WorldWideScience

Sample records for water quality stream

  1. Stream Water Quality Model

    Data.gov (United States)

    U.S. Environmental Protection Agency — QUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987).

  2. Water Quality of Emet Stream Basin

    Directory of Open Access Journals (Sweden)

    Cem TOKATLI

    2016-08-01

    Full Text Available Emet Stream Basin is one of Turkey's most important river systems and one of the two most important branches of Uluabat Lake (Ramsar Area. The system is under an intensive pressure of agricultural and industrial activities and domestic wastes. In this study, water samples were collected seasonally from eight stations (one of them is on the Kınık Stream, one of them is on the Dursunbey Stream and six of them on the Emet Stream on the Emet Stream Basin. Some lymnological parameters (nitrate nitrogen, nitrite nitrogen, ammonium nitrogen, sulfate, orthophosphate, and BOD5 were determined to evaluate the water quality. The data obtained were evaluated statistically and compared with the limit values reported by various national and international organizations. It was determined that, Emet Stream Basin is exposed to a significant organic pollution. 

  3. Water quality assessment of streams draining the Akwapim Ridge of ...

    African Journals Online (AJOL)

    Surface water samples from seven streams on the Akwapim Ridge were analysed over a period of 1 year for various water quality parameters following standard methods prescribed in APHA, AWWA, WEF and AOAC. The study was carried out in order to assess the suitability of the streams for drinking and other domestic ...

  4. Determination of water quality index and portability of Iguedo stream ...

    African Journals Online (AJOL)

    The parameters that most influenced the WQI as depicted by quality rating values include pH, Mn, Ni, Cd and Pb. Application of WQI in this study has been found functional in assessing the water quality of this stream based on the selected parameters. Key words: Water quality index, physicochemical parameters, Iguedo ...

  5. Environmental Monitoring, Water Quality - MO 2009 Stream Team Volunteer Water Quality Monitoring Sites (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set shows the monitoring locations of trained Volunteer Water Quality Monitors. A monitoring site is considered to be a 300 foot section of stream channel....

  6. Stream water quality in the western regions of Iran

    African Journals Online (AJOL)

    SERVER

    2007-07-18

    Jul 18, 2007 ... Jenkins et al., 1995; Tamasebi and Jafarian, 2006). This study presents the water quality of the some rivers and streams in the west part of Iran. The objective was to characterize the chemical and physical properties of surface water of the geological environments and to determine the anthropogenic im-.

  7. Characterizing changing stream water quality in a glacierized tropical watershed

    Science.gov (United States)

    Mark, B. G.; Eddy, A. M.; Baraer, M.; McKenzie, J. M.; Walsh, E.; Fernandez, A.; Wigmore, O.; Battista, R.; Guittard, A.

    2013-12-01

    Glacier recession in the Cordillera Blanca, Peru has been causing downstream hydrologic transformations, altering the amount, timing and chemical quality of stream water. Increased demand from multiple water resource users, particularly industrial-scale agricultural irrigation along the desert coast, underscores the need for accurate source attribution and treatment of pollutants. Water quality assessment is challenging given natural geologic controls on water chemistry concentrations, and a lack of consistent historical monitoring. Here we present results from an analytical characterization of spatial and temporal variability in the dissolved loads of major ions, isotopes and select trace metals in the Pacific-draining Santa River and tributaries. Our approach incorporates multi-year synoptic sampling of water chemistry and stream discharge along the river course and at tributary pour points, along with weekly sampling at single point along the upper Santa. Samples were taken predominately during the austral winter months of June, July, and August in 2004 - 2009 and 2011 - 2013 at 20-30 stream localities. Digitized maps of geology, land use and hydrography permit geographic visualization and exploratory GIS-based data analysis. Results indicate that the dominant hydrochemical processes throughout the Santa watershed include silicate weathering, coupled pyrite oxidation with silicate weathering, and to a lesser extent, carbonate weathering. Low pH and high concentrations of sulfate are found in the presence of high-silica granitic and metamorphic surface lithology in some sites proximal to receding glaciers, reflecting an environment that is driven by coupled sulfide-oxidation and silicate dissolution. Numerous sites had elevated concentrations of trace metals (such as As, Cd, and Pb) indicating potential local sources of contamination, some in excess of World Health Organization. Weekly sampling show dilution of certain trace metals during the wet season, and

  8. Potential Impacts of Organic Wastes on Small Stream Water Quality

    Science.gov (United States)

    Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.

    2005-05-01

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall

  9. Comparison of drinking water treatment process streams for optimal bacteriological water quality.

    Science.gov (United States)

    Ho, Lionel; Braun, Kalan; Fabris, Rolando; Hoefel, Daniel; Morran, Jim; Monis, Paul; Drikas, Mary

    2012-08-01

    Four pilot-scale treatment process streams (Stream 1 - Conventional treatment (coagulation/flocculation/dual media filtration); Stream 2 - Magnetic ion exchange (MIEX)/Conventional treatment; Stream 3 - MIEX/Conventional treatment/granular activated carbon (GAC) filtration; Stream 4 - Microfiltration/nanofiltration) were commissioned to compare their effectiveness in producing high quality potable water prior to disinfection. Despite receiving highly variable source water quality throughout the investigation, each stream consistently reduced colour and turbidity to below Australian Drinking Water Guideline levels, with the exception of Stream 1 which was difficult to manage due to the reactive nature of coagulation control. Of particular interest was the bacteriological quality of the treated waters where flow cytometry was shown to be the superior monitoring tool in comparison to the traditional heterotrophic plate count method. Based on removal of total and active bacteria, the treatment process streams were ranked in the order: Stream 4 (average log removal of 2.7) > Stream 2 (average log removal of 2.3) > Stream 3 (average log removal of 1.5) > Stream 1 (average log removal of 1.0). The lower removals in Stream 3 were attributed to bacteria detaching from the GAC filter. Bacterial community analysis revealed that the treatments affected the bacteria present, with the communities in streams incorporating conventional treatment clustering with each other, while the community composition of Stream 4 was very different to those of Streams 1, 2 and 3. MIEX treatment was shown to enhance removal of bacteria due to more efficient flocculation which was validated through the novel application of the photometric dispersion analyser. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Towards benchmarking an in-stream water quality model

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available A method of model evaluation is presented which utilises a comparison with a benchmark model. The proposed benchmarking concept is one that can be applied to many hydrological models but, in this instance, is implemented in the context of an in-stream water quality model. The benchmark model is defined in such a way that it is easily implemented within the framework of the test model, i.e. the approach relies on two applications of the same model code rather than the application of two separate model codes. This is illustrated using two case studies from the UK, the Rivers Aire and Ouse, with the objective of simulating a water quality classification, general quality assessment (GQA, which is based on dissolved oxygen, biochemical oxygen demand and ammonium. Comparisons between the benchmark and test models are made based on GQA, as well as a step-wise assessment against the components required in its derivation. The benchmarking process yields a great deal of important information about the performance of the test model and raises issues about a priori definition of the assessment criteria.

