WorldWideScience

Sample records for water recovery system

  1. Space Station Freedom regenerative water recovery system configuration selection

    Science.gov (United States)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  2. Amoxicillin in a biological water recovery system

    International Nuclear Information System (INIS)

    Morse, A.; Jackson, A.; Rainwater, K.; Pickering, K.

    2002-01-01

    wastewater recovery system as a drinking water supply source. (author)

  3. Hydropower recovery in water supply systems: Models and case study

    International Nuclear Information System (INIS)

    Vilanova, Mateus Ricardo Nogueira; Balestieri, José Antônio Perrella

    2014-01-01

    Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems

  4. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  5. Process Control for Precipitation Prevention in Space Water Recovery Systems

    Science.gov (United States)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  6. Pretreatment Solution for Water Recovery Systems

    Science.gov (United States)

    Muirhead, Dean (Inventor)

    2018-01-01

    Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.

  7. Water Recovery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The AES Water Recovery Project (WRP) is advancing environmental control and life support systems water recovery technologies to support human exploration beyond low...

  8. Maintenance and Recovery of Water System for Injection (WFI)

    International Nuclear Information System (INIS)

    Wan Anuar Wan Awang; Ahmad Firdaus Jalil; Wan Mohd Firdaus Wan Ishak

    2015-01-01

    Water system for injection (WFI) is one of the main component in manufacturing pharmaceutical materials and radiopharmaceuticals. This system accredited in 2005. Water quality produced analyzed and give the unsatisfied results. The operation of WFI was stopped temporarily due to technical problems. In 2013, recovery works were implemented with budget of RM 226,500.00. Comprehensive maintenance were implemented by Rykertech (Asia) Sdn. Bhd. With duration of 24 months (October 2014 until September 2016) with cost RM 473,550.00. Now, this system operated in good condition and produced water that meet with the specifications. (author)

  9. Development of the Next Generation Type Water Recovery System

    Science.gov (United States)

    Oguchi, Mitsuo; Tachihara, Satoru; Maeda, Yoshiaki; Ueoka, Terumi; Soejima, Fujito; Teranishi, Hiromitsu

    According to NASA, an astronaut living on the International Space Station (ISS) requires approximately 7 kg of water per day. This includes 2 kg of drinking water as well as sanitary fresh water for hand washing, gargling, etc. This water is carried to the space station from the earth, so when more people are staying on the space station, or staying for a longer period of time, the cost of transporting water increases. Accordingly, water is a valuable commodity, and restrictions are applied to such activities as brushing teeth, washing hair, and washing clothes. The life of an astronaut in space is not necessarily a healthy one. JAXA has experience in the research of water recovery systems. Today, utilizing knowledge learned through experiences living on the space station and space shuttles, and taking advantage of the development of new materials for device construction, it is possible to construct a new water recovery system. Therefore, JAXA and New Medican Tech Corporation (NMT) have created a system for collaborative development. Based on the technologies of both companies, we are proceeding to develop the next generation of water recovery devices in order to contribute to safe, comfortable, and healthy daily life for astronauts in space. The goal of this development is to achieve a water purification system based on reverse osmosis (RO) membranes that can perform the following functions. • Preprocessing that removes ammonia and breaks down organic matter contained in urine. • Post-processing that adds minerals and sterilizes the water. • Online TOC measurement for monitoring water quality. • Functions for measuring harmful substances. The RO membrane is an ultra-low-pressure type membrane with a 0.0001 micron (0.1 nanometer) pore size and an operating pressure of 0.4 to 0.6 MPa. During processing with the RO membrane, nearly all of the minerals contained in the cleaned water are removed, resulting in water that is near the quality of deionized water

  10. Water Recovery System Architecture and Operational Concepts to Accommodate Dormancy

    Science.gov (United States)

    Carter, Layne; Tabb, David; Anderson, Molly

    2017-01-01

    Future manned missions beyond low Earth orbit will include intermittent periods of extended dormancy. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. NASA personnel are evaluating the architecture and operational concepts that will allow the Water Recovery System (WRS) to support such a mission. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper identifies dormancy issues, concepts for updating the WRS architecture and operational concepts that will enable the WRS to support the dormancy requirement.

  11. Evaluation of trigeneration system using microturbine, ammonia-water absorption chiller, and a heat recovery boiler

    Energy Technology Data Exchange (ETDEWEB)

    Preter, Felipe C.; Rocha, Marcelo S.; Simoes-Moreira, Jose Roberto [SISEA - Alternative Energy Systems Lab. Dept. of Mechanical Engineering. University of Sao Paulo (EP/USP), SP (Brazil)], e-mails: felipe.preter@poli.usp.br, msrocha@poli.usp.br, jrsimoes@usp.br; Andreos, Ronaldo [COMGAS - Companhia de Gas de Sao Paulo, SP (Brazil)], e-mail: randreos@comgas.com.br

    2010-07-01

    In this work, a CCHP or tri generation system has been projected, mounted, and tested in laboratory, combining a microturbine for power generation, a heat recovery boiler for hot water production, and an ammonia water absorption chiller for chilled water production. The project was motivated by the large practical applications of this kind of energy recovery system in commerce, and industry, and, in general, more than 85% of the energy source is used as power, hot water, and cold water. In the first part, the trigeneration system theoretical model is detailed, and in the second part, experimental results are presented for different operation conditions. (author)

  12. Development of a condenser for the dual catalyst water recovery system

    Science.gov (United States)

    Budinikas, P.; Rasouli, F.; Rabadi, N.

    1983-01-01

    Conceptual evaporation/condensation systems suitable for integration with the catalytic water recovery method were evaluated. The primary requirements for each concept were its capability to operate under zero-gravity conditions, condense recovered water from a vapor-noncondensable gas mixture, and integrate with the catalytic system. Specific energy requirements were estimated for concepts meeting the primary requirements, and the concept most suitable for integration with the catalytic system was proposed. A three-man rate condenser capable of integration with the proposed system, condensing water vapor in presence of noncondensables and transferring the heat of condensation to feed urine was designed, fabricated, and tested. It was treated with steam/air mixtures at atmospheric and elevated pressures and integrated with an actual catalytic water recovery system. The condenser has a condensation efficiency exceeding 90% and heat transfer rate of approximately 85% of theoretical value at coolant temperature ranging from 7 to 80 deg C.

  13. Minimizing temperature instability of heat recovery hot water system utilizing optimized thermal energy storage

    Science.gov (United States)

    Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.

    2018-01-01

    One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper

  14. A Novel Ion Exchange System to Purify Mixed ISS Waste Water Brines for Chemical Production and Enhanced Water Recovery

    Science.gov (United States)

    Lunn, Griffin; Spencer, LaShelle; Ruby, Anna-Maria; McCaskill, Andrew

    2014-01-01

    Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.

  15. New system for higher recovery rate of water borne Cryptosporidium oocysts and Giardia cysts

    DEFF Research Database (Denmark)

    Al-Sabi, Mohammad Nafi Solaiman; Gad, Jens; Klinting, Mette

    2012-01-01

    Background: The two most common water borne pathogenic protozoa, Cryptosporidium and Giardia, cause diarrhea worldwide. Detecting these parasites in water samples depends on effective parasite recovery from the water matrix. The reported low recovery rates of the currently used filter methods...... motivate the development of systems with higher recovery rates. Materials and methods: Five replicates of IMS purified Cryptosporidium oocysts and Giardia cysts (N=2x103) were injected into a specially coated filter unit with a carefully chosen pore size. Following filtration, sonication was performed...... were 85% were recorded when the filter was sonicated. Sonication usually affects parasite viability but could be tuned into a useful tool for enhanced backwash collection of parasites using a specially constructed filter unit and a sonication protocol. The filtration...

  16. Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system.

    Science.gov (United States)

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2016-01-01

    An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)

    2016-12-31

    This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.

  18. Re-engineering the urban drainage system for resource recovery and protection of drinking water supplies.

    Science.gov (United States)

    Gumbo, B

    2000-01-01

    The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed.

  19. Evaluation of a flue gas driven open absorption system for heat and water recovery from fossil fuel boilers

    International Nuclear Information System (INIS)

    Wang, Zhenying; Zhang, Xiaoyue; Li, Zhen

    2016-01-01

    Highlights: • Flue gas driven open absorption system that efficiently recovers total heat. • Efficient heat and water recovery for various kinds of fossil fuel boilers. • Heat and water recovery efficiencies increase with moisture content of flue gas. • Temperature requirements for district heat supply and domestic hot water were met. • Experimental system surpasses conventional condensing system in total heat recovery. - Abstract: This paper presents an open absorption system for total heat recovery from fossil fuel boilers using the high temperature flue gas as the regeneration heat source. In this system, liquid desiccant serves as the recycling medium, which absorbs waste heat and moisture contained in the low temperature flue gas in the packed tower and then regenerates in the regenerator by the high temperature flue gas. Water vapor generated in the regenerator gets condensed after releasing heat to the heating water system and the condensing water also gets recycled. The return water collects heat from the solution water heat exchanger, the flue gas water heat exchanger and the condenser respectively and is then used for district heating. Driven by the vapor pressure difference between high humidity flue gas and the liquid desiccant, the heat recovery efficiency of the system is not limited by the dew point of the flue gas, enabling a warmer water to be heated up than the conventional condensing boiler. The performance of this system was analyzed theoretically and experimentally and the results showed that the system operated well for both district heat supply and domestic hot water supply. The system efficiency increased with the moisture content of flue gas and the total heat recovery was about 8.5%, 17.2%, 21.2%, and 9.2% higher than the conventional condensing system in the case of coal fired boiler, fuel oil boiler, natural gas boiler, and coke oven gas boiler, respectively.

  20. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  1. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  2. Water Recovery System Design to Accommodate Dormant Periods for Manned Missions

    Science.gov (United States)

    Tabb, David; Carter, Layne

    2015-01-01

    Future manned missions beyond lower Earth orbit may include intermittent periods of extended dormancy. Under the NASA Advanced Exploration System (AES) project, NASA personnel evaluated the viability of the ISS Water Recovery System (WRS) to support such a mission. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper details the results of this evaluation, which include identification of dormancy issues, results of testing performed to assess microbial stability of pretreated urine during dormancy periods, and concepts for updating to the WRS architecture and operational concepts that will enable the ISS WRS to support the dormancy requirement.

  3. The Advanced Exploration Systems Water Recovery Project: Innovation on 2 Fronts

    Science.gov (United States)

    Sarguisingh, Miriam M.; Neumeyer, Derek; Shull, Sarah

    2012-01-01

    As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and

  4. Microbiological methods for the water recovery systems test, revision 1.1

    Science.gov (United States)

    Rhoads, Tim; Kilgore, M. V., Jr.; Mikell, A. T., Jr.

    1990-01-01

    Current microbiological parameters specified to verify microbiological quality of Space Station Freedom water quality include the enumeration of total bacteria, anaerobes, aerobes, yeasts and molds, enteric bacteria, gram positives, gram negatives, and E. coli. In addition, other parameters have been identified as necessary to support the Water Recovery Test activities to be conducted at the NASA/MSFC later this year. These other parameters include aerotolerant eutrophic mesophiles, legionellae, and an additional method for heterotrophic bacteria. If inter-laboratory data are to be compared to evaluate quality, analytical methods must be eliminated as a variable. Therefore, each participating laboratory must utilize the same analytical methods and procedures. Without this standardization, data can be neither compared nor validated between laboratories. Multiple laboratory participation represents a conservative approach to insure quality and completeness of data. Invariably, sample loss will occur in transport and analyses. Natural variance is a reality on any test of this magnitude and is further enhanced because biological entities, capable of growth and death, are specific parameters of interest. The large variation due to the participation of human test subjects has been noted with previous testing. The resultant data might be dismissed as 'out of control' unless intra-laboratory control is included as part of the method or if participating laboratories are not available for verification. The purpose of this document is to provide standardized laboratory procedures for the enumeration of certain microorganisms in water and wastewater specific to the water recovery systems test. The document consists of ten separate cultural methods and one direct count procedure. It is not intended nor is it implied to be a complete microbiological methods manual.

  5. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  6. Design of a Cryogenic Distillation Column for JET Water Detritiation System for Tritium Recovery

    International Nuclear Information System (INIS)

    Parracho, A.I.; Camp, P.; Dalgliesh, P.; Hollingsworth, A.; Lefebvre, X.; Lesnoj, S.; Sacks, R.; Shaw, R.; Smith, R.; Wakeling, B.

    2015-01-01

    A Water Detritiation System (WDS) is currently being designed and manufactured to be installed in the Active Gas Handling System (AGHS) of JET, currently the largest magnetic fusion experiment in the world. JET has been designed and built to study fusion operating conditions with the plasma fuelling done by means of a deuterium-tritium gas mixture. AGHS is a plant designed and built to safely process gas mixtures and impurities containing tritium recovered from the JET torus exhaust gases. Tritium is removed from these gas mixtures and recycled. Tritium depleted gases are sent to Exhaust Detritiation System (EDS) for final tritium removal prior to discharge into the environment. In EDS, tritium and tritiated species are catalytically oxidized into water, this tritiated water is then adsorbed onto molecular sieve beds (MSB). After saturation the MSBs are heated and the water is desorbed and collected for tritium recovery. The WDS facility is designed to recover tritium from water with an average activity of 1.9 GBq/l, and is able to process water with activities of 85 GBq/l and higher. Tritiated water is filtered and supplied to the electrolyser where the water is converted into gaseous oxygen and tritiated hydrogen. The hydrogen stream is first purified by selective diffusion through membranes of palladium alloy and then is fed to two cryogenic distillation columns (CD). These operate in parallel or in series depending on the water activity. In the CD columns, hydrogen isotopes containing tritium are recovered as the bottom product and hydrogen, the top product, is safely discarded to a stack. The CD columns are foreseen to have a throughput between 200 and 300 mole/h of hydrogen isotopes vapour and they operate at approximately ≈21.2K and 105 kPa. The design of the CD columns will be presented in this work. This work has been carried out within the framework of the Contract for the Operation of the JET Facilities and has received funding from the European Union

  7. Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc., P.O. Box 5901, Oak Ridge, Tennessee 37831 (United States); Bostick, William D. [Materials and Chemistry Laboratory, Inc. (MCL) ETTP, Building K-1006, 2010 Highway 58, Suite 1000, Oak Ridge, Tennessee 37830 (United States)

    2012-07-01

    On March 11, 2011, the magnitude 9.0 Great East Japan earthquake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. While recovery systems admirably survived the powerful earthquake, the seawater from the tsunami knocked the emergency cooling systems out and did extensive damage to the plant and site. Subsequent hydrogen generation caused explosions which extended this damage to a new level and further flooded the buildings with highly contaminated water. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. Teams were assembled in Tokyo the first week of April to lay out potential plans for the immediate treatment of some 63 million gallons (a number which later exceeded 110 million gallons) of highly contaminated water to avoid overflow from the buildings as well as supply the desperately needed clean cooling water for the reactors. A system had to be deployed with a very brief cold shake down and hot startup before the rainy season started in early June. Joined by team members Toshiba (oil removal system), AREVA (chemical precipitation system) and Hitachi-GE (RO system), Kurion (cesium removal system following the oil separator) proposed, designed, fabricated, delivered and started up a one of a kind treatment skid and over 100 metric tons of specially engineered and modified Ion Specific Media (ISM) customized for this very challenging seawater/oil application, all in seven weeks. After a very short cold shake down, the system went into operation on June 17, 2011 on actual waste waters far exceeding 1 million Bq/mL in cesium and many other isotopes. One

  8. Demonstration of acid and water recovery systems: Applicability and operational challenges in Indian metal finishing SMEs.

    Science.gov (United States)

    Balakrishnan, M; Batra, R; Batra, V S; Chandramouli, G; Choudhury, D; Hälbig, T; Ivashechkin, P; Jain, J; Mandava, K; Mense, N; Nehra, V; Rögener, F; Sartor, M; Singh, V; Srinivasan, M R; Tewari, P K

    2018-07-01

    Diffusion dialysis, acid retardation and nanofiltration plants were acquired from Europe and demonstrated in several Indian metal finishing companies over a three year period. These companies are primarily small and medium enterprises (SMEs). Free acid recovery rate from spent pickling baths using diffusion dialysis and retardation was in the range of 78-86% and 30-70% respectively. With nanofiltration, 80% recovery rate of rinse water was obtained. The demonstrations created awareness among the metal finishing companies to reuse resources (acid/water) from the effluent streams. However, lack of efficient oil separators, reliable chemical analysis and trained personnel as well as high investment cost limit the application of these technologies. Local manufacturing, plant customization and centralized treatment are likely to encourage the uptake of such technologies in the Indian metal finishing sector. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The impact of cost recovery and sharing system on water policy implementation and human right to water: a case of Ileje, Tanzania.

    Science.gov (United States)

    Kibassa, Deusdedit

    2011-01-01

    In Tanzania, the National Water Policy (NAWAPO) of 2002 clearly stipulates that access to water supply and sanitation is a right for every Tanzanian and that cost recovery is the foundation of sustainable service delivery. To meet these demands, water authorities have introduced cost recovery and a water sharing system. The overall objective of this study was to assess the impact of cost recovery and the sharing system on water policy implementation and human rights to water in four villages in the Ileje district. The specific objectives were: (1) to assess the impact of cost recovery and the sharing system on the availability of water to the poor, (2) to assess user willingness to pay for the services provided, (3) to assess community understanding on the issue of water as a human right, (4) to analyse the implications of the results in relation to policies on human rights to water and the effectiveness of the implementation of the national water policy at the grassroots, and (5) to establish the guidelines for water pricing in rural areas. Questionnaires at water demand, water supply, ability and willingness to pay and revenue collection were the basis for data collection. While 36.7% of the population in the district had water supply coverage, more than 73,077 people of the total population of 115,996 still lacked access to clean and safe water and sanitation services in the Ileje district. The country's rural water supply coverage is 49%. Seventy-nine percent of the interviewees in all four villages said that water availability in litres per household per day had decreased mainly due to high water pricing which did not consider the income of villagers. On the other hand, more than 85% of the villagers were not satisfied with the amount they were paying because the services were still poor. On the issue of human rights to water, more than 92% of the villagers know about their right to water and want it exercised by the government. In all four villages, more than

  10. Analysis of profitability of using a heat recovery system from grey water discharged from the shower (case study of Poland)

    Science.gov (United States)

    Kordana, Sabina; Słys, Daniel

    2017-11-01

    The paper analyses the profitability of the use of Drain Water Heat Recovery units. An original simulation model was used for this purpose, and a detached residential building located in Poland was selected as the test facility. The conducted analysis proved that the type of the hot water heater has decisive influence on the profitability level of such an investment. Application of the abovementioned technology is particularly profitable, when water is heated with the use of an electrical device. When the energy source in the system is a gas water heater, the obtained calculation results are not as favourable, and the period of investment return in many cases exceeds the expected service life of these devices. Moreover, the analysis demonstrated that the potential energy savings, and thus also the financial savings, may be in both cases increased as a result of simultaneous intake of water from various water taps.

  11. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    Science.gov (United States)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  12. Launch and Recovery System Literature Review

    Science.gov (United States)

    2010-12-01

    water. Goldie [21] suggests a sled or cart recovery system for use with UAV’s on the Littoral Combatant Ship (LCS) and other small deck navy ships...21. Goldie , J., “A Recovery System for Unmanned Aerial Vehicles (UAVs) Aboard LCS and other Small-Deck Navy Ships,” ASNE Launch and Recovery of

  13. Recovery of nitrogen and water from landfill leachate by a microbial electrolysis cell-forward osmosis system.

    Science.gov (United States)

    Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen

    2016-01-01

    A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Advanced Air Evaporation System with Reusable Wicks for Water Recovery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Advanced Air Evaporation System (AAES) is proposed for recovering nearly 100% of water from highly contaminated wastewater without concern...

  15. Clean Catalysts for Water Recovery Systems in Long-Duration Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A catalytic post-processor is the last unit operation that reclaimed water typically sees before being consumed by the crew, therefore the entire sub-system must be...

  16. Water extraction from high moisture lignite by means of efficient integration of waste heat and water recovery technologies with flue gas pre-drying system

    International Nuclear Information System (INIS)

    Han, Xiaoqu; Yan, Junjie; Karellas, Sotirios; Liu, Ming; Kakaras, Emmanuel; Xiao, Feng

    2017-01-01

    Highlights: • Energy-saving potential of FPLPS in different cold-ends and lignite types is evaluated. • Water-saving of FPLPS is realized through recovery of water extracted from lignite. • Integrations of low pressure economizer and spray tower with FPLPS are proposed. • Thermodynamic and economic performances of different schemes are investigated. - Abstract: The flue gas pre-dried lignite-fired power system (FPLPS) integrates the fan mill flue gas dryer with an open pulverizing system and yields an increase of the boiler efficiency. Particularly, the dryer exhaust gas contains a large amount of vapor removed from high moisture lignite, which exhibits great potential for waste heat and water recovery. Two available options are considered to realize the extraction of water from lignite: the low pressure economizer (LPE) for water-cooled units and the spray tower (SPT) integrated with heat pump for air-cooled units. This paper aims at evaluating the energy saving and water recovery potentials of the FPLPS integrated with both schemes. Results showed that the plant efficiency improvement of the FPLPS at base case varied from 1.14% to 1.47% depending on the moisture content of raw lignite. The water recovery ratio and plant efficiency improvement in the optimal LPE scheme were 39.4% and 0.20%, respectively. In contrast, 83.3% of water recover ratio and 110.6 MW_t_h heat supply were achieved in the SPT system. Both schemes were economically feasible with discounted payback periods of around 3 years. Moreover, parametric analysis was conducted to examine the economic viability of both schemes with different lignite types and market factors.

  17. Post-Flight Microbial Analysis of Samples from the International Space Station Water Recovery System and Oxygen Generation System

    Science.gov (United States)

    Birmele, Michele N.

    2011-01-01

    The Regenerative, Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS) includes the the Water Recovery System (WRS) and the Oxygen Generation System (OGS). The WRS consists of a Urine Processor Assembly (UPA) and Water Processor Assembly (WPA). This report describes microbial characterization of wastewater and surface samples collected from the WRS and OGS subsystems, returned to KSC, JSC, and MSFC on consecutive shuttle flights (STS-129 and STS-130) in 2009-10. STS-129 returned two filters that contained fluid samples from the WPA Waste Tank Orbital Recovery Unit (ORU), one from the waste tank and the other from the ISS humidity condensate. Direct count by microscopic enumeration revealed 8.38 x 104 cells per mL in the humidity condensate sample, but none of those cells were recoverable on solid agar media. In contrast, 3.32 x lOs cells per mL were measured from a surface swab of the WRS waste tank, including viable bacteria and fungi recovered after S12 days of incubation on solid agar media. Based on rDNA sequencing and phenotypic characterization, a fungus recovered from the filter was determined to be Lecythophora mutabilis. The bacterial isolate was identified by rDNA sequence data to be Methylobacterium radiotolerans. Additional UPA subsystem samples were returned on STS-130 for analysis. Both liquid and solid samples were collected from the Russian urine container (EDV), Distillation Assembly (DA) and Recycle Filter Tank Assembly (RFTA) for post-flight analysis. The bacterium Pseudomonas aeruginosa and fungus Chaetomium brasiliense were isolated from the EDV samples. No viable bacteria or fungi were recovered from RFTA brine samples (N= 6), but multiple samples (N = 11) from the DA and RFTA were found to contain fungal and bacterial cells. Many recovered cells have been identified to genus by rDNA sequencing and carbon source utilization profiling (BiOLOG Gen III). The presence of viable bacteria and fungi from WRS

  18. Vacuum distillation/vapor filtration water recovery

    Science.gov (United States)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  19. Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  20. Heat Recovery System

    Science.gov (United States)

    1984-01-01

    Ball Metal's design of ducting and controls for series of roof top heat exchangers was inspired by Tech Briefs. Heat exchangers are installed on eight press and coating lines used to decorate sheet metal. The heat recovery system provides an estimated energy savings of more than $250,000 per year.

  1. Uranium recovery from mine water

    International Nuclear Information System (INIS)

    Sarkar, K.M.

    1984-01-01

    In many plant trials it has been proven that very small amounts (10 to 20 ppm) of uranium dissolved in mine water can be effectively recovered by the use of ion exchange resins and this uranium recovery has many advantages. In this paper an economic analysis at different levels of uranium contamination and at different market prices of uranium are described. For this study an operating mine-mill complex with a sulphuric acid leach circuit, followed by solvent extraction (SX) process, is considered, where contaminated mine water is available in excess of process requirements. It is further assumed that the sulphuric acid eluant containing uranium would be mixed with the mill pregnant liquor stream that proceeds to the SX plant for final uranium recovery

  2. A study of a desuperheater heat recovery system complete with a reversibly used water cooling tower (RUWCT) for hot water supply

    Science.gov (United States)

    Tan, Kunxiong

    Recovering heat rejected from the condenser in a refrigeration system to generate service hot water for buildings is commonly seen in both tropics and subtropics. This study included a critical literature review on heat recovery from air-conditioning/refrigeration systems, with particular emphasis on the direct condenser heat recovery and its related mathematical simulation models. The review identified many applications of desuperheaters to small-scaled residential air-conditioning or heat pump units. The heat and mass transfer characteristics of a RUWCT have been studied in detail, which is based on the theory of direct contact heat and mass transfer between moist air and water. The thesis reports on the differences in the heat and mass transfer process that takes place in a RUWCT, a standard water cooling tower and a spray room. A corrective factor that accounts for the change of chilled water mass flow rate is incorporated into the theoretical analysis of a RUWCT. The algorithms developed from the theoretical analysis are capable of predicting the heat exchange capacity of a RUWCT at any operating conditions. This theoretical analysis is the first of its kind. Extensive field experimental work on the heat and mass transfer characteristics of a RUWCT has been carried out in a hotel building in Haikou, Hainan province of China, where the RUWCT is installed. Results from the experimental work indicate that the theoretical analysis can represent the heat and mass transfer characteristics in a RUWCT with an acceptable accuracy. A numerical analysis for a RUWCT is undertaken to determine both air and water states at intermediate horizontal sections along the tower height. Field experimental data confirm that the predicted air and water conditions at the tower inlet and outlet are of acceptable accuracy. A steady-state mathematical model is developed to simulate the operational performance of a water chiller plant complete with a desuperheater heat recovery system and

  3. Advanced regenerative heat recovery system

    Science.gov (United States)

    Prasad, A.; Jasti, J. K.

    1982-02-01

    A regenerative heat recovery system was designed and fabricated to deliver 1500 scfm preheated air to a maximum temperature of 1600 F. Since this system is operating at 2000 F, the internal parts were designed to be fabricated with ceramic materials. This system is also designed to be adaptable to an internal metallic structure to operate in the range of 1100 to 1500 F. A test facility was designed and fabricated to test this system. The test facility is equipped to impose a pressure differential of up to 27 inches of water column in between preheated air and flue gas lines for checking possible leakage through the seals. The preliminary tests conducted on the advanced regenerative heat recovery system indicate the thermal effectiveness in the range of 60% to 70%. Bench scale studies were conducted on various ceramic and gasket materials to identify the proper material to be used in high temperature applications. A market survey was conducted to identify the application areas for this heat recovery system. A cost/benefit analysis showed a payback period of less than one and a half years.

  4. Water Recovery from Brines to Further Close the Water Recovery Loop in Human Spaceflight

    Science.gov (United States)

    Jackson, W. Andrew; Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin E.; Hanford, Anthony J.; Shull, Sarah A.; Carter, D. Layne

    2014-01-01

    Further closure of water recovery systems will be necessary for future long duration human exploration missions. NASA's Space Technology Roadmap for Human Health, Life Support and Habitation Systems specified a milestone to advance water management technologies during the 2015 to 2019 timeframe to achieve 98% H2O recovery from a mixed wastewater stream containing condensate, urine, hygiene, laundry, and water derived from waste. This goal can only be achieved by either reducing the amount of brines produced by a water recovery system or by recovering water from wastewater brines. NASA convened a Technical Interchange Meeting (TIM) on the topic of Water Recovery from Brines (WRB) that was held on January14-15th, 2014 at Johnson Space Center. Objectives of the TIM were to review systems and architectures that are sources of brines and the composition of brines they produce, review the state of the art in NASA technology development and perspectives from other industries, capture the challenges and difficulties in developing brine processing hardware, identify key figures of merit and requirements to focus technology development and evaluate candidate technologies, and identify other critical issues including microgravity sensitivity, and concepts of operation, safety. This paper represents an initial summary of findings from the workshop.

  5. A flow injection analysis system for monitoring silver (I) ion and iodine residuals in recycled water from recovery systems used for spaceflight

    International Nuclear Information System (INIS)

    Williamson, Jill P.; Emmert, Gary L.

    2013-01-01

    Graphical abstract: A device for on-line monitoring of the water disinfectants silver (I) ion or iodine in recycled water is presented. Simply change the reagents and the sample loop volume to switch between silver ion and iodine configurations. -- Highlights: •Automated FIA device for monitoring Ag + or I 2 residuals in recycled drinking water. •Method detection limits of Ag + of 52 μg L −1 and I 2 of 2 μg L −1 . •Mean % recoveries for Ag + of 104 ± 1% and for I 2 of 96.2 ± 0.1%. •% relative standard deviation estimates for Ag + of 1.4% and for I 2 of 5.7%. •Bias measurements agreed to 11.3 μg L −1 for Ag + and to 27.3 μg L −1 for I 2 . -- Abstract: A laboratory-built flow injection analyzer is reported for monitoring the drinking water disinfectants silver (I) ion and iodine in water produced from NASA's water recovery system. This analyzer uses spectrophotometric detection with a custom made 10 cm optical flow cell. Optimization and interference studies are discussed for the silver (I) ion configuration. Subsequent results using the silver (I) configuration with minor modifications and alternative reagents gave promising results for iodine determinations as well. The estimated MDL values for Ag + and I 2 are 52 μg L −1 Ag + and 2 μg L −1 I 2 ; the mean percent recoveries were 104% and 96.2% for Ag + and I 2 respectfully; and percent relative standard deviations were estimated at 1.4% for Ag + and 5.7% for I 2 . The agreement of this potentially multifunctional analyzer to reference methods for each respective water disinfectant is measured using Bland–Altman analysis as well as more traditional estimates

  6. Phosphate and organic fertilizer recovery from black water

    NARCIS (Netherlands)

    Tervahauta, T.H.

    2014-01-01

    In this thesis the integration of treatment systems for black and grey water was investigated to improve resource recovery within source-separated sanitation concepts. Special focus was set on phosphate and organic fertilizer recovery from vacuum collected black water. Currently, the soil

  7. Energy Recovery Using Micro-Hydropower Technology in Water Supply Systems: The Case Study of the City of Fribourg

    Directory of Open Access Journals (Sweden)

    Irene Samora

    2016-08-01

    Full Text Available Water supply systems (WWSs are one of the main manmade water infrastructures presenting potential for micro-hydropower. Within urban networks, local decentralized micro-hydropower plants (MHPs may be inserted in the regional electricity grid or used for self-consumption at the local grid level. Nevertheless, such networks are complex and the quantification of the potential for micro-hydropower other than that achieved by replacing pressure reducing valves (PRVs is difficult. In this work, a methodology to quantify the potential for hydropower based on the excess energy in a network is proposed and applied to a real case. A constructive solution is presented based on the use of a novel micro-turbine for energy conversion, the five blade tubular propeller (5BTP. The location of the MHP within the network is defined with an optimization algorithm that maximizes the net present value after 20 years of operation. These concepts are tested for the WSS in the city of Fribourg, Switzerland. The proposed solution captures 10% of the city’s energy potential and represents an economic interest. The results confirm the location of PRVs as potential sites for energy recovery and stress the need for careful sensitivity analysis of the consumption. Finally, an expedited method is derived to estimate the costs and energy that one 5BTP can produce in a given network.

  8. Waste heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Timothy C.; Zigan, James A.

    2017-12-19

    A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuit into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.

  9. Use of two-phase aqueous systems based on water-soluble polymers in thin-layer and extraction chromatography for recovery and separtion of actinides

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Myasoedov, B.F.

    1995-01-01

    The feasibility has been demonstrated of using two-phase aqueous systems based on water-soluble polymers, polyethylene glycol and dextran sulfate, in thin-layer and extraction chromatography for recovery and separation of actinides. A convenient method has been proposed for continuous recovery of 239 Np from 243 Am, originating from differences in sorption of tri- and pentavalent actinides from sulfate solutions containing potassium phosphotungstate by silica gel impregnated with polyethylene glycol. New plates for thin-layer chromatography using water-soluble polymers have been developed. These plates were used to study behavior of americium in various oxidation states in thin sorbent layers

  10. Development of Low-Toxicity Wastewater Stabilization for Spacecraft Water Recovery Systems

    Science.gov (United States)

    Adam, Niklas; Mitchell, Julie; Pickering, Karen; Carrier, Chris; Vega, Letty; Muirhead, Dean

    2014-01-01

    Wastewater stabilization was an essential component of the spacecraft water cycle. The purpose of stabilizing wastewater was two-fold. First, stabilization prevents the breakdown of urea into ammonia, a toxic gas at high concentrations. Second, it prevents the growth of microorganisms, thereby mitigating hardware and water quality issues due to due biofilm and planktonic growth. Current stabilization techniques involve oxidizers and strong acids (pH=2) such as chromic and sulfuric acid, which are highly toxic and pose a risk to crew health. The purpose of this effort was to explore less toxic stabilization techniques, such as food-grade and commercial care preservatives. Additionally, certain preservatives were tested in the presence of a low-toxicity organic acid. Triplicate 300-mL volumes of urine were dosed with a predetermined quantity of stabilizer and stored for two weeks. During that time, pH, total organic carbon (TOC), ammonia, and turbidity were monitored. Those preservatives that showed the lowest visible microbial growth and stable pH were further tested in a six-month stability study. The results of the six-month study are also included in this paper.

  11. Radiation polymerization of butyl acrylate for using as organic compounds recovery system from waste water

    International Nuclear Information System (INIS)

    Kattan, M.; Al-Kassiri, H.

    2008-02-01

    In this work, radiation polymerization of butyl acrylate using 60 Co gamma rays was studied. The effects of different parameters, such as the irradiation dose, dose rate and the temperature of irradiation on the polymerization were investigated. The relationship between polymerization yield with the dose rate and the temperature found to be linear. The kinetic of irradiation polymerization at 10 kGy/h was studied. The activation energy of reaction was calculated and it was E=9.27 j/mol. The thermal properties and the effect of irradiation dose on the glass transition were investigated. The application of this polymer in the field of environment treatment such as extraction of organics compounds dissolved in water was studied. The swelling in several organic compounds was studied, the weight percentages of both the swelling and the liberation were calculated. (author)

  12. Lyophilization for Water Recovery From Solid Waste

    Science.gov (United States)

    Flynn, Michael; Litwiller, Eric; Reinhard, Martin

    2003-01-01

    This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.

  13. Energy Recovery in Existing Water Networks: Towards Greater Sustainability

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2017-02-01

    Full Text Available Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable improvements in the performance of irrigation water networks. Improving the energy efficiency of water systems by hydraulic energy recovery is becoming an inevitable trend for energy conservation, emissions reduction, and the increase of profit margins as well as for environmental requirements. This paper presents the state of the art of hydraulic energy generation in drinking and irrigation water networks through an extensive review and by analyzing the types of machinery installed, economic and environmental implications of large and small hydropower systems, and how hydropower can be applied in water distribution networks (drinking and irrigation where energy recovery is not the main objective. Several proposed solutions of energy recovery by using hydraulic machines increase the added value of irrigation water networks, which is an open field that needs to be explored in the near future.

  14. Recovery of uranium from sea water

    International Nuclear Information System (INIS)

    Tabushi, Iwao; Kobuke, Yoshiaki

    1984-01-01

    The present status of technology for the recovery of uranium has been reviewed. Adsorbent qualities were discussed in terms of three important criteria: adsorption rate, equilibrium adsorption and chemical as well as physical stability. It was elucidated that a significant improvement of the adsorption rate is most important. Efforts were made to clarify factors influencing the adsorption rate. A method to treat a tremendous amount of sea water is of much importance as well. Pumping-up and direct use of sea currents were compared with each other. It has been emphasized that the active utilization of the various advantages of the latter method is crucial for the realization of the recovery project. The physical capability of the method was illustrated. Some composite systems with electric power generation plants were also discussed. (author)

  15. A flow injection analysis system for monitoring silver (I) ion and iodine residuals in recycled water from recovery systems used for spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Jill P.; Emmert, Gary L., E-mail: gemmert@memphis.edu

    2013-08-20

    Graphical abstract: A device for on-line monitoring of the water disinfectants silver (I) ion or iodine in recycled water is presented. Simply change the reagents and the sample loop volume to switch between silver ion and iodine configurations. -- Highlights: •Automated FIA device for monitoring Ag{sup +} or I{sub 2} residuals in recycled drinking water. •Method detection limits of Ag{sup +} of 52 μg L{sup −1} and I{sub 2} of 2 μg L{sup −1}. •Mean % recoveries for Ag{sup +} of 104 ± 1% and for I{sub 2} of 96.2 ± 0.1%. •% relative standard deviation estimates for Ag{sup +} of 1.4% and for I{sub 2} of 5.7%. •Bias measurements agreed to 11.3 μg L{sup −1} for Ag{sup +} and to 27.3 μg L{sup −1} for I{sub 2}. -- Abstract: A laboratory-built flow injection analyzer is reported for monitoring the drinking water disinfectants silver (I) ion and iodine in water produced from NASA's water recovery system. This analyzer uses spectrophotometric detection with a custom made 10 cm optical flow cell. Optimization and interference studies are discussed for the silver (I) ion configuration. Subsequent results using the silver (I) configuration with minor modifications and alternative reagents gave promising results for iodine determinations as well. The estimated MDL values for Ag{sup +} and I{sub 2} are 52 μg L{sup −1} Ag{sup +} and 2 μg L{sup −1} I{sub 2}; the mean percent recoveries were 104% and 96.2% for Ag{sup +} and I{sub 2} respectfully; and percent relative standard deviations were estimated at 1.4% for Ag{sup +} and 5.7% for I{sub 2}. The agreement of this potentially multifunctional analyzer to reference methods for each respective water disinfectant is measured using Bland–Altman analysis as well as more traditional estimates.

  16. Recovery of uranium resources from sea water

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1980-01-01

    After the oil crisis in 1973, the development of atomic energy has become important as substitute energy, and the stable acquisition of uranium resources is indispensable, in order to promote smoothly the use of atomic energy. The Ministry of International Trade and Industry has engaged actively in the project ''The survey on the technical development of the system for recovering uranium and others from sea water'' since 1974. 80% of the uranium resources in the world is distributed in USA, Canada, South Africa, Australia and Niger, and in near future, the price of uranium ores may be raised. Japan must promote powerfully the development of foreign uranium resources, but also it is very important to get domestic uranium by efficiently recovering the uranium dissolved in sea water, the amount of which was estimated at 4 billion tons, and its practical use is expected in 1990s. The uranium concentration in sea water is about 3 g in 1000 t sea water. The processes of separation and recovery are as follows: (1) adsorption of uranium to titanic acid powder adsorbent by bringing sea water in contact with it, (2) dissolving the collected uranium with ammonium carbonate, the desorption agent, (3) concentration of uranium solution by ion exchange method or ion flotation method to 2800 ppm. The outline of the model plant is explained. (Kako, I.)

  17. Hydrologic Engineering Center River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement

    Science.gov (United States)

    2017-09-18

    ER D C/ EL T R- 17 -1 8 Missouri River Recovery Program (MRRP) Hydrologic Engineering Center-River Analysis System (HEC-RAS) Water...Zhonglong Zhang and Billy E. Johnson September 2017 Approved for public release; distribution is unlimited. The U.S. Army Engineer Research...and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and

  18. An Environmental Analysis of the Effect of Energy Saving, Production and Recovery Measures on Water Supply Systems under Scarcity Conditions

    Directory of Open Access Journals (Sweden)

    Valeria Puleo

    2015-06-01

    Full Text Available Water is one of the primary resources provided for maintaining quality of life and social status in urban areas. As potable water is considered to be a primary need, water service has usually been managed without examining the economic and environmental sustainability of supply processes. Currently, due to increases in energy costs and the growth of environment preservation policies, reducing water leakage, energy consumption and greenhouse gas (GHG production have become primary objectives in reducing the environmental footprint of water service. The present paper suggests the implementation of some performance indicators that show the interdependence of water loss, energy consumption and GHG emission. These indicators are used to compare a few possible mitigation scenarios involving water loss reduction and increasing the system’s energy efficiency. The proposed indicators were applied to a complex urban water supply system serving the city of Palermo (Italy.

  19. Water recovery from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Heijboer, R.; Van Deelen-Bremer, M.H.; de Vos, F.; Zeijseink, A.G.L. [KEMA Nederland B.V. (Netherlands)

    2007-07-01

    In the power generation process a large amount of water is needed, for steam generation, flue gas cleaning etc. On the other hand a large amount of water is emitted to the atmosphere via the stack. For example a 400 MW coal fired power plant with a flue gas desulfurisation plant emits about 1,500,000 m{sup 3} per hour with a water concentration of about 11%. The emitted water has a rather good quality compared to surface water and needs less effort to be treated for use as make-up water. As the available amount of water in the flue gas from the earlier mentioned power plant is about 150 tons per hour, recovering 20% of this amount covers the make-up water needs of this 400 MW power plant. Direct condensation of the flue gas needs large cooling power and the condensed water is acidic and corrosive and needs cleanup treatment before it can be used in the water/steam cycle. KEMA developed a technology based on gas separation membranes which makes it possible to recover water from flue gas. The process is covered by a wide patent. The principle of the membrane is comparable to the material that is used in fabric like SympaTex{reg_sign} and GORE-TEX{reg_sign}. The GORE-TEX material is permeable to water vapor but rejects liquid water. The driving force is the water vapor pressure close to the human skin which is the higher than the water vapor pressure open the outside of the clothing. The selectivity of the GORE-TEX material however is not good enough to be used at the temperature of flue gas. The University of Twente (Netherlands) developed a membrane material based on modified PEEK which is highly selective of water vapor at flue gas temperatures. Based on the fact that flat membranes have an uneconomical surface to volume ratio, the choice has been made to use hollow fibre membranes. 6 figs.

  20. Enhanced oil recovery system

    Science.gov (United States)

    Goldsberry, Fred L.

    1989-01-01

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  1. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    Directory of Open Access Journals (Sweden)

    Taina Tervahauta

    2014-08-01

    Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.

  2. Cold water recovery reduces anaerobic performance.

    Science.gov (United States)

    Crowe, M J; O'Connor, D; Rudd, D

    2007-12-01

    This study investigated the effects of cold water immersion on recovery from anaerobic cycling. Seventeen (13 male, 4 female) active subjects underwent a crossover, randomised design involving two testing sessions 2 - 6 d apart. Testing involved two 30-s maximal cycling efforts separated by a one-hour recovery period of 10-min cycling warm-down followed by either passive rest or 15-min cold water immersion (13 - 14 degrees C) with passive rest. Peak power, total work and postexercise blood lactate were significantly reduced following cold water immersion compared to the first exercise test and the control condition. These variables did not differ significantly between the control tests. Peak exercise heart rate was significantly lower after cold water immersion compared to the control. Time to peak power, rating of perceived exertion, and blood pH were not affected by cold water immersion compared to the control. Core temperature rose significantly (0.3 degrees C) during ice bath immersion but a similar increase also occurred in the control condition. Therefore, cold water immersion caused a significant decrease in sprint cycling performance with one-hour recovery between tests.

  3. Pd based ultrathin membranes for the tritiated water gas shift reaction in the ITER breeder recovery system

    International Nuclear Information System (INIS)

    Tosti, S.; Bettinali, L.; Violante, V.; Basile, A.; Chiappetta, M.; Criscuoli, A.; Drioli, E.; Rizzelo, C.

    1998-01-01

    A mathematical model of a catalytic membrane reactor (CMR) for the water gas shift reaction has been carried out. Based on the model, a new closed loop process for the tritium removal system for the ITER test module of helium cooled pebble bed blanket concept has been studied. A CMR is the main equipment of the proposed process. The main advantages of the closed loop process are related to the absence of secondary wastes, low tritium inventories, moderate operating temperatures and pressures, low dilution of the stream to be processed by isotopic separation. As permeating membranes in the CMR ultra-thin metallic membranes of Pd and PdAg (50-70 μm thick) have been studied. A ceramic porous tube, containing the catalyst in the lumen, has been put in the metallic tube to obtain the CMR for the water gas shifting. Experimental tests, carried out both on ultra-thin membranes and CMRs for the water gas shift reaction, confirmed the behavior studied by the theoretical model and showed a long live of the membrane. (authors)

  4. Aminosilicone solvent recovery methods and systems

    Science.gov (United States)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Farnum, Rachel Lizabeth; Genovese, Sarah Elizabeth

    2018-02-13

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  5. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1980-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  6. Water systems

    International Nuclear Information System (INIS)

    Riess, R.

    1981-01-01

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  7. An Experiment on Heat Recovery Performance Improvements in Well-Water Heat-Pump Systems for a Traditional Japanese House

    Directory of Open Access Journals (Sweden)

    Chiemi Iba

    2018-04-01

    Full Text Available Concerns about resource depletion have prompted several countries to promote the usage of renewable energy, such as underground heat. In Japan, underground heat-pump technology has begun to be utilized in large-scale office buildings; however, several economic problems are observed to still exist, such as high initial costs that include drilling requirements. Further, most of the traditional dwellings “Kyo-machiya” in Kyoto, Japan have a shallow well. This study intends to propose an effective ground-source heat-pump system using the well water from a “Kyo-machiya” home that does not contain any drilling works. In previous research, it was depicted that the well-water temperature decreases as the heat pump (HP is operated and that the heat extraction efficiency steadily becomes lower. In this study, an experiment is conducted to improve efficiency using a drainage pump. Based on the experimental results, the effect of efficiency improvement and the increase in the electric power consumption of the drainage pump are examined. It is indicated that short-time drainage could help to improve efficiency without consuming excessive energy. Thus, continuous use of the heat pump becomes possible.

  8. Amphiphilic copolymers based on PEG-acrylate as surface active water viscosifiers : Towards new potential systems for enhanced oil recovery

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    2016-01-01

    With the purpose of investigating new potential candidates for enhanced oil recovery (EOR), amphiphilic copolymers based on Poly(ethylene glycol) methyl ether acrylate (PEGA) have been prepared by Atom Transfer Radical Polymerization (ATRP). A P(PEGA) homopolymer, a block copolymer with styrene

  9. Carbonaceous Asteroid Volatile Recovery (CAVoR) system, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Carbonaceous Asteroid Volatile Recovery (CAVoR) system produces water and hydrogen-rich syngas for propellant production, life support consumables, and...

  10. Design of water and heat recovery networks for the simultaneous minimisation of water and energy consumption

    International Nuclear Information System (INIS)

    Polley, Graham Thomas; Picon-Nunez, Martin; Lopez-Maciel, Jose de Jesus

    2010-01-01

    This paper describes procedures for the design of processes in which water and energy consumption form a large part of the operating cost. Good process design can be characterised by a number of properties, amongst the most important are: efficient use of raw materials, low capital cost and good operability. In terms of thermodynamic analysis these processes can be characterised as being either a 'pinch' problem or a 'threshold' problem. This paper concentrates on developing designs for problems of the threshold type. Most of the problems discussed by previous workers have been of this type. With these properties in mind this work looks at the design of integrated water and energy systems that exhibit the following features: 1. minimum water consumption, 2. minimum energy consumption, and 3. simple network structure. The approach applies for single contaminant. It is shown that the water conservation problem and the heat recovery problems can be de-coupled and the water conservation options should be established first. It is then shown that the number of heaters and heat recovery units required for the system, the quantity and type of hot utility needed for the plant and the complexity of the heat recovery network can all be determined without having to design any heat recovery network. This allows the engineer to select the better water conservation option before embarking on the design of the heat recovery network. For this type of problem the design of the heat recovery network itself is usually simple and straightforward.

