatus as well as high variability of the WP4C measurements at these samples when they were removed from these devices which indicated that applied pressure did not establish well in all samples, 3) rewetted oven-dried samples resulted in up to three times lower soil moistures even after long equilibrium times, i.e. there was a strong and long-lasting hysteresis effect that was highest for less degraded peat samples, 4) and highly consistent WP4C measurements at samples from the end of the evaporation experiment. Results provide useful information for deriving reliable water retention characteristics for organic soils.

  7. Astrochemical models of water (United States)

    Aikawa, Yuri

    We will review the chemical reaction network models of water and its D/H ratio coupled with the dynamics of star formation. Infrared observations show that water ice is abundant even in molecular clouds with relatively low visual extinction (~ 3 mag), which indicates that water ice is formed in early stage of molecular clouds. We thus start from a possible formation site of molecular clouds, i.e. the converging flow of diffuse gas. Then we proceed to dense cloud cores and its gravitational collapse, during which a significant deuterium enrichment occurs. The gas and ice accrete onto the circumstellar disks, which evolve to protoplanetary disks in T Tauri phase. If the disks are turbulent, water could be photodissociated in the disk surface and re-formed in deeper layers. The cycle continues until the dust grains with ice mantle are decoupled from the turbulence and settle to the midplane. The water D/H ratio could thus vary within the disk.

  8. Optimization of artificial neural networks used for retention modelling in ion chromatography. (United States)

    Srecnik, Goran; Debeljak, Zeljko; Cerjan-Stefanović, Stefica; Novic, Milko; Bolancab, Tomislav


    The aim of this work is the development of an artificial neural network model, which can be generalized and used in a variety of applications for retention modelling in ion chromatography. Influences of eluent flow-rate and concentration of eluent anion (OH-) on separation of seven inorganic anions (fluoride, chloride, nitrite, sulfate, bromide, nitrate, and phosphate) were investigated. Parallel prediction of retention times of seven inorganic anions by using one artificial neural network was applied. MATLAB Neural Networks ToolBox was not adequate for application to retention modelling in this particular case. Therefore the authors adopted it for retention modelling by programming in MATLAB metalanguage. The following routines were written; the division of experimental data set on training and test set; selection of data for training and test set; Dixon's outlier test; retraining procedure routine; calculations of relative error. A three-layer feed forward neural network trained with a Levenberg-Marquardt batch error back propagation algorithm has been used to model ion chromatographic retention mechanisms. The advantage of applied batch training methodology is the significant increase in speed of calculation of algorithms in comparison with delta rule training methodology. The technique of experimental data selection for training set was used allowing improvement of artificial neural network prediction power. Experimental design space was divided into 8-32 subspaces depending on number of experimental data points used for training set. The number of hidden layer nodes, the number of iteration steps and the number of experimental data points used for training set were optimized. This study presents the very fast (300 iteration steps) and very accurate (relative error of 0.88%) retention model, obtained by using a small amount of experimental data (16 experimental data points in training set). This indicates that the method of choice for retention modelling in ion

  9. Mathematical relationships between vapor pressure, water solubility, Henry's law constant, n-octanol/water partition coefficent and gas chromatographic retention index of polychlorinated-dibenzo-dioxins. (United States)

    Wan, Y H; Wong, P K


    Mathematical relationships between vapor pressures (P), water solubilities (S), Henry's law constants (Hc). noctanol/water partition coefficients (Kow) and gas chromatograph retention indices (GC-RIs) of polychlorinated-dibenzo-dioxins (PCDDs) were established. A model equation was established between GC-RIs (= RI) and other physico-chemical parameters (K) of PCDDs in the form of log K = aRI2 + bRI + c with correlation coefficients (R2) greater than 0.97, except Hc. These equations were derived from 56 experimental data of PCDDs reported previously. The values of P, S, Hc and Kow of PCDDs predicted by these equations based on their GC-RIs in the present study deviated from those calculated by the SOFA method in a previous study by only 0.19, 0.13, 0.18 and 0.096 log units, respectively.

  10. The influence of septal lesions on sodium and water retention induced by Walker 256 tumor

    Directory of Open Access Journals (Sweden)

    F. Guimarães


    Full Text Available In the course of studies on the effects of septal area lesions on neuroimmunomodulation and Walker 256 tumor development, it was observed that tumor-induced sodium and water retention was less marked in lesioned than in non-lesioned rats. In the present study possible mechanisms involved in this phenomenon were investigated. The experiments were performed in septal-lesioned (LW; N = 15 and sham-operated (SW; N = 7 8-week-old male Wistar rats, which received multifocal simultaneous subcutaneous (sc inoculations of Walker 256 tumor cells about 30 days after the stereotaxic surgery. Control groups (no tumor, sham-operated food-restricted (SFR, N = 7 and lesioned food-restricted (LFR, N = 10 were subjected to a feeding pattern similar to that observed in tumor-bearing animals. Multifocal inoculation of Walker 256 tumor rapidly induces anorexia, which is paradoxically accompanied by an increase in body weight, as a result of renal Na+ and fluid retention. These effects of the tumor were also seen in LW rats, although the rise in fractional sodium balance during the early clinical period was significantly smaller than in SW rats (day 4: SW = 47.6 ± 6.4% and LW = 13.8 ± 5.2%; day 5: SW = 57.5 ± 3.5% and LW = 25.7 ± 4.8%; day 6: SW = 54.4 ± 3.8% and LW = 32.1 ± 4.4%; P<0.05, suggesting a temporary reduction in tumor-induced sodium retention. In contrast, urine output was significantly reduced in SW rats and increased in LW rats (LW up to -0.85 and SW up to 4.5 ml/100 g body weight, with no change in osmolar excretion. These temporary changes in the tumor's effects on LW rats may reflect a "reversal" of the secondary central antidiuretic response induced by the tumor (from antidiuretic to diuretic.

  11. Water retention in a peatland with organic matter in different decomposition stages

    Directory of Open Access Journals (Sweden)

    José Ricardo da Rocha Campos


    Full Text Available Peatlands are ecosystems formed by successive pedogenetic processes, resulting in progressive accumulation of plant remains in the soil column under conditions that inhibit the activity of most microbial decomposers. In Diamantina, state of Minas Gerais, Brazil, a peatland is located at 1366 m asl, in a region with a quartz-rich lithology and characteristic wet grassland vegetation. For this study, the peat area was divided in 12 transects, from which a total of 90 soil samples were collected at a distance of 20 m from each other. The properties rubbed fiber content (RF, bulk density (Bd, mineral material (MM, organic matter (OM, moisture (Moi and maximum water holding capacity (MWHC were analyzed in all samples. From three selected profiles of this whole area, samples were collected every 27 cm from the soil surface down to a depth of 216 cm. In these samples, moisture was additionally determined at a pressure of 10 kPa (Moi10 or 1500 kPa (Moi1500, using Richards' extractor and soil organic matter was fractionated by standard procedures. The OM decomposition stage of this peat was found to increase with soil depth. Moi and MWHC were highest in layers with less advanced stages of OM decomposition. The humin levels were highest in layers in earlier stages of OM decomposition and with higher levels of water retention at MWHC and Moi10. Humic acid contents were higher in layers at an intermediate stage of decomposition of organic matter and with lowest levels of water retention at MWHC, Moi10 and Moi1500.

  12. Management outcome of acute urinary retention: model of prediction.

    LENUS (Irish Health Repository)

    Daly, Padraig


    OBJECTIVES: To assess for predictors of outcome in patients presenting with acute urinary retention (AUR). METHODS: A study was performed in our unit to evaluate trial without catheter (TWOC) and successive management. We assessed for predictors of surgical or medical management, which included: age, volume drained at time of catheterisation, cause of retention, serum creatinine, success of trial of voiding, co-morbidities, prostate-specific antigen (PSA) and prostate size on digital rectal examination (DRE). RESULTS: 72 men were entered into the study over an 18-month period: 27 had a successful first TWOC, 20 patients had a second TWOC, and 6 were successful. In total, 31 of the 33 patients with a successful TWOC remained on alpha-blockers without a further episode of AUR within a minimum of 6 months\\' follow-up. Patients failing TWOC were managed by transurethral resection of the prostate (n = 22), long-term catheterisation (n = 15) or prostatic stents (n = 3), and 1 patient died prior to intervention. Three predictors were significant on multivariate analysis: PSA (>2.9 ng\\/ml), prostate size on DRE (large) and volume drained at time of catheterisation (>or=1,000 ml). CONCLUSION: Patients with elevated PSA (>2.9 ng\\/ml), a large prostate size on DRE and a volume drained at time of catheterisation >1,000 ml are best managed by surgical intervention, while those with volumes drained at time of catheterisation of <1,000 ml, a PSA

  13. Water proof and strength retention properties of thermoplastic starch based biocomposites modified with glutaraldehyde. (United States)

    Yeh, Jen-taut; Hou, Yuan-jing; Cheng, Li; Wang, Ya-Zhou; Yang, Liang; Wang, Chuen-kai


    Water proof and strength retention properties of thermoplastic starch (TPS) resins were successfully improved by reacting glutaraldehyde (GA) with starch molecules during their gelatinization processes. Tensile strength (σf) values of initial and aged TPS100BC0.02GAx and (TPS100BC0.02GAx)75PLA25 specimens improved significantly to a maximal value as GA contents approached an optimal value, while their moisture content and elongation at break values reduced to a minimal value, respectively, as GA contents approached the optimal value. The σf retention values of (TPS100BC0.02GA0.5)75PLA25 specimen aged for 56 days are more than 50 times higher than those of corresponding aged TPS and TPS100BC0.02 specimens, respectively. New melting endotherms and diffraction peaks of VH-type starch crystals were found on DSC thermograms and WAXD patterns of aged TPS or TPS100BC0.02 specimens, respectively, while negligible retrogradation effect was found for most aged TPS100BC0.02GAx and/or (TPS100BC0.02GAx)75PLA25 specimens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Investigating soil water retention characteristics at high suctions using relative humidity control

    Directory of Open Access Journals (Sweden)

    Mantikos Vasileios


    Full Text Available A technique for controlling relative humidity (RH is presented, which involves supplying a sealed chamber with a continuous flow of air at a computer-regulated RH. The desired value of RH is achieved by mixing dry and wet air at appropriate volumes and is measured for servo-control at three locations in the chamber with capacitive RH sensors and checked with a sensitive VAISALA sensor. The setup is capable of controlling RH steadily and continuously with a deviation of less than 0.2% RH. The technique was adopted to determine wetting soil-water retention curves (SWRC of statically compacted London Clay, under both free-swelling and constant volume conditions. The RH within the chamber was increased in a step-wise fashion, with each step maintained until vapour equilibrium between the chamber atmosphere and the soil samples was established. Independent filter paper measurements further validate the method, while the obtained retention curves complement those available in the literature for lower ranges of suction.

  15. Soil water retention, air flow and pore structure characteristics after corn cob biochar application to a tropical sandy loam

    DEFF Research Database (Denmark)

    Amoakwah, Emmanuel; Frimpong, Kwame Agyei; Okae-Anti, D


    corn cob biochar contributed to changes in soil water retention, air flow by convection and diffusion, and derived soil structure indices in a tropical sandy loam. Intact soil cores were taken from a field experiment that had plots without biochar (CT), and plots each with 10 t ha− 1 (BC-10), 20 t ha...... by 15 to 85% in the BC-amended soils. The moderate impact of corn cob biochar on soil water retention, and minimal improvements in convective and diffusive gas transport provides an avenue for an environmentally friendly disposal of crop residues, particularly for corn cobs, and structural improvement...

  16. Effect of biochar on soil structural characteristics: water retention and gas transport

    DEFF Research Database (Denmark)

    Sun, Zhencai; Møldrup, Per; Vendelboe, Anders Lindblad

    Biochar addition to agricultural soil has been reported to reduce climate gas emission, as well as improve soil fertility and crop productivity. Little, however, is known about biochar effects on soil structural characteristics. This study investigates if biochar-application changes soil structural...... due to the high micro porosity of added biochar. In conclusion, the results showed that biochar addition to soil changed key soil structural parameters at least in the short term (1 year). In perspective, the long-term variations in soil structural parameters and related changed in microbial activity...... characteristics, as indicated from water retention and gas transport measurements on intact soil samples. Soil was sampled from a field experiment on a sandy loam with four control plots (C) without biochar and four plots (B) with incorporated biochar at a rate of 20 tons per hectare (plot size, 6 x 8 m). The C...

  17. Buried particulate organic carbon stimulates denitrification and nitrate retention in stream sediments at the groundwater-surface water interface (United States)

    Stelzer, Robert S.; Scott, J. Thad; Bartsch, Lynn


    The interface between ground water and surface water in streams is a hotspot for N processing. However, the role of buried organic C in N transformation at this interface is not well understood, and inferences have been based largely on descriptive studies. Our main objective was to determine how buried particulate organic C (POC) affected denitrification and NO3− retention in the sediments of an upwelling reach in a sand-plains stream in Wisconsin. We manipulated POC in mesocosms inserted in the sediments. Treatments included low and high quantities of conditioned red maple leaves (buried beneath combusted sand), ambient sediment (sand containing background levels of POC), and a control (combusted sand). We measured denitrification rates in sediments by acetylene-block assays in the laboratory and by changes in N2 concentrations in the field using membrane inlet mass spectrometry. We measured NO3−, NH4+, and dissolved organic N (DON) retention as changes in concentrations and fluxes along groundwater flow paths in the mesocosms. POC addition drove oxic ground water to severe hypoxia, led to large increases in dissolved organic C (DOC), and strongly increased denitrification rates and N (NO3− and total dissolved N) retention relative to the control. In situ denitrification accounted for 30 to 60% of NO3− retention. Our results suggest that buried POC stimulated denitrification and NO3− retention by producing DOC and by creating favorable redox conditions for denitrification.

  18. Predicting watershed post-fire sediment yield with the InVEST sediment retention model: Accuracy and uncertainties (United States)

    Sankey, Joel B.; McVay, Jason C.; Kreitler, Jason R.; Hawbaker, Todd J.; Vaillant, Nicole; Lowe, Scott


    Increased sedimentation following wildland fire can negatively impact water supply and water quality. Understanding how changing fire frequency, extent, and location will affect watersheds and the ecosystem services they supply to communities is of great societal importance in the western USA and throughout the world. In this work we assess the utility of the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Sediment Retention Model to accurately characterize erosion and sedimentation of burned watersheds. InVEST was developed by the Natural Capital Project at Stanford University (Tallis et al., 2014) and is a suite of GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., USLE – Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. In this study, we evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured postfire sediment yields available for many watersheds throughout the western USA from an existing, published large database. We show that the model can be parameterized in a relatively simple fashion to predict post-fire sediment yield with accuracy. Our ultimate goal is to use the model to accurately predict variability in post-fire sediment yield at a watershed scale as a function of future wildfire conditions.

  19. Modelling of cations retention in ion chromatography with methanesulfonic acid as eluent

    Directory of Open Access Journals (Sweden)

    Todorović Žaklina N.


    Full Text Available The two retention models, the linear solvent strength model (LSS and the quadratic relationship, in addition to artificial neural network (ANN approach, were compared in their ability to predict the retention behaviour of common cations (Li, Na, NH4, K, Mg, and Ca in isocratic ion chromatography using the methanesulfonic acid (MSA eluent. Over wide variations in the MSA concentration, the quadratic model shows a quite good prediction power. LSS can be used only for monovalent cations and in the proximity of the experimental design point. ANN fails to predict the retention for the data not included in the training set. To find the optimal conditions in the experimental design, the normalized resolution product as a chromatographic objective function was employed. The optimum MSA concentration in the eluent on a Dionex CS12 column was found to be 18 mM, with the total analysis time of less than 10 min. [Projekat Ministarstva nauke Republike Srbije, br. III43009

  20. Hydrochemical modelling of the retention and transport of metallic radionuclides in the soils of an upland catchment. (United States)

    Tipping, E


    The CHemistry of the Uplands Model (CHUM) describes the transport of chemicals through upland catchments with acid, organic-rich soils, by a combination of sub-models for equilibrium soil chemistry, hydrology, weathering, and nitrogen cycling. CHUM was used to simulate the retention and transport of metallic radionuclides (Co, Sr, Cs, UO(2), U(IV), Th, Am), in the soils of a small catchment in Cumbria, UK, for 2 years after their atmospheric deposition in a single hypothetical precipitation event. Export of radionuclides to streamwater is calculated to occur most readily following deposition of the dissolved elements at high water saturation of the catchment, when little incoming rainwater is required to make up the small moisture deficit of the organic surface horizon, and solutes can move to greater depths in the soil profile. Deposition when the catchment is drier, or of particulate radionuclides, leads to stronger retention. Radionuclide retention or transport depends on the strength of chemical interaction with the solid phases of the different soil horizons; this varies among the elements, and also with oxidation state, U(IV) species being more strongly retained than UO(2). For purely organic soils, the least strongly retained radionuclide is Cs, but the presence in the mineral soil horizon of small amounts of clay mineral with high selectivity towards Cs can markedly increase with high selectivity towards Cs can markedly increase its retention. For the actinides, binding by dissolved organic matter is important; for example, the rate of transport of Th to the stream is increased by more than two orders of magnitude by complexation with dissolved fulvic acid. The model assumptions suggest that, in the longer term, losses from the catchment of Co, Sr and Cs would take place on a time-scale of decades, whereas the actinides would be much more persistent.

  1. Retention of metal and sulphate ions from acidic mining water by anionic nanofibrillated cellulose. (United States)

    Venäläinen, Salla H; Hartikainen, Helinä


    We carried out an adsorption experiment to investigate the ability of anionic nanofibrillated cellulose (NFC) to retain metal and SO42- ions from authentic highly acidic (pH3.2) mining water. Anionic NFC gels of different consistencies (1.1-%, 1.4-% and 1.8-% w/w) were allowed to react for 10min with mining water, after which NFC-induced changes in the metal and SO42- concentrations of the mining water were determined. The sorption capacities of the NFC gels were calculated as the difference between the element concentrations in the untreated and NFC-treated mining water samples. All the NFCs efficiently co-adsorbed both metals and SO42-. The retention of metals was concluded to take place through formation of metal-ligand complexes. The reaction between the NFC ligand and the polyvalent cations renders the cellulose nanofibrils positively charged and, thus, able to retain SO42- electrostatically. Adsorption capacity of the NFC gels substantially increased upon decreasing DM content as a result of the dilution-induced weakening of the mutual interactions between individual cellulose nanofibrils. This outcome reveals that the dilution of the NFC gel not only increases its purification capacity but also reduces the demand for cellulosic raw material. These results suggest that anionic NFC made of renewable materials serves as an environmentally sound and multifunctional purification agent for acidic multimetal mining waters or AMDs of high ionic strength. Unlike industrial minerals traditionally used to precipitate valuable metals from acidic mining effluents before their permanent disposal from the material cycle, NFC neither requires mining of unrenewable raw materials nor produces inorganic sludges. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A zero discharge green roof system and species selection to optimize evapotranspiration and water retention

    Energy Technology Data Exchange (ETDEWEB)

    Compton, J.S.; Whitlow, T.H. [Cornell, Univ., Urban Horticulture Inst., Ithaca, NY (United States). Dept. of Horticulture


    Economic benefits must outweigh costs, with or without governmental subsidies or enforcement in order for green roofs to become commonplace in American cities. Municipal advantages to green roofs include stormwater management, environmental quality and an expansion of the native plant palette. These benefits are difficult to quantify monetarily for the owner of the roof, yet greater water evaporation from storm water attenuation has the ability to increase cooling of the building, an economic benefit to the owner. Current green roof design and testing methods fail to explore systems that maximize stormwater retention and evaporative cooling benefits that are often associated with green roofs. This paper presented the results of a study that investigated an alternate approach that optimizes water loss through evapotranspiration using a zero discharge target and plants that tolerate both medium drought and saturation. Species selection emphasizes native species and salt tolerance, which allows the possibility of grey water irrigation. Species studied include spartina alternafiora and solidago canadensis. Plants were studied over a growing season to examine the rates of ET as they relate to weather conditions, growing media composition and saturation levels, and plant species. The study was conducted on top of a four storey school building located in the South Bronx, New York City. In June 2005, a 3,500 square foot extensive green roof was installed. The conference described the site and study in detail followed by a discussion of the results. This includes a discussion of the planting containers, planting mediums, plant materials, data collection, and irrigation trials. It was concluded that further research is needed to test this concept, and to examine the possibility of supplemental irrigation via off-season rainwater catchment or grey water irrigation. 17 refs., 4 figs.

  3. Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion

    Directory of Open Access Journals (Sweden)



    Full Text Available A model for the combustion of porous char particles as a basis for modeling the process of sulfur retention by ash during coal combustion is developed in this paper. The model belongs to the microscopic intrinsic models and describes the dynamic behavior of a porous char particle during comustion, taking into account temporal and spatial changes of all important physical properties of the char particle and various combustion parameters. The parametric analysis of the enhanced model shows that the model represents a good basis for the development of a model for the process of sulfur retention by ash during coal combustion. The model enables the prediction of the values of all parameters necessary for the introduction of reactions between sulfur compounds and mineral components in ash, primarily calcium oxide.

  4. Use of mucolytics to enhance magnetic particle retention at a model airway surface (United States)

    Ally, Javed; Roa, Wilson; Amirfazli, A.

    A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.

  5. Use of mucolytics to enhance magnetic particle retention at a model airway surface

    Energy Technology Data Exchange (ETDEWEB)

    Ally, Javed [Department of Mechanical Engineering, University of Alberta, Edmonton, Alta., T6G 2G8 (Canada); Roa, Wilson [Department of Oncology, University of Alberta, Edmonton, Alta., T6G 1Z2 (Canada); Amirfazli, A. [Department of Mechanical Engineering, University of Alberta, Edmonton, Alta., T6G 2G8 (Canada)], E-mail:


    A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.

  6. Retention and patient engagement models for different treatment modalities in DATOS. (United States)

    Joe, G W; Simpson, D D; Broome, K M


    A model to explain treatment retention in terms of process components--therapeutic involvement and session attributes for the 1st month--and patient background factors were tested in long-term residential (LTR), outpatient drug free (ODF), and outpatient methadone (OMT) treatments. The data was collected in the national Drug Abuse Treatment Outcome Studies (DATOS), and included 1362 patients in LTR, 866 in ODF, and 981 in OMT programs. Structural equation models showed there were positive reciprocal effects between therapeutic involvement and session attributes in all three modalities, and these variables had direct positive effects on treatment retention. Motivation at intake was a strong determinant of therapeutic involvement. Other patient background factors were significantly related to retention, including pretreatment depression, alcohol dependence, legal pressure, and frequency of cocaine use.

  7. An investigation on the rheological and sulfur-retention characteristics of desulfurizing coal water slurry with calcium-based additives

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianzhong; Zhao, Weidong; Zhou, Junhu; Cheng, Jun; Zhang, Guangxue; Feng, Yungang; Cen, Kefa [State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027 (China)


    Desulphurizing coal water slurry is a kind of new clean coal water slurry(CWS), which has good performance on SO{sub 2} emission during combustion and gasification process. But, the addition of sulfur-retention agents have some effects on the stability and fluid characters of the coal water slurry. In this paper, the viscosity, stability and rheology of Xinwen coal water slurry have been studied by adding different kinds of calcium-based sulfur-retention agents and different dosage. The results show that the sulfur-retention agents have little effect on rheological nature of CWS, which still presents pseudoplastic fluid. The addition of sulfur-retention agents will increase the viscosity of CWS, but the stability will decrease a little. The results also show that inorganic calcium has less negative effect on the performance of CWS than the organic calcium. The viscosity of the CWS with organic calcium agent keeps 1000-1200 mPa s when Ca/S molar ratio is 2. Sulfur release of the CWS with CaCO{sub 3} reduces to 52% at Ca/S = 2 compared to original of 98%. (author)

  8. Determining a Retention Model for the Selected Marine Corps Reserve (United States)


    searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments...model for the Selected Marine Corps Reserve (SMCR). Data for this model were pulled from the Marine Corps’ Total Force Data Warehouse for the fiscal...SMCR). Data for this model were pulled from the Marine Corps’ Total Force Data Warehouse for the fiscal years 2009 through 2015. The model forecasts

  9. Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention. (United States)

    Wu, Lan; Liu, Mingzhu; Rui Liang


    A double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention was prepared by crosslinked poly(acrylic acid)/diatomite - containing urea (the outer coating), chitosan (the inner coating), and water-soluble granular fertilizer NPK (the core). The effects of the amount of crosslinker, initiator, degree of neutralization of acrylic acid, initial monomer and diatomite concentration on water absorbency were investigated and optimized. The water absorbency of the product was 75 times its own weight if it was allowed to swell in tap water at room temperature for 2 h. Atomic absorption spectrophotometer and element analysis results showed that the product contained 8.47% potassium (shown by K(2)O), 8.51% phosphorus (shown by P(2)O(5)), and 15.77% nitrogen. We also investigated the water-retention property of the product and the slow release behavior of N, P and K in the product. This product with excellent slow release and water-retention capacity, being nontoxic in soil and environment-friendly, could be especially useful in agricultural and horticultural applications.

  10. Monitoring of coalbed water retention ponds in the Powder River Basin using Google Earth images and an Unmanned Aircraft System (United States)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.


    To extract methane from unminable seams of coal in the Powder River Basin of Montana and Wyoming, coalbed methane (CBM) water has to be pumped and kept in retention ponds rather than discharged to the vadose zone to mix with the ground water. The water areal coverage of these ponds changes due to evaporation and repetitive refilling. The water quality also changes due to growing of microalgae (unicellular or filamentous including green algae and diatoms), evaporation, and refilling. To estimate the water coverage changes and monitor water quality becomes important for monitoring the CBM water retention ponds to provide timely management plan for the newly pumped CBM water. Conventional methods such as various water indices based on multi-spectral satellite data such as Landsat because of the small pond size ( 100mx100m scale) and low spatial resolution ( 30m scale) of the satellite data. In this study we will present new methods to estimate water coverage and water quality changes using Google Earth images and images collected from an unmanned aircraft system (UAS) (Phantom 2 plus). Because these images have only visible bands (red, green, and blue bands), the conventional water index methods that involve near-infrared bands do not work. We design a new method just based on the visible bands to automatically extract water pixels and the intensity of the water pixel as a proxy for water quality after a series of image processing such as georeferencing, resampling, filtering, etc. Differential GPS positions along the water edges were collected the same day as the images collected from the UAS. Area of the water area was calculated from the GPS positions and used for the validation of the method. Because of the very high resolution ( 10-30 cm scale), the water areal coverage and water quality distribution can be accurately estimated. Since the UAS can be flied any time, water area and quality information can be collected timely.

  11. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity. (United States)

    Nielsen, G D; Søderberg, U; Jørgensen, P J; Templeton, D M; Rasmussen, S N; Andersen, K E; Grandjean, P


    Two studies were performed to examine the influence of fasting and food intake on the absorption and retention of nickel added to drinking water and to determine if nickel sensitization played any role in this regard. First, eight nonallergic male volunteers fasted overnight before being given nickel in drinking water (12 micrograms Ni/kg) and, at different time intervals, standardized 1400-kJ portions of scrambled eggs. When nickel was ingested in water 30 min or 1 h prior to the meal, peak nickel concentrations in serum occurred 1 h after the water intake, and the peak was 13-fold higher than the one seen 1 h after simultaneous intake of nickel-containing water and scrambled eggs. In the latter case, a smaller, delayed peak occurred 3 h after the meal. Median urinary nickel excretion half-times varied between 19.9 and 26.7 h. Within 3 days, the amount of nickel excreted corresponded to 2.5% of the nickel ingested when it was mixed into the scrambled eggs. Increasing amounts were excreted as the interval between the water and the meal increased, with 25.8% of the administered dose being excreted when the eggs were served 4 h prior to the nickel-containing drinking water. In the second experiment, a stable nickel isotope, 61Ni, was given in drinking water to 20 nickel-sensitized women and 20 age-matched controls, both groups having vesicular hand eczema of the pompholyx type. Nine of 20 nickel allergic eczema patients experienced aggravation of hand eczema after nickel administration, and three also developed a maculopapular exanthema. No exacerbation was seen in the control group. The course of nickel absorption and excretion in the allergic groups did not differ and was similar to the pattern seen in the first study, although the absorption in the women was less. A sex-related difference in gastric emptying rates may play a role. Thus, food intake and gastric emptying are of substantial significance for the bioavailability of nickel from aqueous solutions

  12. Fast Simulation of Membrane Filtration by Combining Particle Retention Mechanisms and Network Models (United States)

    Krupp, Armin; Griffiths, Ian; Please, Colin


    Porous membranes are used for their particle retention capabilities in a wide range of industrial filtration processes. The underlying mechanisms for particle retention are complex and often change during the filtration process, making it hard to predict the change in permeability of the membrane during the process. Recently, stochastic network models have been shown to predict the change in permeability based on retention mechanisms, but remain computationally intensive. We show that the averaged behaviour of such a stochastic network model can efficiently be computed using a simple partial differential equation. Moreover, we also show that the geometric structure of the underlying membrane and particle-size distribution can be represented in our model, making it suitable for modelling particle retention in interconnected membranes as well. We conclude by demonstrating the particular application to microfluidic filtration, where the model can be used to efficiently compute a probability density for flux measurements based on the geometry of the pores and particles. A. U. K. is grateful for funding from Pall Corporation and the Mathematical Institute, University of Oxford. I.M.G. gratefully acknowledges support from the Royal Society through a University Research Fellowship.

  13. Preparation and properties of a coated slow-release and water-retention biuret phosphoramide fertilizer with superabsorbent. (United States)

    Jin, Shuping; Yue, Guoren; Feng, Lei; Han, Yuqi; Yu, Xinghai; Zhang, Zenghu


    In this investigation, a novel water-insoluble slow-release fertilizer, biuret polyphosphoramide (BPAM), was formulated and synthesized from urea, phosphoric acid (H(3)PO(4)), and ferric oxide (Fe(2)O(3)). The structure of BPAM was characterized by Fourier transform infrared (FTIR) spectroscopy. Subsequently, a coated slow-release BPAM fertilizer with superabsorbent was prepared by ionic cross-linked carboxymethylchitosan (the core), acrylic acid, acrylamide, and active carbon (the coating). The variable influences on the water absorbency were investigated and optimized. Component analysis results showed that the coated slow-release BPAM contained 5.66% nitrogen and 11.7% phosphorus. The property of water retention, the behavior of slow release of phosphorus, and the capacity of adsorption of cations were evaluated, and the results revealed that the product not only had good slow-release property and excellent water retention capacity but also higher adsorption capacities of cations in saline soil.

  14. Sensitivity analysis of point and parametric pedotransfer functions for estimating water retention of soils in Algeria (United States)

    Touil, Sami; Degre, Aurore; Nacer Chabaca, Mohamed


    Improving the accuracy of pedotransfer functions (PTFs) requires studying how prediction uncertainty can be apportioned to different sources of uncertainty in inputs. In this study, the question addressed was as follows: which variable input is the main or best complementary predictor of water retention, and at which water potential? Two approaches were adopted to generate PTFs: multiple linear regressions (MLRs) for point PTFs and multiple nonlinear regressions (MNLRs) for parametric PTFs. Reliability tests showed that point PTFs provided better estimates than parametric PTFs (root mean square error, RMSE: 0.0414 and 0.0444 cm3 cm-3, and 0.0613 and 0.0605 cm3 cm-3 at -33 and -1500 kPa, respectively). The local parametric PTFs provided better estimates than Rosetta PTFs at -33 kPa. No significant difference in accuracy, however, was found between the parametric PTFs and Rosetta H2 at -1500 kPa with RMSE values of 0.0605 cm3 cm-3 and 0.0636 cm3 cm-3, respectively. The results of global sensitivity analyses (GSAs) showed that the mathematical formalism of PTFs and their input variables reacted differently in terms of point pressure and texture. The point and parametric PTFs were sensitive mainly to the sand fraction in the fine- and medium-textural classes. The use of clay percentage (C %) and bulk density (BD) as inputs in the medium-textural class improved the estimation of PTFs at -33 kPa.

  15. Lotic Water Hydrodynamic Model

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tasseff, Byron Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Water-related natural disasters, for example, floods and droughts, are among the most frequent and costly natural hazards, both socially and economically. Many of these floods are a result of excess rainfall collecting in streams and rivers, and subsequently overtopping banks and flowing overland into urban environments. Floods can cause physical damage to critical infrastructure and present health risks through the spread of waterborne diseases. Los Alamos National Laboratory (LANL) has developed Lotic, a state-of-the-art surface water hydrodynamic model, to simulate propagation of flood waves originating from a variety of events. Lotic is a two-dimensional (2D) flood model that has been used primarily for simulations in which overland water flows are characterized by movement in two dimensions, such as flood waves expected from rainfall-runoff events, storm surge, and tsunamis. In 2013, LANL developers enhanced Lotic through several development efforts. These developments included enhancements to the 2D simulation engine, including numerical formulation, computational efficiency developments, and visualization. Stakeholders can use simulation results to estimate infrastructure damage and cascading consequences within other sets of infrastructure, as well as to inform the development of flood mitigation strategies.

  16. Development of predictive retention-activity models of butyrophenones by biopartitioning micellar chromatography. (United States)

    Martín-Biosca, Y; Molero-Monfort, M; Sagrado, S; Villanueva-Camañas, R M; Medina-Hernández, M J


    The predictive and interpretative capability of quantitative chromatographic retention-biological activity models is supported by the fact that in adequate experimental conditions the solute partitioning into the chromatographic system can emulate the solute partitioning into lipid bilayers of biological membranes, which is the basis of drug and metabolite uptake, passive transport across membranes and bioaccumulation. The use of retention data obtained in biopartitioning micellar chromatography (BMC) has been demonstrated to be helpful in describing the biological behaviour of different kinds of drugs. In this chromatographic system, polioxyethylene 23 lauryl ether Brij35 micellar mobile phases and C(18) reversed stationary phase in adequate experimental conditions are used. The RP-HPLC capacity factors of butyrophenones were determined using different Brij35 concentrations as micellar mobile phases. Relationships between seven biological activities of butyrophenones reported in bibliography and retention data were established and their predictive and interpretative ability evaluated. These relationships were significant between preclinical pharmacology and therapeutic efficacy parameters and the retention factors of butyrophenones (0.89 < R(2) < 0.98). The results indicate that the retention of compounds in BMC is capable of describing and predicting in vitro the biological activities of butyrophenones. This approach can be very useful in the development of new neuroleptic drugs, avoiding the use of experimental animals. Copyright 2001 John Wiley & Sons, Ltd.

  17. Exploring Student Characteristics of Retention That Lead to Graduation in Higher Education Using Data Mining Models (United States)

    Raju, Dheeraj; Schumacker, Randall


    The study used earliest available student data from a flagship university in the southeast United States to build data mining models like logistic regression with different variable selection methods, decision trees, and neural networks to explore important student characteristics associated with retention leading to graduation. The decision tree…

  18. Predictive Modeling of Student Performances for Retention and Academic Support in a Diagnostic Medical Sonography Program (United States)

    Borghese, Peter; Lacey, Sandi


    As part of a retention and academic support program, data was collected to develop a predictive model of student performances in core classes in a Diagnostic Medical Sonography (DMS) program. The research goal was to identify students likely to have difficulty with coursework and provide supplemental tutorial support. The focus was on the…

  19. Quantifying water flow and retention in an unsaturated fracture-facial domain (United States)

    Nimmo, John R.; Malek-Mohammadi, Siamak


    Hydrologically significant flow and storage of water occur in macropores and fractures that are only partially filled. To accommodate such processes in flow models, we propose a three-domain framework. Two of the domains correspond to water flow and water storage in a fracture-facial region, in addition to the third domain of matrix water. The fracture-facial region, typically within a fraction of a millimeter of the fracture wall, includes a flowing phase whose fullness is determined by the availability and flux of preferentially flowing water, and a static storage portion whose fullness is determined by the local matric potential. The flow domain can be modeled with the source-responsive preferential flow model, and the roughness-storage domain can be modeled with capillary relations applied on the fracture-facial area. The matrix domain is treated using traditional unsaturated flow theory. We tested the model with application to the hydrology of the Chalk formation in southern England, coherently linking hydrologic information including recharge estimates, streamflow, water table fluctuation, imaging by electron microscopy, and surface roughness. The quantitative consistency of the three-domain matrix-microcavity-film model with this body of diverse data supports the hypothesized distinctions and active mechanisms of the three domains and establishes the usefulness of this framework.

  20. Estimation of the water retention curve from the soil hydraulic conductivity and sorptivity in an upward infiltration process (United States)

    Moret-Fernández, David; Angulo, Marta; Latorre, Borja; González-Cebollada, César; López, María Victoria


    Determination of the saturated hydraulic conductivity, Ks, and the α and n parameters of the van Genuchten (1980) water retention curve, θ(h), are fundamental to fully understand and predict soil water distribution. This work presents a new procedure to estimate the soil hydraulic properties from the inverse analysis of a single cumulative upward infiltration curve followed by an overpressure step at the end of the wetting process. Firstly, Ks is calculated by the Darcy's law from the overpressure step. The soil sorptivity (S) is then estimated using the Haverkamp et al., (1994) equation. Next, a relationship between α and n, f(α,n), is calculated from the estimated Sand Ks. The α and n values are finally obtained by the inverse analysis of the experimental data after applying the f(α,n) relationship to the HYDRUS-1D model. The method was validated on theoretical synthetic curves for three different soils (sand, loam and clay), and subsequently tested on experimental sieved soils (sand, loam, clay loam and clay) of known hydraulic properties. A robust relationship was observed between the theoretical α and nvalues (R2 > 0.99) of the different synthetic soils and those estimated from inverse analysis of the upward infiltration curve. Consistent results were also obtained for the experimental soils (R2 > 0.85). These results demonstrated that this technique allowed accurate estimates of the soil hydraulic properties for a wide range of textures, including clay soils.

  1. Humidity interaction of lichens under astrobiological aspects: the impact of UVC exposure on their water retention properties (United States)

    Jänchen, J.; Meeßen, J.; Herzog, T. H.; Feist, M.; de la Torre, R.; Devera, J.-P. P.


    We quantitatively studied the hydration and dehydration behaviour of the three astrobiological model lichens Xanthoria elegans, Buellia frigida and Circinaria gyrosa by thermoanalysis and gravimetric isotherm measurements under close-to-Martian environmental conditions in terms of low temperature and low pressure. Additionally, the impact of UVC exposure on the isolated symbionts of B. frigida and X. elegans was studied by thermoanalysis and mass spectrometry as well as by gravimetric isotherm measurements. The thermal analysis revealed whewellite as a component of C. gyrosa which was not found in B. frigida and X. elegans. Neither the water retention nor the thermal behaviour of symbionts changed when irradiated with UVC under dry conditions. On the other hand, UVC irradiation of the wet mycobiont of B. frigida had a distinct impact on the hydration/dehydration ability which was not observed for the mycobiont of X. elegans. Possibly the melanin of B. frigida's mycobiont, that is not present in X. elegans, or a specifically damaged acetamido group of the chitin of B. frigida may be the sources of additional UVC-induced sorption sites for water associated with the UVC exposure.

  2. Protein Retention and Organoleptik Characteristic of Broiler Meat by Adding Sour Soy Milk in Drinking Water (1-5 Weeks)


    Ida Ayu Okarini; Anak Agung Sagung Putu Kartini; Martini Hartawan


    This research was carried out to study effect sour soy milk in drinking water on protein retention of bdy chich and organoleptic test broiler cooked meat. The Completely Randomized Design (CRD)  were used which considered of three treatment and four replicates. Each refricate consists of five chickens. The treatments are as follow: A as control of drinking water not added sour soy milk; B 1% of sour soy milk in 1 liter drinking water (B = 83.3 g sour soy milk + 916.7 ml water) and C 2% of sou...