  11. Water Quality Development in the Semíč Stream

    Directory of Open Access Journals (Sweden)

    Petra Oppeltová

    2015-01-01

    Full Text Available The aims of the work were to analyse selected quality indicators of a small water stream called Semíč and evaluate the results based on the valid legislation. Eight sampling profiles (SP were selected and water was sampled four times a year in the period May 2013–April 2014. PH, conductivity, oxygen content and temperature were measured directly in the field. Subsequently, ferrum, nitric nitrogen, ammoniacal nitrogen, sulphates, chlorides, chemical oxygen demand tested using dichromate, total phosphorus, total nitrogen and manganese were analysed in the laboratory. Analyses of selected heavy metals – zinc, copper and aluminum – were carried out in spring 2014. The results were classified in compliance with Government Decree (GD No. 61/2003 Coll., as amended, and Czech standard ČSN 75 7221. The results of the period 2013–2014 were compared with the results from 2002–2003 and 1992. The resulting concentrations of substances manifest considerable instability during the year, which can most likely be attributed to large changes in flow rates in different seasons. When comparing the values to older results, it can be concluded that the concentrations of a number of substances have decreased; by contrast, others have increased. An extreme increase in copper was detected, where the concentration exceeded the environmental quality standard several times.

  12. Chapter 5: Surface water quality sampling in streams and canals

    Science.gov (United States)

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  13. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams

    Science.gov (United States)

    Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance

    2010-01-01

    We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...

  14. National water summary 1990-91: Hydrologic events and stream water quality

    Science.gov (United States)

    Paulson, Richard W.; Chase, Edith B.; Williams, John S.; Moody, David W.

    1993-01-01

    National Water Summary 1990-91 Hydrologic Events and Stream Water Quality was planned to complement existing Federal-State water-quality reporting to the U.S. Congress that is required by the Clean Water Act of 1972. This act, formally known as the Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500), and its amendments in 1977,1979,1980,1981,1983, and 1987, is the principal basis for Federal-State cooperation on maintaining and reporting on water quality in the United States. Under section 305(b) of the Clean Water Act, the States must designate uses for waterbodies, biennially assess whether the waterbodies meet designated uses, and report to the U.S. Environmental Protection Agency (EPA), which in turn summarizes the findings of the State assessments in a biennial National Water Quality Inventory report to the Congress.

  15. Impacts of an invasive N2-fixing tree on Hawaiian stream water quality

    Science.gov (United States)

    Tracy N. Wiegner; Flint Hughes; Lisa M. Shizuma; David K. Bishaw; Mark E. Manuel

    2013-01-01

    N2-fixing trees can affect stream water quality. This has been documented in temperate streams, but not in tropical ones, even though N2-fixing trees are prevalent in the tropics. We investigated the effects of the introduced, invasive tree, Falcataria moluccanaalbiziaon water...

  16. Multivariate statistical techniques for the evaluation of surface water quality of the Himalayan foothills streams, Pakistan

    National Research Council Canada - National Science Library

    Malik, Riffat Naseem; Hashmi, Muhammad Zaffar

    2017-01-01

    ...; thus, the water quality is closely related to public health. Multivariate techniques were applied to check spatial and seasonal trends, and metals contamination sources of the Himalayan foothills streams, Pakistan...

  17. Macro Invertebrates As Bio Indicators Of Water Quality In Nzovwe Stream In Mbeya Tanzania

    Directory of Open Access Journals (Sweden)

    Fredrick Ojija

    2015-08-01

    Full Text Available This study was carried out to assess the water quality of Nzovwe stream using macroinvertebrates as bioindicators. Biological monitoring working party BMWP scoring system was the index used to assess the ecosystem health of Nzovwe stream. A total of 584 aquatic macroinvertebrates were identified from Nzovwe stream. They belonged to 22 families. The most abundant taxa were Odonata 35.959 Hemiptera 25.514 Coleoptera 18.493 and Diptera 12.842. Whereas the least abundant taxa were Ephemeroptera and Gastropoda each constituting 1.028 of all macroinvertebrates. The most abundant macroinvertebrates were Dragonflies 27.226 Water striders 13.185 and Creeping water bugs 10.274 whereas the least abundant were Giant water bugs 0.514 and Backswimmers 0.514. The BMWP score of Nzovwe stream was 115. Based on this score the water of Nzovwe stream is neither very clean nor significantly altered aquatic environment. Hence the Nzovwe stream is moderately polluted due to non-point source pollution from several sources. Moreover it was found that agricultural activities washing and bathing could alter physico-chemical parameters of the stream and hence changing the abundance of macroinvertebrates as well as the quality of water. This study therefore recommends that the source of pollutants should be controlled and the stream regularly monitored by the relevant authorities. Additionally biological indicators and their indices are suggested to be used in assessing the condition of a stream ecosystem.

  18. Use of index analysis to evaluate the water quality of a stream ...

    African Journals Online (AJOL)

    In this paper, the water quality of a stream that receives industrial effluents is evaluated through the analysis of two indices. Data (dissolved oxygen, biochemical oxygen demand, pH, turbidity, colour, temperature and thermotolerant coliforms) were collected from five stations in the Mussuré Stream, located in João Pessoa ...

  19. Watershed features and stream water quality: Gaining insight through path analysis in a Midwest urban landscape, USA

    Science.gov (United States)

    Jiayu Wu; Timothy W. Stewart; Janette R. Thompson; Randy Kolka; Kristie J. Franz

    2015-01-01

    Urban stream condition is often degraded by human activities in the surrounding watershed. Given the complexity of urban areas, relationships among variables that cause stream degradation can be difficult to isolate. We examined factors affecting stream condition by evaluating social, terrestrial, stream hydrology and water quality variables from 20 urban stream...

  20. Water quality and biotic community composition of a highland stream influenced by different human activities

    Directory of Open Access Journals (Sweden)

    Radovan Kopp

    2012-01-01

    Full Text Available The aim of the present study was to evaluate the influence of different human activities on water quality and benthos composition in the Ošetnice Stream that is located in the Western Carpathian Mountains. During the whole period of our monitoring, the high concentrations of dissolved oxygen and low content of organic matters were determined. Upstream part of the Ošetnice Stream is affected by long term building activities concerning railway tunnels and by the motorway along the stream that is in winter chemically treated to assure negotiability. Ski area situated close to the stream was used 110 days during the monitored period. Average daily visit was 590 persons. In winter, when road salting was used, concentrations of chlorides, sodium and calcium were noticeably increased in the stream tributaries which had an impact on monitored water parameters. Water quality assessment using macrozoobenthos and phytobenthos indices revealed the environmental state in a range from moderate to good. Decrease of salmonid community in the stream corresponds to start of road use in the year 2002. Salt applied in winter period to ensure road negotiability affected significantly water chemistry of the monitored stream. Deterioration of environmental conditions is mainly due to human activities; nevertheless self-cleaning ability of the stream is high and ensure a fast degradation of pollutants. Thus the biotic communities (except fish of the Ošetnice Stream have to adapt to changes of the environment within the year.

  1. Water quality of streams in Johnson County, Kansas, 2002-07

    Science.gov (United States)

    Rasmussen, T.J.