  11. Thermoelectric integrated membrane evaporation water recovery technology

    Science.gov (United States)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  12. Status of ISS Water Management and Recovery

    Science.gov (United States)

    Carter, Layne; Takada, Kevin; Gazda, Daniel; Brown, Christopher; Bazley, Jesse; Schaezler, Ryan; Bankers, Lyndsey

    2017-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2017 and describes the technical challenges encountered and lessons learned over the past year.

  13. Status of ISS Water Management and Recovery

    Science.gov (United States)

    Carter, Layne; Brown, Christopher; Orozco, Nicole

    2014-01-01

    Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2013, and describes the technical challenges encountered and lessons learned over the past year.

  14. Microbial Heat Recovery Cell (MHRC) System Concept

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.

  15. Recovery from acidification in European surface waters

    Czech Academy of Sciences Publication Activity Database

    Evans, C. D.; Cullen, J. M.; Alewell, C.; Kopáček, Jiří; Marchetto, A.; Moldan, F.; Prechtel, A.; Rogora, M.; Veselý, J.; Wright, R.

    2001-01-01

    Roč. 5, č. 3 (2001), s. 283-297 ISSN 1027-5606 R&D Projects: GA ČR GA206/00/0063 Grant - others:CEC RECOVER(XE) 2010 EVK1-CT-1999-00018; GMER(DE) PT BEO 51-0339476; UKDETR(GB) EPG1/3/92; NNP(NO) SFT2000; CEC(XE) EMERGE EVK1-CT-1999-00032 Keywords : acidification * recovery * sulphate Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.127, year: 2001

  16. Recovery of acidified European surface waters

    Czech Academy of Sciences Publication Activity Database

    Wright, R. F.; Larssen, T.; Camarero, L.; Cosby, B. J.; Ferrier, R. C.; Helliwell, R.; Forsius, M.; Jenkins, A.; Kopáček, Jiří; Majer, V.; Moldan, F.; Posch, M.; Rogora, M.; Schöpp, W.

    2005-01-01

    Roč. 39, č. 3 (2005), 64A-72A ISSN 0013-936X. [ Acid Rain 2005. International Conference on Acid Deposition /7./. Prague, 12.06.2005-17.06.2005] Grant - others:EC(XE) EMERGE EVK1-CT-1999-00032; EC(XE) RECOVER:2010 EVK1-CT-1999-00018; DEFRA(GB) EPG 1/3/194; ICST(ES) REN2000-0889/GLO Institutional research plan: CEZ:AV0Z60170517 Keywords : acid ification * recovery * European lake districts Subject RIV: DJ - Water Pollution ; Quality Impact factor: 4.054, year: 2005

  17. Bead Evaporator for Complete Water and Salt Recovery from Brine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Brine Evaporation and Mineralization System (BEMS) is proposed for 100% water recovery from highly contaminated wastewater as well as water...

  18. Heat recovery system series arrangements

    Science.gov (United States)

    Kauffman, Justin P.; Welch, Andrew M.; Dawson, Gregory R.; Minor, Eric N.

    2017-11-14

    The present disclosure is directed to heat recovery systems that employ two or more organic Rankine cycle (ORC) units disposed in series. According to certain embodiments, each ORC unit includes an evaporator that heats an organic working fluid, a turbine generator set that expands the working fluid to generate electricity, a condenser that cools the working fluid, and a pump that returns the working fluid to the evaporator. The heating fluid is directed through each evaporator to heat the working fluid circulating within each ORC unit, and the cooling fluid is directed through each condenser to cool the working fluid circulating within each ORC unit. The heating fluid and the cooling fluid flow through the ORC units in series in the same or opposite directions.

  19. Water control for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cole, R.C.; Mody, B.; Pace, J.

    1981-11-01

    Gains in recovery efficiency in W. Texas oil and gas fields have been realized as a result of applying 4 different chemical processes, either singly or in combination. Each of the 4 chemical processes has been tailored to meet specific reservoir requirements. Complete plugging of high flow capacity channels can be accomplished, and the high water production portion of a producing zone can be sealed by injection of gel-forming chemicals into the matrix. Both floodwater diversion and water-oil mobility ratio improvement can be attained by in situ polymerization of a one-stage polymer bank in the reservoir. In producing wells, the water-oil production ratio can be favorably changed by treating certain formulations with a nonplugging polymer which tends to restrict water flow but not oil. One feature which each of the 4 processes has in common is the ability to invade deeply into matrix which may produce long lasting results. A description of each process is presented with various placement techniques used to obtain optimum results. Data from fields which have benefited from these treatments are presented. The work describes what may be expected with each of these proven processes based on field results.

  20. Water recovery in a concentrated solar power plant

    Science.gov (United States)

    Raza, Aikifa; Higgo, Alex R.; Alobaidli, Abdulaziz; Zhang, TieJun

    2016-05-01

    For CSP plants, water consumption is undergoing increasing scrutiny particularly in dry and arid regions with water scarcity conditions. Significant amount of water has to be used for parabolic trough mirror cleaning to maintain high mirror reflectance and optical efficiency in sandy environment. For this specific purpose, solar collectors are washed once or twice every week at Shams 1, one of the largest CSP plant in the Middle East, and about 5 million gallons of demineralized water is utilized every year without further recovery. The produced waste water from a CSP plant contains the soiling i.e. accumulated dust and some amount of organic contaminants, as indicated by our analysis of waste water samples from the solar field. We thus need to develop a membrane based system to filter fine dust particulates and to degrade organic contaminant simultaneously. Membrane filtration technology is considered to be cost-effective way to address the emerging problem of a clean water shortage, and to reuse the filtered water after cleaning solar collectors. But there are some major technical barriers to improve the robustness and energy efficiency of filtration membranes especially when dealing with the removal of ultra-small particles and oil traces. Herein, we proposed a robust and scalable nanostructured inorganic microporous filtration copper mesh. The inorganic membrane surface wettability is tailored to enhance the water permeability and filtration flux by creating nanostructures. These nanostructured membranes were successfully employed to recover water collected after cleaning the reflectors of solar field of Shams 1. Another achievement was to remove the traces of heat transfer fluid (HTF) from run-off water which was collected after accidental leakage in some of the heat exchangers during the commissioning of the Shams 1 for safe disposal into the main stream. We hope, by controlling the water recovery factor and membrane reusability performance, the membrane

  1. Design of the Brine Evaporation Bag for Increased Water Recovery in Microgravity

    Science.gov (United States)

    Hayden, Anna L.; Delzeit, Lance D.

    2015-01-01

    The existing water recovery system on the International Space Station (ISS) is limited to 75% reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS that can to increase water recovery to 99%. The largest barrier to high water recovery is mineral scaling inside the water recovery equipment, which leads to equipment failure; therefore, some water must remain to keep the minerals dissolved. This waste stream is liquid brine containing salts, acids, organics, and water. The BEB is designed to recover this remaining water while protecting the equipment from scale. The BEB consists of a sealed bag containing a hydrophobic membrane that allows water vapor and gas to pass through. It is operated under vacuum, heated, and continuously filled with brine to boil away the water. The water vapor is recovered and the solids are contained inside the bag for disposal. The BEB can dry the brine to a solid block. Ongoing work includes improving the design of the BEB and the evaporator to prevent leaks, maximize the rate of water removal, and minimize energy use and weight. Additional testing will determine whether designs are heat- or mass-transfer limited and the optimal water recovery rate.

  2. Possibilities of heat energy recovery from greywater systems

    Science.gov (United States)

    Niewitecka, Kaja

    2018-02-01

    Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.

  3. Possibility of heat recovery from gray water in residential building

    Directory of Open Access Journals (Sweden)

    Mazur Aleksandra

    2017-12-01

    Full Text Available Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.

  4. Possibility of heat recovery from gray water in residential building

    Science.gov (United States)

    Mazur, Aleksandra; Słyś, Daniel

    2017-12-01

    Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR) system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC) method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.

  5. Life Support Systems: Oxygen Generation and Recovery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Life Support Systems project Oxygen Generation and Recovery technology development area encompasses several sub-tasks in an...

  6. Measures for waste water management from recovery processing of Zhushanxia uranium deposit

    International Nuclear Information System (INIS)

    Liu Yaochi; Xu Lechang

    2000-01-01

    Measures for waste water management from recovery processing of Zhushanxia uranium deposit of Wengyuan Mine is analyzed, which include improving process flow, recycling process water used in uranium mill as much as possible and choosing a suitable disposing system. All these can decrease the amount of waste water, and also reduce costs of disposing waste water and harm to environment

  7. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  8. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  9. Optimization-based design of waste heat recovery systems

    DEFF Research Database (Denmark)

    Cignitti, Stefano

    /or selected. This dissertation focuses on the chemical product and process systems used for waste heat recovery. Here, chemical products are working fluids, which are under continuous development and screening to fulfill regulatory environmental protection and safe operation requirements. Furthermore......, for the recovery of low-grade waste heat, new fluids and processes are needed to make the recovery technically and economically feasible. As the chemical product is influential in the design of the process system, the design of novel chemical products must be considered with the process system. Currently, state...... product and process system in terms of efficiency and sustainability. Today, some of the most important chemical product design problems are solvents and working fluids. Solvents are a vital part in the recovery of valuable resources in separation processes or waste water treatment. Working fluids...

  10. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  11. System i Disaster Recovery Planning

    CERN Document Server

    Dolewski, Richard

    2008-01-01

    Mapping out all the preparations necessary for an effective disaster recovery plan and its safeguard-a continuous maintenance program-this guide is aimed at IT managers of small and medium businesses. The opening section covers the initial steps of auditing vulnerability, ranking essential IT functions, and reviewing the storage of tape backups, with the following discussion focused on the elements of the plan itself. The plan includes a mission statement, a definition of disaster, the assignment of staff to teams, methods of compensating for human error, and standards for documenting the step

  12. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  13. Free product recovery at spill sites with fluctuating water tables

    International Nuclear Information System (INIS)

    Parker, J.C.; Katyal, A.K.; Zhu, J.L.; Kremesec, V.J.; Hockman, E.L.

    1992-01-01

    Spills and leaks of hydrocarbons from underground storage tanks, pipelines and other facilities pose a serious potential for groundwater contamination which can be very costly to remediate. The severity of the impacts and the cost of remediation can be reduced by various means. Lateral spreading of free phase hydrocarbons on the groundwater table can be prevented by pumping water to control the hydraulic gradient. Recovery of floating product may be performed by skimming hydrocarbons from wells, usually in combination with water pumping to increase the gradient. The environmental variables (water table gradient, water table fluctuations due to regional recovery wells, rates of water pumping)

  14. Temperature control of evaporators in automotive waste heat recovery systems

    NARCIS (Netherlands)

    Oom, M.E.E.; Feru, E.; de Jager, A.G.; de Lange, H.C.; Ouwerkerk, H.

    2017-01-01

    his paper presents a control strategy for the steam generation process in automotive waste heat recovery systems that are based on the subcritical Rankine cycle. The central question is how to regulate the flow of water into the evaporator such that dry steam is generated at its outlet, subject to

  15. Proportional hazards models of infrastructure system recovery

    International Nuclear Information System (INIS)

    Barker, Kash; Baroud, Hiba

    2014-01-01

    As emphasis is being placed on a system's ability to withstand and to recover from a disruptive event, collectively referred to as dynamic resilience, there exists a need to quantify a system's ability to bounce back after a disruptive event. This work applies a statistical technique from biostatistics, the proportional hazards model, to describe (i) the instantaneous rate of recovery of an infrastructure system and (ii) the likelihood that recovery occurs prior to a given point in time. A major benefit of the proportional hazards model is its ability to describe a recovery event as a function of time as well as covariates describing the infrastructure system or disruptive event, among others, which can also vary with time. The proportional hazards approach is illustrated with a publicly available electric power outage data set

  16. Diagram of the Water Recovery and Management for the International Space Station

    Science.gov (United States)

    2000-01-01

    This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  17. Flight Path Recovery System (FPRS) design study

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented.

  18. Flight Path Recovery System (FPRS) design study

    International Nuclear Information System (INIS)

    1978-09-01

    The study contained herein presents a design for a Flight Path Recovery System (FPPS) for use in the NURE Program which will be more accurate than systems presently used, provide position location data in digital form suitable for automatic data processing, and provide for flight path recovery in a more economic and operationally suitable manner. The design is based upon the use of presently available hardware and technoloy, and presents little, it any, development risk. In addition, a Flight Test Plan designed to test the FPRS design concept is presented

  19. The Recovery of Water and Nitrogen from Urine in BLSS

    Science.gov (United States)

    Xie, Beizhen; Liu, Hong; Deng, Shengda

    The recycle and reuse of the wastewater is one of the main factors for realizing a higher closure degree of bioregenerative life support system (BLSS), and the treatment and recovery of the crew’s urine are the most difficult and critical issues. Urine contains a lot of water and high concentrations of urea and salts. Water can be used for the irrigation of the plants in BLSS, and the nitrogen is also the necessary nutrient for plant growth. Therefore, if the nitrogen could be recycled simultaneously while desalting the urine, the substance circulation and the closure of BLSS could be improved significantly. In this study, two-step method was conducted to treat the urine and recycle the water and nitrogen. The urea was hydrolyzed firstly, and then the water vapor and ammonia gas were cooled and collected by using reduced pressure distillation in alkaline condition. High temperature acidification and urease processing methods were studied during the urea hydrolysis step. The treatment conditions of both methods were optimized and the degrees of hydrolysis were compared. This investigation may provide a reference for the establishment of the urine recycle in BLSS.

  20. Comparison of Configurations for High-Recovery Inland Desalination Systems

    Directory of Open Access Journals (Sweden)

    Philip A. Davies

    2012-09-01

    Full Text Available Desalination of brackish groundwater (BW is an effective approach to augment water supply, especially for inland regions that are far from seawater resources. Brackish water reverse osmosis (BWRO desalination is still subject to intensive energy consumption compared to the theoretical minimum energy demand. Here, we review some of the BWRO plants with various system arrangements. We look at how to minimize energy demands, as these contribute considerably to the cost of desalinated water. Different configurations of BWRO system have been compared from the view point of normalized specific energy consumption (SEC. Analysis is made at theoretical limits. The SEC reduction of BWRO can be achieved by (i increasing number of stages, (ii using an energy recovery device (ERD, or (iii operating the BWRO in batch mode or closed circuit mode. Application of more stages not only reduces SEC but also improves water recovery. However, this improvement is less pronounced when the number of stages exceeds four. Alternatively and more favourably, the BWRO system can be operated in Closed Circuit Desalination (CCD mode and gives a comparative SEC to that of the 3-stage system with a recovery ratio of 80%. A further reduction of about 30% in SEC can be achieved through batch-RO operation. Moreover, the costly ERDs and booster pumps are avoided with both CCD and batch-RO, thus furthering the effectiveness of lowering the costs of these innovative approaches.

  1. Uses and abuses of recovery: implementing recovery-oriented practices in mental health systems

    Science.gov (United States)

    Slade, Mike; Amering, Michaela; Farkas, Marianne; Hamilton, Bridget; O'Hagan, Mary; Panther, Graham; Perkins, Rachel; Shepherd, Geoff; Tse, Samson; Whitley, Rob

    2014-01-01

    An understanding of recovery as a personal and subjective experience has emerged within mental health systems. This meaning of recovery now underpins mental health policy in many countries. Developing a focus on this type of recovery will involve transformation within mental health systems. Human systems do not easily transform. In this paper, we identify seven mis-uses (“abuses”) of the concept of recovery: recovery is the latest model; recovery does not apply to “my” patients; services can make people recover through effective treatment; compulsory detention and treatment aid recovery; a recovery orientation means closing services; recovery is about making people independent and normal; and contributing to society happens only after the person is recovered. We then identify ten empirically-validated interventions which support recovery, by targeting key recovery processes of connectedness, hope, identity, meaning and empowerment (the CHIME framework). The ten interventions are peer support workers, advance directives, wellness recovery action planning, illness management and recovery, REFOCUS, strengths model, recovery colleges or recovery education programs, individual placement and support, supported housing, and mental health trialogues. Finally, three scientific challenges are identified: broadening cultural understandings of recovery, implementing organizational transformation, and promoting citizenship. PMID:24497237

  2. Water Landing Impact of Recovery Space Capsule: A Research Overview

    OpenAIRE

    Nakano, Eiichiro; Uchikawa, Hideaki; Tanno, Hideyuki; Sugimoto, Ryu

    2014-01-01

    For the design of a manned or cargo space capsule, it is important to precisely estimate the Earth landing loads to the crew or cargo, and to limit the loads to within a permissible range. Water landing simulations and scale-model water landing tests with varying conditions for descending velocity, pitch angle, and horizontal velocity during splashdown were conducted to estimate the magnitude of water impact on the recovery space capsule. This paper describes the results of the simulation and...

  3. 40 CFR 35.928-3 - Implementation of the industrial cost recovery system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Implementation of the industrial cost...-Clean Water Act § 35.928-3 Implementation of the industrial cost recovery system. (a) When a grantee's industrial cost recovery system is approved, implementation of the approved system shall become a condition...

  4. General Atomic's radioactive gas recovery system

    International Nuclear Information System (INIS)

    Mahn, J.A.; Perry, C.A.

    1975-01-01

    General Atomic Company has developed a Radioactive Gas Recovery System for the HTGR which separates, for purposes of retention, the radioactive components from the non-radioactive reactor plant waste gases. This provides the capability for reducing to an insignificant level the amount of radioactivity released from the gas waste system to the atmosphere--a most significant improvement in reducing total activity release to the environment. (U.S.)

  5. Recovery of water from acid mine drainage

    CSIR Research Space (South Africa)

    Mulopo, J

    2010-10-01

    Full Text Available precipitation of sulphate present in mine wastewater mainly as CaSO4 to generate BaSO4/CaCO3 sludge. This work focused on the interaction between the optimum regions for reactor operation and the experimental results. WATER QuAliTY REsulTs Figure 2...

  6. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    NARCIS (Netherlands)

    Tervahauta, T.H.; Bryant, I.M.; Hernandez Leal, L.; Buisman, C.J.N.; Zeeman, G.

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were

  7. Oil recovery enhancement from fractured, low permeability reservoirs. [Carbonated Water

    Energy Technology Data Exchange (ETDEWEB)

    Poston, S.W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods.Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks.Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  8. Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water

    Science.gov (United States)

    Poston, S. W.

    1991-01-01

    The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

  9. Kinetic energy recovery systems in motor vehicles

    Science.gov (United States)

    Śliwiński, C.

    2016-09-01

    The article draws attention to the increasing environmental pollution caused by the development of vehicle transport and motorization. Different types of design solutions used in vehicles for the reduction of fuel consumption, and thereby emission of toxic gasses into the atmosphere, were specified. Historical design solutions concerning energy recovery devices in mechanical vehicles which used flywheels to accumulate kinetic energy were shown. Developmental tendencies in the area of vehicle manufacturing in the form of hybrid electric and electric devices were discussed. Furthermore, designs of energy recovery devices with electrical energy storage from the vehicle braking and shock absorbing systems were presented. A mechanical energy storing device using a flywheel operating under vacuum was presented, as were advantages and disadvantages of both systems, the limitations they impose on individual constructions and safety issues. The paper also discusses a design concept of an energy recovery device in mechanical vehicles which uses torsion springs as the main components of energy accumulation during braking. The desirability of a cooperation of both the mechanical- and electrical energy recovery devices was indicated.

  10. Recovery of the immune system after exercise.

    Science.gov (United States)

    Peake, Jonathan M; Neubauer, Oliver; Walsh, Neil P; Simpson, Richard J

    2017-05-01

    The notion that prolonged, intense exercise causes an "open window" of immunodepression during recovery after exercise is well accepted. Repeated exercise bouts or intensified training without sufficient recovery may increase the risk of illness. However, except for salivary IgA, clear and consistent markers of this immunodepression remain elusive. Exercise increases circulating neutrophil and monocyte counts and reduces circulating lymphocyte count during recovery. This lymphopenia results from preferential egress of lymphocyte subtypes with potent effector functions [e.g., natural killer (NK) cells, γδ T cells, and CD8 + T cells]. These lymphocytes most likely translocate to peripheral sites of potential antigen encounter (e.g., lungs and gut). This redeployment of effector lymphocytes is an integral part of the physiological stress response to exercise. Current knowledge about changes in immune function during recovery from exercise is derived from assessment at the cell population level of isolated cells ex vivo or in blood. This assessment can be biased by large changes in the distribution of immune cells between blood and peripheral tissues during and after exercise. Some evidence suggests that reduced immune cell function in vitro may coincide with changes in vivo and rates of illness after exercise, but more work is required to substantiate this notion. Among the various nutritional strategies and physical therapies that athletes use to recover from exercise, carbohydrate supplementation is the most effective for minimizing immune disturbances during exercise recovery. Sleep is an important aspect of recovery, but more research is needed to determine how sleep disruption influences the immune system of athletes. Copyright © 2017 the American Physiological Society.

  11. Recovery of uranium from sea-water

    International Nuclear Information System (INIS)

    Llewelyn, G.I.W.

    1976-01-01

    The possibility of extraction of uranium from sea-water on a sufficiently large scale to contribute significantly to national UK requirements is placed in perspective. It seems unlikely that there are sites around the UK coast where this could be achieved, and insufficient work has been done to be confident that sites exist anywhere to enable uranium extraction to be carried out on a large scale. Process techniques have been developed on a small scale, but extensive further research work would be necessary to reduce appreciably the present uncertainties. It would be unwise to expect uranium from sea-water to contribute significant amounts to the world's uranium demand for thermal reactors on an acceptable timescale. (author)

  12. Analysis of Water Recovery Rate from the Heat Melt Compactor

    Science.gov (United States)

    Balasubramaniam, R.; Hegde, U.; Gokoglu, S.

    2013-01-01

    Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and

  13. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  14. Aquifer storage and recovery: recent hydrogeological advances and system performance.

    Science.gov (United States)

    Maliva, Robert G; Guo, Weixing; Missimer, Thomas M

    2006-12-01

    Aquifer storage and recovery (ASR) is part of the solution to the global problem of managing water resources to meet existing and future freshwater demands. However, the metaphoric "ASR bubble" has been burst with the realization that ASR systems are more physically and chemically complex than the general conceptualization. Aquifer heterogeneity and fluid-rock interactions can greatly affect ASR system performance. The results of modeling studies and field experiences indicate that more sophisticated data collection and solute-transport modeling are required to predict how stored water will migrate in heterogeneous aquifers and how fluid-rock interactions will affect the quality of stored water. It has been well-demonstrated, by historic experience, that ASR systems can provide very large volumes of storage at a lesser cost than other options. The challenges moving forward are to improve the success rate of ASR systems, optimize system performance, and set expectations appropriately.

  15. Progress in the development of the reverse osmosis process for spacecraft wash water recovery.

    Science.gov (United States)

    Pecoraro, J. N.; Podall, H. E.; Spurlock, J. M.

    1972-01-01

    Research work on ambient- and pasteurization-temperature reverse osmosis processes for wash water recovery in a spacecraft environment is reviewed, and the advantages and drawbacks of each are noted. A key requirement in each case is to provide a membrane of appropriate stability and semipermeability. Reverse osmosis systems intended for such use must also take into account the specific limitations and requirements imposed by the small volume of water to be processed and the high water recovery desired. The incorporation of advanced high-temperature membranes into specially designed modules is discussed.

  16. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  17. Recovery of uranium in mine waters

    International Nuclear Information System (INIS)

    Sugier, P.

    1967-01-01

    In a brief introductory survey the author indicates the date on which leaching was first observed in the CEA mines and lists the main factors necessary for, or favourable to, the solubilization of uranium in mines. Information is given on the various sources of this type at present identified in France and the methods used to recover uranium in mines situated near ore-concentration plants. An explanation is given for the use of the calcium precipitation technique in connection with waters produced in mines not situated near ore-concentration plants. Data are given on the results of laboratory tests carried out on waters containing uranium, together with a description of an industrial-scale facility built in consequence of these tests. Details are given of the statistical results obtained. The author concludes by outlining the programme which will be implemented in the near future with a view to increasing the tonnage of uranium produced by in situ leaching and indicates that the CEA engineers are very optimistic about the prospects of this new low-cost method of producing uranium. (author) [fr

  18. Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water

    OpenAIRE

    Tervahauta, Taina; Bryant, Isaac; Leal, Lucía; Buisman, Cees; Zeeman, Grietje

    2014-01-01

    This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP), UASB reactor performance, chemical oxygen demand (COD) mass balance and methanization. Grey water sludge treatment with black water increased...

  19. Recovery of the Education System in Myanmar

    Directory of Open Access Journals (Sweden)

    Martin Hayden And Richard Martin

    2013-10-01

    Full Text Available Myanmar's education system is in a very weakened state. The physical condition and human resource capacity of the system is poor by any standard, and teachers, whether in schools, colleges or universities, have few opportunities and little incentive for professional development. A process of recovery is getting underway, but it will take years before significant improvements are evident. Major cultural change is required in the style of leadership and management at all levels of government, and there is also a desperate need for more financial resources. This paper documents the current state of the education system in Myanmar and advances three priority areas for immediate attention.

  20. The potential for the recovery and reuse of cooling water in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    You, Shu-Hai; Tseng, Dyi-Hwa; Guo, Gia-Luen; Yang, Jyh-Jian [Graduate Institute of Environmental Engineering, National Central University, Chungli (Taiwan, Province of China)

    1999-04-01

    The cooling water is the major part of industrial water use in Taiwan, either from the view of demand priority or supply volume. In order to save water, the loading of supply system can be reduced if the cooling water can be recovered and reused. For this reason, exploration of the recent operation status of the cooling water system has become essential in Taiwan. This study was initially focused on the current applications and reuse trends of cooling water in oil refineries, chemical industry, steel mills, food industry, electronics works, textile plants and power stations. According to the statistical analysis, the portable water and groundwater are the primary sources of makeup water for cooling systems. The multiple-chemicals method and makeup treatment are increasingly accepted for the reclamation of cooling water. On the other hand, sidestream treatment and blowdown reuse are not popular in Taiwan. The recovery rate of blowdown is only 26.8%. The fact of higher cost is the major reason to depress the willingness of recovery. Some representative plants had been selected for case study. However, most cooling water systems are only operated by operator`s experience according to field investigation. In each case, the water quality indexes were used to evaluate the operational condition of cooling water systems. There was no case plant found to be operated at appropriate cycles of concentration. This paper also presented the bottlenecks of conservation technologies of cooling water in Taiwan. These bottlenecks include increasing the cycles of concentration, the reuse of wastewater, and the blowdown treatment for reuse. This paper also demonstrates that the recovery and reuse of cooling water has great potential and is feasible for the available technologies in present Taiwan, but the industries are still unwilling to upgrade because of initial cost. Finally, some approaches associated with technology, economics, environment and policy are proposed to be a

  1. Conceptual process design for uranium recovery from sea water

    International Nuclear Information System (INIS)

    Suzuki, Motoyuki; Chihara, Kazuyuki; Fujimoto, Masahiko; Yagi, Hiroshi; Wada, Akihiko.

    1985-01-01

    Based on design of uranium recovery process from sea water, total cost for uranium production was estimated. Production scale of 1,000 ton-uranium per year was supposed, because of the big demand for uranium in the second age, i.e., fast breeder reactor age. The process is described as follows: Fluidized bed of hydrous titanium oxide (diameter is 0.1 mm, saturated adsorption capacity is 510 μg-U/g-Ad, adsorption capacity for ten days is 150 μg-U/g-Ad) is supposed, as an example, to be utilized as the primarily concentration unit. Fine adsorbent particles can be transferred as slurry in all of the steps of adsorption, washing, desorption, washing, regeneration. As an example, ammonium carbonate is applied to desorb the adsorbed uranium from titanium oxide. Then, stripping method is adopted for desorbent recovery. As for the secondary concentration, strong basic anion exchange method is supposed. The first step of process design is to determine the mass balance of each component through the whole process system by using the signal diagram. Then, the scale of each unit process, with which the mass balances are satisfied, is estimated by detailed chemical engineering calculation. Also, driving cost of each unit operation is estimated. As a result, minimum total cost of 160,000 yen/kg-U is obtained. Adsorption process cost is 80 to 90 % of the total cost. Capital cost and driving cost are fifty-fifty in the adsorption process cost. Pump driving cost forms a big part of the driving cost. Further concentrated study should be necessary on the adsorption process design. It might be important to make an effort on direct utilization of ocean current for saving the pump driving cost. (author)

  2. Apparatus, System, and Method for Forward Osmosis in Water Reuse

    KAUST Repository

    Yangali-Quintanilla, Victor; Li, Zhenyu; Valladares Linares, Rodrigo; Amy, Gary

    2013-01-01

    An apparatus, system, and method for desalinating water is presented. The invention relates to recovery of water from impaired water sources by using FO and seawater as draw solution (DS). The seawater becomes diluted over time and can be easily

  3. Using CONFIG for Simulation of Operation of Water Recovery Subsystems for Advanced Control Software Evaluation

    Science.gov (United States)

    Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv

    2002-01-01

    A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center

  4. A dual model approach to ground water recovery trench design

    International Nuclear Information System (INIS)

    Clodfelter, C.L.; Crouch, M.S.

    1992-01-01

    The design of trenches for contaminated ground water recovery must consider several variables. This paper presents a dual-model approach for effectively recovering contaminated ground water migrating toward a trench by advection. The approach involves an analytical model to determine the vertical influence of the trench and a numerical flow model to determine the capture zone within the trench and the surrounding aquifer. The analytical model is utilized by varying trench dimensions and head values to design a trench which meets the remediation criteria. The numerical flow model is utilized to select the type of backfill and location of sumps within the trench. The dual-model approach can be used to design a recovery trench which effectively captures advective migration of contaminants in the vertical and horizontal planes

  5. Rankine cycle waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  6. An anaerobic membrane bioreactor - membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants.

    Science.gov (United States)

    Song, Xiaoye; Luo, Wenhai; McDonald, James; Khan, Stuart J; Hai, Faisal I; Price, William E; Nghiem, Long D

    2018-07-01

    In this study, a direct contact membrane distillation (MD) unit was integrated with an anaerobic membrane bioreactor (AnMBR) to simultaneously recover energy and produce high quality water for reuse from wastewater. Results show that AnMBR could produce 0.3-0.5L/g COD added biogas with a stable methane content of approximately 65%. By integrating MD with AnMBR, bulk organic matter and phosphate were almost completely removed. The removal of the 26 selected trace organic contaminants by AnMBR was compound specific, but the MD process could complement AnMBR removal, leading to an overall efficiency from 76% to complete removal by the integrated system. The results also show that, due to complete retention, organic matter (such as humic-like and protein-like substances) and inorganic salts accumulated in the MD feed solution and therefore resulted in significant fouling of the MD unit. As a result, the water flux of the MD process decreased continuously. Nevertheless, membrane pore wetting was not observed throughout the operation. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  7. Fouling Characterization of Forward Osmosis Biomimetic Aquaporin Membranes Used for Water Recovery from Municipal Wastewater

    DEFF Research Database (Denmark)

    Zarebska, Agata; Petrinic, Irena; Hey, Tobias

    , organic, and biological fouling, membrane characterization is not a trivial task. The aim of this work is to characterize fouling of FO biomimetic aquaporin membranes during water recovery from municipal wastewater. Membrane fouling was characterized using Scanning Electron Microscopy, X-ray Dispersive......Generally more than 99.93% of municipal wastewater is composed of water, therefore water recovery can alleviate global water stress which currently exists. Traditional ways to extract water from wastewater by the use of membrane bioreactors combined with reverse osmosis (RO), or micro...... compared to other pressure driven membrane processes, some fouling can occur. This entails that by reducing fouling, increased FO membrane performance can be expected, thus increasing the economic viability of FO processes. Since various types of fouling might occur in membrane systems such as inorganic...

  8. Potentials of heat recovery from 850C LEP cooling water

    International Nuclear Information System (INIS)

    Koelling, M.

    1982-06-01

    Most of the cooling water from LEP has a too low temperature (30 to 40 0 C) to be considered for economical recovery of energy. However, it is hoped that the heat from the klystrons be removed at a temperature of 85 0 C and that this part of the LEP cooling water might be used for saving primary energy. In this study different possibilities have been investigated to make use of the waste heat for heating purposes during winter time, for saving energy in the refrigeration process in summer and for power generation. Cost estimates for these installations are also given and show their economic drawbacks. (orig.)

  9. Recovery of uranium from sea water - a laboratory study

    International Nuclear Information System (INIS)

    Jayawant, D.V.; Iyer, N.S.; Koppiker, K.S.

    1991-01-01

    Sea water contains traces of uranium, but the volume of sea water being enormous, the total quantity of uranium available from the sources is very large. From time to time, claims have been made elsewhere that a breakthrough has been made in developing a technology to recovery this uranium at an economic cost. Studies have been carried out at Uranium Extraction Division over a few years to develop a suitable technique to separate the uranium from sea water. Studies were primarily directed towards preparation of suitable inorganic ion exchangers and studying their properties. In this paper preparation of ion exchangers based on hydrous titanium oxide and the data collected in laboratory trials on their application for uranium adsorption from sea water are presented. (author). 11 refs., 2 tabs

  10. Methods to maximise recovery of environmental DNA from water samples.

    Directory of Open Access Journals (Sweden)

    Rheyda Hinlo

    Full Text Available The environmental DNA (eDNA method is a detection technique that is rapidly gaining credibility as a sensitive tool useful in the surveillance and monitoring of invasive and threatened species. Because eDNA analysis often deals with small quantities of short and degraded DNA fragments, methods that maximize eDNA recovery are required to increase detectability. In this study, we performed experiments at different stages of the eDNA analysis to show which combinations of methods give the best recovery rate for eDNA. Using Oriental weatherloach (Misgurnus anguillicaudatus as a study species, we show that various combinations of DNA capture, preservation and extraction methods can significantly affect DNA yield. Filtration using cellulose nitrate filter paper preserved in ethanol or stored in a -20°C freezer and extracted with the Qiagen DNeasy kit outperformed other combinations in terms of cost and efficiency of DNA recovery. Our results support the recommendation to filter water samples within 24hours but if this is not possible, our results suggest that refrigeration may be a better option than freezing for short-term storage (i.e., 3-5 days. This information is useful in designing eDNA detection of low-density invasive or threatened species, where small variations in DNA recovery can signify the difference between detection success or failure.

  11. Lithium recovery from shale gas produced water using solvent extraction

    International Nuclear Information System (INIS)

    Jang, Eunyoung; Jang, Yunjai; Chung, Eunhyea

    2017-01-01

    Shale gas produced water is hypersaline wastewater generated after hydraulic fracturing. Since the produced water is a mixture of shale formation water and fracturing fluid, it contains various organic and inorganic components, including lithium, a useful resource for such industries as automobile and electronics. The produced water in the Marcellus shale area contains about 95 mg/L lithium on average. This study suggests a two-stage solvent extraction technique for lithium recovery from shale gas produced water, and determines the extraction mechanism of ions in each stage. All experiments were conducted using synthetic shale gas produced water. In the first-stage, which was designed for the removal of divalent cations, more than 94.4% of Ca"2"+, Mg"2"+, Sr"2"+, and Ba"2"+ ions were removed by using 1.0 M di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an extractant. In the second-stage, for lithium recovery, we could obtain a lithium extraction efficiency of 41.2% by using 1.5 M D2EHPA and 0.3 M tributyl phosphate (TBP). Lithium loss in the first-stage was 25.1%, and therefore, the total amount of lithium recovered at the end of the two-step extraction procedure was 30.8%. Through this study, lithium, one of the useful mineral resources, could be selectively recovered from the shale gas produced water and it would also reduce the wastewater treatment cost during the development of shale gas. - Highlights: • Lithium was extracted from shale gas produced water using an organic solvent. • Two-stage solvent extraction technique was applied. • Divalent cations were removed in the first stage by D2EHPA. • Lithium was selectively recovered in the second stage by using TBP with D2EHPA.

  12. Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance

    Science.gov (United States)

    Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.

    2010-01-01

    Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.

  13. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  14. Performance assessment techniques for groundwater recovery and treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirkpatrick, G.L. [Environmental Resources Management, Inc., Exton, PA (United States)

    1993-03-01

    Groundwater recovery and treatment (pump and treat systems) continue to be the most commonly selected remedial technology for groundwater restoration and protection programs at hazardous waste sites and RCRA facilities nationwide. Implementing a typical groundwater recovery and treatment system includes the initial assessment of groundwater quality, characterizing aquifer hydrodynamics, recovery system design, system installation, testing, permitting, and operation and maintenance. This paper focuses on methods used to assess the long-term efficiency of a pump and treat system. Regulatory agencies and industry alike are sensitive to the need for accurate assessment of the performance and success of groundwater recovery systems for contaminant plume abatement and aquifer restoration. Several assessment methods are available to measure the long-term performance of a groundwater recovery system. This paper presents six assessment techniques: degree of compliance with regulatory agency agreement (Consent Order of Record of Decision), hydraulic demonstration of system performance, contaminant mass recovery calculation, system design and performance comparison, statistical evaluation of groundwater quality and preferably, integration of the assessment methods. Applying specific recovery system assessment methods depends upon the type, amount, and quality of data available. Use of an integrated approach is encouraged to evaluate the success of a groundwater recovery and treatment system. The methods presented in this paper are for engineers and corporate management to use when discussing the effectiveness of groundwater remediation systems with their environmental consultant. In addition, an independent (third party) system evaluation is recommended to be sure that a recovery system operates efficiently and with minimum expense.

  15. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  16. Coal washery effluent treatment for material recovery and water reuse

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, N.N.; Chaudhuri, M.

    1980-10-01

    Th effluent from coal washeries consisting mainly of coal fines is normally discharged to inland surface waters and causes severe river pollution with substantial loss of good quality coking coal. The study reported in this paper was undertaken to characterize the effluents from several coal washeries and to evaluate the potential of using various coagulants and coagulant aids for clarification of the effluent with a view to recovery of the coal fines and reuse of the clarified effluent. It has been demonstrated that higher recovery of coal fines can be achieved by using coagulants like alum or ferric chloride with or without coagulant aids with an added advantage of reuse of the clarified effluent in the washery.

  17. Drinking Water Quality Criterion - Based site Selection of Aquifer Storage and Recovery Scheme in Chou-Shui River Alluvial Fan

    Science.gov (United States)

    Huang, H. E.; Liang, C. P.; Jang, C. S.; Chen, J. S.

    2015-12-01

    Land subsidence due to groundwater exploitation is an urgent environmental problem in Choushui river alluvial fan in Taiwan. Aquifer storage and recovery (ASR), where excess surface water is injected into subsurface aquifers for later recovery, is one promising strategy for managing surplus water and may overcome water shortages. The performance of an ASR scheme is generally evaluated in terms of recovery efficiency, which is defined as percentage of water injected in to a system in an ASR site that fulfills the targeted water quality criterion. Site selection of an ASR scheme typically faces great challenges, due to the spatial variability of groundwater quality and hydrogeological condition. This study proposes a novel method for the ASR site selection based on drinking quality criterion. Simplified groundwater flow and contaminant transport model spatial distributions of the recovery efficiency with the help of the groundwater quality, hydrological condition, ASR operation. The results of this study may provide government administrator for establishing reliable ASR scheme.

  18. Water-rock interaction during diagenesis and thermal recovery, Cold Lake, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, H.J.

    1988-12-01

    Fluid and rocks interact at high temperatures during diagenesis and steam assisted thermal recovery of bitumen from the Clearwater Formation at Cold Lake, Alberta. A study was carried out to assess the effects of natural diagenesis in rocks of the formation, and using these data, to relate the chemical and isotopic compositions of fluids produced during thermal recovery to water-rock interactions occurring in the reservoir. X-ray diffraction (XRD) studies on core from Leming and Marguerite Lake document a variety of diagenetic clays including mixed layer minerals smectite-illite and chlorite-smectite, chlorite, illite, berthierine and kaolinite. A method for internally generating factors to convert clay mineral XRD peak heights to relative weight percents was used. Semi-quantitative results show that smectite-illite is ubiquitous and the most abundant clay present. Details are provided of the diagenetic sequence illustrating water-rock interaction over a prolonged period. Three types of water were found to be produced from the wells: injected water, formation water associated with bitumen, and bottom water from the underlying McMurray Formation. Produced water compositions were used to estimate in-situ temperatures of fluids produced from reservoirs. It is concluded that equilibrium closed-system models can be applied to natural diagenesis and artificial diagenesis induced during thermal recovery. 132 refs., 52 figs., 5 tabs.

  19. LCA and Cost Analysis of Membrane Bioreactor Systems: Influence of Scale, Population Density, Climate, and Methane Recovery

    Science.gov (United States)

    Future changes in drinking and waste water infrastructure need to incorporate a holistic view of the water service sustainability tradeoffs and potential benefits when considering shifts towards new treatment technology, decentralized systems, energy recovery and reuse of treated...

  20. Assessing nuclear power plant safety and recovery from earthquakes using a system-of-systems approach

    International Nuclear Information System (INIS)

    Ferrario, E.; Zio, E.

    2014-01-01

    We adopt a ‘system-of-systems’ framework of analysis, previously presented by the authors, to include the interdependent infrastructures which support a critical plant in the study of its safety with respect to the occurrence of an earthquake. We extend the framework to consider the recovery of the system of systems in which the plant is embedded. As a test system, we consider the impacts produced on a nuclear power plant (the critical plant) embedded in the connected power and water distribution, and transportation networks which support its operation. The Seismic Probabilistic Risk Assessment of such system of systems is carried out by Hierarchical modeling and Monte Carlo simulation. First, we perform a top-down analysis through a hierarchical model to identify the elements that at each level have most influence in restoring safety, adopting the criticality importance measure as a quantitative indicator. Then, we evaluate by Monte Carlo simulation the probability that the nuclear power plant enters in an unsafe state and the time needed to recover its safety. The results obtained allow the identification of those elements most critical for the safety and recovery of the nuclear power plant; this is relevant for determining improvements of their structural/functional responses and supporting the decision-making process on safety critical-issues. On the test system considered, under the given assumptions, the components of the external and internal water systems (i.e., pumps and pool) turn out to be the most critical for the safety and recovery of the plant. - Highlights: • We adopt a system-of-system framework to analyze the safety of a critical plant exposed to risk from external events, considering also the interdependent infrastructures that support the plant. • We develop a hierarchical modeling framework to represent the system of systems, accounting also for its recovery. • Monte Carlo simulation is used for the quantitative evaluation of the

  1. Classification of methods and equipment recovery secondary waters

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2017-01-01

    Full Text Available The issues of purification of secondary waters of industrial production have an important place and are relevant in the environmental activities of all food and chemical industries. For cleaning the transporter-washing water of beet-sugar production the key role is played by the equipment of treatment plants. A wide variety of wastewater treatment equipment is classified according to various methods. Typical structures used are sedimentation tanks, hydrocyclones, separators, centrifuges. In turn, they have a different degree of purification, productivity through the incoming suspension and purified secondary water. This is equipment is divided into designs, depending on the range of particles to be removed. A general classification of methods for cleaning the transporter-washing water, as well as the corresponding equipment, is made. Based on the analysis of processes and instrumentation, the main methods of wastewater treatment are identified: mechanical, physicochemical, combined, biological and disinfection. To increase the degree of purification and reduce technical and economic costs, a combined method is widely used. The main task of the site for cleaning the transporter-washing waters of sugar beet production is to provide the enterprise with water in the required quantity and quality, with economical use of water resources, taking into account the absence of pollution of surface and groundwater by industrial wastewater. In the sugar industry is currently new types of washing equipment of foreign production are widely used, which require high quality and a large amount of purified transporter-washing water for normal operation. The proposed classification makes it possible to carry out a comparative technical and economic analysis when choosing the methods and equipment for recuperation of secondary waters. The main equipment secondary water recovery used at the beet-sugar plant is considered. The most common beet processing plant is a

  2. Advanced Supermarket Refrigeration/Heat Recovery Systems. Country Report, Denmark

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard; Christensen, K. G.

    Annex 26 is the first international project under the IEA Heat Pump Programme that links refrigeration and heat pump technology. Recovering heat from advanced supermarket refrigeration systems for space and water heating seems obvious and is beneficial for owners and operators. Because the great...... number of supermarkets that offer frozen and chilled food and further growth of this sector may be expected, the amount of energy used for refrigeration is enormous and will likely increase in the near future. Annex 26 analysed several advanced supermarket refrigeration systems and came to remarkable...... conclusions as far energy conservation and TEWI reduction is concerned. The conclusion justify that advanced supermarket systems with heat recovery should receive great attention and support. And there is still further research needed in several areas. The Annex also included a thorough system analyses...

  3. Heat recovery from shower water; Warmteterugwinning uit douchewater

    Energy Technology Data Exchange (ETDEWEB)

    Heidemans, J. [Hei-Tech, Emmen (Netherlands)

    2011-09-15

    With a payback period of several years, heat recovery from shower water in swimming pools but also in, for example, apartment buildings are an attractive form of energy saving. Possible are savings from 30 to 50% on energy, which is tested and proved by measurements in the heat exchanger of showers in a swimming pool in Denmark. [Dutch] Met een terugverdientijd van enkele jaren is warmteterugwinning uit douchewater in zwembaden maar ook in bijvoorbeeld sporthallen en appartementengebouwen een aantrekkelijke vorm van energiebesparing. Er kan een besparing worden gerealiseerd van 30 tot 50% op het energiegebruik van het douchewater. Metingen aan een douchewarmtewisselaar in een zwembad in Denemarken tonen dit aan.

  4. Co-regulation of water and K(+) transport in sunflower plants during water stress recovery.

    Science.gov (United States)

    Benlloch, Manuel; Benlloch-González, María

    2016-06-01

    16-day-old sunflower (Helianthus annuus L.) plants were subjected to deficit irrigation for 12 days. Following this period, plants were rehydrated for 2 days to study plant responses to post-stress recovery. The moderate water stress treatment applied reduced growth in all plant organs and the accumulation of K(+) in the shoot. After the rehydration period, the stem recovered its growth and reached a similar length to the control, an effect which was not observed in either root or leaves. Moreover, plant rehydration after water stress favored the accumulation of K(+) in the apical zone of the stem and expanding leaves. In the roots of plants under water stress, watering to field capacity, once the plants were de- topped, rapidly favored K(+) and water transport in the excised roots. This quick and short-lived response was not observed in roots of plants recovered from water stress for 2 days. These results suggest that the recovery of plant growth after water stress is related to coordinated water and K(+) transport from the root to the apical zone of the ​​stem and expanding leaves. This stimulation of K(+) transport in the root and its accumulation in the cells of the growing zones of the ​​stem must be one of the first responses induced in the plant during water stress recovery. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Energy and water conservation at lignite-fired power plants using drying and water recovery technologies

    International Nuclear Information System (INIS)

    Liu, Ming; Qin, Yuanzhi; Yan, Hui; Han, Xiaoqu; Chong, Daotong

    2015-01-01

    Highlights: • Pre-drying and water recovery technologies were used to conserve energy and water. • The energy and water conservation potential were analyzed with reference cases. • The air-cooling unit produces water when the water content of lignite is high enough. • Influences of main parameters on energy and water conservation were analyzed. - Abstract: Lignite is considered as a competitive energy raw material with high security of supply viewed from a global angle. However, lignite-fired power plants have many shortcomings, including high investment, low energy efficiency and high water use. To address these issues, the drying and water recovery technologies are integrated within lignite-fired power plants. Both air-cooling and wet-cooling units with three kinds of lignite as feeding fuel were analyzed quantitatively. Results showed that energy conservation and water conservation are obtained simultaneously. The power plant firing high moisture lignite becomes more environmental friendly with higher power generation efficiency and a lower water makeup rate than the one firing low moisture lignite. And further calculation revealed that the air-cooling unit needs no makeup water and even produces some water as it generates power, when the water carrying coefficient is higher than 40 g/MJ.