  3. How Natural Water Retention Measures (NWRM) can help rural and urban environments improve their resilience? (United States)

    Siauve, Sonia


    The challenges related to water resources management are exacerbated by climate change which implies additional complexity and uncertainty. The impacts of climate change have thus to be taken into account, from today on the next decades, to ensure a sustainable integrated water resources management. One of the main environmental objective of the Water Framework Directive (2000/30/CE) was to achieve and maintain a good status for all water bodies by the target date of 2015. Unfortunately, Member States didn't manage to reach this goal and in this context, the European Commission (EC), since many years, have started many initiatives and reforms to improve the global situation. In 2012 the DG Environment (DGENV) of the EC published a "Blueprint to safeguard Europe's water resources" that states the need for further implementation of water resource management measures and in particular Natural Water Retention Measures (NWRMs). NWRM are measures that aim to safeguard and enhance the water storage potential of landscape, soils and aquifers, by restoring ecosystems, natural features and characteristics of water courses, and by using natural processes. They are Nature-Based Solutions supporting adaptation and reducing vulnerability of water resources. Their interest lies with the multiple benefits they can deliver, and their capacity to contribute simultaneously to the achievement of the objectives of different European policies (WFD, FD, Biodiversity strategy …). However the knowledge on NWRM is scattered and addressed differently in the countries, whereas the NWRM potential for improving the state of the environment and resilience (drought, flood, biodiversity…) in a changing environment is high. In 2013, all EU countries started the elaboration of the second River Basin Management Plan and associated Programme of Measures. To support MS authorities and local implementers of these measures DGENV launched a 14 month project for collaboratively building knowledge and

  4. Transport and retention of phosphorus in surface water in an urban slum area (United States)

    Nyenje, P. M.; Meijer, L. M. G.; Foppen, J. W.; Kulabako, R.; Uhlenbrook, S.


    The transport of excessive phosphorus (P) discharged from unsewered informal settlements (slums) due to poor on-site sanitation is largely unknown. Hence, we investigated the processes governing P transport in a 28 km2 slum-dominated catchment in Kampala, Uganda. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h) from a primary channel draining the catchment and from a small size tertiary channel draining one of the contributing slum areas (0.5 km2). Samples were analyzed for orthophosphate (PO4-P), particulate P (PP), total P (TP) and selected hydro-chemical parameters. Channel bed and suspended sediments were collected to determine their sorption potential, geo-available metals and dominant P forms. We found that P inputs in the catchment originated mainly from domestic wastewater as evidenced by high concentrations of Cl (36-144 mg L-1), HCO3 and other cations in the channels. Most P discharged during low flow conditions was particulate implying that much of it was retained in bed sediments. Retained P was mostly bound to Ca and Fe/Al oxides. Hence, we inferred that mineral precipitation and adsorption to Ca-minerals were the dominant P retention processes. Bed sediments were P-saturated and showed a tendency to release P to discharging waters. P released was likely due to Ca-bound P because of the strong correlation between Ca and total P in sediments (r2 = 0.9). High flows exhibited a strong flush of PP and SS implying that part of P retained was frequently flushed out of the catchment by surface erosion and resuspension of bed sediment. Our findings suggest that P accumulated in the channel bed during low flows and then was slowly released into surface water. Hence, it will likely take some time, even with improved wastewater management practices, before P loads to downstream areas can be significantly reduced.

  5. Retention of stored water enables tropical tree saplings to survive extreme drought conditions. (United States)

    Wolfe, Brett T


    Trees generally maintain a small safety margin between the stem water potential (Ψstem) reached during seasonal droughts and the Ψstem associated with their mortality. This pattern may indicate that species face similar mortality risk during extreme droughts. However, if tree species vary in their ability to regulate Ψstem, then safety margins would poorly predict drought mortality. To explore variation among species in Ψstem regulation, I subjected potted saplings of six tropical tree species to extreme drought and compared their responses with well-watered plants and pretreatment reference plants. In the drought treatment, soil water potential reached Bursera simaruba (L.) Sarg., Cavanillesia platanifolia (Bonpl.) Kunth and Cedrela odorata L. had 100% survival and maintained Ψstem near -1 MPa (i.e., desiccation-avoiding species). Three other species, Cojoba rufescens (Benth.) Britton and Rose, Genipa americana L. and Hymenaea courbaril L. had 50%, 0% and 25% survival, respectively, and survivors had Ψstem <-6 MPa (i.e., desiccation-susceptible species). The desiccation-avoiding species had lower relative water content (RWC) in all organs and tissues (root, stem, bark and xylem) in the drought treatment than in the reference plants (means 72.0-90.4% vs 86.9-97.9%), but the survivors of the desiccation-susceptible C. rufescens had much lower RWC in the drought treatment (44.5-72.1%). Among the reference plants, the desiccation-avoiding species had lower tissue density, leaf-mass fraction and lateral-root surface area (LRA) than the desiccation-susceptible species. Additionally, C. platanifolia and C. odorata had reduced LRA in the drought treatment, which may slow water loss into dry soil. Together, these results suggest that the ability to regulate Ψstem during extreme drought is associated with functional traits that favor retention of stored water and that safety margins during seasonal drought poorly predict survival during extreme drought. © The Author

  6. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis

    DEFF Research Database (Denmark)

    Schrier, R W; Arroyo, V; Bernardi, M


    . While the occurrence of primary renal sodium and water retention and plasma volume expansion prior to ascites formation favors the "overflow" hypothesis, the stimulation of the renin-angiotensin-aldosterone system, vasopressin release and sympathetic nervous system associated with cirrhosis...... is not consonant with primary volume expansion. In this present article, the "Peripheral Arterial Vasodilation Hypothesis" is proposed as the initiator of sodium and water retention in cirrhosis. Peripheral arterial vasodilation is one of the earliest observations in the cirrhotic patient and experimental animals...... and drug-induced peripheral arterial vasodilation. However, a predilection for the retained sodium and water to transudate into the abdominal cavity occurs with cirrhosis because of the presence of portal hypertension. The Peripheral Arterial Vasodilation Hypothesis also explains the continuum from...

  7. Post-main-sequence Evolution of Icy Minor Planets. II. Water Retention and White Dwarf Pollution around Massive Progenitor Stars (United States)

    Malamud, Uri; Perets, Hagai B.


    Most studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases, are not yet understood. Here we study the water retention of small icy bodies in exo-solar planetary systems, as their respective host stars evolve through and off the main sequence and eventually become WDs. We explore, for the first time, a wide range of star masses and metallicities. We find that the mass of the WD progenitor star is of crucial importance for the retention of water, while its metallicity is relatively unimportant. We predict that minor planets around lower-mass WD progenitors would generally retain more water and would do so at closer distances from the WD than compared with high-mass progenitors. The dependence of water retention on progenitor mass and other parameters has direct implications for the origin of observed WD pollution, and we discuss how our results and predictions might be tested in the future as more observations of WDs with long cooling ages become available.

  8. Computational modelling of Artificial Language Learning : Retention, Recognition & Recurrence

    NARCIS (Netherlands)

    Garrido Alhama, R.


    Artificial Language Learning (ALL) is a key paradigm to study the nature of learning mechanisms in language. In this dissertation, I have used computational modelling to interpret results from ALL experiments on infants, adults and non-human animals, with the goal of understanding the mechanisms of

  9. Quantitative retention-activity relationship models for quinolones using biopartitioning micellar chromatography. (United States)

    Wu, Li-Ping; Chen, Yu; Wang, Shu-Rong; Chen, Cong; Ye, Li-Ming


    A simple and reproducible quantitative retention-activity relationship (QRAR) model utilizing biopartitioning micellar chromatography was developed for the biological parameter estimation of drugs. The correlation between retention factors of quinolones obtained in physiological conditions (pH, ionic strength) and biological activities was investigated using different second-order polynomial models. The predictive and interpretative ability of the chromatographic models was evaluated in terms of cross-validated data (RMSEC, RMSECV and RMSECVi). The aim was to obtain adequate QRAR models of half-life, clearance, volume of distribution, plasma protein combination rate, area under concentration-time curve and toxicity (LD50) of quinolones, and to elucidate the advantages and limitations of using a single parameter as independent variable for describing and estimating the activities. Copyright (c) 2007 John Wiley & Sons, Ltd.

  10. In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs

    Directory of Open Access Journals (Sweden)

    Weimin Ma


    Full Text Available A historical review of in-vessel melt retention (IVR is given, which is a severe accident mitigation measure extensively applied in Generation III pressurized water reactors (PWRs. The idea of IVR actually originated from the back-fitting of the Generation II reactor Loviisa VVER-440 in order to cope with the core-melt risk. It was then employed in the new deigns such as Westinghouse AP1000, the Korean APR1400 as well as Chinese advanced PWR designs HPR1000 and CAP1400. The most influential phenomena on the IVR strategy are in-vessel core melt evolution, the heat fluxes imposed on the vessel by the molten core, and the external cooling of the reactor pressure vessel (RPV. For in-vessel melt evolution, past focus has only been placed on the melt pool convection in the lower plenum of the RPV; however, through our review and analysis, we believe that other in-vessel phenomena, including core degradation and relocation, debris formation, and coolability and melt pool formation, may all contribute to the final state of the melt pool and its thermal loads on the lower head. By looking into previous research on relevant topics, we aim to identify the missing pieces in the picture. Based on the state of the art, we conclude by proposing future research needs.

  11. Interrelations among the soil-water retention, hydraulic conductivity, and suction-stress characteristic curves (United States)

    Lu, Ning; Kaya, Murat; Godt, Jonathan W.


    The three fundamental constitutive relations that describe fluid flow, strength, and deformation behavior of variably saturated soils are the soil-water retention curve (SWRC), hydraulic conductivity function (HCF), and suction-stress characteristic curve (SSCC). Until recently, the interrelations among the SWRC, HCF, and SSCC have not been well established. This work sought experimental confirmation of interrelations among these three constitutive functions. Results taken from the literature for six soils and those obtained for 11 different soils were used. Using newly established analytical relations among the SWRC, HCF, and SSCC and these test results, the authors showed that these three constitutive relations can be defined by a common set of hydromechanical parameters. The coefficient of determination for air-entry pressures determined independently using hydraulic and mechanical methods is >0.99, >0.98 for the pore size parameter, and 0.94 for the residual degree of saturation. One practical implication is that one of any of the four experiments (axis-translation, hydraulic, shear-strength, or deformation) is sufficient to quantify all three constitutive relations.

  12. Computational modelling of memory retention from synapse to behaviour (United States)

    van Rossum, Mark C. W.; Shippi, Maria


    One of our most intriguing mental abilities is the capacity to store information and recall it from memory. Computational neuroscience has been influential in developing models and concepts of learning and memory. In this tutorial review we focus on the interplay between learning and forgetting. We discuss recent advances in the computational description of the learning and forgetting processes on synaptic, neuronal, and systems levels, as well as recent data that open up new challenges for statistical physicists.

  13. The Status of Water in Swelling Shales: An Insight from the Water Retention Properties of the Callovo-Oxfordian Claystone (United States)

    Menaceur, Hamza; Delage, Pierre; Tang, Anh Minh; Talandier, Jean


    The Callovo-Oxfordian (COx) claystone is considered in France as a possible host rock for the disposal of high-level long-lived radioactive waste at great depth. During the operational phase, the walls of the galleries and of the disposal cells will be successively subjected to desaturation induced by ventilation followed by resaturation once the galleries are closed. To better understand this phenomenon, a sound understanding of the water retention properties of the COx claystone is necessary. Following a previous study by the same group, this paper presents an investigation of microstructure changes in COx claystone under suction changes. Microstructure was investigated by means of mercury intrusion porosimetry tests on freeze-dried specimens previously submitted to various suctions. Along the drying path, the initial microstructure, characterised by a well-classified unimodal pore population around a mean diameter value of 32 nm, slightly changed with the same shape of the PSD curve and slightly moved towards smaller diameters (27-28 nm) at suctions of 150 and 331 MPa, respectively. The infra-porosity too small to be intruded by mercury (diameter smaller than 5.5 nm) reduced from 4.3 to 3.3 %. Oven drying reduced the mean diameter to 20 nm and the infra-porosity to 1 %. Wetting up to 9 MPa suction leads to saturation with no significant change in the PSD curve, whereas wetting at zero suction gave rise to the appearance of a large pore population resulting from the development of cracks with width of several micrometres, together with an enlargement of the initial pore population above the mean diameter. The concepts describing the step hydration of smectites (by the successive placement within the clay platelets along the smectite faces of 1, 2, 3 and 4 layers of water molecules with respect to the suction applied) appeared relevant to better understand the changes in microstructure of the COx claystone under suction changes. This also allowed to better define

  14. Protein Retention and Organoleptik Characteristic of Broiler Meat by Adding Sour Soy Milk in Drinking Water (1-5 Weeks

    Directory of Open Access Journals (Sweden)

    Ida Ayu Okarini


    Full Text Available This research was carried out to study effect sour soy milk in drinking water on protein retention of bdy chich and organoleptic test broiler cooked meat. The Completely Randomized Design (CRD  were used which considered of three treatment and four replicates. Each refricate consists of five chickens. The treatments are as follow: A as control of drinking water not added sour soy milk; B 1% of sour soy milk in 1 liter drinking water (B = 83.3 g sour soy milk + 916.7 ml water and C 2% of sour soy milk in 1 liter drinking water (C = 166.7  sour soy milk + 833.3 ml water. Sour soy milk contains total lactic acid bacteria (LAB 8.98 x 104 – 1.96 x 106 cfu/g with pH 5.00 – 5.06. Sour soy milk made with natural fermentation (18 hours at room temperature (30-32oC, no added starter culture LAB. Commercial diets concentrate type CP 511 (for starter phase 1-3 weeks and type CP 512 for finisher phase 3-5 weeks. Drinking water was gien ad libitum. Crude protein body chick analyzed used ICW method and organoleptic test (Larmond, 1977 with hedonic scale (9.0 like – 1.0 dislike. Statistically analyzed by Anova (Gomez and Gomez, 1995 to significant different on the treatment. This results showed that B and C treatment no significant effect on protein retention, but the quantitative higher 10.53% and 13.16% than A treatment (protein retention = 38.9%. Its also C treatment higher 2.38% than B treatment. Organoleptic test by 20 judgement showed increasing like value: arome, texture, flavour, and overall acceptance on B and C treatment than control (A treatment. Colour like meat not different on three treatment.In conclusion of the reserach effect sour soy milk 2% treatment on drinking water (1-5 weeks, showed that increase of organoleptic value aroma like and overall acceptance than control treatment, and also increasing protein retention body chick.   Keywords : Sour soy milk, protein retention body chick, organoleptic

  15. Validation of a spatial–temporal soil water movement and plant water uptake model

    KAUST Repository



    © 2014, (publisher). All rights reserved. Management and irrigation of plants increasingly relies on accurate mathematical models for the movement of water within unsaturated soils. Current models often use values for water content and soil parameters that are averaged over the soil profile. However, many applications require models to more accurately represent the soil–plant–atmosphere continuum, in particular, water movement and saturation within specific parts of the soil profile. In this paper a mathematical model for water uptake by a plant root system from unsaturated soil is presented. The model provides an estimate of the water content level within the soil at different depths, and the uptake of water by the root system. The model was validated using field data, which include hourly water content values at five different soil depths under a grass/herb cover over 1 year, to obtain a fully calibrated system for plant water uptake with respect to climate conditions. When compared quantitatively to a simple water balance model, the proposed model achieves a better fit to the experimental data due to its ability to vary water content with depth. To accurately model the water content in the soil profile, the soil water retention curve and saturated hydraulic conductivity needed to vary with depth.

  16. Extraction, separation and quantitative structure-retention relationship modeling of essential oils in three herbs. (United States)

    Wei, Yuhui; Xi, Lili; Chen, Dongxia; Wu, Xin'an; Liu, Huanxiang; Yao, Xiaojun


    The essential oils extracted from three kinds of herbs were separated by a 5% phenylmethyl silicone (DB-5MS) bonded phase fused-silica capillary column and identified by MS. Seventy-four of the compounds identified were selected as origin data, and their chemical structure and gas chromatographic retention times (RT) were performed to build a quantitative structure-retention relationship model by genetic algorithm and multiple linear regressions analysis. The predictive ability of the model was verified by internal validation (leave-one-out, fivefold, cross-validation and Y-scrambling). As for external validation, the model was also applied to predict the gas chromatographic RT of the 14 volatile compounds not used for model development from essential oil of Radix angelicae sinensis. The applicability domain was checked by the leverage approach to verify prediction reliability. The results obtained using several validations indicated that the best quantitative structure-retention relationship model was robust and satisfactory, could provide a feasible and effective tool for predicting the gas chromatographic RT of volatile compounds and could be also applied to help in identifying the compound with the same gas chromatographic RT.

  17. Effect calcusol to reduce the calcium crystal retention in kidney epithelial cells model of nephrolothiasis

    Directory of Open Access Journals (Sweden)

    Ahmad Soni


    Full Text Available Kidney stones is a disease that characterized by a disturbance in the bladder. The main constituent of kidney stones namely Calcium Oxalate Monohydrate (COM crystals. The presence of a COM crystal adhesion to renal tubular cells, will initiate the internalization which will further lead to the formation of crystals retention in the kidney. In Indonesia, there are many herbal products are considered able to cope the complaints due to the kidney stone disease. One of the herbal product is Calcusol „¢, which is the main constituent of those herbal product was the leaf extract of tempuyung. This study observed the effectiveness of Calcusol „¢ in reducing crystals retention that was formed in kidney epithelial cells model of nephrolithiasis. The result showed that Calcusol „¢ is able to reduce the average number of calcium crystals retention in the renal epithelial cells. It indicate that Calcusol „¢ has the ability to reduce crystals retention that already formed in renal epithelial cells. Furthermore, the results of this study are expected to be one of the considerations for further research on the potential of overcoming Calcusol „¢ in kidney stone disease

  18. Developing a Hybrid Model to Predict Student First Year Retention in STEM Disciplines Using Machine Learning Techniques (United States)

    Alkhasawneh, Ruba; Hargraves, Rosalyn Hobson


    The purpose of this research was to develop a hybrid framework to model first year student retention for underrepresented minority (URM) students comprising African Americans, Hispanic Americans, and Native Americans. Identifying inputs that best contribute to student retention provides significant information for institutions to learn about…

  19. Noninvasive Assessment of Elimination and Retention using CT-FMT and Kinetic Whole-body Modeling. (United States)

    Al Rawashdeh, Wa'el; Zuo, Simin; Melle, Andrea; Appold, Lia; Koletnik, Susanne; Tsvetkova, Yoanna; Beztsinna, Nataliia; Pich, Andrij; Lammers, Twan; Kiessling, Fabian; Gremse, Felix


    Fluorescence-mediated tomography (FMT) is a quantitative three-dimensional imaging technique for preclinical research applications. The combination with micro-computed tomography (µCT) enables improved reconstruction and analysis. The aim of this study is to assess the potential of µCT-FMT and kinetic modeling to determine elimination and retention of typical model drugs and drug delivery systems. We selected four fluorescent probes with different but well-known biodistribution and elimination routes: Indocyanine green (ICG), hydroxyapatite-binding OsteoSense (OS), biodegradable nanogels (NG) and microbubbles (MB). µCT-FMT scans were performed in twenty BALB/c nude mice (5 per group) at 0.25, 2, 4, 8, 24, 48 and 72 h after intravenous injection. Longitudinal organ curves were determined using interactive organ segmentation software and a pharmacokinetic whole-body model was implemented and applied to compute physiological parameters describing elimination and retention. ICG demonstrated high initial hepatic uptake which decreased rapidly while intestinal accumulation appeared for around 8 hours which is in line with the known direct uptake by hepatocytes followed by hepatobiliary elimination. Complete clearance from the body was observed at 48 h. NG showed similar but slower hepatobiliary elimination because these nanoparticles require degradation before elimination can take place. OS was strongly located in the bones in addition to high signal in the bladder at 0.25 h indicating fast renal excretion. MB showed longest retention in liver and spleen and low signal in the kidneys likely caused by renal elimination or retention of fragments. Furthermore, probe retention was found in liver (MB, NG and OS), spleen (MB) and kidneys (MB and NG) at 72 h which was confirmed by ex vivo data. The kinetic model enabled robust extraction of physiological parameters from the organ curves. In summary, µCT-FMT and kinetic modeling enable differentiation of hepatobiliary and

  20. Fabrication of Porous Ceramic-Geopolymer Based Material to Improve Water Absorption and Retention in Construction Materials: A Review (United States)

    Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.


    Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.

  1. Dual Impact of Tolvaptan on Intracellular and Extracellular Water in Chronic Kidney Disease Patients with Fluid Retention. (United States)

    Masuda, Takahiro; Murakami, Takuya; Igarashi, Yusuke; Okabe, Kyochika; Kobayashi, Takahisa; Takeda, Shin-Ichi; Saito, Takako; Sekiguchi, Chuji; Miyazawa, Yasuharu; Akimoto, Tetsu; Saito, Osamu; Muto, Shigeaki; Nagata, Daisuke

    Objective Tolvaptan, an oral selective V2-receptor antagonist, is a water diuretic that ameliorates fluid retention with a lower risk of a worsening renal function than conventional loop diuretics. Although loop diuretics predominantly decrease extracellular water (ECW) compared with intracellular water (ICW), the effect of tolvaptan on fluid distribution remains unclear. We therefore examined how tolvaptan changes ICW and ECW in accordance with the renal function. Methods Six advanced chronic kidney disease patients (stage 4 or 5) with fluid retention were enrolled in this study. Tolvaptan (7.5 mg/day) added to conventional diuretic treatment was administered to remove fluid retention. The fluid volume was measured using a bioimpedance analysis device before (day 0) and after (day 5 or 6) tolvaptan treatment. Results Body weight decreased by 2.6%±1.3% (64.4±6.5 vs. 62.8±6.3 kg, p=0.06), and urine volume increased by 54.8%±23.9% (1,215±169 vs. 1,709±137 mL/day, p=0.03) between before and after tolvaptan treatment. Tolvaptan significantly decreased ICW (6.5%±1.5%, p=0.01) and ECW (7.5%±1.4%, p=0.02), which had similar reduction rates (p=0.32). The estimated glomerular filtration rate remained unchanged during the treatment (14.6±2.8 vs. 14.9±2.7 mL/min/1.732 m, p=0.35). Conclusion Tolvaptan ameliorates body fluid retention, and induces an equivalent reduction rate of ICW and ECW without a worsening renal function. Tolvaptan is a novel water diuretic that has a different effect on fluid distribution compared with conventional loop diuretics.

  2. The influence of stony soil properties on water dynamics modeled by the HYDRUS model

    Directory of Open Access Journals (Sweden)

    Hlaváčiková Hana


    Full Text Available Stony soils are composed of two fractions (rock fragments and fine soil with different hydrophysical characteristics. Although stony soils are abundant in many catchments, their properties are still not well understood. This manuscript presents an application of the simple methodology for deriving water retention properties of stony soils, taking into account a correction for the soil stoniness. Variations in the water retention of the fine soil fraction and its impact on both the soil water storage and the bottom boundary fluxes are studied as well. The deterministic water flow model HYDRUS-1D is used in the study. The results indicate that the presence of rock fragments in a moderate-to-high stony soil can decrease the soil water storage by 23% or more and affect the soil water dynamics. Simulated bottom fluxes increased or decreased faster, and their maxima during the wet period were larger in the stony soil compared to the non-stony one.

  3. Patient histories, retention, and outcome models for younger and older adults in DATOS. (United States)

    Grella, C E; Hser, Y I; Joshi, V; Anglin, M D


    Structural equation modeling with multiple groups was used to examine relationships among pretreatment patient characteristics, treatment retention, and treatment outcomes among younger and older adults in the Drug Abuse Treatment Outcome Studies. Separate models were tested for 551 patients treated in long-term residential (LTR) programs and 571 patients treated in outpatient drug-free (ODF) programs. There was a stronger positive relationship between treatment retention and abstinence at follow-up for younger adults in both treatment modalities. Prior treatment history had a negative effect on self-efficacy to resist drug use for older adults in LTR. Negative reference group influence was reduced for all groups following treatment, however, it was more strongly related to abstinence for younger adults in LTR and for older adults in ODF. Clinical implications of age-related differences in these relationships are discussed.

  4. Mixed micellar liquid chromatography methods: modelling quantitative retention-activity relationships of angiotensin converting enzyme inhibitors. (United States)

    Wu, Li-Ping; Cui, Yan; Xiong, Mei-Jin; Wang, Shu-Rong; Chen, Cong; Ye, Li-Ming


    The capability of biopartitioning micellar chromatography (BMC), using pure Brij35 solution and mixed micellar system of Brij35-SDS (85:15) as mobile phase, to describe and estimate bioactivities of angiotensin converting enzyme inhibitors at different pH has been studied. Quantitative retention-activity relationships (QRAR) in BMC were investigated for these compounds. The obtained BMC(Brij35-SDS)-QRAR models were compared with the traditional BMC(Brij35)-QRAR, and better statistically models were obtained using Brij35-SDS retention data. The superiority of BMC(Brij35-SDS)-QRAR is due to the fact that the mixed micellar mobile phase can simulate the resting membrane potential and the conformation of the long hydrophilic polyoxyethylene chains remains unchanged.

  5. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves (United States)

    Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry


    Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF

  6. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    Directory of Open Access Journals (Sweden)

    C. Montzka


    Full Text Available Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC and hydraulic conductivity (HCC curves are typically derived from soil texture via pedotransfer functions (PTFs. Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller–Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem–van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based

  7. Modelling Ballast Water Transport

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Babu, M.T.; Vethamony, P.

    Ballast water discharges in the coastal environs have caused a great concern over the recent periods as they account for transporting marine organisms from one part of the world to the other. The movement of discharged ballast water as well...

  8. Post-acquisition hippocampal NMDA receptor blockade sustains retention of spatial reference memory in Morris water maze. (United States)

    Shinohara, Keisuke; Hata, Toshimichi


    Several studies have demonstrated that the hippocampal N-methyl-D-aspartate type glutamate receptors (NMDARs) are necessary for the acquisition but not the retention of spatial reference memory. In contrast, a few studies have shown that post-acquisition repetitive intraperitoneal injections of an NMDAR antagonist facilitate the retention of spatial reference memory in a radial maze task. In the present study, we investigated the role of hippocampal NMDARs in the retention of spatial reference memories in Morris water maze. In Experiment 1, 24 h after training (4 trials/day for 4 days), D-AP5 was chronically infused into the hippocampus of rats for 5 days. In the subsequent probe test (seven days after training), we found that rats infused with D-AP5 spent a significantly longer time in the target quadrant compared to chance level, whereas rats in the control group did not. In Experiment 2, D-AP5 was infused into the hippocampus 1 (immediate) or 7 (delayed) days after the training session. In the probe test, following the retention interval of 13 days, immediate infusion facilitated the performance in a manner similar to Experiment 1, whereas the delayed infusion did not. These findings suggest that hippocampal NMDARs play an important role in the deterioration of spatial reference memory. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. A multiple linear regression model for predicting zone A retention by military occupational specialty.


    Higham, Ronald P.


    Approved for public release; distribution is unlimited The Selective Reenlistment Bonus (SRB) program is designed to offer an attractive reenlistment incentive to improve manning in critical skills. To efficiently manage the SRB program, a requirement exists to maintain MOS level estimating factors for use in projecting retention rate improvement as a function of SRB award level. This thesis formulates and solves a mathematical model which explains the variation in zone A re...

  10. Efficient Work Team Scheduling: Using Psychological Models of Knowledge Retention to Improve Code Writing Efficiency

    Directory of Open Access Journals (Sweden)

    Michael J. Pelosi


    Full Text Available Development teams and programmers must retain critical information about their work during work intervals and gaps in order to improve future performance when work resumes. Despite time lapses, project managers want to maximize coding efficiency and effectiveness. By developing a mathematically justified, practically useful, and computationally tractable quantitative and cognitive model of learning and memory retention, this study establishes calculations designed to maximize scheduling payoff and optimize developer efficiency and effectiveness.

  11. Water retention of selected microorganisms and Martian soil simulants under close to Martian environmental conditions (United States)

    Jänchen, J.; Bauermeister, A.; Feyh, N.; de Vera, J.-P.; Rettberg, P.; Flemming, H.-C.; Szewzyk, U.


    Based on the latest knowledge about microorganisms resistant towards extreme conditions on Earth and results of new complex models on the development of the Martian atmosphere we quantitatively examined the water-bearing properties of selected extremophiles and simulated Martian regolith components and their interaction with water vapor under close to Martian environmental conditions. Three different species of microorganisms have been chosen and prepared for our study: Deinococcus geothermalis, Leptothrix sp. OT_B_406, and Xanthoria elegans. Further, two mineral mixtures representing the early and the late Martian surface as well as montmorillonite as a single component of phyllosilicatic minerals, typical for the Noachian period on Mars, were selected. The thermal mass loss of the minerals and bacteria-samples was measured by thermoanalysis. The hydration and dehydration properties were determined under close to Martian environmental conditions by sorption isotherm measurements using a McBain-Bakr quartz spring balance. It was possible to determine the total water content of the materials as well as the reversibly bound water fraction as function of the atmospheres humidity by means of these methods. Our results are important for the evaluation of future space mission outcomes including astrobiological aspects and can support the modeling of the atmosphere/surface interaction by showing the influence on the water inventory of the upper most layer of the Martian surface.

  12. Blister formation and hydrogen retention in aluminium and beryllium: A modeling and experimental approach

    Directory of Open Access Journals (Sweden)

    C. Quirós


    Full Text Available Experiments were performed in a low pressure-high density plasma reactor in order to study the impact of hydrogen retention in aluminium under plasma conditions. Microscopy scans of the surface were performed before and after 1h plasma exposure (fluence 6.1 ×1023ions/m2 where it is seen that blisters start to nucleate at the grain boundaries. Investigation on blister growth kinetics was performed for fluences ranging between 6 ×1023 and 3.7 ×1024ions/m2. The evolution of the characteristic size of the projected area was also analyzed. Finally, a macroscopic rate equations (MRE code was used to simulate hydrogen retention and diffusion in Al and bubble growth in the bulk was simulated using experimental results. This model was also used to simulate these phenomena in Be and compare its behavior with respect to Al.

  13. Retention of tritium in reference persons: a metabolic model. Derivation of parameters and application of the model to the general public and to workers. (United States)

    Galeriu, D; Melintescu, A


    Tritium ((3)H) is a radioactive isotope of hydrogen that is ubiquitous in environmental and biological systems. Following debate on the human health risk from exposure to tritium, there have been claims that the current biokinetic model recommended by the International Commission on Radiological Protection (ICRP) may underestimate tritium doses. A new generic model for tritium in mammals, based on energy metabolism and body composition, together with all its input data, has been described in a recent paper and successfully tested for farm and laboratory mammals. That model considers only dietary intake of tritium and was extended to humans. This paper presents the latest development of the human model with explicit consideration of brain energy metabolism. Model testing with human experimental data on organically bound tritium (OBT) in urine after tritiated water (HTO) or OBT intakes is presented. Predicted absorbed doses show a moderate increase for OBT intakes compared with doses recommended by the ICRP. Infants have higher tritium retention-a factor of 2 longer than the ICRP estimate. The highest tritium concentration is in adipose tissue, which has a very low radiobiological sensitivity. The ranges of uncertainty in retention and doses are investigated. The advantage of the new model is its ability to be applied to the interpretation of bioassay data.

  14. Modelling water temperature in TOXSWA

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Deneer, J.W.; Adriaanse, P.I.


    A reasonably accurate estimate of the water temperature is necessary for a good description of the degradation of plant protection products in water which is used in the surface water model TOXSWA. Based on a consideration of basic physical processes that describe the influence of weather on the

  15. Modeling the retention of rumen boluses for the electronic identification of goats. (United States)

    Carné, S; Caja, G; Ghirardi, J J; Salama, A A K


    We constructed a regression model to estimate the retention of electronic boluses in goats. With this aim, 2,482 boluses were administered to goats from dairy (Murciano-Granadina, n=1,326; French Alpine, n=381) and meat (Blanca de Rasquera, n=532) breeds. A total of 19 bolus types made of materials (ceramic, plastic tubes filled with concrete or silicone, and ballasts) differing in their specific gravity (SG) were used, thereby obtaining a wide variation in bolus features: diameter (9 to 22 mm), length (37 to 84 mm), weight (5 to 111 g), volume (2.6 to 26 mL), and SG (1.0 to 5.5). Each bolus contained a half-duplex glass encapsulated transponder (32 × 3.8mm) and was administered using adapted balling guns. Murciano-Granadina and Blanca de Rasquera goats also wore 2 visual plastic ear tags: V1 (double flag, 5.1g) and V2 (flag-button, 4.2g). No data on ear tags in French Alpine goats was available. Bolus and ear tag retention [(retained/monitored) × 100] was recorded for at least 1 yr. Dynamic reading efficiency [(dynamic reading/static reading) × 100] was also evaluated from 1,496 bolus readings. No administration incidences or apparent negative behavior or performance effects were observed for any bolus type. Static reading efficiency of retained boluses was 100%, except for the prototypes with metal ballasts, which yielded a 93.3% reading efficiency. Retention of metal-ballasted boluses was confirmed using x-ray equipment. Excluding ballasted boluses, a 99.5% dynamic reading efficiency was obtained. Ear tag losses were 6.5% for V1 and 3.7% for V2, ranging from 3.2 to 7.8% depending on ear tag type and goat breed. Bolus retention varied (0 to 100%) according to their physical features. Obtained data allowed the fitting of a logistic model of bolus retention rate according to bolus volume and weight (R(2) = 0.98); the SG was implicitly considered. Estimated weight and SG to produce medium- (15 mL) and standard-sized (22 mL) boluses for 99.95% retention rate in

  16. The retention of first-generation college students in STEM: An extension of Tinto's longitudinal model (United States)

    Uche, Ada Rosemary

    In the current technologically advanced global economy, the role of human capital and education cannot be over-emphasized. Since almost all great inventions in the world have a scientific or technological foundation, having a skilled workforce is imperative for any nation's economic growth. Currently, large segments of the United States' population are underrepresented in the attainment of science, technology, engineering, and math (STEM) degrees, and in the STEM professions. Scholars, educators, policy-makers, and employers are concerned about the decline in student enrollment and graduation from STEM disciplines. This trend is especially problematic for first-generation college students. This study uses both quantitative and qualitative methods to assess the factors that predict the retention of first-generation college students in the STEM majors. It employs Tinto's longitudinal model (1993) as a conceptual framework to predict STEM retention for first-generation college students. The analysis uses the Beginning Post-secondary Students study (BPS 04/09) data and Roots of STEM qualitative data to investigate the role of first-generation status in STEM major retention. Results indicate that upper levels of achievement in high school math have a significant effect on first-generation status in STEM outcomes.

  17. Water Stress Projection Modeling (United States)


    En gi ne er in g R es ea rc h La bo ra to ry Juliana M. Wilhoit, Grace M. Díaz-Estrada, James P. Miller, and James Westervelt September 2016...Raster Grids. Recharge rates and land use data were available in raster Geographic Information System ( GIS ) grids (1-km and 30-meter, respec- tively...climatic drivers (Roy et al. 2012). Shifts in ag- ricultural water withdrawals may be affected by factors such as water rights, crops being irrigated

  18. Quantitative retention-activity relationship models of angiotensin converting enzyme inhibitors using biopartitioning micellar chromatography. (United States)

    Wang, Shu-Rong; Chen, Cong; Xiong, Mei-Jin; Wu, Li-Ping; Ye, Li-Ming


    Biopartitioning micellar chromatography (BMC) is a mode of micellar liquid chromatography that uses micellar mobile phases of Brij35 under adequate experimental conditions and can simulate biopartioning process of many kinds of drugs and describe their biological behavior. The capability of BMC to describe and estimate pharmacokinetic and pharmacodynamic parameters of angiotensin-converting enzyme inhibitors (ACEIs) had been studied in this paper. The correlation between retention factors of ACEIs obtained using BMC and bioactivity parameters (half-life, volume of distribution, clearance, and IC(50)) was investigated utilizing a second-order polynomial model. The P-values obtained for half-life, volume of distribution, clearance, and IC(50) models were less than 0.05, and the r(2) of those four models were 0.89, 0.98, 0.94, and 0.97, with r(2)(adj) (adjusted for freedom degrees) being 0.85, 0.98, 0.91, and 0.95, respectively. The predictive and interpretative ability of the chromatographic models was evaluated in terms of cross-validated data [root mean squared error of calibration (RMSEC), root mean squared error of cross-validation (leave-one-out) (RMSECV), and root mean squared error of cross-validation (leave-one-out) for interpolated data (RMSECVi)]. The quantitative retention-activity relationship (QRAR) models of ACEIs developed in this paper may be a useful approach to screening new chemicals in the early stage of development.

  19. Soil Specific Surface Area and Non-Singularity of Soil-Water Retention at Low Saturations

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per


    The dry end of the soil water characteristic (SWC) is important for modeling vapor flow dynamics and predicting soil properties such as specific surface area (SSA) and clay content (CL). Verification of new instrumentation for rapid measurement of the dry end of the SWC is relevant to avoid long...... equilibration times and potential for hydraulic decoupling. The objectives of this study were to measure both adsorption and desorption branches of the dry end of the SWC for 21 variably-textured Arizona soils using new, fully automated instrumentation (AquaSorp); apply the data to parameterize the Tuller...... model well described the distinct non-singularity between the adsorption and desorption branches, while the TO model captured the adsorption data reasonably well (

  20. Formation and Retention of Hydroxyl and Water on the Lunar Surface (United States)

    Kramer, G. Y.; Clark, R. N.; Combe, J.; Noble, S. K.


    Spectral reflectance observations by the Moon Mineralogy Mapper (M3) showed that both hydroxyl and (molecular) water (hereafter referred to collectively as H/OH) vary spatially as a function of solar illumination geometry. At low solar incidence angles, the observed strengths of the H/OH spectral features are stronger than at higher angles, suggesting that the abundance varies with the diurnal cycle. This is also demonstrated in the increasing abundances with increasing latitude, such that above ~60 degrees there is little reduction in the depth of the water-related spectral absorption bands. It was immediately recognized that the wide-spread occurrence of H/OH across the lunar surface was the result of solar wind-induced hydroxylation, a phenomenon that was predicted almost 50 years ago. The lunar soil has a finite capacity to retain implanted hydrogen, and over time, the surface reaches a steady state, or background H/OH abundance, which is manifested in spectra of the mature soil. In addition to maturity, the retention of H/OH is a function of composition and texture (i.e., crystallinity and surface/volume). There are two hypotheses for how solar wind-implanted H/OH is retained in the soil: 1) H/OH adsorbs onto active surface sites on fresh soil particles. 2) H/OH is trapped in vesicles in agglutinates and amorphous coatings on soil grains created by space weathering. Undoubtedly both of these mechanisms occur, but one process is ultimately responsible for the observed steady state mature soil abundance, and this can be studied by measuring the strength of the H/OH spectral feature from soils as a function of variable composition, texture, and maturity. Space weathering is capable of both activating and neutralizing grain surfaces. Micrometeorite and larger impacts can activate mineral surfaces through mechanical forces, such as crushing and shattering of minerals, which creates fresh surfaces with partially unsatisfied chemical bonds. The freshly fractured

  1. Retention models and interaction mechanisms of benzene and other aromatic molecules with an amylose-based sorbent. (United States)

    Hsieh, Han-Yu; Wu, Shyuan-Guey; Tsui, Hung-Wei


    Stoichiometric displacement models have been widely used for understanding the adsorption mechanisms of solutes in chromatography systems. Such models are used for interpreting plots of solute retention factor versus concentrations of polar modifier in an inert solvent. However, these models often assume that dispersion forces are negligible and they are unable to account for solutes with significant aromatic interactions. In this study, a systematic investigation of the relationship between retention behavior and aromatic groups was performed using five simple aromatic molecules-benzene, naphthalene, mesitylene, durene, and toluene-with a commercially available amylose tris(3,5-dimethylphenylcarbamate)-based sorbent. The enthalpy changes of adsorption, determined from van't Hoff plots, were obtained separately in pure n-hexane and in pure isopropanol (IPA). In pure n-hexane, the solute adsorptions were driven by electrostatic interactions, favoring a T-shaped binding configuration (edge-to-face π-π interaction). The order of enthalpy change indicated the amount of effective T-shaped π-interactions. In pure IPA, solute adsorption was dominated by dispersion forces, favoring a sandwich binding configuration (face-to-face π-π interaction). The adsorption isotherms of toluene revealed that in pure IPA and in pure n-hexane, the isotherms were linear. The results suggested that the high solvent strength of IPA weakened the interactions between aromatic molecules. The retention behavior of the benzene, naphthalene, mesitylene, and durene as a function of IPA concentration was investigated. U-shaped retention curves were found for all aromatic solutes. A new retention model for monovalent aromatic solutes was developed for describing the U-shaped curves. Three key dimensionless groups were revealed to control the retention behavior. The models suggested that solvophobic interactions should be accounted for in the retention models used to investigate the retention

  2. Least absolute shrinkage and selection operator and dimensionality reduction techniques in quantitative structure retention relationship modeling of retention in hydrophilic interaction liquid chromatography. (United States)

    Daghir-Wojtkowiak, Emilia; Wiczling, Paweł; Bocian, Szymon; Kubik, Łukasz; Kośliński, Piotr; Buszewski, Bogusław; Kaliszan, Roman; Markuszewski, Michał Jan


    The objective of this study was to model the retention of nucleosides and pterins in hydrophilic interaction liquid chromatography (HILIC) via QSRR-based approach. Two home-made (Amino-P-C18, Amino-P-C10) and one commercial (IAM.PC.DD2) HILIC stationary phases were considered. Logarithm of retention factor at 5% of acetonitrile (logkACN) along with descriptors obtained for 16 nucleosides and 11 pterins were used to develop QSRR models. We used and compared the predictive performance of three regression techniques: partial least square (PLS), the least absolute shrinkage and selection operator (LASSO), and the LASSO followed by stepwise multiple linear regression. The highest predictive squared correlation coefficient (QLOOCV(2)) in PLS analysis was found for Amino-P-C10 (QLOOCV(2)=0.687) and IAM.PC.DD2 (QLOOCV(2)=0.506) and the lowest for IAM.PC.DD2 (QLOOCV(2)=-0.01). Much higher values were obtained for the LASSO model. The QLOOCV(2) equaled 0.9 for Amino-P-C10, 0.66 for IAM.PC.DD2 and 0.59 for Amino-P-C18. The combination of LASSO with stepwise regression provided models with comparable predictive performance as the LASSO, however with possibility of calculating the standard error of estimates. The use of LASSO itself and in combination with classical stepwise regression may offer greater stability of the developed models thanks to more smooth change of coefficients and reduced susceptibility towards chance correlation. Application of QSRR-based approach, along with the computational methods proposed in this work, may offer a useful approach in the modeling of retention of nucleoside and pterin compounds in HILIC. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Water-retentive and anti-inflammatory properties of organic and inorganic substances from Korean sea mud. (United States)

    Kim, Jung-Hyun; Lee, Jeongmi; Lee, Hyang-Bok; Shin, Jeong Hyun; Kim, Eun-Ki


    Sea mud has been popularly used as an effective base in cosmetic preparations although its biologically-active materials and mechanisms on skin have not yet been fully determined. We isolated humic substances as the major organic substance of the sea mud from a tidal flat in Korea, and investigated their water-retentive properties. Among the three isolated humic substances, humic acid (HA) showed the highest water retentive property (approximately 50 % mass increase from water uptake). Based on the observations that mud pack therapy has been traditionally used to soothe UV-irradiated skin, we examined the antiinflammatory property of the sea mud on UVB-irradiated human keratinocytes (HaCaT cells) by measuring PGE2 levels produced by keratinocytes in the presence of either the total water or methanol extracts of the mud. The water extract showed higher inhibition of PGE2 production from HaCaT cells (30% inhibition) than the methanol extract at 200 ppm (microg/g). We further fractionated the water extract to determine the major components responsible for its anti-inflammatory effect. It was found that the minerals in the mud inhibited PGE2 production by 83 % at 200 ppm, which is comparable with the inhibitory effect of 1 microM indomethacin. No mud extract showed cytotoxicity at the tested concentrations. The mineral compositions of the mineral extract were determined by ICP-MS, revealing that the sea mud consisted of more than 19 different mineral components, rich in Na+, Mg2+, and Zn2+. These results imply that the anti-inflammatory effect of the sea mud is largely due to the minerals in the mud. Our research suggests the potential use of the organic and inorganic substances from the sea mud in various skin products as safe biological substances for skin protective purposes.