    2009-01-01

    Water quality of streams in Johnson County, Kansas was evaluated from October 2002 through December 2007 in a cooperative study between the U.S. Geological Survey and the Johnson County Stormwater Management Program. Water quality at 42 stream sites, representing urban and rural basins, was characterized by evaluating benthic macroinvertebrates, water (discrete and continuous data), and/or streambed sediment. Point and nonpoint sources and transport were described for water-quality constituents including suspended sediment, dissolved solids and major ions, nutrients (nitrogen and phosphorus), indicator bacteria, pesticides, and organic wastewater and pharmaceutical compounds. The information obtained from this study is being used by city and county officials to develop effective management plans for protecting and improving stream quality. This fact sheet summarizes important results from three comprehensive reports published as part of the study and available on the World Wide Web at http://ks.water.usgs.gov/Kansas/studies/qw/joco/. ?? 2009 ASCE.

  2. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    Science.gov (United States)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  3. Continuous Water-Quality Monitoring of Streams in Johnson County, Kansas, 2002-06

    Science.gov (United States)

    Rasmussen, Teresa J.; Lee, Casey J.; Ziegler, Andrew C.

    2008-01-01

    Water quality in Johnson County, Kansas was characterized on the basis of continuous, in-stream monitoring. The results summarized in this fact sheet may be used to better understand concentration and load variability during changing seasonal and streamflow conditions and to assess water-quality conditions relative to water-quality standards and management goals. The baseline information also will be useful for evaluating future changes in land use and effectiveness of implemented best management practices.

  4. Effects of coal strip mining on stream water quality and biology, southwestern Washington

    Science.gov (United States)

    Fuste, L.A.; Meyer, D.F.

    1987-01-01

    Strip mining for coal in southwestern Washington may be affecting the water quality of streams. To investigate these possible effects, five streams were selected for study of water quality in each of the two coal bearing areas: the Centralia-Chehalis coal district, and Kelso-Castle Rock coal area. In the Centralia-Chehalis coal district, three of the streams have drainage basins in which mines are active. Water in streams that drain unmined basins is typical of western Washington streams and is characterized as a mixed water because calcium, magnesium, sodium, and bicarbonate ions predominate. A change in anionic composition from bicarbonate to sulfate in streams draining mined areas was not sufficient to change the general water composition and thus make the streams acidic. The largest downstream changes in water quality in both mined and unmined drainage basins were observed during summer low-flow conditions, when minimal dilution, increased water temperatures, and low dissolved oxygen concentrations occurred. High dissolved solids were found in the mined drainage basins during this period. High concentrations of iron, manganese, and zinc were present in the bottom sediments of the mined basins. Moderate concentrations of chromium, cobalt, copper, and zinc were also found in the bottom sediments of a few unmined basins. Streams with substrates of gravel-cobble or gravel-coarse sand had the most diverse benthic fauna and a higher number of ubiquitous taxa than streams with sand-silt substrates, which had the most dissimilar fauna. Mayflies, stoneflies, and caddisflies were rare at the site most affected by mining. The erosion potential of a basin appears to be related to the average basin slope and the amount of forested areas. Strip mining for coal in steep basins may lead to massive movements of unconsolidated spoils after vegetal cover is removed if the land disturbed is graded to pre-mining slopes. (Lantz-PTT)

  5. Stream Flooding Response and Water Quality as a Function of Increasing Impervious Surface Area

    Science.gov (United States)

    Hasenmueller, E. A.; Criss, R. E.; Winston, W. E.; Shaughnessy, A. R.

    2016-12-01

    Urban and suburban streams often exhibit frequent flash floods and low water quality, but surprisingly few studies of these systems attempt to resolve the relative contributions of different runoff fractions and their associated geochemistry. This study deliberately examined concurrent responses in three watersheds and two subbasins along a gradient of increasing impervious surface area in and around highly urbanized Saint Louis, Missouri, USA, to quantify changes in the relative contributions of pre-event (baseflow) and event (runoff) water to streamflow during flooding using hydrograph separations. Our high frequency monitoring of stable isotopes ratios (δ2H and δ18O) and water quality (temperature, dissolved O2, pH, turbidity, specific conductivity, concentrations of Cl- and nutrients, and bacterial loads) quantify large hydrologic and geochemical differences across the land use gradient. Following precipitation events, floods on a rural stream feature slow flow responses, hydrographs with low peak discharges and long lag times, high baseflow contributions, and small geochemical variations. In contrast, the flows of an urban stream and its tributary respond in a flashier manner, with peak flows that are nearly 10 times higher, average lag times that decrease by 85%, and event water contributions that are 2 times higher compared to the rural stream. The urban streams also exhibit large fluctuations in geochemistry, often with 5 times the variability of the rural end-member. These large geochemical changes in urban streams following storms are paralleled by more chaotic diurnal and seasonal variations. Importantly, we find that reduced baseflow as a function of increasing impervious surface area is not linear; thus, the hydrology of suburban streams is less impacted than would be predicted by impervious surface alone. This non-linear relationship with impervious surface area is also observed in some of the geochemical responses to flooding, and therefore

  6. Empirical Modeling of Stream Water Quality for Complex Coastal-Urban Watersheds

    Science.gov (United States)

    Al-Amin, S.; Abdul-Aziz, O.

    2013-12-01

    This study develops an understanding of the relative influence of land uses, surface hydrology, groundwater, seawater, and upstream contributions on the in-stream water quality of six highly urbanized, complex urban watersheds of South Florida by analyzing seasonal (Winter, Spring, Summer, and Fall) time-series of field data. We first explored the correlations among quality parameters (i.e., total nitrogen, total phosphorus, dissolved oxygen and specific conductance) and their changes with distance and time. Principle component analysis was then conducted to investigate the mutual correlations and potential group formations among the predictor and response variables. The findings were leveraged to develop regression-based non-linear empirical models for explaining stream water quality in relation to internal (land uses and hydrology) and external (upstream contribution, seawater) sources and drivers. In-stream dissolved oxygen and total phosphorus in the watersheds were dictated by internal stressors, while external stressors were dominant for total nitrogen and specific conductance. The research findings provide important insights into the dominant stressors of seasonal stream water quality of complex coastal-urban watersheds under a changing environment. The research tools will be useful for developing proactive monitoring and seasonally exclusive management strategies for urban stream water quality improvement in South Florida and around the world.

  7. Water quality, catchment imperviousness and Water Sensitive Urban Design in a small urban stream in Helsinki, Finland

    OpenAIRE

    Stuart, Elliot

    2013-01-01

    The primary characteristic of urbanisation is the addition of hard surfaces to catchments, which affects water and habitat quality in urban streams and alters natural hydrological processes by reducing infiltration, evapotranpiration and efficiently conveying storm runoff to streams, gathering a variety of urban polluants along the way. This is typical of the ‘urban stream syndrome’. Catchment imperviousness (especially Effective Impervious Area or percent connectivity) can be used as one of ...

  8. Monitoring of water quality of a stream at the Federal University of Pernambuco, Brazil

    Directory of Open Access Journals (Sweden)

    Marlyete Chagas de Araújo

    2013-12-01

    Full Text Available The Cavouco stream is an affluent of Pernambuco’s main river, the Capibaribe, and has its source on the campus of the Federal University of Pernambuco (UFPE. The stretch of the river that runs within the university receives an influx of pollution in the form of chemicals, and household and hospital waste. In light of this situation, and hoping to mitigate it, the aim of this study was to analyze the water quality of this stream and to raise the academic community’s awareness regarding this issue. To this end, stream water samples were collected in two different periods (dry and rainy at five strategic points on campus. The water samples were sent to the Water Treatment Plant and to the Laboratory for Analysis of Mineral, Soil and Water of the UFPE where 16 physicochemical parameters were analyzed (temperature, turbidity, conductivity, total dissolved solids, pH, dissolved oxygen, ammonia, nitrite, nitrate, iron, manganese, cadmium, lead, copper, chromium, zinc according to the methodology of 21st Standard Methods for the Examination of Water and Wastewater. The results show that the water of the Cavouco stream has a high load of pollution, with the points P2 and P5 being the most impacted. Additionally, the results of the Index of Water Quality for the Protection of Aquatic Life indicated that currently the stream has a low capacity for maintenance of aquatic life.