  6. Estimation of free-hydrocarbon recovery from dual-pump systems

    International Nuclear Information System (INIS)

    Charbeneau, R.J.

    1995-01-01

    Free-product hydrocarbon which floats on the water table may be recovered using single-pump and dual-pump systems. The factors that affect the long-term free-product recovery using dual-pump systems include the free-product thickness as measured in monitoring wells, the ground-water pumping rate, hydrocarbon density and viscosity, and the soil permeability. This paper presents a simple model for prediction of free-product recovery using dual-pump systems. The model predicts the long-term rather than short-term recovery rates, and lends itself to spreadsheet calculations on microcomputers. A particularly simple form arises for cases where the drawdown is small. An application for estimating recovery from a dual-pump system is presented, and limitations of the model are summarized

  7. Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD).

    Science.gov (United States)

    Zhang, Sui; Wang, Peng; Fu, Xiuzhu; Chung, Tai-Shung

    2014-04-01

    This study proposed and investigated a hybrid forward osmosis - membrane distillation (FO-MD) system for sustainable water recovery from oily wastewater by employing lab-fabricated FO and MD hollow fiber membranes. Stable oil-in-water emulsions of different concentrations with small droplet sizes (oil droplets and partial permeation of acetic acid could be achieved. Finally, an integrated FO-MD system was developed to treat the oily wastewater containing petroleum, surfactant, NaCl and acetic acid at 60 °C in the batch mode. The water flux in FO undergoes three-stage decline due to fouling and reduction in osmotic driving force, but is quite stable in MD regardless of salt concentration. Oily wastewater with relatively high salinity could be effectively recovered by the FO-MD hybrid system while maintaining large water flux, at least 90% feed water recovery could be readily attained with only trace amounts of oil and salts, and the draw solution was re-generated for the next rounds of FO-MD run. Interestingly, significant amount of acetic acid was also retained in the permeate for further reuse as a chemical additive during the production of crude oil. The work has demonstrated that not only water but also organic additives in the wastewater could be effectively recovered by FO-MD systems for reuse or other utilizations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use

    Energy Technology Data Exchange (ETDEWEB)

    Claire Henderson; Harish Acharya; Hope Matis; Hareesh Kommepalli; Brian Moore; Hua Wang

    2011-03-31

    The project goal was to develop a cost-effective water recovery process to reduce the costs and envi-ronmental impact of shale gas production. This effort sought to develop both a flowback water pre-treatment process and a membrane-based partial demineralization process for the treatment of the low-Total Dissolved Solids (TDS) portion of the flowback water produced during hydrofracturing operations. The TDS cutoff for consideration in this project is < 35,000 {approx} 45,000 ppm, which is the typical limit for economic water recovery employing reverse osmosis (RO) type membrane desalination processes. The ultimate objective is the production of clean, reclaimed water suitable for re-use in hydrofracturing operations. The team successfully compiled data on flowback composition and other attributes across multiple shale plays, identified the likely applicability of membrane treatment processes in those shales, and expanded the proposed product portfolio to include four options suitable for various reuse or discharge applications. Pretreatment technologies were evaluated at the lab scale and down-selected based upon their efficacy in removing key contaminants. The chosen technologies were further validated by performing membrane fouling studies with treated flowback water to demonstrate the technical feasibility of flowback treatment with RO membranes. Process flow schemes were constructed for each of the four product options based on experimental performance data from actual flowback water treatment studies. For the products requiring membrane treatment, membrane system model-ing software was used to create designs for enhanced water recovery beyond the typical seawater desalination benchmark. System costs based upon vendor and internal cost information for all process flow schemes were generated and are below target and in line with customer expectations. Finally, to account for temporal and geographic variability in flowback characteristics as well as local

  9. Hybrid heat recovery - flat plate Stirling engine system

    International Nuclear Information System (INIS)

    Bogdanizh, A.M.; Budin, R.; Sutlovizh, I.

    2000-01-01

    In this paper, the possibility of process condensate heat recovery for boiler water preheating as well as for combined heat and power production for chosen process in textile industry has been investigated. The garment industry requires low pressure process steam or hot water for which production expensive fossil fuel should be used. Fuel usage can be reduced by various energy conservation methods. During the process a great quantity of hot condensate or waste hot water is rejected in the sewage system. To reduce heat wastes and improve technological process this condensate could be returned to the boiler for feed water preheating. When 60% condensate is returned to the steam generator about 8 % natural gas is saved. The rest of the condensate should be used for driving low temperature flat plate Stirling motor the advantage of the flat plate Stirling engine is ability to work at low temperatures. This engine produces electrical energy which can put in motion an electrogenerator in the same plant. While Stirling engine can be used electrical power and economical effect could be much greater using such a hybrid system the process waste heat is not only converted into useful work but at the same time thermal pollution is greatly diminished. (Author)

  10. Coagulant recovery and reuse for drinking water treatment.

    Science.gov (United States)

    Keeley, James; Jarvis, Peter; Smith, Andrea D; Judd, Simon J

    2016-01-01

    Coagulant recovery and reuse from waterworks sludge has the potential to significantly reduce waste disposal and chemicals usage for water treatment. Drinking water regulations demand purification of recovered coagulant before they can be safely reused, due to the risk of disinfection by-product precursors being recovered from waterworks sludge alongside coagulant metals. While several full-scale separation technologies have proven effective for coagulant purification, none have matched virgin coagulant treatment performance. This study examines the individual and successive separation performance of several novel and existing ferric coagulant recovery purification technologies to attain virgin coagulant purity levels. The new suggested approach of alkali extraction of dissolved organic compounds (DOC) from waterworks sludge prior to acidic solubilisation of ferric coagulants provided the same 14:1 selectivity ratio (874 mg/L Fe vs. 61 mg/L DOC) to the more established size separation using ultrafiltration (1285 mg/L Fe vs. 91 mg/L DOC). Cation exchange Donnan membranes were also examined: while highly selective (2555 mg/L Fe vs. 29 mg/L DOC, 88:1 selectivity), the low pH of the recovered ferric solution impaired subsequent treatment performance. The application of powdered activated carbon (PAC) to ultrafiltration or alkali pre-treated sludge, dosed at 80 mg/mg DOC, reduced recovered ferric DOC contamination to water quality parameters. Several PAC-polished recovered coagulants provided the same or improved DOC and turbidity removal as virgin coagulant, as well as demonstrating the potential to reduce disinfection byproducts and regulated metals to levels comparable to that attained from virgin material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Financing Disaster Recovery and Resilience Mitigation for Water and Wastewater Utilities

    Science.gov (United States)

    Free webinar series on Financing for Disaster Recovery and Resilience Mitigation for Water and Wastewater Utilities, hosted by EPA's Water Infrastructure and Resiliency Finance Center and Water Security Division.

  12. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunc-tional ventilation concept...... of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state-of-the-art building...

  13. Cooled Water Production System,

    Science.gov (United States)

    The invention refers to the field of air conditioning and regards an apparatus for obtaining cooled water . The purpose of the invention is to develop...such a system for obtaining cooled water which would permit the maximum use of the cooling effect of the water -cooling tower.

  14. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    Energy Technology Data Exchange (ETDEWEB)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  15. Energy-Recovery Pressure-Reducer in District Heating System

    Directory of Open Access Journals (Sweden)

    Dariusz Borkowski

    2018-06-01

    Full Text Available Already existing man-made infrastructures that create water flow and unused pressure are interesting energy sources to which micro-hydropower plants can be applied. Apart from water supply systems (WSSs, which are widely described in the literature, significant hydropower potential can also be found in district heating systems (DHSs. In this paper, a prototype, a so-called energy-recovery pressure-reducer (ERPR, utilized for a DHS, is presented. It consisted of a pump as a turbine coupled to a permanent magnet synchronous generator (PMSG. The latter was connected to the power grid through the power electronic unit (PEU. The variable-speed operation allowed one to modify the turbine characteristics to match the substation’s hydraulic conditions. The proposed ERPR device could be installed in series to the existing classic pressure reducing valve (PRV as an independent device that reduces costs and simplifies system installation. The test results of the prototype system located in a substation of Cracow’s DHS are presented. The steady-state curves and regulation characteristics show the prototype’s operating range and efficiency. In this study, the pressure-reducer impact on the electrical and hydraulic systems, and on the environment, were analyzed. The operation tests during the annual heating season revealed an average system’s efficiency of 49%.

  16. Recovery of water from cacti for use in small farming communities

    African Journals Online (AJOL)

    sunny t

    2013-10-02

    Oct 2, 2013 ... Full Length Research Paper. Recovery of water ... 35°C and a pH of 5.5. This relates to a yield of 550 L of water per ton of cacti, making chemical water .... recovery of juice from pineapples by up to 14%. Demir et al. (2001) did ...

  17. The Water Recovery X-ray Rocket (WRX-R)

    Science.gov (United States)

    Miles, Drew

    2017-08-01

    The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.

  18. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O; Arvesen, J; Dahl, L

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  19. Design Recovery Technology for Real-Time Systems.

    Science.gov (United States)

    1995-10-01

    RL-TR-95-208 Final Technical Report October 1995 DESIGN RECOVERY TECHNOLOGY FOR REAL TIME SYSTEMS The MITRE Corporation Lester J. Holtzblatt...92 - Jan 95 4. TTTLE AND SUBTITLE DESIGN RECOVERY TECHNOLOGY FOR REAL - TIME SYSTEMS 6. AUTHOR(S) Lester J. Holtzblatt, Richard Piazza, and Susan...behavior of real - time systems in general, our initial efforts have centered on recovering this information from one system in particular, the Modular

  20. Use of steam condensate exchange process for recovery of deuterium from condensate of ammonia plant as adopted at Heavy Water Plant, Talcher (Paper No. 2.5)

    International Nuclear Information System (INIS)

    Saha, S.; Saha, P.

    1992-01-01

    This paper highlights the use of steam-condensate exchange system for recovery of deuterium from condensate of ammonia plant, which is adopted at Heavy Water Plant, Talcher. Deuterium concentration in the condensate leaving the steam-condensate exchange column can be brought down very close to the deuterium concentration in water thereby achieving practically complete deuterium recovery. (author). 2 tabs., 1 fig

  1. Tritium recovery from tritiated water with a two-stage palladium membrane reactor

    International Nuclear Information System (INIS)

    Birdsell, S.A.; Willms, R.S.

    1997-01-01

    A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information

  2. Tritium recovery from tritiated water with a two-stage palladium membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Birdsell, S.A.; Willms, R.S.

    1997-04-01

    A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information.

  3. The effect of ash elements in petroleum coke on hearth furnace heat recovery system performance

    Energy Technology Data Exchange (ETDEWEB)

    Akhmetov, M M

    1981-01-01

    Difficulties encountered in the operation of the heat recovery system of a calcination plant at Krasnovodsk Refinery caused by ash element deposits blocking the fire box are described. Deposits and coke ash composition are given. The main cause of blocking was found to be the removal of sea water salt elements which get on the coke surface when the retarded coking plant is discharged with a water-jet borer. Switching over to fresh water and air-blasting of heat recovery pipes decreased blocking considerably.

  4. Combined geophysical methods for mapping infiltration pathways at the Aurora Water Aquifer recharge and recovery site

    Science.gov (United States)

    Jasper, Cameron A.

    Although aquifer recharge and recovery systems are a sustainable, decentralized, low cost, and low energy approach for the reclamation, treatment, and storage of post- treatment wastewater, they can suffer from poor infiltration rates and the development of a near-surface clogging layer within infiltration ponds. One such aquifer recharge and recovery system, the Aurora Water site in Colorado, U.S.A, functions at about 25% of its predicted capacity to recharge floodplain deposits by flooding infiltration ponds with post-treatment wastewater extracted from river bank aquifers along the South Platte River. The underwater self-potential method was developed to survey self-potential signals at the ground surface in a flooded infiltration pond for mapping infiltration pathways. A method for using heat as a groundwater tracer within the infiltration pond used an array of in situ high-resolution temperature sensing probes. Both relatively positive and negative underwater self-potential anomalies are consistent with observed recovery well pumping rates and specific discharge estimates from temperature data. Results from electrical resistivity tomography and electromagnetics surveys provide consistent electrical conductivity distributions associated with sediment textures. A lab method was developed for resistivity tests of near-surface sediment samples. Forward numerical modeling synthesizes the geophysical information to best match observed self- potential anomalies and provide permeability distributions, which is important for effective aquifer recharge and recovery system design, and optimization strategy development.

  5. Examination of uranium recovery technique from sea water using natural components for adsorbent

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Masaki, Hiroyuki; Shimizu, Takao; Tokiwai, Moriyasu

    2010-01-01

    In this study, we investigated the potency of natural components as adsorbent for uranium recovery from seawater. In addition, cost evaluation of uranium recovery from seawater using natural components for adsorbents was performed. Furthermore, new ideas on reservation system of adsorbents at sea area were proposed. Several poly-phenols were selected as adsorbent reagents, then they were adsorbed on the support such as cotton fiber by several methods as the followings; chemical syntheses, electrical beam irradiation, and traditional dyeing. As a result, the adsorbent made by traditional dyeing method using gallnut tannin as natural component, was showed high performance for uranium recovery from seawater on only the first. It was evaluated that traditional dyeing method had also advantage in the manufacturing cost, comparing with earlier method. Additionally, it was considered that reservation system of adsorbent at sea was able to be simplified compared with earlier system. Consequently, uranium recovery from sea water using natural components as adsorbent proposed in this study had a potency of practical use. (author)

  6. Analysis of tritium behaviour and recovery from a water-cooled Pb17Li blanket

    International Nuclear Information System (INIS)

    Malara, C.; Casini, G.; Viola, A.

    1995-01-01

    The question of the tritium recovery in water-cooled Pb17Li blankets has been under investigation for several years at JRC Ispra. The method which has been more extensively analysed is that of slowly circulating the breeder out from the blanket units and of extracting the tritium from it outside the plasma vacuum vessel by helium gas purging or vacuum degassing in a suited process apparatus. A computerized model of the tritium behaviour in the blanket units and in the extraction system was developed. It includes four submodels: (1) tritium permeation process from the breeder to the cooling water as a function of the local operative conditions (tritium concentration in Pb17Li, breeder temperature and flow rate); (2) tritium mass balance in each breeding unit; (3) tritium desorption from the breeder material to the gas phase of the extraction system; (4) tritium extraction efficiency as a function of the design parameters of the recovery apparatus. In the present paper, on the basis of this model, a parametric study of the tritium permeation rate in the cooling water and of the tritium inventory in the blanket is carried out. Results are reported and discussed in terms of dimensionless groups which describe the relative effects of the overall resistance on tritium transfer to the cooling water (with and without permeation barriers), circulating Pb17Li flow rate and extraction efficiency of the tritium recovery unit. The parametric study is extended to the recovery unit in the case of tritium extraction by helium purge or vacuum degassing in a droplet spray unit. (orig.)

  7. Tanker self-help spill recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, J B; Wainwright, J G; Ehman, T K

    1991-12-01

    An investigation was conducted of the circumstances in which oil spills occur from tankers at sea by analyzing available historical oil spill data. A data base of marine oil spills greater than 134 tonnes occurring from 1974 and June 1990, included in an appendix, was among the information analyzed. The analysis showed that marine oil spills of 5,000 tonnes and greater account for 39.4% of the accidents yet 94.7% of the total spilled quantity; 84% of those spills occur in vessels of 20,000 deadweight tonnes and larger. Of spills over 5,000 tonnes, 78.5% occur outside of harbor or pier areas where spill response equipment may not be readily available. Over 50% of spills are caused by groundings or collisions where the vessel crew might be able to respond in mitigating and controlling the outflow of oil. The review suggested that tanker self-help systems warrant serious consideration. Potential self-help systems are described, ranging from additives such as bioremediation, dispersants, and solidifiers to equipment such as portable pumps, booms, and skimmers. Candidate systems were examined in terms of their safety, ease of operation, practicability, and effectiveness. Their possible performance was then assessed for the case of major marine oil spills that have occurred in Canadian waters. Four systems are identified as potential candidates for further evaluation and possible implementation: internal oil transfer, hydrostatic loading, external oil lightering, and contingency planning. A system design is evaluated and its benefits and possible implementation are outlined, based on integration of the preferred attributes of the above four options. Recommendations for implementation are also provided. 28 refs., 6 figs., 33 tabs.

  8. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  9. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, VAN

    2003-05-19

    has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

  10. Water Leak Localisation and Recovery in Tore Supra

    International Nuclear Information System (INIS)

    Martinez, A.; Samaille, F.; Chantant, M.; Hatchressian, J.-C.

    2006-01-01

    For almost 20 years, Tore Supra (TS) Tokamak uses water as a coolant for its plasma facing and in-vessels components. It can be considered as ITER relevant on this particular aspect. During plasma operation in TS, the water inlet temperature and outlet pressure are 120 o C and 2.4 MPa respectively, while baking is performed at 200 o C and 2 Mpa. It happened, that unexpected localized power deposits damaged in-vessels components leading to more or less large water leaks. In order to protect the vacuum vessel from over-pressurisation in case of large water leaks and to avoid the release of eventual activated materials, a pressure suppression system, composed of two rupture disks and a relief pipe header, has been designed. In the event of smaller leaks, the issue for Tore Supra operations is to apply methods capable of detecting and localising leaking water cooling circuits inside the vacuum vessel within an acceptable time. For this purpose, drainage and drying systems have been designed and manufactured to evacuate completely the water in the components and vacuum vessel, facilitating, in that way, leak testing procedure of the components. A new system allows the localization of the leaky circuit remotely by using the cooling loops monitoring system. The sub-circuits can be selected, isolated and de pressurized by the operator. Simultaneously the vacuum is monitored in the vessel and analyzed with a mass spectrometer. The water resulting from the steam condensation in the cold parts of the vacuum vessel is pumped by a new specific vacuum system in the lower parts of the machine and stored in tanks to avoid dissipation of activated products in the environment. Filters are implemented on the outlets lines of the pumps. The in-vessels components fed by the upper part of the cooling loop are connected in parallel and the water inlets and outlets are located on top of the machine, so some difficulties were encountered to drain-off completely this components. Presently

  11. An introduction to the water recovery x-ray rocket

    Science.gov (United States)

    Miles, Drew M.; McEntaffer, Randall L.; Schultz, Ted B.; Donovan, Benjamin D.; Tutt, James H.; Yastishock, Daniel; Steiner, Tyler; Hillman, Christopher R.; McCoy, Jake A.; Wages, Mitchell; Hull, Sam; Falcone, Abe; Burrows, David N.; Chattopadhyay, Tanmoy; Anderson, Tyler; McQuaide, Maria

    2017-08-01

    The Water Recovery X-ray Rocket (WRXR) is a sounding rocket payload that will launch from the Kwajalein Atoll in April 2018 and seeks to be the first astrophysics sounding rocket payload to be water recovered by NASA. WRXR's primary instrument is a grating spectrometer that consists of a mechanical collimator, X-ray reflection gratings, grazing-incidence mirrors, and a hybrid CMOS detector. The instrument will obtain a spectrum of the diffuse soft X-ray emission from the northern part of the Vela supernova remnant and is optimized for 3rd and 4th order OVII emission. Utilizing a field of view of 3.25° × 3.25° and resolving power of λ/δλ ≍40-50 in the lines of interest, the WRXR spectrometer aims to achieve the most highly-resolved spectrum of Vela's diffuse soft X-ray emission. This paper presents introductions to the payload and the science target.

  12. Cooling water injection system

    International Nuclear Information System (INIS)

    Inai, Nobuhiko.

    1989-01-01

    In a BWR type reactor, ECCS system is constituted as a so-called stand-by system which is not used during usual operation and there is a significant discontinuity in relation with the usual system. It is extremely important that ECCS operates upon occurrence of accidents just as specified. In view of the above in the present invention, the stand-by system is disposed along the same line with the usual system. That is, a driving water supply pump for supplying driving water to a jet pump is driven by a driving mechanism. The driving mechanism drives continuously the driving water supply pump in a case if an expected accident such as loss of the function of the water supply pump, as well as during normal operation. That is, all of the water supply pump, jet pump, driving water supply pump and driving mechanism therefor are caused to operate also during normal operation. The operation of them are not initiated upon accident. Thus, the cooling water injection system can perform at high reliability to remarkably improve the plant safety. (K.M.)

  13. Water leak localization and recovery in Tore Supra

    International Nuclear Information System (INIS)

    Martinez, A.; Samaille, F.; Chantant, M.; Hatchressian, J.C.

    2007-01-01

    For almost 20 years at Tore Supra, plasma facing components (PFCs) are actively cooled by a pressurized water primary loop. Tore Supra can be considered as ITER relevant on this particular aspect. During plasma operation, it happened, that unexpected localized power deposits damaged a PFC leading to more or less large water leaks in the vacuum vessel. The improvement of the procedure to localize the leaky circuits, the investigation of technical solutions for minimizing the amount of water from steam condensation in the vacuum vessel and the optimisation of the quality of the draining and the drying of Tore Supra cooling loop circuits are the result of the experience gained during several years by the analysis of the water leak from plasma facing components (PFCs) and their consequences. Different new specific systems designed and installed during this year to fulfil these objectives are described in this paper

  14. Investigating the interactions of decentralized and centralized wastewater heat recovery systems.

    Science.gov (United States)

    Sitzenfrei, Robert; Hillebrand, Sebastian; Rauch, Wolfgang

    2017-03-01

    In the urban water cycle there are different sources for extracting energy. In addition to potential and chemical energy in the wastewater, thermal energy can also be recovered. Heat can be recovered from the wastewater with heat exchangers that are located decentralized and/or centralized at several locations throughout the system. It can be recovered directly at the source (e.g. in the showers and bathrooms), at building block level (e.g. warm water tanks collecting all grey water), in sewers or at the wastewater treatment plant. However, an uncoordinated installation of systems on such different levels can lead to competing technologies. To investigate these interactions, a modelling environment is set up, tested and calibrated based on continuous sewer temperature and flow measurements. With that approach different heat recovery scenarios on a household level (decentralized) and of in-sewer heat recovery (centralized) are investigated. A maximum performance drop of 40% for a centralized energy recovery system was estimated when all bathrooms are equipped with decentralized recovery systems. Therefore, the proposed modelling approach is suitable for testing different future conditions and to identify robust strategies for heat recovery systems from wastewater.

  15. A new helium gas recovery and purification system

    International Nuclear Information System (INIS)

    Yamamotot, T.; Suzuki, H.; Ishii, J.; Hamana, I.; Hayashi, S.; Mizutani, S.; Sanjo, S.

    1974-01-01

    A helium gas recovery and purification system, based on the principle of gas permeation through a membrane, is described. The system can be used for the purification of helium gas containing air as a contaminant. The apparatus, operating at ambient temperature does not need constant attention, the recovery ratio of helium gas is satisfactory and running costs are low. Gases other than helium can be processed with the apparatus. (U.K.)

  16. Integration of Aquifer Storage Transfer and Recovery and HACCP for Ensuring Drinking Water Quality

    Science.gov (United States)

    Lee, S. I.; Ji, H. W.

    2015-12-01

    The integration of ASTR (Aquifer Storage Transfer and Recovery) and HACCP (Hazard Analysis and Critical Control Point) is being attempted to ensure drinking water quality in a delta area. ASTR is a water supply system in which surface water is injected into a well for storage and recovered from a different well. During the process natural water treatment is achieved in the aquifer. ASTR has advantages over surface reservoirs in that the water is protected from external contaminants and free from water loss by evaporation. HACCP, originated from the food industry, can efficiently manage hazards and reduce risks when it is introduced to the drinking water production. The study area is the located in the Nakdong River Delta, South Korea. Water quality of this region has been deteriorated due to the increased pollution loads from the upstream cities and industrial complexes. ASTR equipped with HACCP system is suggested as a means to heighten the public trust in drinking water. After the drinking water supply system using ASTR was decomposed into ten processes, principles of HACCP were applied. Hazardous event analysis was conducted for 114 hazardous events and nine major hazardous events were identified based on the likelihood and the severity assessment. Potential risk of chemical hazards, as a function of amounts, travel distance and toxicity, was evaluated and the result shows the relative threat a city poses to the drinking water supply facility. Next, critical control points were determined using decision tree analysis. Critical limits, maximum and/or minimum values to which biological, chemical or physical parameters must be controlled, were established. Other procedures such as monitoring, corrective actions and will be presented.

  17. Water quality diagnosis system

    International Nuclear Information System (INIS)

    Nagase, Makoto; Asakura, Yamato; Sakagami, Masaharu

    1989-01-01

    By using a model representing a relationship between the water quality parameter and the dose rate in primary coolant circuits of a water cooled reactor, forecasting for the feature dose rate and abnormality diagnosis for the water quality are conducted. The analysis model for forecasting the reactor water activity or the dose rate receives, as the input, estimated curves for the forecast Fe, Ni, Co concentration in feedwater or reactor water pH, etc. from the water quality data in the post and forecasts the future radioactivity or dose rate in the reactor water. By comparing the result of the forecast and the setting value such as an aimed value, it can be seen whether the water quality at present or estimated to be changed is satisfactory or not. If the quality is not satisfactory, it is possible to take an early countermeasure. Accordingly, the reactor water activity and the dose rate can be kept low. Further, the basic system constitution, diagnosis algorithm, indication, etc. are identical between BWR and PWR reactors, except for only the difference in the mass balance. (K.M.)

  18. Prototype water reuse system

    Science.gov (United States)

    Lucchetti, G.; Gray, G.A.

    1988-01-01

    A small-scale water reuse system (150 L/min) was developed to create an environment for observing fish under a variety of temperature regimes. Key concerns of disease control, water quality, temperature control, and efficiency and case of operation were addressed. Northern squawfish (Ptychocheilus oregonensis) were held at loading densities ranging from 0.11 to 0.97 kg/L per minute and at temperatures from 10 to 20°C for 6 months with no disease problems or degradation ofwater quality in the system. The system required little maintenance during 2 years of operation.

  19. Energy recovery in SUDS towards smart water grids: A case study

    International Nuclear Information System (INIS)

    Ramos, Helena M.; Teyssier, Charlotte; Samora, Irene; Schleiss, Anton J.

    2013-01-01

    The development of a methodology for urban flood adaptation and energy recovery solutions is resting on the concept of Sustainable Urban Drainage Systems (SUDS) as a measure to reduce risks of urban flooding while fully utilizing the available resources. Flood drainage systems are infrastructures essential in urban areas, which include retention ponds that can be used as water storage volumes to damp floods and simultaneously to produce energy, constituting innovative solutions to be integrated in future smart water grid′s designs. The consideration of urban flooding as a problem caused by excess water that can be harvested and re-used is expected to provide a comprehensive representation of a water-energy nexus for future urban areas. The study comprises an optimization of energy recovery in SUDS of a small district area of Lisbon down-town through the use of a low-head hydropower converter. The status-quo solution based on a basin catchment for the average expected runoff is analysed, with influence of the tidal backwater effect of the Atlantic Ocean which causes difficulties to the drainage of excess flow. The methodology used to reach the flow damping and the optimized solution for energy production is presented. -- Highlights: •An innovative solution for Sustainable Urban Drainage Systems (SUDS). •Use of retention ponds to reduce risks of urban flooding while producing energy. •Use of recently developed hydropower converters for low heads. •Solution to be integrated in future smart water networks for increasing efficiency. •Water and energy nexus for sustainable operation towards future smart cities

  20. Decision support systems for recovery of endangered species

    International Nuclear Information System (INIS)

    Armstrong, C.E.

    1995-01-01

    The listing of a species as endangered under the Endangered Species Act invokes a suite of responses to help improve conditions for the recovery of that species, to include identification of stressors contributing to population loss, decision analysis of the impacts of proposed recovery options, and implementation of optimal recovery measures. The ability of a decision support system to quantify inherent stressor uncertainties and to identify the key stressors that can be controlled or eliminated becomes key to ensuring the recovery of an endangered species. The listing of the Snake River sockeye, spring/summer chinook, and fall chinook salmon species in the Snake River as endangered provides a vivid example of the importance of sophisticated decision support systems. Operational and physical changes under consideration at eight of the hydroelectric dams along the Columbia and Lower Snake River pose significant financial impacts to a variety of stakeholders involved in the salmon population recovery process and carry significant uncertainties of outcome. A decision support system is presented to assist in the identification of optimal recovery actions for this example that includes the following: creation of datamarts of information on environmental, engineering, and ecological values that influence species survival; incorporation of decision analysis tools to determine optimal decision policies; and the use of geographic information systems (GIS) to provide a context for decision analysis and to communicate the impacts of decision policies

  1. Produced Water Reuse Considerations for In-Situ Recovery: a Case Development

    Energy Technology Data Exchange (ETDEWEB)

    Kus, J.; Card, R.

    1984-01-01

    Steam-assisted methods for in-situ recovery in Canada typically operate at steam to oil ratios of approximately 3 to 1 and generate in the order of 2 to 5 barrels of produced water per barrel of production. To raise the large quantities of steam required for reservoir stimulation, once-through type steam generators are most commonly used. They are typically designed to produce about 80 per cent quality steam from soft, oil-free feedwater. Suncor Inc operates a cyclic steam injection pilot project near Fort Kent, Alberta. In the early 1980s, Suncor planned an expansion of the 180 m/sup 3//d (1,130 bbl/d) facility to 800 m/sup 3//d (5,000 bbl/d). The expansion necessitated the development of a reliable water supply. Preliminary investigations into the feasibility of reusing produced water as the sole source of supply for the project expansion revealed this to be a costly and technically high risk option, given the specific produced water characteristics. As a result, an innovative alternative was developed to use a blend of produced water and municipal effluent from a nearby town as the water supply. This paper presents the rationale for the selection of this unique water supply and the process design considerations for the resulting water treatment system.

  2. Study on a heat recovery system for the thermal power plant utilizing air cooling island

    International Nuclear Information System (INIS)

    Sun, Jian; Fu, Lin; Sun, Fangtian; Zhang, Shigang

    2014-01-01

    A new heat recovery system for CHP (combined heat and power) systems named HRU (heat recovery unit) is presented, which could recover the low grade heat of exhausted steam from the turbine at the thermal power plant directly. Heat recovery of exhausted steam is often accomplished by recovering the heat of cooling water in current systems. Therefore, two processes of heat transfer is needed at least. However, exhausted steam could be condensed in the evaporator of HRU directly, which reduce one process of heat transfer. A special evaporator is designed condense the exhausted steam directly. Simulated results are compared to experiments, which could include the calculation of heat transfer coefficients of different parts of HRU. It is found that about 25Mw of exhausted steam is recovered by this system. HRU could be promising for conventional CHP systems, which could increase the total energy efficiency obviously and enlarge the heating capacity of a built CHP system. - Highlights: • A new heat recovery system for thermal power plant is presented. • A mathematical model including heat transfer coefficients calculation is given. • This heat recovery system is experimented at a thermal power plant. • Performances of this system under different working conditions are simulated

  3. Water Purification Systems

    Science.gov (United States)

    1994-01-01

    Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

  4. Development of an on-board H2 storage and recovery system based on lithium borohydride.

    Science.gov (United States)

    2014-02-28

    Alkali metal borohydrides based on sodium and lithium, NaBH4 and LiBH4, have been evaluated as a potential hydrogen storage and recovery system for on-board vehicle use. The borohydride salts could be dissolved in water, followed by a hydrolytic reac...

  5. Biological responses to the chemical recovery of acidified fresh waters in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Monteith, D.T. [Environmental Change Research Centre, University College London, 26 Bedford Way, London, WC1H 0AP (United Kingdom)]. E-mail: d.monteith@geog.ucl.ac.uk; Hildrew, A.G. [School of Biological Sciences, Queen Mary, University of London, London, E1 4NS (United Kingdom); Flower, R.J. [Environmental Change Research Centre, University College London, 26 Bedford Way, London, WC1H 0AP (United Kingdom); Raven, P.J. [Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, BS32 4UD (United Kingdom); Beaumont, W.R.B. [Centre for Ecology and Hydrology Dorset, Winfrith Technology Centre, Winfrith, Newburgh, Dorchester, Dorset DT2 8ZD (United Kingdom); Collen, P. [Fisheries Research Services, Freshwater Laboratory, Faskally, Pitlochry, Perthshire, PH16 5LB (United Kingdom); Kreiser, A.M. [Environmental Change Research Centre, University College London, 26 Bedford Way, London, WC1H 0AP (United Kingdom); Shilland, E.M. [Environmental Change Research Centre, University College London, 26 Bedford Way, London, WC1H 0AP (United Kingdom); Winterbottom, J.H. [School of Biological Sciences, Queen Mary, University of London, London, E1 4NS (United Kingdom)

    2005-09-15

    We report biological changes at several UK Acid Waters Monitoring Network lakes and streams that are spatially consistent with the recovery of water chemistry induced by reductions in acid deposition. These include trends toward more acid-sensitive epilithic diatom and macroinvertebrate assemblages, an increasing proportional abundance of macroinvertebrate predators, an increasing occurrence of acid-sensitive aquatic macrophyte species, and the recent appearance of juvenile (<1 year old) brown trout in some of the more acidic flowing waters. Changes are often shown to be directly linked to annual variations in acidity. Although indicative of biological improvement in response to improving water chemistry, 'recovery' in most cases is modest and very gradual. While specific ecological recovery endpoints are uncertain, it is likely that physical and biotic interactions are influencing the rate of recovery of certain groups of organisms at particular sites. - Recently observed changes in the species composition of UK lakes and streams are consistent with chemical recovery from acidification.

  6. Biological responses to the chemical recovery of acidified fresh waters in the UK

    International Nuclear Information System (INIS)

    Monteith, D.T.; Hildrew, A.G.; Flower, R.J.; Raven, P.J.; Beaumont, W.R.B.; Collen, P.; Kreiser, A.M.; Shilland, E.M.; Winterbottom, J.H.

    2005-01-01

    We report biological changes at several UK Acid Waters Monitoring Network lakes and streams that are spatially consistent with the recovery of water chemistry induced by reductions in acid deposition. These include trends toward more acid-sensitive epilithic diatom and macroinvertebrate assemblages, an increasing proportional abundance of macroinvertebrate predators, an increasing occurrence of acid-sensitive aquatic macrophyte species, and the recent appearance of juvenile (<1 year old) brown trout in some of the more acidic flowing waters. Changes are often shown to be directly linked to annual variations in acidity. Although indicative of biological improvement in response to improving water chemistry, 'recovery' in most cases is modest and very gradual. While specific ecological recovery endpoints are uncertain, it is likely that physical and biotic interactions are influencing the rate of recovery of certain groups of organisms at particular sites. - Recently observed changes in the species composition of UK lakes and streams are consistent with chemical recovery from acidification

  7. Design manual. [High temperature heat pump for heat recovery system

    Energy Technology Data Exchange (ETDEWEB)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  8. A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Pyrolysis processing can be used in near term missions for volume reduction, water recovery (drying), stabilization, and enhanced water and oxygen recovery through...

  9. A Recovery System for Unmanned Underwater Vehicles

    Science.gov (United States)

    2017-09-28

    water; = 9.81 m/s2; u is the velocity in meters /second; and is the depth in meters . [0006] The flow rate for the air jet 20 is a design...parameter. Typically, the flow rate can range from 0 to 5 meters per second. The velocity is highest (and the pressure is lowest) at the center of... 400 and can be guided by a homing device 402 to clamps 404, with the clamping mechanism and homing device attached to a ship hull 500. The water

  10. Water electrolysis system

    International Nuclear Information System (INIS)

    Mizoguchi, Tadao; Ikehara, Masahisa; Kataoka, Noboru; Ueno, Syuichi; Ishikawa, Nobuhide.

    1996-01-01

    Nissho Iwai Co. and Ebara Co. received an order for hydrogen and oxygen generating system (water electrolysis system) to be installed at Tokai-2 power station of The Japan Atomic Power Company, following the previous order at Tsuruga-1 where the gas injection from FY1996 is planned. Hydrogen gas generated by the system will be injected to coolant of boiling water reactors to improve corrosive environment. The system is being offered by a tripartite party, Nissho Iwai, Ebara, and Norsk Hydro Electrolysers of Norway (NHEL). NHEL provides a electrolyser unit, as a core of the system. Ebara provides procurement, installation, and inspection as well as total engineering work, under the basic design by NHEL which has over 60 years-experience in this field. (author)

  11. A recovery installation for sodium sulfates, thiosulfates and sulfides from waste water resulting from hydrogen sulfide fabrication

    International Nuclear Information System (INIS)

    Mazilu, Mihai; Costescu, Sanda

    2002-01-01

    An installation for recovery of sodium sulfate and sulfur suspensions from waste water was conceived. It consists from a preheater, vacuum evaporator and a refrigerating system with drum and scraper. This equipment concentration the solution by eliminating in the first stage the water in the vacuum evaporator. The water resulting at this stage is chemically pure and can be discharged in the sewage sludge system. The concentrated solution is then directed to the refrigerating system with drum and scrapper. Here the sodium sulfates, thiosulfates and sulfides get crystallized onto the drum surface. The resulting aqueous solution to be discharged in the sewage sludge system is previously analyzed as in case of the absent of the recovery installation, but the amount of pollutants will be much lower because sulfates, thiosulfates and sulfides were already recovered as scales from the drum. These solid scales can be used in detergent industry

  12. Wastewater Treatment with Ammonia Recovery System

    OpenAIRE

    M. Örvös; T. Balázs; K. F. Both

    2008-01-01

    From environmental aspect purification of ammonia containing wastewater is expected. High efficiency ammonia desorption can be done from the water by air on proper temperature. After the desorption process, ammonia can be recovered and used in another technology. The calculation method described below give some methods to find either the minimum column height or ammonia rich solution of the effluent.

  13. Hydraulic failure defines the recovery and point of death in water-stressed conifers.

    Science.gov (United States)

    Brodribb, Tim J; Cochard, Hervé

    2009-01-01

    This study combines existing hydraulic principles with recently developed methods for probing leaf hydraulic function to determine whether xylem physiology can explain the dynamic response of gas exchange both during drought and in the recovery phase after rewatering. Four conifer species from wet and dry forests were exposed to a range of water stresses by withholding water and then rewatering to observe the recovery process. During both phases midday transpiration and leaf water potential (Psileaf) were monitored. Stomatal responses to Psileaf were established for each species and these relationships used to evaluate whether the recovery of gas exchange after drought was limited by postembolism hydraulic repair in leaves. Furthermore, the timing of gas-exchange recovery was used to determine the maximum survivable water stress for each species and this index compared with data for both leaf and stem vulnerability to water-stress-induced dysfunction measured for each species. Recovery of gas exchange after water stress took between 1 and >100 d and during this period all species showed strong 1:1 conformity to a combined hydraulic-stomatal limitation model (r2 = 0.70 across all plants). Gas-exchange recovery time showed two distinct phases, a rapid overnight recovery in plants stressed to 50% loss of Kleaf. Maximum recoverable water stress (Psimin) corresponded to a 95% loss of Kleaf. Thus, we conclude that xylem hydraulics represents a direct limit to the drought tolerance of these conifer species.

  14. Development of a tritium recovery system from CANDU tritium removal facility

    International Nuclear Information System (INIS)

    Draghia, M.; Pasca, G.; Porcariu, F.

    2015-01-01

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  15. Development of a tritium recovery system from CANDU tritium removal facility

    Energy Technology Data Exchange (ETDEWEB)

    Draghia, M.; Pasca, G.; Porcariu, F. [SC.IS.TECH SRL, Timisoara (Romania)

    2015-03-15

    The main purpose of the Tritium Recovery System (TRS) is to reduce to a maximum possible extent the release of tritium from the facility following a tritium release in confinement boundaries and also to have provisions to recover both elemental and vapors tritium from the purging gases during maintenance and components replacement from various systems processing tritium. This work/paper proposes a configuration of Tritium Recovery System wherein elemental tritium and water vapors are recovered in a separated, parallel manner. The proposed TRS configuration is a combination of permeators, a platinum microreactor (MR) and a trickle bed reactor (TBR) and consists of two branches: one branch for elemental tritium recovery from tritiated deuterium gas and the second one for tritium recovery from streams containing a significant amount of water vapours but a low amount, below 5%, of tritiated gas. The two branches shall work in a complementary manner in such a way that the bleed stream from the permeators shall be further processed in the MR and TBR in view of achieving the required decontamination level. A preliminary evaluation of the proposed TRS in comparison with state of the art tritium recovery system from tritium processing facilities is also discussed. (authors)

  16. Energetic and exergetic analysis of waste heat recovery systems in the cement industry

    International Nuclear Information System (INIS)

    Karellas, S.; Leontaritis, A.-D.; Panousis, G.; Bellos, E.; Kakaras, E.

    2013-01-01

    In a typical cement producing procedure, 25% of the total energy used is electricity and 75% is thermal energy. However, the process is characterized by significant heat losses mainly by the flue gases and the ambient air stream used for cooling down the clinker (about 35%–40% of the process heat loss). Approximately 26% of the heat input to the system is lost due to dust, clinker discharge, radiation and convection losses from the kiln and the preheaters. A heat recovery system could be used to increase the efficiency of the cement plant and thus contribute to emissions decrease. The aim of this paper is to examine and compare energetically and exergetically, two different WHR (waste heat recovery) methods: a water-steam Rankine cycle, and an Organic Rankine Cycle (ORC). A parametric study proved that the water steam technology is more efficient than ORC in exhaust gases temperature higher than 310 °C. Finally a brief economic assessment of the most efficient solution was implemented. WHR installations in cement industry can contribute significantly in the reduction of the electrical consumptions operating cost thus being a very attractive investment with a payback period up to 5 years. - Highlights: • This paper presents waste heat recovery as a way to gain energy from the exhaust gases in a cement plant. • Water steam cycle and ORC has been analyzed for waste heat recovery. • The energetic and exergetic evaluation of the two waste heat recovery processes is presented and compared

  17. A new pumping strategy for petroleum product recovery from contaminated hydrogeologic systems: Laboratory and field evaluations

    International Nuclear Information System (INIS)

    Abdul, A.S.

    1992-01-01

    More than 200,000 gallons of automatic transmission fluid (ATF) leaked from an underground storage tank system and contaminated an area of about 64,000 ft 2 of a soil and ground water system. A pumping strategy for improved drainage and recovery of free oil was developed, tested in a laboratory model aquifer, and implemented (1) the oil recovery rate is carefully controlled to maximize the pumping rate while maintaining continuity between the oil layer in the soil and the recovery well, to avoid isolation of the oil in the subsurface; and (2) the rate of ground water pumping is controlled to maintain the depressed oil/water interface at its prepumped position. This approach prevents further spread of oil into the ground water, prevents reduction in the volume of recoverable oil due to residual retention, and maintains a gradient for oil flow toward the recovery well. In a model aquifer study, nearly 100% of the recoverable volume of ATF was pumped from the system, and about 56,000 gallons of the ATF has been recovered from the field site

  18. Optimal control of a one product recovery system with backlogging

    NARCIS (Netherlands)

    Kiesmüller, G.P.; Minner, S.; Kleber, R.

    2000-01-01

    In this paper a product recovery system for one product is investigated. The system contains one inventory for returned and recoverable items and one for serviceable items. Demands are satisfied from serviceable inventory where backlogging of demands is allowed. In addition, there is the possibility

  19. Recovery of energetically overexploited urban aquifers using surface water

    Science.gov (United States)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  20. Exergy efficiency enhancement of MSF desalination by heat recovery from hot distillate water stages

    International Nuclear Information System (INIS)

    Al-Weshahi, Mohammed A.; Anderson, Alexander; Tian, Guohong

    2013-01-01

    This detailed exergy analysis of a 3800 m 3 /h Multi-Stage Flash (MSF) desalination plant is based on the latest published thermodynamics properties of water and seawater. The parameters of the study were extracted from a validated model of MSF desalination using IPSEpro software. The results confirmed that the overall exergy efficiency of the unit is lower than would be desirable at only 5.8%. Exergy inputs were destroyed by 55%, 17%, 10%, 4.3%, and 14% respectively, in the heat recovery stages, brine heater, heat rejection stages, pumps and brine streams disposal. Moreover, the detail of the study showed that the lowest exergy destruction occurs in the first stage, increasing gradually in heat recovery stages and sharply in heat rejection stages. The study concludes that recovering the heat from the hot distillate water stages can improve unit exergy efficiency from its low 5.8% to a more economical 14%, with the hot water parameters suitable for powering other thermal systems such as absorption chiller and multi-effect desalination

  1. Supercritical water gasification of sewage sludge: gas production and phosphorus recovery

    NARCIS (Netherlands)

    Acelas Soto, N.Y.; Lopez, D.P.; Brilman, Derk Willem Frederik; Kersten, Sascha R.A.; Kootstra, A.M.J.

    2014-01-01

    In this study, the feasibility of the gasification of dewatered sewage sludge in supercritical water (SCW) for energy recovery combined with P-recovery from the solid residue generated in this process was investigated. SCWG temperature (400 °C, 500 °C, 600 °C) and residence time (15 min, 30 min, 60

  2. Calcium phosphate granulation in anaerobic treatment of black water: a new approach to phosphorus recovery

    NARCIS (Netherlands)

    Tervahauta, T.H.; Weijden, van der R.D.; Flemming, R.L.; Hernández, L.; Zeeman, G.; Buisman, C.J.N.

    2014-01-01

    Recovery of phosphorus from wastewater as calcium phosphate could diminish the need for mining of scarce phosphate rock resources. This study introduces a novel approach to phosphorus recovery by precipitation of calcium phosphate granules in anaerobic treatment of black water. The granules formed

  3. Anaerobic treatment with biogas recovery of beverage industry waste water

    International Nuclear Information System (INIS)

    Cacciari, E.; Zanoni, G.

    1992-01-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD

  4. Anaerobic treatment with biogas recovery of beverage industry waste water

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, E; Zanoni, G [Passavant Impianti, Novate Milanese (Italy)

    1992-03-01

    This paper briefly describes the application, by a leading Italian non-alcoholic beverage firm, of an up-flow anaerobic sludge blanket process in the treatment of waste water deriving from the production and bottling of beverages. In addition to describing the key design, operation and performance characteristics of the treatment process, the paper focuses on the economic benefits being obtained through the use of the innovative expansive sludge bed anaerobic digestion system which has proven itself to be particularly suitable for the treatment of food and beverage industry liquid wastes. The system, which has already been operating, with good results, for six months, has shown itself to be capable of yielding overall COD removal efficiencies of up to 94.8% and of producing about 0.43 Ncubic meters of biogas per kg of removed COD.

  5. A Thermal Energy Recovery System and its Applications in Building (A Short Comunication

    Directory of Open Access Journals (Sweden)

    Afsane Chavoshani

    2016-01-01

    Full Text Available In this paper a heat recovery system from oil heater as a water heater is proposed and analyzed. The potential of heat recovery is studied technically and economically. A model was built and experiments on it are discussed. Recovery of waste heat from the oil heater stack and its application in building is proven to be economically beneficial. The most part of this apparatus was a double-walled tanks and oil heater stack act as firebox for water heater. This tank with 200 liters volume was made of galvanized iron sheets and painted with black color for adsorption of solar radiation. The tank of water heater was filled with 12-15○C water. Sampling was performed at 8 in the morning to 8 at night during one week. The analysis results show that the heat recovery system is recognized as a well option for the examined residential building from both economic and environmental points of view. With the operation considering optimal economic benefits, cost is reduced by about 50%. With maximizing the environmental advantages, CO2 emissions are decreased.