  4. Stochastic Still Water Response Model

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager


    In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model...... water bending moment is compared to statistics from available regression formulas. It is found that the suggested model predicts a coefficient of variation of the maximum still water bending moment that is a factor of two to three times lower than that obtained by use of the regression formula. It turns...

  5. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.


    BACKGROUND: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. RESULTS: Water migration in cellular solid foods

  6. Predictive model to describe water migration in cellular solid foods during storage

    NARCIS (Netherlands)

    Voogt, J.A.; Hirte, A.; Meinders, M.B.J.


    Background: Water migration in cellular solid foods during storage causes loss of crispness. To improve crispness retention, physical understanding of this process is needed. Mathematical models are suitable tools to gain this physical knowledge. Results: Water migration in cellular solid foods

  7. Modeling Water Filtration (United States)

    Parks, Melissa


    Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…

  8. Effect of thermocycling with or without 1 year of water storage on retentive strengths of luting cements for zirconia crowns. (United States)

    Ehlers, Vicky; Kampf, Gabriel; Stender, Elmar; Willershausen, Brita; Ernst, Claus-Peter


    Bond stability between zirconia crowns and luting cement and between cement and dentin is a main concern; however, only limited evidence is available as to its longevity. The purpose of this in vitro study was to measure the retentive strengths of 7 self-adhesive cements (RelyX Unicem Aplicap, RelyX Unicem Clicker, RelyX Unicem 2 Automix, iCEM, Maxcem Elite, Bifix SE, SpeedCem), 2 adhesive cements with self-etch primers (Panavia 21, SEcure), 1 glass ionomer cement (Ketac Cem), 1 resin-modified glass ionomer cement (Meron Plus), and 1 zinc phosphate cement for luting zirconia crowns (LAVA) to extracted teeth after thermocycling with or without 1 year of water storage. Two-hundred-forty extracted human molars (2 treatments; n=10 per cement) were prepared in a standardized manner. All cements were used according to the manufacturers' recommendations. The intaglios of the crowns were treated with airborne-particle abrasion. After thermocycling (×5000, 5°C/55°C) with or without 1 year of water storage, the cemented ceramic crowns were removed by using a Zwick universal testing device. Statistical analyses were done with the Wilcoxon rank sum and the 2-independent-samples Kolmogorov-Smirnov test. Median retentive strengths [MPa] for specimens thermocycled only/thermocycled with 1 year of water storage were as follows: Panavia 21: 1.7/2.5, SEcure: 3.0/3.0, RelyX Unicem Aplicap: 3.1/3.4, RelyX Unicem Clicker: 4.1/4.2, RelyX Unicem 2 Automix: 3.8/3.1, iCEM: 2.3/2.7, Maxcem Elite: 3.0/3.2, Bifix SE: 1.7/1.7, SpeedCem: 1.3/1.6, Meron Plus: 3.1/2.7, Ketac Cem: 1.4/1.4, and zinc phosphate cement: 1.1/1.6. Statistically significant differences were found only among specimens thermocycled only or thermocycled with 1-year water storage (P<.001). Significant differences in retentive strengths were observed among cements after thermocycling only or thermocycling with 1 year of water storage, but not for the effect of the additional 1 year of water storage. Copyright © 2015

  9. Storm Water Management Model (SWMM) (United States)

    EPA's Storm Water Management Model (SWMM) is used throughout the world for planning, analysis and design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban areas.

  10. The effect of CA1 α2 adrenergic receptors on memory retention deficit induced by total sleep deprivation and the reversal of circadian rhythm in a rat model. (United States)

    Norozpour, Yaser; Nasehi, Mohammad; Sabouri-Khanghah, Vahid; Torabi-Nami, Mohammad; Zarrindast, Mohammad-Reza


    The α2 adrenergic receptors which abundantly express in the CA1 region of the hippocampus play an important role in the regulation of sleep and memory retention processes. Based on the available evidence, the aim of our study was to investigate consequences of the activation and deactivation of CA1 α2 adrenergic receptors (by clonidine and yohimbine, respectively) on the impairment of memory retention induced by total sleep deprivation (TSD) and the reversal of circadian rhythm (RCR) in a rat model. To this end, the water box apparatus and passive avoidance task were in turn used to induce sleep deprivation and assess memory retention. Our findings suggested that TSD (for 24 and 36, but not 12h) and RCR (12h/day for 3 consecutive days) impair memory function. The post-training intra-CA1 administration of yohimbine (α2 adrenergic receptor antagonist) on its own, at the dose of 0.1μg/rat, decreased the step-through latency and locomotor activity in the TSD- sham treated but not undisturbed sleep rats. Unlike yohimbine, clonidine (α2 adrenergic receptor agonist), in all applied doses (0.001, 0.01 and 0.1μg/rat), failed to induce such an effect. While the subthreshold dose of yohimbine (0.001μg/rat) abrogated the impairment of memory retention induced by the 24-h TSD, it could potentiate the impairment of memory retention induced by 36-h TSD, suggesting the modulatory effect of yohimbine. Moreover, the subthreshold dose of clonidine (0.1μg/rat) restored the memory retention deficit in TSD rats (24 and 36h). On the other hand, the subthreshold dose of clonidine (0.1μg/rat), but not yohimbine (0.001μg/rat) restored the memory retention deficit in RCR rats. Such interventions however did not alter the locomotor activity. The above observations proposed that CA1 α2 adrenergic receptors play a potential role in memory retention deficits induced by TSD and RCR. Copyright © 2016. Published by Elsevier Inc.

  11. Creative thought as blind-variation and selective-retention: Combinatorial models of exceptional creativity (United States)

    Simonton, Dean Keith


    Campbell (1960) proposed that creative thought should be conceived as a blind-variation and selective-retention process (BVSR). This article reviews the developments that have taken place in the half century that has elapsed since his proposal, with special focus on the use of combinatorial models as formal representations of the general theory. After defining the key concepts of blind variants, creative thought, and disciplinary context, the combinatorial models are specified in terms of individual domain samples, variable field size, ideational combination, and disciplinary communication. Empirical implications are then derived with respect to individual, domain, and field systems. These abstract combinatorial models are next provided substantive reinforcement with respect to findings concerning the cognitive processes, personality traits, developmental factors, and social contexts that contribute to creativity. The review concludes with some suggestions regarding future efforts to explicate creativity according to BVSR theory.

  12. Dynamical analysis of mCAT2 gene models with CTN-RNA nuclear retention (United States)

    Wang, Qianliang; Zhou, Tianshou


    As an experimentally well-studied nuclear-retained RNA, CTN-RNA plays a significant role in many aspects of mouse cationic amino acid transporter 2 (mCAT2) gene expression, but relevant dynamical mechanisms have not been completely clarified. Here we first show that CTN-RNA nuclear retention can not only reduce pre-mCAT2 RNA noise but also mediate its coding partner noise. Then, by collecting experimental observations, we conjecture a heterodimer formed by two proteins, p54nrb and PSP1, named p54nrb-PSP1, by which CTN-RNA can positively regulate the expression of nuclear mCAT2 RNA. Therefore, we construct a sequestration model at the molecular level. By analyzing the dynamics of this model system, we demonstrate why most nuclear-retained CTN-RNAs stabilize at the periphery of paraspeckles, how CTN-RNA regulates its protein-coding partner, and how the mCAT2 gene can maintain a stable expression. In particular, we obtain results that can easily explain the experimental phenomena observed in two cases, namely, when cells are stressed and unstressed. Our entire analysis not only reveals that CTN-RNA nuclear retention may play an essential role in indirectly preventing diseases but also lays the foundation for further study of other members of the nuclear-regulatory RNA family with more complicated molecular mechanisms.

  13. The use of Bayesian nonlinear regression techniques for the modelling of the retention behaviour of volatile components of Artemisia species. (United States)

    Jalali-Heravi, M; Mani-Varnosfaderani, A; Taherinia, D; Mahmoodi, M M


    The main aim of this work was to assess the ability of Bayesian multivariate adaptive regression splines (BMARS) and Bayesian radial basis function (BRBF) techniques for modelling the gas chromatographic retention indices of volatile components of Artemisia species. A diverse set of molecular descriptors was calculated and used as descriptor pool for modelling the retention indices. The ability of BMARS and BRBF techniques was explored for the selection of the most relevant descriptors and proper basis functions for modelling. The results revealed that BRBF technique is more reproducible than BMARS for modelling the retention indices and can be used as a method for variable selection and modelling in quantitative structure-property relationship (QSPR) studies. It is also concluded that the Markov chain Monte Carlo (MCMC) search engine, implemented in BRBF algorithm, is a suitable method for selecting the most important features from a vast number of them. The values of correlation between the calculated retention indices and the experimental ones for the training and prediction sets (0.935 and 0.902, respectively) revealed the prediction power of the BRBF model in estimating the retention index of volatile components of Artemisia species.


    Directory of Open Access Journals (Sweden)

    Lilianna Bartoszek


    Full Text Available The paper presents a research covering the stability of phosphorus retention in the bottom sediments, resulting from application of gypsum in anoxic conditions and in slightly acidic environment (pH~5 of solutions. The present work also contains an analysis of possible effects of gypsum application for water from the reservoir, on the basis of selected parameters of overlying water. Undisturbed deposit cores extracted from two research stations on the Solina Reservoir have been a subject to a 10-weeks long exposure in determinate conditions, after application of gypsum. The conducted research indicated that retention capacities of deposits, which become increased after the use of gypsum, will decrease over time (e.g. after winter period. Application of gypsum led to a quite significant increase in concentrations of calcium in solutions. Intense release of iron from the sediments into the solutions and decrease in SO42- content, during the said 10-week exposure in anoxic conditions, indicates the use of iron (III and sulphates as electron acceptors in process of oxidization of an organic substance.

  15. Water Retention Capacity of Argillite from the VE Test - Phase II at Mont Terri: Effect of Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Fernandez, A. M.; Melon, A. M.


    The VE (ventilation) test carried out at the Mont Terri underground laboratory in Switzerland intended to evaluate in situ the behaviour of a consolidated clay formation when subjected to alternate periods of flow of wet and dry air during several months. For that, a 10-m gallery was excavated in the Opalinus Clay formation and carefully instrumented. Before and after a second ventilation phase boreholes were drilled. Samples were taken from the drill cores and were analysed from mineralogical and geochemical points of view. Also, the retention curves of these samples were determined in the laboratory following drying paths performed under free volume conditions at 20 degree centigrade, what is the content of this report. Although there are not large differences in the WRC of samples taken from different boreholes, at different distances from the gallery wall or before or after ventilation, those samples taken near the gallery wall and after ventilation tend to show a higher water retention capacity. This has been correlated to the higher salinity of the pore water of these samples, what increases their osmotic suction. This effect is attenuated towards high suctions. (Author) 10 refs.

  16. Retention of titanium dioxide nanoparticles in biological activated carbon filters for drinking water and the impact on ammonia reduction. (United States)

    Liu, Zhiyuan; Yu, Shuili; Park, Heedeung; Liu, Guicai; Yuan, Qingbin


    Given the increasing discoveries related to the eco-toxicity of titanium dioxide (TiO2) nanoparticles (NPs) in different ecosystems and with respect to public health, it is important to understand their potential effects in drinking water treatment (DWT). The effects of TiO2 NPs on ammonia reduction, ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in biological activated carbon (BAC) filters for drinking water were investigated in static and dynamic states. In the static state, both the nitrification potential and AOB were significantly inhibited by 100 μg L(-1) TiO2 NPs after 12 h (p  0.05). In the dynamic state, different amounts of TiO2 NP pulses were injected into three pilot-scale BAC filters. The decay of TiO2 NPs in the BAC filters was very slow. Both titanium quantification and scanning electron microscope analysis confirmed the retention of TiO2 NPs in the BAC filters after 134 days of operation. Furthermore, the TiO2 NP pulses considerably reduced the performance of ammonia reduction. This study identified the retention of TiO2 NPs in BAC filters and the negative effect on the ammonia reduction, suggesting a potential threat to DWT by TiO2 NPs.

  17. Examining the Relations among Student Motivation, Engagement, and Retention in a MOOC: A Structural Equation Modeling Approach

    Directory of Open Access Journals (Sweden)

    Yao Xiong


    Full Text Available Students who are enrolled in MOOCs tend to have different motivational patterns than fee-paying college students. A majority of MOOC students demonstrate characteristics akin more to "tourists" than formal learners. As a consequence, MOOC students’ completion rate is usually very low. The current study examines the relations among student motivation, engagement, and retention using structural equation modeling and data from a Penn State University MOOC. Three distinct types of motivation are examined: intrinsic motivation, extrinsic motivation, and social motivation. Two main hypotheses are tested: (a motivation predicts student course engagement; and (b student engagement predicts their retention in the course. The results show that motivation is significantly predictive of student course engagement. Furthermore, engagement is a strong predictor of retention. The findings suggest that promoting student motivation and monitoring individual students’ online activities might improve course retention

  18. The Integration of Ecosystem Services in Planning: An Evaluation of the Nutrient Retention Model Using InVEST Software

    Directory of Open Access Journals (Sweden)

    Stefano Salata


    Full Text Available Mapping ecosystem services (ES increases the awareness of natural capital value, leading to building sustainability into decision-making processes. Recently, many techniques to assess the value of ES delivered by different scenarios of land use/land cover (LULC are available, thus becoming important practices in mapping to support the land use planning process. The spatial analysis of the biophysical ES distribution allows a better comprehension of the environmental and social implications of planning, especially when ES concerns the management of risk (e.g., erosion, pollution. This paper investigates the nutrient retention model of InVEST software through its spatial distribution and its quantitative value. The model was analyzed by testing its response to changes in input parameters: (1 the digital terrain elevation model (DEM; and (2 different LULC attribute configurations. The paper increases the level of attention to specific ES models that use water runoff as a proxy of nutrient delivery. It shows that the spatial distribution of biophysical values is highly influenced by many factors, among which the characteristics of the DEM and its interaction with LULC are included. The results seem to confirm that the biophysical value of ES is still affected by a high degree of uncertainty and encourage an expert field campaign as the only solution to use ES mapping for a regulative land use framework.

  19. [Renal and extra-renal mechanisms of sodium and water retention in cirrhosis with ascites]. (United States)

    Peña, J C


    In this work we analyze the renal and systemic factors involved in the sodium retention in two conditions: in extracellular volume depletion and in edema forming states, particularly liver cirrhosis with ascitis. In this paper we accept that the volume loss of body fluids stimulates the "effective arterial blood volume" (VAE). This term results from a decrease in the arterial blood volume secondary to a fall in cardiac output or a peripheral arterial vasodilatation. The reduction in the VAE stimulates: the high pressure baroreceptors (carotid sinus and aortic arch); the intrarrenal mechanisms, such as the yuxtaglomerular apparatus and the renin angiotensin aldosterone system; the sympathetic adrenergic system; the non osmotic release of antidiuretic hormone; prostaglandins (PGE1, Tromboxane) and endothelin; and inhibits the atrial natriuretic peptide. We also describe the sodium transport mechanisms along the nephron during physiological conditions and after volume depletion, and in edema formation states, specially hepatic cirrhosis with ascitis. We speculate that the intrarenal mechanisms are more important and persistent than the systemic mechanisms. It is possible that the sodium retention of these states might be the result of direct stimuli of the tubular sodium transport mechanisms in the different segments of the nephron, mediated by the co and counter transports, ATPase activity or by the second messengers cyclic AMP and cyclic GMP. The clonation and structural characterization of the different sodium transports may help us to establish, more precisely, the intracellular tubular mechanisms responsible for the tendency of the body to retain sodium. The amount of information generated in the future may help us to demonstrate, with more precision, the mechanisms responsible for the sodium retention and excretion in normal and pathological conditions, particularly the edema forming states such as cardiac failure, nephrotic syndrome and hepatic cirrhosis with

  20. A comparison of glycemic control, water retention, and musculoskeletal effects of balaglitazone and pioglitazone in diet-induced obese rats

    DEFF Research Database (Denmark)

    Henriksen, Kim; Byrjalsen, Inger; Nielsen, Rasmus H


    of equipotent glucose lowering concentrations of the partial PPARgamma agonist balaglitazone and the full agonist pioglitazone in male diet-induced obese rats, to investigate effects on bone formation, fluid retention and fat accumulation. Sixty male dio induced obese rats were divided into five categories......: vehicle, pioglitazone 10 mg/kg, pioglitazone 30 mg/kg, balaglitazone 5 mg/kg, balaglitazone 10 mg/kg. At day -7, 21 and 42 fasting serum samples were collected and whole body tissue composition was evaluated by MR scanning. Food intake and bodyweights were monitored during the study period. At day 42...... secretion and total insulin during oral glucose tolerance test. Both drugs increased bodyweight, although this was more pronounced in the pioglitazone 30 group. MR scans of body fat and water showed that all treatment groups increased their fat mass, whereas only the pioglitazone 30 group accumulated water...

  1. Modelling retention and dispersion mechanisms of bluefin tuna eggs and larvae in the Northwest Mediterranean Sea

    DEFF Research Database (Denmark)

    Mariani, Patrizio; MacKenzie, Brian; Iudicone, D.


    Knowledge of early life history of most fish species in the Mediterranean Sea is sparse and processes affecting their recruitment are poorly understood. This is particularly true for bluefin tuna, Thunnus thynnus, even though this species is one of the world's most valued fish species. Here we...... Sea. The model reproduced the drift and growth of anchovy larvae as they drifted along the Catalan coast and yielded similar patterns as those observed in the field. We then applied the model to investigate transport and retention processes affecting the spatial distribution of bluefin tuna eggs...... locations of spawning bluefin tuna using hydrographic backtracking procedures; these locations were situated in a major salinity frontal zone and coincided with distributions of an electronically tagged bluefin tuna and commercial bluefin tuna fishing vessels. Moreover, we hypothesized that mesoscale...

  2. Development of predictive quantitative retention-activity relationship models of alkaloids by mixed micellar liquid chromatography. (United States)

    Chen, Yu; Wu, Li-ping; Chen, Cong; Ye, Li-ming


    The mixed micellar liquid chromatography is a mode that uses mixed micellar system of Brij35/SDS (85 : 15) as a mobile phase under adequate experimental conditions, can simulate the resting membrane potential and the conformation of the long hydrophilic polyoxyethylene chains remains unchanged. In this article, the applications of biopartitioning micellar chromatography, using mixed micellar system to describe and estimate bioactivities of alkaloids, has been focused. The BMC(Brij35/SDS)-QRAR models of half-life time, volume of distribution, plasma clearance and area under concentration-time curve were obtained using Brij35-SDS retention data. The aim is to take a look at the capability of the mixed micellar liquid chromatography model to describe and/or estimate the bioactivity of alkaloids. (c) 2009 John Wiley & Sons, Ltd.

  3. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.


    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  4. Coupled model of root water uptake, mucilage exudation and degradation (United States)

    Kroener, Eva; Ahmed, Mutez A.; Carminati, Andrea


    Although the fact that root mucilage plays a prominent role in soil-plant water relations is becoming more and more accepted, many aspects of how mucilage distribution and root water uptake interact with each other remain unexplored. First, it is not clear how long mucilage persists in soil. Furthermore, the effects of water content and root water uptake (i.e. convective fluxes) on the diffusion of mucilage from the root surface into the soil are not included in current models of water uptake. The aims of this study were: i) to measure the effect of soil moisture on mucilage decomposition; ii) to develop a coupled model of root water uptake and mucilage diffusion and degradation during root growth. C4 root mucilage from maize was added as single pulses to a C3 soil of two different moisture levels. We have then employed the Richards Equation for water flow and an advection-dispersion equation to describe the dynamic distribution of mucilage in a single-root model. Most of the mucilage was decomposed under optimum water supply. Drought significantly suppressed mucilage mineralization. Opposed to classical solute transport models the water flow in the rhizosphere was affected by the local concentration of mucilage. Namely a higher concentration of mucilage results in (a) an increase in equilibrium water retention curve, (b) a reduction of hydraulic conductivity at a given water content and (c) a non-equilibrium water retention curve caused by swelling and shrinking dynamics of mucilage in the pore space. The dispersion coefficient, on the other hand, depends on the water content. The parameters of mucilage diffusion have been fitted to observations on real plants. The model shows that mucilage exuded in wet soils diffuses far from the roots and it is rapidly degraded. On the contrary, mucilage of plants growing in dry soil is not easily degradable and it remains at higher concentrations in a narrow region around the roots, resulting in a marked increase in water

  5. Water retention techniques for vegetation establishment in TxDOT West Texas districts. (United States)


    Water harvesting is the collection of runoff for its productive use and may aid in the germination and : establishment of vegetation seeded in the roadside. This project is a synthesis study on the feasibility and : implications of adapting water har...

  6. The effect of post-mortem ageing and heating on water retention in bovine muscles. (United States)

    Kołczak, Tadeusz; Krzysztoforski, Krzysztof; Palka, Krystyna


    The muscles semitendinosus (ST) and psoas major (PM) were removed from chilled young bull carcasses 24h after slaughter and stored at 4°C. At the 1st, 6th and 12th day of post-mortem ageing the chemical composition (moisture, fat, protein, collagen) and contents of free, immobilized and unfreezable water in the muscles were estimated. The muscle steaks were boiled at 100°C, roasted at 170°C or fried at 160°C to an internal temperature of 75°C, and the amounts of total, free, immobilized, and unfreezable water in heated muscles were evaluated. The unfreezable water was estimated by DSC. In the raw muscles immobilized water constituted 74-75%, free water 16.6-17.6% and unfreezable water 7-8% of the total water. Independent of time of ageing, PM muscle contained significantly more free water than ST muscle. During post-mortem ageing, changes in free, immobilized and unfreezable water in muscles were not significant. The level of free water was highest in boiled and least in fried meat, however the amount of immobilized water was highest in fried and lowest in boiled meat. The amount of unfreezable water in muscles heated after 12 days of post-mortem ageing decreased.

  7. Toward a New Predictive Model of Student Retention in Higher Education: An Application of Classical Sociological Theory (United States)

    Kerby, Molly B.


    Theoretical models designed to predict whether students will persist or not have been valuable tools for retention efforts relative to the creation of services in academic and student affairs. Some of the early models attempted to explain and measure factors in the "college dropout process." For example, in his seminal work, Tinto…

  8. Aerosol retention in the flooded steam generator bundle during SGTR

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Terttaliisa, E-mail: terttaliisa.lind@psi.c [Paul Scherrer Institut, Department of Nuclear Energy and Safety, 5232 Villigen (Switzerland); Dehbi, Abdel; Guentay, Salih [Paul Scherrer Institut, Department of Nuclear Energy and Safety, 5232 Villigen (Switzerland)


    Research highlights: High retention of aerosol particles in a steam generator bundle flooded with water. Increasing particle inertia, i.e., particle size and velocity, increases retention. Much higher retention of aerosol particles in the steam generator bundle flooded with water than in a dry bundle. Much higher retention of aerosol particles in the steam generator bundle than in a bare pool. Bare pool models have to be adapted to be applicable for flooded bundles. - Abstract: A steam generator tube rupture in a pressurized water reactor may cause accidental release of radioactive particles into the environment. Its specific significance is in its potential to bypass the containment thereby providing a direct pathway of the radioactivity from the primary circuit to the environment. Under certain severe accident scenarios, the steam generator bundle may be flooded with water. In addition, some severe accident management procedures are designed to minimize the release of radioactivity into the environment by flooding the defective steam generator secondary side with water when the steam generator has dried out. To extend our understanding of the particle retention phenomena in the flooded steam generator bundle, tests were conducted in the ARTIST and ARTIST II programs to determine the effect of different parameters on particle retention. The effects of particle type (spherical or agglomerate), particle size, gas mass flow rate, and the break submergence on particle retention were investigated. Results can be summarized as follows: increasing particle inertia was found to increase retention in the flooded bundle. Particle shape, i.e., agglomerate or spherical structure, did not affect retention significantly. Even with a very low submergence, 0.3 m above the tube break, significant aerosol retention took place underlining the importance of the jet-bundle interactions close to the tube break. Droplets were entrained from the water surface with high gas flow rates

  9. Hydraulic conductivity obtained by instantaneous profile method using retention curve and neutron probes and Genuchten model; Condutividade hidraulica obtida pelo metodo do perfil instantaneo utilizando curva de retencao e sonda de neutrons e pelo modelo de Genuchten

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, Ana Lucia Olmedo


    The hydraulic conductivity is one of the most important parameters to understand the movement of water in the unsaturated zone. Reliable estimations are difficult to obtain, once the hydraulic conductivity is highly variable. This study was carried out at 'Escola Superior de Agricultura Luiz de Queiroz', Universidade de Sao Paulo, in a Kandiudalfic Eutrudox soil. The hydraulic conductivity was determined by a direct and an indirect method. The instantaneous profile method was described and the hydraulic conductivity as a function of soil water content was determined by solving the Richards equation. Tensiometers were used to estimate the total soil water potential, and the neutron probe and the soil retention curve were used to estimate soil water content in the direct method. The neutron probe showed to be not adequately sensible to the changes of soil water content in this soil. Despite of the soil retention curve provides best correlation values to soil water content as a function of water redistribution time, the soil water content in this soil did not vary too much till the depth of 50 cm, reflecting the influence of the presence of a Bt horizon. The soil retention curve was well fitted by the van Genuchten model used as an indirect method. The values of the van Genuchten and the experimental relative hydraulic conductivity obtained by the instantaneous profile method provided a good correlation. However, the values estimated by the model were always lower than that ones obtained experimentally. (author)

  10. Predicting watershed sediment yields after wildland fire with the InVEST sediment retention model at large geographic extent in the western USA: accuracy and uncertainties (United States)

    Sankey, J. B.; Kreitler, J.; McVay, J.; Hawbaker, T. J.; Vaillant, N.; Lowe, S. E.


    Wildland fire is a primary threat to watersheds that can impact water supply through increased sedimentation, water quality decline, and change the timing and amount of runoff leading to increased risk from flood and sediment natural hazards. It is of great societal importance in the western USA and throughout the world to improve understanding of how changing fire frequency, extent, and location, in conjunction with fuel treatments will affect watersheds and the ecosystem services they supply to communities. In this work we assess the utility of the InVEST Sediment Retention Model to accurately characterize vulnerability of burned watersheds to erosion and sedimentation. The InVEST tools are GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., RUSLE -Revised Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. We evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured post-fire sedimentation rates available for many watersheds in different rainfall regimes throughout the western USA from an existing, large USGS database of post-fire sediment yield [synthesized in Moody J, Martin D (2009) Synthesis of sediment yields after wildland fire in different rainfall regimes in the western United States. International Journal of Wildland Fire 18: 96-115]. The ultimate goal of this work is to calibrate and implement the model to accurately predict variability in post-fire sediment yield as a function of future landscape heterogeneity predicted by wildfire simulations, and future landscape fuel treatment scenarios, within watersheds.

  11. A comprehensive molecular dynamics approach to protein retention modeling in ion exchange chromatography. (United States)

    Lang, Katharina M H; Kittelmann, Jörg; Dürr, Cathrin; Osberghaus, Anna; Hubbuch, Jürgen


    In downstream processing, the underlying adsorption mechanism of biomolecules to adsorbent material are still subject of extensive research. One approach to more mechanistic understanding is simulating this adsorption process and hereby the possibility to identify the parameters with strongest impact. So far this method was applied with all-atom molecular dynamics simulations of two model proteins on one cation exchanger. In this work we developed a molecular dynamics tool to simulate protein-adsorber interaction for various proteins on an anion exchanger and ran gradient elution experiments to relate the simulation results to experimental data. We were able to show that simulation results yield similar results as experimental data regarding retention behavior as well as binding orientation. We could identify arginines in case of cation exchangers and aspartic acids in case of anion exchangers as major contributors to binding. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Modeling the retention and clearance of manmade vitreous fibers in the rat lung. (United States)

    Tran, C L; Jones, A D; Miller, B G; Donaldson, K


    A mathematical model describing the dissolution and disintegration of long fibers and the clearance of short fibers is developed. For short fiber clearance, the model is based on previous modeling of the retention and clearance of particles, and most model parameters are taken from that particulate model. In addition to modeling the disappearance of long fibers, the present study includes a quantitative measure of goodness of fit of the model to observed data. Data from chronic inhalation experiments with insulation glass wools (MMVF10 and MMVF11) and rockwool (MMVF21) were provided for this study. These data comprised lung burdens at 10 time points at each of 3 concentrations for each fiber in inhalation experiments lasting up to 104 wk. At the two higher concentrations, the model had to take into account the effects of lung burden on macrophage-mediated clearance. The modeling shows that the overload dependence appears remarkably similar to that for low-toxicity particles in that the critical volumetric lung burden is similar to that for low toxicity dust. The model describes overload as leading to alveolar sequestration of short fibers or particles, and the estimated rate of alveolar sequestration for MMVF10 was similar to that for particles, but the estimated rate was lower for the other two fibers. Two alternative hypotheses to describe the process of the disappearance of longer fibers were tested by assessing their effect on a quantitative measure of fit of model predictions to the lung-burden data. These tests indicated that (a) dissolution leading to disintegration of long fibers into shorter fibers gave a much better fit than the alternative assumption that dissolution would leave only nonfibrous residue and (b) the relative rates of disintegration of the fibers in the lung appear to be directly dependent on their rates of in vitro dissolution and their diameters.

  13. Maximizing students' retention via spaced review: practical guidance from computational models of memory. (United States)

    Khajah, Mohammad M; Lindsey, Robert V; Mozer, Michael C


    During each school semester, students face an onslaught of material to be learned. Students work hard to achieve initial mastery of the material, but when they move on, the newly learned facts, concepts, and skills degrade in memory. Although both students and educators appreciate that review can help stabilize learning, time constraints result in a trade-off between acquiring new knowledge and preserving old knowledge. To use time efficiently, when should review take place? Experimental studies have shown benefits to long-term retention with spaced study, but little practical advice is available to students and educators about the optimal spacing of study. The dearth of advice is due to the challenge of conducting experimental studies of learning in educational settings, especially where material is introduced in blocks over the time frame of a semester. In this study, we turn to two established models of memory-ACT-R and MCM-to conduct simulation studies exploring the impact of study schedule on long-term retention. Based on the premise of a fixed time each week to review, converging evidence from the two models suggests that an optimal review schedule obtains significant benefits over haphazard (suboptimal) review schedules. Furthermore, we identify two scheduling heuristics that obtain near optimal review performance: (a) review the material from μ-weeks back, and (b) review material whose predicted memory strength is closest to a particular threshold. The former has implications for classroom instruction and the latter for the design of digital tutors. Copyright © 2013 Cognitive Science Society, Inc.

  14. Water Distribution and Removal Model

    Energy Technology Data Exchange (ETDEWEB)

    Y. Deng; N. Chipman; E.L. Hardin


    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD&R) Model; (2) EBS Physical and Chemical Environment (P&CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD&R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment. The purposes

  15. Software package r{sup 3}t. Model for transport and retention in porous media. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fein, E. (ed.)


    In long-termsafety analyses for final repositories for hazardous wastes in deep geological formations the impact to the biosphere due to potential release of hazardous materials is assessed for relevant scenarios. The model for migration of wastes from repositories to men is divided into three almost independent parts: the near field, the geosphere, and the biosphere. With the development of r{sup 3}t the feasibility to model the pollutant transport through the geosphere for porous or equivalent porous media in large, three-dimensional, and complex regions is established. Furthermore one has at present the ability to consider all relevant retention and interaction effects which are important for long-term safety analyses. These are equilibrium sorption, kinetically controlled sorption, diffusion into immobile pore waters, and precipitation. The processes of complexing, colloidal transport and matrix diffusion may be considered at least approximately by skilful choice of parameters. Speciation is not part of the very recently developed computer code r{sup 3}t. With r{sup 3}t it is possible to assess the potential dilution and the barrier impact of the overburden close to reality.

  16. Soil water retention as affected by tillage and residue management in semiarid Spain

    NARCIS (Netherlands)

    Bescansa, P.; Imaz, M.J.; Virto, I.; Enrique, A.; Hoogmoed, W.B.


    Conservation tillage preserves soil water and this has been the main reason for its rapid dissemination in rainfed agriculture in semiarid climates. We determined the effects of conservation versus conventional tillage on available soil water capacity (AWC) and related properties at the end of 5

  17. Soil water retention of a bare soil with changing bulk densities (United States)

    Tillage changes the bulk density of the soil, lowering the density initially after which it increases as the soil settles. Implications of this for soil water content and soil water potential are obvious, but limited efforts have been made to monitor these changes continuously. We present in-situ me...

  18. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs. (United States)

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto


    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, 'potential water retention capacity' (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer's grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.

  19. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs

    Directory of Open Access Journals (Sweden)

    Okine Abdul Razak


    Full Text Available The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC, which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27 with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively, and their silages (n = 81. These were from a vegetable source (Daikon, Raphanus sativus, a root tuber source (potato pulp, a fruit source (apple pomace and a cereal source (brewer’s grain, respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3. Silage effluent decreased (p<0.01, with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76 between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.

  20. Nanofiltration for enhanced removal of disinfection by-product (DBP) precursors in swimming pool water-retention and water quality estimation. (United States)

    Klüpfel, A M; Glauner, T; Zwiener, C; Frimmel, F H


    Three nanofiltration (NF) membranes with a chlorine tolerance > or = 1 mg L-1 were applied to reduce DBPs and their precursors in swimming pool water. A lab scale plant with crossflow modules was installed in by-pass at the sand filter outlet of a swimming pool for a period of several weeks. The chlorine tolerances of the membranes SB90 and NP030 were found to be adequate for filtration under swimming pool water conditions over the given experimental period. Retention of dissolved organic carbon (DOC) and adsorbable organic halogens (AOX) were about 70% and 80% for SB90 and 50% and 40% for NP030, respectively. DOC accumulation in the pool and the expected fresh water consumption for a treatment system consisting of ultrafiltration (UF) and NF with backwash water treatment were estimated by mass balances based on the results. Mass balances were calculated also for a German public swimming pool with a conventional water treatment system (flocculation-sand filtration-chlorination) and were compared to DOC on-line measurements. Calculation of DOC mass balances for different UF-NF treatment scenarios showed that pool water quality could be improved significantly compared to the conventional treatment system.

  1. Investigation on the water retention curve of loose pyroclastic ashes of Campania (Italy) and its potential implications on slope stability (United States)

    Comegna, Luca; Damiano, Emilia; Greco, Roberto; Olivares, Lucio; Piccolo, Marco; Picarelli, Luciano


    Loose pyroclastic soils in Campania cover a large amount of steep slopes in the area surrounding the volcanic complex of Somma-Vesuvius. The stability of such slopes is assured by the contribution of suction to soil shear strength, which decreases during rainy periods till the possible attainment of a failure condition. The resulting landslide may evolve in form of a fast flow, if at the onset of instability the soil is nearly saturated and undrained conditions establish, so that soil liquefaction arises. The attainment of instability near saturation is not uncommon, as it requires the slope to have an inclination close to the friction angle of the soil constituting the deposit. The pyroclastic ashes of Campania are typically silty sands with friction angle between 36° and 38°, and small or even null cohesion. Many of the flow-like landslides, occurred during the last decades, were indeed triggered along slopes with inclination around 40°, which are quite common in Campania. As a suction of few kPa may be enough to guarantee the stability of a slope, knowledge of the water retention curve of the soil constituting the deposit is mandatory to correctly predict soil conditions at failure. Several studies report that the pyroclastic ashes of Campania exhibit a quite complex water retention behavior, showing a bimodal porosity distribution and, in some cases, a marked hysteresis domain, possibly enhanced by air entrapment during the infiltration of steep wetting fronts. In this study, a series of vertical infiltration and evaporation cycles have been carried out over two reconstituted specimens, both 20cm high, of pyroclastic ashes collected at the slope of Cervinara. TDR probes and minitensiometers were buried at various depths to provide coupled measurements of soil water content and suction. In order to highlight the possible hysteretic effects due to air entrapment, different hydraulic boundary conditions were established at the base of the two specimens: in one

  2. Impact of direct seeding on soil water retention in semi-arid area ...

    African Journals Online (AJOL)

    , twentyfive years after the first of zero tillage farming experiences, this new method was named crop conservation agriculture because it helps preserve soil nutrients, water absorption enhancing and infiltration and biodiversity by maintaining ...

  3. Environmental Assessment: Maintenance of the Bear Lake Storm Water Retention Pond Whiteman Air Force Base, Missouri (United States)


    pipe was lowered into the water until the silt was encountered. After encountering the silt, the pipe was manually pushed until the pipe would no...J r 1 ’- n 1... 1𔃻 u 1𔃻 r L n u .J l ,.,. L ====~~ Analytical Management Laboratorios , Inc. ost. 1993 Certificate of Analysis Kruger...Waters: 3.9 acres. c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual Elevation of established OHWM (if known

  4. Increasing Retention of Women in Engineering at WSU: A Model for a Women's Mentoring Program (United States)

    Poor, Cara J.; Brown, Shane


    Concerns with the retention of women in engineering have led to the implementation of numerous programs to improve retention, including mentoring programs. The college of engineering at Washington State University (WSU) started a novel women's mentoring program in 2008, using professional engineers who graduated from WSU as mentors. The program is…

  5. Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing

    NARCIS (Netherlands)

    Tromp, K.; Lima, A.T.; Barendregt, A.; Verhoeven, J.T.A.