  9. USE OF DIATOMS TO ASSES WATER QUALITY OF ANTHROPOGENICALLY MODIFIED MATYSÓWKA STREAM

    Directory of Open Access Journals (Sweden)

    Teresa Noga

    2013-04-01

    Full Text Available Matysówka stream is small, under 6 km long watercourse, which is a right-bank tributary of Strug River. In 2009–2011studies on the subject of diversity of diatom communities using diatom indices IPS, GDI and TDI for water quality assessment were conducted. On the stream 271 diatom taxa were identified, among which: Achnanthidium minutissimum var. minutissimum, Navicula cryptotenella, N. gregaria, N. lanceolata, N. tripunctata, Nitzschia linearis, N. pusilla, N. recta, Planothidium frequentissimum, Rhoicosphenia abbreviata were the most frequent. Middle and lower section of Matysówka stream was characterized by increased concentrations of phosphates, nitrites, ammonium, total phosphorus and nitrogen, BOD5. On the basis of diatom indices IPS and GDI waters were characterized as III–IV quality classes, while the TDI index revealed the worst water quality classes (IV–V.

  10. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    DEFF Research Database (Denmark)

    Petersen, Mette Fjendbo; Eriksson, Eva; Binning, Philip John

    2012-01-01

    pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along...... impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 – 8.8 g/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most...... the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor...

  11. A stochastic dynamic programming model for stream water quality ...

    Indian Academy of Sciences (India)

    This paper deals with development of a seasonal fraction-removal policy model for waste load allocation in streams addressing uncertainties due to randomness and fuzziness. A stochastic dynamic programming (SDP) model is developed to arrive at the steady-state seasonal fraction-removal policy. A fuzzy decision model ...

  12. Supercharged Snails for Stream Ecology & Water-Quality Studies

    Science.gov (United States)

    Stewart, Arthur J.; Ryon, Michael G.

    2003-01-01

    Gill-breathing freshwater snails (Family "Pleuroceridae") are ecologically important, abundant in many streams in the United States, and easy to collect and maintain under classroom conditions. These snails can be used in classroom tests to demonstrate effects of pollutants on aquatic organisms. In more advanced classes, students can cage the…

  13. Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams

    Science.gov (United States)

    Smith, Rose M.; Kaushal, Sujay S.; Beaulieu, Jake J.; Pennino, Michael J.; Welty, Claire

    2017-06-01

    Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) globally, and watershed management can alter greenhouse gas (GHG) emissions from streams. We hypothesized that urban infrastructure significantly alters downstream water quality and contributes to variability in GHG saturation and emissions. We measured gas saturation and estimated emission rates in headwaters of two urban stream networks (Red Run and Dead Run) of the Baltimore Ecosystem Study Long-Term Ecological Research project. We identified four combinations of stormwater and sanitary infrastructure present in these watersheds, including: (1) stream burial, (2) inline stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. We selected two first-order catchments in each of these categories and measured GHG concentrations, emissions, and dissolved inorganic and organic carbon (DIC and DOC) and nutrient concentrations biweekly for 1 year. From a water quality perspective, the DOC : NO3- ratio of streamwater was significantly different across infrastructure categories. Multiple linear regressions including DOC : NO3- and other variables (dissolved oxygen, DO; total dissolved nitrogen, TDN; and temperature) explained much of the statistical variation in nitrous oxide (N2O, r2 = 0.78), carbon dioxide (CO2, r2 = 0.78), and methane (CH4, r2 = 0.50) saturation in stream water. We measured N2O saturation ratios, which were among the highest reported in the literature for streams, ranging from 1.1 to 47 across all sites and dates. N2O saturation ratios were highest in streams draining watersheds with septic systems and strongly correlated with TDN. The CO2 saturation ratio was highly correlated with the N2O saturation ratio across all sites and dates, and the CO2 saturation ratio ranged from 1.1 to 73. CH4 was always supersaturated, with saturation ratios ranging from 3.0 to 2157. Longitudinal surveys extending form headwaters to third

  14. Collecting Stream Samples for Water Quality. Module 16. Vocational Education Training in Environmental Health Sciences.

    Science.gov (United States)

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on collecting stream samples for water quality. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) using a job aid to…

  15. Effect of Strip Mining on Water Quality in Small Streams in Eastern Kentucky, 1967-1975

    Science.gov (United States)

    Kenneth L. Dyer; Willie R. Curtis

    1977-01-01

    Eight years of streamflow data are analyzed to show the effects of strip mining on chemical quality of water in six first-order streams in Breathitt County, Kentucky. All these watersheds were unmined in August, 1967, but five have since been strip mined. The accumulated data from this case history study indicate that strip mining causes large increases in the...

  16. Effects of silvicultural management on low gradient stream water quality in Louisiana

    Science.gov (United States)

    John Beebe; George Ice; Y. Jun Xu; Abram DaSilva; Richard Stich

    2012-01-01

    Oxygen depletion in rivers and streams is among the top 5 impairment types most frequently cited in state water quality reports in the U.S., especially in the South. Such impairments require the development of Total Maximum Daily Loads (TMDLs) or other strategies to ameliorate low dissolved oxygen (DO) levels or high biochemical oxygen demand (BOD). TMDLs allocated to...

  17. Water quality effects of herded stream crossings by domestic sheep bands.

    Science.gov (United States)

    Clark, Patrick E; Moffet, Corey A; Lewis, Gregory S; Seyfried, Mark S; Hardegree, Stuart P; Pierson, Fredrick B

    2012-01-01

    Livestock impacts on total suspended solids (TSS) and pathogen (e.g., ) levels in rangeland streams are a serious concern worldwide. Herded stream crossings by domestic sheep () are periodic, necessary managerial events on high-elevation rangelands, but their impacts on stream water quality are largely unknown. We evaluated the effects of herded, one-way crossings by sheep bands (about 2000 individuals) on TSS and concentration and load responses in downstream waters. Crossing trials were conducted during the summers of 2005 and 2006 on two reaches within each of three perennial streams in the Centennial Mountains of eastern Idaho and southwestern Montana. Water samples were collected at 2-min intervals at an upstream background station and at stations 25, 100, 500, and 1500 m downstream just before and during each crossing trial. Crossings produced substantial increases in TSS and concentrations and loads downstream, but these concentration increases were localized and short lived. Maximum TSS concentration was highest 25 m downstream, declined as a function of downstream distance, and at 500 m downstream was similar to background. Post-peak TSS concentrations at all downstream stations decreased to sheep do affect water quality; therefore, producers and resource managers should continue to evaluate the efficacy of herdsmanship techniques for reducing water quality impact. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Effects of urban stormwater-management strategies on stream-water quantity and quality

    Science.gov (United States)

    Loperfido, J.V.; Hogan, Dianna M.