  6. Helium-Hydrogen Recovery System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Immense quantities of expensive liquefied helium are required at Stennis and Kennedy Space Centers for pre-cooling rocket engine propellant systems prior to filling...

  7. Recovery of energy from geothermal brine and other hot water sources

    Science.gov (United States)

    Wahl, III, Edward F.; Boucher, Frederic B.

    1981-01-01

    Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.

  8. Uranium from sea-water. Possibilities of recovery, exploiting slow coastal currents

    International Nuclear Information System (INIS)

    Bettinali, C.; Pantanetti, F.

    1976-01-01

    The authors analyse the interest in uranium recovery from sea-water within the framework of uranium world supply problems. The most reliable methods proposed for recovery are summarized and discussed, both from the chemical and the plant project points of view. Tides as a source of energy for water movement cannot be used in the Mediterranean and therefore only currents can be taken into account. The acceptable cost of an exchanger, in relation to the uranium price, is considered and related to known exchangers. The characteristics of exchanging elements are examined and the influence of the speed of sea currents discussed. The extractable uranium is a function of the exchange rate and of the speed of the flow inside the exchanging system; therefore it is quite clear that the current speed is not a prerequisite and that coastal currents around Italy are suitable. Exchanging elements built with sheets parallel to the flow, exchanging pans containing granular or fibrous exchangers have been considered. The main characteristics of a 1000 t/a plant are discussed considering different possibilities. The most acceptable seems to be the continuous extraction system. The parameters needed to calculate the dimensions of such a plant are given and the relation between the length and speed of the moving chain discussed. A rough economic evaluation of the plant cost - starting from known technologies - and of the final cost of the uranium oxide produced is made. (author)

  9. The automated recovery of [18O] water by a simple modification

    International Nuclear Information System (INIS)

    Zhang Jinming; Tian Jiahe; Chen Yinmao

    2001-01-01

    A diagram is presented of the scheme for recovery of oxygen 18 water. There is a 5-8% decrease in the total activity produced using the recovered water, and the recovered water can be reused for production of fluorine 18

  10. Performance characterization of water recovery and water quality from chemical/organic waste products

    Science.gov (United States)

    Moses, W. M.; Rogers, T. D.; Chowdhury, H.; Cullingford, H. S.

    1989-01-01

    The water reclamation subsystems currently being evaluated for the Space Shuttle Freedom are briefly reviewed with emphasis on a waste water management system capable of processing wastes containing high concentrations of organic/inorganic materials. The process combines low temperature/pressure to vaporize water with high temperature catalytic oxidation to decompose volatile organics. The reclaimed water is of potable quality and has high potential for maintenance under sterile conditions. Results from preliminary experiments and modifications in process and equipment required to control reliability and repeatability of system operation are presented.

  11. Vacuum distillation/vapor filtration water recovery, phases 1 and 2

    Science.gov (United States)

    Honegger, R. J.; Remus, G. A.; Krug, E. K.

    1973-01-01

    The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.

  12. System and method for determining the net output torque from a waste heat recovery system

    Science.gov (United States)

    Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.

    2016-12-13

    The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.

  13. Apparatus, System, and Method for Forward Osmosis in Water Reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2013-01-03

    An apparatus, system, and method for desalinating water is presented. The invention relates to recovery of water from impaired water sources by using FO and seawater as draw solution (DS). The seawater becomes diluted over time and can be easily desalinated at very low pressures. Thus, a device consumes less energy when recovering water. The apparatus, system and method comprise an immersed forward osmosis cell.

  14. Passive ventilation systems with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2008-01-01

    with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical University...... simulation program ESP-r to model the heat and air flows and the results show the feasibility of the proposed ventilation concept in terms of low energy consumption and good indoor climate....

  15. Faulted systems recovery experience. Final report, May 1992

    International Nuclear Information System (INIS)

    1992-05-01

    This report addresses the recovery (i.e., return to service from a faulted, or otherwise unavailable, condition) of important nuclear power plant front-line and support systems and equipment. It contains information based on operating experience relative to the times to recover from a variety of plant events. It also indicates the nature of the operator actions involved. This information is intended to provide useful insights to utilities who are undertaking Individual Plant Examinations (IPEs) per Generic Letter 88-20 of the Nuclear Regulatory Commission. The report provides a database of recovery experience primarily derived from Licensee Event Reports (LERs). The database contains recovery duration information for 205 demand events and 98 nondemand events. In particular, it contains recovery durations for 42 pump related and 143 valve related events that are representative of demand conditions. Experience shows that, overall, about one-half of all pumps and valves are recovered in 30 minutes or less. Specific recovery experience is dependent on the equipment type, the plant system involved, and the failure mode encountered. (author)

  16. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  17. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  18. Cloud Standby: Disaster Recovery of Distributed Systems in the Cloud

    OpenAIRE

    Lenk , Alexander; Tai , Stefan

    2014-01-01

    International audience; Disaster recovery planning and securing business processes against outtakes have been essential parts of running a company for decades. As IT systems became more important, and especially since more and more revenue is generated over the Internet, securing the IT systems that support the business processes against outages is essential. Using fully operational standby sites with periodically updated standby systems is a well-known approach to prepare against disasters. ...

  19. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  20. Optimal control of diesel engines with waste heat recovery systems

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.; Waschl, H.; Kolmanovsky, I.; Steinbuch, M.; Del Re, L.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO 2 - NO x trade-off by minimizing the operational costs associated with fuel and AdBlue

  1. Design and analysis of heat recovery system in bioprocess plant

    International Nuclear Information System (INIS)

    Anastasovski, Aleksandar; Rašković, Predrag; Guzović, Zvonimir

    2015-01-01

    Highlights: • Heat integration of a bioprocess plant is studied. • Bioprocess plant produces yeast and ethyl-alcohol. • The design of a heat recovery system is performed by batch pinch analysis. • Direct and indirect heat integration approaches are used in process design. • The heat recovery system without a heat storage opportunity is more profitable. - Abstract: The paper deals with the heat integration of a bioprocess plant which produces yeast and ethyl-alcohol. The referent plant is considered to be a multiproduct batch plant which operates in a semi-continuous mode. The design of a heat recovery system is performed by batch pinch analysis and by the use of the Time slice model. The results obtained by direct and indirect heat integration approaches are presented in the form of cost-optimal heat exchanger networks and evaluated by different thermodynamic and economic indicators. They signify that the heat recovery system without a heat storage opportunity can be considered to be a more profitable solution for the energy efficiency increase in a plant

  2. Control of automotive waste heat recovery systems with parallel evaporators

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rascanu, G.C.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    In this paper, Model Predictive Control (MPC) is applied to control a Waste Heat Recovery system for a highly dynamic automotive application. As a benchmark, a commonly applied control strategy is used that consists of a feedforward based on engine conditions and of two PI controllers that

  3. Quantification of biomolecules in herring (Clupea harengus) industry processing waters and their recovery using electroflocculation and ultrafiltration

    DEFF Research Database (Denmark)

    Osman, Ali; Gringer, Nina; Svendsen, Tore

    2015-01-01

    Four types of herring industry processing waters; refrigerated sea water (RSW), storage water (SW), processing water from cutting (PW) and pre-salting brines (SB) were subjected to chemical characterization and biomolecule recovery using electroflocculation (EF) and ultrafiltration (UF). The high......Four types of herring industry processing waters; refrigerated sea water (RSW), storage water (SW), processing water from cutting (PW) and pre-salting brines (SB) were subjected to chemical characterization and biomolecule recovery using electroflocculation (EF) and ultrafiltration (UF...

  4. Optimization of paper machine heat recovery system; Paperikoneen laemmoentalteenottosysteemin optimointi - PMSY 02

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, H [Valmet Oyj Pansio, Turku (Finland)

    1999-12-31

    Conventionally the energy content of paper and board machine dryer section exhaust air is recovered in the heat recovery tower. This has had a major contribution to the overall energy economy of a paper machine. Modern paper machines have already reached momentary record speeds above 1700 m/min, and speeds above 2000 m/min will be strived to. This is possible by developing new efficient drying technologies. These will require new solutions for the heat recovery systems. At the same time requirements for new heat recovery solutions come from the gradually closing of paper mill water circulation systems. In this project a discrete tool based on optimization is developed, a tool for analyzing, optimizing and dimensioning of paper machine heat recovery systems for different process conditions. Delivery of a paper machine process requires more and more transferring of process knowledge into calculation model parameters. The overall target of the tool is to decrease the energy consumption considering new drying technologies and the gradually closing of water circulation systems. (orig.)

  5. Optimization of paper machine heat recovery system; Paperikoneen laemmoentalteenottosysteemin optimointi - PMSY 02

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, H. [Valmet Oyj Pansio, Turku (Finland)

    1998-12-31

    Conventionally the energy content of paper and board machine dryer section exhaust air is recovered in the heat recovery tower. This has had a major contribution to the overall energy economy of a paper machine. Modern paper machines have already reached momentary record speeds above 1700 m/min, and speeds above 2000 m/min will be strived to. This is possible by developing new efficient drying technologies. These will require new solutions for the heat recovery systems. At the same time requirements for new heat recovery solutions come from the gradually closing of paper mill water circulation systems. In this project a discrete tool based on optimization is developed, a tool for analyzing, optimizing and dimensioning of paper machine heat recovery systems for different process conditions. Delivery of a paper machine process requires more and more transferring of process knowledge into calculation model parameters. The overall target of the tool is to decrease the energy consumption considering new drying technologies and the gradually closing of water circulation systems. (orig.)

  6. Public Water Supply Systems (PWS)

    Data.gov (United States)

    Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

  7. RECOVERY OF HELICOBACTER PYLORI FROM WATER BY IMMUNOMAGNETIC CAPTURE

    Science.gov (United States)

    A few reports have been written stating that H. pylori can be found in waters. However, detection and identification of H. pylori from water samples remains a very difficult task. One method that seems to work successfully is immunomagnetic capture. Water samples were concentr...

  8. Combined desalination, water reuse, and aquifer storage and recovery to meet water supply demands in the GCC/MENA region

    KAUST Repository

    Ghaffour, Noreddine

    2013-01-01

    Desalination is no longer considered as a nonconventional resource to supply potable water in several countries, especially in the Gulf Corporation Countries (GCC) and Middle East and North Africa (MENA) region as most of the big cities rely almost 100% on desalinated water for their supply. Due to the continuous increase in water demand, more large-scale plants are expected to be constructed in the region. However, most of the large cities in these countries have very limited water storage capacity, ranging from hours to a few days only and their groundwater capacity is very limited. The growing need for fresh water has led to significant cost reduction, because of technological improvements of desalination technologies which makes it an attractive option for water supply even in countries where desalination was unthinkable in the past. In the GCC/MENA region, operating records show that water demand is relatively constant during the year, while power demand varies considerably with a high peak in the summer season. However, desalination and power plants are economically and technically efficient only if they are fully operated at close to full capacity. In addition, desalination plants are exposed to external constraints leading to unexpected shutdowns (e.g. red tides). Hybridization of different technologies, including reverse osmosis and thermal-based plants, is used to balance the power to water mismatch in the demand by using the idle power from co-generation systems during low power demand periods. This has led to consideration of storage of additional desalinated water to allow for maximum production and stability in operation. Aquifer storage and recovery (ASR) would then be a good option to store the surplus of desalinated water which could be used when water demand is high or during unexpected shutdowns of desalination plants. In addition, increased reuse of treated wastewater could bring an integrated approach to water resources management. In this

  9. Waste Heat Recovery of a PEMFC System by Using Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Tianqi He

    2016-04-01

    Full Text Available In this study, two systems are brought forward to recover the waste heat of a proton exchange membrane fuel cell (PEMFC, which are named the organic Rankine cycle (ORC, and heat pump (HP combined organic Rankine cycle (HPORC. The performances of both systems are simulated on the platform of MATLAB with R123, R245fa, R134a, water, and ethanol being selected as the working fluid, respectively. The results show that, for PEMFC where operating temperature is constantly kept at 60 °C, there exists an optimum working temperature for each fluid in ORC and HPORC. In ORC, the maximal net power can be achieved with R245fa being selected as the working fluid. The corresponding thermal efficiency of the recovery system is 4.03%. In HPORC, the maximal net power can be achieved with water being selected in HP and R123 in ORC. The thermal efficiency of the recovery system increases to 4.73%. Moreover, the possibility of using ORC as the cooling system of PEMFC is also studied. The heat released from PEMFC stack is assumed to be wholly recovered by the ORC or HPORC system. The results indicate that the HPORC system is much more feasible for the cooling system of a PEMFC stack, since the heat recovery ability can be promoted due to the presence of HP.

  10. Understanding Interactions between Hydrogeologic Factors, Design Variables, and System Operations for Multi-Well Aquifer Storage and Recovery Systems

    Science.gov (United States)

    Majumdar, S.; Miller, G. R.; Smith, B.; Sheng, Z.

    2017-12-01

    Aquifer Storage and Recovery (ASR) system is a powerful tool for managing our present and future freshwater supplies. It involves injection of excess water into an aquifer, storing and later recovering it when needed, such as in a drought or during peak demand periods. Multi-well ASR systems, such as the Twin Oaks Facility in San Antonio, consist of a group of wells that are used for simultaneous injection and extraction of stored water. While significant research has gone into examining the effects of hydraulic and operational factors on recovery efficiency for single ASR well, little is known about how multi-well systems respond to these factors and how energy uses may vary. In this study, we created a synthetic ASR model in MODFLOW to test a range of multi-well scenarios. We altered design parameters (well spacing, pumping capacity, well configuration), hydrogeologic factors (regional hydraulic gradient, hydraulic conductivity, dispersivity), and operational variables (injection and withdrawal durations; pumping rates) to determine the response of the system across a realistic range of interrelated parameters. We then computed energy use for each simulation, based on the hydraulic head in each well and standard pump factors, as well as recovery efficiency, based on tracer concentration in recovered water from the wells. The tracer concentration in the groundwater was determined using MT3DMS. We observed that the recovery and energy efficiencies for the Multi-well ASR system decrease with the increase in well spacing and hydraulic gradient. When longitudinal dispersivity was doubled, the recovery and energy efficiencies were nearly halved. Another finding from our study suggests that we can recover nearly 90% of the water after two successive cycles of operation. The results will be used to develop generalized operational guidelines for meeting freshwater demands and also optimise the energy consumed during pumping.

  11. Removal and recovery of heavy metals of residual water industrial

    International Nuclear Information System (INIS)

    Gil P, Edison

    1999-01-01

    On the next work the state of the art about the different methods and technologies for the present removal and recovery of heavy metals for the de-contamination and control of industrial wastewater is presented. Further more, it is introduce a removal alternative for chromium (III) and chromium (V I) using a solid waste material as an adsorbent, obtaining successful results which makes this proposal circumscribe into the clean technology program and residues bag

  12. Maximizing recovery of water-soluble proteins through acetone precipitation.

    Science.gov (United States)

    Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A

    2013-09-24

    Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Removal and recovery of tritium from light and heavy water

    International Nuclear Information System (INIS)

    Butler, J.P.; Hammerli, M.

    1979-01-01

    A method and apparatus for removing tritium from light water are described, comprising contacting tritiated feed water in a catalyst column in countercurrent flow with hydrogen gas originating from an electrolysis cell so as to enrich this feed water with tritium from the electrolytic hydrogen gas and passing the tritium enriched water to an electrolysis cell wherein the electrolytic hydrogen gas is generated and then fed upwards through the catalyst column or recovered as product. The tritium content of the hydrogen gas leaving the top of the enricher catalyst column is further reduced in a stripper column containing catalyst which transfers the tritium to a countercurrent flow of liquid water. Anodic oxygen and water vapour from the anode compartment may be fed to a drier and condensed electrolyte recycled with a slip stream or recovered as a further tritium product stream. A similar method involving heavy water is also described. (author)

  14. Transaction Costs in Collective Waste Recovery Systems in the EU

    OpenAIRE

    Nozharov, Shteryo

    2018-01-01

    The study aims to identify the institutional flaws of the current EU waste management model by analysing the economic model of extended producer responsibility and collective waste management systems and to create a model for measuring the transaction costs borne by waste recovery organizations. The model was approbated by analysing the Bulgarian collective waste management systems that have been complying with the EU legislation for the last 10 years. The analysis focuses on waste oils becau...

  15. Recovery of iron from cyanide tailings with reduction roasting–water leaching followed by magnetic separation

    International Nuclear Information System (INIS)

    Zhang, Yali; Li, Huaimei; Yu, Xianjin

    2012-01-01

    Highlights: ► Using reduction roasting–water leaching–magnetic separation method, the recovery of iron from cyanide tailings was optimized. ► The recovery of iron was highly depended on the water-leaching process after reduction roasting. ► The results suggest that the method can be effectively used for iron recovery, and the grade of magnetic concentrate and recovery rate can reach 59.11% and 75.12%, respectively. - Abstract: Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting–water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 °C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 °C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2 A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism.

  16. Waste heat and water recovery opportunities in California tomato paste processing

    International Nuclear Information System (INIS)

    Amón, Ricardo; Maulhardt, Mike; Wong, Tony; Kazama, Don; Simmons, Christopher W.

    2015-01-01

    Water and energy efficiency are important for the vitality of the food processing industry as demand for these limited resources continues to increase. Tomato processing, which is dominated by paste production, is a major industry in California – where the majority of tomatoes are processed in the United States. Paste processing generates large amounts of condensate as moisture is removed from the fruit. Recovery of the waste heat in this condensate and reuse of the water may provide avenues to decrease net energy and water use at processing facilities. However, new processing methods are needed to create demand for the condensate waste heat. In this study, the potential to recover condensate waste heat and apply it to the tomato enzyme thermal inactivation processing step (the hot break) is assessed as a novel application. A modeling framework is established to predict heat transfer to tomatoes during the hot break. Heat recovery and reuse of the condensate water are related to energy and monetary savings gained through decreased use of steam, groundwater pumping, cooling towers, and wastewater processing. This analysis is informed by water and energy usage data from relevant unit operations at a commercial paste production facility. The case study indicates potential facility seasonal energy and monetary savings of 7.3 GWh and $166,000, respectively, with most savings gained through reduced natural gas use. The sensitivity of heat recovery to various process variables associated with heat exchanger design and processing conditions is presented to identify factors that affect waste heat recovery. - Highlights: • The potential to recovery waste heat in tomato paste processing is examined. • Heat transfer from evaporator condensate to tomatoes in the hot break is modeled. • Processing facility data is used in model to predict heat recovery energy savings. • The primary benefit of heat recovery is reduced use of natural gas in boilers. • Reusing

  17. Optimal control of Formula One car energy recovery systems

    Science.gov (United States)

    Limebeer, D. J. N.; Perantoni, G.; Rao, A. V.

    2014-10-01

    The utility of orthogonal collocation methods in the solution of optimal control problems relating to Formula One racing is demonstrated. These methods can be used to optimise driver controls such as the steering, braking and throttle usage, and to optimise vehicle parameters such as the aerodynamic down force and mass distributions. Of particular interest is the optimal usage of energy recovery systems (ERSs). Contemporary kinetic energy recovery systems are studied and compared with future hybrid kinetic and thermal/heat ERSs known as ERS-K and ERS-H, respectively. It is demonstrated that these systems, when properly controlled, can produce contemporary lap time using approximately two-thirds of the fuel required by earlier generation (2013 and prior) vehicles.

  18. Institutional path dependence and environmental water recovery in Australia’s Murray-Darling Basin

    Directory of Open Access Journals (Sweden)

    Graham R. Marshall

    2016-10-01

    Full Text Available The concept of institutional path dependence offers useful ways of understanding the trajectories of water policy reforms and how past institutional arrangements, policy paradigms and development patterns constrain current and future choices and limit institutional adaptability. The value of this concept is demonstrated through an analysis of environmental water recovery in Australia’s Murray-Darling Basin, where while significant water volumes have been reallocated to the environment, the costs have also been significant. While there are significant lessons from the Australian experience, attempts to emulate the approach involve substantive risks and may be prohibitively costly for less wealthy nations. Context-specific institutional analysis is emphasised as fundamental to water reform and critical for reform architecture and sequencing. A key finding is that while crisis can provide powerful catalysts for institutional innovation, institutional path dependence in the absence of active and disruptive policy entrepreneurs fosters a strong tendency to reinforce the status quo and limit innovation, potentially exposing social-ecological systems to greater shocks due to climate change and other sources of escalating uncertainty.

  19. New filtration system for efficient recovery of waterborne Cryptosporidium oocysts and Giardia cysts

    DEFF Research Database (Denmark)

    Al-Sabi, Mohammad Nafi Solaiman; Gad, J. A.; Riber, Ulla

    2015-01-01

    -)cysts (1x10(2); 10 replicates) was successfully amplified using real-time PCR.ConclusionsThe use of a metallic filter, sonication and air backwash' were key factors for creating a highly efficient system for recovery of apparently undamaged protozoa.Significance and Impact of the StudyThis reagent......AimsTo develop a filtration unit for efficient recovery of waterborne Cryptosporidium oocysts and Giardia cysts ((oo-)cysts) in drinking water.Methods and ResultsThis unit utilizes a metallic filter and an ultrasound transducer for eluting (oo-)cysts, with a fixed retentate backwash volume; approx....... 400l. Changes in the viability was evaluated by seeding wild type (oo-)cysts (1x10(4)) followed by sonication for 5, 10, 20 or 40s (five replicates for each period). Flow cytometry analysis showed negligible increase in the mortality of (oo-)cysts exposed to 5-10s of sonication. Recovery rate...

  20. A modelling assessment of acidification and recovery of European surface waters

    Science.gov (United States)

    Jenkins, A.; Camarero, L.; Cosby, B. J.; Ferrier, R. C.; Forsius, M.; Helliwell, R. C.; Kopácek, J.; Majer, V.; Moldan, F.; Posch, M.; Rogora, M.; Schöpp, W.; Wright, R. F.

    The increase in emission of sulphur oxides and nitrogen (both oxidised and reduced forms) since the mid-1800s caused a severe decline in pH and ANC in acid-sensitive surface waters across Europe. Since c.1980, these emissions have declined and trends towards recovery from acidification have been widely observed in time-series of water chemistry data. In this paper, the MAGIC model was applied to 10 regions (the SMART model to one) in Europe to address the question of future recovery under the most recently agreed emission protocols (the 1999 Gothenburg Protocol). The models were calibrated using best available data and driven using S and N deposition sequences for Europe derived from EMEP data. The wide extent and the severity of water acidification in 1980 in many regions were illustrated by model simulations which showed significant deterioration in ANC away from the pre-acidification conditions. The simulations also captured the recovery to 2000 in response to the existing emission reductions. Predictions to 2016 indicated further significant recovery towards pre-acidification chemistry in all regions except Central England (S Pennines), S Alps, S Norway and S Sweden. In these areas it is clear that further emission reductions will be required and that the recovery of surface waters will take several decades as soils slowly replenish their depleted base cation pools. Chemical recovery may not, however, ensure biological recovery and further reductions may also be required to enable these waters to achieve the "good ecological status" as required by the EU Water Framework Directive.

  1. Final Report, Materials for Industrial Heat Recovery Systems, Tasks 3 and 4 Materials for Heat Recovery in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, James R.; Kish, Joseph R.; Singh, Preet M.; Sarma, Gorti B.; Yuan, Jerry; Gorog, J. Peter; Frederick, Laurie A.; Jette, Francois R.; Meisner, Roberta A.; Singbeil, Douglas L.

    2007-12-31

    The DOE-funded project on materials for industrial heat recovery systems included four research tasks: materials for aluminum melting furnace recuperator tubes, materials and operational changes to prevent cracking and corrosion of the co-extruded tubes that form primary air ports in black liquor recovery boilers, the cause of and means to prevent corrosion of carbon steel tubes in the mid-furnace area of recovery boilers, and materials and operational changes to prevent corrosion and cracking of recovery boiler superheater tubes. Results from studies on the latter two topics are given in this report while separate reports on results for the first two tasks have already been published. Accelerated, localized corrosion has been observed in the mid-furnace area of kraft recovery boilers. This corrosion of the carbon steel waterwall tubes is typically observed in the vicinity of the upper level of air ports where the stainless clad co-extruded wall tubes used in the lower portion of the boiler are welded to the carbon steel tubes that extend from this transition point or “cut line” to the top of the boiler. Corrosion patterns generally vary from one boiler to another depending on boiler design and operating parameters, but the corrosion is almost always found within a few meters of the cut line and often much closer than that. This localized corrosion results in tube wall thinning that can reach the level where the integrity of the tube is at risk. Collection and analysis of gas samples from various areas near the waterwall surface showed reducing and sulfidizing gases were present in the areas where corrosion was accelerated. However, collection of samples from the same areas at intervals over a two year period showed the gaseous environment in the mid-furnace section can cycle between oxidizing and reducing conditions. These fluctuations are thought to be due to gas flow instabilities and they result in an unstable or a less protective scale on the carbon steel

  2. Energy consumption by forward osmosis treatment of landfill leachate for water recovery.

    Science.gov (United States)

    Iskander, Syeed Md; Zou, Shiqiang; Brazil, Brian; Novak, John T; He, Zhen

    2017-05-01

    Forward osmosis (FO) is an alternative approach for treating landfill leachate with potential advantages of reducing leachate volume and recovering high quality water for direct discharge or reuse. However, energy consumption by FO treatment of leachate has not been examined before. Herein, the operational factors such as recirculation rates and draw concentrations were studied for their effects on the quantified energy consumption by an FO system treating actual leachate collected from two different landfills. It was found that the energy consumption increased with a higher recirculation rate and decreased with a higher draw concentration, and higher water recovery tended to reduce energy consumption. The highest energy consumption was 0.276±0.033kWhm -3 with the recirculation rate of 110mLmin -1 and 1-M draw concentration, while the lowest of 0.005±0.000kWhm -3 was obtained with 30mLmin -1 recirculation and 3-M draw concentration. The leachate with lower concentrations of the contaminants had a much lower requirement for energy, benefited from its higher water recovery. Osmotic backwashing appeared to be more effective for removing foulants, but precise understanding of membrane fouling and its controlling methods will need a long-term study. The results of this work have implied that FO treatment of leachate could be energy efficient, especially with the use of a suitable draw solute that can be regenerated in an energy efficient way and/or through combination with other treatment technologies that can reduce contaminant concentrations before FO treatment, which warrants further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Reduction of solids and nutrient loss from agricultural land by tailwater recovery systems

    Science.gov (United States)

    Omer, A.R.; Miranda, Leandro E.; Moore, M. T.; Krutz, L. J.; Prince Czarnecki, J. M.; Kröger, R.; Baker, B. H.; Hogue, J.; Allen, P. J.

    2018-01-01

    Best management practices are being implemented throughout the Lower Mississippi River Alluvial Valley with the aim of alleviating pressures placed on downstream aquatic systems by sediment and nutrient losses from agricultural land; however, research evaluating the performance of tailwater recovery (TWR) systems, an increasingly important practice, is limited. This study evaluated the ability of TWR systems to retain sediment and nutrients draining from agricultural landscapes. Composite flow-based samples were collected during flow events (precipitation or irrigation) over a two-year period in six TWR systems. Performance was evaluated by comparing concentrations and loads in water entering TWR systems (i.e., runoff or influent) from agricultural fields to water overflow exiting TWR systems (effluent). Tailwater recovery systems did not reduce concentrations of solids and nutrients, but did reduce loads of solids, phosphorus (P), and nitrogen (N) by 43%, 32%, and 44%, respectively. Annual mean load reductions were 1,142 kg solids, 0.7 kg of P, and 3.8 kg of N. Performance of TWR systems was influenced by effluent volume, system fullness, time since the previous event, and capacity of the TWR system. Mechanistically, TWR systems retain runoff on the agricultural landscape, thereby reducing the amount of sediment and nutrients entering downstream waterbodies. System performance can be improved through manipulation of influential parameters.

  4. Leaf water potential, gas exchange and chlorophyll a fluorescence in acariquara seedlings (Minquartia guianensis Aubl.) under water stress and recovery

    OpenAIRE

    Liberato, Maria Astrid Rocha; Gonçalves, José Francisco de Carvalho; Chevreuil, Larissa Ramos; Nina Junior, Adamir da Rocha; Fernandes, Andreia Varmes; Santos Junior, Ulysses Moreira dos

    2006-01-01

    The physiological performance of acariquara (Minquartia guianensis) seedlings submitted to water deficit and the recovery of physiological parameters during rehydration were investigated in a greenhouse experiment. The analyzed parameters were: leaf water potential, gas exchange and chlorophyll a fluorescence. After thirty-five days, non-irrigated plants exhibited a leaf water potential 70 % lower compared to control plants (irrigated daily) and the stomatal conductance reached values close t...

  5. Research on an IP disaster recovery storage system

    Science.gov (United States)

    Zeng, Dong; Wang, Yusheng; Zhu, Jianfeng

    2008-12-01

    According to both the Fibre Channel (FC) Storage Area Network (SAN) switch and Fabric Application Interface Standard (FAIS) mechanism, an iSCSI storage controller is put forward and based upon it, an internet Small Computer System Interface (iSCSI) SAN construction strategy for disaster recovery (DR) is proposed and some multiple sites replication models and a closed queue performance analysis method are also discussed in this paper. The iSCSI storage controller lies in the fabric level of the networked storage infrastructure, and it can be used to connect to both the hybrid storage applications and storage subsystems, besides, it can provide virtualized storage environment and support logical volume access control, and by cooperating with the remote peerparts, a disaster recovery storage system can be built on the basis of the data replication, block-level snapshot and Internet Protocol (IP) take-over functions.

  6. Risk assessment of aquifer storage transfer and recovery with urban stormwater for producing water of a potable quality.

    Science.gov (United States)

    Page, Declan; Dillon, Peter; Vanderzalm, Joanne; Toze, Simon; Sidhu, Jatinder; Barry, Karen; Levett, Kerry; Kremer, Sarah; Regel, Rudi

    2010-01-01

    The objective of the Parafield Aquifer Storage Transfer and Recovery research project in South Australia is to determine whether stormwater from an urban catchment that is treated in a constructed wetland and stored in an initially brackish aquifer before recovery can meet potable water standards. The water produced by the stormwater harvesting system, which included a constructed wetland, was found to be near potable quality. Parameters exceeding the drinking water guidelines before recharge included small numbers of fecal indicator bacteria and elevated iron concentrations and associated color. This is the first reported study of a managed aquifer recharge (MAR) scheme to be assessed following the Australian guidelines for MAR. A comprehensive staged approach to assess the risks to human health and the environment of this project has been undertaken, with 12 hazards being assessed. A quantitative microbial risk assessment undertaken on the water recovered from the aquifer indicated that the residual risks posed by the pathogenic hazards were acceptable if further supplementary treatment was included. Residual risks from organic chemicals were also assessed to be low based on an intensive monitoring program. Elevated iron concentrations in the recovered water exceeded the potable water guidelines. Iron concentrations increased after underground storage but would be acceptable after postrecovery aeration treatment. Arsenic concentrations in the recovered water continuously met the guideline concentrations acceptable for potable water supplies. However, the elevated concentration of arsenic in native groundwater and its presence in aquifer minerals suggest that the continuing acceptable residual risk from arsenic requires further evaluation.

  7. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration.

    Science.gov (United States)

    Mull, Bonnie; Hill, Vincent R

    2012-12-01

    Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recovering MS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. Published by Elsevier B.V.

  8. International Space Station Atmosphere Control and Supply, Atmosphere Revitalization, and Water Recovery and Management Subsystem - Verification for Node 1

    Science.gov (United States)

    Williams, David E.

    2007-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper provides a summary of the nominal operation of the Node 1 ACS, AR, and WRM design and detailed Element Verification methodologies utilized during the Qualification phase for Node 1.

  9. SUSTAINABLE ENVIRONMENTAL TECHNOLOGIES INCLUDING WATER RECOVERY FOR REUSE FROM TANNERY AND INDUSTRIAL WASTEWATER – INDIAN AND ASIAN SCENARIO

    Directory of Open Access Journals (Sweden)

    Dr. S. RAJAMANI

    2017-05-01

    Full Text Available World leather sector generates 600million m3 of wastewater per annum. The Asian tanneries contributes more than 350 million m3 of wastewater from the process of 8 to 10 millions tons of hides and skins. Environmental challenges due to depletion of quality water resources and increase in salinity, it has become necessary to control Total Dissolved Solids (TDS in the treated effluent with water recovery wherever feasible. Adoption of special membrane system has been engineered in many individual and Common Effluent Treatment Plants (CETPs in India, China and other leather producing countries. The sustainability of saline reject management is one of the major challenges. Conventional tannery wastewater treatment systems include physiochemical and biological treatment to reduce Chromium, BOD, COD and Suspended Solids. To tackle treated effluent with TDS in the rage of 10000 to 30000mg/l, multiple stage high pressure membrane units have been designed and implemented for recovery of water. To reduce the chemical usage and sludge generation in the tertiary treatment, Membrane Bio-Reactor (MBR has been adopted which replace secondary clarifier and sophisticated tertiary treatment units such as Reactive Clarifier, Ultra-filtration (UF, etc. Commercial scale high-tech membrane systems have been implemented in many locations for the capacities ranging from 500 to 10000m3/day. Recent applied R&D on the environmental protection techniques with focus on water-recovery for reuse, salt recovery, marine disposal of saline reject with proper bio-control system, etc. are dealt in this novel technical paper.

  10. Cold water immersion recovery following intermittent-sprint exercise in the heat.

    Science.gov (United States)

    Pointon, Monique; Duffield, Rob; Cannon, Jack; Marino, Frank E

    2012-07-01

    This study examined the effects of cold water immersion (CWI) on recovery of neuromuscular function following simulated team-sport exercise in the heat. Ten male team-sport athletes performed two sessions of a 2 × 30-min intermittent-sprint exercise (ISE) in 32°C and 52% humidity, followed by a 20-min CWI intervention or passive recovery (CONT) in a randomized, crossover design. The ISE involved a 15-m sprint every minute separated by bouts of hard running, jogging and walking. Voluntary and evoked neuromuscular function, ratings of perceived muscle soreness (MS) and blood markers for muscle damage were measured pre- and post-exercise, immediately post-recovery, 2-h and 24-h post-recovery. Measures of core temperature (Tcore), heart rate (HR), capillary blood and perceptions of exertion, thermal strain and thirst were also recorded at the aforementioned time points. Post-exercise maximal voluntary contraction (MVC) and activation (VA) were reduced in both conditions and remained below pre-exercise values for the 24-h recovery (P recovery period (P recovery rate of reduction in Tcore, HR and MS was enhanced with CWI whilst increasing MVC and VA (P recovery MVC and activation were significantly higher in CONT compared to CWI (P = 0.05). Following exercise in the heat, CWI accelerated the reduction in thermal and cardiovascular load, and improved MVC alongside increased central activation immediately and 2-h post-recovery. However, despite improved acute recovery CWI resulted in an attenuated MVC 24-h post-recovery.

  11. Progressive retry for software error recovery in distributed systems

    Science.gov (United States)

    Wang, Yi-Min; Huang, Yennun; Fuchs, W. K.

    1993-01-01

    In this paper, we describe a method of execution retry for bypassing software errors based on checkpointing, rollback, message reordering and replaying. We demonstrate how rollback techniques, previously developed for transient hardware failure recovery, can also be used to recover from software faults by exploiting message reordering to bypass software errors. Our approach intentionally increases the degree of nondeterminism and the scope of rollback when a previous retry fails. Examples from our experience with telecommunications software systems illustrate the benefits of the scheme.

  12. Energy recovery system using an organic rankine cycle

    Science.gov (United States)

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  13. Heat recovery investigation from dryer–thermal oxidizer system in corn-ethanol plants

    International Nuclear Information System (INIS)

    Olszewski, Pawel

    2015-01-01

    In recent years, annual corn ethanol production in the U.S. has exceeded 13,298,000,000 gallons. However, net energy balance for this sector became a subject of controversy in many discussions. The aim of the presented research is an investigation of thermal improvement opportunities in a corn ethanol plant. For this purpose, a complex mathematical model was developed for a dryer–thermal oxidizer system. Three variants were subjected thermodynamic analyses: one state of the art system and two proposed system modifications. The properties of humid gas, a mixture of combustion products and moisture evaporated from distiller's grain, were updated based on the steam properties according to the formulation proposed by the International Association for the Properties of Water and Steam. All calculations were performed by uniquely-developed C++ code. The results indicate major potential for improvement in the following areas: (i) water recovery from humid gas; (ii) heat recovery from moisture condensation – max. 44% of total primary energy usage (TPEU); and (iii) fuel savings by reduction of humid gas flow through a thermal oxidizer – max. 1.4% of TPEU. Also the presented analysis can be a starting point for further modifications in real corn ethanol manufacturing applications, leading towards pilot system implementation. - Highlights: • Mathematical model for dryer–oxidizer system in a corn ethanol plant was proposed. • Three configurations were discussed: with intercooler, regenerator, and recuperator. • Recovery rate of water condensed at various conditions and locations was quantified. • Heat recovery possibilities at various temperatures and locations have been assessed. • Energy savings in thermal oxidizer due to preliminary condensation were calculated

  14. High Performance Nanofiltration Membrane for Effective Removal of Perfluoroalkyl Substances at High Water Recovery.

    Science.gov (United States)

    Boo, Chanhee; Wang, Yunkun; Zucker, Ines; Choo, Youngwoo; Osuji, Chinedum O; Elimelech, Menachem

    2018-05-31

    We demonstrate the fabrication of a loose, negatively charged nanofiltration (NF) membrane with tailored selectivity for the removal of perfluoroalkyl substances with reduced scaling potential. A selective polyamide layer was fabricated on top of a polyethersulfone support via interfacial polymerization of trimesoyl chloride and a mixture of piperazine and bipiperidine. Incorporating high molecular weight bipiperidine during the interfacial polymerization enables the formation of a loose, nanoporous selective layer structure. The fabricated NF membrane possessed a negative surface charge and had a pore diameter of ~1.2 nm, much larger than a widely used commercial NF membrane (i.e., NF270 with pore diameter of ~0.8 nm). We evaluated the performance of the fabricated NF membrane for the rejection of different salts (i.e., NaCl, CaCl2, and Na2SO4) and perfluorooctanoic acid (PFOA). The fabricated NF membrane exhibited a high retention of PFOA (~90%) while allowing high passage of scale-forming cations (i.e., calcium). We further performed gypsum scaling experiments to demonstrate lower scaling potential of the fabricated loose porous NF membrane compared to NF membranes having a dense selective layer under solution conditions simulating high water recovery. Our results demonstrate that properly designed NF membranes are a critical component of a high recovery NF system, which provide an efficient and sustainable solution for remediation of groundwater contaminated with perfluoroalkyl substances.

  15. Using Satellite Imagery to Quantify Water Quality Impacts and Recovery from Hurricane Harvey

    Science.gov (United States)

    Sobel, R. S.; Kiaghadi, A.; Rifai, H. S.

    2017-12-01

    Record rainfall during Hurricane Harvey in the Houston-Galveston region generated record flows containing suspended sediment that was likely contaminated. Conventional water quality monitoring requires resource intensive field campaigns, and produces sparse datasets. In this study, satellite data were used to quantify suspended sediment (TSS) concentrations and mass within the region's estuary system and to estimate sediment deposition and transport. A conservative two band, red-green empirical regression was developed from the Sentinel 2 satellite to calculate TSS concentrations and masses. The regression was calibrated with an R2 = 0.73 (n=28) and validated with an R2 = 0.75 (n=12) using 2016 & 2017 imagery. TSS concentrations four days, 14 days, and 44 days post-storm were compared with a reference condition three days before storm arrival. Results indicated that TSS concentrations were an average of 100% higher four days post-storm, and 150% higher after 14 days, however, the average concentration on day 144 was only seven percent higher than the reference condition, suggesting the estuary system is approaching recovery to pre-storm conditions. Sediment masses were determined from the regressed concentrations and water volumes estimated from a bottom elevation grid combined with water surface elevations observed coincidently with the satellite image. While water volumes were only 13% higher on both day four and day 14 post-storm; sediment masses were 195% and 227% higher than the reference condition, respectively. By day 44, estuary sediment mass returned to just 2.9% above the reference load. From a mechanistic standpoint, the elevated TSS concentrations on day four indicated an advection-based regime due to stormwater runoff draining through the estuarine system. Sometime, however, between days 14 and 44, transport conditions switched from advection-dominated to deposition-driven as indicated by the near normal TSS concentrations on day 44.

  16. CO2 recovery system using solar energy; Taiyo energy wo riyoshita CO2 bunri kaishu system

    Energy Technology Data Exchange (ETDEWEB)

    Hosho, F; Naito, H; Yugami, H; Arashi, H [Tohoku University, Sendai (Japan)

    1997-11-25

    As a part of studies on chemical absorption process with MEA (monoethanolamine) for CO2 recovery from boiler waste gas in thermal power plants, use of solar heat as MEA regenerating energy was studied. An integrated stationary evacuated concentrator (ISEC) effective as collector in a medium temperature range was used to realize a regenerating temperature range of 100-120degC. ISEC is featured by vacuum insulation, use of selective absorbing membranes for an absorber, a CPC (compound parabolic concentrator)-shaped reflection mirror, and high-efficiency. An MEA regenerator is composed of an ISEC and PG(propylene glycol)-MEA heat exchanger, and circulates PG as heat medium. Heat collection experiment was also made using water instead of MEA. Both batch and continuous systems could supply a heat quantity necessary for MEA regeneration. CO2 concentration in the top of the regenerator rapidly decreased with PG circulation regenerating MEA. As mol ratios of CO2/MEA were compared between before and after regeneration, a recovery rate was estimated to be 59.4% for the batch system. 8 figs., 4 tabs.

  17. Prevention measures for avoiding unexpected drifting of marine component in recovery equipment of significant metals from sea water. Positioning and monitoring system for marine component and improvement of its positioning accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Tamada, Masao; Kasai, Noboru; Seko, Noriaki; Hasegawa, Shin; Takeda, Hayato; Katakai, Akio; Sugo, Takanobu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Kawabata, Yukiya [Ebara Reseach Co., Ltd., Fujisawa, Kanagawa (Japan); Onuma, Kenji [Mitsubishi Materials Corp., Tokyo (Japan)

    2001-11-01

    Positioning and monitoring system for marine component in recovery equipment of significant metals from seawater with adsorbent was designed and assembled to avoid unexpected drifting accident. This system which was set on float part of the marine component obtains the positioning data from GPS satellites and sends them to Takasaki and Mutsu establishments through satellite communication. In both establishments, the position data were shown in computer displays. As characteristic test for 20 days in the real sea, 262 data were obtained every 2 hours. The twice of the distance root mean square (2DRMS) was 223.7 m. To improve this performance, three new functions were added to the present firmware. There are to raise positioning resolutions in longitude and latitude from 0.001 to 0.00001 degree, to remove the reflection of GPS signal from sea surface, and to average remaining three positioning data after maximum and minimum data were omitted from continuous five positioning data. The improved system shows the 2DRMS positioning of 15.5 m. This performance is enough to prevent marine component from its drifting accident. (author)

  18. Design, Prototyping, and Assessment of a Wastewater Closed-Loop Recovery and Purification System

    Directory of Open Access Journals (Sweden)

    Marco Bortolini

    2017-10-01

    Full Text Available Efforts to decrease the water use within industry are mandatory to pursue product and process sustainability. Particularly, the European Union (EU is at the top level for water consumption in industry, while some sectors, such as the food and beverage (F&B, are highly water-intensive with hundreds of liters per hour of consumed and, then, drained water. This article provides a systematic overview of the most innovative insights coming from an EU Eco-Innovation project dealing with greening the F&B industry through the design, prototyping, technical, economic, and environmental assessment of a wastewater closed-loop recovery and purification system. The system, tailored for a standard mid-size F&B company using 2–3 billion L/year of raw water, collects, purifies and recirculates the key produced wastewater streams with an overall recovery efficiency of about 56%. The proposed purification technology comes from the most efficient combination of membrane-based filtration methods, reverse osmosis (RO, and ultraviolet modules. Evidence from the technical design, full-scale on-site technology prototyping, net-present-value (NPV analysis and system life-cycle-assessment (LCA are presented concluding about the convenience of adopting the proposed solution to reduce costs and impacts on the environment.

  19. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    Science.gov (United States)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  20. TORR system polishes oily water clean

    International Nuclear Information System (INIS)

    Mowers, J.

    2002-01-01

    The TORR (total oil recovery and remediation) system utilizes a specially patented polymer material, similar to styrofoam, which is used to get rid of non-soluble hydrocarbons from water. An application in Fort Smith, Northwest Territories, is described where it was used to recover diesel oil, which had been seeping into the groundwater over a period of 20 years. About 100,000 gallons of heating oil had leached into the water; TORR removed the non-soluble hydrocarbons, while another piece of equipment removed the soluble portions. After treatment the water tested consistently at non-detectable levels and was clean enough to be discharged into the town's sewer system. The system is considered ideal for oil spills clean-up underground, onshore, or the open sea, but it also has many potentially useful applications in industrial and oilfield applications. Water used in steam injection and water floods to produce heavy oil and SAGD applications are some of the obvious ones that come to mind. Cleaning up the huge tailings ponds at the mining and processing of oil sands, and removing diluent from water that is used to thin out bitumen in pipelines so that it can be transported to processing plants, are other promising areas of application. Several field trials to test the effectiveness of the system in these type of applications are scheduled for the summer and fall of 2002

  1. Effects of slow recovery rates on water column geochemistry in aquitard wells

    Science.gov (United States)

    Schilling, K.E.

    2011-01-01

    Monitoring wells are often installed in aquitards to verify effectiveness for preventing migration of surface contaminants to underlying aquifers. However, water sampling of aquitard wells presents a challenge due to the slow recovery times for water recharging the wells, which can take as long as weeks, months or years to recharge depending on the sample volume needed. In this study, downhole profiling and sampling of aquitard wells was used to assess geochemical changes that occur in aquitard wells during water level recovery. Wells were sampled on three occasions spanning 11years, 1year and 1week after they were purged and casing water showed substantial water chemistry variations. Temperature decreased with depth, whereas pH and specific conductance increased with depth in the water column after 11years of water level recovery. Less stable parameters such as dissolved O2 (DO) and Eh showed strong zonation in the well column, with DO stratification occurring as the groundwater slowly entered the well. Oxidation of reduced till groundwater along with degassing of CO2 from till pore water affects mineral solubility and dissolved solid concentrations. Recommendations for sampling slowly recovering aquitard wells include identifying the zone of DO and Eh stratification in the well column and collecting water samples from below the boundary to better measure unstable geochemical parameters. ?? 2011 Elsevier Ltd.

  2. Membrane crystallization for recovery of salts from produced water

    DEFF Research Database (Denmark)

    Quist-Jensen, Cejna Anna; Jensen, Henriette Casper; Ali, Aamer

    Membrane Crystallization (MCr) is a novel technology able to recover freshwater and high-purity salts from complex solutions and therefore, is suggested for a better exploitation of wastewater streams. Unlike other membrane processes, MCr is not limited by high concentrations and, therefore, the ......, the membrane maintained its hydrophobic nature despite that produced water contained oil residues. Conductivity and HPLC was utilized to analyze the quality of the permeate stream......., the solutions can be treated to achieve saturation level. Hereby different salts can be precipitated and directly recovered from various streams. In this study, it is shown that MCr is able to treat produced water by producing clean water and simultaneously NaCl crystals. The recovered crystals exhibited high...