    A full-scale remediation facility including a detention basin and a wetland was tested for retention of heavy metals and Poly-Aromatic Hydrocarbons (PAHs) from water drained from a motorway in The Netherlands. The facility consisted of a detention basin, a vertical-flow reed bed and a final

  6. Evolution of water repellency of organic growing media used in Horticulture and consequences on hysteretic behaviours of the water retention curve (United States)

    Michel, Jean-Charles; Qi, Guifang; Charpentier, Sylvain; Boivin, Pascal


    Most of growing media used in horticulture (particularly peat substrates) shows hysteresis phenomena during desiccation and rehydration cycles, which greatly affects their hydraulic properties. The origins of these properties have often been related to one or several of the specific mechanisms such as the non-geometrical uniformity of the pores (also called ‘ink bottle' effect), presence of trapped air, shrinkage-swelling phenomena, and changes in water repellency. However, recent results showed that changes in wettability during desiccation and rehydration could be considered as one of the main factors leading to hysteretic behaviour in these materials with high organic matter contents (Naasz et al., 2008). The general objective was to estimate the evolutions of changes in water repellency on the water retention properties and associated hysteresis phenomena in relation to the intensity and the number of drying/wetting cycles. For this, simultaneous shrinkage/swelling and water retention curves were obtained using method previously developed for soil shrinkage analysis by Boivin (2006) that we have adapted for growing media and to their physical behaviours during rewetting. The experiment was performed in a climatic chamber at 20°C. A cylinder with the growing medium tested was placed on a porous ceramic disk which is used to control the pressure and to full/empty water of the sample. The whole of the device was then placed on a balance to record the water loss/storage with time; whereas linear displacement transducers were used to measure the changes in sample height and diameter upon drying and wetting in the axial and radial directions. Ceramic cups (2 cm long and 0.21 cm diameter) connected to pressure transducers were inserted in the middle of the samples to record the water pressure head. In parallell, contact angles were measured by direct droplet method at different steps during the drying/rewetting cycles. First results obtained on weakly decomposed

  7. A comparison of fluorescein and deuterated water as tracers for determination of constructed wetland retention time

    Czech Academy of Sciences Publication Activity Database

    Holcová, V.; Šíma, J.; Dušek, Jiří


    Roč. 11, č. 2 (2013), s. 200-204 ISSN 1895-1066 Institutional support: RVO:67179843 Keywords : environmental analytical chemistry * wastewater treatment * reed bed * water tracing * isotope-ratio mass spectrometry Subject RIV: EH - Ecology, Behaviour Impact factor: 1.329, year: 2013

  8. Influence of transmembrane pressure and feed concentration on the retention of arsenic, chromium and cadmium from water by nanofiltration. (United States)

    Babaee, Yasser; Mousavi, Seyed Mahmoud; Danesh, Shahnaz; Baratian, Ali


    One of the main toxic pollutants in drinking water is heavy metals which must be reduced to standard levels. Removal of trace amounts of heavy metals can be achieved by means of membrane processes such as nanofiltration. The removal efficiency of a nanofiltration membrane is strongly affected by operating conditions. The present study focused on the effect of two key parameters, i.e., transmembrane pressure and feed concentration on the removal of heavy metals (arsenic, chromium and cadmium) from water by a polymeric nanofiltration membrane UTC-70UB charged negatively. The rejection experiments included variation of heavy metals feed concentrations in the range of 100 to 400 microg/L for arsenic and chromium and 20 to 80 microg/L for cadmium, and different transmembrane pressures in the range of 5 to 14 bar. The results indicated that under most conditions tested in this research, the rejection of heavy metals was found to increase when the transmembrane pressure was increased. The results also showed the high rejection percentage of the heavy metals, with the maximum retention values of arsenic, cadmium and chromium, 97%, 100% and 95% respectively. The percent reduction of arsenic and chromium was found to enhance as their concentration in the feed increased. However, in the case of cadmium, the rejection was reduced with increase in the concentration.

  9. Modeling Water Pollution of Soil

    Directory of Open Access Journals (Sweden)

    V. Doležel


    depth of 220–300 m below the terrain. As an alternative, thinner stoppers were considered, but this option was discarded.The aim of this paper is to describe the design of the stoppers applied to separate the two types of water along the contact horizon using Desai’s DSC theory (Distinct State Concept, and generalized plane strain in the multiphase problem of water flow in a porous medium. In addition, a comparison of some results from scale experimental models with numerical solutions was carried out. The intrinsic material properties of stoppers for numerical computations were obtained from physical and chemical laboratory tests. The models were evaluated for the complete underground work, particularly in its final stage of construction. 

  10. The Modification of Fuel Cell-Based Breath Alcohol Sensor Materials to Improve Water Retention of Sensing Performance (United States)

    Allan, Jesse

    are better suited for sensor applications. The commercially used porous poly-vinyl chloride (PVC) membrane was investigated and modified to improve performance of this material. As PVC does not contain any natural hydroscopic properties, the addition of various hydrophilic groups to the PVC would aid in water management. It was found that while chemical modification could improve water retention, optimization of the modifications would be required to ensure flooding was not an issue. Composites of PVC and sulfonated silica showed performance that matched that of the commercial PVC, whilst using significantly less water to achieve those results. By reducing the water required for sensing, leaching of acid, as well as flooding could be reduced. Finally, the catalyst layer and gas diffusion layer (GDL) were investigated to understand what properties of these would impart the best performance increases for the sensor. For the catalyst layer, it was found that platinum black and 20% platinum supported on carbon achieved similar results. Platinum black has excellent catalytic activity for the ethanol oxidation reaction, while the surface area of the 20% platinum supported on carbon would allow for more ethanol to react, increasing the overall sensor capability. The choice of catalyst was less of an issue than the choice of GDL. It was found that using carbon fiber paper GDLs lead to greater retention of water in the MEA compared to carbon cloth GDLs due to the lower air permeability. This came at a cost however in that with a lower air permeability, less ethanol vapour would reach the catalytic sites, reducing sensing performance. Depending on the choice of membrane, removal of the GDL could impart performance increases, but could also cause detrimental failure in the case of Nafion based systems.

  11. Oscillating water column structural model

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Guild [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jepsen, Richard Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    An oscillating water column (OWC) wave energy converter is a structure with an opening to the ocean below the free surface, i.e. a structure with a moonpool. Two structural models for a non-axisymmetric terminator design OWC, the Backward Bent Duct Buoy (BBDB) are discussed in this report. The results of this structural model design study are intended to inform experiments and modeling underway in support of the U.S. Department of Energy (DOE) initiated Reference Model Project (RMP). A detailed design developed by Re Vision Consulting used stiffeners and girders to stabilize the structure against the hydrostatic loads experienced by a BBDB device. Additional support plates were added to this structure to account for loads arising from the mooring line attachment points. A simplified structure was designed in a modular fashion. This simplified design allows easy alterations to the buoyancy chambers and uncomplicated analysis of resulting changes in buoyancy.

  12. Effect of Suction Cycles and Suction Gradients on the Water Retention Properties of a Hard Clay


    Liufeng Chen; Hua Peng


    The effect of suction cycles and suction gradients on a hard clay is investigated. The cylindrical samples of the hard clay are prepared to carry out the hydration and dehydration tests with different suction gradient and suction cycles. The results show that the suction gradient has little effect on the suction-water content relation, while the suction cycle has great effect on it, particularly the first cycle of hydration and dehydration. The apparent moisture diffusion coefficient of the h...

  13. Accounting for Water Insecurity in Modeling Domestic Water Demand (United States)

    Galaitsis, S. E.; Huber-lee, A. T.; Vogel, R. M.; Naumova, E.


    Water demand management uses price elasticity estimates to predict consumer demand in relation to water pricing changes, but studies have shown that many additional factors effect water consumption. Development scholars document the need for water security, however, much of the water security literature focuses on broad policies which can influence water demand. Previous domestic water demand studies have not considered how water security can affect a population's consumption behavior. This study is the first to model the influence of water insecurity on water demand. A subjective indicator scale measuring water insecurity among consumers in the Palestinian West Bank is developed and included as a variable to explore how perceptions of control, or lack thereof, impact consumption behavior and resulting estimates of price elasticity. A multivariate regression model demonstrates the significance of a water insecurity variable for data sets encompassing disparate water access. When accounting for insecurity, the R-squaed value improves and the marginal price a household is willing to pay becomes a significant predictor for the household quantity consumption. The model denotes that, with all other variables held equal, a household will buy more water when the users are more water insecure. Though the reasons behind this trend require further study, the findings suggest broad policy implications by demonstrating that water distribution practices in scarcity conditions can promote consumer welfare and efficient water use.

  14. Retention modeling for ultra-thin density of Cu-based conductive bridge random access memory (CBRAM

    Directory of Open Access Journals (Sweden)

    Fekadu Gochole Aga


    Full Text Available We investigate the effect of Cu concentration On-state resistance retention characteristics of W/Cu/Ti/HfO2/Pt memory cell. The development of RRAM device for application depends on the understanding of the failure mechanism and the key parameters for device optimization. In this study, we develop analytical expression for cations (Cu+ diffusion model using Gaussian distribution for detailed analysis of data retention time at high temperature. It is found that the improvement of data retention time depends not only on the conductive filament (CF size but also on Cu atoms concentration density in the CF. Based on the simulation result, better data retention time is observed for electron wave function associated with Cu+ overlap and an extended state formation. This can be verified by analytical calculation of Cu atom defects inside the filament, based on Cu+ diffusion model. The importance of Cu diffusion for the device reliability and the corresponding local temperature of the filament were analyzed by COMSOL Multiphysics simulation.

  15. Jeffreys's Nursing Universal Retention and Success model: overview and action ideas for optimizing outcomes A-Z. (United States)

    Jeffreys, Marianne R


    Nursing student persistence, retention, and success are universally desired outcomes yet remain elusive and challenging worldwide. The aim of this study is to provide nurse educators with an organizing framework and action ideas for optimizing student outcomes. Jeffreys's Nursing Universal Retention and Success (NURS) model presents a globally-applicable framework for examining the multidimensional factors that affect undergraduate and graduate nursing student retention and success in order to make a positive difference. This article presents a brief overview of the empirically-based NURS model and indicates that retention decisions, persistence, and optimal outcomes will be based on the interaction of student profile characteristics, student affective factors, academic factors, environmental factors, academic outcomes, psychological outcomes, outside surrounding factors, and professional integration factors. An A-Z list of action ideas provides nurse educators with a springboard for further developing ideas tailored to individual program and student needs. Recommendations for global collaborative partnerships and networks are presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Hydrodynamic modelling of free water-surface constructed storm water wetlands using a finite volume technique. (United States)

    Zounemat-Kermani, Mohammad; Scholz, Miklas; Tondar, Mohammad-Mahdi


    One of the key factors in designing free water-surface constructed wetlands (FWS CW) is the hydraulic efficiency (λ), which depends primarily on the retention time of the polluted storm water. Increasing the hydraulic retention time (HRT) at various flow levels will increase λ of the overall constructed wetland (CW). The effects of characteristic geometric features that increase HRT were explored through the use of a two-dimensional depth-average hydrodynamic model. This numerical model was developed to solve the equations of continuity and motions on an unstructured triangular mesh using the Galerkin finite volume formulation and equations of the k-ε turbulence model. Eighty-nine diverse forms of artificial FWS CW with 11 different aspect ratios were numerically simulated and subsequently analysed for four scenarios: rectangular CW, modified rectangular CW with rounded edges, different inlet/outlet configurations of CW, and surface and submerged obstructions in front of the inlet part of the CW. Results from the simulations showed that increasing the aspect ratio has a direct influence on the enhancement of λ in all cases. However, the aspect ratio should be at least 9 in order to achieve an appropriate rate for λ in rectangular CW. Modified rounded rectangular CW improved λ by up to 23%, which allowed for the selection of a reduced aspect ratio. Simulation results showed that CW with low aspect ratios benefited from obstructions and optimized inlet/outlet configurations in terms of improved HRT.

  17. Storm Water Management Model (SWMM) (United States)

    Stormwater discharges continue to cause impairment of our Nation’s waterbodies. Regulations that require the retention and/or treatment of frequent, small storms that dominate runoff volumes and pollutant loads are becoming more common. The U.S. Environmental Protection Agency (E...

  18. Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment. (United States)

    Ren, Dianjun; Smith, James A


    The retention and transport of silver nanoparticles (Ag-NPs) through a ceramic porous medium used for point-of-use drinking water purification is investigated. Two general types of experiments were performed: (i) pulse injections of suspensions of Ag-NPs in aqueous MgSO4 solutions were applied to the ceramic medium, and effluent silver was quantified over time; (ii) Ag-NPs were applied directly to the porous medium during fabrication using a paint-on, dipping, or fire-in method, a synthetic, moderately hard water sample with monovalent and divalent inorganic ions was applied to the ceramic medium, and effluent silver was quantified over time. These latter experiments were performed to approximate real-world use of the filter medium. For experiments with Ag-NPs suspended in the inflow solution, the percentage of applied Ag-NPs retained in the ceramic porous medium ranged from about 13 to 100%. Ag-NP mobility decreased with increasing ionic strength for all cases and to a lesser extent with increasing nanoparticle diameter. Citrate-capped particles were slightly less mobile than proteinate-capped particles. For ceramic disks fabricated with Ag-NPs by the paint-on and dipping methods (where the Ag-NPs are applied to the disks after firing), significant release of nanoparticles into the filter disk effluent was observed relative to the fire-in method (where the nanoparticles are combined with the clay, water, grog, and flour before firing). These results suggest that the fire-in method may be a new and significant improvement to ceramic filter design.

  19. Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation

    KAUST Repository

    Chen, Si Cong


    RO retentate from a municipal water recycling plant is considered as a potential feed stream for osmotic power generation in this paper. The feasibility of using RO retentate from a municipal water recycling plant was examined from two aspects: (a) the membrane fouling propensity of RO retentate, and (b) the efficacy of anti-fouling strategies. The membranes used in this study were the inner selective thin film composite polyethersulfone (TFC/PES) hollow fiber membranes, which possessed a high water permeability and good mechanical strength. Scaling by phosphate salts was found to be one possible inorganic fouling on the innermost layer of the PES membrane, whereas silica fouling was observed to be the governing fouling on the outmost surface of the PES membrane. Two anti-fouling pretreatments, i.e., pH adjustment and anti-scalant pre-treatment for the feed stream, were studied and found to be straightforward and effective. Using RO retentate at pH 7.2 as the feed and 1 M NaCl as the draw solution, the average power density was 7.3 W/m at 20 bar. The average power density increased to 12.6 W/m by modifying RO retentate with an initial pH value of 5.5 using HCl and to 13.4 W/m by adding 1.1 mM ethylenediaminetetraacetic acid (EDTA). Moreover, the flux recovery of the fouled membranes, without the indicated pretreatments, reached 84.9% using deionized (DI) water flushing and 95.0% using air bubbling under a high crossflow velocity of 23.3 cm/s (Re = 2497) for 30 min. After pretreatment by pH adjustment, the flux recovery increased to 94.6% by DI water flushing and 100.0% by air bubbling. After pretreatment by adding 1.1 mM EDTA into RO retentate, flux was almost fully restored by physical cleaning by DI water flushing and air bubbling. These results provide insight into developing an effective pretreatment by either pH adjustment or EDTA addition before PRO and physical cleaning methods by DI water flushing and air bubbling for membrane used in osmotic power

  20. Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation. (United States)

    Chen, Si Cong; Amy, Gary L; Chung, Tai-Shung


    RO retentate from a municipal water recycling plant is considered as a potential feed stream for osmotic power generation in this paper. The feasibility of using RO retentate from a municipal water recycling plant was examined from two aspects: (a) the membrane fouling propensity of RO retentate, and (b) the efficacy of anti-fouling strategies. The membranes used in this study were the inner selective thin film composite polyethersulfone (TFC/PES) hollow fiber membranes, which possessed a high water permeability and good mechanical strength. Scaling by phosphate salts was found to be one possible inorganic fouling on the innermost layer of the PES membrane, whereas silica fouling was observed to be the governing fouling on the outmost surface of the PES membrane. Two anti-fouling pretreatments, i.e., pH adjustment and anti-scalant pre-treatment for the feed stream, were studied and found to be straightforward and effective. Using RO retentate at pH 7.2 as the feed and 1 M NaCl as the draw solution, the average power density was 7.3 W/m(2) at 20 bar. The average power density increased to 12.6 W/m(2) by modifying RO retentate with an initial pH value of 5.5 using HCl and to 13.4 W/m(2) by adding 1.1 mM ethylenediaminetetraacetic acid (EDTA). Moreover, the flux recovery of the fouled membranes, without the indicated pretreatments, reached 84.9% using deionized (DI) water flushing and 95.0% using air bubbling under a high crossflow velocity of 23.3 cm/s (Re = 2497) for 30 min. After pretreatment by pH adjustment, the flux recovery increased to 94.6% by DI water flushing and 100.0% by air bubbling. After pretreatment by adding 1.1 mM EDTA into RO retentate, flux was almost fully restored by physical cleaning by DI water flushing and air bubbling. These results provide insight into developing an effective pretreatment by either pH adjustment or EDTA addition before PRO and physical cleaning methods by DI water flushing and air bubbling for membrane used in

  1. Direct measurement of the soil water retention curve using X-ray absorption

    Directory of Open Access Journals (Sweden)

    A. Bayer


    Full Text Available X-ray absorption measurements have been explored as a fast experimental approach to determine soil hydraulic properties and to study rapid dynamic processes. As examples, the pressure-saturation relation θ(Ψ for a uniform sand column has been considered as has capillary rise in an initially dry sintered glass column. The θ(Ψ-relation is in reasonable agreement with that obtained by inverting a traditional multi-step outflow experiment. Monitoring the initial phase of capillary rise reveals behaviour that deviates qualitatively from the single-phase, local-equilibrium regime described by Richards’ equation. Keywords: X-ray absorption, soil hydraulic properties, soil water dynamics, Richards’ equation

  2. Retention and loss of water extractable carbon in soils: effect of clay properties. (United States)

    Nguyen, Trung-Ta; Marschner, Petra


    Clay sorption is important for organic carbon (C) sequestration in soils, but little is known about the effect of different clay properties on organic C sorption and release. To investigate the effect of clay content and properties on sorption, desorption and loss of water extractable organic C (WEOC), two experiments were conducted. In experiment 1, a loamy sand alone (native) or mixed with clay isolated from a surface or subsoil (78 and 96% clay) resulting in 90, 158 and 175 g clay kg(-1) soil. These soil treatments were leached with different WEOC concentrations, and then CO2 release was measured for 28 days followed by leaching with reverse osmosis water at the end of experiment. The second experiment was conducted to determine WEOC sorption and desorption of clays isolated from the loamy sand (native), surface soil and subsoil. Addition of clays isolated from surface and subsoil to sandy loam increased WEOC sorption and reduced C leaching and cumulative respiration in percentage of total organic C and WEOC added when expressed per g soil and per g clay. Compared to clays isolated from the surface and subsoil, the native clay had higher concentrations of illite and exchangeable Ca(2+), total organic C and a higher CEC but a lower extractable Fe/Al concentration. This indicates that compared to the clay isolated from the surface and the subsoil, the native clay had fewer potential WEOC binding sites because it had lower Fe/Al content thus lower number of binding sites and the existing binding sites are already occupied native organic matter. The results of this study suggest that in the soils used here, the impact of clay on WEOC sorption and loss is dependent on its indigenous organic carbon and Fe and/or Al concentrations whereas clay mineralogy, CEC, exchangeable Ca(2+) and surface area are less important. © 2013.

  3. Drinking Water Temperature Modelling in Domestic Systems


    Moerman, A.; Blokker, M.; Vreeburg, J.; van der Hoek, J.P.


    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According to the Dutch Drinking Water Act the drinking water temperature may not exceed the 25 °C threshold at point-of-use level. This paper provides a mathematical approach to model the heating of drinking...

  4. Water retention and evapotranspiration of green roofs and possible natural vegetation types

    NARCIS (Netherlands)

    Metselaar, K.


    Matching vegetation to growing conditions on green roofs is one of the options to increase biodiversity in cities. A hydrological model has been applied to match the hydrological requirements of natural vegetation types to roof substrate parameters and to simulate moisture stress for specific

  5. Modern Modeling of Water Hammer

    Directory of Open Access Journals (Sweden)

    Urbanowicz Kamil


    Full Text Available Hydraulic equipment on board ships is common. It assists in the work of: steering gear, pitch propellers, watertight doors, cargo hatch covers, cargo and mooring winches, deck cranes, stern ramps etc. The damage caused by transient flows (which include among others water hammer are often impossible to repair at sea. Hence, it is very important to estimate the correct pressure runs and associated side effects during their design. The presented study compares the results of research on the impact of a simplified way of modeling the hydraulic resistance and simplified effective weighting functions build of two and three-terms on the estimated results of the pressure changes. As it turns out, simple effective two-terms weighting functions are able to accurately model the analyzed transients. The implementation of the presented method will soon allow current automatic protection of hydraulic systems of the adverse effects associated with frequent elevated and reduced pressures.

  6. Role Models and Mentors in Mid-Pipeline Retention of Geoscience Students, Newark, NJ (United States)

    Gates, A. E.; Kalczynski, M. J.


    Undergraduate minority students retained enthusiasm for majoring in the geosciences by a combination of working with advanced minority mentors and role models as well as serving as role models for middle and high school students in Geoscience Education programs in Newark, NJ. An academic year program to interest 8-10th grade students from the Newark Public schools in the Geosciences employs minority undergraduate students from Rutgers University and Essex Community College as assistants. There is an academic year program (Geoexplorers) and a science festival (Dinosaur Day) at the Newark Museum that employs Rutgers University students and a summer program that employs Rutgers and Essex Community College students. All students are members of the Garden State LSAMP and receive any needed academic support from that program. The students receive mentoring from minority graduate students, project personnel and participating Newark Public School teachers, many of whom are from minority groups. The main factor in success and retention, however, is their role as authorities and role models for the K-12 students. The assistants are respected and consulted by the K-12 students for their knowledge and authority in the geosciences. This positive feedback shows them that they can be regarded as geoscientists and reinforces their self-image and enthusiasm. It further reinforces their knowledge of Geoscience concepts. It also binds the assistants together into a self-supporting community that even extends to the non-participating minority students in the Rutgers program. Although the drop-out rate among minority Geoscience majors was high (up to 100%) prior to the initiation of the program, it has dropped to 0% over the past 3 years with 2 participants now in PhD programs and 2 others completing MS degrees this year. Current students are seriously considering graduate education. Prior to this program, only one minority graduate from the program continued to graduate school in the

  7. Study of the retention of radionuclides by ion-exchange resins contained in the circuits of a Pressurized Water Reactor; Etude de la retention des radionucleides dans les resines echangeuses d'ions des circuits d'une centrale nucleaire a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Gressier, F.


    Physico-chemical quality of fluids in nuclear power plant circuits must be maintained in order to limit contamination and dose rate especially when the shutdown takes place. Nevertheless, an optimum between diminishing liquid waste and limiting solid waste production has to be reached, but at affordable costs. Ion-exchange resins of purification circuits are used to fulfill this goal. In this work, different resin types have been characterized (exchange capacity, water and electrolyte sorption) and their selectivity towards Co{sup 2+}, Ni{sup 2+}, Cs{sup +} and Li{sup +} cations have been studied. We have shown that the two cation-exchange resins selectivity varies according to the nature and concentrations of their counter-ions. Moreover, flow rate (and thus hydro-kinetics) impact on species retention in a column has been characterized: the more the flow rate, the more the ionic leakage (output concentration divided by input concentration) is fast and the more the output concentration front is spread. A literature revue has enabled to put in light advantages and drawbacks of the models of interest to simulate operations of ion-exchange resins. Thus, the pure end-members mixing model associated to a non-ideality description of the resin phase based on the regular solutions model has been retained for modelling ion-exchange equilibrium. Ion-exchange kinetics has been described by mass transfer coefficients. Using the experimental results to determine model parameters, these last ones have been implemented in a speciation code CHESS, coupled with a hydrodynamic code in HYTEC. On the one hand, equilibrium experiments of ion retention have been simulated and, on the other hand, column retention tests have been modelled. Finally, selectivity variations and hydro-kinetics impacts have been simulated on some test cases so as to demonstrate the importance of taking these into account when simulating ion-exchange resins operations. (author)

  8. Wettability of poultry litter biochars at variable pyrolysis temperatures and their impact on soil wettability and water retention relationships (United States)

    Yi, S. C.; Witt, B.; Guo, M.; Chiu, P.; Imhoff, P. T.


    higher mass fractions, the impact of hydrophobic PL biochar on the sand/mixture contact angle was more dramatic: for a sand/biochar mixture with 15% PL biochar, the contact angle was 40.12°. Water drop penetration tests were also performed on these samples, and results were consistent with contact angles measured with the sessile drop method. To further explore the cause of the varying contact angle with pyrolysis temperature, the PL biochars were vigorously rinsed with deionized water or heated for 24 hours at 105°C, and the contact angle measurements repeated. Both rinsing and heating samples rendered hydrophobic PL biochar hydrophilic. Rinsate samples were analyzed for total organic carbon and with GC-MS. These data suggest that bio-oils produced during slow-pyrolysis at temperatures < 400°C condensed on biochar and caused hydrophobicity. These bio-oils could be removed through vigorous washing with deionized water or heating to 105°C. The implication of these changes in water contact angle from PL biochar addition on water retention relationships for soil and on water distribution within pores will be discussed.

  9. Modeling water demand when households have multiple sources of water (United States)

    Coulibaly, Lassina; Jakus, Paul M.; Keith, John E.


    A significant portion of the world's population lives in areas where public water delivery systems are unreliable and/or deliver poor quality water. In response, people have developed important alternatives to publicly supplied water. To date, most water demand research has been based on single-equation models for a single source of water, with very few studies that have examined water demand from two sources of water (where all nonpublic system water sources have been aggregated into a single demand). This modeling approach leads to two outcomes. First, the demand models do not capture the full range of alternatives, so the true economic relationship among the alternatives is obscured. Second, and more seriously, economic theory predicts that demand for a good becomes more price-elastic as the number of close substitutes increases. If researchers artificially limit the number of alternatives studied to something less than the true number, the price elasticity estimate may be biased downward. This paper examines water demand in a region with near universal access to piped water, but where system reliability and quality is such that many alternative sources of water exist. In extending the demand analysis to four sources of water, we are able to (i) demonstrate why households choose the water sources they do, (ii) provide a richer description of the demand relationships among sources, and (iii) calculate own-price elasticity estimates that are more elastic than those generally found in the literature.

  10. Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing

    KAUST Repository

    Tromp, Karin


    A full-scale remediation facility including a detention basin and a wetland was tested for retention of heavy metals and Poly-Aromatic Hydrocarbons (PAHs) from water drained from a motorway in The Netherlands. The facility consisted of a detention basin, a vertical-flow reed bed and a final groundwater infiltration bed. Water samples were taken of road water, detention basin influent and wetland effluent. By using automated sampling, we were able to obtain reliable concentration averages per 4-week period during 18 months. The system retained the PAHs very well, with retention efficiencies of 90-95%. While environmental standards for these substances were surpassed in the road water, this was never the case after passage through the system. For the metals the situation was more complicated. All metals studied (Cu, Zn, Pb, Cd and Ni) had concentrations frequently surpassing environmental standards in the road water. After passage through the system, most metal concentrations were lower than the standards, except for Cu and Zn. There was a dramatic effect of de-icing salts on the concentrations of Cu, Zn, Cd and Ni, in the effluent leaving the system. For Cu, the concentrations even became higher than they had ever been in the road water. It is advised to let the road water bypass the facility during de-icing periods. © 2011 Elsevier B.V.

  11. Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing. (United States)

    Tromp, Karin; Lima, Ana T; Barendregt, Arjan; Verhoeven, Jos T A


    A full-scale remediation facility including a detention basin and a wetland was tested for retention of heavy metals and Poly-Aromatic Hydrocarbons (PAHs) from water drained from a motorway in The Netherlands. The facility consisted of a detention basin, a vertical-flow reed bed and a final groundwater infiltration bed. Water samples were taken of road water, detention basin influent and wetland effluent. By using automated sampling, we were able to obtain reliable concentration averages per 4-week period during 18 months. The system retained the PAHs very well, with retention efficiencies of 90-95%. While environmental standards for these substances were surpassed in the road water, this was never the case after passage through the system. For the metals the situation was more complicated. All metals studied (Cu, Zn, Pb, Cd and Ni) had concentrations frequently surpassing environmental standards in the road water. After passage through the system, most metal concentrations were lower than the standards, except for Cu and Zn. There was a dramatic effect of de-icing salts on the concentrations of Cu, Zn, Cd and Ni, in the effluent leaving the system. For Cu, the concentrations even became higher than they had ever been in the road water. It is advised to let the road water bypass the facility during de-icing periods. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Nationwide water availability data for energy-water modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zemlick, Katie M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klise, Geoffrey Taylor [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The purpose of this effort is to explore where the availability of water could be a limiting factor in the siting of new electric power generation. To support this analysis, water availability is mapped at the county level for the conterminous United States (3109 counties). Five water sources are individually considered, including unappropriated surface water, unappropriated groundwater, appropriated water (western U.S. only), municipal wastewater and brackish groundwater. Also mapped is projected growth in non-thermoelectric consumptive water demand to 2035. Finally, the water availability metrics are accompanied by estimated costs associated with utilizing that particular supply of water. Ultimately these data sets are being developed for use in the National Renewable Energy Laboratories' (NREL) Regional Energy Deployment System (ReEDS) model, designed to investigate the likely deployment of new energy installations in the U.S., subject to a number of constraints, particularly water.

  13. Examining a Proposed Job Retention Model for Adult Workers with Mental Retardation (United States)

    Fornes, Sandra L.


    This research provides an analysis of factors predicting job retention (JR), job satisfaction (JS), and job performance (JP) of workers with mental retardation (MR). The findings highlight self-determination as a critical skill in influencing three important employee's outcomes, JR, JS, and JP. The intent of the study was to develop job retention…

  14. Grade Retention

    Directory of Open Access Journals (Sweden)

    Gia A. Renaud


    Full Text Available Academic accountability is of great concern, therefore grade retention is being considered for both students with and without disabilities who are not meeting end-of-the-year achievement benchmarks. The purpose of this study was to investigate teacher attitudes toward grade retention and whether practices differ when recommending retention of students with or without disabilities. This mixed-methods study utilized a paper-and-pencil questionnaire using a Likert-type scale, as well as two open-ended questions and a checklist. Teacher interviews were also conducted. The findings of this study indicate that teachers are considering a multitude of factors when considering grade retention for their struggling students. Academic performance was the factor that teachers (77% indicated the most frequently. Although teachers felt pressure and accountability from high stakes testing, they felt test results should be one of many factors considered in the retention decision.

  15. Modeling of growth and sporulation of Bacillus thuringiensis in an intermittent fed batch culture with total cell retention. (United States)

    Atehortúa, Paula; Alvarez, Hernán; Orduz, Sergio


    An extended dynamical model for growth and sporulation of Bacillus thuringiensis subsp. kurstaki in an intermittent fed-batch culture with total cell retention is proposed. This model differs from reported models, by including dynamics for natural death of cells and substrate consumption for cell maintenance. The proposed model uses sigmoid functions to describe these kinetic parameters. Equations for time evolution of substrate, vegetative, sporulated and total cell concentration were taken from previous works. Model parameters were determined from batch experimental data obtained in pilot plant. Parameter identification was developed in two stages: (1) coarse identification using a multivariable optimization with constraints algorithm, (2) fine identification by heuristic fit of model parameters looking for a minimal model error. The proposed model estimates adequate time evolution of the process variables with a mean error of 2.6% on substrate concentration and 6.7% on biomass concentration.

  16. Predicting Customer Churn and Retention Rates in Nigeria’s Mobile Telecommunication Industry Using Markov Chain Modelling

    Directory of Open Access Journals (Sweden)

    Adebiyi Sulaimon Olanrewaju


    Full Text Available The telecommunication industry is one of the service industries that is most affected by the problem of subscribers’ churn. Although several techniques have been used to predict customer churn in developed countries, many of those studies used secondary data which are not readily available in Nigeria for researchers. This study investigates how Markov chains help in modelling and predicting the customer churn and retention rate in the Nigerian mobile telecommunication industry. The data generated through the survey were input in the Windows-based Quantitative System for Business (WinQSB for analysis. The results reveal that in the study area MTN has the highest retention rate (86.11%, followed by GLO (70.51%, Airtel (67%, and Etisalat (67.5%. This result has implications for telecom firms’ strategies for competitive advantage in particular and survival in general.

  17. Water balance model for Kings Creek (United States)

    Wood, Eric F.


    Particular attention is given to the spatial variability that affects the representation of water balance at the catchment scale in the context of macroscale water-balance modeling. Remotely sensed data are employed for parameterization, and the resulting model is developed so that subgrid spatial variability is preserved and therefore influences the grid-scale fluxes of the model. The model permits the quantitative evaluation of the surface-atmospheric interactions related to the large-scale hydrologic water balance.

  18. Coupled surface-water and ground-water model (United States)

    Swain, Eric D.; Wexler, Eliezer J.


    In areas with dynamic and hydraulically well connected ground-water and surface-water systems, it is desirable that stream-aquifer interaction be simulated with models of equal sophistication and accuracy. Accordingly, a new, coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference, ground-water model and BRANCH is a one-dimensional numerical model commonly used to simulate flow in open-channel networks. Because time steps used in ground-water modeling commonly are much longer than those used in surface-water simulations, provision has been made for handling multiple BRANCH time steps within one MODFLOW time step. Verification testing of the coupled model was done using data from previous studies and by comparing results with output from a simpler four-point implicit open-channel flow model linked with MODFLOW.

  19. Post-main-sequence Evolution of Icy Minor Planets. III. Water Retention in Dwarf Planets and Exomoons and Implications for White Dwarf Pollution (United States)

    Malamud, Uri; Perets, Hagai B.


    Studies suggest that the pollution of white dwarf (WD) atmospheres arises from the accretion of minor planets, but the exact properties of polluting material, and in particular the evidence for water in some cases are not yet understood. Several previous works studied the possibility of water surviving inside minor planets around evolving stars. However, they all focused on small, comet-sized to moonlet-sized minor planets, when the inferred mass inside the convection zones of He-dominated WDs could actually be compatible with much more massive minor planets. Here we explore for the first time, the water retention inside exoplanetary dwarf planets, or moderate-sized moons, with radii of the order of hundreds of kilometers. This paper concludes a series of papers that has now covered nearly the entire potential mass range of minor planets, in addition to the full mass range of their host stars. We find that water retention is (a) affected by the mass of the WD progenitor, and (b) it is on average at least 5%, irrespective of the assumed initial water composition, if it came from a single accretion event of an icy dwarf planet or moon. The latter prediction strengthens the possibility of habitability in WD planetary systems, and it may also be used in order to distinguish between pollution originating from multiple small accretion events and singular large accretion events. To conclude our work, we provide a code that calculates ice and water retention by interpolation and may be freely used as a service to the community.

  20. Using 3D Printers to Model Earth Surface Topography for Increased Student Understanding and Retention (United States)

    Thesenga, David; Town, James


    In February 2000, the Space Shuttle Endeavour flew a specially modified radar system during an 11-day mission. The purpose of the multinational Shuttle Radar Topography Mission (SRTM) was to "obtain elevation data on a near-global scale to generate the most complete high-resolution digital topographic database of Earth" by using radar interferometry. The data and resulting products are now publicly available for download and give a view of the landscape removed of vegetation, buildings, and other structures. This new view of the Earth's topography allows us to see previously unmapped or poorly mapped regions of the Earth as well as providing a level of detail that was previously unknown using traditional topographic mapping techniques. Understanding and appreciating the geographic terrain is a complex but necessary requirement for middle school aged (11-14yo) students. Abstract in nature, topographic maps and other 2D renderings of the Earth's surface and features do not address the inherent spatial challenges of a concrete-learner and traditional methods of teaching can at times exacerbate the problem. Technological solutions such as 3D-imaging in programs like Google Earth are effective but lack the tactile realness that can make a large difference in learning comprehension and retention for these young students. First developed in the 1980's, 3D printers were not commercial reality until recently and the rapid rise in interest has driven down the cost. With the advent of sub US1500 3D printers, this technology has moved out of the high-end marketplace and into the local office supply store. Schools across the US and elsewhere in the world are adding 3D printers to their technological workspaces and students have begun rapid-prototyping and manufacturing a variety of projects. This project attempted to streamline the process of transforming SRTM data from a GeoTIFF format by way of Python code. The resulting data was then inputted into a CAD-based program for

  1. Decentralized nursing education in Northern Norway: towards a sustainable recruitment and retention model in rural Arctic healthcare services. (United States)

    Norbye, Bente; Skaalvik, Mari Wolff


    Decentralized nursing education (DNE) was established at Tromsø University College in 1990 and has since become a part of the bachelor programme in nursing at UiT The Arctic University of Norway. The objective of the study was to investigate whether and to what degree the first DNE programme established in Norway has contributed to recruitment and retention of registered nurses (RNs) in rural healthcare services. The quantitative survey took place in 2012. A questionnaire was distributed to 315 former students who had graduated from the DNE programme from 1994 to 2011. The primary finding of this study is that the DNE successfully recruits students from rural areas of Northern Norway. Nearly, 87.5% have their first employment in community healthcare services. They continued to work in the rural areas and 85% still worked as nurses in 2012. The DNE programme has been successful regarding recruitment and retention of RNs to community healthcare services. Fifty-six percent have attended a variety of postgraduate programmes. The DNE programme demonstrates itself as a successful study model regarding recruitment and retention of RNs to rural and remote areas.

  2. An Analysis of Army Dentists Using Logistic Regression: A Discrete-Time Logit Model for Predicting Retention (United States)


    whether and when Army dentists were deployed in support of GWOT. However, other variables that have been found to contribute to employee retention will... employee retention in a civilian company. They conducted a retrospective, quasi-experimental design to compare the retention of experienced hires on employee retention . Evaluation and Program Planning, 28, 423-430. McClary, M.E. (1999). Predictors of recruitment and retention factors to aid

  3. [Matrix effect and retention efficiency of hydrophilic-lipophilic balance cartridges in multi-residual determination of veterinary drugs in river water]. (United States)

    Lin, Shanshan; Yi, Qitong; Hong, Jiajun; Chen, Meng; Yuan, Dongxing


    Matrix effect is an important interfering factor in LC-MS quantitative analysis. In this paper, matrix effects and retention efficiencies of 33 veterinary drugs spiked in river water were studied on hydrophilic-lipophilic balance (HLB) cartridges of 3 brands (Waters, Supelco, and CNW), using LC-MS/MS for detection and reverse osmosis (RO) water as the control under 500-fold concentration. In RO water, only the exogenous matrix effects were observed on three brands of HLB cartridges. Most quinolones and tetracyclines showed positive matrix effects. Estrogens showed negative matrix effects on two brands of HLB cartridges. Sulfonamides were not obviously affected by matrix effects. Chloramphenicols showed negative matrix effects on one brand of HLB cartridge. In river water, matrix effects were different from those of the RO water due to the combined exogenous and endogenous interfering substances. Sulfonamides showed slight matrix effects as those in RO water. Most quinolones and tetracyclines showed positive matrix effects. Chloramphenicols and estrogens showed negative matrix effects. Compared to the external standard method, matrix matched calibration method effectively overcame the matrix effects with better quantitative results. The recoveries of 33 target veterinary drugs spiked in river water at 50 ng/L and 200 ng/L levels were in the ranges of 40.3%-146.0% (Waters), 37.8%-104.2% (Supelco), and 52.9%-150.1% (CNW) with RSDs (n = 4) of 0.2%-14.6%. The results indicated that there was no significant difference in the retention efficiency between the 3 HLB cartridges with the matrix matched calibration method. This study provided supporting data for the HLB cartridge selection in multi-residual determination of the veterinary drugs in river water samples.

  4. Tagging Water Sources in Atmospheric Models (United States)

    Bosilovich, M.


    Tagging of water sources in atmospheric models allows for quantitative diagnostics of how water is transported from its source region to its sink region. In this presentation, we review how this methodology is applied to global atmospheric models. We will present several applications of the methodology. In one example, the regional sources of water for the North American Monsoon system are evaluated by tagging the surface evaporation. In another example, the tagged water is used to quantify the global water cycling rate and residence time. We will also discuss the need for more research and the importance of these diagnostics in water cycle studies.