    2012-01-01

    Urbanization results in elevated stormwater runoff, greater and more intense streamflow, and increased delivery of pollutants to local streams and downstream aquatic systems such as the Chesapeake Bay. Stormwater Best Management Practices (BMPs) are used to mitigate these effects of urban land use by retaining large volumes of stormwater runoff (water quantity) and removing pollutants in the runoff (water quality). Current USGS research aims to understand how the spatial pattern and connectivity of stormwater BMPs affect water quantity and water quality in urban areas.

  19. Water quality assessment in streams and wastewater treatment plants of Blantyre, Malawi

    Science.gov (United States)

    Sajidu, S. M. I.; Masamba, W. R. L.; Henry, E. M. T.; Kuyeli, S. M.

    The population of the city of Blantyre has grown rapidly over the past few years without keeping pace with the national economy. The most visibly affected areas of this increase in population are access to adequate clean water, solid waste collection and disposal, sanitary and sewerage facilities. The objective of this study was to evaluate water quality in streams and wastewater treatment plants (WWTP) in the City of Blantyre, Malawi. Study locations included Limbe WWTP, Soche WWTP, Limbe, Mudi and Nasolo streams. Water samples were collected by grab sampling technique in February 2005. Phosphates, nitrates and sulphates were determined by vanadomolybdophosphoric acid colorimetric, salicylate colorimetric and turbidimetric methods, respectively. Metals were analysed using atomic absorption spectroscopy. Concentrations of lead, cadmium, iron, manganese, zinc, chromium and nickel were much higher than the World Health safe limits for drinking water in all the sampled streams after they had passed through industrial areas. Nitrates and sulphates concentrations at all sampling points were found to be lower than the safe limits for drinking water of 50 mg/l and 250 mg/l, respectively. However, phosphate concentrations were above the safe limit of 0.5 mg/l. It was also observed that biochemical oxygen demand (BOD 5) levels were above the World Health Organisation limit of 20 mg/l at all sites except Mudi and Limbe streams before passing through industrial areas. This was an indication of pollution in the streams. Values of pH and total dissolved solids (TDS) were within the recommended standards. The results suggest that streams in Blantyre City get polluted by heavy metals and nutrients which could be due to uncontrolled industrial waste disposal, vehicular emissions and agricultural activities. Regular monitoring of the water quality and enforcement of environmental protection laws are needed in order to control pollution in the city.

  20. A stochastic dynamic programming model for stream water quality ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Due to seasonal variation of river flow, the assimilative capacity of the river system also varies within a year. A seasonal fraction-removal policy has to be specified based on varying assimilative capacity of the river rather than on a single value of river flow for the entire year. Seasonal waste water discharge programmes.

  1. Water-quality characteristics for selected streams in Lawrence County, South Dakota, 1988-92

    Science.gov (United States)

    Williamson, Joyce E.; Hayes, Timothy Scott

    2000-01-01

    During the 1980?s, significant economic development and population growth began to occur in Lawrence County in the northern part of the Black Hills of western South Dakota. Rising gold prices and heap-leach extraction methods allowed the economic recovery of marginal gold ore deposits, resulting in development of several large-scale, open-pit gold mines in Lawrence County. There was increasing local concern regarding potential impacts on the hydrologic system, especially relating to the quantity and quality of water in the numerous streams and springs of Lawrence County. In order to characterize the water quality of selected streams within Lawrence County, samples were collected from 1988 through 1992 at different times of the year and under variable hydrologic conditions. During the time of this study, the Black Hills area was experiencing a drought; thus, most samples were collected during low-flow conditions.Streamflow and water-quality characteristics in Lawrence County are affected by both geologic conditions and precipitation patterns. Most streams that cross outcrops of the Madison Limestone and Minnelusa Formation lose all or large part of their streamflow to aquifer recharge. Streams that are predominantly spring fed have relatively stable streamflow, varying slightly with dry and wet precipitation cycles.Most streams in Lawrence County generally have calcium magnesium bicarbonate type waters. The sites from the mineralized area of central Lawrence County vary slightly from other streams in Lawrence County by having higher concentrations of sodium, less bicarbonate, and more sulfate. False Bottom Creek near Central City has more sulfate than bicarbonate. Nitrogen, phosphorous, and cyanide concentrations were at or near the laboratory reporting limits for most sites and did not exceed any of the water-quality standards. Nitrite plus nitrate concentrations at Annie Creek near Lead, Whitetail Creek at Lead, Squaw Creek near Spearfish, and Spearfish Creek

  2. Controls of catchments` sub-storage contributions to dynamic water quality patterns in the stream network

    Science.gov (United States)

    Schuetz, Tobias; Maike Hegenauer, Anja

    2016-04-01

    Water quality is usually observed either continuously at a few stations within a catchment or with few snapshot sampling campaigns throughout the whole stream network. Although we know that the depletion of catchment sub-storages can vary throughout the stream network according to their actual water content (spatial variability of actual storage conditions can be caused amongst others by unevenly distributed rainfall, storage size or spatial differences in soil characteristics and land use), we know little about the impact of this process on spatial water quality patterns. For summer low flow recession periods, when stream water composition can be crucial for aquatic ecosystem conditions and the exceedance of water quality thresholds, knowledge on the controls of the dynamic interplay of catchment storages and stream water composition might improve water quality management and the implementation of corresponding mitigation measures. We studied this process throughout the stream network of a first-order agricultural headwater catchment in south-western Germany during two summer low flow recession periods. The underlying geology of the study area is a deep layer of aeolian loess, whilst the dominating soil is a silty calcaric regosol with gleizations in the colluvium. The land use in the catchment is dominated by viniculture (63 %) and arable crops (18 %). Due to the dense drainpipe network within the catchment we could identify 12 sub-catchments contributing during summer low flow recession periods to total stream discharge. We continuously observed discharge, electrical conductivity and water temperatures for 8 of the sub-catchments and at the catchment outlet. This data set was accomplished by 10 snapshot campaigns where we sampled for water temperatures, electrical conductivity, major ions, pH and O2 throughout the stream network. Using either discharge concentration relationships or time dependent functions, we derived continuous export rates for all measures in

  3. Impacts of Catfish Effluents on Water Quality Parameters of Majidun Stream, South-West, Nigeria

    Directory of Open Access Journals (Sweden)

    O. E. Omofunmi

    2017-06-01

    Full Text Available There has been a great concern about the level of safety of surface waters, especially in developing countries where there is an exponential increase in water pollution and water-borne diseases. The aim of this study was to assess the effect of catfish pond effluents on water quality of stream water where five catfish farms were located. Water samples were taken on monthly basis, 20 cm of below water surface from the streams that receive effluents from neighboring fishponds. Water quality indicators like dissolved oxygen, biochemical oxygen demand (BOD5, nitrate, nitrite, water temperature, ammonia and Hydrogen ion Concentration (pH were examined in the sampled waters in accordance with the American Public Health Association standards. The average values of water quality indicators examined at effluents and non-effluents discharged sites of the stream indicated that water (24.6 ± 0.2, 24.2 ±0.1, (7.29±0.30, 7.30±0.10, (6.90±0.4, 7.07±0.1 mg/l, (0.40±0.04, 0.27±0.01, (3.77±0.26, 2.34±0.16 mg/l, (3.59±0.11, 2.80±0.02 mg/l and (3.51±0.24, 2.46±0.21 mg/l at (p≥0.05 respectively for temperature, pH, dissolved oxygen, total ammonia, total nitrogen, total phosphorus, and BODs. They were significant differences (P 0.05 excepts temperature and pH, between values obtained at effluents discharged and non-effluents discharged sites, indicating that improper discharges of catfish pond effluents could resulted into environmental contamination

  4. Windward Community College Heeia Stream and Kaneohe Bay Water Quality Assessment Project 2002-2003 (NODC Accession 00014899)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Measurements of water quality parameters were taken by Windward Community College faculty and students at eight sites in the Heeia Stream and adjacent bay waters...