  3. Cold-Water Immersion and Contrast Water Therapy: No Improvement of Short-Term Recovery After Resistance Training.

    Science.gov (United States)

    Argus, Christos K; Broatch, James R; Petersen, Aaron C; Polman, Remco; Bishop, David J; Halson, Shona

    2017-08-01

    An athlete's ability to recover quickly is important when there is limited time between training and competition. As such, recovery strategies are commonly used to expedite the recovery process. To determine the effectiveness of both cold-water immersion (CWI) and contrast water therapy (CWT) compared with control on short-term recovery (<4 h) after a single full-body resistance-training session. Thirteen men (age 26 ± 5 y, weight 79 ± 7 kg, height 177 ± 5 cm) were assessed for perceptual (fatigue and soreness) and performance measures (maximal voluntary isometric contraction [MVC] of the knee extensors, weighted and unweighted countermovement jumps) before and immediately after the training session. Subjects then completed 1 of three 14-min recovery strategies (CWI, CWT, or passive sitting [CON]), with the perceptual and performance measures reassessed immediately, 2 h, and 4 h postrecovery. Peak torque during MVC and jump performance were significantly decreased (P < .05) after the resistance-training session and remained depressed for at least 4 h postrecovery in all conditions. Neither CWI nor CWT had any effect on perceptual or performance measures over the 4-h recovery period. CWI and CWT did not improve short-term (<4-h) recovery after a conventional resistance-training session.

  4. Gas exchange and hydraulics in seedlings of Hevea brasiliensis during water stress and recovery.

    Science.gov (United States)

    Chen, Jun-Wen; Zhang, Qiang; Li, Xiao-Shuang; Cao, Kun-Fang

    2010-07-01

    The response of plants to drought has received significant attention, but far less attention has been given to the dynamic response of plants during recovery from drought. Photosynthetic performance and hydraulic capacity were monitored in seedlings of Hevea brasiliensis under water stress and during recovery following rewatering. Leaf water relation, gas exchange rate and hydraulic conductivity decreased gradually after water stress fell below a threshold, whereas instantaneous water use efficiency and osmolytes increased significantly. After 5 days of rewatering, leaf water relation, maximum stomatal conductance (g(s-max)) and plant hydraulic conductivity had recovered to the control levels except for sapwood area-specific hydraulic conductivity, photosynthetic assimilation rate and osmolytes. During the phase of water stress, stomata were almost completely closed before water transport efficiency decreased substantially, and moreover, the leaf hydraulic pathway was more vulnerable to water stress-induced embolism than the stem hydraulic pathway. Meanwhile, g(s-max) was linearly correlated with hydraulic capacity when water stress exceeded a threshold. In addition, a positive relationship was shown to occur between the recovery of g(s-max) and of hydraulic capacity during the phase of rewatering. Our results suggest (i) that stomatal closure effectively reduces the risk of xylem dysfunction in water-stressed plants at the cost of gas exchange, (ii) that the leaf functions as a safety valve to protect the hydraulic pathway from water stress-induced dysfunction to a larger extent than does the stem and (iii) that the full drought recovery of gas exchange is restricted by not only hydraulic factors but also non-hydraulic factors.

  5. Electron energy recovery system for negative ion sources

    International Nuclear Information System (INIS)

    Dagenhart, W.K.; Stirling, W.L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90* to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy

  6. Filtration recovery of extracellular DNA from environmental water samples

    Science.gov (United States)

    qPCR methods are able to analyze DNA from microbes within hours of collecting water samples, providing the promptest notification and public awareness possible when unsafe pathogenic levels are reached. Health risk, however, may be overestimated by the presence of extracellular ...

  7. A transportable system for radioactivity contaminated water treatment

    International Nuclear Information System (INIS)

    2013-01-01

    Contaminated water treatment system called SARRY for retrieval and recovery of water in operation at the site of Fukushima Daiichi Nuclear Power Plant since August 2011 has been modified by compacting the system size to develop a mobile system SARRY-Aqua that can process Cs-contaminated water (one ton/hour) to the level of 10 Bq/kg. Installing the system in a small container with dimensions conforming to the international standards facilitates transportation by truck and enables the contaminated water treatment occurring in a variety of locations. (S. Ohno)

  8. Grey water treatment concept integrating water and carbon recovery and removal of micropollutants

    NARCIS (Netherlands)

    Hernandez Leal, L.; Zeeman, G.; Buisman, C.J.N.

    2011-01-01

    A total treatment concept was developed for grey water from 32 houses in Sneek, The Netherlands. A thorough characterization of COD, nutrients, metals, micropollutants and anions was carried out. Four biological treatment systems were tested: aerobic, anaerobic, combined anaerobic¿+¿aerobic and a

  9. Enterprise systems backup and recovery a corporate insurance policy

    CERN Document Server

    de Guise, Preston

    2008-01-01

    The success of information backup systems does not rest on IT administrators alone. Rather, a well-designed backup system comes about only when several key factors coalesce-business involvement, IT acceptance, best practice designs, enterprise software, and reliable hardware. Enterprise Systems Backup and Recovery: A Corporate Insurance Policy provides organizations with a comprehensive understanding of the principles and features involved in effective enterprise backups.Instead of focusing on any individual backup product, this book recommends corporate procedures and policies that need to be established for comprehensive data protection. It provides relevant information to any organization, regardless of which operating systems or applications are deployed, what backup system is in place, or what planning has been done for business continuity. It explains how backup must be included in every phase of system planning, development, operation, and maintenance. It also provides techniques for analyzing and impr...

  10. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  11. Automated Water-Purification System

    Science.gov (United States)

    Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

    1988-01-01

    Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

  12. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    Science.gov (United States)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  13. Simulation of a heat pump system for total heat recovery from flue gas

    International Nuclear Information System (INIS)

    Wei, Maolin; Yuan, Weixing; Song, Zhijia; Fu, Lin; Zhang, Shigang

    2015-01-01

    This paper introduces an approach of using an open-cycle absorption heat pump (OAHP) for recovering waste heat from the flue gas of a gas boiler with a system model. And equivalent energy efficiency is used to evaluate two other heat recovery systems that integrate an electric compression heat pump (EHP) or an absorption heat pump (AHP) with a boiler. The key factors influencing the systems are evaluated. The OAHP system efficiency is improved by 11% compared to the base case. And the OAHP system is more efficient than the AHP or the EHP systems, especially when the solution mass flow rate is only a little less than the cold water mass flow rate. The energy efficiency comparison is supplemented with a simplified economic analysis. The results indicate that the OAHP system is the best choice for the current prices of electricity and natural gas in Beijing. - Highlights: • An OAHP system is analyzed to improve heat recovery from natural gas flue gas. • OAHP system models are presented and analyzed. • The key factors influencing the OAHP systems are analyzed. • The OAHP system is most efficient for most cases compared with other systems. • The OAHP system is more economic than other systems

  14. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  15. Osmotically-driven membrane processes for water reuse and energy recovery

    Science.gov (United States)

    Achilli, Andrea

    Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to

  16. Reverse osmosis for wash water recovery in space vehicles.

    Science.gov (United States)

    Lawrence, R. W.; Saltonstall, C. W., Jr.

    1973-01-01

    Tests were carried out on both synthetic and real wash water derived from clothes laundry to determine the utility of reverse osmosis in recovering the water for recycle use. A blend membrane made from cellulose di- and triacetates, and a cross-linked cellulose acetate/methacrylate were evaluated. Both were found acceptable. A number of detergents were evaluated, including a cationic detergent, sodium dodecyl sulfate, potassium palmitate, and sodium dodecylbenzenesulfonate. The tests were all made at a temperature of 165 F to minimize microbial growth. Long-term (15 to 30 day) runs were made at 600 and 400 psi on laundry water which was pretreated either by alum addition and sand filtration or by filtration only through 0.5 micron filters. A 30-day run was made using a 2-in. diameter by 22-in. long spiral module at 400 psig with filtering as the pretreatment. The membrane fouling by colloidal matter was found to be controllable. The unit produced initially 55 gal/day and 27 gal/day after 30 days.

  17. Heat recovery unit operation of HVAC system in IMEF

    International Nuclear Information System (INIS)

    Paek, S. R.; Oh, Y. W.; Song, E. S.; Park, D. K.; Joo, Y. S.; Hong, K. P.

    2003-01-01

    HVAC system including a supply and exhaust air system in IMEF(Irradiated Materials Examination Facility) is an essential facility for preventing a leakage of radioactive materials and for a preservation of a working environment. It costs a lot to operate the HVAC system in IMEF because our ventilation type is once-through system, and an air flow is maintained from low level contamination area to high level and maintained high turns of ventilation air under certain conditions. As HRU(Heat Recovery Unit) at HVAC system based on PIEF(Post Irradiation Examination Facility) operation experiences is designed and adopted, it prevents from a heating coil freezing destruction in winter and makes much energy saving etc.. Heat pipe type HRU is adopted in IMEF, and a construction and operation result of HRU is examined

  18. Climate change mitigation by recovery of energy from the water cycle: a new challenge for water management.

    Science.gov (United States)

    van der Hoek, J P

    2012-01-01

    Waternet is responsible for drinking water treatment and distribution, wastewater collection and treatment, and surface water management and control (quality and quantity) in and around Amsterdam. Waternet has the ambition to operate climate neutral in 2020. To realise this ambition, measures are required to compensate for the emission of 53,000 ton CO(2)-eq/year. Energy recovery from the water cycle looks very promising. First, calculations reveal that energy recovery from the water cycle in and around Amsterdam may contribute to a total reduction in greenhouse gas emissions up to 148,000 ton CO(2)-eq/year. The challenge for the coming years is to choose combinations of all the possibilities to fulfil the energy demand as much as possible. Only then the use of fossil fuel can be minimized and inevitable greenhouse gas emissions can be compensated, supporting the target to operate climate neutral in 2020.

  19. Comparison of a wellpoint vacuum pump system to dual pump recovery system effectiveness for the extraction of light non-aqueous phase liquids

    International Nuclear Information System (INIS)

    Koll, C.S.; Palmerton, D.L. Jr.; Kunzel, R.G.

    1994-01-01

    The effectiveness of two light non-aqueous phase liquid (LNAPL) extraction systems is compared at a site in the Mid-New Jersey Atlantic Coastal Plains Region: an existing dual pump recovery system and a wellpoint vacuum pump system. Home heating oil was released to a shallow sand and gravel aquifer by a leaky underground distribution system in the early 1970s. Eight-inch-diameter dual pump recovery wells were used for the last nine years, to lower the water table and extract LNAPL at several spill sites located throughout a residential community of 1,500 homes. Several small LNAPL plumes still exist today with surface areas ranging from 400 ft 2 to over 28,000 ft 2 . LNAPL recovery peaked in 1985 using dual pump recovery systems, averaging 33 gallons per day (gpd). In 1987, four 24-inch wells were replaced by 11 8-inch-diameter recovery wells at six sites, and LNAPL recovery rates averaged 5 gpd. In recent years, the recovery of LNAPL has declined and when graphed, is asymptotic. In 1993, dual pump recovery of LNAPL averaged 0.3 gpd for all six sites

  20. Water management during climate change using aquifer storage and recovery of stormwater in a dunefield in western Saudi Arabia

    International Nuclear Information System (INIS)

    Lopez, O; Missimer, T M; Stenchikov, G

    2014-01-01

    An average of less than 50 mm yr −1 of rainfall occurs in the hyperarid region of central Western Saudi Arabia. Climate change is projected to create greater variation in rainfall accumulation with more intense rainfall and flood events and longer duration droughts. To manage climate change and variability in ephemeral stream basins, dams are being constructed across wadi channels to capture stormwater, but a large percentage of this stored water is lost to evaporation. A dam/reservoir system located in Wadi Al Murwani in Western Saudi Arabia was recently constructed and is expected to contain a maximum stored water volume of 150 million m 3 . A hydrologic assessment of a dunefield lying 45 km downstream was conducted to evaluate its potential use for aquifer storage and recovery of the reservoir water. A 110 m elevation difference between the base of the dam and the upper level of the dunefield occurs, allowing conveyance of the water from the reservoir to the dunefield storage site by gravity feed without pumping, making the recharge system extremely energy efficient. Aquifer storage and recovery coupled with dams would allow water management during extreme droughts and climate change and has widespread potential application in arid regions

  1. Water management during climate change using aquifer storage and recovery of stormwater in a dunefield in western Saudi Arabia

    KAUST Repository

    Lopez Valencia, Oliver Miguel

    2014-07-28

    An average of less than 50 mm yr-1 of rainfall occurs in the hyperarid region of central Western Saudi Arabia. Climate change is projected to create greater variation in rainfall accumulation with more intense rainfall and flood events and longer duration droughts. To manage climate change and variability in ephemeral stream basins, dams are being constructed across wadi channels to capture stormwater, but a large percentage of this stored water is lost to evaporation. A dam/reservoir system located in Wadi Al Murwani in Western Saudi Arabia was recently constructed and is expected to contain a maximum stored water volume of 150 million m3. A hydrologic assessment of a dunefield lying 45 km downstream was conducted to evaluate its potential use for aquifer storage and recovery of the reservoir water. A 110 m elevation difference between the base of the dam and the upper level of the dunefield occurs, allowing conveyance of the water from the reservoir to the dunefield storage site by gravity feed without pumping, making the recharge system extremely energy efficient. Aquifer storage and recovery coupled with dams would allow water management during extreme droughts and climate change and has widespread potential application in arid regions. 2014 IOP Publishing Ltd.

  2. Robotic Mirror Therapy System for Functional Recovery of Hemiplegic Arms.

    Science.gov (United States)

    Beom, Jaewon; Koh, Sukgyu; Nam, Hyung Seok; Kim, Wonshik; Kim, Yoonjae; Seo, Han Gil; Oh, Byung-Mo; Chung, Sun Gun; Kim, Sungwan

    2016-08-15

    Mirror therapy has been performed as effective occupational therapy in a clinical setting for functional recovery of a hemiplegic arm after stroke. It is conducted by eliciting an illusion through use of a mirror as if the hemiplegic arm is moving in real-time while moving the healthy arm. It can facilitate brain neuroplasticity through activation of the sensorimotor cortex. However, conventional mirror therapy has a critical limitation in that the hemiplegic arm is not actually moving. Thus, we developed a real-time 2-axis mirror robot system as a simple add-on module for conventional mirror therapy using a closed feedback mechanism, which enables real-time movement of the hemiplegic arm. We used 3 Attitude and Heading Reference System sensors, 2 brushless DC motors for elbow and wrist joints, and exoskeletal frames. In a feasibility study on 6 healthy subjects, robotic mirror therapy was safe and feasible. We further selected tasks useful for activities of daily living training through feedback from rehabilitation doctors. A chronic stroke patient showed improvement in the Fugl-Meyer assessment scale and elbow flexor spasticity after a 2-week application of the mirror robot system. Robotic mirror therapy may enhance proprioceptive input to the sensory cortex, which is considered to be important in neuroplasticity and functional recovery of hemiplegic arms. The mirror robot system presented herein can be easily developed and utilized effectively to advance occupational therapy.

  3. An investigation of heat recovery of submarine diesel engines for combined cooling, heating and power systems

    International Nuclear Information System (INIS)

    Daghigh, Roonak; Shafieian, Abdellah

    2016-01-01

    Highlights: • The power output of the cycle is about 53 kW in the mass flow rate of 0.6 kg/s. • The output cooling water temperature of evaporator is 3.64 °C. • The absorption chiller has a coefficient of performance equal to 0.94. - Abstract: High temperature and mass flow rate of the exhaust gases of submarine diesel engines provide an appropriate potential for their thermal recovery. The current study introduces a combined cooling, heating and power system for thermal recovery of submarine diesel engines. The cooling system is composed of a mixed effect absorption chiller with two high and low pressure generators. The exhaust of the diesel engine is used in the high pressure generator, and the low pressure generator was divided into two parts. The required heat for the first and second compartments is supplied by the cooling water of the engine and condensation of the vapor generated in the high pressure generator, respectively. The power generation system is a Rankine cycle with an organic working fluid, which is considered a normal thermal system to supply hot water. The whole system is encoded based on mass stability, condensation and energy equations. The obtained findings showed that the maximum heat recovery for the power cycle occurs in exhaust gas mass ratio of 0.23–0.29 and working fluid mass flow rate of 0.45–0.57 kg/s. Further, for each specific mass ratio of exhaust gas, only a certain range of working fluid mass flow rate is used. In the refrigerant mass flow rate of 0.6 kg/s and exhaust gas mass ratio of 0.27, the power output of the cycle is 53 kW, which can also be achieved by simultaneous increase of refrigerant mass flow rate and exhaust gas mass ratio in a certain range of higher powers. In the next section, the overall distribution diagram of output water temperature of the thermal system is obtained according to the exhaust gas mass ratio in various mass flow rates, which can increase the potential of designing and controlling the

  4. Nondestructive assay system development for a plutonium scrap recovery facility

    International Nuclear Information System (INIS)

    Hsue, S.T.; Baker, M.P.

    1984-01-01

    A plutonium scrap recovery facility is being constructed at the Savannah River Plant (SRP). The safeguards groups of the Los Alamos National Laboratory have been working since the early design stage of the facility with SRP and other national laboratories to develop a state-of-the-art assay system for this new facility. Not only will the most current assay techniques be incorporated into the system, but also the various nondestructive assay (NDA) instruments are to be integrated with an Instrument Control Computer (ICC). This undertaking is both challenging and ambitious; an entire assay system of this type has never been done before in a working facility. This paper will describe, in particular, the effort of the Los Alamos Safeguards Assay Group in this endeavor. Our effort in this project can be roughly divided into three phases: NDA development, system integration, and integral testing. 6 references

  5. Piloted Simulation of a Model-Predictive Automated Recovery System

    Science.gov (United States)

    Liu, James (Yuan); Litt, Jonathan; Sowers, T. Shane; Owens, A. Karl; Guo, Ten-Huei

    2014-01-01

    This presentation describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  6. Water Recovery with the Heat Melt Compactor in a Microgravity Environment

    Science.gov (United States)

    Golliher, Eric L.; Goo, Jonathan; Fisher, John

    2015-01-01

    The Heat Melt Compactor is a proposed utility that will compact astronaut trash, extract the water for eventual re-use, and form dry square tiles that can be used as additional ionizing radiation shields for future human deep space missions. The Heat Melt Compactor has been under development by a consortium of NASA centers. The downstream portion of the device is planned to recover a small amount of water while in a microgravity environment. Drop tower low gravity testing was performed to assess the effect of small particles on a capillary-based water/air separation device proposed for the water recovery portion of the Heat Melt Compactor.

  7. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes.

    Science.gov (United States)

    Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent

    2017-11-01

    It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.

  8. Study design and percent recoveries of anthropogenic organic compounds with and without the addition of ascorbic acid to preserve water samples containing free chlorine, 2004-06

    Science.gov (United States)

    Valder, Joshua F.; Delzer, Gregory C.; Price, Curtis V.; Sandstrom, Mark W.

    2008-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) began implementing Source Water-Quality Assessments (SWQAs) in 2002 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water). Finished water is the water that is treated, which typically involves, in part, the addition of chlorine or other disinfection chemicals to remove pathogens, and is ready to be delivered to consumers. Finished water is collected before the water enters the distribution system. This report describes the study design and percent recoveries of anthropogenic organic compounds (AOCs) with and without the addition of ascorbic acid to preserve water samples containing free chlorine. The percent recoveries were determined by using analytical results from a laboratory study conducted in 2004 by the USGS's National Water Quality Laboratory (NWQL) and from data collected during 2004-06 for a field study currently (2008) being conducted by the USGS's NAWQA Program. The laboratory study was designed to determine if preserving samples with ascorbic acid (quenching samples) adversely affects analytical performance under controlled conditions. During the laboratory study, eight samples of reagent water were spiked for each of five analytical schedules evaluated. Percent recoveries from these samples were then compared in two ways: (1) four quenched reagent spiked samples analyzed on day 0 were compared with four quenched reagent spiked samples analyzed on day 7 or 14, and (2) the combined eight quenched reagent spiked samples analyzed on day 0, 7, or 14 were compared with eight laboratory reagent spikes (LRSs). Percent

  9. Spontaneous Recovery of Human Spatial Memory in a Virtual Water Maze

    Science.gov (United States)

    Luna, David; Martínez, Héctor

    2015-01-01

    The occurrence of spontaneous recovery in human spatial memory was assessed using a virtual environment. In Experiment 1, spatial memory was established by training participants to locate a hidden platform in a virtual water maze using a set of four distal landmarks. In Experiment 2, after learning about the location of a hidden platform, the…

  10. Simultaneous recovery of calcium phosphate granules and methane in anaerobic treatment of black water

    NARCIS (Netherlands)

    Cunha Costa, da J.M.R.; Tervahauta, T.; Weijden, van der R.D.; Hernández Leal, L.; Zeeman, G.; Buisman, C.J.N.

    2017-01-01

    Calcium phosphate (CaP) granules were discovered in the anaerobic treatment of vacuum collected black water (BW), using upflow anaerobic sludge blanket (UASB) technology. This allows simultaneous recovery of CaP granules and methane in the UASB reactor. However, the role of BW composition on CaP

  11. Water extraction of pyrolysis oil: the first step for the recovery of renewable chemicals

    NARCIS (Netherlands)

    Vitasari, C.R.; Meindersma, G.W.; Haan, de A.B.

    2011-01-01

    The interest in biomass as a source of renewable energy and chemicals has been increasing in keeping up with the transition to a sustainable bio-based economy. An important initial step of chemicals recovery from biomass-derived pyrolysis oil is water extraction where most of polar compounds are

  12. Optimisation of decontamination method and influence of culture media on the recovery of Mycobacterium avium subspecies paratuberculosis from spiked water sediments.

    Science.gov (United States)

    Aboagye, G; Rowe, M T

    2018-07-01

    The recovery of Mycobacterium avium subspecies paratuberculosis (Map) from the environment can be a laborious process - owing to Map being fastidious, its low number, and also high numbers of other microbial populations in such settings. Protocols i.e. filtration, decontamination and modified elution were devised to recover Map from spiked water sediments. Three culture media: Herrold's Egg Yolk Media (HEYM), Middlebrook 7H10 (M-7H10) and Bactec 12B were then employed to grow the organism following its elution. In the sterile sediment samples the recovery of Map was significant between the time of exposure for each of HEYM and M-7H10, and insignificant between both media (P < 0.05). However, in the non-sterile sediment samples, the HEYM grew other background microflora including moulds at all the times of exposure whilst 4 h followed by M-7H10 culture yielded Map colonies without any background microflora. Using sterile samples only for the Bactec 12B, the recovery of Map decreased as time of exposure increased. Based on these findings, M-7H10 should be considered for the recovery of Map from the natural environment including water sediments where the recovery of diverse microbial species remains a challenge. Map is a robust pathogen that abides in the environment. In water treatment operations, Map associates with floccules and other particulate matter including sediments. It is also a fastidious organism, and its detection and recovery from the water environment is a laborious process and can be misleading within the abundance of other mycobacterial species owing to their close resemblance in phylogenetic traits. In the absence of a reliable recovery method, Map continues to pose public health risks through biofilm in household water tanks, hence the need for the development of a reliable recovery protocol to monitor the presence of Map in water systems in order to curtail its public health risks. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Understanding Ammonium Transport in Bioelectrochemical Systems towards its Recovery

    Science.gov (United States)

    Liu, Ying; Qin, Mohan; Luo, Shuai; He, Zhen; Qiao, Rui

    2016-03-01

    We report an integrated experimental and simulation study of ammonia recovery using microbial electrolysis cells (MECs). The transport of various species during the batch-mode operation of an MEC was examined experimentally and the results were used to validate the mathematical model for such an operation. It was found that, while the generated electrical current through the system tends to acidify (or basify) the anolyte (or catholyte), their effects are buffered by a cascade of chemical groups such as the NH3/NH4+ group, leading to relatively stable pH values in both anolyte and catholyte. The transport of NH4+ ions accounts for ~90% of the total current, thus quantitatively confirming that the NH4+ ions serve as effective proton shuttles during MEC operations. Analysis further indicated that, because of the Donnan equilibrium at cation exchange membrane-anolyte/catholyte interfaces, the Na+ ion in the anolyte actually facilitates the transport of NH4+ ions during the early stage of a batch cycle and they compete with the NH4+ ions weakly at later time. These insights, along with a new and simple method for predicting the strength of ammonia diffusion from the catholyte toward the anolyte, will help effective design and operation of bioeletrochemical system-based ammonia recovery systems.

  14. Method for controlling exhaust gas heat recovery systems in vehicles

    Science.gov (United States)

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  15. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  16. Water quality and herbivory interactively drive coral-reef recovery patterns in American Samoa.

    Directory of Open Access Journals (Sweden)

    Peter Houk

    Full Text Available BACKGROUND: Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s of spatial variation in the recovery process. METHODOLOGY/PRINCIPAL FINDINGS: This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of 'recovery status', defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. CONCLUSIONS/SIGNIFICANCE: Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management.

  17. System Behaviour Charts Inform an Understanding of Biodiversity Recovery

    Directory of Open Access Journals (Sweden)

    Simon A. Black

    2015-01-01

    Full Text Available Practitioners working with species and ecosystem recovery typically deal with the complexity of, on one hand, lack of data or data uncertainties and, on the other hand, demand for critical decision-making and intervention. The control chart methods of commercial and industrial and environmental monitoring can complement an ecological understanding of wildlife systems including those situations which incorporate human activities and land use. Systems Behaviour Charts are based upon well-established control chart methods to provide conservation managers with an approach to using existing data and enable insight to aid timely planning of conservation interventions and also complement and stimulate research into wider scientific and ecological questions. When the approach is applied to existing data sets in well-known wildlife conservation cases, the subsequent Systems Behaviour Charts and associated analytical criteria demonstrate insights which would be helpful in averting problems associated with each case example.

  18. Space systems for disaster warning, response, and recovery

    CERN Document Server

    Madry, Scott

    2015-01-01

    This SpringerBrief provides a general overview of the role of satellite applications for disaster mitigation, warning, planning, recovery and response. It covers both the overall role and perspective of the emergency management community as well as the various space applications that support their work. Key insights are provided as to how satellite telecommunications, remote sensing, navigation systems, GIS, and the emerging domain of social media are utilized in the context of emergency management needs and requirements. These systems are now critical in addressing major man-made and natural disasters. International policy and treaties are covered along with various case studies from around the world. These case studies indicate vital lessons that have been learned about how to use space systems more effectively in addressing the so-called “Disaster Cycle.” This book is appropriate for practicing emergency managers, Emergency Management (EM) courses, as well as for those involved in various space applica...

  19. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    Science.gov (United States)

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced. (c) IWA Publishing 2008.

  20. International Space Station United States Laboratory Module Water Recovery Management Subsystem Verification from Flight 5A to Stage ULF2

    Science.gov (United States)

    Williams, David E.; Labuda, Laura

    2009-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system comprises of seven subsystems: Atmosphere Control and Supply (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), Vacuum System (VS), Water Recovery and Management (WRM), and Waste Management (WM). This paper provides a summary of the nominal operation of the United States (U.S.) Laboratory Module WRM design and detailed element methodologies utilized during the Qualification phase of the U.S. Laboratory Module prior to launch and the Qualification of all of the modification kits added to it from Flight 5A up and including Stage ULF2.

  1. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  2. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  3. Recovery Audit Contractor medical necessity readiness: one health system's journey.

    Science.gov (United States)

    Scott, Judith A; Camden, Mindy

    2011-01-01

    To develop a sustainable approach to Recovery Audit Contractor medical necessity readiness that mitigates the regulatory and financial risks of the organization. Acute care hospitals. Utilizing the model for improvement and plan-do-study-act methodology, this health system designed and implemented a medical necessity case management program. We focused on 3 areas for improvement: medical necessity review accuracy, review timeliness, and physician adviser participation for secondary reviews. Over several months, we improved accuracy and timeliness of our medical necessity reviews while also generating additional inpatient revenue for the health system. We successfully enhanced regulatory compliance and reduced our financial risks associated with Recovery Audit Contractor medical necessity audits. A successful medical necessity case management program can not only enhance regulatory compliance and reduce the amount of payments recouped by Medicare, but also generate additional inpatient revenue for your organization. With health care reform and accountable care organizations on the horizon, hospitals must find ways to protect and enhance revenue in order to carry out their missions. This is one way for case managers to help in that cause, to advocate for the care of their patients, and to bring value to the organization.

  4. Advanced Waste Heat Recovery Systems within Hybrid Powertrains

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2018-01-01

    Full Text Available A waste heat recovery system (WHRS is very well known to provide no advantage during the cold start driving cycles, such as the New European Driving Cycle (NEDC, which are used for certification of emissions and assessment of fuel economy. Here, we propose a novel integrated WHRS using the internal combustion engine (ICE coolant passages and an exchanger on the exhaust working as pre-heater / boiler / super-heater of a Rankine cycle. The expander is connected to an electric generator unit (GU, and the pump is connected to an electric motor unit (MU. The vehicle is also fitted with an electric, kinetic energy recovery system (KERS. The expander and condenser are bypassed during the first part of the NEDC when the vehicle covers the four ECE-15 (Economic Commission for Europe - 15 - UDC (Urban Drive Cycle segments where the engine warms-up.  Only after the engine is fully warmed up, during the last part of the NEDC, the extra urban driving cycle (EUDC segment, the expander and condenser are activated to recover part of the coolant and exhaust energy.

  5. Heat recovery properties from fuel cell system for telecommunications use; Tsushin`yo nenryo denchi system ni okeru hainetsu kaishu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ishizawa, M.; Iida, S.; Abe, I.; Yamamoto, M. [NTT Integrated Information and Energy Systems Laboratories, Tokyo (Japan)

    1997-08-20

    NTT is developing a phosphoric-acid fuel-cell energy system for telecommunication co-generation systems to reduce energy costs and help preserve the environment. Fuel cells are used to provide electrical power to telecommunication equipment and the heat energy that is generated is used by the absorption refrigerators to cool the telecommunication rooms throughout the year. We field-tested this fuel-cell energy system in a telephone office. Two heat recovery methods were applied in the test: one uses direct steam heat recovery from fuel-cell stack coolant to keep the heat recovery temperature high and to avoid requiring a heat exchanger for the recovery; the other uses heat recovery from the reformer exhaust gas that is directly in contact with the heat recovery water to recover heat more economically. Our field tests confirmed that the average efficiency of heat recovery from fuel-cell stack coolant is 16%, and from the reformer exhaust gas is 9% under 80-kW continuous operation. Maximum total efficiency including electrical power efficiency was confirmed to be about 73% under the condition of 100-kW and an S/C ratio of 2.5 in the winter period: heat recovery from the fuel-cell stack coolant was 23%, from the reformer exhaust gas was 10%, and from electrical conversion was about 40%. 9 refs., 12 figs., 1 tab.

  6. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  7. Recovery of soil water, groundwater, and streamwater from acidification at the Swedish integrated monitoring catchments.

    Science.gov (United States)

    Löfgren, Stefan; Aastrup, Mats; Bringmark, Lage; Hultberg, Hans; Lewin-Pihlblad, Lotta; Lundin, Lars; Karlsson, Gunilla Pihl; Thunholm, Bo

    2011-12-01

    Recovery from anthropogenic acidification in streams and lakes is well documented across the northern hemisphere. In this study, we use 1996-2009 data from the four Swedish Integrated Monitoring catchments to evaluate how the declining sulfur deposition has affected sulfate, pH, acid neutralizing capacity, ionic strength, aluminum, and dissolved organic carbon in soil water, groundwater and runoff. Differences in recovery rates between catchments, between recharge and discharge areas and between soil water and groundwater are assessed. At the IM sites, atmospheric deposition is the main human impact. The chemical trends were weakly correlated to the sulfur deposition decline. Other factors, such as marine influence and catchment features, seem to be as important. Except for pH and DOC, soil water and groundwater showed similar trends. Discharge areas acted as buffers, dampening the trends in streamwater. Further monitoring and modeling of these hydraulically active sites should be encouraged.

  8. Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system.

    Science.gov (United States)

    Kim, Seoni; Lee, Jaehan; Kang, Jin Soo; Jo, Kyusik; Kim, Seonghwan; Sung, Yung-Eun; Yoon, Jeyong

    2015-04-01

    Lithium is one of the most important elements in various fields including energy storage, medicine manufacturing and the glass industry, and demands for lithium are constantly increasing these days. The lime soda evaporation process using brine lake water is the major extraction method for lithium, but this process is not only inefficient and time-consuming but also causes a few environmental problems. Electrochemical recovery processes of lithium ions have been proposed recently, but the better idea for the silver negative electrodes used in these systems is required to reduce its cost or increase long term stability. Here, we report an electrochemical lithium recovery method based on a λ-MnO2/activated carbon hybrid supercapacitor system. In this system, lithium ions and counter anions are effectively captured at each electrode with low energy consumption in a salt solution containing various cationic species or simulated Salar de Atacama brine lake water in Chile. Furthermore, we designed this system as a flow process for practical applications. By experimental analyses, we confirmed that this system has high selectivity and long-term stability, with its performance being retained even after repetitive captures and releases of lithium ions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Hydrogen Purification and Recycling for an Integrated Oxygen Recovery System Architecture

    Science.gov (United States)

    Abney, Morgan B.; Greenwood, Zachary; Wall, Terry; Miller, Lee; Wheeler, Ray

    2016-01-01

    The United States Atmosphere Revitalization life support system on the International Space Station (ISS) performs several services for the crew including oxygen generation, trace contaminant control, carbon dioxide (CO2) removal, and oxygen recovery. Oxygen recovery is performed using a Sabatier reactor developed by Hamilton Sundstrand, wherein CO2 is reduced with hydrogen in a catalytic reactor to produce methane and water. The water product is purified in the Water Purification Assembly and recycled to the Oxygen Generation Assembly (OGA) to provide O2 to the crew. This architecture results in a theoretical maximum oxygen recovery from CO2 of approximately 54% due to the loss of reactant hydrogen in Sabatier-produced methane that is currently vented outside of ISS. Plasma Methane Pyrolysis technology (PPA), developed by Umpqua Research Company, provides the capability to further close the Atmosphere Revitalization oxygen loop by recovering hydrogen from Sabatier-produced methane. A key aspect of this technology approach is to purify the hydrogen from the PPA product stream which includes acetylene, unreacted methane and byproduct water and carbon monoxide. In 2015, four sub-scale hydrogen separation systems were delivered to NASA for evaluation. These included two electrolysis single-cell hydrogen purification cell stacks developed by Sustainable Innovations, LLC, a sorbent-based hydrogen purification unit using microwave power for sorbent regeneration developed by Umpqua Research Company, and a LaNi4.6Sn0.4 metal hydride produced by Hydrogen Consultants, Inc. Here we report the results of these evaluations, discuss potential architecture options, and propose future work.

  10. Energy Recovery from a Non-Linear Electromagnetic System

    Directory of Open Access Journals (Sweden)

    Kęcik Krzysztof

    2018-03-01

    Full Text Available The paper presents study of a pseudo-magnetic levitation system (pseudo-maglev dedicated for energy harvesting. The idea rely on motion of a pseudo-levitating magnet in a coil’s terminal. The study based on real prototype harvester system, which in the pendulum dynamic vibration absorber is applied. For some parameters, the stability loss caused by the period doubling bifurcation is detected. The coexistence of two stable solutions, one of which is much better for energy harvesting is observed. The influence of the pseudo-maglev parameters on the recovered current and stability of the periodic solutions is presented in detail. The obtained results show, that the best energy recovery occurs for the high pseudo-maglev stiffness and close to the coil resistance. The amplitude’s excitation, the load resistances and the coupling coefficient strongly influence on the system’s response.

  11. Phronesis, a diagnosis and recovery tool for system administrators

    International Nuclear Information System (INIS)

    Haen, C; Barra, V; Bonaccorsi, E; Neufeld, N

    2014-01-01

    The LHCb experiment relies on the Online system, which includes a very large and heterogeneous computing cluster. Ensuring the proper behavior of the different tasks running on the more than 2000 servers represents a huge workload for the small operator team and is a 24/7 task. At CHEP 2012, we presented a prototype of a framework that we designed in order to support the experts. The main objective is to provide them with steadily improving diagnosis and recovery solutions in case of misbehavior of a service, without having to modify the original applications. Our framework is based on adapted principles of the Autonomic Computing model, on Reinforcement Learning algorithms, as well as innovative concepts such as Shared Experience. While the submission at CHEP 2012 showed the validity of our prototype on simulations, we here present an implementation with improved algorithms and manipulation tools, and report on the experience gained with running it in the LHCb Online system.

  12. Physical inventory by use of modeling for the tritium aqueous waste recovery system

    International Nuclear Information System (INIS)

    Sienkiewicz, C.J.; Lentz, J.E.; Wiggins, D.V.

    1988-01-01

    Physical inventory requirements for the Tritium Aqueous Waste Recovery System (TAWRS) presented constraints that required unique solutions. Available analytical techniques for which sound measurement control practices existed could not be readily adapted to the system without significant modifications and expense. Based on the assumption that would accurately estimate total system inventory given a few key measurements, a model was developed for TAWRS. Tritium concentrations in two streams, the tritiated feed stream to the process and the tritiated hydrogen stream generated by the electrolysis cells, provided the key values to the model. The proposed mathematical model relates the tritium concentration throughout the system to the tritium concentration in these two streams. Testing of the system using low-level tritiated feed water was conducted to characterize tritium distribution in the system and to relate key values to total inventory. 4 refs., 2 figs.,

  13. Pressurized water reactor systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1975-01-01

    Design and mode of operation of the main PWR components are described: reactor core, pressure vessel and internals, cooling systems with pumps and steam generators, ancillary systems, and waste processing. (TK) [de

  14. An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks

    Science.gov (United States)

    Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor

    2015-04-01

    Continuity of service of a high quality water supply is vital in sustaining economic and social development. However, water supply and wastewater treatment are highly energy intensive processes and the overall cost of water provision is rising rapidly due to increased energy costs, higher capital investment requirements, and more stringent regulatory compliance in terms of both national and EU legislation. Under the EU Directive 2009/28/EC, both Ireland and the UK are required to have 16% and 15% respectively of their electricity generated by renewable sources by 2020. The projected impacts of climate change, population growth and urbanisation will place additional pressures on resources, further increasing future water demand which in turn will lead to higher energy consumption. Therefore, there is a need to achieve greater efficiencies across the water industry. The implementation of micro-hydropower turbines within the water supply network has shown considerable viability for energy recovery. This is achieved by harnessing energy at points of high flow or pressure along the network which can then be utilised on site or alternatively sold to the national grid. Micro-hydropower can provide greater energy security for utilities together with a reduction in greenhouse gas emissions. However, potential climate change impacts on water resources in the medium-to-long term currently act as a key barrier to industry confidence as changes in flow and pressure within the network can significantly alter the available energy for recovery. The present study aims to address these uncertainties and quantify the regional and local impacts of climate change on the viability of energy recovery across water infrastructure in Ireland and the UK. Specifically, the research focuses on assessing the potential future effects of climate change on flow rates at multiple pressure reducing valve sites along the water supply network and also in terms of flow at a number of wastewater

  15. Effects of cold water immersion and active recovery on hemodynamics and recovery of muscle strength following resistance exercise.

    Science.gov (United States)

    Roberts, Llion A; Muthalib, Makii; Stanley, Jamie; Lichtwark, Glen; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M

    2015-08-15

    Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (-21.5 ± 8.8%) and tHb (-10.1 ± 7.7 μM) decreased after exercise (P < 0.05). During CWI, Q̇ (-1.1 ± 0.7 l) and Tmuscle (-6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased (P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased (P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased (P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high (P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (-30 to -45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT (P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI (P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature. Copyright © 2015 the American Physiological Society.

  16. Requirement of radiochemical recovery determination for gross alpha and gross beta estimation in drinking water

    International Nuclear Information System (INIS)

    Raveendran, Nanda; Rao, D.D.; Hegde, A.G.

    2010-01-01

    Presence of radionuclides in drinking water which emits Alpha and Beta particles are the potential sources of internal exposure in drinking water. Gross alpha and gross beta determination in drinking water and packaged drinking water (PDW) as per BIS (Bureau of Indian standards) standards is discussed here. The methods have been tested to account for losses in the radiochemical procedures using radionuclides such as 137 Cs, 90 Sr, 226 Ra, 239 Pu, 243 Am, 232 U. The methods have also been validated in an IAEA proficiency test conducted during 2009. Monitoring of gross alpha and gross beta activity observed in drinking water/packaged drinking water from various states of India were within the limits set by BIS. Average radiochemical recoveries of 84% and 63% were obtained for gross α and gross β respectively. (author)

  17. Phosphorous recovery from sewage sludge ash suspended in water in a two-compartment electrodialytic cell

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie

    2016-01-01

    was suspended in water in the anolyte, which was separated from the catholyte by a cation exchange membrane. Electrolysis at the anode acidified the SSA suspension, and hereby P, Cu, Pb, Cd and Zn were extracted. The heavy metal ions electromigrated into the catholyte and were thus separated from the filtrate......Phosphorus (P) is indispensable for all forms of life on Earth and as P is a finite resource, it is highly important to increase recovery of P from secondary resources. This investigation is focused on P recovery from sewage sludge ash (SSA) by a two-compartment electrodialytic separation (EDS......) technique. Two SSAs are included in the investigation and they contained slightly less P than phosphate rock used in commercial fertilizer production and more heavy metals. The two-compartment electrodialytic technique enabled simultaneous recovery of P and separation of heavy metals. During EDS the SSA...

  18. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  19. Vacuum system of the compact Energy Recovery Linac

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.; Takai, R.; Obina, T.; Asaoka, S.; Uchiyama, T.; Nakamura, N. [High Energy Accelerator Research Organization (KEK) (1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan) (Japan)

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gas interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.

  20. Advanced Exploration Systems Water Architecture Study Interim Results

    Science.gov (United States)

    Sargusingh, Miriam J.

    2013-01-01

    The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.

  1. The use of high vacuum soil vapor extraction to improve contaminant recovery from ground water zones of low transmissivity

    International Nuclear Information System (INIS)

    Brown, A.; Farrow, J.R.C.; Burgess, W.

    1996-01-01

    This study examines the potential for enhancing hydrocarbon contaminant mass recovery from ground water using high vacuum soil vapor extraction (SVE). The effectiveness of this form of remediation is compared with the effectiveness of conventional pump-and-treat. This study focuses on the performance of a high vacuum SVE system at two ground water monitoring wells (MW-17 and MW-65b) at a site in Santa Barbara, California, US. The site is a highly characterized site with vadose zone and ground water petroleum hydrocarbon contamination (gasoline). The ground water wells are located beyond a defined area of vadose zone soil contamination. Ground water hydrocarbon contamination [light non-aqueous phase liquid (LNAPL) and dissolved phase] is present at each of the wells. the ground water wells have been part of a low-flow, pump-and-treat, ground water treatment system (GWTS) since August, 1986. The low transmissivity of the aquifer sediments prevent flow rates above approximately 0.02 gpm (0.01 l/min) per well

  2. Construction and commissioning of a hydrogen cryogenic distillation system for tritium recovery at ICIT Rm. Valcea

    Energy Technology Data Exchange (ETDEWEB)

    Ana, George, E-mail: george.ana@icsi.ro [Institute for Cryogenic and Isotopic Technologies, Rm. Valcea (Romania); Cristescu, Ion [Karlsruhe Istitute for Technologies, Tritium Laboratory, Eggenstein-Leopoldshaffen (Germany); Draghia, Mirela [ISTECH, Timisoara (Romania); Bucur, Ciprian; Balteanu, Ovidiu; Vijulie, Mihai; Popescu, Gheorghe; Costeanu, Claudiu; Sofilca, Nicolae; Stefan, Iulia; Daramus, Robert; Niculescu, Alina; Oubraham, Anisoara; Spiridon, Ionut; Vasut, Felicia; Moraru, Carmen; Brad, Sebastian [Institute for Cryogenic and Isotopic Technologies, Rm. Valcea (Romania); Pasca, Gheorghe [ISTECH, Timisoara (Romania)

    2016-05-15

    Highlights: • Cryogenic distillation (CD) process is being employed for tritium separation from tritiated hydrogen mixtures. • Process control and safety phylosophy with the detritiation plant from Rm. Vâlcea. • Tests undertaken prior to commissioning of the CD system from Rm. Vâlcea. • Preliminary experiments with the CD system (non-radiological). - Abstract: Cryogenic distillation (CD) of hydrogen in combination with Liquid Phase Catalytic Exchange (LPCE) or Combined Electrolytic Catalytic Exchange (CECE) process is used for tritium removal/recovery from tritiated water. Tritiated water is being obtained after long time operation of CANDU reactors, or in case of ITER mainly by the Detritiation System (DS). The cryogenic distillation system (CDS) used to remove/recover tritium from a hydrogen stream consists of a cascade of cryogenic distillation columns and a refrigeration unit which provides the cooling capacity for the condensers of CD columns. The columns, together with the condensers and the process heat-exchangers are accommodated in a vacuumed cold box. In the particularly case of the ICIT Plant, the cryogenic distillation cascade consists of four columns with diameters between 100–7 mm and it has been designed to process up to 10 mc/h of tritiated deuterium. This paper will present the steps undertaken for construction and commissioning of a pilot plant for tritium removal/recovery by cryogenic distillation of hydrogen. The paper will show besides preliminary data obtained during commissioning, also general characteristics of the plant and its equipments.

  3. Effect of a 5-min cold-water immersion recovery on exercise performance in the heat.

    Science.gov (United States)

    Peiffer, J J; Abbiss, C R; Watson, G; Nosaka, K; Laursen, P B

    2010-05-01

    This study examined the effect of a 5-min cold-water immersion (14 degrees C) recovery intervention on repeated cycling performance in the heat. 10 male cyclists performed two bouts of a 25-min constant-paced (254 (22) W) cycling session followed by a 4-km time trial in hot conditions (35 degrees C, 40% relative humidity). The two bouts were separated by either 15 min of seated recovery in the heat (control) or the same condition with 5-min cold-water immersion (5th-10th minute), using a counterbalanced cross-over design (CP(1)TT(1) --> CWI or CON --> CP(2)TT(2)). Rectal temperature was measured immediately before and after both the constant-paced sessions and 4-km timed trials. Cycling economy and Vo(2) were measured during the constant-paced sessions, and the average power output and completion times were recorded for each time trial. Compared with control, rectal temperature was significantly lower (0.5 (0.4) degrees C) in cold-water immersion before CP(2) until the end of the second 4-km timed trial. However, the increase in rectal temperature (0.5 (0.2) degrees C) during CP(2) was not significantly different between conditions. During the second 4-km timed trial, power output was significantly greater in cold-water immersion (327.9 (55.7) W) compared with control (288.0 (58.8) W), leading to a faster completion time in cold-water immersion (6.1 (0.3) min) compared with control (6.4 (0.5) min). Economy and Vo(2) were not influenced by the cold-water immersion recovery intervention. 5-min cold-water immersion recovery significantly lowered rectal temperature and maintained endurance performance during subsequent high-intensity exercise. These data indicate that repeated exercise performance in heat may be improved when a short period of cold-water immersion is applied during the recovery period.

  4. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K K; Kim, D H; Weon, D Y; Yoon, S W; Song, H R [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  5. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  6. Can Cold Water Immersion Enhance Recovery in Elite Olympic Weightlifters? An Individualized Perspective.