  5. Why doctors choose small towns: a developmental model of rural physician recruitment and retention. (United States)

    Hancock, Christine; Steinbach, Alan; Nesbitt, Thomas S; Adler, Shelley R; Auerswald, Colette L


    Shortages of health care professionals have plagued rural areas of the USA for more than a century. Programs to alleviate them have met with limited success. These programs generally focus on factors that affect recruitment and retention, with the supposition that poor recruitment drives most shortages. The strongest known influence on rural physician recruitment is a "rural upbringing," but little is known about how this childhood experience promotes a return to rural areas, or how non-rural physicians choose rural practice without such an upbringing. Less is known about how rural upbringing affects retention. Through twenty-two in-depth, semi-structured interviews with both rural- and urban-raised physicians in northeastern California and northwestern Nevada, this study investigates practice location choice over the life course, describing a progression of events and experiences important to rural practice choice and retention in both groups. Study results suggest that rural exposure via education, recreation, or upbringing facilitates future rural practice through four major pathways. Desires for familiarity, sense of place, community involvement, and self-actualization were the major motivations for initial and continuing small-town residence choice. A history of strong community or geographic ties, either urban or rural, also encouraged initial rural practice. Finally, prior resilience under adverse circumstances was predictive of continued retention in the face of adversity. Physicians' decisions to stay or leave exhibited a cost-benefit pattern once their basic needs were met. These results support a focus on recruitment of both rural-raised and community-oriented applicants to medical school, residency, and rural practice. Local mentorship and "place-specific education" can support the integration of new rural physicians by promoting self-actualization, community integration, sense of place, and resilience. Health policy efforts to improve the physician

  6. Retention Elasticity and Projection Model for U.S. Navy Medical Corps Officers (United States)


    Department of Defense DODFMR Department of Defense Financial Management Regulation FAP Financial Assistance Program FY Fiscal Year GMO General...increased concern about BUMED’s ability to meet its manning requirements, and thus the ability to maintain BUMED’s recommended manning level of...deployers who were affected by the increased OPTEMPO. Bristol (2006) finds that increased OPTEMPO has a negative effect on GMO retention. A GMO who was

  7. Retention mechanism of proteins in hydroxyapatite chromatography - multimodal interaction based protein separations: A model study. (United States)

    Itoh, Daisuke; Yoshimoto, Noriko; Yamamoto, Shuichi


    Retention mechanism of proteins in hydroxyapatite chromatography (HAC) was investigated by linear gradient elution experiments. Several mobile phase (buffer) solution strategies and solutes were evaluated in order to probe the relative contributions of two adsorption sites of hydroxyapatite (HA) particles, C-site due to Ca (metal affinity) and P-site due to PO4 (cation-exchange). When P-site was blocked, two basic proteins, lysozyme (Lys) and ribonuclease A(RNase), were not retained whereas cytochrome C(Cyt C) and lactoferrin (LF) were retained and also retention of acidic proteins became stronger as the repulsion due to P-site was eliminated. The number of the binding site B values determined from LGE also increased, which also showed reduction of repulsion forces. The selectivity (retention) of four basic proteins (RNase, Lys, Cyt C, LF) in HAC was different from that in ion-exchange chromatography. Moreover, it was possible to tune the selectivity by using NaCl gradient. Copyright© Bentham Science Publishers; For any queries, please email at

  8. Study of cellular retention of HMPAO and ECD in a model simulating the blood-brain barrier; Etude de la retention cellulaire de l`HMPAO et de l`ECD dans un modele simulant la barriere hematoencephalique

    Energy Technology Data Exchange (ETDEWEB)

    Ponce, C.; Pittet, N.; Slosman, D.O. [HUG, 1211 Geneve 14, (Switzerland)


    The HMPAO and ECD are two technetium-labelled lipophilic agents clinically used in the imagery of cerebral perfusion. These molecules cross the membranes and are retained inside the cell after being converted to a hydrophilic form. The aim of this study is to establish the distribution of this retention at the level of blood-brain barrier (BBB) and nerve cells. The incorporation of HMPAO or ECD was studied on a model of co-culture simulating the BBB by means of a T84 single-cell layer of tight junction separated from another layer of U373 astrocyte cells. The cell quality and tight junction permeability were evaluated by the cellular retention of 111-indium chloride and by para-cellular diffusion of {sup 14}C mannitol,d-1. The values reported below were obtained at 180 minutes when the radiotracers were added near the `T84 layer`. The cell quality is validated by the low cellular retention of the indium chloride(2.3{+-}0.3 {mu}g{sup -1} for the T84 cells and 8.2{+-}5.8 {mu}g{sup -1} for the U373 cells). The activity of {sup 14}C mannitol,d-1 diminishes by 23 {+-} 5 % in the added compartment. The retention of ECD by the U373 cells is significantly higher (20.7 {+-}4.5 g{sup -1}) than that of T84 cells (2.9 {+-} 0.2 {mu}g{sup -1}). For HMPAO a non-significant tendency could be observed (49 {+-} 34 {mu}g{sup -1} for the U373 cells and 38 {+-} 25 {mu}g{sup -1} for the T84 cells)> The results of cellular retention of indium by HMPAO or ECD when added near `U373 layer` are not significantly different.In conclusion, independently of the side exposed to the radiotracers, one observes an enhanced incorporation of the U373 cells. The ensemble of these results represent additional arguments in favour of a specific cellular incorporation of the radiotracers, independent of the BBB permittivity

  9. Study on the water retention effect of compound soil of arsenic sandstone and sand under the condition of typical crop planting (United States)

    Liu, S. Y.; Wang, N.; Xie, J. C.; Jiang, R. G.; Zhao, M. L.


    Arsenic sandstone is the main reason of soil erosion in the Mu Us Sandy Land, simultaneously was proved to be a kind of good water retaining agent. In order to provide references for the utilization of water and soil resources and the prevention and control of desertification and soil erosion of the southern margin of Mu Us Sandy Land, on the basis of earlier studies the farmland experiments of compound soil with three ratios of 1:1, 1:2 and 1:5 between arsenic sandstone and sand under maize planting patterns were designed, whose experimental process was divided into six stages according to the crop growth status. The results showed that the soil moisture content was highest in the layer of 0∼40cm where the compound soil mainly concentrated in, which was related to the potent water retention of arsenic sandstone and strong water permeability of undisturbed sandy soil. The variation coefficients in the soil of 1:1 and 1:2 were more stable and evenly distributed. The compound soil can effectively improve the soil water retention capacity, and prolong the storage time of soil water. Among them, water loss rate in soil of 1:1 and 1:2 were lower. The coefficient of variation also confirms that the water distributions of the two types of soil were more uniform and stable. Besides illustrating the effects of the soil amelioration measures on spatial and temporal variation of soil moisture content and the improvement of soil water regime, the study provides some references for the development and utilization of agriculture in Mu Us Sandy Land.

  10. Impact of biocrust succession on water retention and repellency on open-cast lignite mining sites under reclamation in Lower Lusatia, NE-Germany (United States)

    Gypser, Stella; Fischer, Thomas; Lange, Philipp; Veste, Maik


    Mining activities can strongly affect ecosystem properties by destruction of naturally developed soils and removal of vegetation. The unstructured substrates show high bulk densities, compaction, low water infiltration rates, reduced water holding capacities and higher susceptibility to wind and water erosion. In the initial stage of the ecosystem development, the post-mining sites are open areas without or with a low cover of higher vegetation. It is well-known that biocrusts are able to colonize the soil surface under such extreme conditions without human support and affect soil hydrological processes such as water infiltration, run-off or re-distribution. Investigations were conducted on two former lignite open-cast mining sites, an artificial sand dune on the reclaimed watershed Welzow "Neuer Lugteich" and a reforestation area in Schlabendorf (Brandenburg, north-east Germany). The aim was to relate the hydrological characteristics of the topsoil to successional stages of biological soil crusts on reclaimed soils and their influence on repellency index and water holding capacity compared to pure mining substrate. Our study emphasized the influence of changing successional stages and species composition of biological soil crusts, forming a small-scale crust pattern, on water repellency and retention on sandy soils in temperate climate. Different successional stages of soil crusts were identified from initial scattered green algae crusts, dominated by Zygogonium spec. and Ulothrix spec., and more developed soil crusts containing mosses such as Ceratodon purpureus and Polytrichum piliferum. Lichens of the Genus Cladonia were more pronouncedly contributed to biocrusts at later and mature stages of development. The repellency index on the one hand increased due to the cross-linking of sand particles by the filamentous green algae Zygogonium spec. which resulted in clogging of pores, and on the other hand decreased with the occurrence of moss plants due to absorption

  11. Gift-Giving as a Courtship or Mate-Retention Tactic?: Insights from Non-Human Models

    Directory of Open Access Journals (Sweden)

    Peter K. Jonason


    Full Text Available Biology and social science research has studied gift-giving, but the former has been more concerned with courtship and the latter has come from either a cultural-relativistic perspective or a handicap principle perspective. We argue that our understanding of gift-giving in humans can be enhanced by examining animal models as long as the model-species shares the appropriate behavior: monogamy. Thus, the gibbon might be a more appropriate model. Monogamy encourages pairs to expend effort in mate-retention. In Study 1 (N = 120, we show that gift-giving in courtship is localized to long-term mates: most strongly in men. In Study 2 (N = 100, we demonstrate that gift-giving is a tactic used by men to both court and retain mates: most commonly for retention. In line with traditional models of helping, women planned to provide gifts to friends and family more than men. We also demonstrate that sociosexuality predicts planned expenditure on gifts to different individuals and that these correlations are moderated by the sex of the participant.

  12. Retention of Viability of Salmonella in Sucrose as Affected by Type of Inoculum, Water Activity, and Storage Temperature. (United States)

    Beuchat, Larry R; Mann, David A; Kelly, Christine A; Ortega, Ynes R


    Outbreaks of salmonellosis have been associated with consumption of high-sugar, low-water activity (a w ) foods. The study reported here was focused on determining the effect of storage temperature (5 and 25°C) on survival of initially high and low levels of Salmonella in dry-inoculated sucrose (a w 0.26 ± 0.01 to 0.54 ± 0.01) and wet-inoculated sucrose (a w 0.24 ± 0.01 to 0.44 ± 0.04) over a 52-week period. With the exception of dry-inoculated sucrose at a w 0.26, Salmonella survived for 52 weeks in dry- and wet-inoculated sucrose stored at 5 and 25°C. Retention of viability was clearly favored in sucrose stored at 5°C compared with 25°C, regardless of level or type of inoculum or a w . Survival at 5°C was not affected by a w . Initial high-inoculum counts of 5.18 and 5.25 log CFU/g of dry-inoculated sucrose (a w 0.26 and 0.54, respectively) stored for 52 weeks at 5°C decreased by 0.56 and 0.53 log CFU/g; counts decreased by >4.18 and >4.25 log CFU/g in samples stored at 25°C. Inactivation rates in wet-inoculated sucrose were similar to those in dry-inoculated sucrose; however, a trend toward higher persistence of Salmonella in dry- versus wet-inoculated sucrose suggests there was a higher proportion of cells in the wet inoculum with low tolerance to osmotic stress. Survival patterns were similar in sucrose initially containing a low level of Salmonella (2.26 to 2.91 log CFU/g). The pathogen was recovered from low-inoculated sucrose stored at 5°C for 52 weeks regardless of type of inoculum or a w and from dry-inoculated sucrose (a w 0.54) and wet-inoculated sucrose (a w 0.24) stored at 25°C for 12 and 26 weeks, respectively. Results emphasize the importance of preventing contamination of sucrose intended for use as an ingredient in foods not subjected to a treatment that would be lethal to Salmonella.

  13. A regression model for calculating the second dimension retention index in comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. (United States)

    Wang, Bing; Shen, Hao; Fang, Aiqin; Huang, De-Shuang; Jiang, Changjun; Zhang, Jun; Chen, Peng


    Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) system has become a key analytical technology in high-throughput analysis. Retention index has been approved to be helpful for compound identification in one-dimensional gas chromatography, which is also true for two-dimensional gas chromatography. In this work, a novel regression model was proposed for calculating the second dimension retention index of target components where n-alkanes were used as reference compounds. This model was developed to depict the relationship among adjusted second dimension retention time, temperature of the second dimension column and carbon number of n-alkanes by an exponential nonlinear function with only five parameters. Three different criteria were introduced to find the optimal values of parameters. The performance of this model was evaluated using experimental data of n-alkanes (C7-C31) at 24 temperatures which can cover all 0-6s adjusted retention time area. The experimental results show that the mean relative error between predicted adjusted retention time and experimental data of n-alkanes was only 2%. Furthermore, our proposed model demonstrates a good extrapolation capability for predicting adjusted retention time of target compounds which located out of the range of the reference compounds in the second dimension adjusted retention time space. Our work shows the deviation was less than 9 retention index units (iu) while the number of alkanes were added up to 5. The performance of our proposed model has also been demonstrated by analyzing a mixture of compounds in temperature programmed experiments. Copyright © 2016 Elsevier B.V. All rights reserved.


    Directory of Open Access Journals (Sweden)

    Dmitri Olegovitch Sivakov


    Full Text Available As it is known, the water law regulates dynamic social relationships concerning study, usage and protection of water objects, as well as their transformation. The water law explicitly regulates water economic activities. The regulatory method of the water law has a mixed nature and thus is not distinctive. It predetermines in some cases equality and independence of subjects of relationships (water usage agreement and in other – power and submission (permissive nature of water usage. The aim of the publication is to promote scientific ideas about the fate of the water law in order to make a further polygonal and productive discussion in which the reader is invited to participate. Scientific novelty. In 2016 the monograph of D.O. Sivakov “Water law: dynamics, problems, perspectives: monograph” (second edition, reviewed and updated. Moscow: Stolitsa, 2016. 540 p. was published. In 2017 the author reconsidered some conclusions of his monograph and applied scientific achievements of theory of state and law in water sphere. In accordance with this, it is important to mention research of Petrov D.E. related to issues of differentiation and integration of structural formations of Russian legal system. The scientific novelty of the article includes the synthesis of ideas of the monograph and some achievements of theory of state and law. Methods of research. The author of the article relies on some collective and individual monographic studies in the sphere of theory of state and law, natural resource law, arctic law, financial law. Basic results of research. The author promotes the model of responsible water usage. This model shall be based not on the unstable balance of economic and environmental interests (which shall practically lead to the domination of economic interests, but on the obligatory combination of economic activities with technologies, ensuring maximal preservation of water resources. Responsible water usage shall mean a system of

  15. Nambe Pueblo Water Budget and Forecasting model.

    Energy Technology Data Exchange (ETDEWEB)

    Brainard, James Robert


    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  16. Optimization of IC Separation Based on Isocratic-to-Gradient Retention Modeling in Combination with Sequential Searching or Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Šime Ukić


    Full Text Available Gradient ion chromatography was used for the separation of eight sugars: arabitol, cellobiose, fructose, fucose, lactulose, melibiose, N-acetyl-D-glucosamine, and raffinose. The separation method was optimized using a combination of simplex or genetic algorithm with the isocratic-to-gradient retention modeling. Both the simplex and genetic algorithms provided well separated chromatograms in a similar analysis time. However, the simplex methodology showed severe drawbacks when dealing with local minima. Thus the genetic algorithm methodology proved as a method of choice for gradient optimization in this case. All the calculated/predicted chromatograms were compared with the real sample data, showing more than a satisfactory agreement.

  17. The Effects of Salinity and Sodium Adsorption Ratio on the Water Retention and Hydraulic Conductivity Curves of Soils From The Pampa del Tamarugal, Chile (United States)

    Lagos, M. S.; Munoz, J.; Suarez, F. I.; Fierro, V.; Moreno, C.


    The Pampa del Tamarugal is located in the Atacama Desert, the most arid desert of the world. It has important reserves of groundwater, which are probably fed by infiltration coming from the Andes Mountain, with groundwater levels fluctuating between 3 and 10-70 m below the land surface. In zones where shallow groundwater exists, the capillary rise allows to have a permanently moist vadose zone, which sustain native vegetation such as the Tamarugos (Prosopis tamarugo Phil.) and Algarrobos (Prosopis alba Griseb.). The native vegetation relies on the soil moisture and on the evaporative fluxes, which are controlled by the hydrodynamic characteristics of the soils. The soils associated to the salt flats of the Pampa del Tamarugal are a mixture of sands and clays, which have high levels of sulfates, chloride, carbonates, sodium, calcium, magnesium, and potassium, with high pH and electrical conductivity, and low organic matter and cationic exchange capacity. In this research, we are interested in evaluating the impact of salinity and sodium adsorption ratio (SAR) on the hydrodynamic characteristics of the soil, i.e., water retention and hydraulic conductivity curves. Soils were collected from the Pampa del Tamarugal and brought to the laboratory for characterization. The evaporation method (HYPROP, UMS) was used to determine the water retention curve and the hydraulic conductivity curve was estimated combining the evaporation method with direct measurements using a variable head permeameter (KSAT, UMS). It was found that higher sodium concentrations increase the water retention capacity and decrease the soiĺs hydraulic conductivity. These changes occur in the moist range of the hydrodynamic characteristics. The soil's hydraulic properties have significant impact on evaporation fluxes, which is the mayor component of the water balance. Thus, it is important to quantify them and incorporate salt precipitation/dissolution effect on the hydrodynamic properties to correctly


    African Journals Online (AJOL)

    STREAMFLOW AND WATER QUALITY REGRESSION MODELING OF IMO RIVER SYSTEM: A CASE STUDY. ... Journal of Modeling, Design and Management of Engineering Systems ... Possible sources of contamination of Imo-river system within Nekede and Obigbo hydrological stations watershed were traced.

  19. A theoretical model of water and trade (United States)

    Dang, Qian; Konar, Megan; Reimer, Jeffrey J.; Di Baldassarre, Giuliano; Lin, Xiaowen; Zeng, Ruijie


    Water is an essential input for agricultural production. Agriculture, in turn, is globalized through the trade of agricultural commodities. In this paper, we develop a theoretical model that emphasizes four tradeoffs involving water-use decision-making that are important yet not always considered in a consistent framework. One tradeoff focuses on competition for water among different economic sectors. A second tradeoff examines the possibility that certain types of agricultural investments can offset water use. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using commodities. The fourth tradeoff concerns how variability in water supplies influences farmer decision-making. We show conditions under which trade liberalization affect water use. Two policy scenarios to reduce water use are evaluated. First, we derive a target tax that reduces water use without offsetting the gains from trade liberalization, although important tradeoffs exist between economic performance and resource use. Second, we show how subsidization of water-saving technologies can allow producers to use less water without reducing agricultural production, making such subsidization an indirect means of influencing water use decision-making. Finally, we outline conditions under which riskiness of water availability affects water use. These theoretical model results generate hypotheses that can be tested empirically in future work.

  20. Field experiments of Controlled Drainage of agricultural clay soils show positive effects on water quantity (retention, runoff) and water quality (nitrate leaching). (United States)

    schipper, peter; stuyt, lodewijk; straat, van der, andre; schans, van der, martin


    processes in the soil have been modelled with simulation model SWAP. The experiment started in 2010 and is ongoing. Data, collected so far show that the plots with controlled drainage (all compared with plots equipped with conventional drainage) conserve more rain water (higher groundwater tables in early spring), lower discharges under average weather conditions and storm events, reduce N-loads and saline seepage to surface waters, enhance denitrification, show a different 'first flush' effect and show similar crop yields. The results of the experiments will contribute to a better understanding of the impact of controlled drainage on complex hydrological en geochemical processes in agricultural clay soils, the interaction between ground- en surface water and its effects on drain water quantity, quality and crop yield.

  1. Optimising The Available Scarce Water Resources At European Scale In A Modelling Environment: Results And Challenges (United States)

    de Roo, Ad; Burek, Peter; Gentile, Alessandro; Udias, Angel; Bouraoui, Faycal


    As a next step to European drought monitoring and forecasting, which is covered in the European Drought Observatory (EDO) activity of JRC, a modeling environment has been developed to assess optimum measures to match water availability and water demand, while keeping ecological, water quality and flood risk aspects also into account. A multi-modelling environment has been developed to assess combinations of water retention measures, water savings measures, and nutrient reduction measures for continental Europe. These simulations have been carried out to assess the effects of those measures on several hydro-chemical indicators, such as the Water Exploitation Index, Environmental Flow indicators, low-flow frequency, N and P concentrations in rivers, the 50-year return period river discharge as an indicator for flooding, and economic losses due to water scarcity for the agricultural sector, the industrial sector, and the public sector. Also, potential flood damage of a 100-year return period flood has been used as an indicator. This modeling environment consists of linking the agricultural CAPRI model, the land use LUMP model, the water quantity LISFLOOD model, the water quality EPIC model, the combined water quantity/quality and hydro-economic LISQUAL model and a multi-criteria optimization routine. A python interface platform (IMO) has been built to link the different models. The work was carried out in the framework of a new European Commission policy document "Blueprint to Safeguard Europe's Water Resources", COM(2012)673), launched in November 2012. Simulations have been carried out to assess the effects of water retention measures, water savings measures, and nutrient reduction measures on several hydro-chemical indicators, such as the Water Exploitation Index, Environmental Flow indicators, N and P concentrations in rivers, the 50-year return period river discharge as an indicator for flooding, and economic losses due to water scarcity for the agricultural

  2. Water sound recognition based on physical models


    Guyot, Patrice; PINQUIER, Julien; André-Obrecht, Régine


    This article describes an audio signal processing algorithm to detect water sounds, built in the context of a larger system aiming to monitor daily activities of elderly people. While previous proposals for water sound recognition relied on classical machine learning and generic audio features to characterize water sounds as a flow texture, we describe here a recognition system based on a physical model of air bubble acoustics. This system is able to recognize a wide variety of water sounds a...

  3. Integrated water resources modelling for assessing sustainable water governance (United States)

    Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros


    Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to

  4. Modeling Benthic Sediment Processes to Predict Water ... (United States)

    The benthic sediment acts as a huge reservoir of particulate and dissolved material (within interstitial water) which can contribute to loading of contaminants and nutrients to the water column. A benthic sediment model is presented in this report to predict spatial and temporal benthic fluxes of nutrients and chemicals in Narragansett Bay. A benthic sediment model is presented in this report to identify benthic flux into the water column in Narragansett Bay. Benthic flux is essential to properly model water quality and ecology in estuarine and coastal systems.


    African Journals Online (AJOL)

    The upper reaches of Imo-river system between Nekede and Obigbo hydrological stations (a stretch of 24km) have been studied for the purpose of water quality and streamflow modeling. Model's applications on water supply to Nekede and Obigbo communities were equally explored with the development of mass curves.

  6. A Theoretical Model of Water and Trade (United States)

    Dang, Q.; Konar, M.; Reimer, J.; Di Baldassarre, G.; Lin, X.; Zeng, R.


    Water is an essential factor of agricultural production. Agriculture, in turn, is globalized through the trade of food commodities. In this paper, we develop a theoretical model of a small open economy that explicitly incorporates water resources. The model emphasizes three tradeoffs involving water decision-making that are important yet not always considered within the existing literature. One tradeoff focuses on competition for water among different sectors when there is a shock to one of the sectors only, such as trade liberalization and consequent higher demand for the product. A second tradeoff concerns the possibility that there may or may not be substitutes for water, such as increased use of sophisticated irrigation technology as a means to increase crop output in the absence of higher water availability. A third tradeoff explores the possibility that the rest of the world can be a source of supply or demand for a country's water-using products. A number of propositions are proven. For example, while trade liberalization tends to increase water use, increased pressure on water supplies can be moderated by way of a tax that is derivable with observable economic phenomena. Another example is that increased riskiness of water availability tends to cause water users to use less water than would be the case under profit maximization. These theoretical model results generate hypotheses that can be tested empirically in future work.

  7. Population Ration, Intermarriage and Mother Tongue Retention (United States)

    Kuo, Eddie C. Y.


    An explanatory model of the relationship between mother tongue retention, population ratio, and intermarriage is presented. In general, data collected on mother tongue retention in Singapore, a multilingual and multiethnic society, support the proposed model. (DS)

  8. Use of Fe/Al drinking water treatment residuals as amendments for enhancing the retention capacity of glyphosate in agricultural soils. (United States)

    Zhao, Yuanyuan; Wendling, Laura A; Wang, Changhui; Pei, Yuansheng


    Fe/Al drinking water treatment residuals (WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate. Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils (pglyphosate desorbed from the non-amended soils, and the Fe/Al WTR amendment effectively decreased the proportion of glyphosate desorbed. Fractionation analyses further demonstrated that glyphosate adsorbed to non-amended soils was primarily retained in the readily labile fraction (NaHCO3-glyphosate). The WTR amendment significantly increased the relative proportion of the moderately labile fraction (HCl-glyphosate) and concomitantly reduced that of the NaHCO3-glyphosate, hence reducing the potential for the release of soil-adsorbed glyphosate into the aqueous phase. Furthermore, Fe/Al WTR amendment minimized the inhibitory effect of increasing solution pH on glyphosate sorption by soils and mitigated the effects of increasing solution ionic strength. The present results indicate that Fe/Al WTR is suitable for use as a soil amendment to prevent glyphosate pollution of aquatic ecosystems by enhancing the glyphosate retention capacity in soils. Copyright © 2015. Published by Elsevier B.V.

  9. Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models

    Directory of Open Access Journals (Sweden)

    A. F. Bouwman


    Full Text Available In river basins, soils, groundwater, riparian zones and floodplains, streams, rivers, lakes and reservoirs act as successive filters in which the hydrology, ecology and biogeochemical processing are strongly coupled and together act to retain a significant fraction of the nutrients transported. This paper compares existing river ecology concepts with current approaches to describe river biogeochemistry, and assesses the value of these concepts and approaches for understanding the impacts of interacting global change disturbances on river biogeochemistry. Through merging perspectives, concepts, and modeling techniques, we propose integrated model approaches that encompass both aquatic and terrestrial components in heterogeneous landscapes. In this model framework, existing ecological and biogeochemical concepts are extended with a balanced approach for assessing nutrient and sediment delivery, on the one hand, and nutrient in-stream retention on the other hand.


    Directory of Open Access Journals (Sweden)



    Full Text Available The Critical Heat Flux (CHF of water with dispersed alumina nanoparticles was measured for the geometry and flow conditions relevant to the In-Vessel Retention (IVR situation which can occur during core melting sequences in certain advanced Light Water Reactors (LWRs. CHF measurements were conducted in a flow boiling loop featuring a test section designed to be thermal-hydraulically similar to the vessel/insulation gap in the Westinghouse AP1000 plant. The effects of orientation angle, pressure, mass flux, fluid type, boiling time, surface material, and surface state were investigated. Results for water-based nanofluids with alumina nanoparticles (0.001% by volume on stainless steel surface indicate an average 70% CHF enhancement with a range of 17% to 108% depending on the specific flow conditions expected for IVR. Experiments also indicate that only about thirty minutes of boiling time (which drives nanoparticle deposition are needed to obtain substantial CHF enhancement with nanofluids.

  11. Waste water phytodepuration, macrophytes and microphytes nutrient retention; Rassegna di tecniche relative alla depurazione naturale delle acque. Utilizzo di macrofite e microfite nei sistemi di depurazione

    Energy Technology Data Exchange (ETDEWEB)

    Morgana, Jose` Giancarlo; Corazzi, Giulio; Lestini, Marco; Naviglio, Lucia [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente


    The traditional systems of water depuration are often responsible of undesirable ecological problems. In fact, the oxidation of pollutants due to standard sewage treatments may induce the overproduction of nutrients. Therefore the wastewater effluents may cause the eutrofication of receiving water bodies. To avoid aftereffects on life conditions of aquatic organisms, nutrient retention based on microphytes and macrophytes abilities is often utilized after traditional sewage treatments. As a matter of fact, in many countries the phytodepuration basins or artificial wetlands have been designed to receive primary and/or secondary wastewater effluents or are used directly for depuration of wastewater of small towns and/or effluents of small industries. In this report they take into account the main biological features of the common techniques of natural water depuration.

  12. Water quality modelling of Jadro spring. (United States)

    Margeta, J; Fistanic, I


    Management of water quality in karst is a specific problem. Water generally moves very fast by infiltration processes but far more by concentrated flows through fissures and openings in karst. This enables the entire surface pollution to be transferred fast and without filtration into groundwater springs. A typical example is the Jadro spring. Changes in water quality at the spring are sudden, but short. Turbidity as a major water quality problem for the karst springs regularly exceeds allowable standards. Former practice in problem solving has been reduced to intensive water disinfection in periods of great turbidity without analyses of disinfection by-products risks for water users. The main prerequisite for water quality control and an optimization of water disinfection is the knowledge of raw water quality and nature of occurrence. The analysis of monitoring data and their functional relationship with hydrological parameters enables establishment of a stochastic model that will help obtain better information on turbidity in different periods of the year. Using the model a great number of average monthly and extreme daily values are generated. By statistical analyses of these data possibility of occurrence of high turbidity in certain months is obtained. This information can be used for designing expert system for water quality management of karst springs. Thus, the time series model becomes a valuable tool in management of drinking water quality of the Jadro spring.

  13. Analysis of the retention of water vapor on silica gel; Analisis de la retencion del vapor de agua en silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, M.; Pinilla, J. L.; Alegria, N.; Idoeta, R.; Legarda, F.


    Among the various sampling systems tritium content in the atmosphere as water vapor, one of the most basic and, therefore, of widespread use in the environmental field, is the retention on silica gel. However, the behavior of the collection efficiency of silica gel under varying conditions of air temperature and relative humidity makes it difficult to define the amount of this necessary for proper completion of sampling, especially in situations of prolonged sampling. This paper presents partial results obtained in a study on the analysis of these efficiencies under normal conditions of sampling. (Author)

  14. A system model for water management. (United States)

    Schenk, Colin; Roquier, Bastien; Soutter, Marc; Mermoud, André


    Although generally accepted as a necessary step to improve water management and planning, integrated water resources management (IWRM) methodology does not provide a clear definition of what should be integrated. The various water-related issues that IWRM might encompass are well documented in the literature, but they are generally addressed separately. Therefore, water management lacks a holistic, systems-based description, with a special emphasis on the interrelations between issues. This article presents such a system model for water management, including a graphical representation and textual descriptions of the various water issues, their components, and their interactions. This model is seen as an aide-memoire and a generic reference, providing background knowledge helping to elicit actual system definitions, in possible combination with other participatory systems approaches. The applicability of the model is demonstrated through its application to two test case studies.

  15. Surface heterogeneity on hemispheres-in-cell model yields all experimentally-observed non-straining colloid retention mechanisms in porous media in the presence of energy barriers. (United States)

    Ma, Huilian; Pazmino, Eddy; Johnson, William P


    Many mechanisms of colloid retention in porous media under unfavorable conditions have been identified from experiments or theory, such as attachment at surface heterogeneities, wedging at grain to grain contacts, retention via secondary energy minimum association in zones of low flow drag, and straining in pore throats too small to pass. However, no previously published model is capable of representing all of these mechanisms of colloid retention. In this work, we demonstrate that incorporation of surface heterogeneity into our hemispheres-in-cell model yields all experimentally observed non-straining retention mechanisms in porous media under unfavorable conditions. We also demonstrate that the predominance of any given retention mechanism depends on the coupled colloid-collector-flow interactions that are governed by parameters such as the size and spatial frequency of heterogeneous attractive domains, colloid size, and solution ionic strength. The force/torque balance-simulated retention is shown to decrease gradually with decreasing solution ionic strength, in agreement with experimental observations. This gradual decrease stands in sharp contrast to predictions from mean field theory that does not account for discrete surface heterogeneity. © 2011 American Chemical Society

  16. Experimental designs for modeling retention patterns and separation efficiency in analysis of fatty acid methyl esters by gas chromatography-mass spectrometry. (United States)

    Skartland, Liv Kjersti; Mjøs, Svein A; Grung, Bjørn


    The retention behavior of components analyzed by chromatography varies with instrumental settings. Being able to predict how changes in these settings alter the elution pattern is useful, both with regards to component identification, as well as with regards to optimization of the chromatographic system. In this work, it is shown how experimental designs can be used for this purpose. Different experimental designs for response surface modeling of the separation of fatty acid methyl esters (FAME) as function of chromatographic conditions in GC have been evaluated. Full factorial, central composite, Doehlert and Box-Behnken designs were applied. A mixture of 38 FAMEs was separated on a polar cyanopropyl substituted polysilphenylene-siloxane phase capillary column. The temperature gradient, the start temperature of the gradient, and the carrier gas velocity were varied in the experiments. The modeled responses, as functions of chromatographic conditions, were retention time, retention indices, peak widths, separation efficiency and resolution between selected peak pairs. The designs that allowed inclusion of quadratic terms among the predictors performed significantly better than factorial design. Box-Behnken design provided the best results for prediction of retention, but the differences between the central composite, Doehlert and Box-Behnken designs were small. Retention indices could be modeled with much better accuracy than retention times. However, because the errors of predicted tR of closely eluting peaks were highly correlated, models of resolution (Rs) that were based on retention time had errors in the same range as corresponding models based on ECL. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Modeling of fuel retention in the pre-damaged tungsten with MeV W ions after exposure to D plasma

    Directory of Open Access Journals (Sweden)

    Zhenhou Wang


    Full Text Available Modeling of high-Z ion irradiated-induced damages on fuel retention inside tungsten (W material has been performed in this work. The upgraded Hydrogen Isotope Inventory Processes Code (HIIPC is applied to model the deuterium (D retention inside pre-damaged W during exposed to low-energy D flux, and the W is pre-irradiated by 20 MeV W-ion before exposed to D flux. Three types of trap, i.e. mono-vacancies, dislocations and grain boundary vacancies, are considered in the present model. The mono-vacancy defects induced by energetic W ions are calculated by SRIM code. First, the model is validated against the available experimental data under the same D flux exposure conditions, showing the reasonable agreement. Then, the effect of radiation-induced defects produced by pre-exposed energetic W-ion with different energy and fluence on the fuel retention are studied, confirming that the irradiation-induced traps play a dominated role on the fuel retention in the surface of the material (∼ micrometer. Finally, the effects of different type of defect, D fluence, and wall temperature on the fuel retention are discussed systemically, and these modeling results are in well agreement with the previous studies.

  18. Storm Water Management Model Reference Manual Volume ... (United States)

    SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and generate runoff and pollutant loads. The routing portion of SWMM transports this runoff through a system of pipes, channels, storage/treatment devices, pumps, and regulators. SWMM tracks the quantity and quality of runoff generated within each subcatchment, and the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period comprised of multiple time steps. The reference manual for this edition of SWMM is comprised of three volumes. Volume I describes SWMM’s hydrologic models, Volume II its hydraulic models, and Volume III its water quality and low impact development models. Reference manual presenting underlying mathematics of the Storm Water Management Model - Volume III Water Quality Modules

  19. Observation and modelling of natural retention structures in the English Channel


    MENESGUEN Alain; Gohin, Francis


    Accumulation of heat, or dissolved substances (nutrients, pollutants, etc.), or fine suspended particles in a water body is a key process in the functioning of aquatic ecosystems and their resistance to perturbations. In complex and wide open environments such as marine ecosystems, net accumulation is not only linked to the local renewal capacity of the water body, but also to the partial recirculation of water due to convective cells of various sizes. The English Channel, which can be consid...

  20. Apparent paradox of neurohumoral axis inhibition after body fluid volume depletion in patients with chronic congestive heart failure and water retention. (United States)

    Guazzi, M D; Agostoni, P; Perego, B; Lauri, G; Salvioni, A; Giraldi, F; Matturri, M; Guazzi, M; Marenzi, G


    BACKGROUND--Hypovolaemia stimulates the sympathoadrenal and renin systems and water retention. It has been proposed that in congestive heart failure reduction of cardiac output and any associated decrease in blood pressure cause underfilling of the arterial compartment, which promotes and perpetuates neurohumoral activation and the retention of fluid. This study examined whether an intravascular volume deficit accounts for patterns that largely exceed the limits of a homoeostatic response, which are sometimes seen in advanced congestive heart failure. METHODS AND RESULTS--In 22 patients with congestive heart failure and water retention the body fluid mass was reduced by ultrafiltration and the neurohumoral reaction was monitored. A Diafilter, which was part of an external venous circuit was regulated to produce 500 ml/hour of ultrafiltrate (mean (SD) 3122 (1199) ml) until right atrial pressure was reduced to 50% of baseline. Haemodynamic variables, plasma renin activity, noradrenaline, and aldosterone were measured before and within 48 hours of ultrafiltration. After ultrafiltration, which produced a 20% reduction of plasma volume and a moderate decrease in cardiac output and blood pressure (consistent with a diminished degree of filling of the arterial compartment), there was an obvious decrease in noradrenaline, plasma renin activity, and aldosterone. In the next 48 hours plasma volume, cardiac output, and blood pressure recovered; the neurohumoral axis was depressed; and there was a striking enhancement of water and sodium excretion with resolution of the peripheral oedema and organ congestion. The neurohumoral changes and haemodynamic changes were not related. There were significant correlations between the neurohumoral changes and increase in urinary output and sodium excretion. CONCLUSIONS--In advanced congestive heart failure arterial underfilling was not the main mechanism for activating the neurohumoral axis and retaining fluid. Because a decrease in

  1. The Coppin Academy for Pre-Nursing Success: a model for the recruitment and retention of minority students. (United States)

    Gordon, Frances C; Copes, Marcella A


    There is a clearly documented need for greater minority representation in professional nursing as the nation grows more diversified. Increasing the ranks of minority nurses will assist both in alleviating the nursing shortage and in addressing the health care disparities that plague our healthcare systems. One barrier has been the recruitment and retention of underserved minority nursing students. To address this, the Coppin State University Helene Fuld School of Nursing (HFSON) in Baltimore, Maryland developed and implemented the "Coppin Academy for Pre-Nursing Success" (CAPS), a comprehensive year-round pre-entry baccalaureate preparation program, targeting high school students from disadvantaged backgrounds who are interested in a nursing career. CAPS graduates have met or exceeded goals in retention, passing rate on the nursing licensure exam, and service to the community. As a result, the program is growing, and the School plans to replicate the CAPS model, not only in surrounding communities, but in other vulnerable and under-served urban settings in the nation.


    Directory of Open Access Journals (Sweden)

    Wojciech Orzepowski


    Full Text Available The paper presents a characterisation of water relations and an estimation of the variability pertaining to soil water retention resources in the selected area of the Szczytnicki Park in Wrocław. The estimation was performed on the basis of the measurements of soil moisture performed in the years 2015 and 2016, and the results of monitoring and research conducted in an earlier period. The detailed study was conducted on a fragment of the park with the surface area of about 8.6 ha, situated north of the Japanese Garden, between the Mickiewicza and Kopernika streets. Soil moisture measurements were conducted with the TDR method, at 27 points, within the soil layers of 0-25 cm and 25-50 cm. On the basis of the analysis of spatial distribution of soil moisture it was observed that considerable and long-lasting moisture deficits of the active layer of the soil have occurred during the period under study. Moisture levels below the permanent wilting point (PWP, pF = 4.2 were noted on approximately 36% of the study area, in the layer of 25-50 cm. The reservoir with an area of 1.1 ha, situated centrally in the study area, did not cause any improvement of soil-ground water retention during the period of the study. That was due to the periodic lack of supply of the water system of the park from the intake of Oder river in which the water level decreased as a result of a drought.

  3. Modelling stable water isotopes: Status and perspectives

    Directory of Open Access Journals (Sweden)

    Werner M.


    Full Text Available Modelling of stable water isotopes H2 18O and HDO within various parts of the Earth’s hydrological cycle has clearly improved our understanding of the interplay between climatic variations and related isotope fractionation processes. In this article key principles and major research results of stable water isotope modelling studies are described. Emphasis is put on research work using explicit isotope diagnostics within general circulation models as this highly complex model setup bears many resemblances with studies using simpler isotope modelling approaches.

  4. A combined theoretical and in vitro modeling approach for predicting the magnetic capture and retention of magnetic nanoparticles in vivo (United States)

    David, Allan E.; Cole, Adam J.; Chertok, Beata; Park, Yoon Shin; Yang, Victor C.