  5. Benthic soft-bodied algae as bioindicators of stream water quality

    Directory of Open Access Journals (Sweden)

    Stancheva R.

    2016-01-01

    Full Text Available This review presents the state-of-the-art of benthic soft-bodied algae as biondicators of stream and river water quality, with emphasis on bioassessments set by the legislation (e.g., European Water Framework Directive, USA Clean Water Act to promote the restoration and ensure ecological sustainability of water resources. The advantages and shortcomings of a variety of bioassessment field and laboratory methods for algae are discussed. The increasing use of soft-bodied algae in biotic indices to assess individual anthropogenic stressors, and in multimetric indices of biotic integrity to evaluate ecological condition in streams is summarized. Rapid microscopic and molecular approaches for inferring nutrient supply with heterocystous cyanobacteria and other sensitive algae are proposed. The need of better understanding of soft-bodied algae as bioindicators is discussed and suggestions are made for obtaining meaningful bioassessment information with cost-efficient efforts.

  6. Quality of nutrient data from streams and ground water sampled during water years 1992-2001

    Science.gov (United States)

    Mueller, David K.; Titus, Cindy J.

    2005-01-01

    Proper interpretation of water-quality data requires consideration of the effects that bias and variability might have on measured constituent concentrations. In this report, methods are described to estimate the bias due to contamination of samples in the field or laboratory and the variability due to sample collection, processing, shipment, and analysis. Contamination can adversely affect interpretation of measured concentrations in comparison to standards or criteria. Variability can affect interpretation of small differences between individual measurements or mean concentrations. Contamination and variability are determined for nutrient data from quality-control samples (field blanks and replicates) collected as part of the National Water-Quality Assessment (NAWQA) Program during water years 1992-2001. Statistical methods are used to estimate the likelihood of contamination and variability in all samples. Results are presented for five nutrient analytes from stream samples and four nutrient analytes from ground-water samples. Ammonia contamination can add at least 0.04 milligram per liter in up to 5 percent of all samples. This could account for more than 22 percent of measured concentrations at the low range of aquatic-life criteria (0.18 milligram per liter). Orthophosphate contamination, at least 0.019 milligram per liter in up to 5 percent of all samples, could account for more than 38 percent of measured concentrations at the limit to avoid eutrophication (0.05 milligram per liter). Nitrite-plus-nitrate and Kjeldahl nitrogen contamination is less than 0.4 milligram per liter in 99 percent of all samples; thus there is no significant effect on measured concentrations of environmental significance. Sampling variability has little or no effect on reported concentrations of ammonia, nitrite-plus-nitrate, orthophosphate, or total phosphorus sampled after 1998. The potential errors due to sampling variability are greater for the Kjeldahl nitrogen analytes and

  7. Water quality and ecological condition of urban streams in Independence, Missouri, June 2005 through December 2008

    Science.gov (United States)

    Christensen, D.; Harris, Thomas E.; Niesen, Shelley L.

    2010-01-01

    To identify the sources of selected constituents in urban streams and better understand processes affecting water quality and their effects on the ecological condition of urban streams and the Little Blue River in Independence, Missouri the U.S. Geological Survey in cooperation with the City of Independence Water Pollution Control Department initiated a study in June 2005 to characterize water quality and evaluate the ecological condition of streams within Independence. Base-flow and stormflow samples collected from five sites within Independence, from June 2005 to December 2008, were used to characterize the physical, chemical, and biologic effects of storm runoff on the water quality in Independence streams and the Little Blue River. The streams draining Independence-Rock Creek, Sugar Creek, Mill Creek, Fire Prairie Creek, and the Little Blue River-drain to the north and the Missouri River. Two small predominantly urban streams, Crackerneck Creek [12.9-square kilometer (km2) basin] and Spring Branch Creek (25.4-km2 basin), were monitored that enter into the Little Blue River between upstream and downstream monitoring sites. The Little Blue River above the upstream site is regulated by several reservoirs, but streamflow is largely uncontrolled. The Little Blue River Basin encompasses 585 km2 with about 168 km2 or 29 percent of the basin lying within the city limits of Independence. Water-quality samples also were collected for Rock Creek (24.1-km2 basin) that drains the western part of Independence. Data collection included streamflow, physical properties, dissolved oxygen, chloride, metals, nutrients, common organic micro-constituents, and fecal indicator bacteria. Benthic macroinvertebrate community surveys and habitat assessments were conducted to establish a baseline for evaluating the ecological condition and health of streams within Independence. Additional dry-weather screenings during base flow of all streams draining Independence were conducted to

  8. Indicators of streamflow alteration, habitat fragmentation, impervious cover, and water quality for Massachusetts stream basins

    Science.gov (United States)

    Weiskel, Peter K.; Brandt, Sara L.; DeSimone, Leslie A.; Ostiguy, Lance J.; Archfield, Stacey A.

    2010-01-01

    Massachusetts streams and stream basins have been subjected to a wide variety of human alterations since colonial times. These alterations include water withdrawals, treated wastewater discharges, construction of onsite septic systems and dams, forest clearing, and urbanization—all of which have the potential to affect streamflow regimes, water quality, and habitat integrity for fish and other aquatic biota. Indicators were developed to characterize these types of potential alteration for subbasins and groundwater contributing areas in Massachusetts. The potential alteration of streamflow by the combined effects of withdrawals and discharges was assessed under two water-use scenarios. Water-use scenario 1 incorporated publicly reported groundwater withdrawals and discharges, direct withdrawals from and discharges to streams, and estimated domestic-well withdrawals and septic-system discharges. Surface-water-reservoir withdrawals were excluded from this scenario. Water-use scenario 2 incorporated all the types of withdrawal and discharge included in scenario 1 as well as withdrawals from surface-water reservoirs—all on a long-term, mean annual basis. All withdrawal and discharge data were previously reported to the State for the 2000–2004 period, except domestic-well withdrawals and septic-system discharges, which were estimated for this study. The majority of the state’s subbasins and groundwater contributing areas were estimated to have relatively minor (less than 10 percent) alteration of streamflow under water-use scenario 1 (seasonally varying water use; no surface-water-reservoir withdrawals). However, about 12 percent of subbasins and groundwater contributing areas were estimated to have extensive alteration of streamflows (greater than 40 percent) in August; most of these basins were concentrated in the outer metropolitan Boston region. Potential surcharging of streamflow in August was most commonly indicated for main-stem river subbasins, although

  9. High resolution stream water quality assessment in the Vancouver, British Columbia region: a citizen science study.

    Science.gov (United States)