    Science.gov (United States)

    Schimpchen, Jan; Wagner, Maximilian; Ferrauti, Alexander; Kellmann, Michael; Pfeiffer, Mark; Meyer, Tim

    2017-06-01

    We investigated whether cold water immersion (CWI) after intensive training sessions can enhance recovery in elite Olympic weightlifters, taking into account each athlete's individual response pattern. The entire German male Olympic weightlifting national team participated in the study (n = 7), ensuring collection of data from elite athletes only. Using a randomized cross-over design, the athletes went through 2 high-intensity training microcycles consisting of 5 training sessions that were either followed by a CWI or passive recovery. Barbell speed in a snatch pull movement, blood parameters, and subjective ratings of general fatigue and recovery were assessed throughout the study. Physical performance at 2 snatch pull intensities (85% one repetition maximum [1RM]: -0.15% vs. -0.22%, p = 0.94; 90% 1RM: -0.7% vs. +1.23%, p = 0.25) did not differ significantly (condition × time). Although questionnaires revealed a significant decline in the ratings of overall recovery (p creatine kinase: p = 0.53; urea: p = 0.43; cortisol: p = 0.59; testosterone: p = 0.53; testosterone:cortisol ratio: p = 0.69). In general, CWI did not prove to be an effective tool to enhance recovery in elite Olympic weightlifters over a 3-day intensive training period. However, even though the group was rather homogeneous with regard to performance, there were considerable intersubject differences in their response to CWI. It seems that athletes are best advised on a case-by-case basis.

  7. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise.

    Science.gov (United States)

    Roberts, Llion A; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M

    2014-10-15

    We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load (P work during subsequent training sessions, which could enhance long-term training adaptations. Copyright © 2014 the American Physiological Society.

  8. Toward Nucleating the Concept of the Water Resource Recovery Facility (WRRF): Perspective from the Principal Actors.

    Science.gov (United States)

    Coats, Erik R; Wilson, Patrick I

    2017-04-18

    Wastewater resource recovery has been advocated for decades; necessary structural pathways were long-ago articulated, and established and emerging technologies exist. Nevertheless, broad wastewater valorization remains elusive. In considering implementation barriers, the argument is made that decision-makers focus on avoiding permit violations and negative publicity by embracing a conservative/safe approach-seemingly ignoring research on economic/environmental benefits. Conversely positing that economics is a primary barrier, we investigated, characterized, and described nontechnical socio-political barriers to realizing wastewater resource recovery. Principal actors in the Pacific NW region of the U.S. (representing a progressive populace facing stringent water quality regulations) were interviewed. Results revealed that economics were, indeed, the primary barrier to implementation/expansion of the WRRF concept. Consistent throughout interviews was a prevalent sense that the "cost of doing something (different)" was a principal consideration in resource recovery actions/policies. Moreover, "economics drives decisions," and "95% the bottom line is money. Show return on investment, it will get people's attention." Who pays was also a concern: "Government isn't going to pay. The states and Federal government won't give any grants, and we can't raise rates." Applying business case evaluations was seen as a pathway to actualizing resource recovery. Most encouragingly, the consensus was that resource recovery is a necessary future paradigm, and that real barriers are surmountable.

  9. Thermotropic nanostructured gels with complex hierarchical structure and two gelling components for water shut-off and enhance of oil recovery

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Kozlov, V. V.; Stasyeva, L. A.

    2017-12-01

    This work presents the results of laboratory and field tests of thermotropic composition MEGA with two simultaneously acting gelling components, polymer and inorganic. The composition is intended for improving oil recovery and water shut-off at oilfields developed by thermal flooding, and cyclic-steam stimulated oil production wells. The composition forms an in-situ "gel-in-gel" system with improved structural-mechanical properties, using reservoir or carrier fluid heat for gelling. The gel blocks water breakthrough into producing wells and redistribute fluid flows, thus increasing the oil recovery factor.

  10. Effect of contrast water therapy duration on recovery of running performance.

    Science.gov (United States)

    Versey, Nathan G; Halson, Shona L; Dawson, Brian T

    2012-06-01

    To investigate whether contrast water therapy (CWT) assists acute recovery from high-intensity running and whether a dose-response relationship exists. Ten trained male runners completed 4 trials, each commencing with a 3000-m time trial, followed by 8 × 400-m intervals with 1 min of recovery. Ten minutes postexercise, participants performed 1 of 4 recovery protocols: CWT, by alternating 1 min hot (38°C) and 1 min cold (15°C) for 6 (CWT6), 12 (CWT12), or 18 min (CWT18), or a seated rest control trial. The 3000-m time trial was repeated 2 h later. 3000-m performance slowed from 632 ± 4 to 647 ± 4 s in control, 631 ± 4 to 642 ± 4 s in CWT6, 633 ± 4 to 648 ± 4 s in CWT12, and 631 ± 4 to 647 ± 4 s in CWT18. Following CWT6, performance (smallest worthwhile change of 0.3%) was substantially faster than control (87% probability, 0.8 ± 0.8% mean ± 90% confidence limit), however, there was no effect for CWT12 (34%, 0.0 ± 1.0%) or CWT18 (34%, -0.1 ± 0.8%). There were no substantial differences between conditions in exercise heart rates, or postexercise calf and thigh girths. Algometer thigh pain threshold during CWT12 was higher at all time points compared with control. Subjective measures of thermal sensation and muscle soreness were lower in all CWT conditions at some post-water-immersion time points compared with control; however, there were no consistent differences in whole body fatigue following CWT. Contrast water therapy for 6 min assisted acute recovery from high-intensity running; however, CWT duration did not have a dose-response effect on recovery of running performance.

  11. Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines

    International Nuclear Information System (INIS)

    Song, Jian; Song, Yin; Gu, Chun-wei

    2015-01-01

    Escalating fuel prices and imposition of carbon dioxide emission limits are creating renewed interest in methods to increase the thermal efficiency of marine diesel engines. One viable means to achieve such improved thermal efficiency is the conversion of engine waste heat to a more useful form of energy, either mechanical or electrical. Organic Rankine Cycle (ORC) has been demonstrated to be a promising technology to recover waste heat. This paper examines waste heat recovery of a marine diesel engine using ORC technology. Two separated ORC apparatuses for the waste heat from both the jacket cooling water and the engine exhaust gas are designed as the traditional recovery system. The maximum net power output is chosen as the evaluation criterion to select the suitable working fluid and define the optimal system parameters. To simplify the waste heat recovery, an optimized system using the jacket cooling water as the preheating medium and the engine exhaust gas for evaporation is presented. The influence of preheating temperature on the system performance is evaluated to define the optimal operating condition. Economic and off-design analysis of the optimized system is conducted. The simulation results reveal that the optimized system is technically feasible and economically attractive. - Highlights: • ORC is used to recover waste heat from both exhaust gas and jacket cooling water. • Comparative study is conducted for different ORC systems. • Thermal performance, system structure and economic feasibility are considered. • Optimal preheating temperature of the system is selected

  12. On a novel strategy for water recovery and recirculation in biorefineries through application of forward osmosis membranes

    DEFF Research Database (Denmark)

    Kalafatakis, Stavros; Braekevelt, Sylvie; Carlsen, Vilhelmsen

    2017-01-01

    A great amount of research has been performed during the last 10 years focusing on forward osmosis (FO)processes. The main driving force is to find an effective and low energy demanding methodology for water recovery as well as up-concentration of valuable products. Nevertheless, the energetic...... and financial benefits of this technology can be undermined from the fact that FO should be usually coupled with reverse osmosis (RO) for subsequent water purification and draw solution regeneration. Hence, a different approach was applied in order to omit the RO step. Crude glycerol and enzymatically...... pretreated wheat straw, which are common 2nd generation biorefinery feedstocks, have been evaluated as possible draw solution. In this way, water can be directly recovered and transferred back into the fermentation loop without further purification. Applying the Aquaporin InsideTM Forward Osmosis system...

  13. Relationship between muscle water and glycogen recovery after prolonged exercise in the heat in humans.

    Science.gov (United States)

    Fernández-Elías, Valentín E; Ortega, Juan F; Nelson, Rachael K; Mora-Rodriguez, Ricardo

    2015-09-01

    It is usually stated that glycogen is stored in human muscle bound to water in a proportion of 1:3 g. We investigated this proportion in biopsy samples during recovery from prolonged exercise. On two occasions, nine aerobically trained subjects ([Formula: see text] = 54.4 ± 1.05 mL kg(-1) min(-1); mean ± SD) dehydrated 4.6 ± 0.2 % by cycling 150 min at 65 % [Formula: see text] in a hot-dry environment (33 ± 4 °C). One hour after exercise subjects ingested 250 g of carbohydrates in 400 mL of water (REHLOW) or the same syrup plus water to match fluid losses (i.e., 3170 ± 190 mL; REHFULL). Muscle biopsies were obtained before, 1 and 4 h after exercise. In both trials muscle water decreased from pre-exercise similarly by 13 ± 6 % and muscle glycogen by 44 ± 10 % (P recovery, glycogen levels were similar in both trials (79 ± 15 and 87 ± 18 g kg(-1) dry muscle; P = 0.20) while muscle water content was higher in REHFULL than in REHLOW (3814 ± 222 vs. 3459 ± 324 g kg(-1) dm, respectively; P recovery ratio 1:3) while during REHFULL this ratio was higher (1:17). Our findings agree with the long held notion that each gram of glycogen is stored in human muscle with at least 3 g of water. Higher ratios are possible (e.g., during REHFULL) likely due to water storage not bound to glycogen.

  14. Color recovery effect of different bleaching systems on a discolored composite resin.

    Science.gov (United States)

    Gul, P; Harorlı, O T; Ocal, I B; Ergin, Z; Barutcigil, C

    2017-10-01

    Discoloration of resin-based composites is a commonly encountered problem, and bleaching agents may be used for the therapy of the existing discoloration. The purpose of this study was to investigate in vitro color recovery effect of different bleaching systems on the heavily discolored composite resin. Fifty disk-shaped dental composite specimens were prepared using A2 shade nanohybrid universal composite resin (3M ESPE Filtek Z550, St. Paul, MN, USA). Composite samples were immersed in coffee and turnip juice for 1 week in each. One laser activated bleaching (LB) (Biolase Laserwhite*20) and three conventional bleaching systems (Ultradent Opalescence Boost 40% (OB), Ultradent Opalescence PF 15% home bleaching (HB), Crest 3D White [Whitening Mouthwash]) were tested in this study. Distilled water was used as control group. The color of the samples were measured using a spectrophotometer (VITA Easy shade Compact, VITA Zahnfabrik, Bad Säckingen, Germany). Color changes (ΔE00) were calculated using the CIEDE2000 formula. Statistical analyses were conducted using paired samples test, one-way analysis of variance, and Tukey's multiple comparison tests (α = 0.05). The staining beverages caused perceptible discoloration (ΔE00 > 2.25). The color recovery effect of all bleaching systems was statistically determined to be more effective than the control group (P OB group was found as the most effective bleaching system, there was no statistically significant difference among HB, OB, and LB groups (P > 0.05). Within the limitation of this in vitro study, the highest recovery effect was determined in office bleaching system among all bleaching systems. However, home and laser bleaching systems were determined as effective as office bleaching system.

  15. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge

    Directory of Open Access Journals (Sweden)

    Mark Mullett

    2014-03-01

    Full Text Available Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met.

  16. Reverse osmosis water purification system

    Science.gov (United States)

    Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.

    1986-01-01

    A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.

  17. Effects of a dual-pump crude-oil recovery system, Bemidji, Minnesota, USA

    Science.gov (United States)

    Delin, Geoffrey N.; Herkelrath, William N.

    2014-01-01

    A crude-oil spill occurred in 1979 when a pipeline burst near Bemidji, MN. In 1998, the pipeline company installed a dual-pump recovery system designed to remove crude oil remaining in the subsurface at the site. The remediation from 1999 to 2003 resulted in removal of about 115,000 L of crude oil, representing between 36% and 41% of the volume of oil (280,000 to 316,000 L) estimated to be present in 1998. Effects of the 1999 to 2003 remediation on the dissolved plume were evaluated using measurements of oil thicknesses in wells plus measurements of dissolved oxygen in groundwater. Although the recovery system decreased oil thicknesses in the immediate vicinity of the remediation wells, average oil thicknesses measured in wells were largely unaffected. Dissolved-oxygen measurements indicate that a secondary plume was caused by disposal of the pumped water in an upgradient infiltration gallery; this plume expanded rapidly immediately following the start of the remediation in 1999. The result was expansion of the anoxic zone of groundwater upgradient and beneath the existing natural attenuation plume. Oil-phase recovery at this site was shown to be challenging, and considerable volumes of mobile and entrapped oil remain in the subsurface despite remediation efforts.

  18. Marine anoxia and delayed Earth system recovery after the end-Permian extinction.

    Science.gov (United States)

    Lau, Kimberly V; Maher, Kate; Altiner, Demir; Kelley, Brian M; Kump, Lee R; Lehrmann, Daniel J; Silva-Tamayo, Juan Carlos; Weaver, Karrie L; Yu, Meiyi; Payne, Jonathan L

    2016-03-01

    Delayed Earth system recovery following the end-Permian mass extinction is often attributed to severe ocean anoxia. However, the extent and duration of Early Triassic anoxia remains poorly constrained. Here we use paired records of uranium concentrations ([U]) and (238)U/(235)U isotopic compositions (δ(238)U) of Upper Permian-Upper Triassic marine limestones from China and Turkey to quantify variations in global seafloor redox conditions. We observe abrupt decreases in [U] and δ(238)U across the end-Permian extinction horizon, from ∼3 ppm and -0.15‰ to ∼0.3 ppm and -0.77‰, followed by a gradual return to preextinction values over the subsequent 5 million years. These trends imply a factor of 100 increase in the extent of seafloor anoxia and suggest the presence of a shallow oxygen minimum zone (OMZ) that inhibited the recovery of benthic animal diversity and marine ecosystem function. We hypothesize that in the Early Triassic oceans-characterized by prolonged shallow anoxia that may have impinged onto continental shelves-global biogeochemical cycles and marine ecosystem structure became more sensitive to variation in the position of the OMZ. Under this hypothesis, the Middle Triassic decline in bottom water anoxia, stabilization of biogeochemical cycles, and diversification of marine animals together reflect the development of a deeper and less extensive OMZ, which regulated Earth system recovery following the end-Permian catastrophe.

  19. Recovery of uranium from uranium mine waters and copper ore leaching solutions

    Energy Technology Data Exchange (ETDEWEB)

    George, D R; Ross, J R [Salt Lake City Metallurgy Research Center, Salt Lake City, UT (United States)

    1967-06-15

    Waters pumped from uranium mines in New Mexico are processed by ion exchange to recover uranium. Production is approximately 200 lb U{sub 3}O{sub 8}/d from waters containing 5 to 15 ppm U{sub 3}O{sub 8}. Recoveries range from 80 to 90%. Processing plants are described. Uranium has been found in the solutions resulting from the leaching of copper-bearing waste rock at most of the major copper mines in western United States. These solutions, which are processed on a very large scale for recovery of copper, contain 2 to 12 ppm U{sub 3}O{sub 8}. Currently, uranium is not being recovered, but a potential production of up to 6000 lb U{sub 3}O{sub 8}/d is indicated. Ion exchange and solvent extraction research studies are described. (author)

  20. Process options and projected mass flows for the HTGR refabrication scrap recovery system

    International Nuclear Information System (INIS)

    Tiegs, S.M.

    1979-03-01

    The two major uranium recovery processing options reviewed are (1) internal recovery of the scrap by the refabrication system and (2) transfer to and external recovery of the scrap by the head end of the reprocessing system. Each option was reviewed with respect to equipment requirements, preparatory processing, and material accountability. Because there may be a high cost factor on transfer of scrap fuel material to the reprocessing system for recovery, all of the scrap streams will be recycled internally within the refabrication system, with the exception of reject fuel elements, which will be transferred to the head end of the reprocessing system for uranium recovery. The refabrication facility will be fully remote; thus, simple recovery techniques were selected as the reference processes for scrap recovery. Crushing, burning, and leaching methods will be used to recover uranium from the HTGR refabrication scrap fuel forms, which include particles without silicon carbide coatings, particles with silicon carbide coatings, uncarbonized fuel rods, carbon furnace parts, perchloroethylene distillation bottoms, and analytical sample remnants. Mass flows through the reference scrap recovery system were calculated for the HTGR reference recycle facility operating with the highly enriched uranium fuel cycle. Output per day from the refabrication scrap recovery system is estimated to be 4.02 kg of 2355 U and 10.85 kg of 233 U. Maximum equipment capacities were determined, and future work will be directed toward the development and costing of the scrap recovery system chosen as reference

  1. Water quality requirements for sustaining aquifer storage and recovery operations in a low permeability fractured rock aquifer.

    Science.gov (United States)

    Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul

    2011-10-01

    A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Physiological behaviors and recovery responses of four Galician grapevine (Vitis vinifera L. ) cultivars under water stress

    OpenAIRE

    Islam, M.; Berrios, J.

    2012-01-01

    Gas exchange parameters and chlorophyll fluorescence of four pot grown Galician grapevines (Vitis vinifera L. cv. Albariño, Brancellao, Godello and Treixadura) were examined under different levels of water stress in greenhouse. After extreme stress, gas exchange recovery responses were evaluated. Average ΨPD for control and stressed plants were -0.4MPa and -1.45MPa respectively. All varieties showed gradual declining of all gas exchange parameters (gs, E and A) with increasing of stress perio...

  3. Cost Recovery in Urban Water Services : Select Experiences in Indian Cities

    OpenAIRE

    Gupta, Anjali Sen

    2011-01-01

    The report draws on a Water and Sanitation Program (WSP) study from 2008 which made a comparative analysis of 23 Urban Local Bodies (ULBs)-looking at seven cities in detail and another 16 based on secondary data-to understand the factors affecting cost recovery in India and provide an indication of current performance. It also draws out examples and lessons to inform reform approaches and ...

  4. EBR-II water-to-sodium leak detection system

    International Nuclear Information System (INIS)

    Wrightson, M.M.; McKinley, K.; Ruther, W.E.; Holmes, J.T.

    1976-01-01

    The water-to-sodium leak detection system installed at EBR-II in April, 1975, is described in detail. Topics covered include operational characteristics, maintenance problems, alarm functions, background hydrogen level data, and future plans for refinements to the system. Particular emphasis is given to the failures of eight of the ten leak detectors due to sodium-to-vacuum leakage, and the program anticipated for complete recovery of the system

  5. Model-based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Gettings, Rachel; Dees, Elizabeth

    2017-03-23

    The focus of this research effort centered around water recovery from high Total Dissolved Solids (TDS) extracted waters (180,000 mg/L) using a combination of water recovery (partial desalination) technologies. The research goals of this project were as follows: 1. Define the scope and test location for pilot-scale implementation of the desalination system, 2.Define a scalable, multi-stage extracted water desalination system that yields clean water, concentrated brine, and, salt from saline brines, and 3. Validate overall system performance with field-sourced water using GE pre-pilot lab facilities. Conventional falling film-mechanical vapor recompression (FF-MVR) technology was established as a baseline desalination process. A quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to the base case FF-MVR technology, including but not limited to: membrane distillation (MD), forward osmosis (FO), and high pressure reverse osmosis (HPRO). Technoeconomic analysis of high pressure reverse osmosis (HPRO) was performed comparing the following two cases: 1. a hybrid seawater RO (SWRO) plus HPRO system and 2. 2x standard seawater RO system, to achieve the same total pure water recovery rate. Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Improvements in membrane materials of construction were considered as necessary next steps to achieving further improvement in element performance at high pressure. Several modifications showed promising results in their ability to withstand close to 5,000 PSI without gross failure.

  6. System tradeoffs in siting a solar photovoltaic material recovery infrastructure.

    Science.gov (United States)

    Goe, Michele; Gaustad, Gabrielle; Tomaszewski, Brian

    2015-09-01

    The consumption and disposal of rare and hazardous metals contained in electronics and emerging technologies such as photovoltaics increases the material complexity of the municipal waste stream. Developing effective waste policies and material recovery systems is required to inhibit landfilling of valuable and finite resources. This work developed a siting and waste infrastructure configuration model to inform the management and recovery of end-of-life photovoltaics. This model solves the siting and waste location-allocation problem for a New York State case study by combining multi-criteria decision methods with spatial tools, however this methodology is generalizable to any geographic area. For the case study, the results indicate that PV installations are spatially statistically significant (i.e., clustered). At least 9 sites, which are co-located with landfills and current MRFs, were 'highly' suitable for siting according to our criteria. After combining criteria in an average weighted sum, 86% of the study area was deemed unsuitable for siting while less than 5% is characterized as highly suitable. This method implicitly prioritized social and environmental concerns and therefore, these concerns accounted for the majority of siting decisions. As we increased the priority of economic criteria, the likelihood of siting near ecologically sensitive areas such as coastline or socially vulnerable areas such as urban centers increased. The sensitivity of infrastructure configurations to land use and waste policy are analyzed. The location allocation model results suggest current tip fees are insufficient to avoid landfilling of photovoltaics. Scenarios where tip fees were increased showed model results where facilities decide to adopt limited recycling technologies that bypass compositionally complex materials; a result with strong implications for global PV installations as well as other waste streams. We suggest a multi-pronged approach that lowers technology cost

  7. Duct burners in heat recovery system for cogeneration and captive power plants

    International Nuclear Information System (INIS)

    Majumdar, J.

    1992-01-01

    Our oil explorations both onshore and offshore have thrown open bright prospects of cogeneration by using natural gas in gas turbine power plants with heat recovery units. Both for co-gen and combined cycle systems, supplementary firing of GT exhaust gas is normally required. Hence, duct burners have significant role for effective contribution towards of efficacy of heat recovery system for gas turbine exhaust gas. This article details on various aspects of duct burners in heat recovery systems. (author)

  8. Recovery From Exercise-Induced Muscle Damage: Cold-Water Immersion Versus Whole-Body Cryotherapy.

    Science.gov (United States)

    Abaïdia, Abd-Elbasset; Lamblin, Julien; Delecroix, Barthélémy; Leduc, Cédric; McCall, Alan; Nédélec, Mathieu; Dawson, Brian; Baquet, Georges; Dupont, Grégory

    2017-03-01

    To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage. Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at -110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise. Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = -0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = -0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = -0.68; 90% CI = -1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = -0.62; 90% CI = -1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes. CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24-48 h postexercise.

  9. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    Science.gov (United States)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  10. Improved Dynamic Modeling of the Cascade Distillation Subsystem and Integration with Models of Other Water Recovery Subsystems

    Science.gov (United States)

    Perry, Bruce; Anderson, Molly

    2015-01-01

    The Cascade Distillation Subsystem (CDS) is a rotary multistage distiller being developed to serve as the primary processor for wastewater recovery during long-duration space missions. The CDS could be integrated with a system similar to the International Space Station (ISS) Water Processor Assembly (WPA) to form a complete Water Recovery System (WRS) for future missions. Independent chemical process simulations with varying levels of detail have previously been developed using Aspen Custom Modeler (ACM) to aid in the analysis of the CDS and several WPA components. The existing CDS simulation could not model behavior during thermal startup and lacked detailed analysis of several key internal processes, including heat transfer between stages. The first part of this paper describes modifications to the ACM model of the CDS that improve its capabilities and the accuracy of its predictions. Notably, the modified version of the model can accurately predict behavior during thermal startup for both NaCl solution and pretreated urine feeds. The model is used to predict how changing operating parameters and design features of the CDS affects its performance, and conclusions from these predictions are discussed. The second part of this paper describes the integration of the modified CDS model and the existing WPA component models into a single WRS model. The integrated model is used to demonstrate the effects that changes to one component can have on the dynamic behavior of the system as a whole.

  11. Recovery of gastrointestinal swine parasites in anaerobic biodigester systems.

    Science.gov (United States)

    Cañon-Franco, William Alberto; Henao-Agudelo, Ricardo Andrés; Pérez-Bedoya, José Leandro

    2012-01-01

    Solid and liquid wastes from livestock operations represent important challenges for animal production regarding their impact in the environment and public health. Parasitological tests performed on 80 samples of affluent and effluent waters from three anaerobic biodigestors with flexible structure from swine farms of Caldas - Colombia, showed the presence of Isospora suis (45%), Eimeria suis (42.5%), E. espinosa (35%), Strongyloides ransomi (28.8%), E. perminuta (12.5%), E. cerdonis (3.8%), and E. porci (2.5%). The additional finding of eggs of Taenia spp. in 10% of the samples was probably caused by a connection between the human sewage system and the biodigester. Although we observed a mean decrease of 65.6% of parasites, these levels were insufficient to meet the minimum requirement set by Engelberg's guidelines regarding water quality. This study demonstrates the serious environmental impact that an inadequately treated animal wastewater represents, and has important implications for water resources and human health.

  12. Recovery of Organic and Amino Acids from Sludge and Fish Waste in Sub Critical Water Conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2011-12-01

    Full Text Available The possibility of organic and amino acid production from the treatment of sludge and fish waste using water at sub critical conditions was investigated. The results indicated that at sub-critical conditions, where the ion product of water went through a maximum, the formation of organic acids was favorable. The presence of oxidant favored formation of acetic and formic acid. Other organic acids of significant amount were propionic, succinic and lactic acids. Depending on the type of wastes, formation of other organic acids was also possible. Knowing the organic acids obtained by hydrolysis and oxidation in sub-critical water of various wastes are useful in designing of applicable waste treatment process, complete degradation of organic wastes into volatile carbon and water, and also on the viewpoint of resource recovery. The production of lactic acid was discussed as well. The results indicated that temperature of 573 K, with the absence of oxidant, yield of lactic acid from fish waste was higher than sewage sludge. The maximum yield of total amino acids (137 mg/g-dry fish from waste fish entrails was obtained at subcritical condition (T = 523 K, P = 4 MPa at reaction time of 60 min by using the batch reactor. The amino acids obtained in this study were mainly alanine and glycine. Keywords:  organic acids, amino acids, sub-critical water, hydrothermal, resources recovery

  13. High temperature heat recovery systems; Les recuperateurs de chaleur a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Martin, L.

    2003-07-15

    A state-of-the-art of high temperature heat recovery systems has been made to highlight the advantages of recovery in different energy cycles, and to compare the different geometries, materials and fabrication processes used by the different manufacturers. This leads to define the criteria that a heat recovery system must satisfy in gas turbine cogeneration applications. The pre-dimensioning of a recovery system has been performed in order to compare different geometries and to evaluate them with respect to the criteria defined in the bibliographic study. Finally, the new configuration of the 'Claire' loop has permitted to experimentally characterize a recovery system with an innovative technology based on an helical geometry. These tests have permitted to obtain the global data of the recovery system (efficiency, pressure drop, global exchange coefficient, friction coefficient, velocity and temperature profiles) and to position it with respect to the criteria defined in the bibliographic study. (J.S.)

  14. Lithium test module on ITER: engineering design of the tritium recovery system

    International Nuclear Information System (INIS)

    Finn, P.A.

    1988-01-01

    The design presented is an overview of the tritium recovery system for a lithium module on an ITER type reactor. The design of a tritium recovery system for larger blanket units, sectors, etc. could use the information developed in this report. A goal of this design was to ensure that a reliable, integrated performance of the tritium recovery system could be demonstrated. An equally important goal was to measure and account for the tritium in the liquid lithium blanket module and its recovery system in order to validate the operation of the blanket module

  15. Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer

    Science.gov (United States)

    Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather

    2010-01-01

    About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction

  16. Implications of vegetation hydraulic capacitance as an indicator of water stress and drought recovery

    Science.gov (United States)

    Matheny, A. M.; Bohrer, G.

    2017-12-01

    Above-ground water storage in vegetation plays an integral role in the avoidance of hydraulic impairment to transpiration. New high temporal resolution measurements of dynamic changes in tree hydraulic capacitance are facilitating insights into vegetation water use strategies. Diurnal withdrawal from water storage in leaves, branches, stems, and roots significantly impacts sap flow, stomatal conductance, and transpiration. The ability to store and use water varies based on soil- and root-water availability, tree size, wood vessel anatomy and density, and stomatal response strategy (i.e. isohydricity). We present results from a three-year long study of stem capacitance dynamics in five species in a mixed deciduous forest in Michigan. The site receives 800mm of rainfall annually, but water potential in the well-drained sandy soil nears the permanent wilting point several times annually. We demonstrate radical differences in stored water use between drought tolerant and intolerant species. Red maple, a drought intolerant, isohydric species, showed a strong dependence on stem capacitance for transpiration during both wet and dry periods. Red oak, a more drought hearty, deep rooted, anisohydric species, was much less reliant on withdrawal from water storage during all conditions. During well-watered conditions, withdrawal from storage by red maple was 10 kg day-1, yet storage withdrawal from similarly sized red oaks was 1 kg day-1. Red oaks only drew strongly upon stored water during the driest extremes. Metrics of hydration status derived from capacitance provide a means to explore drought response and recovery. Declines in consecutive days' maximum capacitance indicate an inability to restore lost water and can be used to mark the onset of water stress. Drought recovery can be quantified as the time required for stem water content to return to pre-drought volumes. Capacitance withdrawal and depletion exhibit a clear threshold response to declining soil water

  17. Water augmented indirectly-fired gas turbine systems and method

    Science.gov (United States)

    Bechtel, Thomas F.; Parsons, Jr., Edward J.

    1992-01-01

    An indirectly-fired gas turbine system utilizing water augmentation for increasing the net efficiency and power output of the system is described. Water injected into the compressor discharge stream evaporatively cools the air to provide a higher driving temperature difference across a high temperature air heater which is used to indirectly heat the water-containing air to a turbine inlet temperature of greater than about 1,000.degree. C. By providing a lower air heater hot side outlet temperature, heat rejection in the air heater is reduced to increase the heat recovery in the air heater and thereby increase the overall cycle efficiency.

  18. Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles.

    Science.gov (United States)

    Correia, Barbara; Pintó-Marijuan, Marta; Neves, Lucinda; Brossa, Ricard; Dias, Maria Celeste; Costa, Armando; Castro, Bruno B; Araújo, Clara; Santos, Conceição; Chaves, Maria Manuela; Pinto, Glória

    2014-04-01

    Eucalyptus plantations are among the most productive forest stands in Portugal and Spain, being mostly used for pulp production and, more recently, as an energy crop. However, the region's Mediterranean climate, with characteristic severe summer drought, negatively affects eucalypt growth and increases mortality. Although the physiological response to water shortage is well characterized for this species, evidence about the plants' recovery ability remains scarce. In order to assess the physiological and biochemical response of Eucalyptus globulus during the recovery phase, two genotypes (AL-18 and AL-10) were submitted to a 3-week water stress period at two different intensities (18 and 25% of field capacity), followed by 1 week of rewatering. Recovery was assessed 1 day and 1 week after rehydration. Drought reduced height, biomass, water potential, NPQ and gas exchange in both genotypes. Contrarily, the levels of pigments, chlorophyll fluorescence parameters (F(v) /F(m) and (φPSII)), MDA and ABA increased. During recovery, the physiological and biochemical profile of stressed plants showed a similar trend: they experienced reversion of altered traits (MDA, ABA, E, g(s), pigments), while other parameters did not recover ((φPSII), NPQ). Furthermore, an overcompensation of CO(2) assimilation was achieved 1 week after rehydration, which was accompanied by greater growth and re-establishment of oxidative balance. Both genotypes were tolerant to the tested conditions, although clonal differences were found. AL-10 was more productive and showed a more rapid and dynamic response to rehydration (namely in carotenoid content, (φPSII) and NPQ) compared to clone AL-18. © 2013 Scandinavian Plant Physiology Society.

  19. Diagnosis of vegetation recovery within herbaceous sub-systems in the West African Sahel Region

    Science.gov (United States)

    Anchang, J.; Hanan, N. P.; Prihodko, L.; Sathyachandran, S. K.; Ji, W.; Ross, C. W.

    2017-12-01

    The West African Sahel (WAS) region is an extensive water limited environment that features a delicate balance of herbaceous and woody vegetation sub systems. These play an important role in the cycling of carbon while also supporting the dominant agro-pastoral human activities in the region. Quantifying the temporal trends in vegetation with regard to these two systems is therefore very important in assessing resource sustainability and food security. In water limited areas, rainfall is a primary driver of vegetation productivity and past watershed scale studies in the WAS region have shown that increase in the slope of the productivity-to-rainfall relationship is indicative of increasing cover and density of herbaceous plants. Given the importance of grazing resources to the region, we perform a wall-to-wall pixel based analysis of changing short-term vegetation sensitivity to changing annual rainfall (hereafter referred to as dS) to examine temporal trends in herbaceous vegetation health. Results indicate that 43% of the Sahelian region has experienced changes (P Western and Central Mali and South Western Niger. Positive dS is indicative of herbaceous vegetation recovery, in response to changing management and rainfall conditions that promote long-term herbaceous community recovery following degradation during the 1970-1980s droughts.

  20. Systems analysis for the development of small resource recovery systems: system performance data. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crnkovich, P G; Helmstetter, A J

    1980-10-01

    The technologies that should be developed to make small-scale solid waste processing facilities attractive and viable for small municipalities with solid waste between 50 and 250 tons per day are identified. The resource recovery systems investigated were divided into three categories: thermal processng, mechanical separation, and biological processing. Thermal processing systems investigated are: excess-air incineration; starved-air incineration/gasification; and pyrolysis (indirect heating). Mechanical processing systems investigated are: coarse refuse derived fuel; materials separation; dust refuse derived fuel; densified refuse derived fuel; and fine refuse derived fuel. Mechanical processing components investigated include: receiving module; primary size reduction module; combustible separation module; refuse derived fuel preparation module; fuel densification; fuel storage module; ferrous separation; and building and facilities. Pretreatment processes and principle methods of bioconversion of MSW dealing with biological processing are investigated. (MCW)

  1. LHCb: Phronesis, a diagnosis and recovery tool for system administrators

    CERN Multimedia

    Haen, C; Bonaccorsi, E; Neufeld, N

    2013-01-01

    The backbone of the LHCb experiment is the Online system, which is a very large and heterogeneous computing center. Making sure of the proper behavior of the many different tasks running on the more than 2000 servers represents a huge workload for the small expert-operator team and is a 24/7 task. At the occasion of CHEP 2012, we presented a prototype of a framework that we designed in order to support the experts. The main objective is to provide them with always improving diagnosis and recovery solutions in case of misbehavior of a service, without having to modify the original applications. Our framework is based on adapted principles of the Autonomic Computing model, on reinforcement learning algorithms, as well as innovative concepts such as Shared Experience. While the presentation made at CHEP 2012 showed the validity of our prototype on simulations, we here present a version with improved algorithms, manipulation tools, and report on experience with running it in the LHCb Online system.

  2. A customised cold-water immersion protocol favours one-size-fits-all protocols in improving acute performance recovery

    NARCIS (Netherlands)

    Zandvoort, Coen S.; de Zwart, Jelmer R.; van Keeken, Brenda L.; Viroux, Patrick J.F.; Tiemessen, Ivo J.H.

    The purpose of the present study was to investigate whether a customised cold-water immersion (CWIc) protocol was more effective in enhancing acute performance recovery than a one-size-fits-all CWI (CWIs) or active recovery (AR) protocol. On three separate testing days, 10 healthy, physically

  3. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  4. System analysis and optimisation of a Kalina split-cycle for waste heat recovery on large marine diesel engines

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Nguyen, Tuong-Van; Knudsen, Thomas

    2014-01-01

    Waste heat recovery systems can produce power from heat without using fuel or emitting CO2, therefore their implementation is becoming increasingly relevant. The Kalina cycle is proposed as an efficient process for this purpose. The main reason for its high efficiency is the non-isothermal phase...... change characteristics of the ammonia-water working fluid. The present study investigates a unique type of Kalina process called the Split-cycle, applied to the exhaust heat recovery from large marine engines. In the Split-cycle, the working fluid concentration can be changed during the evaporation...

  5. Water supply development and tariffs in Tanzania: From free water policy towards cost recovery

    Science.gov (United States)

    Mashauri, Damas A.; Katko, Tapio S.

    1993-01-01

    The article describes the historical development of water tariff policy in Tanzania from the colonial times to present. After gaining independence, the country introduced “free” water policy in its rural areas. Criticism against this policy was expressed already in the 1970s, but it was not until the late 1980s that change became unavoidable. All the while urban water tariffs continued to decline in real terms. In rural and periurban areas of Tanzania consumers often have to pay substantial amounts of money for water to resellers and vendors since the public utilities are unable to provide operative service. Besides, only a part of the water bills are actually collected. Now that the free water supply policy has been officially abandoned, the development of water tariffs and the institutions in general are a great challenge for the country.

  6. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Directory of Open Access Journals (Sweden)

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  7. Drinking-water monitoring systems

    International Nuclear Information System (INIS)

    1994-01-01

    A new measuring system was developed by the Austrian Research Centre Seibersdorf for monitoring the quality of drinking-water. It is based on the experience made with the installation of UWEDAT (registered trademark) environmental monitoring networks in several Austrian provinces and regions. The standard version of the drinking-water monitoring system comprises sensors for measuring chemical parameters in water, radioactivity in water and air, and meteorological values of the environment. Further measuring gauges, e.g. for air pollutants, can be connected at any time, according to customers' requirements. For integration into regional and supraregional networks, station computers take over the following tasks: Collection of data and status signals transmitted by the subsystem, object protection, intermediate storage and communication of data to the host or several subcentres via Datex-P postal service, permanent lines or radiotransmission

  8. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  9. Physiological behaviors and recovery responses of four galician grapevine (Vitis vinifera L. cultivars under water stress

    Directory of Open Access Journals (Sweden)

    Islam M. T.

    2012-11-01

    Full Text Available Gas exchange parameters and chlorophyll fluorescence of four pot grown Galician grapevines (Vitis vinifera L. cv. Albariño, Brancellao, Godello and Treixadura were examined under different levels of water stress in greenhouse. After extreme stress, gas exchange recovery responses were evaluated. Average ΨPD for control and stressed plants were -0.4MPa and -1.45MPa respectively. All varieties showed gradual declining of all gas exchange parameters (gs, E and A with increasing of stress periods. Under stressed conditions, Albariño and Godello showed higher CO2 assimilation rate. At the end of stress period leaf defoliation was found in Albariño and Brancellao. Gas exchange recovery was higher for both Godello and Treixadura. A better response of auxiliary bud recovery was present in Albariño than in Brancellao. Close correlations between water stress and gas exchange parameters were found and it varies on genotype. Albariño, Godello and Treixadura followed same diurnal patterns of gas exchange rate for control and stressed plant respectively. Diurnal pattern of CO2 assimilation rate of all tested varieties followed gs and E. Only Brancellao showed treatment effect on mid-day Fv/Fm. Among four varieties photoinhibition was only found in Brancellao. At stressed condition physiological responses of grapevines were genotype depended.

  10. Design criteria document, Fire Protection Task, K Basin Essential Systems Recovery, Project W-405

    International Nuclear Information System (INIS)

    Johnson, B.H.

    1994-01-01

    The K Basin were constructed in the early 1950's with a 20 year design life. The K Basins are currently in their third design life and are serving as a near term storage facility for irradiated N Reactor fuel until an interim fuel storage solution can be implemented. In April 1994, Project W-405, K Basin Essential Systems Recovery, was established to address (among other things) the immediate fire protection needs of the 100K Area. A Fire Barrier Evaluation was performed for the wall between the active and inactive areas of the 105KE and 105KW buildings. This evaluation concludes that the wall is capable of being upgraded to provide an equivalent level of fire resistance as a qualified barrier having a fire resistance rating of 2 hours. The Fire Protection Task is one of four separate Tasks included within the scope of Project W405, K Basin Essential systems Recovery. The other three Tasks are the Water Distribution System Task, the Electrical System Task, and the Maintenance Shop/Support Facility Task. The purpose of Project W-405's Fire Protection Task is to correct Life Safety Code (NFPA 101) non-compliances and to provide fire protection features in Buildings 105KE, 105KW and 190KE that are essential for assuring the safe operation and storage of spent nuclear fuel at the 100K Area Facilities' Irradiated Fuel Storage Basins (K Basins)

  11. Recovery And Valorization Of Snakehead Fish Channa Striata Surimi Wash Water As Stock Albumin Tablet

    Directory of Open Access Journals (Sweden)

    Ikbal Syukroni

    2017-11-01

    Full Text Available Surimi washing process is aimed to concentrate the myofibril protein by removing catepsin enzyme fat pigment blood and sarcoplasmic protein which is soluble in wash water. The soluble subtances cause trouble environment if it was untreated. In addition recovery protein will give benefit both in reducing trouble environment and utilizing soluble protein as sources of albumin protein. The objectives of research were to recover albumin from snakehead fish surimi wash water and to valorize as stock albumin tablet. Recovery of albumin use 0.05 m ultrafiltration membrane and the valorization of albumin tablets was by direct compression. The protein band with molecular weight of 67.741 kDa on the retentate was detected as albumin. Concentration of protein recover by ultrafiltration membrane increased 89.98 and the albumin content 3.50.4 gdl. Based on the result of chemical composition and microbiology analysis albumin of snakehead surimi wash water appropriate with Indonesia National Standard SNI quality requirement about snakehead fish albumin extract. The best formulation in the preparation of surimi wash water albumin tablet was by using corn starch excipients with uniformity weight value 410.39 0.09 g hardness value 7.65 0.8 Kp uniformity size of tablet with diameter 1 cm and thickness 0.59 cm friability value 2.3 and disintregation time of the tablet is 2 minutes 16 second.

  12. Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.

    Science.gov (United States)

    Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves

    2016-01-01

    In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  14. Influence of prior intense exercise and cold water immersion in recovery for performance and physiological response during subsequent exercise

    DEFF Research Database (Denmark)

    Christensen, Peter Møller; Bangsbo, Jens

    2016-01-01

    ) and the influence from prior intense exercise on subsequent performance and physiological response to moderate and maximal exercise with and without the use of cold water immersion (CWI) in recovery (part B). In part A, performance times during eight World championships for male track cyclists were extracted from...... min preceded by an identical warm-up period in both a control setting (CON) and using cold water immersion in recovery (CWI; 15 min at 15°C). Performance was lowered (P

  15. Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymer.

    Science.gov (United States)

    Abo Markeb, Ahmad; Alonso, Amanda; Dorado, Antonio David; Sánchez, Antoni; Font, Xavier

    2016-08-01

    A novel nanocomposite (NC) based on magnetite nanoparticles (Fe3O4-NPs) immobilized on the surface of a cationic exchange polymer, C100, using a modification of the co-precipitation method was developed to obtain magnetic NCs for phosphate removal and recovery from water. High-resolution transmission electron microscopy-energy-dispersive spectroscopy, scanning electron microscopy , X-ray diffraction, and inductively coupled plasma optical emission spectrometry were used to characterize the NCs. Continuous adsorption process by the so-called breakthrough curves was used to determine the adsorption capacity of the Fe3O4-based NC. The adsorption capacity conditions were studied under different conditions (pH, phosphate concentration, and concentration of nanoparticles). The optimum concentration of iron in the NC for phosphate removal was 23.59 mgFe/gNC. The sorption isotherms of this material were performed at pH 5 and 7. Taking into account the real application of this novel material in real water, the experiments were performed at pH 7, achieving an adsorption capacity higher than 4.9 mgPO4-P/gNC. Moreover, Freundlich, Langmuir, and a combination of them fit the experimental data and were used for interpreting the influence of pH on the sorption and the adsorption mechanism for this novel material. Furthermore, regeneration and reusability of the NC were tested, obtaining 97.5% recovery of phosphate for the first cycle, and at least seven cycles of adsorption-desorption were carried out with more than 40% of recovery. Thus, this work described a novel magnetic nanoadsorbent with properties for phosphate recovery in wastewater.

  16. Phronesis, a diagnosis and recovery tool for system administrators

    CERN Document Server

    Haen, Christophe; Neufeld, Niko

    The administration of a large computer infrastructure is a great challenge in many aspects and requires experts in various domains to be successful. One criterion to which the users of a data center are directly exposed is the availability of the infrastructure. A high availability comes at the cost of constant and performant monitoring solutions as well as experts ready to diagnose and solve the problems. It is unfortunately not always possible to have an expert team constantly on site. This work presents a tool which is meant to support system administrators in their tasks by diagnosing problems, offering recovery solutions, and acting as a history and knowledge database. We will first detail what large data centers are composed of and what are the various competences that are required in order to successfully administrate them. This will lead us to consider the problems that are traditionally encountered by the administrators. Those problems are at the source of this project, and we will define our goals f...

  17. An integrated decision support system for wastewater nutrient recovery and recycling to agriculture

    Science.gov (United States)

    Roy, E. D.; Bomeisl, L.; Cornbrooks, P.; Mo, W.

    2017-12-01

    Nutrient recovery and recycling has become a key research topic within the wastewater engineering and nutrient management communities. Several technologies now exist that can effectively capture nutrients from wastewater, and innovation in this area continues to be an important research pursuit. However, practical nutrient recycling solutions require more than capable nutrient capture technologies. We also need to understand the role that wastewater nutrient recovery and recycling can play within broader nutrient management schemes at the landscape level, including important interactions at the nexus of food, energy, and water. We are developing an integrated decision support system that combines wastewater treatment data, agricultural data, spatial nutrient balance modeling, life cycle assessment, stakeholder knowledge, and multi-criteria decision making. Our goals are to: (1) help guide design decisions related to the implementation of sustainable nutrient recovery technology, (2) support innovations in watershed nutrient management that operate at the interface of the built environment and agriculture, and (3) aid efforts to protect aquatic ecosystems while supporting human welfare in a circular nutrient economy. These goals will be realized partly through the assessment of plausible alternative scenarios for the future. In this presentation, we will describe the tool and focus on nutrient balance results for the New England region. These results illustrate that both centralized and decentralized wastewater nutrient recovery schemes have potential to transform nutrient flows in many New England watersheds, diverting wastewater N and P away from aquatic ecosystems and toward local or regional agricultural soils where they can offset a substantial percentage of imported fertilizer. We will also highlight feasibility criteria and next steps to integrate stakeholder knowledge, economics, and life cycle assessment into the tool.

  18. Analysis of economic and environmental benefits of a new heat pump air conditioning system with a heat recovery device

    Science.gov (United States)

    Li, lingxue

    2017-08-01

    The paper designs a new wind-water cooling and heating water conditioner system, connects cooling tower with heat recovery device, which uses cooling water to completely remove the heat that does not need heat recollection, in order to ensure that the system can work efficiently with higher performance coefficient. After the test actual engineering operation, the system’s maximum cooling coefficient of performance can reach 3.5. Its maximum comprehensive coefficient of performance can reach 6.5. After the analysis of its economic and environmental, we conclude that the new system can save 89822 kw per year. It reflects energy-saving and environmental benefits of the cold and hot water air conditioning system.

  19. Transport of 152Eu colloids in a system of fine sand and water containing humic substances

    International Nuclear Information System (INIS)

    Klotz, D.

    1995-01-01

    The migration of 152 Eu in a system of fine sand and water containing humic substances was investigated in a flow column system under realistic conditions. In this system, the trivalent Eu forms colloids with the water. These Eu humates are transported without retardation at recovery rates significantly below 100 per cent. Recovery is more or less a measure of the physical process of filtration of Eu bonded to particulates. In the range of natural filtering rates, the recovery rates decrease with decreasing filtering rate. (orig.) [de

  20. Advanced electrolytic cascade process for tritium recovery from irradiated heavy water moderator (Preprint No. PD-15)

    International Nuclear Information System (INIS)

    Ragunathan, P.; Mitra, S.K.; Jain, D.K.; Nayar, M.G.; Ramani, M.P.S.