    Magnetic nanoparticles (MNP) continue to draw considerable attention as potential diagnostic and therapeutic tools in the fight against cancer. Although many interacting forces present themselves during magnetic targeting of MNP to tumors, most theoretical considerations of this process ignore all except for the magnetic and drag forces. Our validation of a simple in vitro model against in vivo data, and subsequent reproduction of the in vitro results with a theoretical model indicated that these two forces do indeed dominate the magnetic capture of MNP. However, because nanoparticles can be subject to aggregation, and large MNP experience an increased magnetic force, the effects of surface forces on MNP stability cannot be ignored. We accounted for the aggregating surface forces simply by measuring the size of MNP retained from flow by magnetic fields, and utilized this size in the mathematical model. This presumably accounted for all particle-particle interactions, including those between magnetic dipoles. Thus, our “corrected” mathematical model provided a reasonable estimate of not only fractional MNP retention, but also predicted the regions of accumulation in a simulated capillary. Furthermore, the model was also utilized to calculate the effects of MNP size and spatial location, relative to the magnet, on targeting of MNPs to tumors. This combination of an in vitro model with a theoretical model could potentially assist with parametric evaluations of magnetic targeting, and enable rapid enhancement and optimization of magnetic targeting methodologies. PMID:21295085

  5. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  6. Enhancing water retention and low-humidity proton conductivity of sulfonated poly(ether ether ketone) composite membrane enabled by the polymer-microcapsules with controllable hydrophilicity-hydrophobicity (United States)

    He, Guangwei; Li, Yifan; Li, Zongyu; Nie, Lingli; Wu, Hong; Yang, Xinlin; Zhao, Yuning; Jiang, Zhongyi


    Four kinds of polymer microcapsules (PMCs) with different hydrophilicity-hydrophobicity are synthesized via distillation-precipitation polymerization (polymer microcapsules form by self-crosslinking of monomers/crosslinkers in this process) and incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare composite membranes. To improve the water retention of the PMCs, the hydrophilicity-hydrophobicity of the PMCs is manipulated by regulating the proportion of hydrophilic ethylene glycol dimethacrylate (EGDMA) and hydrophobic divinylbenzene (DVB) crosslinkers in the synthesis formula. The hydrophilicity of the PMCs decreases with increasing the content of polyDVB in the PMCs. The four kinds of PMCs exhibit different water retention properties. The PMCs with appropriate hydrophilic/hydrophobic balance (EGDMA: DVB = 1:1) possess the best water retention properties. Incorporation of PMCs into SPEEK matrix enhances the water-retention properties, and consequently increases proton conductivity to 0.0132 S cm-1 under 20% relative humidity, about thirteen times higher than that of the SPEEK control membrane. Moreover, the incorporation of PMCs reduces the activation energy for proton conduction and the methanol permeability of the membranes. This study may be helpful to rational design of excellent water-retention materials.

  7. Development of Ensemble Model Based Water Demand Forecasting Model (United States)

    Kwon, Hyun-Han; So, Byung-Jin; Kim, Seong-Hyeon; Kim, Byung-Seop


    In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and optimal pump operation and this has led to various studies regarding energy saving and improvement of water supply reliability. Existing water demand forecasting models are categorized into two groups in view of modeling and predicting their behavior in time series. One is to consider embedded patterns such as seasonality, periodicity and trends, and the other one is an autoregressive model that is using short memory Markovian processes (Emmanuel et al., 2012). The main disadvantage of the abovementioned model is that there is a limit to predictability of water demands of about sub-daily scale because the system is nonlinear. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The proposed model is consist of two parts. One is a multi-model scheme that is based on combination of independent prediction model. The other one is a cross validation scheme named Bagging approach introduced by Brieman (1996) to derive weighting factors corresponding to individual models. Individual forecasting models that used in this study are linear regression analysis model, polynomial regression, multivariate adaptive regression splines(MARS), SVM(support vector machine). The concepts are demonstrated through application to observed from water plant at several locations in the South Korea. Keywords: water demand, non-linear model, the ensemble forecasting model, uncertainty. Acknowledgements This subject is supported by Korea Ministry of Environment as "Projects for Developing Eco-Innovation Technologies (GT-11-G-02-001-6)

  8. Developing Successful Retention Programs: An Interview with Michael Hovland. (United States)

    Kluepfel, Gail A.; Hovland, Michael


    Michael Hovland, the senior consultant at Noel-Levitz Centers, responds to questions about summer bridge programs, first-year seminar programs, Rutgers' retention model, faculty reactions to retention programs, the impact of retention programs on institutional mission, administrative involvement in retention, student assessment, retention efforts…

  9. Incorporation of salinity in Water Availability Modeling (United States)

    Wurbs, Ralph A.; Lee, Chihun


    SummaryNatural salt pollution from geologic formations in the upper watersheds of several large river basins in the Southwestern United States severely constrains the use of otherwise available major water supply sources. The Water Rights Analysis Package modeling system has been routinely applied in Texas since the late 1990s in regional and statewide planning studies and administration of the state's water rights permit system, but without consideration of water quality. The modeling system was recently expanded to incorporate salinity considerations in assessments of river/reservoir system capabilities for supplying water for environmental, municipal, agricultural, and industrial needs. Salinity loads and concentrations are tracked through systems of river reaches and reservoirs to develop concentration frequency statistics that augment flow frequency and water supply reliability metrics at pertinent locations for alternative water management strategies. Flexible generalized capabilities are developed for using limited observed salinity data to model highly variable concentrations imposed upon complex river regulation infrastructure and institutional water allocation/management practices.

  10. Development of an ex vivo retention model simulating bioadhesion in the oral cavity using human saliva and physiologically relevant irrigation media. (United States)

    Madsen, Katrine D; Sander, Camilla; Baldursdottir, Stefania; Pedersen, Anne Marie L; Jacobsen, Jette


    In recent years, there has been a particular interest in bioadhesive formulations for oromucosal drug delivery as this may promote prolonged local therapy and enhanced systemic effect. Saliva plays a vital role in oromucosal drug absorption by dissolving the drug and presenting it to the mucosal surface. However, the rheological, chemical, and interfacial properties of this complex biological fluid may strongly affect the adhesion of bioadhesive formulations. There is a need for well characterized in vitro models to assess the bioadhesive properties of oral dosage forms for administration in the oral cavity. Thus we aimed at developing an advanced ex vivo buccal retention model, with focus on choosing a physiologically relevant irrigation media closely resembling human saliva. Spray dried chitosan microparticles containing metformin hydrochloride as an example of a small hydrophilic drug, were employed as bioadhesive formulations. Chewing-stimulated human whole saliva was collected and characterized for use in retention studies in comparison with four artificial irrigation media; phosphate buffer, Saliva Orthana(®), porcine gastric mucin base media (PGM3), and xanthan gum based media (XG2). Retention of metformin, applied as spray dried microparticles on porcine buccal mucosa, greatly depended on the characteristics of the irrigation media. When rheology of the irrigation media was examined, changes in retention profiles could be interpreted, as irrigation media containing mucin and xanthan gum possessed a higher viscosity than phosphate buffer, which led to longer retention of the drug due to better hydration of the mucosa and the spray dried microparticles. Metformin retention profiles were comparable when human saliva, Saliva Orthana(®), or PGM3 were used as irrigation media. Moreover, PGM3 displayed physico-chemical properties closest to those of human saliva with regard to pH, protein content and surface tension. Saliva Orthana(®) and PGM3 are therefore

  11. Increasing Army Retention Through Incentives

    National Research Council Canada - National Science Library

    Beerman, Kevin


    .... This study examines current retention issues and the Army Incentive Model. The model appears to offer a range of benefits that may retain a segment of what demographers have labeled as the Millennium Generation...

  12. Effects of dietary electrolyte balance and addition of electrolyte-betaine supplements in feed or water on performance, acid-base balance and water retention in heat-stressed broilers. (United States)

    Sayed, M A M; Downing, J


    The effects of dietary electrolyte balance (DEB) and electrolyte-betaine (El-Be) supplements on heat-stressed broiler performance, acid-base balance and water retention were evaluated during the period 31-40 d of age in a 2 × 3 factorial arrangement of treatments. A total of 240 broilers were assigned to 6 treatment groups each with 8 replicates of 5 birds per cage and were exposed to cyclic high temperature (32 - 24 ± 1°C). Birds were provided with diets having DEB of either 180 or 220 mEq/kg. El-Be supplements were either added to the diet, water or not added to either of them to complete the array of 6 treatment groups. An additional 80 birds were kept at thermoneutral temperature (20 ± 1°C) and were provided with tap water and diets with DEB of either 180 or 220 mEq/kg to serve as negative controls. Exposure to high temperature depressed growth performance, increased rectal temperature and decreased potassium (K(+)) retention. In high-temperature room, birds fed on diets with DEB of 220 mEq/kg tended to increase BW from 35-40 d of age. However, at thermoneutral temperature, broilers fed on diets with DEB of 220 mEq/kg increased K(+) retention. Adding El-Be supplements in feed or water improved feed conversion ratio (FCR), enhanced water consumption and increased K(+) and sodium (Na(+)) retention. Interactions between DEB and El-Be supplements tended to affect body weight gain and FCR during the periods 35-40 and 31-40 d of age, respectively. It is suggested that when using a diet with DEB of 180 mEq/kg, adding the El-Be supplements in drinking water was more beneficial than in feed. Adding the supplements in feed or water was equally useful when using DEB of 220 mEq/kg.

  13. Employment Retention Policy


    Fox, E; Stafford, B.


    This Report investigates the potential for a statutory model of employment retention leave. A Private Members Bill (HC Bill 2006-07) [79] currently in progress through Parliament would, if enacted, offer disabled employees the right to paid leave for employment assessment, rehabilitation or re-training.

  14. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla; Letschert, Virginie; della_Cava, Mirka


    The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0 of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of water the

  15. Modeling climate change impacts on water trading. (United States)

    Luo, Bin; Maqsood, Imran; Gong, Yazhen


    This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program. (c) 2010 Elsevier B.V. All rights reserved.

  16. Robustness of river basin water quality models

    NARCIS (Netherlands)

    de Blois, Chris; Wind, H.G.; de Kok, Jean-Luc; Koppeschaar, K.


    In this paper the concept of robustness is introduced and applied to a model for the analysis of the impacts of spatially distributed policy measures on the surface water quality on a river basin scale. In this model the influence of precipitation on emissions and resuspension of pollutants in the

  17. New challenges in integrated water quality modelling

    NARCIS (Netherlands)

    Rode, M.; Arhonditsis, G.; Balin, D.; Kebede, T.; Krysanova, V.; Griensven, A.; Zee, van der S.E.A.T.M.


    There is an increasing pressure for development of integrated water quality models that effectively couple catchment and in-stream biogeochemical processes. This need stems from increasing legislative requirements and emerging demands related to contemporary climate and land use changes. Modelling

  18. Modeling terahertz heating effects on water

    DEFF Research Database (Denmark)

    Kristensen, Torben T.L.; Withayachumnankul, Withawat; Jepsen, Peter Uhd


    We apply Kirchhoff’s heat equation to model the influence of a CW terahertz beam on a sample of water, which is assumed to be static. We develop a generalized model, which easily can be applied to other liquids and solids by changing the material constants. If the terahertz light source is focused...

  19. Storm Water Management Model Applications Manual (United States)

    The EPA Storm Water Management Model (SWMM) is a dynamic rainfall-runoff simulation model that computes runoff quantity and quality from primarily urban areas. This manual is a practical application guide for new SWMM users who have already had some previous training in hydrolog...

  20. Modelling water uptake efficiency of root systems (United States)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea


    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  1. Modeling the Transport Success and Retention of Anchovy (Engraulis anchoita) Early Stages in the Southern Brazilian Shelf (United States)

    Vaz, A.; Parada, C.; Palma, E. D.; Muelbert, J. H.; Campos, E. D.


    The Southern Brazilian Shelf (SBS) is one of the most productive fishing areas in the Southwestern Atlantic. Eggs and larvae of about 88 fish species distributed among 48 families occur in the plankton community in this area. The processes involving the circulation in this area and its influence on eggs/larvae transport are poorly understood. Recent studies described the spawning activity of anchovy relating it to oceanographic processes. These studies suggest that the predominant onshore Ekman transport, which occurs mainly in the winter and spring periods, keeps the eggs and larvae in coastal areas. It is also known that the continental runoff is a primary factor to the formation of a retention zone for planktonic organisms over the SBS. The formation of a stagnant zone, where the residual currents are weak, favors the patchiness character of plankton communities and nutrients. In our ongoing study we investigate with data and model the dispersion pattern of eggs/larvae of Engraulis anchoita in this region, considering both biological and physical processes. In the modelling approach, surface velocity fields from runs with the Princeton Ocean Model (POM) are used as input data for an Individual Based Model (IBM). This IBM treats every single particle as an individual with its own features, tracking particles (eggs/larvae) trajectories using a Runge-Kutta scheme for spatial interpolation. The analyses of our preliminary results seems to confirm the expected pattern in which the majority of eggs and larvae are transported to their nursery grounds, remaining in these areas.

  2. Expert modeling, expert/self-modeling versus lecture: a comparison of learning, retention, and transfer of rescue skills in health professions students. (United States)

    Kardong-Edgren, Suzan; Butt, Ann; Macy, Rosemary; Harding, Sarah; Roberts, Caleb J; McPherson, Sterling; Waddell, Alexandra; Erickson, Amanda


    It is unclear whether traditional lecture followed by simulation leads to the best learning and knowledge and skill retention over time. A 3×4 mixed design study used three modes of education-traditional lecture with self-guided learning, expert modeling/dual viewing with brief questioning, and expert plus self-modeling-at four time points to compare knowledge, time to treat, and correct steps over time. No significant differences were found in knowledge or time to treat between training methods. An expert modeling/ dual viewing group with brief questioning performed more steps correctly (p = 0.05) than did the other two groups. Expert modeling may help students remember and perform a complex series of tasks in a scenario. Further research is needed to explore expert modeling for novice learners. Copyright 2015, SLACK Incorporated.

  3. Fullerene Nanoparticles Exhibit Greater Retention in Freshwater Sediment than in Model Porous Media (United States)

    Increasing production and use of fullerene-based nanomaterials underscore the need to determine their mobility in environmental transport pathways and potential ecological exposures. This study investigated the transport of two fullerenes (i.e., aqu/C(60) and water-soluble C(60) ...

  4. Firn Meltwater Retention on the Greenland Ice Sheet: A Model Comparison

    NARCIS (Netherlands)

    Steger, C.R.; Reijmer, C.H.; van den Broeke, MR; Wever, N.; Forster, R.R.; Koenig, L.S.; Kuipers Munneke, P.; Lehning, M.; Lhermitte, S.L.M.; Ligtenberg, SRM; Miège, C.; Noël, Brice


    Runoff has recently become the main source of mass loss from the Greenland Ice Sheet and is an important contributor to global sea level rise. Linking runoff to surface meltwater production is complex, as meltwater can be retained within the firn by refreezing or perennial liquid water storage. To

  5. Firn meltwater retention on the Greenland Ice Sheet: a model comparison

    NARCIS (Netherlands)

    Steger, C.R.|info:eu-repo/dai/nl/374628769; Reijmer, C.H.|info:eu-repo/dai/nl/229345956; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643; Wever, N.; Forster, R.R.; Koenig, Lora S.; Kuipers Munneke, P.|info:eu-repo/dai/nl/304831891; Lehning, M.; Lhermitte, S.; Ligtenberg, S.R.M.|info:eu-repo/dai/nl/32821177X; Miege, Clement; Noël, B.P.Y.|info:eu-repo/dai/nl/370612345


    Runoff has recently become the main source of mass loss from the Greenland Ice Sheet and is an important contributor to global sea level rise. Linking runoff to surface meltwater production is complex, as meltwater can be retained within the firn by refreezing or perennial liquid water storage. To

  6. A comparison of modelling and imagery in the acquisition and retention of motor skills. (United States)

    Ram, Nilam; Riggs, S M; Skaling, S; Landers, D M; McCullagh, P


    Although many researchers have examined the effects of imagery and/or modelling interventions, it is unclear which of the two interventions is more effective. In two experiments, novice learners assessed over multiple trials of a free weight squat lifting or a stabilometer balancing task were given modelling, imagery, a combination of modelling and imagery, or control interventions. Group differences indicated, in general, that groups receiving modelling (modelling, combination) evidenced a more appropriate form than groups that did not receive modelling (imagery, control). When apparent, these differences were already in place after the first of several interventions. Practical implications are that even a single bout of modelling can have immediate beneficial effects on movement form (Experiments 1 and 2) and outcome (Experiment 1).

  7. The Community Water Model (CWATM) / Development of a community driven global water model (United States)

    Burek, Peter; Satoh, Yusuke; Greve, Peter; Kahil, Taher; Wada, Yoshihide


    With a growing population and economic development, it is expected that water demands will increase significantly in the future, especially in developing regions. At the same time, climate change is expected to alter spatial patterns of hydrological cycle and will have global, regional and local impacts on water availability. Thus, it is important to assess water supply, water demand and environmental needs over time to identify the populations and locations that will be most affected by these changes linked to water scarcity, droughts and floods. The Community Water Model (CWATM) will be designed for this purpose in that it includes an accounting of how future water demands will evolve in response to socioeconomic change and how water availability will change in response to climate. CWATM represents one of the new key elements of IIASA's Water program. It has been developed to work flexibly at both global and regional level at different spatial resolutions. The model is open source and community-driven to promote our work amongst the wider water community worldwide and is flexible enough linking to further planned developments such as water quality and hydro-economic modules. CWATM will be a basis to develop a next-generation global hydro-economic modeling framework that represents the economic trade-offs among different water management options over a basin looking at water supply infrastructure and demand managements. The integrated modeling framework will consider water demand from agriculture, domestic, energy, industry and environment, investment needs to alleviate future water scarcity, and will provide a portfolio of economically optimal solutions for achieving future water management options under the Sustainable Development Goals (SDG) for example. In addition, it will be able to track the energy requirements associated with the water supply system e.g., pumping, desalination and interbasin transfer to realize the linkage with the water-energy economy. In

  8. An Intervention-Based Model of Student Retention in Adult Learners: Factors Predicting Intention to Consider Leaving or Staying (United States)

    Mooshegian, Stephanie E.


    The current study merges theory and research in higher education and organizational psychology in order to investigate student retention in adult learners. Factors that are associated with student retention were examined and points of intervention are recommended. Specifically, this study focuses on the role of campus environment, classroom…

  9. Dual integral porosity shallow water model for urban flood modelling (United States)

    Guinot, Vincent; Sanders, Brett F.; Schubert, Jochen E.


    With CPU times 2 to 3 orders of magnitude smaller than classical shallow water-based models, the shallow water equations with porosity are a promising tool for large-scale modelling of urban floods. In this paper, a new model formulation called the Dual Integral Porosity (DIP) model is presented and examined analytically and computationally with a series of benchmark tests. The DIP model is established from an integral mass and momentum balance whereby both porosity and flow variables are defined separately for control volumes and boundaries, and a closure scheme is introduced to link control volume- and boundary-based flow variables. Previously developed Integral Porosity (IP) models were limited to a single set of flow variables. A new transient momentum dissipation model is also introduced to account for the effects of sub-grid scale wave action on porosity model solutions, effects which are validated by fine-grid solutions of the classical shallow-water equations and shown to be important for achieving similarity in dam-break solutions. One-dimensional numerical test cases show that the proposed DIP model outperforms the IP model, with significantly improved wave propagation speeds, water depths and discharge calculations. A two-dimensional field scale test case shows that the DIP model performs better than the IP model in mapping the floods extent and is slightly better in reproducing the anisotropy of the flow field when momentum dissipation parameters are calibrated.

  10. Modeling of the Global Water Cycle - Analytical Models (United States)

    Yongqiang Liu; Roni Avissar


    Both numerical and analytical models of coupled atmosphere and its underlying ground components (land, ocean, ice) are useful tools for modeling the global and regional water cycle. Unlike complex three-dimensional climate models, which need very large computing resources and involve a large number of complicated interactions often difficult to interpret, analytical...

  11. Applying the WEAP Model to Water Resource

    DEFF Research Database (Denmark)

    Gao, Jingjing; Christensen, Per; Li, Wei

    in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like irrigation...... thus providing a good basis for an SEA that can support the choice among different alternative scenarios and contribute to adjusting and optimizing the original plan....

  12. Urban Runoff and Water Quality Models

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Tae [Kyonggi University, Suwon (Korea)


    The characteristics of storm and water quality are investigated based on the measuring data of the test river, the Hongje. The water quality of the test river is generally good comparing to other urban rivers in Seoul, because of the interception of sewer flow. But this system makes the river dry up for 3-4 months in winter. On the other hand, in rainy period the storm from the combined sewer system causes rapid increasing pollutants loads. In order to simulate the urban storm and water quality of the test basin, the models such as SWMM, ILLUDAS, STORM, HEC-1 were applied and the results are compared in its applicability and accuracy aspects. All models discussed here have shown good results and it seems that SWMM is the most effective model in simulating both quantity and quality. Also, regression relations between the water quantity and quality were derived and their applicabilities were discussed. This regression model is a simple effective tool for estimating the pollutant loads in the rainy period, but if the amount of discharge is bigger than measuring range of raw data, the accuracy becomes poor. This model could be supplemented by expanding the range of collecting data and introducing the river characteristics. The HEC-1 would be another effective model to simulate storm runoff of a river basin including urban area. (author). 15 refs., 13 tabs., 13 figs.

  13. Modelling batch microwave heating of water (United States)

    Yeong, S. P.; Law, M. C.; Lee, C. C. Vincent; Chan, Y. S.


    A numerical model of the microwave heating of distilled water is developed using COMSOL Multiphysics software to investigate the microwave effects on the heating rate. Three frequencies (0.915GHz, 2GHz and 2.45 GHz) have been applied in the model in order to study their influences on the water temperature. It is found that the water heats up at 2GHz and 2.45GHz, however, there is no sign of heating at 915MHz. This is supported with the figures of the electric field distribution in the microwave cavity. The results shown in the developed model is validated with the experimental results obtained at 2.45 GHz.

  14. Retention of Microcystis aeruginosa and microcystin by salad lettuce (Lactuca sativa) after spray irrigation with water containing cyanobacteria. (United States)

    Codd, G A; Metcalf, J S; Beattie, K A


    Colonies and single cells of Microcystis aeruginosa and the hepatotoxin microcystin were retained by salad lettuce after growth with spray irrigation water containing the microcystin-producing cyanobacteria. These findings are discussed in terms of crop spray irrigation with water containing cyanobacteria and potential human exposure to cyanobacterial toxins via plant foods grown in such circumstances.

  15. Klang River water quality modelling using music (United States)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply


    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  16. Interactive Water Resources Modeling and Model Use: An Overview (United States)

    Loucks, Daniel P.; Kindler, Janusz; Fedra, Kurt


    This serves as an introduction for the following sequence of five papers on interactive water resources and environmental management, policy modeling, and model use. We review some important shortcomings of many management and policy models and argue for improved human-computer-model interaction and communication. This interaction can lead to more effective model use which in turn should facilitate the exploration, analysis, and synthesis of alternative designs, plans, and policies by those directly involved in the planning, management, or policy making process. Potential advantages of interactive modeling and model use, as well as some problems and research needs, are discussed.

  17. Development of predictive quantitative retention-activity relationship models of HMG-CoA reductase inhibitors by biopartitioning micellar chromatography. (United States)

    Wang, Shu-Rong; Chen, Yu; Wu, Li-Ping; Miao, Wen-Juan; Xiong, Mei-Jin; Chen, Cong; Zhong, Zhi-Rong; Ye, Li-Ming


    Biological fluid cell membranes are barriers for the uptake of many kinds of drugs and their metabolites, along with passive transport across membranes and bioaccumulation. Biopartitioning micellar chromatography (BMC) is a mode of micellar liquid chromatography that uses micellar mobile phases of Brij35 under adequate experimental conditions and can be useful to simulate the drug's passive absorption and the transport in biological systems. The use of micellar aqueous solutions of Brij35 as mobile phases in reversed-phase liquid chromatography has proven to be valid to predict the biological activities of barbiturates, benzodiazepines, catecholamines, local anesthetics, non-steriodal anti-inflammatory drugs and tricyclic antidepressants. In this study, the relationships between the capacity factor in BMC and some pharmacokinetic and pharmacodynamic parameters of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors are studied. Predictive quantitative retention-activity relationship (QRAR) models describing some of the biological activities and pharmacokinetic properties of HMG-CoA reductase inhibitors are obtained. The results indicate that QRAR model may be a useful tool during the drug discovery process.

  18. Modelling of water potential and water uptake rate of tomato plants in the greenhouse: preliminary results.

    NARCIS (Netherlands)

    Bruggink, G.T.; Schouwink, H.E.; Gieling, Th.H.


    A dynamic model is presented which predicts water potential and water uptake rate of greenhouse tomato plants using transpiration rate as input. The model assumes that water uptake is the resultant of water potential and hydraulic resistance, and that water potential is linearly related to water

  19. Substrate turnover at low carbon concentrations in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik


    utilisation and bacterial growth at low nutrient conditions in a model distribution system. The model system consisted of two loops in series, where flow rate and retention time were controlled independently. Spiking the drinking water of the model system with two different environmentally realistic......Water quality changes caused by microbial activity in the distribution network can cause serious problems. Reducing the amount of microbial available substrate may be an effective way to control bacterial aftergrowth. The purpose of the present study was to study the kinetics of substrate...... concentrations of carbon allowed for a close monitoring of the kinetics of substrate turnover (less than 10 μg C/L 14C-benzoic acid was added). The mineralisation of benzoic acid was rapid and could be modelled by a no-growth Monod expression using a maximum degradation rate of 0.59 μg C/L/h and a half...

  20. Global modelling of Cryptosporidium in surface water (United States)

    Vermeulen, Lucie; Hofstra, Nynke


    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps ( combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model ( to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  1. Distribution and retention in bone of /sup 226/Ra and comparison with the ICRP 20 model

    Energy Technology Data Exchange (ETDEWEB)

    Holtzman, R.B.; Rundo, J.; Sha, J.Y.; Spaletto, M.I.


    Analyses are presented of the ratios of /sup 226/Ra to calcium in over 650 samples of compact and cancellous bone from 66 female and 26 male subjects who had died from less than one to 60 years after first exposure to radium. The /sup 226/Ra/Ca ratios were normalized to the terminal /sup 226/Ra skeletal content. The /sup 226/Ra/Ca ratios for vertebrae were essentialy identical to those for other cancellous bone for a given subject. Comparisons of the data with predictions of the ICRP model of alkaline earth metabolism show that for female cancellous bone the normalized /sup 226/Ra/Ca ratios tended to be greater than predicted, while those for female cortical bone (femoral and tibial shaft) tended to be less. The data for males were fitted better by the model. A modification of the model to reduce the amount of radium deposited in soft tissue fitted the data better in some respects. A straight line linear least squares fit to the data appeared to fit as well as, or better than, the models. A radiation effect was suggested in that the normalized /sup 226/Ra/Ca ratio for vertebrae relative to the ratio expected increased with skeletal absorbed dose for vertebra. However, no such effect was apparent for compact bone or for the cancellous bone as a whole.

  2. Heads or Tails (Success or Failure)? Using Logit Modeling to Predict Student Retention and Progression (United States)

    Budden, Michael C.; Hsing, Yu; Budden, Connie B.; Hall, Michelle


    Using a sample of 2,137 university students and applying the logit model, we find that the probability for students to return in fall 2008 is higher with a higher cumulative GPA, a higher grade for SE 101, and a returning status in the previous semester. Several other explanatory variables are tested and have insignificant coefficients. A few…

  3. Effect of Multimedia Assisted 7e Learning Model Applications on Academic Achievement and Retention in Students (United States)

    Sarac, Hakan; Tarhan, Devrim


    In the rapidly developing age of technology, the contribution of using multimedia-supported instructional materials in the field of teaching technologies to science education has been increasing steadily. The purpose of this research is to compare the multimedia learning instructional materials prepared according to the 7E learning model and the…

  4. Retention and Satisfaction of Novice Teachers: Lessons from a School Reform Model (United States)

    Glennie, Elizabeth J.; Mason, Marcinda; Edmunds, Julie A.


    In many countries, novice teachers, or those with fewer than four years of experience, have a higher turnover rate than do more experienced teachers. Using teacher employment data, we examine whether schools in an American whole-school reform model are better able to retain novice teachers. Using survey data, we investigate whether novice teachers…

  5. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot


    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  6. Two-Region Model for Soil Water Repellency as a Function of Matric Potential and Water Content

    DEFF Research Database (Denmark)

    Karunarathna, Anurudda Kumara; Møldrup, Per; Kawamoto, Ken


    [-ψ], where ψ is the soil water matric potential in centimeters of H2O) plot, with linear increase in WR from the moisture content where WR first occurs during drying to the maximum WR at pFWR-max, and a linear decrease from pFWR-max until ambient air-dried conditions. The van Genuchten soil water retention......Soil water repellency (WR) occurs worldwide and affects hydrologic processes such as infiltration, preferential flow, and surface erosion. The degree of WR varies with soil organic C (SOC) and water contents. In this study, we measured WR (by ethanol molarity) as a function of moisture conditions...... for two soil profiles (17 layers, of which 13 exhibited WR), representing different vegetation and SOC between 0.6 and 14%. Generally, WR was found at SOC ≥2%. Based on measured data, a two-region water repellency (TRWR) model was developed. The model assumes two linear regions in a WR vs. pF (=log...

  7. Installed water resource modelling systems for catchment ...

    African Journals Online (AJOL)

    Following international trends there are a growing number of modelling systems being installed for integrated water resource management, in Southern Africa. Such systems are likely to be installed for operational use in ongoing learning, research, strategic planning and consensus-building amongst stakeholders in the ...

  8. Sugar-influenced water diffusion, interaction, and retention in clay interlayer nanopores probed by theoretical simulations and experimental spectroscopies (United States)

    Aristilde, Ludmilla; Galdi, Stephen M.; Kelch, Sabrina E.; Aoki, Thalia G.


    Understanding the hydrodynamics in clay nanopores is important for gaining insights into the trapping of water, nutrients, and contaminants in natural and engineered soils. Previous investigations have focused on the interlayer organization and molecular diffusion coefficients (D) of cations and water molecules in cation-saturated interlayer nanopores of smectite clays. Little is known, however, about how these interlayer dynamic properties are influenced by the ubiquitous presence of small organic compounds such as sugars in the soil environment. Here we probed the effects of glucose molecules on montmorillonite interlayer properties. Molecular dynamics simulations revealed re-structuring of the interlayer organization of the adsorptive species. Water-water interactions were disrupted by glucose-water H-bonding interactions. ;Dehydration; of the glucose-populated nanopore led to depletion in the Na solvation shell, which resulted in the accumulation of both Na ions (as inner-sphere complexes) and remaining hydrated water molecules at the mineral surface. This accumulation led to a decrease in both DNa and Dwater. In addition, the reduction in Dglucose as a function of increasing glucose content can be explained by the aggregation of glucose molecules into organic clusters H-bonded to the mineral surface on both walls of the nanopore. Experimental nuclear magnetic resonance and X-ray diffraction data were consistent with the theoretical predictions. Compared to clay interlayers devoid of glucose, increased intensities and new peaks in the 23Na nuclear magnetic resonance spectra confirmed increasing immobilization of Na as a function of increasing glucose content. And, the X-ray diffraction data indicated a reduced collapse of glucose-populated interlayers exposed to decreasing moisture conditions, which led to the maintenance of hydrated clay nanopores. The coupling of theoretical and experimental findings sheds light on the molecular to nanoscale mechanisms that

  9. NASA's Potential Contributions for Remediation of Retention Ponds Using Solar Ultraviolet Radiation and Photocatalysis (United States)

    Underwood, Lauren W.; Ryan, Robert E.


    This Candidate Solution uses NASA Earth science research on atmospheric ozone and aerosols data (1) to help improve the prediction capabilities of water runoff models that are used to estimate runoff pollution from retention ponds, and (2) to understand the pollutant removal contribution and potential of photocatalytically coated materials that could be used in these ponds. Models (the EPA's SWMM and the USGS SLAMM) exist that estimate the release of pollutants into the environment from storm-water-related retention pond runoff. UV irradiance data acquired from the satellite mission Aura and from the OMI Surface UV algorithm will be incorporated into these models to enhance their capabilities, not only by increasing the general understanding of retention pond function (both the efficacy and efficiency) but additionally by adding photocatalytic materials to these retention ponds, augmenting their performance. State and local officials who run pollution protection programs could then develop and implement photocatalytic technologies for water pollution control in retention ponds and use them in conjunction with existing runoff models. More effective decisions about water pollution protection programs could be made, the persistence and toxicity of waste generated could be minimized, and subsequently our natural water resources would be improved. This Candidate Solution is in alignment with the Water Management and Public Health National Applications.

  10. Clinical trial management of participant recruitment, enrollment, engagement, and retention in the SMART study using a Marketing and Information Technology (MARKIT) model (United States)

    Gupta, Anjali; Calfas, Karen J.; Marshall, Simon J.; Robinson, Thomas N.; Rock, Cheryl L.; Huang, Jeannie S.; Epstein-Corbin, Melanie; Servetas, Christina; Donohue, Michael C.; Norman, Gregory J.; Raab, Fredric; Merchant, Gina; Fowler, James H.; Griswold, William G.; Fogg, B.J.; Patrick, Kevin


    Advances in information technology and near ubiquity of the Internet have spawned novel modes of communication and unprecedented insights into human behavior via the digital footprint. Health behavior randomized controlled trials (RCTs), especially technology-based, can leverage these advances to improve the overall clinical trials management process and benefit from improvements at every stage, from recruitment and enrollment to engagement and retention. In this paper, we report the results for recruitment and retention of participants in the SMART study and introduce a new model for clinical trials management that is a result of interdisciplinary team science. The MARKIT model brings together best practices from information technology, marketing, and clinical research into a single framework to maximize efforts for recruitment, enrollment, engagement, and retention of participants into a RCT. These practices may have contributed to the study’s on-time recruitment that was within budget, 86% retention at 24 months, and a minimum of 57% engagement with the intervention over the 2-year RCT. Use of technology in combination with marketing practices may enable investigators to reach a larger and more diverse community of participants to take part in technology-based clinical trials, help maximize limited resources, and lead to more cost-effective and efficient clinical trial management of study participants as modes of communication evolve among the target population of participants. PMID:25866383

  11. Clinical trial management of participant recruitment, enrollment, engagement, and retention in the SMART study using a Marketing and Information Technology (MARKIT) model. (United States)

    Gupta, Anjali; Calfas, Karen J; Marshall, Simon J; Robinson, Thomas N; Rock, Cheryl L; Huang, Jeannie S; Epstein-Corbin, Melanie; Servetas, Christina; Donohue, Michael C; Norman, Gregory J; Raab, Fredric; Merchant, Gina; Fowler, James H; Griswold, William G; Fogg, B J; Patrick, Kevin


    Advances in information technology and near ubiquity of the Internet have spawned novel modes of communication and unprecedented insights into human behavior via the digital footprint. Health behavior randomized controlled trials (RCTs), especially technology-based, can leverage these advances to improve the overall clinical trials management process and benefit from improvements at every stage, from recruitment and enrollment to engagement and retention. In this paper, we report the results for recruitment and retention of participants in the SMART study and introduce a new model for clinical trials management that is a result of interdisciplinary team science. The MARKIT model brings together best practices from information technology, marketing, and clinical research into a single framework to maximize efforts for recruitment, enrollment, engagement, and retention of participants into a RCT. These practices may have contributed to the study's on-time recruitment that was within budget, 86% retention at 24 months, and a minimum of 57% engagement with the intervention over the 2-year RCT. Use of technology in combination with marketing practices may enable investigators to reach a larger and more diverse community of participants to take part in technology-based clinical trials, help maximize limited resources, and lead to more cost-effective and efficient clinical trial management of study participants as modes of communication evolve among the target population of participants. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Selection of a suitable model for the prediction of soil water content in north of Iran

    Directory of Open Access Journals (Sweden)

    Leila Esmaeelnejad


    Full Text Available Multiple Linear Regression (MLR, Artificial Neural Network (ANN and Rosetta model were employed to develop pedotransfers functions (PTFs for soil moisture prediction using available soil properties for northern soils of Iran. The Rosetta model is based on ANN works in a hierarchical approach to predict water retention curves. For this purpose, 240 soil samples were selected from the south of Guilan province, Gilevan region, northern Iran. The data set was divided into two subsets for calibration and testing of the models. The general performance of PTFs was evaluated using coefficient of determination (R2, root mean square error (RMSE and mean biased error between the observed and predicted values. Results showed that ANN with two hidden layers, Tan-sigmoid and linear functions for hidden and output layers respectively, performed better than the others in predicting soil moisture. In the other hand, ANN can model non-linear functions and showed to perform better than MLR. After ANN, MLR had better accuracy than Rosetta. The developed PTFs resulted in more accurate estimation at matric potentials of 100, 300, 500, 1000, 1500 kPa. Whereas, Rosetta model resulted in slightly better estimation than derived PTFs at matric potentials of 33 kPa. This research can provide the scientific basis for the study of soil hydraulic properties and be helpful for the estimation of soil water retention in other places with similar conditions, too.

  13. Selection of a suitable model for the prediction of soil water content in north of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeelnejad, L.; Ramezanpour, H.; Seyedmohammadi, H.; Shabanpou, M.


    Multiple Linear Regression (MLR), Artificial Neural Network (ANN) and Rosetta model were employed to develop pedotransfers functions (PTFs) for soil moisture prediction using available soil properties for northern soils of Iran. The Rosetta model is based on ANN works in a hierarchical approach to predict water retention curves. For this purpose, 240 soil samples were selected from the south of Guilan province, Gilevan region, northern Iran. The data set was divided into two subsets for calibration and testing of the models. The general performance of PTFs was evaluated using coefficient of determination (R2), root mean square error (RMSE) and mean biased error between the observed and predicted values. Results showed that ANN with two hidden layers, Tan-sigmoid and linear functions for hidden and output layers respectively, performed better than the others in predicting soil moisture. In the other hand, ANN can model non-linear functions and showed to perform better than MLR. After ANN, MLR had better accuracy than Rosetta. The developed PTFs resulted in more accurate estimation at matric potentials of 100, 300, 500, 1000, 1500 kPa. Whereas, Rosetta model resulted in slightly better estimation than derived PTFs at matric potentials of 33 kPa. This research can provide the scientific basis for the study of soil hydraulic properties and be helpful for the estimation of soil water retention in other places with similar conditions, too.. (Author)

  14. The Relations Between Soil Water Retention Characteristics, Particle Size Distributions, Bulk Densities and Calcium Carbonate Contents for Danish Soils

    DEFF Research Database (Denmark)

    Jensen, Niels H.; Balstrøm, Thomas; Breuning-Madsen, Henrik


    A database containing about 800 soil profiles located in a 7-km grid covering Denmark has been used to develop a set of regression equations of soil water content at pressure heads –1, -10, -100 and –1500 kPa versus particle size distribution, organic matter, CaCO3 and bulk density. One purpose...... on the equations a set of van Genuchten parameters for soil types in the Danish Soil Classification was elaborated. The prediction of soil water content, especially at pressure head –1 kPa, is more accurate using these van Genuchten parameters than using the pedotransfer functions developed in relation...

  15. A comparison study of water impact and water exit models

    Directory of Open Access Journals (Sweden)

    Korobkin Alexander


    Full Text Available In problems of global hydroelastic ship response in severe seas including the whipping problem, we need to know the hydrodynamic forces acting on the ship hull during almost arbitrary ship motions. In terms of ship sections, some of them can enter water but others exit from water. Computations of nonlinear free surface flows, pressure distributions and hydrodynamic forces in parallel with the computations of the ship motions including elastic vibrations of the ship hull are time consuming and are suitable only for research purposes but not for practical calculations. In this paper, it is shown that the slamming forces can be decomposed in two components within three semi-analytical models of water entry. Only heave motion is considered. The first component is proportional to the entry speed squared and the second one to the body acceleration. The coefficients in these two components are functions of the penetration depth only and can be precomputed for given shape of the body. During the exit stage the hydrodynamic force is proportional to the acceleration of the body and independent of the body shape for bodies with small deadrise angles.

  16. Water age prediction and its potential impacts on water quality using a hydrodynamic model for Poyang Lake, China. (United States)

    Qi, Hengda; Lu, Jianzhong; Chen, Xiaoling; Sauvage, Sabine; Sanchez-Pérez, José-Miguel


    The water quality in Poyang Lake, the largest freshwater lake in China, has deteriorated steadily in recent years and local governments have made efforts to manage the potential eutrophication. In order to investigate the transport and retention processes of dissolved substances, the hydrodynamic model, Environmental Fluid Dynamics Code (EFDC) was applied by using the concept of water age. The simulated results showed agreement with the measured water level, discharge, and inundation area. The water age in Poyang Lake was significantly influenced by the variations of hydrological conditions. The annual analysis revealed that the largest averaged water age was observed during the wet year (2010) with 28.4 days at Hukou, the junction of the Yangtze River and Poyang Lake. In the normal season (April), the youngest age with 9.1 days was found. The spatial distribution of water quality derived from the remote sensing images suggested that a higher chlorophyll-a concentration, lower turbidity, and smaller water age in the eastern area of Poyang Lake might threaten the regional aquatic health. The particle tracking simulation reproduced the trajectories of the dissolved substances, indicating that the water mass with greater nutrient loading would further lead to potential environmental problems in the east lake. Moreover, the water transfer ability would be weakened due to dam (Poyang Project) construction resulting in the rising water levels in periods of regulation. Generally, this study quantified an indicative transport timescale, which could help to better understand the complex hydrodynamic processes and manage wetland ecosystems similar to Poyang Lake.