    Shupe, Scott M

    2017-12-15

    Changing land cover and climate regimes modify water quantity and quality in natural stream systems. In regions undergoing rapid change, it is difficult to effectively monitor and quantify these impacts at local to regional scales. In Vancouver, British Columbia, one of the most rapidly urbanizing areas in Canada, 750 measurements were taken from a total of 81 unique sampling sites representing 49 streams located in urban, forest, and agricultural-dominant watersheds at a frequency of up to 12 times per year between 2013 and 2016. Dissolved nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations, turbidity, water temperature, pH and conductivity were measured by citizen scientists in addition to observations of hydrology, vegetation, land use, and visible stream impacts. Land cover was mapped at a 15-m resolution using Landsat 8 OLI imagery and used to determine dominant land cover for each watershed in which a sample was recorded. Regional, seasonal, and catchment-type trends in measurements were determined using statistical analyses. The relationships of nutrients to land cover varied seasonally and on a catchment-type basis. Nitrate showed seasonal highs in winter and lows in summer, though phosphate had less seasonal variation. Overall, nitrate concentrations were positively associated to agriculture and deciduous forest and negatively associated with coniferous forest. In contrast, phosphate concentrations were positively associated with agricultural, deciduous forest, and disturbed land cover and negatively associated with urban land cover. Both urban and agricultural land cover were significantly associated with an increase in water conductivity. Increased forest land cover was associated with better water quality, including lower turbidity, conductivity, and water temperature. This study showed the importance of high resolution sampling in understanding seasonal and spatial dynamics of stream water quality, made possible with the large number of

  10. Trends in the quality of water in New Jersey streams, water years 1971–2011

    Science.gov (United States)

    Hickman, R. Edward; Hirsch, Robert M.

    2017-02-27

    In a study conducted by the U.S. Geological Survey in cooperation with the New Jersey Department of Environmental Protection and the Delaware River Basin Commission, trend tests were conducted on selected water-quality characteristics measured at stations on streams in New Jersey during selected periods over water years 1971‒2011. Tests were conducted on 3 nutrients (total nitrogen, filtered nitrate plus nitrite, and total phosphorus) at 28 water-quality stations. At 4 of these stations, tests were also conducted on 3 measures of major ions (specific conductance, filtered chloride, and total dissolved solids).Two methods were used to identify trends—Weighted Regressions on Time, Discharge, and Season (WRTDS) models and seasonal rank-sum tests. For this report, the use of WRTDS models included the use of the WRTDS Bootstrap Test (WBT). WRTDS models identified trends in flow-normalized annual concentrations and flow-normalized annual fluxes over water years 1980‒2011 and 2000‒11 for each nutrient, filtered chloride, and total dissolved solids. WRTDS models were developed for each nutrient at the 20 or 21 stations at which streamflow was measured or estimated. Trends in nutrient concentration were reported for these stations; trends in nutrient fluxes were reported only for 15–17 of these stations.The results of WRTDS models for water years 1980‒2011 identified more stations with downward trends in concentrations of either total nitrogen or total phosphorus than upward trends. For total nitrogen, there were downward trends at 9 stations and an upward trend at 1 station. For total phosphorus, there were downward trends at 8 stations and an upward trend at 1 station. For filtered nitrate plus nitrite, there were downward trends at 6 stations and upward trends at 6 stations. The result of the trend test in flux for a selected nutrient at a selected station (downward trend, no trend, or upward trend) usually matched the trend result in concentration

  11. Multivariate statistical techniques for the evaluation of surface water quality of the Himalayan foothills streams, Pakistan

    Science.gov (United States)

    Malik, Riffat Naseem; Hashmi, Muhammad Zaffar

    2017-10-01

    Himalayan foothills streams, Pakistan play an important role in living water supply and irrigation of farmlands; thus, the water quality is closely related to public health. Multivariate techniques were applied to check spatial and seasonal trends, and metals contamination sources of the Himalayan foothills streams, Pakistan. Grab surface water samples were collected from different sites (5-15 cm water depth) in pre-washed polyethylene containers. Fast Sequential Atomic Absorption Spectrophotometer (Varian FSAA-240) was used to measure the metals concentration. Concentrations of Ni, Cu, and Mn were high in pre-monsoon season than the post-monsoon season. Cluster analysis identified impaired, moderately impaired and least impaired clusters based on water parameters. Discriminant function analysis indicated spatial variability in water was due to temperature, electrical conductivity, nitrates, iron and lead whereas seasonal variations were correlated with 16 physicochemical parameters. Factor analysis identified municipal and poultry waste, automobile activities, surface runoff, and soil weathering as major sources of contamination. Levels of Mn, Cr, Fe, Pb, Cd, Zn and alkalinity were above the WHO and USEPA standards for surface water. The results of present study will help to higher authorities for the management of the Himalayan foothills streams.

  12. Evaluation of Jacuba stream water and industrial effluents quality by SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Oliveira, Renato W.M. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: silvana@fec.unicamp.br; Vives, Ana Elisa S. de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Zucchi, Orgheda L.A.D. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)]. E-mail: virgilio@cena.usp.br

    2005-07-01

    The pollution of the environment became everywhere of public interest of the world. The developed countries not just come being affected for the environmental problems; the developing nations also begin to suffer the serious impacts of the pollution, what elapses of the fast economic growth associated to the exploration of natural resources. This work has as objective to use the TXRF technique on the study the water quality of the Jacuba stream in Hortolandia city. (author)

  13. Effects of forest harvest on stream-water quality and nitrogen cycling in the Caspar Creek watershed

    Science.gov (United States)

    Randy A. Dahlgren

    1998-01-01

    The effects of forest harvest on stream-water quality and nitrogen cycling were examined for a redwood/Douglas-fir ecosystem in the North Fork, Caspar Creek experimental watershed in northern California. Stream-water samples were collected from treated (e.g., clearcut) and reference (e.g., noncut) watersheds, and from various locations downstream from the treated...

  14. The impacts of NOM from on the water quality of the streams and lakes

    Science.gov (United States)

    Lee, Sang Hee; Lee, Soohyung; Lee, Junbae; Khan, Jong beom; Lee, Seyong; Lee, Yunkyung; Hur, Jin; Lee, Hanseam; Shin, Hyunsang

    2016-04-01

    The COD levels of the Lake Daechung, one of a major source of drinking water, have been increased since 1994 whereas the BOD levels have been decreased. Those increases raise the concerns about the effectiveness of water treatment system or the unmanageable contaminant sources such as ROMs (Refractory Organic Matters). Nine basic water quality factors such as COD, TOC, DOC, T-N, T-P, etc. (every week) and NOM (Natural Organic Matters, every month) in the up and down streams of Juwon and Pumgok and related junction with the Lake Daechung were monitored from June to Nov., 2015 in order to investigate the impacts on the water quality of the Lake Daechung. Resulting from the monitoring, the increases in the COD, TOC and DOC suggested that the heavy rainfall (>50 mm/day) could lead to the influx of ROM to the streams. Furthermore, increases in the EE intensities of EEM in July, Aug., and Sep., suggested that the rainfall would deliver the terrestrial ROM to the streams. However, it is difficult to recognize the similar changes in the lake Daechung due to the larger water capacity. The water samples collected from streams during the rainy period were fractionated using XAD columns and pH adjustment. The DOC composition(%) of humic and fulvic fraction in upstream of which basin was composed by forestry were higher than those in downstream affected by various land uses implying that more organic materials in upstream would be originated from the forestry than those in downstream. and hydrophilic The increases in the DOC of the related fractions, SUVA and EEM of the samples collected during the rainy season implied that heavy rainfall would lead for the terrestrial NOM to enter the streams whereas the concentration of the biopolymer were increased in the streams during the dry season. In summary, this study suggested that the ROM originated from forestry could be entered in the streams and some of anthropogenic chemicals such as biocide and nitrophenols accumulated in the