    1989-04-01

    The paper briefly describes a design study of an electrolytic cascade process plant for enrichment and recovery of tritium from irradiated heavy water moderators from Rajasthan Atomic Power Station Reactors. In direct multistage electrolysis process, tritiated heavy water from the reactor units is fed to the electrolytic cell modules arranged in the form of a cascade where it is enriched and decomposed into O 2 gas stream and D 2 /DT gas stream. The direct electrolysis of tritiated heavy water allows tritium to be concentrated in the aqueous phase. Several stages are used to achieve the necessary enrichment. The cascade plant incorporates the advanced electrolyser technology developed in Bhabha Atomic Research Centre (Bombay) using porous nickel electrodes, capable o f high current density operation at reduced energy consumption for electrolysis. (author). 3 tabs

  1. The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners

    International Nuclear Information System (INIS)

    Yi Xiaowen; Lee, W.L.

    2009-01-01

    An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger

  2. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  3. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  4. Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle

    International Nuclear Information System (INIS)

    Tosti, S.; Violante, V.; Basile, A.; Chiappetta, G.; Castelli, S.; De Francesco, M.; Scaglione, S.; Sarto, F.

    2000-01-01

    Palladium and palladium-silver permeators have been obtained by coating porous ceramic tubes with a thin metal layer. Three coating techniques have been studied and characterized: chemical electroless deposition (PdAg film thickness of 10 μm), ion sputtering (about 1 μm) and rolling of thin metal sheets (50 μm). The Pd-ceramic membranes have been used for manufacturing catalytic membrane reactors (CMR) for hydrogen and its isotopes recovering and purifying. These composite membranes and the CMR have been studied and developed for a closed-loop process with reference to the design requirements of the international thermonuclear experimental reactor (ITER) blanket tritium recovery system in the enhanced performance phase of operation. The membranes and CMR have been tested in a pilot plant equipped with temperature, pressure and flow-rate on-line measuring and controlling devices. The conversion value for the water gas shift reaction in the CMR has been measured close to 100% (always above the equilibrium one, 80% at 350 deg. C): the effect of the membrane is very clear since the reaction is moved towards the products because of the continuous hydrogen separation. The rolled thin film membranes have separated the hydrogen from other gases with a complete selectivity and exhibited a slightly larger mass transfer resistance with respect to the electroless membranes. Preliminary tests on the sputtered membranes have also been carried out with a promising performance. Considerations on the use of different palladium alloy in order to improve the performances of the membranes in terms of permeation flux and mechanical strength, such as palladium/yttrium, are also reported

  5. A Novel Low-Overhead Recovery Approach for Distributed Systems

    Directory of Open Access Journals (Sweden)

    B. Gupta

    2009-01-01

    Full Text Available We have addressed the complex problem of recovery for concurrent failures in distributed computing environment. We have proposed a new approach in which we have effectively dealt with both orphan and lost messages. The proposed checkpointing and recovery approaches enable each process to restart from its recent checkpoint and hence guarantee the least amount of recomputation after recovery. It also means that a process needs to save only its recent local checkpoint. In this regard, we have introduced two new ideas. First, the proposed value of the common checkpointing interval is such that it enables an initiator process to log the minimum number of messages sent by each application process. Second, the determination of the lost messages is always done a priori by an initiator process; besides it is done while the normal distributed application is running. This is quite meaningful because it does not delay the recovery approach in any way.

  6. Water recovery and solid waste processing for aerospace and domestic applications. Volume 2: Appendices

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    Water and sewage treatment systems are presented with concentration on the filtration of water. Equipment is described for organic removal, solids removal, nutrient removal, inorganic removal, and disinfection of the water. Such things as aseline hardware, additional piping connections, waste disposal, and costs involved are also reported.

  7. Implementing forward recovery using checkpointing in distributed systems

    Science.gov (United States)

    Long, Junsheng; Fuchs, W. K.; Abraham, Jacob A.

    1991-01-01

    The paper describes the implementation of a forward recovery scheme using checkpoints and replicated tasks. The implementation is based on the concept of lookahead execution and rollback validation. In the experiment, two tasks are selected for the normal execution and one for rollback validation. It is shown that the recovery strategy has nearly error-free execution time and an average redundancy lower than TMR.

  8. Performance Analysis of Thermoelectric Based Automotive Waste Heat Recovery System with Nanofluid Coolant

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2017-09-01

    Full Text Available Output performance of a thermoelectric-based automotive waste heat recovery system with a nanofluid coolant is analyzed in this study. Comparison between Cu-Ethylene glycol (Cu-EG nanofluid coolant and ethylene glycol with water (EG-W coolant under equal mass flow rate indicates that Cu-EG nanofluid as a coolant can effectively improve power output and thermoelectric conversion efficiency for the system. Power output enhancement for a 3% concentration of nanofluid is 2.5–8 W (12.65–13.95% compared to EG-Water when inlet temperature of exhaust varies within 500–710 K. The increase of nanofluid concentration within a realizable range (6% has positive effect on output performance of the system. Study on the relationship between total area of thermoelectric modules (TEMs and output performance of the system indicates that optimal total area of TEMs exists for maximizing output performance of the system. Cu-EG nanofluid as coolant can decrease optimal total area of TEMs compared with EG-W, which will bring significant advantages for the optimization and arrangement of TEMs whether the system space is sufficient or not. Moreover, power output enhancement under Cu-EG nanofluid coolant is larger than that of EG-W coolant due to the increase of hot side heat transfer coefficient of TEMs.

  9. Model predictive control of a waste heat recovery system for automotive diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; de Jager, A.G.; Steinbuch, M.

    2014-01-01

    In this paper, a switching Model Predictive Control strategy is designed for an automotive Waste Heat Recovery system with two parallel evaporators. The objective is to maximize Waste Heat Recovery system output power, while satisfying safe operation under highly dynamic disturbances from the

  10. Comammox in drinking water systems.

    Science.gov (United States)

    Wang, Yulin; Ma, Liping; Mao, Yanping; Jiang, Xiaotao; Xia, Yu; Yu, Ke; Li, Bing; Zhang, Tong

    2017-06-01

    The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater

  12. Rapid forest recovery of carbon and water fluxes after a tropical firestorm

    Science.gov (United States)

    Brando, P. M.; Silverio, D. V.; Migliavacca, M.; Santos, C.; Kolle, O.; Balch, J.; Maracahipes, L.; Bustamante, M.; Coe, M. T.; Trumbore, S.

    2017-12-01

    Forest disturbances interact synergistically and drive potentially large and persistent degradation of ecosystem services in the tropics. Here we analyze multi-year measurements of carbon (C) and water (evapotranspiration; ET) fluxes in forests recovering from 7 years of prescribed fires. Located in southeast Amazonia, the experimental forest consisted of three 50-ha plots burned annually, triennially, or not at all between 2004-2010. During the subsequent seven-year recovery period from 2011 to present, tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70-94% along forest edges. While vegetation regrowth in the forest understory triggered partial canopy closure, light-demanding grasses covered roughly the same area in 2015 that they did in 2012. However, the spatial distribution of grasses drastically changed, while C4 grass species replaced C3 ones. Surprisingly, the observed alterations in forest structure and dynamics rendered minor or no changes in total C fluxes and ET, probably because plants in the burned forest increased light- and reduced ecosystem water-use efficiency. Hence, delayed post-fire mortality of large trees can reduce forest C stocks and create opportunities for the establishment of invasive grasses, Yet, post-fire vegetation growth can rapidly restore C uptake and ET by optimizing resources use. These results show that tropical forests can rapidly recover the capacity to cycle water and carbon following disturbances, but also that a full recovery of biomass and vegetation dominance may take many years or decades.

  13. Control optimizations for heat recovery from CO2 refrigeration systems in supermarket

    International Nuclear Information System (INIS)

    Ge, Y.T.; Tassou, S.A.

    2014-01-01

    Highlights: • Application of supermarket energy control system model. • Heat recovery from CO 2 refrigeration system in supermarket space conditioning. • Effect of pressure controls of CO 2 refrigeration system on heat recovery potentials. • Control optimization of CO 2 refrigeration system for heat recovery in supermarket. - Abstract: A modern supermarket energy control system has a concurrent need for electricity, food refrigeration and space heating or cooling. Approximately 10% of this energy is for conventional gas-powered heating. In recent years, the use of CO 2 as a refrigerant in supermarket systems has received considerable attention due to its negligible contribution to direct greenhouse gas emissions and excellent thermophysical and heat transfer properties. CO 2 refrigeration systems also offer more compact component designs over a conventional HFC system and heat recovery potential from compressor discharge. In this paper, the heat recovery potential of an all-CO 2 cascade refrigeration system in a supermarket has been investigated using the supermarket simulation model “SuperSim” developed by the authors. It has been shown that at UK weather conditions, the heat recovery potential of CO 2 refrigeration systems can be increased by increasing the condenser/gas cooler pressure to the point where all the heat requirements are satisfied. However, the optimum level of heat recovery will vary during the year and the control system should be able to continuously optimize this level based on the relative cost of energy, i.e., gas and electricity

  14. Effect of cuticular abrasion and recovery on water loss rates in queens of the desert harvester ant Messor pergandei.

    Science.gov (United States)

    Johnson, Robert A; Kaiser, Alexander; Quinlan, Michael; Sharp, William

    2011-10-15

    Factors that affect water loss rates (WLRs) are poorly known for organisms in natural habitats. Seed-harvester ant queens provide an ideal system for examining such factors because WLRs for mated queens excavated from their incipient nests are twofold to threefold higher than those of alate queens. Indirect data suggest that this increase results from soil particles abrading the cuticle during nest excavation. This study provides direct support for the cuticle abrasion hypothesis by measuring total mass-specific WLRs, cuticular abrasion, cuticular transpiration, respiratory water loss and metabolic rate for queens of the ant Messor pergandei at three stages: unmated alate queens, newly mated dealate queens (undug foundresses) and mated queens excavated from their incipient nest (dug foundresses); in addition we examined these processes in artificially abraded alate queens. Alate queens had low WLRs and low levels of cuticle abrasion, whereas dug foundresses had high WLRs and high levels of cuticle abrasion. Total WLR and cuticular transpiration were lowest for alate queens, intermediate for undug foundresses and highest for dug foundresses. Respiratory water loss contributed ~10% of the total WLR and was lower for alate queens and undug foundresses than for dug foundresses. Metabolic rate did not vary across stages. Total WLR and cuticular transpiration of artificially abraded alate queens increased, whereas respiratory water loss and metabolic rate were unaffected. Overall, increased cuticular transpiration accounted for essentially all the increased total water loss in undug and dug foundresses and artificially abraded queens. Artificially abraded queens and dug foundresses showed partial recovery after 14 days.

  15. Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies

    Directory of Open Access Journals (Sweden)

    Weijia Wang

    2017-12-01

    Full Text Available The cooling efficiency of natural draft dry cooling system (NDDCS are vulnerable to ambient winds, so the implementation of measures against the wind effects is of great importance. This work presents the combined air leading strategies to recover the flow and heat transfer performances of NDDCS. Following the energy balance among the exhaust steam, circulating water, and cooling air, numerical models of natural draft dry cooling systems with the combined air leading strategies are developed. The cooling air streamlines, volume effectiveness, thermal efficiency and outlet water temperature for each cooling delta of the large-scale heat exchanger are obtained. The overall volume effectiveness, average outlet water temperature of NDDCS and steam turbine back pressure are calculated. The results show that with the air leading strategies inside or outside the dry-cooling tower, the thermo-flow performances of natural draft dry cooling system are improved under all wind conditions. The combined inner and outer air leading strategies are superior to other single strategy in the performance recovery, thus can be recommended for NDDCS in power generating units.

  16. Study on CO{sub 2} Recovery System Design in Supercritical CO{sub 2} Cycle for SFR Application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Seok; Jung, Hwa-Young; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    As a part of Sodium-cooled Fast Reactor (SFR) development in Korea, the supercritical CO{sub 2} (S-CO{sub 2}) Brayton cycle is considered as an alternative power conversion system to eliminate sodium-water reaction (SWR) when the current conventional steam Rankine cycle is utilized with SFR. The parasitic loss caused by the leakage flow should be minimized since this greatly influences the cycle efficiency. Thus, a simple model for estimating the critical flow in a turbo-machinery seal was developed to predict the leakage flow rate and calculate the required total mass of working fluid in a S-CO{sub 2} power system to minimize the parasitic loss. In this work, study on CO{sub 2} recovery system design was conducted by finding the suitable recovery point with the developed simple CO{sub 2} critical flow model and sensitivity analysis was performed on the power system performance with respect to multiple CO{sub 2} recovery process options. The study of a CO{sub 2} recovery system design was conducted to minimize the thermal efficiency losses caused by CO{sub 2} inventory recovery system. For the first step, the configuration of a seal was selected. A labyrinth seal has suitable features for the S-CO{sub 2} power cycle application. Then, thermal efficiency losses with different CO{sub 2} leak rate and recovery point were evaluated. To calculate the leak rate in turbo-machinery by using the developed CO{sub 2} critical flow model, the conditions of storage tank is set to be closer to the recovery point. After modifying the critical flow model appropriately, total mass flow rate of leakage flow was calculated. Finally, the CO{sub 2} recovery system design work was performed to minimize the loss of thermal efficiency. The suggested system is not only simple and intuitive but also has relatively very low additional work loss from the compressor than other considered systems. When each leak rate is set to the conventional leakage rate of 1 kg/s per seal, the minimum and

  17. Separation and recovery of chromium and vanadium metal ions from waste waters

    International Nuclear Information System (INIS)

    Rothmann, H.; Bauer, G.; Stuhr, A.; Retelsdorf, H-J.

    1987-01-01

    Possibilities of Cr- and V- recovery from waste waters, precipitation of chromate and vanadate ions as insoluble compounds, absorption of Cr and V on solid ion exchange resins, absorption of Cr and V on fluid ion exchangers. Extraction with fluid exchangers: simultaneous extraction of Cr and V with Ion Exchanger Hoe F 1857 to determine the distribution isotherms, separate extraction of Cr in a continuously operating mixer-settler plant, separate extraction of vanadate in a constantly operating mixer-settler plant, test with an extraction column, losses in the organic phase during chromium and vanadium extraction, discussion of the test results and economic considerations

  18. Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts.

    Science.gov (United States)

    Hernández Leal, L; Temmink, H; Zeeman, G; Buisman, C J N

    2010-12-01

    Bioflocculation of grey water was tested with a lab-scale membrane bioreactor in order to concentrate the COD. Three concentration factors were tested based on the ratio of sludge retention time (SRT) and hydraulic retention time (HRT): 3, 8 and 12. COD concentration factor was up to 7.1, achieving a final concentration of 7.2 g COD L(-1). Large fractions of suspended COD were recovered in the concentrate (57%, 81% and 82% at SRT/HRT ratios of 3, 8 and 12, respectively) indicating a strong bioflocculation of grey water. A maximum of 11% of COD mineralization of grey water was measured at the longest SRT tested (1 d). The integration of bioflocculation of grey water in decentralized sanitation concepts may increase the overall production of methane by 73%, based on the biogas produced by black water only. Therefore, bioflocculation is a promising grey water pre-treatment step for energy recovery within decentralized sanitation concepts. 2010 Elsevier Ltd. All rights reserved.

  19. Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice

    Directory of Open Access Journals (Sweden)

    Hen-Yu Liu

    2013-01-01

    Full Text Available The aim of this study is to examine the therapeutic potential of deep sea water (DSW on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8 and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP. Deep sea water at hardness (HD 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3 by MTT assay. For in vivo animal study, bone mineral density (BMD was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM.

  20. Life cycle cost of a hybrid forward osmosis – low pressure reverse osmosis system for seawater desalination and wastewater recovery

    KAUST Repository

    Valladares Linares, Rodrigo

    2015-10-19

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis – low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor – reverse osmosis – advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m3 d−1 of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m3 produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  1. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky

    1999-03-01

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  2. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky [NRI Czech (Czech Republic)

    1999-03-01

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  3. Desiccant Dewpoint Cooling System Independent of External Water Sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    the air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...... desiccant dew-point cooling system, for demonstrating its function and applicability. Simulations are carried out for varying outdoor conditions under constant supply conditions. The results show that the system is independent of external water supply for the majority of simulated conditions. In comparison...... to the desiccant dew-point system without water recovery, the required regeneration temperature increases and the system thermal efficiency decreases....

  4. Bottoming organic Rankine cycle configurations to increase Internal Combustion Engines power output from cooling water waste heat recovery

    International Nuclear Information System (INIS)

    Peris, Bernardo; Navarro-Esbrí, Joaquín; Molés, Francisco

    2013-01-01

    This work is focused on waste heat recovery of jacket cooling water from Internal Combustion Engines (ICEs). Cooling water heat does not always find use due to its low temperature, typically around 90 °C, and usually is rejected to the ambient despite its high thermal power. An efficient way to take benefit from the ICE cooling water waste heat can be to increase the power output through suitable bottoming Organic Rankine Cycles (ORCs). Thereby, this work simulates six configurations using ten non flammable working fluids and evaluates their performances in efficiency, safety, cost and environmental terms. Results show that the Double Regenerative ORC using SES36 gets the maximum net efficiency of 7.15%, incrementing the ICE electrical efficiency up to 5.3%, although requires duplicating the number of main components and high turbine size. A more rigorous analysis, based on the system feasibility, shows that small improvements in the basic cycle provide similar gains compared to the most complex schemes proposed. So, the single Regenerative ORC using R236fa and the Reheat Regenerative ORC using R134a seem suitable cycles which provide a net efficiency of 6.55%, incrementing the ICE electrical efficiency up to 4.9%. -- Highlights: • Suitable bottoming cycles for ICE cooling water waste heat recovery are studied. • Non flammable working fluids and various ORC configurations are evaluated. • Double regenerative cycle using SES36 is the most efficient configuration. • Regenerative and reheat regenerative ORCs seem feasible cycles. • Electrical efficiency of the ICE can be improved up to 5.3%

  5. Water tables constrain height recovery of willow on Yellowstone's northern range.

    Science.gov (United States)

    Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson

    2008-01-01

    Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery

  6. Integrating the Carbon and Water Footprints’ Costs in the Water Framework Directive 2000/60/EC Full Water Cost Recovery Concept: Basic Principles Towards Their Reliable Calculation and Socially Just Allocation

    Directory of Open Access Journals (Sweden)

    Anastasia Papadopoulou

    2012-01-01

    Full Text Available This paper presents the basic principles for the integration of the water and carbon footprints cost into the resource and environmental costs respectively, taking the suggestions set by the Water Framework Directive (WFD 2000/60/EC one step forward. WFD states that full water cost recovery (FWCR should be based on the estimation of the three sub-costs related: direct; environmental; and resource cost. It also strongly suggests the EU Member States develop and apply effective water pricing policies to achieve FWCR. These policies must be socially just to avoid any social injustice phenomena. This is a very delicate task to handle, especially within the fragile economic conditions that the EU is facing today. Water losses play a crucial role for the FWC estimation. Water losses should not be neglected since they are one of the major “water uses” in any water supply network. A methodology is suggested to reduce water losses and the related Non Revenue Water (NRW index. An Expert Decision Support System is proposed to assess the FWC incorporating the Water and Carbon Footprint costs.

  7. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2011-01-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling

  8. Applying waste heat recovery system in a sewage sludge dryer – A technical and economic optimization

    International Nuclear Information System (INIS)

    Tańczuk, Mariusz; Kostowski, Wojciech; Karaś, Marcin

    2016-01-01

    Highlights: • A modernization of waste heat recovery system in a sludge drying plant is proposed. • Energy performance analysis rejected the downsize case of modernization. • Optimal system sizes regarding Net Present Value and Net Present Value Ratio do not coincide. • Up to 683 MW h/y of chemical energy savings for optimal heat exchanger size. • Higher profitability for the larger heat exchanger cases: paybacks below 3.65 years. - Abstract: Drying of digested sewage sludge, as an important alternative to sludge disposal at dumping sites, should comply with the requirements of high energy efficiency as well as economic feasibility. The technical and economic optimization analysis of installing a waste process heat recovery unit in a medium-temperature belt dryer operated in a municipal waste water treatment plant was carried out. Inlet capacity of the plant is 1.83 Mg of wet sludge per hour. The post-process air was indicated as a source of waste heat and the configuration of a heat recovery system was proposed. The main objective of the research was to find the optimal size of a chosen type of waste heat recovery heat exchanger for preheating ambient air to the process. The maximization of Net Present Value, and, alternatively, also Net Present Value Ratio were selected for the objective function of the optimization procedure. Simulation of yearly operation of waste heat exchanger was made for a range of different heat exchanging areas (101–270 m"2) regarding given parameters of a post-process air and different temperatures of ambient air. Energy performance of the modernization was evaluated and economic indices were calculated for each of the analyzed cases. The location of the maximum of optimization function was found and the calculations show higher profitability of the cases with larger waste heat exchanger. It can be concluded that the location of optimum of the objective function is very sensitive to the price of natural gas supplied to the

  9. Improved process for the injection of water for secondary recovery of petroleum

    Energy Technology Data Exchange (ETDEWEB)

    1967-07-24

    In this process for the secondary recovery of petroleum from the formation, an aqueous displacing medium is injected through an injection well in communication with the formation. In this aqueous medium, a polymer is dissolved and the petroleum is thus displaced toward a producing well also in communication with the formation. The polymer is a liquid organic polymer, substantially linear, water-soluble, and having a resistance characteristic of at least 1.5. The polymer is dissolved in water in sufficient quantity such that the viscosity of the displacing medium is 0.5-15% of the viscosity of the crude oil to be displaced. The displacing medium is substantially free of molecular oxygen.

  10. Flight Testing of the Forward Osmosis Bag for Water Recovery on STS-135

    Science.gov (United States)

    Roberts, Michael S.; Soler, Monica; Mortenson, Todd; McCoy, LaShelle; Woodward, Spencer; Levine, Howard G.

    2011-01-01

    The Forward Osmosis Bag (FOB) is a personal water purification device for recovery of potable liquid from almost any non-potable water source. The FOB experiment was flown as a sortie mission on STS-135/ULF7 using flight-certified materials and a design based on the X-Pack(TradeMark) from Hydration Technology Innovations (Albany, OR). The primary objective was to validate the technology for use under microgravity conditions. The FOB utilizes a difference in solute concentration across a selectively permeable membrane to draw water molecules from the non-potable water while rejecting most chemical and all microbial contaminants contained within. Six FOB devices were tested on STS-135 for their ability to produce a potable liquid permeate from a feed solution containing 500 mL potassium chloride (15 g/L) amended with 0.1% methyl blue dye (w:v) tracer against an osmotic gradient created by addition of 60 mL of concentrate containing the osmolytes fructose and glucose, and 0.01% sodium fluorescein (w:v) tracer. Three FOB devices were physically mixed by hand for 2 minutes by a crewmember after loading to augment membrane wetting for comparison with three unmixed FOB devices. Hydraulic flux rate and rejection of salt and dye in microgravity were determined from a 60-mL sample collected by the crew on orbit after 6 hours. Post-flight analysis of samples collected on orbit demonstrated that the Forward Osmosis Bag achieved expected design specifications in microgravity. The hydraulic flux rate of water across the membrane was reduced approximately 50% in microgravity relative to ground controls that generated an average of 50 mL per hour using the same water and osmolyte solutions. The membrane rejected both potassium and chloride at >92% and methyl blue dye at >99.9%. Physical mixing of the FOB during water recovery did not have any significant effect on either flux rate or rejection of solutes from the water solution. The absence of buoyancy-driven convection in

  11. Method selection for sustainability assessments: The case of recovery of resources from waste water.

    Science.gov (United States)

    Zijp, M C; Waaijers-van der Loop, S L; Heijungs, R; Broeren, M L M; Peeters, R; Van Nieuwenhuijzen, A; Shen, L; Heugens, E H W; Posthuma, L

    2017-07-15

    Sustainability assessments provide scientific support in decision procedures towards sustainable solutions. However, in order to contribute in identifying and choosing sustainable solutions, the sustainability assessment has to fit the decision context. Two complicating factors exist. First, different stakeholders tend to have different views on what a sustainability assessment should encompass. Second, a plethora of sustainability assessment methods exist, due to the multi-dimensional characteristic of the concept. Different methods provide other representations of sustainability. Based on a literature review, we present a protocol to facilitate method selection together with stakeholders. The protocol guides the exploration of i) the decision context, ii) the different views of stakeholders and iii) the selection of pertinent assessment methods. In addition, we present an online tool for method selection. This tool identifies assessment methods that meet the specifications obtained with the protocol, and currently contains characteristics of 30 sustainability assessment methods. The utility of the protocol and the tool are tested in a case study on the recovery of resources from domestic waste water. In several iterations, a combination of methods was selected, followed by execution of the selected sustainability assessment methods. The assessment results can be used in the first phase of the decision procedure that leads to a strategic choice for sustainable resource recovery from waste water in the Netherlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of capillary number on the oil recovery using oil-water emulsion injection in core flooding experiments

    Energy Technology Data Exchange (ETDEWEB)

    Guillen Nunez, Victor Raul; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msn@puc-rio.br; Basante, Vladimir Alvarado [University of Wyoming, Laramie, WY (United States). Dept. of Chemical/Petroleum Engineering], E-mail: valvard@uwyo.edu

    2010-07-01

    The Water injection flooding is a common method to improve reservoir sweep and pressure maintenance. The heavy-oil-recovery efficiency is in part limited by the high water-to-oil mobility ratio. Several enhanced oil recovery methods are being developed as more efficient alternatives to water flooding. Dispersion injection, in particular oil-water emulsion injection, has been tried with relative success as an enhanced oil recovery method, but the technique is not fully developed or understood. If emulsion injection proves to be an effective EOR method, its use would bring the added benefit of disposing produced water with small oil content that could be modified to serve as the injected oil-water emulsion. The use of such methods requires a detailed analysis of the different flow regimes of emulsions through the porous space of a reservoir rock. If the drop size of the disperse phase is of the same order of magnitude as the pore size, the drops may agglomerate and partially block water flow through pores. This flow regime may be used to control the mobility of the injected liquid, leading to higher recovery factor. We have shown in recent experiments of oil displacement in a sandstone core that, the oil recovery factor could be raised from approximately 40 %, obtained with water injection only, up to approximately 75 % by alternating water and emulsion injection. Although these results clearly show the improvement in the recovery factor, the mechanisms responsible for the phenomenon have not been clearly elucidated. In this work, two sandstone cores were used to demonstrate the effect of flow rate (capillary number) on the mobility control by emulsion injection. Figure 1 shows a schematic representation of the experiment set-up. The experiments show that raising the flow rate by a factor of 10 (0.03 ml/min to 0.3 ml/min), the oil recovered factor decreases considerably. (author)

  13. The effect of short recovery period investment on least-cost generation system expansion

    International Nuclear Information System (INIS)

    Yiqun He; David, A.K.; Fernando, P.N.

    1995-01-01

    The effect of the short recovery period of private investment on least-cost generation system expansion is analysed, and a trade-off method for generation system expansion, which gives consideration to both the least-cost strategy and the short recovery period of private investment, is presented. First, the optimal mix of generation units under a standard recovery period for all units is established, and then the surcharge, due to the difference between the short recovery period and the standard recovery period, is calculated and shared between all units. The former is an optimization to make best use of natural resources, and the latter is a trade-off method to spread the surcharge throughout the system. (Author)

  14. Integrated steam generation process and system for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Betzer-Zilevitch, M. [Ex-Tar Technologies Inc., Calgary, AB (Canada)

    2010-07-01

    A method of producing steam for the extraction of heavy bitumens was presented. The direct contact steam generation (DCSG) method is used for the direct heat transfer between combustion gas and contaminated liquid phase water to generate steam. This paper presented details of experimental and field studies conducted to demonstrate the DCSG. Results of the study demonstrated that pressure and temperature are positively correlated. As pressure increases, the flow rate of the discharged mass decreases and the steam ratio decreases. As pressure increases, the condensate and distillate flow rates increases while water vapor losses in the non-condensable gases decrease. The study indicated that for a 10 bar pressurized system producing 9.6 mt per hour of 10,000 kpa steam and 9.6 mt per hour of distillate BFW, 70 percent of the combustion energy should be recovered to generate 10,000 kpa pressure steam for EOR. Combustion energy requirements were found to decrease when pressure decreases. 11 refs., 5 tabs., 8 figs.

  15. Assessment of a constructed wetland for water recovery and beneficial use of shredded tires in a colonia

    International Nuclear Information System (INIS)

    Muirhead, D.; Rainwater, K.; Jackson, A.; Urban, L.; Morse, A.

    2002-01-01

    'Full text:' Currently, in many areas of the nation, small communities exist without access to adequate and safe water supplies. Texas, New Mexico, Arizona, and California have several of these communities, called colonias, along the border with Mexico. Many of these communities suffer from high rates of infectious disease due to contaminated sources, unacceptable available water quality, insufficient water quantity, and/or undeveloped infrastructure. Solving these types of problems will require a design born of careful integration of cultural, technical, and regulatory considerations. This project proposes to utilize constructed wetland design as a viable economic solution for a colonia situation that can serve as a test case for more widespread use of this technology. The design will merge technical, social and regulatory aspects of water recycling into one approach. Detailed requirements of the design will include scientific, engineering, and cultural aspects of the system. Based on the social, economic, technical, and environmental information gathered, select up to two on-site water recovery system technologies that are simple, inexpensive, and culturally acceptable. Details of design (plants selected, effluent discharge) are based on interviews with colonia residents to determine their needs. Final site selection is based on poor soils (inappropriate for a leach field), vicinity to schools, and interested families. A comparison of options determined a constructed wetland to be the most viable option. Chipped tires are used as the media, hence, a solid waste problem (local resource) in colonias is converted to a beneficial use. We then analyze and monitor the field performance of the constructed wetland paying special attention to the early TSS discharge of rust particles from steel belted tires. Students are involved from colonia communities in monitoring of systems and environmental data collection. The lessons learned to date are given and construction will

  16. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Joan Laur

    Full Text Available Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant. Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs. Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  17. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Science.gov (United States)

    Laur, Joan; Hacke, Uwe G

    2014-01-01

    Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  18. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-11

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground conductor, and a separator at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.

  19. Propulsion Systems in Water Tunnel

    Directory of Open Access Journals (Sweden)

    Nobuyuki Fujisawa

    1995-01-01

    agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

  20. Double-Shell Tanks System Maintenance and Recovery Needs Report

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2002-01-01

    This report represents an initial effort to identify maintenance equipment needed to support critical components used for delivery of waste feed to the Waste Isolation and Treatment Plant (WTP). Rough estimates of cost benefits for selected maintenance capabilities are provided. A follow-on to this report should include a detailed cost analysis showing cost benefits and tradeoffs in selection and development of specific maintenance capabilities. Critical component failures during delivery of waste feed from the DSTs to the WTP have the potential to idle WTP facilities if the duration of the recovery operations are long enough to allow the WTP to exhaust a planned 60-day lag storage capacity for waste feed. If a critical component within the transfer route fails, current planning does not provide for an alternative HLW feed source. Critical components with relatively high failure frequencies and recovery times are identified, along with a summary of documentation regarding historical maintenance and recovery operations and planning. Components, such as mixer pumps and transfer pumps, are estimated to have relatively long recovery times due, in part, to the current practice of sending spare pumps, when needed, off-site to a remote location, for vendor refurbishment and testing prior to installation in a tank. No capability is provided on-site for pump ''run-in''. As neither the spare pumps in storage, installed pumps, or other critical components are subjected to periodic preventive maintenance, and these critical components are planned to be operated intermittently over a long period of time, component failures are to be expected. Recommendations are made for further analysis to identify specific equipment cost benefits, development costs, and tradeoffs in selection of alternatives. This new equipment will provide capabilities for component storage and maintenance in line with vendor recommendations, reduce the duration of recovery operations, and support personnel

  1. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  2. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    Science.gov (United States)

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  3. Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions

    International Nuclear Information System (INIS)

    Zhong, Dong-Liang; Ding, Kun; Lu, Yi-Yu; Yan, Jin; Zhao, Wei-Long

    2016-01-01

    Highlights: • A water-in-oil emulsion was developed for CH_4 separation from coal mine methane gas. • Stable W/O emulsions were obtained with water cut in the range of (10–70%). • Gas hydrates nucleated faster with the reduction of water–oil volume ratio. • Gas uptake increased with the decrease of water–oil volume ratio. • CH_4 recovery was greatly enhanced by hydrate formation in W/O emulsions. - Abstract: In this work, a water-in-oil (W/O) emulsion was developed using liquid water, mineral oil, Sorbitan monooleate (Span 80), and cyclopentane. It was employed to enhance gas hydrate formation for CH_4 separation from a simulated coal mine methane (CMM) gas (30 mol% CH_4, 60 mol% N_2, and 10 mol% O_2). The stability test at atmospheric pressure and at a high pressure of 3.5 MPa showed that stable W/O emulsions were obtained when the water–oil volume ratio (WOR) was below 80%. The emulsified droplets size was measured with WOR ranging from 10% to 70%. Then kinetic experiments of CH_4 separation by hydrate formation in W/O emulsions were carried out at 273.6 K and (3.5–5.0) MPa in batch operation. The results indicated that water–oil volume ratio is a key factor that affects the kinetics of gas hydrate formation from the CMM gas mixture. Hydrate nucleation was observed to occur faster while WOR was decreased, and gas uptake increased significantly with the decrease of WOR. CH_4 concentration in the recovered gas mixture was increased to 52 mol% as compared to 30 mol% in the original gas mixture through one-stage hydrate formation in the W/O emulsions. It was found that the experimental conditions of 273.6 K, 3.5 MPa and WOR = 30% were favorable for CH_4 recovery from the CMM gas. The CH_4 recovery obtained under these conditions was 43%. It was higher than those obtained at WOR = 10% and 70%, and was greatly increased as compared with those obtained in the same reactor with the presence of TBAB (26%) and CP (33%).

  4. DEVELOPMENT OF BIOSURFACTANT-MEDIATED OIL RECOVERY IN MODEL POROUS SYSTEMS AND COMPUTER SIMULATIONS OF BIOSURFACTANT-MEDIATED OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    M.J. McInerney; S.K. Maudgalya; R. Knapp; M. Folmsbee

    2004-05-31

    Current technology recovers only one-third to one-half of the oil that is originally present in an oil reservoir. Entrapment of petroleum hydrocarbons by capillary forces is a major factor that limits oil recovery (1, 3, 4). Hydrocarbon displacement can occur if interfacial tension (IFT) between the hydrocarbon and aqueous phases is reduced by several orders of magnitude. Microbially-produced biosurfactants may be an economical method to recover residual hydrocarbons since they are effective at low concentrations. Previously, we showed that substantial mobilization of residual hydrocarbon from a model porous system occurs at biosurfactant concentrations made naturally by B. mojavensis strain JF-1 if a polymer and 2,3-butanediol were present (2). In this report, we include data on oil recovery from Berea sandstone experiments along with our previous data from sand pack columns in order to relate biosurfactant concentration to the fraction of oil recovered. We also investigate the effect that the JF-2 biosurfactant has on interfacial tension (IFT). The presence of a co-surfactant, 2,3-butanediol, was shown to improve oil recoveries possibly by changing the optimal salinity concentration of the formulation. The JF-2 biosurfactant lowered IFT by nearly 2 orders of magnitude compared to typical values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. Tertiary oil recovery experiments showed that biosurfactant solutions with concentrations ranging from 10 to 60 mg/l in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of the residual oil present in Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Thus, about 10% of the residual oil recovered in these experiments was due to the increase in viscosity of the displacing fluid. Little or no oil was recovered at

  5. Flue gas recovery system for natural gas combined heat and power plant with distributed peak-shaving heat pumps

    International Nuclear Information System (INIS)

    Zhao, Xiling; Fu, Lin; Wang, Xiaoyin; Sun, Tao; Wang, Jingyi; Zhang, Shigang

    2017-01-01

    Highlights: • A flue gas recovery system with distributed peak-shaving heat pumps is proposed. • The system can improve network transmission and distribution capacity. • The system is advantageous in energy saving, emission reduction and economic benefits. - Abstract: District heating systems use distributed heat pump peak-shaving technology to adjust heat in secondary networks of substations. This technology simultaneously adjusts the heat of the secondary network and reduces the return-water temperature of the primary network by using the heat pump principle. When optimized, low temperature return-water is able to recycle more waste heat, thereby further improving the heating efficiency of the system. This paper introduces a flue gas recovery system for a natural gas combined heat and power plant with distributed peak-shaving heat pumps. A pilot system comprising a set of two 9F gas-steam combined cycle-back pressure heating units was used to analyse the system configuration and key parameters. The proposed system improved the network transmission and distribution capacity, increased heating capacity, and reduced heating energy consumption without compromising heating safety issues. As such, the proposed system is advantageous in terms of energy saving, emission reduction, and economic benefits.

  6. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  7. A multi-stage oil-water-separating process design for the sea oil spill recovery robot

    Science.gov (United States)

    Zhang, Min-ge; Wu, Jian-guo; Lin, Xinhua; Wang, Xiao-ming

    2018-03-01

    Oil spill have the most common pollution to the marine ecological environment. In the late stage of physical method recovery, because of the thin oil and the strong sea breeze, the recovery vessels has low efficiency and high energy consumption. This paper develops a multi-stage oil-water-separating process carried by the sea oil spill recovery robot in severe conditions. This design consists of three separation process, among which both the first and third process adopt corrugated sheets horizontal oil-water separator, while the second is hydraulic rotary breaker. This design also equiptment with rectifier and cyclone separator and other important components. This process has high flexibility and high recovery efficiency. The implement effect is significant.

  8. Interact to survive: Phyllobacterium brassicacearum improves Arabidopsis tolerance to severe water deficit and growth recovery.

    Directory of Open Access Journals (Sweden)

    Justine Bresson

    Full Text Available Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm, was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.

  9. Copper Recovery from Polluted Soils Using Acidic Washing and Bioelectrochemical Systems

    Directory of Open Access Journals (Sweden)

    Karin Karlfeldt Fedje

    2015-07-01

    Full Text Available Excavation followed by landfilling is the most common method for treating soils contaminated by metals. However, as this solution is not sustainable, alternative techniques are required. Chemical soil washing is one such alternative. The aim of this experimental lab-scale study is to develop a remediation and metal recovery method for Cu contaminated sites. The method is based on the washing of soil or ash (combusted soil/bark with acidic waste liquids followed by electrolytic Cu recovery by means of bioelectrochemical systems (BES. The results demonstrate that a one- or two-step acidic leaching process followed by water washing removes >80 wt. % of the Cu. Copper with 99.7–99.9 wt. % purity was recovered from the acidic leachates using BES. In all experiments, electrical power was generated during the reduction of Cu. This clearly indicates that Cu can also be recovered from dilute solutions. Additionally, the method has the potential to wash co-pollutants such as polycyclic aromatic hydrocarbons (PAHs and oxy-PAHs.

  10. Fine Formation During Brine-Crude Oil-Calcite Interaction in Smart Water Enhanced Oil Recovery for Caspian Carbonates

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    Modified sea water has been shown to affect the oil recovery fraction considerably during secondary and tertiary waterfloods. Available soluble potential ions (i.e. Ca2+, Mg2+ & SO42-) in the interacting waterflood (ITW) are suggested to play a key role in increasing the displacement efficiency...... of oil. In previous studies, compositions of injected waterfloods (IJW) have been correlated to the observed oil recovery. This study highlights differences between IJW and ITW for different studies reported in literature....

  11. Cold storage condensation heat recovery system with a novel composite phase change material

    International Nuclear Information System (INIS)

    Xia, Mingzhu; Yuan, Yanping; Zhao, Xudong; Cao, Xiaoling; Tang, Zhonghua

    2016-01-01

    Highlights: • Cold storage condensation heat recovery system using PCM was proposed. • CW with a phase change temperature of nearly 80 °C was selected as the potential PCM. • The optimal mass ratio between the CW and EG was 10:1. • The thermal and physical performances of the CW/EG were investigated. • The thermal reliability was demonstrated by 1000 cycles. - Abstract: Using condensation heat from cold storage refrigeration systems to provide heat for domestic hot water preparation and industrial hot water supply promotes energy conservation. However, few studies have investigated cold storage condensation heat recovery using phase change materials (PCMs). In this study, a cold storage condensation heat recovery system that uses PCMs has been designed and analysed. According to the principle of energy cascade recycling, different operation modes could be effectively switched to recycle condensation heat. Furthermore, a novel and suitable phase change composite material is developed for cold storage condensation heat recovery, which has a relatively large latent heat, high thermal conductivity, and an appropriate phase change temperature (i.e. 80 °C). With carnauba wax (CW) as the PCM and expanded graphite (EG) as the additive, a composite was developed with an optimal mass ratio of CW:EG = 10:1. The thermal and physical properties and the interior structure of the composite were then investigated using a scanning electron microscope (SEM), thermal constants analyser (Hot Disk), differential scanning calorimeter (DSC), and Fourier transform infrared spectrometer (FT-IR). Furthermore, experiments on the melting and solidification processes and accelerated thermal cycling were also conducted. It was found that at the optimal mass ratio of 10:1, the temperatures of the CW/EG composite in the melting and solidification processes were 81.98 °C and 80.43 °C, respectively, while the corresponding latent heats were 150.9 J/g and 142.6 J/g, respectively

  12. Total Energy Recovery System for Agribusiness: Lake County study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fogleman, S.F.; Fisher, L.A.; Black, A.R.

    1978-04-01

    A brief summary is given of the results of a previously reported study designed to evaluate the costs and viability of combined thermodynamic and biologic cycles in a system known as the Total Energy Recovery System for Agribusiness (TERSA). This conceptual system involved the combined geothermally assisted activities of greenhouse crop and mushroom growing, fish farming, and biogas generation in an integrated biologic system such that the waste or by-products of each subsystem cycle were recovered to service input needs of companion cycles. An updated direct use geothermal system based on TERSA that is viable for implementation in Lake County is presented. Particular consideration is given to: location of geothermal resources, availability of land and irrigation quality water, compatibility of the specific direct use geothermal activities with adjacent and local uses. Private interest and opposition, and institutional factors as identified. Factors relevant to local TERSA implementation are discussed, followed by sites considered, selection criteria, site slection, and the modified system resulting. Particular attention is paid to attempt to make clear the process followed in applying this conceptual design to the specific task of realistic local implementation. Previous publications on geothermal energy and Lake County are referenced where specific details outside the scope of this study may be found. (JGB)

  13. The recovery of a time-dependent point source in a linear transport equation: application to surface water pollution

    International Nuclear Information System (INIS)

    Hamdi, Adel

    2009-01-01

    The aim of this paper is to localize the position of a point source and recover the history of its time-dependent intensity function that is both unknown and constitutes the right-hand side of a 1D linear transport equation. Assuming that the source intensity function vanishes before reaching the final control time, we prove that recording the state with respect to the time at two observation points framing the source region leads to the identification of the source position and the recovery of its intensity function in a unique manner. Note that at least one of the two observation points should be strategic. We establish an identification method that determines quasi-explicitly the source position and transforms the task of recovering its intensity function into solving directly a well-conditioned linear system. Some numerical experiments done on a variant of the water pollution BOD model are presented

  14. Photosynthetic response of an alpine plant, Rhododendron delavayi Franch, to water stress and recovery: the role of mesophyll conductance

    Directory of Open Access Journals (Sweden)

    Yanfei eCai

    2015-12-01

    Full Text Available Rhododendron delavayi Franch is an evergreen shrub or small tree with large scarlet flowers that makes it highly attractive as an ornamental species. The species is native to southwest China and southeast Asia, especially the Himalayan region, showing good adaptability and tolerance to drought. To understand the water stress coping mechanisms of R. delavayi, we analysed the plant’s photosynthetic performance during water stress and recovery. In particular, we looked at the regulation of stomatal (gs and mesophyll conductance (gm, and maximum rate of carboxylation (Vcmax. After four days of water stress treatment, the net CO2 assimilation rate (AN declined slightly while gs and gm were not affected and stomatal limitation (SL was therefore negligible. At this stage mesophyll conductance limitation (MCL and biochemical limitation (BL constituted the main limitation factors. After eight days of water stress treatment, AN, gs and gm had decreased notably. At this stage SL increased markedly and MCL even more so, while BL remained relatively constant. After re-watering, the recovery of AN, gs and gm was rapid, although remaining below the levels of the control plants, while Vcmax fully regained control levels after three days of re-watering. MCL remained the main limitation factor irrespective of the degree of photosynthetic recovery. In conclusion, in our experiment MCL was the main photosynthetic limitation factor of R. delavayi under water stress and during the recovery phase, with the regulation of gm probably being the result of interactions between the environment and leaf anatomical features.

  15. Integrated water and waste management system for future spacecraft

    Science.gov (United States)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  16. Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Xin (Cissy Ma

    2015-09-01

    Full Text Available Urban water systems are an example of complex, dynamic human–environment coupled systems which exhibit emergent behaviors that transcend individual scientific disciplines. While previous siloed approaches to water services (i.e., water resources, drinking water, wastewater, and stormwater have led to great improvements in public health protection, sustainable solutions for a growing global population facing increased resource constraints demand a paradigm shift based on holistic management to maximize the use and recovery of water, energy, nutrients, and materials. The objective of this review paper is to highlight the issues in traditional water systems including water demand and use, centralized configuration, sewer collection systems, characteristics of mixed wastewater, and to explore alternative solutions such as decentralized water systems, fit for purpose and water reuse, natural/green infrastructure, vacuum sewer collection systems, and nutrient/energy recovery. This review also emphasizes a system thinking approach for evaluating alternatives that should include sustainability indicators and metrics such as emergy to assess global system efficiency. An example paradigm shift design for urban water system is presented, not as the recommended solution for all environments, but to emphasize the framework of system-level analysis and the need to visualize water services as an organic whole. When water systems are designed to maximize the resources and optimum efficiency, they are more prevailing and sustainable than siloed management because a system is more than the sum of its parts.

  17. Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Jessica D.