  17. Retention and release of cobalt, nickel and copper at the water-sediment interface by applying electrochemically initiated processes

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, R.; Fischer, R. [TU Dresden (Germany). Inst. fuer Wasserchemie; Rahner, D. [TU Dresden (Germany). Inst. fuer Physikalische Chemie und Elektrochemie


    This paper deals with some aspects of the behaviour of cobalt, nickel and copper at the sediment-water interface under the influence of an electric field in connection with the application of electrokinetic method on the cleaning of river sediments contaminated with heavy metals. (orig.)

  18. A Model for Science Teaching in High Schools- Toward Better Retention of The Learnt Material (United States)

    Arshed, Tahira


    The time arrangement of science courses in most high schools results in promoting short term memory with little incentive to retain the learned material in any of the sciences. Consequently, much of the subject matter has to be re-taught in college. This takes time meant for teaching college level topics. Weakness in knowledge base is carried over from year to year in high school, building up to higher levels in college and causing stress and anxiety to both students and teachers. From personel experience of teaching in five countries, a model is developed by which the problem can be overcome. This involves a collaborative effort on the part of teachers and educational policy makers and support of college faculty. The results are measurable within five years and do not incur any increase in funding. Suggestions for practical adoption of the system will be presented. The outcomes are measurable and hold promise in view of success in other countries.

  19. Modeling Employee Satisfaction in Relation to CSR Practices and Attraction and Retention of Top Talent

    Directory of Open Access Journals (Sweden)

    Simona VINEREAN


    Full Text Available In today’s economy, companies must work harder than ever to attract, retain and motivate talented employees in order to foster employee satisfaction, and in order to do so, CSR practices can provide a strategic tool. A green company no longer denotes solely the promotion of green products or reduction of energy consumption, as it has to incorporate proactive and innovative means of tracking sustainability while involving employees in such corporate behavior. This paper highlights an empirical study of responses from 10 multinational companies regarding their corporate social responsibility initiatives as a way to attract and retain good employees, while providing an appropriate environment for employee satisfaction, by constructing a structural equation model meant to expand HR literature and provide direct implications for organizations.

  20. Social work in dentistry: the CARES model for improving patient retention and access to care. (United States)

    Doris, Joan M; Davis, Elaine; Du Pont, Cynthia; Holdaway, Britt


    Social work programs in dental schools and dental clinics have been operated successfully since the 1940s, and have been documented as contributing to patients' access to care and to dental education. However, unlike medical social work, with which it has much in common, social work in dentistry has failed to become a standard feature of dental schools and clinics. Few of the social work initiatives that have been implemented in dental schools have survived after initial grant funding ran out, or the institutional supporters of the program moved on. The authors hope that the CARES program serves as a model for the successful development of other programs at the intersection of social work and dentistry to the benefit of both dental patients and providers.

  1. Multifractal Model of Soil Water Erosion (United States)

    Oleshko, Klaudia


    Breaking of solid surface symmetry during the interaction between the rainfall of high erosivity index and internally unstable volcanic soil/vegetation systems, results in roughness increasing as well as fertile horizon loosing. In these areas, the sustainability of management practices depends on the ability to select and implement the precise indicators of soil erodibility and vegetation capacity to protect the system against the extreme damaging precipitation events. Notwithstanding, the complex, non-linear and scaling nature of the phenomena involved in the interaction among the soil, vegetation and precipitation is still not taken into account by the numerous commonly used empirical, mathematical and computer simulation models: for instance, by the universal soil loss equation (USLE). The soil erodibility factor (K-factor) is still measuring by a set of empirical, dimensionless parameters and indexes, without taking into account the scaling (frequently multifractal) origin of a broad range of heterogeneous, anisotropic and dynamical phenomena involved in hydric erosion. Their mapping is not representative of this complex system spatial variability. In our research, we propose to use the toolbox of fractals and multifractals techniques in vista of its ability to measure the scale invariance and type/degree of soil, vegetation and precipitation symmetry breaking. The hydraulic units are chosen as the precise measure of soil/vegetation stability. These units are measured and modeled for soils with contrasting architecture, based on their porosity/permeability (Poroperm) as well as retention capacity relations. The simple Catalog of the most common Poroperm relations is proposed and the main power law relations among the elements of studied system are established and compared for some representative agricultural and natural Biogeosystems of Mexico. All resulted are related with the Mandelbrot' Baby Theorem in order to construct the universal Phase Diagram which


    Directory of Open Access Journals (Sweden)

    Daniel Liberacki


    Full Text Available The objective of the article was to present possible applications of recession flow curve in a small lowland watershed retention discharge size evaluation. The examined woodland micro catchment area of 0.52 sq km is located in Puszcza Zielonka in central Wielkopolska. The Hutka catchment is typically woody with high retention abilities. The catchment of the Hutka watercourse is forested in 89%, the other 11% is covered by swamps and wasteland. The predominant sites are fresh mixed coniferous forest (BMśw, fresh coniferous forest (Bśw and alder carr forest (Ol. Landscape in catchment is characterized by a large number of interior depressions, filled partly with rainwater or peatbogs, with poorly developed natural drainage. The watercourses do not exceed 1 km in length, the mean width is approx. 0.5 m, while mean depth ranges from 0.2 to 0.3 m. During hydrological research conducted in 1997/1998–1999/2000, 35 major (characteristic raised water stages were observed in Hutka after substantial precipitation. The recession curve dating from 18–24 September 2000 has the α and n rates nearest to average. Comparing the model curve and the curve created by observing watercourse flow, one can notice their resemblance and that they have similar ordinate values as well as shape. In the case of other recession curves, the maximum differences of ordinate values are also about 0.1–0.2 l/s/km2. The measuured α and n rates do not reveal any regularities. There are no significant statistical Horton model parameter (for recession flow curves dependencies between α and n and e.g. initial flows (Qo or the whole period of high water waves (Qp. Consequently, calculated relation between these parameters is only an approximation for the general evaluation of the retention discharge in the catchment area towards retention with flow function.

  3. Geochemistry of trace metals in a fresh water sediment: Field results and diagenetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, R.W. [Utrecht University, Faculty of Geosciences, PO Box 80021, 3508 TA Utrecht (Netherlands)]. E-mail:; Cappellen, P. van [Utrecht University, Faculty of Geosciences, PO Box 80021, 3508 TA Utrecht (Netherlands); Zwolsman, J.J.G. [Kiwa Water Research, PO Box 1072, 3430 BB Nieuwegein (Netherlands); Berg, G.A. van den [Kiwa Water Research, PO Box 1072, 3430 BB Nieuwegein (Netherlands); Slomp, C.P. [Utrecht University, Faculty of Geosciences, PO Box 80021, 3508 TA Utrecht (Netherlands)


    Concentrations of Fe, Mn, Cd, Co, Ni, Pb, and Zn were determined in pore water and sediment of a coastal fresh water lake (Haringvliet Lake, The Netherlands). Elevated sediment trace metal concentrations reflect anthropogenic inputs from the Rhine and Meuse Rivers. Pore water and sediment analyses, together with thermodynamic calculations, indicate a shift in trace metal speciation from oxide-bound to sulfide-bound over the upper 20 cm of the sediment. Concentrations of reducible Fe and Mn decline with increasing depth, but do not reach zero values at 20 cm depth. The reducible phases are relatively more important for the binding of Co, Ni, and Zn than for Pb and Cd. Pore waters exhibit supersaturation with respect to Zn, Pb, Co, and Cd monosulfides, while significant fractions of Ni and Co are bound to pyrite. A multi-component, diagenetic model developed for organic matter degradation was expanded to include Zn and Ni dynamics. Pore water transport of trace metals is primarily diffusive, with a lesser contribution of bioirrigation. Reactions affecting trace metal mobility near the sediment-water interface, especially sulfide oxidation and sorption to newly formed oxides, strongly influence the modeled estimates of the diffusive effluxes to the overlying water. Model results imply less efficient sediment retention of Ni than Zn. Sensitivity analyses show that increased bioturbation and sulfate availability, which are expected upon restoration of estuarine conditions in the lake, should increase the sulfide bound fractions of Zn and Ni in the sediments.

  4. Modeling of soil-water-structure interaction

    DEFF Research Database (Denmark)

    Tang, Tian

    in the surrounding water, are calculated using a linear elastic solver. Finally, the direct wave loads on the seabed and the indirect wave loads on the seabed-structure interface through the structure are provided as input for a dynamic soil response calculation. Simulation results in general demonstrate that...... to dynamic ocean waves. The goal of this research project is to develop numerical soil models for computing realistic seabed response in the interacting offshore environment, where ocean waves, seabed and offshore structure highly interact with each other. The seabed soil models developed are based...... as the developed nonlinear soil displacements and stresses under monotonic and cyclic loading. With the FVM nonlinear coupled soil models as a basis, multiphysics modeling of wave-seabed-structure interaction is carried out. The computations are done in an open source code environment, OpenFOAM, where FVM models...

  5. Retention Model of TaO/HfO x and TaO/AlO x RRAM with Self-Rectifying Switch Characteristics (United States)

    Lin, Yu-De; Chen, Pang-Shiu; Lee, Heng-Yuan; Chen, Yu-Sheng; Rahaman, Sk. Ziaur; Tsai, Kan-Hsueh; Hsu, Chien-Hua; Chen, Wei-Su; Wang, Pei-Hua; King, Ya-Chin; Lin, Chrong Jung


    A retention behavior model for self-rectifying TaO/HfO x - and TaO/AlO x -based resistive random-access memory (RRAM) is proposed. Trapping-type RRAM can have a high resistance state (HRS) and a low resistance state (LRS); the degradation in a LRS is usually more severe than that in a HRS, because the LRS during the SET process is limited by the internal resistor layer. However, if TaO/AlO x elements are stacked in layers, the LRS retention can be improved. The LRS retention time estimated by extrapolation method is more than 5 years at room temperature. Both TaO/HfO x - and TaO/AlO x -based RRAM structures have the same capping layer of TaO, and the activation energy levels of both types of structures are 0.38 eV. Moreover, the additional AlO x switching layer of a TaO/AlO x structure creates a higher O diffusion barrier that can substantially enhance retention, and the TaO/AlO x structure also shows a quite stable LRS under biased conditions.

  6. Artificial deepening of seasonal waterholes in eastern Cambodia: impact on water retention and use by large ungulates and waterbirds

    Directory of Open Access Journals (Sweden)

    Thomas N.E. Gray


    Full Text Available Natural seasonal waterholes (trapeang in Khmer are an important feature of the deciduous dipterocarp forests of eastern Cambodia and are utilised by a number of globally threatened species of large ungulates and waterbirds. However at the end of the dry-season (April only a small proportion of waterholes retain water. In 2011, we artificially deepened six waterholes in the core area of Mondulkiri Protected Forest, eastern Cambodia, removing 3m3 to 24m3 of earth (mean 16.5m3 from each.  Surveys prior to deepening demonstrated that only one of these waterholes, and 10% of all waterholes surveyed in the study area (n=50, held water at the end of the dry-season.  Following modification five of the six deepened waterholes (83% held water at the end of the subsequent dry-season. From four camera traps over 448 trap-nights, 23 species including two globally threatened large ungulates, Banteng Bos javanicus and Eld’s Deer Rucervus eldii, and two Critically Endangered Ibises (Giant Thaumatibis gigantea and White-shouldered Ibis Pseudibis davisoni, were photographed foraging and drinking at the deepened waterholes between March and June 2012.  Our results suggest that artificial deepening of natural waterholes does not cause damage, and makes these waterholes suitable for use throughout the dry-season.  In the face of changing climate it is suggested that management plans should have a programme for the survey and determination of the status of waterholes every year and improve the use of water resources by artificial deepening. 

  7. Impaired retention of depression-like behavior in a mouse model of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Xianwen Luo


    Full Text Available By using a 5-day forced swimming test (FS that we previously developed, swim immobility was induced in 3xTg Alzheimer's model mice and wild-type (WT mice. After the initial 5-day FS, the next and last swimming session was performed at a 4-week interval, during which the immobility was reduced in 3xTg mice, but was maintained fully in WT mice. After FS, context-dependent fear learning was normally induced in WT mice, but was impaired in 3xTg mice, suggesting that FS may exaggerate cognitive deficits typical to 3xTg mice. Hippocampal long-term potentiation (LTP at Schaffer collateral-CA1 synapses was suppressed by FS in WT mice, but not in 3xTg mice, indicating that FS modifies LTP in the WT mouse hippocampus, but not in 3xTg tissue. FS increased excitability of cingulate cortex pyramidal cells similarly in WT and 3xTg mice. Agreeing with our previous finding that expression of Homer1a protein is decreased in the cingulate cortex in harmony with FS-induced immobility, western blot showed that Homer1a expression is reduced by FS in the WT mice. In 3xTg mice, by contrast, FS failed to reduce Homer1a expression. The disrupted endurance of FS-induced immobility in 3xTg mice appears to be attributable to impaired cognition typical to this genotype. Failure of FS to alter LTP magnitude might be related to unaltered Homer1a expression after FS in 3xTg mice.

  8. Integrated Water Resources Simulation Model for Rural Community (United States)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.


    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  9. Improving ART programme retention and viral suppression are key to maximising impact of treatment as prevention - a modelling study. (United States)

    McCreesh, Nicky; Andrianakis, Ioannis; Nsubuga, Rebecca N; Strong, Mark; Vernon, Ian; McKinley, Trevelyan J; Oakley, Jeremy E; Goldstein, Michael; Hayes, Richard; White, Richard G


    UNAIDS calls for fewer than 500,000 new HIV infections/year by 2020, with treatment-as-prevention being a key part of their strategy for achieving the target. A better understanding of the contribution to transmission of people at different stages of the care pathway can help focus intervention services at populations where they may have the greatest effect. We investigate this using Uganda as a case study. An individual-based HIV/ART model was fitted using history matching. 100 model fits were generated to account for uncertainties in sexual behaviour, HIV epidemiology, and ART coverage up to 2015 in Uganda. A number of different ART scale-up intervention scenarios were simulated between 2016 and 2030. The incidence and proportion of transmission over time from people with primary infection, post-primary ART-naïve infection, and people currently or previously on ART was calculated. In all scenarios, the proportion of transmission by ART-naïve people decreases, from 70% (61%-79%) in 2015 to between 23% (15%-40%) and 47% (35%-61%) in 2030. The proportion of transmission by people on ART increases from 7.8% (3.5%-13%) to between 14% (7.0%-24%) and 38% (21%-55%). The proportion of transmission by ART dropouts increases from 22% (15%-33%) to between 31% (23%-43%) and 56% (43%-70%). People who are currently or previously on ART are likely to play an increasingly large role in transmission as ART coverage increases in Uganda. Improving retention on ART, and ensuring that people on ART remain virally suppressed, will be key in reducing HIV incidence in Uganda.

  10. The modeling of response indicators of integrated water resources ...

    African Journals Online (AJOL)

    models were used to model and predict the relationship between water resources mobilization WRM and ... (WRM) and response variables were applied to ... of water management and education ... ANN models are mathematical tools,.

  11. Understanding transport in model water desalination membranes (United States)

    Chan, Edwin

    Polyamide based thin film composites represent the the state-of-the-art nanofiltration and reverse osmosis membranes used in water desalination. The performance of these membranes is enabled by the ultrathin (~100 nm) crosslinked polyamide film in facilitating the selective transport of water over salt ions. While these materials have been refined over the last several decades, understanding the relationships between polyamide structure and membrane performance remains a challenge because of the complex and heterogeneous nature of the polyamide film. In this contribution, we present our approach to addressing this challenge by studying the transport properties of model polyamide membranes synthesized via molecular layer-by-layer (mLbL) assembly. First, we demonstrate that mLbL can successfully construct polyamide membranes with well-defined nanoscale thickness and roughness using a variety of monomer formulations. Next, we present measurement tools for characterizing the network structure and transport of these model polyamide membranes. Specifically, we used X-ray and neutron scattering techniques to characterize their structure as well as a recently-developed indentation based poromechanics approach to extrapolate their water diffusion coefficient. Finally, we illustrate how these measurements can provide insight into the original problem by linking the key polyamide network properties, i.e. water-polyamide interaction parameter and characteristic network mesh size, to the membrane performance.

  12. Difference equation model for isothermal gas chromatography expresses retention behavior of homologues of n-alkanes excluding the influence of holdup time. (United States)

    Wu, Liejun; Chen, Yongli; Caccamise, Sarah A L; Li, Qing X


    A difference equation (DE) model is developed using the methylene retention increment (Δtz) of n-alkanes to avoid the influence of gas holdup time (tM). The effects of the equation orders (1st-5th) on the accuracy of a curve fitting show that a linear equation (LE) is less satisfactory and it is not necessary to use a complicated cubic or higher order equation. The relationship between the logarithm of Δtz and the carbon number (z) of the n-alkanes under isothermal conditions closely follows the quadratic equation for C3-C30n-alkanes at column temperatures of 24-260 °C. The first and second order forward differences of the expression (Δlog Δtz and Δ2log Δtz, respectively) are linear and constant, respectively, which validates the DE model. This DE model lays a necessary foundation for further developing a retention model to accurately describe the relationship between the adjusted retention time and z of n-alkanes. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. RETROCK Project. Treatment of geosphere retention phenomena in safety assessments. Scientific basis of retention processes and their implementation in safety assessment models (WP2). Work Package 2 report of the RETROCK Concerted Action

    Energy Technology Data Exchange (ETDEWEB)

    Nykyri, M. [Safram Oy, Espoo (Finland)] [and others


    This report considers the present-day understanding and approaches to take into account retention and transport processes in the performance assessment (PA) models used in the evaluation of the long-term safety of deep geological repositories for radioactive waste. It is a product of Work Package 2 in the RETROCK Concerted Action, a part of EURATOM's research and training programme. The processes emphasised in RETROCK are the influences of the flow field, matrix diffusion, and sorption on radionuclide transport characteristics. These processes, and radioactive decay, provide the key terms to the transport equations of the PA models. The following processes are handled more cursorily: colloid-facilitated transport, microbial activity, gas-mediated transport, precipitation/coprecipitation, and off diagonal Onsager processes. The environment in question is saturated sparsely fractured rock in the repository far field. The fracture network offers flow paths for the groundwater transporting radionuclides away from a repository. The radionuclides in various chemical forms interact physically and chemically with other matter in groundwater, fracture surfaces, fracture infills and the rock matrix adjacent to the fractures. These interactions typically result in significant retardation, and decay, of radionuclides compared to the velocity of the groundwater. The PA models usually take into account retention phenomena using simplified concepts that are justified by their conservatism. They are complemented by a large variety of more detailed and realistic process-specific models that can be used to support the choice of data for PA models, as well as specific arguments made in safety cases. While the fundamental understanding, the conceptualisations of the phenomena, the models and the computing resources develop, the extensive data requirements often become a most restrictive factor to the use of a model. The difficulties in obtaining data tend to hinder the

  14. Lattice model for water-solute mixtures. (United States)

    Furlan, A P; Almarza, N G; Barbosa, M C


    A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction of solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting in, hydrophilic, inert, and hydrophobic interactions. Extensive Monte Carlo simulations were carried out, and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components, water (solvent) and solute, have quite similar phase diagrams, presenting gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures, volume and enthalpy as the function of the solute fraction, have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as propanol, butanol, and pentanol. For the last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.

  15. Modeling regulated water utility investment incentives (United States)

    Padula, S.; Harou, J. J.


    This work attempts to model the infrastructure investment choices of privatized water utilities subject to rate of return and price cap regulation. The goal is to understand how regulation influences water companies' investment decisions such as their desire to engage in transfers with neighbouring companies. We formulate a profit maximization capacity expansion model that finds the schedule of new supply, demand management and transfer schemes that maintain the annual supply-demand balance and maximize a companies' profit under the 2010-15 price control process in England. Regulatory incentives for costs savings are also represented in the model. These include: the CIS scheme for the capital expenditure (capex) and incentive allowance schemes for the operating expenditure (opex) . The profit-maximizing investment program (what to build, when and what size) is compared with the least cost program (social optimum). We apply this formulation to several water companies in South East England to model performance and sensitivity to water network particulars. Results show that if companies' are able to outperform the regulatory assumption on the cost of capital, a capital bias can be generated, due to the fact that the capital expenditure, contrarily to opex, can be remunerated through the companies' regulatory capital value (RCV). The occurrence of the 'capital bias' or its entity depends on the extent to which a company can finance its investments at a rate below the allowed cost of capital. The bias can be reduced by the regulatory penalties for underperformances on the capital expenditure (CIS scheme); Sensitivity analysis can be applied by varying the CIS penalty to see how and to which extent this impacts the capital bias effect. We show how regulatory changes could potentially be devised to partially remove the 'capital bias' effect. Solutions potentially include allowing for incentives on total expenditure rather than separately for capex and opex and allowing

  16. Water Quality Modeling System for Coastal Archipelagos (United States)

    Tuomi, L.; Miettunen, E.; Lukkari, K.; Puttonen, I.; Ropponen, J.; Tikka, K.; Piiparinen, J.; Lignell, R.


    Coastal seas are encountering pressures from eutrophication, fishing, ship emissions and coastal construction. Sustainable development and use of these areas require science-based guidance with high quality data and efficient tools. Our study area, the Archipelago Sea, is located in the northern part of the semi-enclosed and brackish water Baltic Sea. It is a shallow, topographically heterogeneous and eutrophic sub-basin, covered with thousands of small islands and islets. The catchment area is 8950 km2and has ca. 500 000 inhabitants. We are developing a modeling system that can be used by local authorities and in ministry level decision making to evaluate the environmental impacts that may result from decisions and changes made both in the watershed and in the coastal areas. The modeling system consists of 3D hydrodynamic model COHERENS and water quality model FICOS, both applied to the area with high spatial resolution. Models use river discharge and nutrient loading data supplied by watershed model VEMALA and include loading from multiple point sources located in the Archipelago Sea. An easy-to-use interface made specifically to answer the end-user needs, includes possibility to modify the nutrient loadings and perform model simulations to selected areas and time periods. To ensure the quality and performance of the modeling system, comprehensive measurement dataset including hydrographic, nutrient, chlorophyll-a and bottom sediment data, was gathered based on monitoring and research campaigns previously carried out in the Archipelago Sea. Verification showed that hydrodynamic model was able to simulate surface temperature and salinity fields and their seasonal variation with good accuracy in this complex area. However, the dynamics of the deeper layers need to be improved, especially in areas that have sharp bathymetric gradients. The preliminary analysis of the water quality model results showed that the model was able to reproduce the basic characteristics of

  17. Effects of hydraulic retention time and [Formula: see text] ratio on thiosulfate-driven autotrophic denitrification for nitrate removal from micro-polluted surface water. (United States)

    Wang, Zheng; Fei, Xiang; He, Sheng-Bing; Huang, Jung-Chen; Zhou, Wei-Li


    This study was carried out to investigate the possibility of a thiosulfate-driven autotrophic denitrification for nitrate-N removal from micro-polluted surface water. The aim was to study the effects of [Formula: see text] ratio (S/N molar ratio) and hydraulic retention time (HRT) on the autotrophic denitrification performance. Besides, utilization efficiencies of [Formula: see text] along the biofilter and the restart-up of the bioreactor were also investigated. Autotrophic denitrification using thiosulfate as an electron donor for treating micro-polluted surface water without the addition of external alkalinity proved to be feasible and the biofilter could be readied in two weeks. Average nitrate-N removal efficiencies at HRTs of 0.5, 1 and 2 h were 78.7%, 87.8% and 97.4%, respectively, and corresponding removal rates were 186.24, 103.92 and 58.56 g [Formula: see text], respectively. When water temperature was in the range of 8-12°C and HRT was 1 h, average nitrate-N removal efficiencies of 41.9%, 97.1% and 97.0%, nitrite accumulation concentrations of 1.45, 0.46 and 0.22 mg/L and thiosulfate utilization efficiencies of 100%, 98.8% and 92.1% were obtained at S/N ratios of 1.0, 1.2 and 1.5, respectively. Besides, the autotrophic denitrification rate in the filtration media layer was the highest along the biofilter at an S/N ratio of 1.5. Finally, after a one-month period of starvation, the biofilter could be restarted successfully in three weeks without inoculation of seed sludge.

  18. Super absorbent hydrogel composites as water retentive in soil; Hidrogeis compositos superabsorventes como retentores de agua no solo

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Antonio Savio G. [Faculdade de Educacao de Itapipoca, Curso de Quimica, UECE, Itapipoca, Ceara (Brazil); Almeida Neto, Manuel P. [Instituto Federal de Educacao, Ciencia e Tecnologia do RN - IFRN, Caico, RN (Brazil); Bezerra, Maslandia N.; Feitosa, Judith P.A., E-mail: [Departamento de Quimica Organica e Inorganica, UFC, Fortaleza, Ceara (Brazil)


    Super absorbent hydrogels (SAP) were synthesized at room temperature, by the use of potassium persulfate as initiator, N,N'-methylene bis acrylamide (MBA) as crosslinking agent, and N,N,N',N'- tetramethylethylenediamine. Gels at the same conditions were prepared with 10% of minerals (bentonite or dolomite). The materials of bentonite series were obtained from acrylamide followed by hydrolysis with NaOH. The gels of dolomite series were prepared from the two co-monomers (acrylamide and acrylate). All SAPs were characterized by elemental microanalysis, FTIR, x-ray diffraction, SEM, and by swelling measurements in water. An intercalated composite was obtained with bentonite hydrogel. After hydrolysis an exfoliated nanocomposite was formed. The dolomite mineral was dispersed in the polymeric matrix. The swelling degrees of the SAPs with mineral were higher than those gels without it. This degree was 1,000 times the dry gel weight. Taking into account the amount of water needed to the process, the gel with dolomite is the most promising as soil conditioner. (author)

  19. Monthly Water Balance Model Hydrology Futures (United States)

    Bock, Andy; Hay, Lauren E.; Markstrom, Steven; Atkinson, R. Dwight


    A monthly water balance model (MWBM) was driven with precipitation and temperature using a station-based dataset for current conditions (1950 to 2010) and selected statistically-downscaled general circulation models (GCMs) for current and future conditions (1950 to 2099) across the conterminous United States (CONUS) using hydrologic response units from the Geospatial Fabric for National Hydrologic Modeling ( Six MWBM output variables (actual evapotranspiration (AET), potential evapotranspiration (PET), runoff (RO), streamflow (STRM), soil moisture storage (SOIL), and snow water equivalent (SWE)) and the two MWBM input variables (atmospheric temperature (TAVE) and precipitation (PPT)) were summarized for hydrologic response units and aggregated at points of interest on a stream network. Results were then organized into the Monthly Water Balance Hydrology Futures database, an open-access database using netCDF format (  Methods used to calibrate and parameterize the MWBM are detailed in the Hydrology and Earth System Sciences (HESS)  paper "Parameter regionalization of a monthly water balance model for the conterminous United States" by Bock and others (2016).  See the discussion paper link in the "Related External Resources" section for access.  Supplemental data files related to the plots and data analysis in Bock and others (2016) can be found in the folder in the "Attached Files" section.  Detailed information on the files and data can be found in the ReadMe.txt contained within the zipped folder. Recommended citation of discussion paper:Bock, A.R., Hay, L.E., McCabe, G.J., Markstrom, S.L., and Atkinson, R.D., 2016, Parameter regionalization of a monthly water balance model for the conterminous United States: Hydrology and Earth System Sciences, v. 20, 2861-2876, doi:10.5194/hess-20-2861-2016, 2016

  20. Two-dimensional modeling of water and heat fluxes in green roof substrates (United States)

    Suarez, F. I.; Sandoval, V. P.


    Due to public concern towards sustainable development, greenhouse gas emissions and energy efficiency, green roofs have become popular in the last years. Green roofs integrate vegetation into infrastructures to reach additional benefits that minimize negative impacts of the urbanization. A properly designed green roof can reduce environmental pollution, noise levels, energetic requirements or surface runoff. The correct performance of green roofs depends on site-specific conditions and on each component of the roof. The substrate and the vegetation layers strongly influence water and heat fluxes on a green roof. The substrate is an artificial media that has an improved performance compared to natural soils as it provides critical resources for vegetation survival: water, nutrients, and a growing media. Hence, it is important to study the effects of substrate properties on green roof performance. The objective of this work is to investigate how the thermal and hydraulic properties affect the behavior of a green roof through numerical modeling. The substrates that were investigated are composed by: crushed bricks and organic soil (S1); peat with perlite (S2); crushed bricks (S3); mineral soil with tree leaves (S4); and a mixture of topsoil and mineral soil (S5). The numerical model utilizes summer-arid meteorological information to evaluate the performance of each substrate. Results show that the area below the water retention curve helps to define the substrate that retains more water. In addition, the non-linearity of the water retention curve can increment the water needed to irrigate the roof. The heat propagation through the roof depends strongly on the hydraulic behavior, meaning that a combination of a substrate with low thermal conductivity and more porosity can reduce the heat fluxes across the roof. Therefore, it can minimize the energy consumed of an air-conditioner system.

  1. SWAP Modeling Results of Monitored Soil Water Moisture Data of Irrigation Experimental Study (United States)

    Zeiliger, A.; Garsia-Orenes, F.; van den Elsen, E.; Mataix-Solera, J.; Semenov, V.


    In arid and semiarid zones of the Mediterranean regions a shortage of fresh water resources constitutes some time dramatic problem. In these regions with growing population and the scarce of rainfall irregularity in time during growing season an efficient use of water irrigation became a main challenge for future extensive agriculture development. In the frame of FP6 Water-Reuse project 516731 project a special field experimentation has been carried out in Alicante Region of Spain (Location UTM X: 693.809, Y: 4.279.922, Z: 626) on a Sandy Typic Xerofkuvent (Soil Survey Staff, 1999), Calcaric Fluvisol (WRB, FAO, 1989). with aim to investigate water regime in water repellent soils under irrigation of vine Vitus Labrusca. During field experimentation from 2006 till 2008 on 9 plots, there the same regime of irrigation water application was maintained, a monitoring of weather parameters was done by automatic meteorological station as well as a monitoring of soil water moisture was done by set of data-loggers and TDR-soil moisture sensors ECO-2 installed at different depts. SWAP model was used to simulate water regime of irrigated plots. Empirical coefficients of van Genuchten-Mualem's equations were calculated by pedotransfer functions derived from HYPRES data base using measured values of bulk density, organic matter content and soil texture. Testing of validity of the use of estimated curves was done by comparison with unsaturated soil hydraulic parameters of water retention and hydraulic conductivity measured in vitro by Wind's method on soil samples. Calibration of SWAP model for each plot was done on measured soil moisture data of irrigation events by adjusting a value of saturated hydraulic coefficient. Verification of the SWAP model was done by full range of experimental data. Similarity and non-similarity of the water regime at experimental plots as well as results of verification of SWAP model were analyzed

  2. The effects of water replacement by oral rehydration fluids with or without betaine supplementation on performance, acid-base balance, and water retention of heat-stressed broiler chickens. (United States)

    Sayed, M A M; Downing, J


    Exposing broilers to a high temperature increases water and electrolyte K(+) and Na(+) excretion, which negatively affects the heat dissipation capacity and acid-base homeostasis, resulting in losses in growth performance. In this experiment, the efficacy of providing oral rehydration therapy and betaine on growth performance, acid-base balance, and water and electrolyte retention was evaluated. A total of 432 one-day-old broiler chicks (Cobb) were allocated to 72 metabolic cages and reared to 31 d of age under standard conditions. From 32 to 41 d of age, chicks were exposed to heat stress (ambient temperature, 32°C) and high RH (80 to 100% RH) for 9 h daily. The ameliorative effects of a 3 × 3 factorial array of treatments administered via drinking water were evaluated in 8 replicates of 6 chicks per cage for each treatment. Two oral rehydration therapy (ORT) fluids, based on either citrate or bicarbonate salts, were added to tap water. In addition, betaine was added to tap water at an inclusion rate of 0, 500, or 1,000 mg/L to complete the array of 9 liquid-based treatments. Growth performance was assessed at 32, 35, and 41 d of age. From 32 to 35 d of age, chicks receiving ORT fluids exhibited improved growth performance, water balance, and electrolyte (K(+), Na(+)) retention. In addition, the physiological response to stress was attenuated, as indicated by lower heterophil-to-lymphocyte ratios and blood glucose concentrations relative to the negative controls. The addition of betaine at an inclusion rate of 500 mg/L improved BW gain. From d 36 to 41, treatments did not significantly influence growth performance, which suggests that chicks receiving tap water were able to compensate and adapt to the heat-stress conditions. The results demonstrate that the beneficial effects of providing ORT fluids and 500 mg of betaine/L were observed only during the first 4 d of heat exposure. After this period, adaptation to the heat appears to occur, and none of the

  3. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents

    DEFF Research Database (Denmark)

    Resurreccion, Augustus C.; Møldrup, Per; Tuller, Markus


    contents. However, the TO model still overestimated water film thickness at potentials approaching ovendry condition (about −800 MPa). The semi–log linear Campbell-Shiozawa-Rossi-Nimmo (CSRN) model showed better fits for all investigated soils from −10 to −800 MPa and yielded high correlations with CL...

  4. Potential and limitations of phosphate retention media in water protection: a process-based review of laboratory and field-scale tests

    NARCIS (Netherlands)

    Klimeski, A.; Chardon, W.J.; Uusitalo, R.; Turtola, E.


    The application of phosphorus (P)-sorbing materials offers a possible solution for treating municipal wastewater and agricultural runoff. In this paper we discuss P retention and release mechanisms, and review studies on the P retention of different materials and their use as reactive media in

  5. Density maximum and polarizable models of water (United States)

    Kiss, Péter T.; Baranyai, András


    To estimate accurately the density of water over a wide range of temperatures with a density maximum at 4 °C is one of the most stringent tests of molecular models. The shape of the curve influences the ability to describe critical properties and to predict the freezing temperature. While it was demonstrated that with a proper parameter fit nonpolarizable models can approximate this behavior accurately, it is much more difficult to do this for polarizable models. We provide a short overview of ρ-T diagrams for existing models, then we give an explanation of this difficulty. We present a version of the BK model [A. Baranyai and P. T. Kiss, J. Chem. Phys. 133, 144109 (2010), 10.1063/1.3490660; A. Baranyai and P. T. Kiss, J. Chem. Phys. 135, 234110 (2011)], 10.1063/1.3670962 which is capable to predict the density of water over a wide range of temperature. The BK model uses the charge-on-spring method with three Gaussian charges. Since the experimental dipole moment and the geometry is fixed, and the quadrupole moment is approximated by a least mean square procedure, parameters of the repulsion and dispersive attraction forces remained as free tools to match experimental properties. Relying on a simplified but plausible justification, the new version of the model uses repulsion and attraction as functions of the induced dipole moment of the molecule. The repulsive force increases, while the attractive force decreases with the size of the molecular dipole moment. At the same time dipole moment dependent dispersion forces are taking part in the polarization of the molecule. This scheme iterates well and, in addition to a reasonable density-temperature function, creates dipole distributions with accurate estimation of the dielectric constant of the liquid.

  6. Modeling terahertz heating effects on water. (United States)

    Kristensen, Torben T L; Withayachumnankul, Withawat; Jepsen, Peter U; Abbott, Derek


    We apply Kirchhoff's heat equation to model the influence of a CW terahertz beam on a sample of water, which is assumed to be static. We develop a generalized model, which easily can be applied to other liquids and solids by changing the material constants. If the terahertz light source is focused down to a spot with a diameter of 0.5 mm, we find that the steady-state temperature increase per milliwatt of transmitted power is 1.8?C/mW. A quantum cascade laser can produce a CW beam in the order of several milliwatts and this motivates the need to estimate the effect of beam power on the sample temperature. For THz time domain systems, we indicate how to use our model as a worst-case approximation based on the beam average power. It turns out that THz pulses created from photoconductive antennas give a negligible increase in temperature. As biotissue contains a high water content, this leads to a discussion of worst-case predictions for THz heating of the human body in order to motivate future detailed study. An open source Matlab implementation of our model is freely available for use at

  7. Modelling trihalomethanes formation in water supply systems. (United States)

    Di Cristo, Cristiana; Esposito, Giovanni; Leopardi, Angelo


    Chlorination is the most widely used method for disinfection of drinking water, but there are concerns about the formation of by-products, such as trihalomethanes (THMs), since the chronic exposure to them may pose risks to human health. For these reasons regulations fix maximum acceptable THMs levels throughout distribution networks, so it is very important to be able to correctly reproduce their formation. In the literature many models for predicting THMs formation have been developed, both based on empirical relationships and on kinetics involved during chlorine reactions. In this work the use of some of these models and their reliability in real situations is investigated through the application to the Aurunci-Valcanneto Water Supply System in Southern Lazio (Italy). The comparison of the performances of 18 selected literature empirical models furnishes interesting observations, indicating that the formula, developed using field data, results in being more suitable for reproducing THMs formation for the presented case study. Other considerations are also offered from the comparison with the results obtained using a simple first order kinetic model, calibrated using measured data.

  8. Modelling Shallow Water Wakes Using a Hybrid Turbulence Model

    Directory of Open Access Journals (Sweden)

    Clemente Rodriguez-Cuevas


    Full Text Available A numerical research with different turbulence models for shallow water equations was carried out. This was done in order to investigate which model has the ability to reproduce more accurately the wakes produced by the shock of the water hitting a submerged island inside a canal. The study of this phenomenon is important for the numerical methods application advancement in the simulation of free surface flows since these models involve a number of simplifications and assumptions that can have a significant impact on the numerical solutions quality and thus can not reproduce correctly the physical phenomenon. The numerical experiments were carried out on an experimental case under controlled conditions, consisting of a channel with a submerged conical island. The numerical scheme is based on the Eulerian-Lagrangian finite volume method with four turbulence models, three mixing lengths (ml, and one joining k-ϵ on the horizontal axis with a mixing-length model (ml on the vertical axis. The experimental results show that a k-ϵ with ml turbulence model makes it possible to approach the experimental results in a more qualitative manner. We found that when using only a k-ϵ model in the vertical and horizontal direction, the numerical results overestimate the experimental data. Additionally the computing time is reduced by simplifying the turbulence model.

  9. The role of different functional groups in a novel adsorption-complexation-reduction multi-step kinetic model for hexavalent chromium retention by undissolved humic acid. (United States)

    Zhang, Jia; Yin, Huilin; Chen, Linpeng; Liu, Fei; Chen, Honghan


    Undissolved humic acid (HA) has a great retention effect on the migration of hexavalent chromium [Cr(VI)] in soil, and HA functional groups play a predominant role in this process. However, the coupled mode between Cr(VI) retention and HA functional groups reaction is still unclear. In this study, it was found that a fair amount of Cr on HA existed in the forms of ion exchangeable and binding Cr(VI) during the reaction resulting from the ion exchange adsorption and complexation of Cr(VI). According to the results of two-dimensional correlation spectroscopic analysis (2DCOS), HA functional groups participated in the reaction with Cr(VI) in the order of carboxyl ≈ chelated carboxyl > phenol > polysaccharide > methyl, and all the functional groups were more likely to be located at aromatic domains. Based on the results of XPS spectra, rather than to be oxidized by Cr(VI), carboxyl more tended to be complexed by chromium, which is regarded as the precondition for Cr(VI) reduction. Phenol, polysaccharide and methyl with distinct reaction activities successively acted as major electron donors for Cr(VI) reduction in different reaction stages. Consequently, it was determined that the retention of Cr(VI) by undissolved HA followed an adsorption-complexation-reduction mechanism, and based on this, a multi-step kinetic model with multiple types of complexation/reduction sites was developed to simulate the retention processes resulting in a much better fitting effect (R(2) > 0.99) compared with traditional first-order and second-order kinetic models (R(2) < 0.95). This demonstrated that the multi-step kinetic model is of great potential in accurately simulating the migration and transformation of Cr(VI) in soil environment. Copyright © 2017. Published by Elsevier Ltd.

  10. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.


    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model...... and by the connectivity of the pore structure, regardless of w/c ratio and curing age. The permeability of cement pastes could be predicted reasonably well when a minimum particle size 1 mu m was chosen for the cement....

  11. Heterogeneidade dos pontos experimentais de curvas de retenção da água no solo Heterogeneity of experimental points of soil-water retention curves

    Directory of Open Access Journals (Sweden)

    S.O. Moraes


    normalidade para estas tensões, indicando que se deve sempre dar preferência à curva completa de retenção de água no solo e não apenas a dois ou três pontos de interesse imediato, como é feito usualmente. As umidades às várias tensões utilizadas apresentaram baixo coeficiente de variação (In an area of "Terra Roxa Estruturada Latossólica" (Rhodic Kanhapludalf, in Piracicaba, SP, Brazil (20° 42' 30" S, 47° 38' 00" W, 576 m, 250 undisturbed soil samples were collected at 25 cm soil depth, according to a regular grid of spacing of 5 m, resulting a network of 25 Unes and 10 columns. These samples were used to determine 250 soil water retention curves each one with eigth experimental points, using Haines funnels (tensions of 5xl0², 1x10³, 6x10³ and 1x10(4 Pa and Richards pressure chambers (pressures of 3x10(4, 8x10(4,3x10(5 and 1x10(6 Pa, totalizing two thousand values. Position measurements (mode, median and arithmetic mean, variability (total amplitude, interquartil amplitude, standard deviation, coefficient of variation, assimetry, kurtosis and confident limits around the mean and number of samples to estimate the mean of the soil water content at a specific probability level, were used with the following objectives: a to verify how close to the normal distribution are the values of soil water content for the different considered tensions and hence, to investigate what is the best position measurement; b to quantify the variability in each considered tension, identifying the most problematic in the study of soil-water retention and also to analyse the measurement sensibility through the calculation of the necessary number of samples to estimate the mean (assuming a spatial independence of the samples. From the analysis of the obtained results, it could be concluded that the soil-water content values corresponding to tensions of 5x10² and 1x10³ Pa showed very skewed distributions, so that care should be taken in using the arithmetic mean as a position

  12. Humidity interaction of lichens under astrobiological aspects: the impact of UVC exposure on their water retention properties


    J. Jänchen; Meeßen, J.; Herzog, T.H.; Feist, M.; de la Torre, R.; de Vera, J.P.P.


    We quantitatively studied the hydration and dehydration behaviour of the three astrobiological model lichens Xanthoria elegans, Buellia frigida and Circinaria gyrosa by thermoanalysis and gravimetric isotherm measurements under close-to-Martian environmental conditions in terms of low temperature and low pressure. Additionally, the impact of UVC exposure on the isolated symbionts of B. frigida and X. elegans was studied by thermoanalysis and mass spectrometry as well as by gravimetric isother...

  13. Modeling Retention at a Large Public University: Can At-Risk Students Be Identified Early Enough to Treat? (United States)

    Singell, Larry D.; Waddell, Glen R.


    We examine the extent to which readily available data at a large public university can be used to a priori identify at-risk students who may benefit from targeted retention efforts. Although it is possible to identify such students, there remains an inevitable tradeoff in any resource allocation between not treating the students who are likely to…

  14. Trichomes related to an unusual method of water retention and protection of the stem apex in an arid zone perennial species. (United States)

    Lusa, Makeli Garibotti; Cardoso, Elaine Cristina; Machado, Silvia Rodrigues; Appezzato-da-Glória, Beatriz


    It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks. Published by Oxford University Press on behalf of the Annals of Botany Company.


    Directory of Open Access Journals (Sweden)

    M. A. Zazouli, S. Nasseri, A. H. Mahvi, M. Gholami, A. R. Mesdaghinia, M. Younesian


    Full Text Available The objectives of this research were to investigate the rejection efficiency of salt and hydrophobic fraction of natural organic matter, to study the flux decline behavior with a spiral wound nanofiltration membrane, and also to survey the influence of water chemistry on membrane performance. Experiments were conducted using a cross flow pilot-scale membrane unit with a full circulation mode. Humic acid was used as hydrophobic organic matter and NaCl as background electrolyte. Results showed that flux reduction increased with increasing ionic strength and humic acid concentration, and with lower pH. The rejection efficiency of organic and salt decreased with the decrease in pH and increase in ionic strength, because of osmotic pressure increase, leading to permeate flux decline and decrease in salt rejection. In addition, the improved salt rejection was likely due to Donnan exclusion by humic material close to membrane surfaces. The average rejection efficiency of humic acid and salt ranged between 91.2%-95.25% and 63.6%-80%, respectively. Dissolved organic carbon concentration was less than 0.57mg/L in permeate for all experiments. With increasing organic concentration, the charge of the membrane surface has become more negative due to the adsorption of organic foulants on the membrane surface, and thus increased the electrostatic repulsion. However, the increasing surface charge had the potential to result in a larger molecular weight cut-off of a fouled membrane due to membrane swelling which can lead to lower rejection solutes. Therefore, results of this study indicated that membrane fouling may significantly affect the rejection of organic and ion solute.

  16. Hydrologic and water quality modeling: spatial and temporal considerations (United States)

    Hydrologic and water quality models are used to help manage water resources by investigating the effects of climate, land use, land management, and water management on water resources. Each water-related issue is better investigated at a specific scale, which can vary spatially from point to watersh...

  17. A generalized flow path model for water distribution optimization (United States)

    Hsu, N.; Cheng, W.; Yeh, W. W.


    A generalized flow path model is developed for optimizing a water distribution system. The model simultaneously describes a water distribution system in two parts: (1) the water delivery relationships between suppliers and receivers and (2) the physical water delivery system. In the first part, the model considers waters from different suppliers as multiple commodities. This helps the model to clearly describe water deliveries by identifying the relationships between suppliers and receivers. The second part characterizes a physical water distribution network by all possible flow paths. The advantages of the proposed model are that: (1) it is a generalized methodology to optimize water distribution, delivery scheduling, water trade, water transfer, and water exchange under existing reservoir operation rules, contracts, and agreements; (2) it can consider water as multiple commodities if needed; and (3) no simplifications are made for either the physical system or the delivery relationships. The model can be used as a tool for decision making for scheduling optimization. The model optimizes not only the suppliers to each receiver but also their associated flow paths for supplying water. This characteristic leads to the optimum solution that contains the optimal scheduling results and detailed information of water distribution in the physical system. That is, the water right owner, water quantity and its associated flow path of each delivery action are represented explicitly in the results rather than merely an optimized total flow quantity in each arc of a distribution network. The proposed model is first verified by a hypothetical water distribution system. Then, the model is applied to the water distribution system of the Tou-Qian River Basin in northern Taiwan. The results show that the flow path model has the ability to optimize the quantity of each water delivery, the associated flow paths of the delivery, and the strategies of water transfer while considering

  18. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.


    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  19. Modeling the release of E. coli D21g with transients in water content (United States)

    Bradford, Scott A.; Wang, Yusong; Torkzaban, Saeed; Šimůnek, Jiri


    Transients in water content are well known to mobilize colloids that are retained in the vadose zone. However, there is no consensus on the proper model formulation to simulate colloid release during drainage and imbibition. We present a model that relates colloid release to changes in the air-water interfacial area (Aaw) with transients in water content. Colloid release from the solid-water interface (SWI) is modeled in two steps. First, a fraction of the colloids on the SWI partitions to the mobile aqueous phase and air-water interface (AWI) when the Aaw increases during drainage. Second, colloids that are retained on the AWI or at the air-water-solid triple line are released during imbibition as the AWI is destroyed. The developed model was used to describe the release of Escherichia coli D21g during cycles of drainage and imbibition under various saturation conditions. Simulations provided a reasonable description of experimental D21g release results. Only two model parameters were optimized to the D21g release data: (i) the cell fraction that was released from the SWI (fr) and (ii) the cell fraction that partitioned from the SWI to the AWI (fawi). Numerical simulations indicated that cell release was proportional to fr and the initial amount of retention on the SWI and AWI. Drainage to a lower water content enhanced cell release, especially during subsequent imbibition, because more bacteria on the SWI were partitioned to the AWI and/or aqueous phase. Imbibition to a larger water content produced greater colloid release because of higher flow rates, and more destruction of the AWI (smaller Aaw). Variation in the value of fawi was found to have a pronounced influence on the amount of cell release in both drainage and imbibition due to changes in the partitioning of cells from the SWI to the aqueous phase and the AWI.

  20. Modelling the ecosystem effects of nitrogen deposition: Model of Ecosystem Retention and Loss of Inorganic Nitrogen (MERLIN

    Directory of Open Access Journals (Sweden)

    B. J. Cosby


    Full Text Available A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1 temporal sequences of carbon fluxes and pools- 2 time series of hydrological discharge through the soils, 3 historical and current external sources of inorganic nitrogen; 4 current amounts of nitrogen in the plant and soil organic compartments; 5 constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6 soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1 concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2 total nitrogen contents of the organic and inorganic compartments; 3 C:N ratios of the aggregated plant and soil organic compartments; and 4 rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen


    Costanza-Robinson, Molly S.; Carlson, Tyson D.; Brusseau, Mark L.


    Gas-phase miscible-displacement experiments were conducted using a large weighing lysimeter to evaluate retention processes for volatile organic compounds (VOCs) in water-unsaturated (vadoze-zone) systems, and to test the utility of gas-phase tracers for predicting VOC retardation. Trichloroethene (TCE) served as a model VOC, while trichlorofluoromethane (CFM) and heptane were used as partitioning tracers to independently characterize retention by water and the air-water interface, respectively. Retardation factors for TCE ranged between 1.9 and 3.5, depending on water content. The results indicate that dissolution into the bulk water was the primary retention mechanism for TCE under all conditions studied, contributing approximately two thirds of the total measured retention. Accumulation at the air-water interface comprised a significant fraction of the observed retention for all experiments, with an average contribution of approximately 24%. Sorption to the solid phase contributed approximately 10% to retention. Water contents and air-water interfacial areas estimated based on the CFM and heptane tracer data, respectively, were similar to independently measured values. Retardation factors for TCE predicted using the partitioning-tracer data were in reasonable agreement with the measured values. These results suggest that gas-phase tracer tests hold promise for characterizing the retention and transport of VOCs in the vadose-zone. PMID:23333418

  2. Retention data of bile acids and their oxo derivatives in characterization of pharmacokinetic properties and in silico ADME modeling. (United States)

    Trifunović, Jovana; Borčić, Vladan; Vukmirović, Saša; Kon, Svetlana Goločorbin; Mikov, Momir


    Information on ADME properties of examined bile acids and their oxo derivatives are scarce, although the interest for bile acids and their use in nanochemistry and macromolecular chemistry is increasing. The purpose of this research was to evaluate the lipophilicity, a crucial physicochemical parameter for describing ADME properties of selected bile acids and their oxo derivatives, and to compare two approaches: experimentally determined hydrophobicity parameters and calculated logP values. Commercially available bile acids - deoxycholic, chenodeoxycholic, hyodeoxycholic and ursodeoxycholic acid were used to synthesize oxo derivatives. Lipophilicity was evaluated in two solvent systems: toluene/ethanol and toluene/butanol. Retention parameters were acquired by normal-phase TLC. The correlations between calculated logP values obtained using five different software and experimentally determined hydrophobicity parameters (RM(0)(tol/eth), RM(0)(tol/but), b(tol/eth) and b(tol/but)) were examined. Correlation analysis confirmed significant dependence between experimental RM(0) values and software calculated parameters. Results suggest satisfactory intestinal absorption after oral administration for all of the examined compounds as well as low volumes of distribution, and high affinity for binding with plasma proteins. Penetration through blood-brain barrier and skin is not satisfactory. All of the examined compounds show high affinity for binding with G-protein coupled receptors and consequently inhibition of ionic channels. Results also suggest possible binding with nuclear receptors. Established lipophilicity testing model of studied compounds showed excellent predictive ability and might represent significant tool in development of relations between chromatographic behavior and ADME properties. Compounds 3α-hydroxy-7,12-dioxo-5β-cholanoic and 12α-hydroxy-3,7-dioxo-5β-cholanoic acid might be the most suitable candidates for further development studies (satisfactory

  3. Drinking Water Temperature Modelling in Domestic Systems

    NARCIS (Netherlands)

    Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.


    Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

  4. Water institutions and governance models for the funding, financing ...

    African Journals Online (AJOL)

    ... Model 3: SPV housing dedicated water infrastructure cash-flows, Model 4: stand-alone water institution with strong balance sheet, Model 5: public-private partnership (PPP) with equity, Model 6: private concession, and Model 7: private development. Various institutional options for consideration for the future management ...

  5. Tampa Bay Water Clarity Model (TBWCM): As a Predictive Tool (United States)

    The Tampa Bay Water Clarity Model was developed as a predictive tool for estimating the impact of changing nutrient loads on water clarity as measured by secchi depth. The model combines a physical mixing model with an irradiance model and nutrient cycling model. A 10 segment bi...

  6. Suitability of the water balance model LARSIM to determine the impact of climatic change (United States)

    Gerlinger, K.


    The Large Area Runoff Simulation Model (LARSIM) was developed to simulate continuously the water balance of large river basins. Beside the runoff generation in the area and the translation and retention in river channels, LARSIM includes the processes of interception, evapo-transpiration and water storage in soils and aquifers. Snow accumulation and snow melt can be considered as well as artificial influences (e.g. storage basins, diversions or water transfer between different basins). LARSIM combines well-tried deterministic hydrological model components, which are as far as possible generally applicable and are based on accessible system data for the land surface. Emphasis is laid on the reliable determination of evapotranspiration by using the Penman-Monteith-equations. Evapotranspiration and the soil water budget are calculated separately for different land uses and field capacities of the soils. For the State of Baden-Wuerttemberg (SW-Germany, approx. 36.000 km2) water balance models were set up which are based on raster cells (square grid 1 km2). The model build up was done to a large extent computer-aided on the basis of extensive digital system data (elevation model, vectored river network, satellite classification of land use, field capacities of soils). For each raster cell up to 16 land use classes are considered separately. The models shall be used for the estimation of the effects of possible climatic modifications on the water regime (like discharge, infiltration, evaporation). The results of the regional hydrostatic atmospheric circulation model REMO will be applied as input data to the water balance models to define the impact of climate change on the hydrological processes. Especially for flood prevention, State officials and the administration expect reliable information on the expected changes. Prior to the use of the water balance model for climatic change calculations, the uncertainty of the model to simulate the actual hydrological conditions

  7. [Gastric emptying and metabolic acidosis. II. Study, in an experimental model in rats, of gastric retention of a sodium bicarbonate solution]. (United States)

    Belangero, V M; Collares, E F


    The gastric emptying of a 0.25 M sodium bicarbonate solution was studied in rats with metabolic acidosis induced by a previous (6 hours) orogastric infusion of a 0.5 M ammonium chloride solution. Two control groups were used: one previously infused with 0.5 M sodium chloride and the other with water, in the same volume that further solutions. Every animal was fed with 2 ml/100 g of its weight of these solutions. The test meal (bicarbonate solution) was utilized containing 6 mg% red fenol as a marker. The gastric retentions were determined 6 hours after those first meals at 5, 10, 20 and 30 minutes. The results demonstrated that the gastric retentions of the bicarbonate solution were significantly lower in the acidotic group than that one of water group (at 20 minutes) and that one of the sodium chloride (at 10, 20 and 30 minutes). The data here presented suggest that metabolic acidosis accelerates the gastric emptying of a sodium bicarbonate solution.

  8. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.


    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  9. An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs (United States)

    Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai


    Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.

  10. Post-mining water treatment. Nanofiltration of uranium-contaminated drainage. Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Michael


    Nanofiltration of real uranium-contaminated mine drainage was successfully discussed in experiments and modeling. For the simulation a renowned model was adapted that is capable of describing multi-component solutions. Although the description of synthetic multi-component solutions with a limited number of components was performed before ([Garcia-Aleman2004], [Geraldes2006], [Bandini2003]) the results of this work show that the adapted model is capable of describing the very complex solution. The model developed here is based on: The Donnan-Steric Partitioning Pore Model incorporating Dielectric Exclusion - DSPM and DE ref. [Bowen1997], [Bandini2003], [Bowen2002], [Vezzani2002]. The steric, electric, and dielectric exclusion model - SEDE ref. [Szymczyk2005]. The developed modeling approach is capable of describing multi-component transport, and is based on the pore radius, membrane thickness, and volumetric membrane charge density as physically relevant membrane parameters instead of mere fitting parameters which allows conclusions concerning membrane modification or process design. The experiments involve typical commercially available membranes in combination with a water sample of industrial relevance in the mining sector. Furthermore, it has been shown experimentally that uranium speciation influences its retention. Hence, all experiments consider the speciation of uranium when assessing its charge and size. In the simulation 10 different ionic components have been taken into account. By freely fitting 4 parameters in parallel (pore radius, membrane thickness, membrane charge, relative permittivity of the oriented water layer at the pore wall) an excellent agreement between experiment and simulation was obtained. Moreover, the determined membrane thickness and pore radius is in close agreement with the values obtained by independent membrane characterization using pure water permeability and glucose retention. On the other hand, the fitted and the literature

  11. The hydrodynamic dust retention modeling process with a foam layer for open linear dynamic technological systems at construction industry enterprises

    Directory of Open Access Journals (Sweden)

    Bespalov Vadim


    Full Text Available The physical essence of the reducing air pollution hydrodynamic method by means of the foamy method as the most effective dust retention technology for open long sources at construction industry enterprises is presented in the article. The mathematical description of this technology has been performed, taking into account the physical and chemical properties of the dust and foam bubble, as well as the parameters of the return of dust particles to technological raw material due to various physical mechanisms for their capture. The obtained parametric dependence of dust retention efficiency provides the possibility of its predicted calculation as a resultant parameter for the considering technology, taking into account the interaction of dust with a foam layer.

  12. Compositional Dependence of Solubility/Retention of Molybdenum Oxides in Aluminoborosilicate-Based Model Nuclear Waste Glasses. (United States)

    Brehault, Antoine; Patil, Deepak; Kamat, Hrishikesh; Youngman, Randall E; Thirion, Lynn M; Mauro, John C; Corkhill, Claire L; McCloy, John S; Goel, Ashutosh


    Molybdenum oxides are an integral component of the high-level waste streams being generated from the nuclear reactors in several countries. Although borosilicate glass has been chosen as the baseline waste form by most of the countries to immobilize these waste streams, molybdate oxyanions (MoO 4 2- ) exhibit very low solubility (∼1 mol %) in these glass matrices. In the past three to four decades, several studies describing the compositional and structural dependence of molybdate anions in borosilicate and aluminoborosilicate glasses have been reported in the literature, providing a basis for our understanding of fundamental science that governs the solubility and retention of these species in the nuclear waste glasses. However, there are still several open questions that need to be answered to gain an in-depth understanding of the mechanisms that control the solubility and retention of these oxyanions in glassy waste forms. This article is focused on finding answers to two such questions: (1) What are the solubility and retention limits of MoO 3 in aluminoborosilicate glasses as a function of chemical composition? (2) Why is there a considerable increase in the solubility of MoO 3 with incorporation of rare-earth oxides (for example, Nd 2 O 3 ) in aluminoborosilicate glasses? Accordingly, three different series of aluminoborosilicate glasses (compositional complexity being added in a tiered approach) with varying MoO 3 concentrations have been synthesized and characterized for their ability to accommodate molybdate ions in their structure (solubility) and as a glass-ceramic (retention). The contradictory viewpoints (between different research groups) pertaining to the impact of rare-earth cations on the structure of aluminoborosilicate glasses are discussed, and their implications on the solubility of MoO 3 in these glasses are evaluated. A novel hypothesis explaining the mechanism governing the solubility of MoO 3 in rare-earth containing aluminoborosilicate

  13. Models, Analysis, and Recommendations Pertaining to the Retention of Naval Special Warfare s Mid-Level Officers (United States)


    drawdown for Afghanistan nearing, opportunities to forge an officer corps through actual combat experience are diminishing.”10 B. A CALL FOR...The Analytic Hierarch/Network Process,” in Rev. R. Acad. Cien. Serie A. Mat (RACSAM), submitted by Francisco Javier Giron (Real Academia de Ciencias ...Academia de Ciencias : Spain. Scott, Nathan. Naval Special Warfare Officer Retention Survey. Monterey, CA: NPS Press, September 2013. Whittenberger

  14. Effect of alcohol aggregation on the retention factors of chiral solutes with an amylose-based sorbent: modeling and implications for the adsorption mechanism. (United States)

    Tsui, Hung-Wei; Franses, Elias I; Wang, Nien-Hwa Linda


    Various displacement models in the literature have been widely used for understanding the adsorption mechanisms of solutes in various chromatography systems. The models were used for describing the often-observed linear plots of the logarithms of the retention factor versus the logarithms of the polar modifier concentration CI(0). The slopes of such a plot was inferred to be equal to the number of the displaced modifier molecules upon adsorption of one solute molecule, and were generally found to be greater than 1. In this study, the retention factors of four structurally related chiral solutes, ethyl lactate (EL), methyl mandelate (MM), benzoin (B), and pantolactone (PL), were measured for the amylose tris[(S)-α-methylbenzylcarbamate] sorbent, or AS, as a function of the concentration of isopropanol (IPA) in n-hexane. With increasing IPA concentration CI(0), the slopes increase from less than 1, at a concentration range from 0.13 to 1.3M, to slightly more than 1 at higher concentrations. Such slopes cannot be explained by the conventional retention models. It was found previously for monovalent solutes that such slopes can only be explained when the aggregation of the mobile phase modifier, isopropyl alcohol, was accounted for. A new retention model is presented here, accounting for alcohol aggregation, multivalent solute adsorption, multivalent solute-alcohol complexation, alcohol adsorption, and solute intra hydrogen-bonding, which occur in these four solutes. The slope is found to be controlled by three key dimensionless groups, the fraction of the sorbent binding sites covered by IPA, the fraction of the solute molecules in complex form, and the fraction of the IPA molecules in aggregate form. The limiting slope at a very high IPA concentration is equal to the value of (x+y)/n, where x is the number of the solute-sorbent binding sites and y is the number of the alcohol molecules in the solute-alcohol complex, and n is the alcohol aggregation number. The model

  15. Lake St. Clair: Storm Wave and Water Level Modeling (United States)


    levels at St. Clair Shores and Windmill Point. The ADCIRC model was tightly coupled with four near-shore Full-Plane STWAVE model grids using CSTORM...levels at St. Clair Shores. ............... 71  Figure 4-6. Comparison of Storm 002 observed and modeled water levels at Windmill Point...observed and modeled water levels at Windmill Point. ................. 74  Figure 4-9. Comparison of Storm 004 observed and modeled water levels at St

  16. Biochar from Sugarcane Filtercake Reduces Soil CO2 Emissions Relative to Raw Residue and Improves Water Retention and Nutrient Availability in a Highly-Weathered Tropical Soil (United States)

    Eykelbosh, Angela Joy; Johnson, Mark S.; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo


    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522

  17. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    Directory of Open Access Journals (Sweden)

    Angela Joy Eykelbosh

    Full Text Available In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w. were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w. raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w. in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions.

  18. An Integrated Risk Management Model for Source Water Protection Areas


    Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien


    Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water qual...

  19. Modeling root water uptake with root mediated soil water content redistribution (United States)

    Dohnal, M.; Votrubova, J.; Vogel, T.; Tesar, M.


    The main objective of this study was to develop and test a simple root water uptake parameterization applicable in numerical models of soil water movement. The suggested approach was implemented in a one-dimensional dual-continuum model of soil water flow based on Richards' equation. The model was used to simulate soil water movement at an experimental forest site. The performance of the model was evaluated using observed soil water pressure and soil water content data. Several episodes, during which the root mediated soil water content redistribution effects played an important role, were detected. Differences between the model responses and observations, as well as differences between the traditional and newly developed root water uptake modeling approaches, were analyzed. The research was supported by the Czech Science Foundation project No. 205/08/1174.

  20. Adaptation of a Lay Health Advisor Model as a Recruitment and Retention Strategy in a Clinical Trial of College Student Smokers (United States)

    Varvel, Shiloh Jordan; Cronk, Nikole J.; Harris, Kari Jo; Scott, Anne B.


    This study describes and provides results from a process evaluation of a lay health advisor (LHA) model to enhance participation in a clinical trial of the effectiveness of motivational interviewing on smoking cessation in college fraternity and sorority members. The implementation of the model had two phases: (a) the selection and training of LHAs as liaisons between research staff and participants and (b) LHAs’ roles in recruitment and retention. Perceptions of the LHA model were explored using survey questionnaires. Trial participants (N = 118) and LHAs (N = 8) were generally satisfied with the model and identified LHAs as helpful to participation. Seventy-four percent of chapter members were screened and 73% of participants received three of the four motivational interviewing sessions. These results indicate the LHA model was well received and met the needs of the research project. PMID:19116416

  1. Modeling water infiltration and pesticides transport in unsaturated zone of a sedimentary aquifer (United States)

    Sidoli, Pauline; Angulo-Jaramillo, Rafael; Baran, Nicole; Lassabatère, Laurent


    Groundwater quality monitoring has become an important environmental, economic and community issue since increasing needs drinking water at the same time with high anthropic pressure on aquifers. Leaching of various contaminants as pesticide into the groundwater is closely bound to water infiltration in the unsaturated zone which whom solute transport can occur. Knowledge's about mechanisms involved in the transfer of pesticides in the deep unsaturated zone are lacking today. This study aims to evaluate and to model leaching of pesticides and metabolites in the unsaturated zone, very heterogeneous, of a fluvio-glacial aquifer, in the South-East of France, where contamination of groundwater resources by pesticides is frequently observed as a consequence of intensive agricultural activities. Water flow and pesticide transport were evaluated from column tests under unsaturated conditions and from adsorption batch experiments onto the predominant lithofacies collected, composed of a mixture of sand and gravel. A maize herbicide, S-metolachlor, applied on the study site and worldwide and its two major degradation products (metolachlor ethanesulfonic acid and metolachlor oxanilic acid) were studied here. A conservative tracer, bromide ion, was used to determine water dispersive parameters of porous media. Elution curves were obtained from pesticide concentrations analyzed by an ultra-performance liquid chromatography system interfaced to a triple quadrupole mass spectrometer and from bromide concentrations measured by ionic chromatography system. Experimental data were implemented into Hydrus to model flow and solute transfer through a 1D profile in the vadose zone. Nonequilibrium solute transport model based on dual-porosity model with mobile and immobile water is fitting correctly elution curves. Water dispersive parameters show flow pattern realized in the mobile phase. Exchanges between mobile and immobile water are very limited. Because of low adsorptions onto

  2. Difference equation model for isothermal gas chromatography expresses retention behavior of homologues of n-alkanes excluding the influence of holdup time


    Wu, Liejun; Chen, Yongli; Caccamise, Sarah A.L.; Li, Qing X.


    A difference equation (DE) model is developed using the methylene retention increment (Δtz) of n-alkanes to avoid the influence of gas holdup time (tM). The effects of the equation orders (1st–5th) on the accuracy of a curve fitting show that a linear equation (LE) is less satisfactory and it is not necessary to use a complicated cubic or higher order equation. The relationship between the logarithm of Δtz and the carbon number (z) of the n-alkanes under isothermal conditions closely follows ...

  3. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))


    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  4. Fall 1982 Retention Study. (United States)

    Peralta Community Coll. District, Oakland, CA. Office of Research, Planning and Development.

    In fall 1982, a study was conducted in the Peralta Community College District (PCCD) using withdrawal and grade distribution data to analyze student retention patterns. Successful retention rates were based on the percentage of students who received a passing grade, while total retention rates were based on the percentage of students who received…

  5. Fall 1984 Retention Study. (United States)

    Peralta Community Coll. District, Oakland, CA. Office of Research, Planning and Development.

    A study was conducted of the retention patterns of students enrolled in the Peralta Community College District (PCCD) in fall 1984 using college reports on withdrawals and grade distributions. The study focused on successful retention (i.e., all students who received a passing grade) and on total retention (i.e., all students who received any…

  6. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface. (United States)

    Brusseau, Mark L


    A comprehensive understanding of the transport and fate of per- and poly-fluoroalkyl substances (PFAS) in the subsurface is critical for accurate risk assessments and design of effective remedial actions. A multi-process retention model is proposed to account for potential additional sources of retardation for PFAS transport in source zones. These include partitioning to the soil atmosphere, adsorption at air-water interfaces, partitioning to trapped organic liquids (NAPL), and adsorption at NAPL-water interfaces. An initial assessment of the relative magnitudes and significance of these retention processes was conducted for two PFAS of primary concern, perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), and an example precursor (fluorotelomer alcohol, FTOH). The illustrative evaluation was conducted using measured porous-medium properties representative of a sandy vadose-zone soil. Data collected from the literature were used to determine measured or estimated values for the relevant distribution coefficients, which were in turn used to calculate retardation factors for the model system. The results showed that adsorption at the air-water interface was a primary source of retention for both PFOA and PFOS, contributing approximately 50% of total retention for the conditions employed. Adsorption to NAPL-water interfaces and partitioning to bulk NAPL were also shown to be significant sources of retention. NAPL partitioning was the predominant source of retention for FTOH, contributing ~98% of total retention. These results indicate that these additional processes may be, in some cases, significant sources of retention for subsurface transport of PFAS. The specific magnitudes and significance of the individual retention processes will depend upon the properties and conditions of the specific system of interest (e.g., PFAS constituent and concentration, porous medium, aqueous chemistry, fluid saturations, co-contaminants). In cases wherein these

  7. Estimation of water retention and availability in soils of Rio Grande do Sul Estimativa da retenção e disponibilidade de água em solos do Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    José Miguel Reichert


    Full Text Available Dispersed information on water retention and availability in soils may be compiled in databases to generate pedotransfer functions. The objectives of this study were: to generate pedotransfer functions to estimate soil water retention based on easily measurable soil properties; to evaluate the efficiency of existing pedotransfer functions for different geographical regions for the estimation of water retention in soils of Rio Grande do Sul (RS; and to estimate plant-available water capacity based on soil particle-size distribution. Two databases were set up for soil properties, including water retention: one based on literature data (725 entries and the other with soil data from an irrigation scheduling and management system (239 entries. From the literature database, pedotransfer functions were generated, nine pedofunctions available in the literature were evaluated and the plant-available water capacity was calculated. The coefficient of determination of some pedotransfer functions ranged from 0.56 to 0.66. Pedotransfer functions generated based on soils from other regions were not appropriate for estimating the water retention for RS soils. The plant-available water content varied with soil texture classes, from 0.089 kg kg-1 for the sand class to 0.191 kg kg-1 for the silty clay class. These variations were more related to sand and silt than to clay content. The soils with a greater silt/clay ratio, which were less weathered and with a greater quantity of smectite clay minerals, had high water retention and plant-available water capacity.Informações dispersas sobre retenção e disponibilidade de água em solos podem ser agrupadas em bancos de dados para gerar funções de pedotransferência. Os objetivos do trabalho foram: gerar equações de pedotransferência para estimar a retenção de água a partir de atributos do solo de fácil obtenção; avaliar a eficiência de pedofunções existentes para várias regiões para a estimativa da

  8. Increased retention of americium in kidneys as compared with plutonium in an actinide wound contamination model in the rat. (United States)

    Griffiths, Nina M; Coudert, Sylvie; Molina, Thibaut; Wilk, Jean-Claude; Renault, Daniel; Berard, Philippe; Van der Meeren, Anne


    Americium-241 ((241)Am) presents a potential risk for nuclear industry workers associated with reactor decommissioning and aging combustible materials. The purpose of this study was to investigate Am renal retention after actinide contamination by wounding in the rat. Anesthetized rats were contaminated with Mixed Oxide (MOX) (7.1% Plutonium [Pu] by mass and containing 27% Am as % total alpha activity), Pu or Am nitrate following an incision wound of the hind leg. Times of euthanasia ranged from 2 hours to 5 months after contamination. Pu and Am levels were quantified following radiochemistry and alpha-spectrophotometry. Initial data show that over the experimental period the proportion of Am in kidneys as a fraction of total kidney alpha activity was elevated as compared to MOX powder indicating a specific retention in this organ. The percentage of Pu was similar to the powder. After MOX contamination, kidney to liver ratios appeared to increase more markedly for Am (from 0.2 at 7 days to 0.6 at 90 days) as compared with Pu (0.1 at 7 days to 0.2 at 90 days). In accordance with tissue actinide retention the dose from Am to the kidney increases with time. For comparison, the ratio of estimated equivalent doses due to Am to kidney is 1.5-fold greater than for Pu (around 90 versus 60 mSv). After actinide contamination of wounds, Am is concentrated in the kidneys as compared to Pu leading to potential exposure of renal tissue to both alpha particles and gamma radiation.

  9. Modeling the systemic retention of beryllium in rat. Extrapolation to human; Modelizacion de la retencion sistemica del berilio en la rata. Extrapolacion al Hombre

    Energy Technology Data Exchange (ETDEWEB)

    Montero Prieto, M.; Vidania Munoz, R. de


    In this work, we analyzed different approaches, assayed in order to numerically describe the systemic behaviour of Beryllium. The experimental results used in this work, were previously obtained by Furchner et al. (1973), using Sprague-Dawley rats, and others animal species. Furchner's work includes the obtained model for whole body retention in rats, but not for each target organ. In this work we present the results obtained by modeling the kinetic behaviour of Beryllium in several target organs. The results of this kind of models were used in order to establish correlations among the estimated kinetic constants. The parameters of the model were extrapolated to humans and, finally, compared with others previously published. (Author) 12 refs.

  10. GPR-Based Water Leak Models in Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    David Ayala–Cabrera


    Full Text Available This paper addresses the problem of leakage in water distribution systems through the use of ground penetrating radar (GPR as a nondestructive method. Laboratory tests are performed to extract features of water leakage from the obtained GPR images. Moreover, a test in a real-world urban system under real conditions is performed. Feature extraction is performed by interpreting GPR images with the support of a pre-processing methodology based on an appropriate combination of statistical methods and multi-agent systems. The results of these tests are presented, interpreted, analyzed and discussed in this paper.

  11. Laboratory Tests of Substrate Physical Properties May Not Represent the Retention Capacity of Green Roof Substrates In Situ

    Directory of Open Access Journals (Sweden)

    Christopher Szota


    Full Text Available Green roofs can be used to reduce the volume of polluted stormwater that is generated by cities. Modelling rainfall retention is critical, but green roof water balance models often rely on the physical properties of substrates. In these models, substrate water holding capacity (WHC determines the depth of water which can be stored before runoff is generated; whereas, the permanent wilting point (PWP limits evapotranspiration. The WHC and PWP, as well as plant available water (PAW; where PAW = WHC − PWP, as determined from laboratory tests, may not truly reflect how substrates perform on green roofs. We therefore ran a simulated rainfall experiment on green roof modules to (i compare the rainfall retention of vegetated and non-vegetated substrates with different WHC and PAW, and (ii relate retention to substrate storage capacity, as calculated from laboratory measures of WHC and PAW. We found that the PAW of a substrate is a better indicator of evapotranspiration and retention when compared with WHC. However, we also found that substrates always retained less water than their calculated storage capacity would suggest, most likely being due to their high permeability. Our results indicate that using laboratory-derived measures of WHC and PAW in green roof models may be over-estimating both evapotranspiration and rainfall retention.


    Massinon, M; De Cock, N; Salah, S Ouled Taleb; Lebeau, F


    A spray retention model was used in this study to explore theoretically the effect of a range of mixture surface tension on the spray retention and the variability of deposits. The spray retention model was based on an algorithm that tested whether droplets from a virtual nozzle intercepted a 3D plant model. If so, the algorithm determined the contribution of the droplet to the overall retention depending on the droplet impact behaviour on the leaf; adhesion, rebound or splashing. The impact outcome probabilities, function of droplet impact energy, were measured using high-speed imaging on an excised indoor grown barley leaf (BBCH12) both for pure water (surface tension of 0.072 N/m) and a non-ionic super spreader (static surface tension of 0.021 N/m) depending on the surface orientation. The modification of spray mixture properties in the simulations was performed by gradually changing the spray the droplet impact probabilities between pure water and a solution with non-ionic surfactant exhibiting super spreading properties. The plant architecture was measured using a structured light scanner. The final retention was expressed as the volume of liquid retained by the whole plant relative to the projected leaf surface area in the main spray direction. One hundred simulations were performed at different volumes per hectare and flat-fan nozzles for each formulation surface tension. The coefficient of variation was used as indicator of variability of deposits. The model was able to discriminate between mixture surface tension. The spray retention increased as the mixture surface tension decreased. The variability of deposits also decreased as the surface tension decreased. The proposed modelling approach provides a suited tool for sensitivity analysis: nozzle kind, pressure, volume per hectare applied, spray mixture physicochemical properties, plant species, growth stage could be screened to determine the best spraying characteristics maximizing the retention. The

  13. Model predictive control on open water systems

    NARCIS (Netherlands)

    Van Overloop, P.J.


    Human life depends on water daily, especially for drinking and food production. Also, human life needs to be protected against excess of water caused by heavy precipitation and floods. People have formed water management organizations to guarantee these necessities of life for communities. These


    EPANET is a Windows program that performs extended period simulation of hydraulic and water-quality behavior within pressurized pipe networks. It tracks the flow of water in each pipe, the pressure at each node, the height of water in each tank, and the concentration of a chemica...

  15. Modeling water clarity in oceans and coasts (United States)

    In oceans and coastal waters, phytoplankton is the primary producer of organic compounds which form the base for the food chain. The concentration of phytoplankton is a major factor controlling water clarity and the depth to which light penetrates in the water column. The light i...

  16. Using System Dynamic Model and Neural Network Model to Analyse Water Scarcity in Sudan (United States)

    Li, Y.; Tang, C.; Xu, L.; Ye, S.


    Many parts of the world are facing the problem of Water Scarcity. Analysing Water Scarcity quantitatively is an important step to solve the problem. Water scarcity in a region is gauged by WSI (water scarcity index), which incorporate water supply and water demand. To get the WSI, Neural Network Model and SDM (System Dynamic Model) that depict how environmental and social factors affect water supply and demand are developed to depict how environmental and social factors affect water supply and demand. The uneven distribution of water resource and water demand across a region leads to an uneven distribution of WSI within this region. To predict WSI for the future, logistic model, Grey Prediction, and statistics are applied in predicting variables. Sudan suffers from severe water scarcity problem with WSI of 1 in 2014, water resource unevenly distributed. According to the result of modified model, after the intervention, Sudan’s water situation will become better.

  17. Black Student Retention in Higher Education. (United States)

    Lang, Marvel, Ed.; Ford, Clinita A., Ed.

    This collection focuses on problems in the recruitment, enrollment and retention of Blacks in higher education in America. The following chapters are provided: "The Black Student Retention Problem in Higher Education: Some Introductory Perspectives" (Marvel Lang); "Early Acceptance and Institutional Linkages in a Model Program of Recruitment,…

  18. Emotional Intelligence and Nursing Student Retention (United States)

    Wilson, Victoria Jane


    The study examined the constructs of a Multi-Intelligence Model of Retention with four constructs: cognitive and emotional-social intelligence, student characteristics, and environmental factors. Data were obtained from sophomore students entering two diploma, nine associate, and five baccalaureate nursing programs. One year later, retention and…

  19. Faculty Personality: A Factor of Student Retention (United States)

    Shaw, Cassandra S.; Wu, Xiaodong; Irwin, Kathleen C.; Patrizi, L. A. Chad


    The purpose of this study was to determine the relationship between student retention and faculty personality as it was hypothesized that faculty personality has an effect on student retention. The methodology adopted for this study was quantitative and in two parts 1) using linear regression models to examine the impact or causality of faculty…

  20. Mathematical modelization of surface waters for drinking water; Modelizacion matematica de la potabilizacion de aguas superficiales

    Energy Technology Data Exchange (ETDEWEB)

    Marin Llanes, L.A.; Alvarez Rosell, S.


    The application of the general strategy of deterministic modelling to the water treatment for human consumption process for surface waters is treated in this paper. Deterministic models that describe the behaviour of clarification processes: coagulation-flocculation an filtration with respect to the principal parameters that define the water principal parameters that define the water quality: turbidity, color, pH, organic matter an presence of iron, manganese and aluminium cations were obtained. The models have been checked in actual operation conditions of water treatment plant for human consumption located in Campo Florido, Havana, cuba, named Planta Norte Habana. This plant receives water from three dams. The obtained results were good. The models are valid to describe the process, to corroborate the main theories related to water clarification and to know more about this process. The complexity of the models permits their rapid and efficient solution even without the aid of a digital computer. (Author) 5 refs.