    2013-05-29

    On January 27, 2010 the City of North Little Rock, Arkansas received notification of the awarding of a Department of Energy (DOE) grant totaling $450,000 in funding from the American Recovery and Reinvestment Act (ARRA) under the Project Title: Recovery Act: Hydroelectric Facility Improvement Project – Automated Intake Clearing Equipment and Materials Management. The purpose of the grant was for improvements to be made at the City’s hydroelectric generating facility located on the Arkansas River. Improvements were to be made through the installation of an intake maintenance device (IMD) and the purchase of a large capacity wood grinder. The wood grinder was purchased in order to receive the tree limbs, tree trunks, and other organic debris that collects at the intake of the plant during high flow. The wood grinder eliminates the periodic burning of the waste material that is cleared from the intake and reduces any additional air pollution to the area. The resulting organic mulch has been made available to the public at no charge. Design discussion and planning began immediately and the wood grinder was purchased in July of 2010 and immediately put to work mulching debris that was gathered regularly from the intake of the facility. The mulch is currently available to the public for free. A large majority of the design process was spent in discussion with the Corps of Engineers to obtain approval for drawings, documents, and permits that were required in order to make changes to the structure of the powerhouse. In April of 2011, the City’s Project Engineer, who had overseen the application, resigned and left the City’s employ. A new Systems Mechanical Engineer was hired and tasked with overseeing the project. The transfer of responsibility led to a re-examination of the original assumptions and research upon which the grant proposal was based. At that point, the project went under review and a trip was booked for July 2011 to visit facilities that currently

  18. Next generation of CO2 enhanced water recovery with subsurface energy storage in China

    Science.gov (United States)

    Li, Qi; Kühn, Michael; Ma, Jianli; Niu, Zhiyong

    2017-04-01

    Carbon dioxide (CO2) utilization and storage (CCUS) is very popular in comparison with traditional CO2 capture and storage (CCS) in China. In particular, CO2 storage in deep saline aquifers with enhanced water recovery (CO2-EWR) [1] is gaining more and more attention as a cleaner production technology. The CO2-EWR was written into the "U.S.-China Joint Announcement on Climate Change" released November 11, 2014. "Both sides will work to manage climate change by demonstrating a new frontier for CO2 use through a carbon capture, use, and sequestration (CCUS) project that will capture and store CO2 while producing fresh water, thus demonstrating power generation as a net producer of water instead of a water consumer. This CCUS project with enhanced water recovery will eventually inject about 1.0 million tonnes of CO2 and create approximately 1.4 million cubic meters of freshwater per year." In this article, at first we reviewed the history of the CO2-EWR and addressed its current status in China. Then, we put forth a new generation of the CO2-EWR with emphasizing the collaborative solutions between carbon emission reductions and subsurface energy storage or renewable energy cycle [2]. Furthermore, we figured out the key challenging problems such as water-CCUS nexus when integrating the CO2-EWR with the coal chemical industry in the Junggar Basin, Xinjiang, China [3-5]. Finally, we addressed some crucial problems and strategic consideration of the CO2-EWR in China with focuses on its technical bottleneck, relative advantage, early opportunities, environmental synergies and other related issues. This research is not only very useful for the current development of CCUS in the relative "cold season" but also beneficial for the energy security and clean production in China. [1] Li Q, Wei Y-N, Liu G, Shi H (2015) CO2-EWR: a cleaner solution for coal chemical industry in China. Journal of Cleaner Production 103:330-337. doi:10.1016/j.jclepro.2014.09.073 [2] Streibel M

  19. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  20. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  1. Parametric analysis of a dual loop Organic Rankine Cycle (ORC) system for engine waste heat recovery

    International Nuclear Information System (INIS)

    Song, Jian; Gu, Chun-wei

    2015-01-01

    Highlights: • A dual loop ORC system is designed for engine waste heat recovery. • The two loops are coupled via a shared heat exchanger. • The influence of the HT loop condensation parameters on the LT loop is evaluated. • Pinch point locations determine the thermal parameters of the LT loop. - Abstract: This paper presents a dual loop Organic Rankine Cycle (ORC) system consisting of a high temperature (HT) loop and a low temperature (LT) loop for engine waste heat recovery. The HT loop recovers the waste heat of the engine exhaust gas, and the LT loop recovers that of the jacket cooling water in addition to the residual heat of the HT loop. The two loops are coupled via a shared heat exchanger, which means that the condenser of the HT loop is the evaporator of the LT loop as well. Cyclohexane, benzene and toluene are selected as the working fluids of the HT loop. Different condensation temperatures of the HT loop are set to maintain the condensation pressure slightly higher than the atmosphere pressure. R123, R236fa and R245fa are chosen for the LT loop. Parametric analysis is conducted to evaluate the influence of the HT loop condensation temperature and the residual heat load on the LT loop. The simulation results reveal that under different condensation conditions of the HT loop, the pinch point of the LT loop appears at different locations, resulting in different evaporation temperatures and other thermal parameters. With cyclohexane for the HT loop and R245fa for the LT loop, the maximum net power output of the dual loop ORC system reaches 111.2 kW. Since the original power output of the engine is 996 kW, the additional power generated by the dual loop ORC system can increase the engine power by 11.2%.

  2. Natural recovery and leaf water potential after fire influenced by salvage logging and induced drought stress

    Directory of Open Access Journals (Sweden)

    D. Moya

    2013-01-01

    Full Text Available Salvage logging is one of the most common emergency actions in the short-term management after a fire. Several studies have been carried out and some obtained positive results which incite to carry it out but other, found negative effects on seedling establishment and regeneration. In addition, climatic changes will have large impacts on vegetation productivity and resilience since the regional models for south-eastern Spain predicts a rainfall decrease of about 20% and temperature increase of 4.5 ºC. Our aim was to determine how short-term forest management and induced drought affect the ecosystem recovery in Aleppo pine stands naturally recovered after a fire.In summer 2009, a mid-high severity fire burned 968 ha of Aleppo pine (Pinus halepensis Mill. forest in south-eastern Spain. Six months later, a salvage logging was carried out. The Aleppo pine recruitment was negligible. During summer 2010, twelve square plots (2m x 2m were set in the three scenarios: control, salvaged and drought induced. The surface cover and soil water availability for three dominant understory species were recorded in four field campaigns: Spring-2010, Fall-2010, Spring-2011 and Fall-2011.The season, management and the target species showed significant differences in growing and water stress. In general, Esparto grass showed lower water stress, mainly in Fall, a higher increase of total coverage. Both effects were showing their highest values in non-salvaged areas and no drought. Changes in leaf water potential and soil water content after the drought season influence the survival and development of individuals.Our results indicate that soil water content and ecosystem response can be modified by short-term silvicultural treatments. Therefore, management after fire could cause opposite effects to those initially foreseen, since they depend on fire severity, and type of ecosystem management response. So, their application must be evaluated and assessed before

  3. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  4. California community water systems inventory dataset, 2010

    Data.gov (United States)

    California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

  5. Design, empirical modelling and analysis of a waste-heat recovery system coupled to a traditional cooking stove

    International Nuclear Information System (INIS)

    Sakdanuphab, Rachsak; Sakulkalavek, Aparporn

    2017-01-01

    Highlights: • WHR system was implemented to utilise the waste heat from a stove. • The empirical modelling by RSM can be used to predict the generated TEG power. • The total conversion efficiency of the WHR system was more than 80%. • The stove efficiency decreased less than 5% when the WHR system was attached. - Abstract: In this work, a waste-heat recovery (WHR) system was designed and implemented to utilise the waste heat from a cooking stove. The WHR system was designed to preserve maximum thermal energy efficiency, use passive cooling, and produce a system that did not alter the body of the cooking stove. The thermal energy from the cooking stove was converted into electrical energy by a thermoelectric generator (TEG) and used in a waste-heat hot water boiler. The cold side of the TEG was cooled by heat pipes immersed in a water box that offers a high heat transfer rate. The heated water can be used for domestic purposes. Dependent variables were the heater temperature and the volume of water. The heater temperature was varied between 130 and 271 °C, and 4.2–9.5 L of water was investigated. At equilibrium, response surface methodology based on a central composite design was used to empirically model the influence of the heater temperature and the volume of water on the electrical power generation and the hot water temperature. Experimental results of the system efficiency showed that the heater temperature was more influential than was the volume of water. The total efficiency of the WHR system was more than 80%. Thermal contact resistance was analysed to improve the WHR system performance. Finally, the thermal efficiency of a cooking stove, both with and without the WHR system, was measured. Results showed that the thermal efficiency of the cooking stove decreased by less than 5% when the WHR system was attached.

  6. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  7. Feasibility analysis of a small-scale ORC energy recovery system for vehicular application

    International Nuclear Information System (INIS)

    Capata, Roberto; Toro, Claudia

    2014-01-01

    Highlights: • We analyzed the feasibility of an “on-board” ORC recovery system to power auxiliaries. • Performance of the ORC cycle has been simulated with CAMEL-Pro™. • Several relevant ORC components have been designed. • Approximate characteristics dimensions of HRSG and evaporator have been calculated and a preliminary layout provided. • The evaluation of a possible assembling of the system has been developed. - Abstract: This paper analyses the feasibility of an “on-board” innovative and patented ORC recovery system. The vehicle thermal source can be either a typical diesel engine (1400 cc) or a small gas turbine set (15–30 kW). The sensible heat recovered from the exhaust gases feeds the energy recovery system that can produce sufficient extra power to sustain the conditioning system and other auxiliaries. The concept is suitable for all types of thermally propelled vehicles, but it is studied here for automotive applications. The characteristics of the organic cycle-based recovery system are discussed, and a preliminary design of the main components, such as the heat recovery exchanger, the evaporator and the pre-heater is presented. The main challenge are the imposed size and weight limitations that require a particular design for this compact recovery system. A possible system layout is analyzed and the requirements for a prototypal application are investigated

  8. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water

    International Nuclear Information System (INIS)

    Zhang, Ben; DeBartolo, Janae E.; Song, Jie

    2017-01-01

    Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied with concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD) and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydration was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g. as self-fitting intervertebral discs). In conclusion, this study also provides a new material design strategy to strengthen polymers in aqueous environment in general.

  9. Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water

    Directory of Open Access Journals (Sweden)

    Nithinart Chitpong

    2016-12-01

    Full Text Available An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid (PAA and poly(itaconic acid (PIA to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd, productivity, and recovery of Cd(II from the membranes by regeneration. The dynamic binding capacities of Cd(II on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II, apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (Rh measurements for PAA and PIA obtained from dynamic light scattering, which show that Rh values decrease upon Cd(II binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration.

  10. IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC. - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This Innovative Technology Evaluation report summarizes the findings of an evaluation of the in situ Steam Enhanced Recovery Process (SERP) operated by Hughes Environmental Systems, Inc. at the Rainbow Disposal facility in Huntington Beach, California. he technology demonstration...

  11. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  12. Use of common time base for checkpointing and rollback recovery in a distributed system

    Science.gov (United States)

    Ramanathan, Parameswaran; Shin, Kang G.

    1993-01-01

    An approach to checkpointing and rollback recovery in a distributed computing system using a common time base is proposed. A common time base is established in the system using a hardware clock synchronization algorithm. This common time base is coupled with the idea of pseudo-recovery points to develop a checkpointing algorithm that has the following advantages: reduced wait for commitment for establishing recovery lines, fewer messages to be exchanged, and less memory requirement. These advantages are assessed quantitatively by developing a probabilistic model.

  13. Integrated subsurface water solutions for coastal environments through integrated pump&treat and aquifer storage and recovery (ASR) schemes

    Science.gov (United States)

    Perdikaki, Martha; Kallioras, Andreas; Christoforidis, Christophoros; Iossifidis, Dimitris; Zafeiropoulos, Anastasios; Dimitriadis, Klisthenis; Makropoulos, Christos; Raat, Klaasjan; van den Berg, Gerard

    2016-04-01

    Coastal wetlands in semi-arid regions, as in Circum-Mediterranean, are considered important ecosystems that provide valuable services to human population and the environment, such as: flood protection, erosion control, wildlife habitat, water quality, recreation and carbon sequestration. Un-managed surface and groundwater exploitation in these areas usually leads to deterioration of such sensitive ecosystems by means of water resources degradation and/or increased salinity. Groundwater usually plays a vital role for the sustainability of these hydrological systems, as the underlying aquifers operate as regulators for both quantity and quality of their waters. Multi-layer and multi-objective Managed Aquifer Recharge (MAR) systems can be proved effective groundwater engineered solutions for the restoration of deteriorated coastal wetlands in semi- and arid regions. The plain of Marathon is a typical Mediterranean environment that hosts a naturally occurring -and today degraded- coastal wetland with the characteristics of a distinct ecosystem linked to a typical coastal hydrogeological system of a semi-arid region; and therefore can serve as a model for similar systems world-wide. The geo-hydrological setting of the area involves a multi-layer aquifer system consisting of (i) an upper un-consolidated formation of depositional unit dominated mostly by fluvial sediments and (ii) the surrounding and underlying karstified marbles; both being linked to the investigated wetland and also subjected to seawater encroachment. A smart engineered MAR system via an optimised Pump & Treat system integrated with an Aquifer Storage and Recovery (ASR) scheme in this area would include the abstraction of brackish groundwater from the deeper karst aquifer at a location close to the shoreline and direct treatment with Reverse Osmosis (RO). for desalination. Two-fold re-use scheme of the purified effluent can then be engineered for (i) the restoration of the coastal wetland; and (ii

  14. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  15. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  16. Recovery of lithium from geothermal water by amorphous hydrous aluminium oxide

    International Nuclear Information System (INIS)

    Wada, Hideo; Kitamura, Takao; Ooi, Kenta; Katoh, Shunsaku

    1984-01-01

    Effects of chemical composition, temperature, and lithium concentration of geothermal water on lithium recovery by amorphous hydrous aluminium oxide (a-HAO) were investigated in order to evaluate the feasibility of this process. The results are summarized as follows: (1) Among various chemical consituents in geothermal water, silica interfered with the lithium adsorption. The lithium uptake decreased when silica concentration exceeded 73 mg/l under 100 mg/50 ml a-HAO to solution ratio. (2) The lithium uptake decreased with an increase of adsorption temperature and was not observed above 40 deg C. At higher temperature, the crystallization of a-HAO to bayerite occurred prior to lithium adsorption. (3) The lithium uptake increased with an increase of lithium concentration. Lithium uptake comparable with lithium contents in lithium ores was obtained at the lithium concentration of 30 mg/l at 20 deg C. These results show that a-HAO is applicable to collect lithium from geothermal water if silica can be removed before lithium adsorption. (author)

  17. Application of a power recovery system to gas turbine exhaust gases

    International Nuclear Information System (INIS)

    Baudat, N.P.; James, O.R.

    1979-01-01

    This paper discusses the application of a power recovery system to recover waste heat from the exhaust gases of gas turbines and convert this energy into shaft horsepower. Also discussed are power cycles, selection of power fluid, equipment selection, and application of the power recovery system to various gas turbines. Several charts and tables are included: process flow diagram, cycle efficiencies, curve for estimating recoverable horsepower

  18. Heat pipe heat exchangers in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  19. Recovery Migration after Hurricanes Katrina and Rita: Spatial Concentration and Intensification in the Migration System

    Science.gov (United States)

    Fussell, Elizabeth; DeWaard, Jack

    2015-01-01

    Changes in the human migration systems of Hurricane Katrina- and Rita-affected Gulf of Mexico coastline counties provide an example of how climate change may affect coastal populations. Crude climate change models predict a mass migration of “climate refugees,” but an emerging literature on environmental migration suggests most migration will be short-distance and short-duration within existing migration systems, with implications for the population recovery of disaster-struck places. In this research, we derive a series of hypotheses on recovery migration predicting how the migration system of hurricane-affected coastline counties in the Gulf of Mexico was likely to have changed between the pre-disaster and the recovery periods. We test these hypotheses using data from the Internal Revenue Service on annual county-level migration flows, comparing the recovery period migration system (2007–2009) to the pre-disaster period (1999–2004). By observing county-to-county ties and flows we find that recovery migration was strong, as the migration system of the disaster-affected coastline counties became more spatially concentrated while flows within it intensified and became more urbanized. Our analysis demonstrates how migration systems are likely to be affected by the more intense and frequent storms anticipated by climate change scenarios with implications for the population recovery of disaster-affected places. PMID:26084982

  20. Recovery Migration After Hurricanes Katrina and Rita: Spatial Concentration and Intensification in the Migration System.

    Science.gov (United States)

    Curtis, Katherine J; Fussell, Elizabeth; DeWaard, Jack

    2015-08-01

    Changes in the human migration systems of the Gulf of Mexico coastline counties affected by Hurricanes Katrina and Rita provide an example of how climate change may affect coastal populations. Crude climate change models predict a mass migration of "climate refugees," but an emerging literature on environmental migration suggests that most migration will be short-distance and short-duration within existing migration systems, with implications for the population recovery of disaster-stricken places. In this research, we derive a series of hypotheses on recovery migration predicting how the migration system of hurricane-affected coastline counties in the Gulf of Mexico was likely to have changed between the pre-disaster and the recovery periods. We test these hypotheses using data from the Internal Revenue Service on annual county-level migration flows, comparing the recovery period migration system (2007-2009) with the pre-disaster period (1999-2004). By observing county-to-county ties and flows, we find that recovery migration was strong: the migration system of the disaster-affected coastline counties became more spatially concentrated, while flows within it intensified and became more urbanized. Our analysis demonstrates how migration systems are likely to be affected by the more intense and frequent storms anticipated by climate change scenarios, with implications for the population recovery of disaster-affected places.

  1. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    Science.gov (United States)

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  2. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  3. Calculation of critical fault recovery time for nonlinear systems based on region of attraction analysis

    DEFF Research Database (Denmark)

    Tabatabaeipour, Mojtaba; Blanke, Mogens

    2014-01-01

    of a system. It must be guaranteed that the trajectory of a system subject to fault remains in the region of attraction (ROA) of the post-fault system during this time. This paper proposes a new algorithm to compute the critical fault recovery time for nonlinear systems with polynomial vector elds using sum...

  4. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    Science.gov (United States)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  5. Improvement in Performance of a Thermochemical Heat Storage System by Implementing an Internal Heat Recovery System

    NARCIS (Netherlands)

    Gaeini, M.; Saris, L.; Zondag, H.A.; Rindt, C.C.M.

    A lab-scale prototype of a thermochemical heat storage system, employing a water-zeolite 13X as the working pair, is designed and optimized for providing hot tap water. During the hydration process, humid air is introduced to the packed bed reactor filled with dehydrated zeolite 13X, and the

  6. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  7. Proposed Design Procedure of a Helical Coil Heat Exchanger for an Orc Energy Recovery System for Vehicular Application

    Directory of Open Access Journals (Sweden)

    Giacomo Bonafoni

    2015-05-01

    Full Text Available There are several systems that produce energy from low grade heat sources such as Stirling engines, thermoelectric generators, and ORC (Organic Rankine Cycle systems. This paper shows the heat recovery from exhaust gases of a 1400 cc Diesel engine, to vaporize the working fluid of a small (<10 kW ORC system. The main objective is to have a system as compact as possible, to make it suitable for transport applications such as cars, ships, trains, etc. Three fluids were studied for this application: water and two refrigerant fluids: R134a and R245fa, which were found to be more appropriate than water at certain pressure and temperature values. Afterwards, a design procedure was proposed, then the heat exchanger was modeled and finally a steady-state thermal and structural analysis were carried out using a commercial software to find the temperature and the effects of the thermal stress on the material of the helical coiled tube.

  8. Enhanced configuration of a water detritiation system; impact on ITER Isotope Separation System based cryogenic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Cristescu, Ion, E-mail: ion.cristescu@kit.edu

    2016-11-01

    Highlights: • An enhanced configuration of ITER WDS has been developed. • The proposed configuration allows minimization of hazards due to the reduction of tritium inventory. • The load on the tritium recovery system (ITER ISS) is minimized with benefits on mitigation of the explosion hazards. - Abstract: Tritiated water is generated in the ITER systems by various sources and may contain deuterium and tritium at various concentrations. The reference process for the ITER Water Detritiation System is based on Combined Electrolysis Catalytic Exchange (CECE) configuration. During long time operation of the CECE process, the accumulation of deuterium in the electrolysis unit and consequently along the Liquid Phase Catalytic Exchange (LPCE) column is unavoidable with consequences on the overall detritiation factor of the system. Beside the deuterium issue in the process, the large amount of the tritiated water with tritium activity up to 500 Ci/kg in the electrolysis cells is a concern from the safety aspect of the plant. The enhanced configuration of a system for processing tritiated water allows mitigation of the effects due to deuterium accumulation and also reduction of tritium inventory within the electrolysis system. In addition the benefits concerning to the interface between the water detritiation system and tritium recovery based cryogenic distillation are also presented.

  9. Evaluation of passive recovery, cold water immersion, and contrast baths for recovery, as measured by game performances markers, between two simulated games of rugby union.

    Science.gov (United States)

    Higgins, Trevor; Cameron, Melainie; Climstein, Mike

    2012-06-11

    ABSTRACT: In team sports, during the competitive season, peak performance in each game is of utmost importance to coaching staff and players. To enhance recovery from training and games a number of recovery modalities have been adopted across professional sporting teams. To date there is little evidence in the sport science literature identifying the benefit of modalities in promoting recovery between sporting competition games. This research evaluated hydrotherapy as a recovery strategy following a simulated game of rugby union and a week of recovery and training, with dependent variables between two simulated games of rugby union evaluated. Twenty-four male players were randomly divided into three groups: one group (n=8) received cold water immersion therapy (2 X 5min at 10oC, whilst one group (n=8) received contrast bath therapy (5 cycles of 10oC/38oC) and the control group (n=8) underwent passive recovery (15mins, thermo neutral environment). The two forms of hydrotherapy were administered following a simulated rugby union game (8 circuits x 11 stations) and after three training sessions. Dependent variables where generated from five physical stations replicating movement characteristics of rugby union and one skilled based station, as well as sessional RPE values between two simulated games of rugby union. No significant differences were identified between groups across simulated games, across dependent variables. Effect size analysis via Cohen's d and ηp2 did identify medium trends between groups. Overall trends indicated that both treatment groups had performance results in the second simulated game above those of the control group of between 2% and 6% across the physical work stations replicating movement characteristics of rugby union. In conclusion, trends in this study may indicate that ice baths and contrasts baths may be more advantageous to athlete's recovery from team sport than passive rest between successive games of rugby union We are pleased to

  10. Investigation of recovery system for Am and Cm. Results in 1999

    International Nuclear Information System (INIS)

    Watanabe, Masayuki; Kamiya, Masayoshi; Tanaka, Hiroshi

    2000-07-01

    In JAPAN NUCLEAR CYCLE DEVELOPMENT INSTITUTE, the feasibility study has been carried out in order to evaluate various methods of FBR cycle technology and to propose candidate concepts of practical technology. As a part of this, we investigated material balance and a process flow diagram of SETFICS process for the recovery system of Am and Cm from high level radioactive liquid waste, and we preliminarily evaluated the equipment scale, the cost and waste generation rate of this system. As a result, it was obtained that these values are about 17,15 and 10%, respectively, of the recycle plant based on the simplified PUREX process. In addition, we investigated preliminary flowsheets of 4 recovery systems for Am and Cm, and compared each to each of them. It was evaluated that the equipment scale of any process was also equivalent. From these results, each system is applicable as the recovery system of Am and Cm. But these results suggest that the facility may be much larger than the PUREX plant, in spite of small contents of the recovery materials in each system. Therefore, whichever method is applied to the recovery system of Am and Cm, we need to develop the process in order to make the system more compact and economical. (author)

  11. Energy Efficient Waste Heat Recovery from an Engine Exhaust System

    Science.gov (United States)

    2016-12-01

    costs for the operation of the ship. The types of boilers used in this process are specially built to have water flowing around thousands of tubes ...uneven heating of the water and metal heat exchanger, leading to damage or possible failure of the boiler . Since the merchant vessels operate at near...one of the central boiler tubes . Each of the sensors was individually adjusted to ensure that the readings were as accurate as possible to allow for

  12. Water Influx, and Its Effect on Oil Recovery: Part 1. Aquifer Flow, SUPRI TR-103

    Energy Technology Data Exchange (ETDEWEB)

    Brigham, William E.

    1999-08-09

    Natural water encroachment is commonly seen in many oil and gas reservoirs. In fact, overall, there is more water than oil produced from oil reservoirs worldwide. Thus it is clear that an understanding of reservoir/aquifer interaction can be an important aspect of reservoir management to optimize recovery of hydrocarbons. Although the mathematics of these processes are difficult, they are often amenable to analytical solution and diagnosis. Thus this will be the ultimate goal of a series of reports on this subject. This first report deals only with aquifer behavior, so it does not address these important reservoir/aquifer issues. However, it is an important prelude to them, for the insight gained gives important clues on how to address reservoir/aquifer problems. In general when looking at aquifer flow, there are two convenient inner boundary conditions that can be considered; constant pressure or constant flow rate. There are three outer boundary conditions that are convenient to consider; infinite, closed and constant pressure. And there are three geometries that can be solved reasonably easily; linear, radial and spherical. Thus there are a total of eighteen different solutions that can be analyzed.

  13. Performance of high-recovery recycling reverse osmosis with wash water

    Science.gov (United States)

    Herrmann, Cal C.

    1993-01-01

    Inclusion of a recycling loop for partially-desalted water from second-stage reverse-osmosis permeate has been shown useful for achieving high-recovery at moderate applied pressures. This approach has now been applied to simulated wash waters, to obtain data on retention by the membranes of solutes in a mixture comparable to anticipated spacecraft hygiene wastewaters, and to generate an estimate of the maximum concentration that can be expected without causing membrane fouling. A first experiment set provides selectivity information from a single membrane and an Igepon detergent, as a function of final concentration. A reject concentration of 3.1% Total Organic Carbon has been reached, at a pressure of 1.4 Mega Pascals, without membrane fouling. Further experiments have generated selectivity values for the recycle configuration from two washwater simulations, as a function of applied pump pressure. Reverse osmosis removal has also been tested for washwater containing detergent formulated for plant growth compatibility (containing nitrogen, phosphorous and potassium functional groups.)

  14. Phosphorus recovery as struvite from eutropic waters by XDA-7 resin.

    Science.gov (United States)

    Li, Huanwen; Ye, Zhiping; Lin, Ying; Wang, Fengying

    2012-01-01

    Phosphorus releases into aquatic environment and its subsequent contribution to eutrophication have resulted in a widespread global pollution issue. However, phosphorus is a non-renewable source. The potential supplies of phosphorus are decreasing worldwide. Therefore, removal and recovery of phosphorus from the eutropic waters is important, emergent and necessary. In this research, experiments for recovering phosphate from eutropic waters by anion exchange combined with struvite precipitation were conducted. The results indicated that the prepared XDA-7 resin was an effective adsorbent for phosphate. The adsorption isotherm of XDA-7 resin was found to be a modified Freundlich type. The maximum phosphate adsorption (20.9 mg/g) occurred in the pH range of 6.0-8.0. Phosphate adsorbed on the XDA-7 resin was effectively desorbed with 8% NaCl solution, and the resin was able to be regenerated with 3% NaClO and 4% NaOH solutions. Phosphate desorbed from the resin was recovered as magnesium ammonium phosphate (struvite). The obtained struvite was analyzed by acid dissolution method, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The struvite precipitate was found to be 75.8% in purity, a high-value fertilizer.

  15. BIOSORPTION AND RECOVERY OF HEAVY METALS FROM AQUEOUS SOLUTIONS BY EICHHORNIA CRASSIPES (WATER HYACINTH ASH

    Directory of Open Access Journals (Sweden)

    Tariq Mahmood

    2010-04-01

    Full Text Available Heavy metal’s release without treatment poses a significant threat to the environment. Heavy metals are non-biodegradable and persistent. In the present study the ash of water hyacinth (Eichhornia crassipes, was used to remove six metals from aqueous solutions through biosorption. Results of batch and column experiments showed excellent adsorption capacity. Removal of lead, chromium, zinc, cadmium, copper, and nickel was 29.83, 1.263, 1.575, 3.323, 2.984 and 1.978 µgg-1, respectively. The biosorptive capacity was maximum with pH >8.00. Desorption in µgg-1 of ash for lead, chromium, zinc, cadmium, copper, and nickel was 18.10, 9.99, 11.99, 27.54, 21.09, and 3.71 respectively. Adsorption/desorption of these metals from ash showed the potential of this technology for recovery of metals for further usages. Hydrogen adsorption was also studied with a Sievert-type apparatus. Hydrogen adsorption experiments showed significant storage capacity of water hyacinth ash.

  16. Application of temperature responsive polymers for water recovery from mineral tailings

    Energy Technology Data Exchange (ETDEWEB)

    Franks, G.; O' Shea, J.P.; Qiao, G. [Melbourne Univ., Melbourne (Australia). Australian Mineral Science Research Inst.; Li, H. [Alberta Research Council, Edmonton, AB (Canada)

    2008-07-01

    The Australian Mineral Science Research Institute ((AMSRI) was built in 2005 as a collaborative research project between industry and academic researchers in Australia. Conventional flocculants produce inter-particle attraction that causes aggregation, rapid sedimentation, and high moisture levels in resulting cakes and sediments. This presentation described a study conducted at the AMSRI to evaluate stimulus responsive flocculation processes for dewatering. Stimuli included pH and temperature. Polymers used in the experiments included non-ionic polymers (PNIPAM) cationic co-polymers (CPNIPAM) and cationic polyacrylamide (PAM). Silica powder, kaolinite, and alumina powder settling results with PNIPAM at 22 degrees and 50 degrees C were investigated. Kaolinite settling results at 22 and 50 degrees C were also investigated. Supernatants at 22 and 50 degrees C were compared. Alumina settling results with PNIPAMs were tested at different charge densities. The effects of non-ionic PNIPAM on water clarity were also evaluated. Results of the study showed that all processes developed in the study have the potential for improving water recovery and reducing the volume of oil sands tailings. Solids flocculation and consolidation appeared to be possible using only a single polymer. It was concluded that polymer performance depends on molecular weight, dosage, and charge density. tabs., figs.

  17. Construction and operation of a covered lagoon methane recovery system for the Cal Poly Dairy

    International Nuclear Information System (INIS)

    Williams, D.W.; Moser, M.A.; Norris, G.

    1999-01-01

    This paper describes the design, construction and anticipated operation of a lagoon-type methane recovery system for the Cal Poly Dairy. The initial design was based upon the present and anticipated herd size, 300 to 600 cows, heifers and calves. The lagoon design meets USDA-NRCS standards, and accounts for limitations of the site, primarily shallow sandstone bedrock. The new lagoon, which has a liquid volume of 14,000 m 3 , was constructed next to an existing lagoon. The new lagoon was covered with a flexible membrane incorporating buoyant material so that the cover floats on the surface, and a gas collection system. The predicted output of the lagoon for the present population of approximately 350 cows, heifers and calves is estimated to average up to 320 m 3 of biogas per day. The biogas will fuel a micro-turbine electric generator, and produce up to 23 kW in parallel with the utility system. Odor control is the most important non-economic benefit. This project will provide environmental benefits-odor control by capturing the odorous gases that result from dairy manure storage; methane, a significant greenhouse gas is kept out of the atmosphere; and water pollution is reduced through the reduction in organic matter in the lagoon. Economic benefits include electricity and process heat, together worth up to 16,000 US dollars per year. (author)

  18. The use of salinity contrast for density difference compensation to improve the thermal recovery efficiency in high-temperature aquifer thermal energy storage systems

    NARCIS (Netherlands)

    van Lopik, J.H.; Hartog, N.; Zaadnoordijk, Willem Jan

    The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity

  19. What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise?

    Science.gov (United States)

    Ihsan, Mohammed; Watson, Greig; Abbiss, Chris R

    2016-08-01

    Intense training results in numerous physiological perturbations such as muscle damage, hyperthermia, dehydration and glycogen depletion. Insufficient/untimely restoration of these physiological alterations might result in sub-optimal performance during subsequent training sessions, while chronic imbalance between training stress and recovery might lead to overreaching or overtraining syndrome. The use of post-exercise cold water immersion (CWI) is gaining considerable popularity among athletes to minimize fatigue and accelerate post-exercise recovery. CWI, through its primary ability to decrease tissue temperature and blood flow, is purported to facilitate recovery by ameliorating hyperthermia and subsequent alterations to the central nervous system (CNS), reducing cardiovascular strain, removing accumulated muscle metabolic by-products, attenuating exercise-induced muscle damage (EIMD) and improving autonomic nervous system function. The current review aims to provide a comprehensive and detailed examination of the mechanisms underpinning acute and longer term recovery of exercise performance following post-exercise CWI. Understanding the mechanisms will aid practitioners in the application and optimisation of CWI strategies to suit specific recovery needs and consequently improve athletic performance. Much of the literature indicates that the dominant mechanism by which CWI facilitates short term recovery is via ameliorating hyperthermia and consequently CNS mediated fatigue and by reducing cardiovascular strain. In contrast, there is limited evidence to support that CWI might improve acute recovery by facilitating the removal of muscle metabolites. CWI has been shown to augment parasympathetic reactivation following exercise. While CWI-mediated parasympathetic reactivation seems detrimental to high-intensity exercise performance when performed shortly after, it has been shown to be associated with improved longer term physiological recovery and day to day

  20. NMR transmit-receive system with short recovery time and effective isolation

    Science.gov (United States)

    Jurga, K.; Reynhardt, E. C.; Jurga, S.

    A transmit-receive system with a short recovery time and excellent isolation has been developed. The system operates in conjunction with an ENI Model 3200L broadband amplifier and a spin-lock NMR pulse spectrometer. The system has been tested in the frequency range 5.5 to 52 MHz and seems not to generate any background noise.

  1. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  2. Cluster as a Service for Disaster Recovery in Intercloud Systems: Design and Modeling

    OpenAIRE

    Mohammad Ali Khoshkholghi

    2014-01-01

    Nowadays, all modern IT technologies aim to create dynamic and flexible environments. For this reason, InterCloud has been designed to provide a vast and flexible virtualized environment in which many clouds can interact with one another in a dynamic way. Disaster recovery is one of the main applications of InterCloud which can be supported by Cluster as a Service. However, the previous studies addressed disaster recovery and Cluster as a Service separately. In addition, system backup and dis...

  3. Applicability of a desiccant dew-point cooling system independent of external water sources

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2015-01-01

    The applicability of a technical solution for making desiccant cooling systems independent of external water sources is investigated. Water is produced by condensing the desorbed water vapour in a closed regeneration circuit. Desorbed water recovery is applied to a desiccant dew-point cooling...... system, which includes a desiccant wheel and a dew point cooler. The system is simulated during the summer period in the Mediterranean climate of Rome and it results completely independent of external water sources. The seasonal thermal COP drops 8% in comparison to the open regeneration circuit solution...

  4. Hear recovery properties from fuel cell system for telecommunications use; Tsushin`yo nenryo denchi system no fuirudotesuto ni okeru hainetsu kaishu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ishizawa, M.; Iida, S.; Abe, I.; Amanuma, H. [NTT Integrated Information and Energy Systems Laboratories Tokyo (Japan); Uekusa, T.; Waragai, S. [NTT Power and Building Eacilities Inc., Tokyo (Japan)

    1997-12-20

    NTT is developing a phosphoric acid fuel cell energy system for telecommunication co-generation systems to reduce energy costs and help preserve the environment. Fuel cells are used to provide electrical power to telecommunication equipment and the heat energy that is generated is used by the absorption refrigerator to cool the telecommunication rooms throughout the year. We fieldtested this fuel cell energy system in a telephone office for three years. Heat recovered water from fuel cell stack coolant was supplied to the absorption refrigerator and further extra-heat was recovered by a heat exchanger. The toral heat recovery amount was about 86000 kca/h (the heat recovery efficiency was 20%) under 200kW operation. The absorption refrigerator was supplied about 49000kcal/h of heat and operated with 0.7 of coefficient of performance throughtout the year. The electrical efficiency was maintained more than 38% after 13000h operation. 12 refs., 10 figs., 3 tabs.

  5. Food Waste to Energy: How Six Water Resource Recovery Facilities are Boosting Biogas Production and the Bottom Line

    Science.gov (United States)

    Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and...

  6. Comparison of the different methods for the recovery of suspended matter from estuarine waters: deposition, filtration and centrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Etcheber, H; Jouanneau, J M

    1980-12-01

    The advantages and disadvantages of three methods used to recover heavy metals from estuarine waters are compared. Deposition, filtration, and centrifugation were used on samples from the Gironde estuary of France. Recovery by deposition is satisfactory in cases of flocculation and high turbidity. Centrifugation is reliable for the determination of several elements in zones of low turbidity. (12 references, 4 tables)

  7. The impact of consumer awareness of water sector issues on willingness to pay and cost recovery in Zambia

    Science.gov (United States)

    Ntengwe, F. W.

    The recovery of costs in water utilities is a key element in sustainability of both the provider and of the water resource itself. This paper examines the role played by consumer awareness in their willingness to pay for water supply in two cities in Zambia. Research conducted in Kitwe and Lusaka reveals that level of awareness, willingness to pay and cost recovery all vary directly. Whereas awareness may increase consumers’ willingness to pay, therefore assisting service provider’s cost recovery, the research presented here also reveals that factors such as ability to pay, affordability of bills, quality of water and of the service provided, as well as good business-consumer relations are important factors affecting a utility’s ability to recover its costs. If water utilities are to attain sustainability over the long-term, they will have to embark on and maintain consumer awareness programmes, raise the quality of service (e.g., through improved operation and maintenance), and develop and apply the right water tariff.

  8. Effective recovery of poly-β-hydroxybutyrate (PHB) biopolymer from Cupriavidus necator using a novel and environmentally friendly solvent system.

    Science.gov (United States)

    Fei, Tao; Cazeneuve, Stacy; Wen, Zhiyou; Wu, Lei; Wang, Tong

    2016-05-01

    This work demonstrates a significant advance in bioprocessing for a high-melting lipid polymer. A novel and environmental friendly solvent mixture, acetone/ethanol/propylene carbonate (A/E/P, 1:1:1 v/v/v) was identified for extracting poly-hydroxybutyrate (PHB), a high-value biopolymer, from Cupriavidus necator. A set of solubility curves of PHB in various solvents was established. PHB recovery of 85% and purity of 92% were obtained from defatted dry biomass (DDB) using A/E/P. This solvent mixture is compatible with water, and from non-defatted wet biomass, PHB recovery of 83% and purity of 90% were achieved. Water and hexane were evaluated as anti-solvents to assist PHB precipitation, and hexane improved recovery of PHB from biomass to 92% and the purity to 93%. A scale-up extraction and separation reactor was designed, built and successfully tested. Properties of PHB recovered were not significantly affected by the extraction solvent and conditions, as shown by average molecular weight (1.4 × 10(6) ) and melting point (175.2°C) not being different from PHB extracted using chloroform. Therefore, this biorenewable solvent system was effective and versatile for extracting PHB biopolymers. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:678-685, 2016. © 2016 American Institute of Chemical Engineers.

  9. Sustainable Water Use System of Artesian Water in Alluvial Fan

    Science.gov (United States)

    Kishi, K.; Tsujimura, M.; Tase, N.

    2013-12-01

    The traditional water use system, developed with the intelligence of the local residents, usually takes advantage of local natural resources and is considered as a sustainable system, because of its energy saving(only forces of nature). For this reason, such kind of water use system is also recommended in some strategic policies for the purpose of a symbiosis between nature and human society. Therefore, it is important to clarify the relationship between human activities and water use systems. This study aims to clarify the mechanism of traditional water use processes in alluvial fan, and in addition, to investigate the important factors which help forming a sustainable water use system from the aspects of natural conditions and human activities. The study area, an alluvial fan region named Adogawa, is located in Shiga Prefecture, Japan and is in the west of Biwa Lake which is the largest lake in Japan. In this alluvial region where the land use is mainly occupied by settlements and paddy fields, a groundwater flowing well system is called "kabata" according to local tradition. During field survey, we took samples of groundwater, river water and lake water as well as measured the potential head of groundwater. The results showed that the upper boundary of flowing water was approximately 88m amsl, which is basically the same as the results reported by Kishi and Kanno (1966). In study area, a rapid increase of water pumping for domestic water use and melting snow during last 50 years, even if the irrigation area has decreased about 30% since 1970, and this fact may cause a decrease in recharge rate to groundwater. However, the groundwater level didn't decline based on the observed results, which is probably contributed by some water conservancy projects on Biwa Lake which maintained the water level of the lake. All the water samples are characterized by Ca-HCO3 type and similar stable isotopic value of δD and δ18O. Groundwater level in irrigation season is higher

  10. Silver disinfection in water distribution systems

    Science.gov (United States)

    Silvestry Rodriguez, Nadia

    Silver was evaluated as disinfectant to maintain water quality in water distribution system. It was used to inhibit growth of two opportunistic bacteria in planktonik form and in biofilm formation in Robbins devices with stainless steel and PVC surfaces. The results of this work show that silver is a potential secondary disinfectant to be used in water distribution systems.

  11. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  12. Greening the global water system

    Science.gov (United States)

    Hoff, H.; Falkenmark, M.; Gerten, D.; Gordon, L.; Karlberg, L.; Rockström, J.

    2010-04-01

    SummaryRecent developments of global models and data sets enable a new, spatially explicit and process-based assessment of green and blue water in food production and trade. An initial intercomparison of a range of different (hydrological, vegetation, crop, water resources and economic) models, confirms that green water use in global crop production is about 4-5 times greater than consumptive blue water use. Hence, the full green-to-blue spectrum of agricultural water management options needs to be used when tackling the increasing water gap in food production. The different models calculate considerable potentials for complementing the conventional approach of adding irrigation, with measures to increase water productivity, such as rainwater harvesting, supplementary irrigation, vapour shift and soil and nutrient management. Several models highlight Africa, in particular sub-Saharan Africa, as a key region for improving water productivity in agriculture, by implementing these measures. Virtual water trade, mostly based on green water, helps to close the water gap in a number of countries. It is likely to become even more important in the future, when inequities in water availability are projected to grow, due to climate, population and other drivers of change. Further model developments and a rigorous green-blue water model intercomparison are proposed, to improve simulations at global and regional scale and to enable tradeoff analyses for the different adaptation options.

  13. Power System Operations With Water Constraints

    Science.gov (United States)

    Qiu, F.; Wang, J.

    2015-12-01

    The interdependency between water and energy, although known for many decades, has not received enough attention until recent events under extreme weather conditions (especially droughts). On one hand, water and several types of energy supplies have become increasingly scarce; the demand on water and energy continues to grow. On the other hand, the climate change has become more and more disruptive (i.e., intensity and frequency of extreme events), causing severe challenges to both systems simultaneously. Water and energy systems have become deeply coupled and challenges from extreme weather events must be addressed in a coordinated way across the two systems.In this work, we will build quantitative models to capture the interactions between water and energy systems. We will incorporate water constraints in power system operations and study the impact of water scarcity on power system resilience.

  14. In situ microbial systems for the enhancement of oil recovery

    International Nuclear Information System (INIS)

    Moses, V.

    1991-01-01

    Microbial Enhancement of Oil Recovery (MEOR) offers important new opportunities in the quest for increased oil production. It refers not to a single technique but rather to a collection of methodologies, analogous to parallel non-microbiological methods. MEOR has relevance for many type of production and reservoir problems detailed protocols: may be tailored specifically to a range of individual reservoir conditions. Microorganisms downhole can generate a wide variety of chemical products from inexpensive feed stocks: where these are more cost-effective than oil field chemicals injected from the surface, microbial methods may win widespread acceptance. MEOR methods must be defined precisely; in any particular reservoir procedure their proposed mechanism of action must be clearly understood and criteria established for evaluating their success. The most important applications for MEOR are 1) the production f insoluble or highly viscous polymer to control coning or to plug selectively high permeability thief zones and fractures, 2) the continuous generation of the active agents for polymer-and/or surfactant floods, 3) matrix acidisation and acid fracturing in carbonate rocks stimulate flows into production wells. All these approaches are currently actively been explored; several programmes for field-testing microbial EOR methods already exist, or are being readied, and rapid progress is likely within the next few years. (author)

  15. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  16. Efficiency of Artemia cysts removal as a model invasive spore using a continuous microwave system with heat recovery.

    Science.gov (United States)

    Balasubramanian, Sundar; Ortego, Jeffrey; Rusch, Kelly A; Boldor, Dorin

    2008-12-15

    A continuous microwave system to treat ballast water inoculated with Artemia salina cysts as a model invasive spore was tested for its efficacy in inactivating the cysts present. The system was tested at two different flow rates (1 and 2 L x min(-1)) and two different power levels (2.5 and 4.5 kW). Temperature profiles indicate that the system could deliver heating loads in excess of 100 degrees C in a uniform and near-instantaneous manner when using a heat recovery system. Except for a power and flow rate combination of 2.5 kW and 2 L x min(-1), complete inactivation of the cysts was observed at all combinations at holding times below 100 s. The microwave treatment was better or equal to the control treatment in inactivating the cysts. Use of heat exchangers increased the power conversion efficiency and the overall efficiency of the treatment system. Cost economics analysis indicates that in the present form of development microwave treatment costs are higher than the existing ballast water treatment methods. Overall, tests results indicated that microwave treatment of ballast water is a promising method that can be used in conjunction with other methods to form an efficient treatment system that can prevent introduction of potentially invasive spore forming species in non-native waters.

  17. Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis.

    Science.gov (United States)

    Peng, Changsheng; Liu, Yanyan; Bi, Jingjing; Xu, Huizhen; Ahmed, Abou-Shady

    2011-05-30

    In this paper, a laboratory-scale process which combined electrolysis (EL) and electrodialysis (ED) was developed to treat copper-containing wastewater. The feasibility of such process for copper recovery as well as water reuse was determined. Effects of three operating parameters, voltage, initial Cu(2+) concentration and water flux on the recovery of copper and water were investigated and optimized. The results showed that about 82% of copper could be recovered from high concentration wastewater (HCW, >400mg/L) by EL, at the optimal conditions of voltage 2.5 V/cm and water flux 4 L/h; while 50% of diluted water could be recycled from low concentration wastewater (LCW, water flux 4 L/h. However, because of the limitation of energy consumption (EC), LCW for EL and HCW for ED could not be treated effectively, and the effluent water of EL and concentrated water of ED should be further treated before discharged. Therefore, the combination process of EL and ED was developed to realize the recovery of copper and water simultaneously from both HCW and LCW. The results of the EL-ED process showed that almost 99.5% of copper and 100% of water could be recovered, with the energy consumption of EL ≈ 3 kW h/kg and ED ≈ 2 kW h/m(3). According to SEM and EDX analysis, the purity of recovered copper was as high as 97.9%. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Life cycle cost of a hybrid forward osmosis - low pressure reverse osmosis system for seawater desalination and wastewater recovery.

    Science.gov (United States)

    Valladares Linares, R; Li, Z; Yangali-Quintanilla, V; Ghaffour, N; Amy, G; Leiknes, T; Vrouwenvelder, J S

    2016-01-01

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis - low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor - reverse osmosis - advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m(3) d(-1) of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m(3) produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  19. Seed recovery and regeneration in coal-fired, open-cycle magnetohydrodynamic systems

    International Nuclear Information System (INIS)

    Sheth, A.C.; Jackson, D.M.; Attig, R.C.

    1986-01-01

    Coal-fired magnetohydrodynamic (MHD) power systems not only have high cycle efficiency, but they also have an inherent sulfur removal capability. The potassium compound uses as ''seed'' plays a dual role. It 1) increases the electrical conductivity of the plasma needed to produce power in the MHD electrical topping cycle, and 2) reacts with sulfur dioxide to form potassium sulfate, thereby eliminating most of the sulfur oxides from the gaseous effluent. For economical reasons, the spent seed must be recovered, desulfurized and recycled to the MHD power plant. This paper reviews some of the available experimental results and literature relating to SO 2 removal and seed recovery, and will also discuss several potential seed regeneration processes. Three methods of potassium extraction are discussed, i.e., hot aqueous digestion with CA(OH) 2 /NaOH, acid washing, and aqueous extraction. The selected candidate regeneration systems are discussed from the viewpoint of energy and process water requirements and environmental considerations such as waste discharges and emissions of gaseous, particulate and trace element pollutants

  20. Evaluating humidity recovery efficiency of currently available heat and moisture exchangers: a respiratory system model study

    Directory of Open Access Journals (Sweden)

    Jeanette Janaina Jaber Lucato

    2009-06-01

    Full Text Available OBJECTIVES: To evaluate and compare the efficiency of humidification in available heat and moisture exchanger models under conditions of varying tidal volume, respiratory rate, and flow rate. INTRODUCTION: Inspired gases are routinely preconditioned by heat and moisture exchangers to provide a heat and water content similar to that provided normally by the nose and upper airways. The absolute humidity of air retrieved from and returned to the ventilated patient is an important measurable outcome of the heat and moisture exchangers' humidifying performance. METHODS: Eight different heat and moisture exchangers were studied using a respiratory system analog. The system included a heated chamber (acrylic glass, maintained at 37°C, a preserved swine lung, a hygrometer, circuitry and a ventilator. Humidity and temperature levels were measured using eight distinct interposed heat and moisture exchangers given different tidal volumes, respiratory frequencies and flow-rate conditions. Recovery of absolute humidity (%RAH was calculated for each setting. RESULTS: Increasing tidal volumes led to a reduction in %RAH for all heat and moisture exchangers while no significant effect was demonstrated in the context of varying respiratory rate or inspiratory flow. CONCLUSIONS: Our data indicate that heat and moisture exchangers are more efficient when used with low tidal volume ventilation. The roles of flow and respiratory rate were of lesser importance, suggesting that their adjustment has a less significant effect on the performance of heat and moisture exchangers.