  15. Water Quality of Combined Sewer Overflows, Stormwater, and Streams, Omaha, Nebraska, 2006-07

    Science.gov (United States)

    Vogel, Jason R.; Frankforter, Jill D.; Rus, David L.; Hobza, Christopher M.; Moser, Matthew T.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the City of Omaha, investigated the water quality of combined sewer overflows, stormwater, and streams in the Omaha, Nebraska, area by collecting and analyzing 1,175 water samples from August 2006 through October 2007. The study area included the drainage area of Papillion Creek at Capeheart Road near Bellevue, Nebraska, which encompasses the tributary drainages of the Big and Little Papillion Creeks and Cole Creek, along with the Missouri River reach that is adjacent to Omaha. Of the 101 constituents analyzed during the study, 100 were detected in at least 1 sample during the study. Spatial and seasonal comparisons were completed for environmental samples. Measured concentrations in stream samples were compared to water-quality criteria for pollutants of concern. Finally, the mass loads of water-quality constituents in the combined sewer overflow discharges, stormwater outfalls, and streams were computed and compared. The results of the study indicate that combined sewer overflow and stormwater discharges are affecting the water quality of the streams in the Omaha area. At the Papillion Creek Basin sites, Escherichia coli densities were greater than 126 units per 100 milliliters in 99 percent of the samples (212 of 213 samples analyzed for Escherichia coli) collected during the recreational-use season from May through September (in 2006 and 2007). Escherichia coli densities in 76 percent of Missouri River samples (39 of 51 samples) were greater than 126 units per 100 milliliters in samples collected from May through September (in 2006 and 2007). None of the constituents with human health criteria for consumption of water, fish, and other aquatic organisms were detected at levels greater than the criteria in any of the samples collected during this study. Total phosphorus concentrations in water samples collected in the Papillion Creek Basin were in excess of the U.S. Environmental Protection Agency's proposed

  16. The California stream quality assessment

    Science.gov (United States)

    Van Metre, Peter C.; Egler, Amanda L.; May, Jason T.

    2017-03-06

    In 2017, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project is assessing stream quality in coastal California, United States. The USGS California Stream Quality Assessment (CSQA) will sample streams over most of the Central California Foothills and Coastal Mountains ecoregion (modified from Griffith and others, 2016), where rapid urban growth and intensive agriculture in the larger river valleys are raising concerns that stream health is being degraded. Findings will provide the public and policy-makers with information regarding which human and natural factors are the most critical in affecting stream quality and, thus, provide insights about possible approaches to protect the health of streams in the region.

  17. Study on the Quality of Water in Some Streams of Cauvery River

    Directory of Open Access Journals (Sweden)

    Abida Begum

    2008-01-01

    Full Text Available The quality of water in four streams of Cauvery River in Mandya District, where many small scale sugar and brewery distilleries are located, was analysed. Sampling was carried out from four streams designated as station 1 (upstream of effluent discharge point, station 2 (effluent discharge point and station 3 (downstream of effluent discharge station 4 (fresh water stream to assess the impact of effluent on the water quality. The river water composition is increasingly dominated by Na and Cl in the downstream region of the river, indicating the influence of airborne salts with oceanic affinities. Significant spatial variation was observed in water level, transparency, turbidity, depth, dissolved oxygen, colour, biochemical oxygen demand, nitrate, nitrite and total hydrocarbon among the physiochemical parameters of the study stations. A posteriori test revealed that station 2 & 3 were the cause of the significant difference. The dissolved oxygen level in stations 2 & 3 was lower than 5.0mg/L, which is recommended minimum allowable limit for aquatic life. About 7 rotifer species in large amount recorded in this study were encountered in station 1, 7 in station 2 & 3 while 12 species in station 4. The overall density of rotifers in the four stations was significantly different. A posteriori comparison revealed that station 2 & 3 are the cause of the significant difference. The Branchionus angularis rotifers, which dominated the community, were found to tolerate the effluent effect in station 2&3, and showed remarkable recovery in the downstream station 4. Low faunal diversity and negative impact on the biotic and abiotic environment was experienced in station 2 & 3 throughout the duration of sampling because of the brewery effluent discharged directly into these two Streams.

  18. Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams

    Directory of Open Access Journals (Sweden)

    R. M. Smith

    2017-06-01

    Full Text Available Streams and rivers are significant sources of nitrous oxide (N2O, carbon dioxide (CO2, and methane (CH4 globally, and watershed management can alter greenhouse gas (GHG emissions from streams. We hypothesized that urban infrastructure significantly alters downstream water quality and contributes to variability in GHG saturation and emissions. We measured gas saturation and estimated emission rates in headwaters of two urban stream networks (Red Run and Dead Run of the Baltimore Ecosystem Study Long-Term Ecological Research project. We identified four combinations of stormwater and sanitary infrastructure present in these watersheds, including: (1 stream burial, (2 inline stormwater wetlands, (3 riparian/floodplain preservation, and (4 septic systems. We selected two first-order catchments in each of these categories and measured GHG concentrations, emissions, and dissolved inorganic and organic carbon (DIC and DOC and nutrient concentrations biweekly for 1 year. From a water quality perspective, the DOC : NO3− ratio of streamwater was significantly different across infrastructure categories. Multiple linear regressions including DOC : NO3− and other variables (dissolved oxygen, DO; total dissolved nitrogen, TDN; and temperature explained much of the statistical variation in nitrous oxide (N2O, r2 =  0.78, carbon dioxide (CO2, r2 =  0.78, and methane (CH4, r2 =  0.50 saturation in stream water. We measured N2O saturation ratios, which were among the highest reported in the literature for streams, ranging from 1.1 to 47 across all sites and dates. N2O saturation ratios were highest in streams draining watersheds with septic systems and strongly correlated with TDN. The CO2 saturation ratio was highly correlated with the N2O saturation ratio across all sites and dates, and the CO2 saturation ratio ranged from 1.1 to 73. CH4 was always supersaturated, with saturation ratios ranging from 3.0 to 2157. Longitudinal

  19. Surface water quality in streams and rivers: introduction, scaling, and climate change: Chapter 5

    Science.gov (United States)

    Loperfido, John

    2013-01-01

    A variety of competing and complementary needs such as ecological health, human consumption, transportation, recreation, and economic value make management and protection of water resources in riverine environments essential. Thus, an understanding of the complex and interacting factors that dictate riverine water quality is essential in empowering stake-holders to make informed management decisions (see Chapter 1.15 for additional information on water resource management). Driven by natural and anthropogenic forcing factors, a variety of chemical, physical, and biological processes dictate riverine water quality, resulting in temporal and spatial patterns and cycling (see Chapter 1.2 for information describing how global change interacts with water resources). Furthermore, changes in climatic forcing factors may lead to long-term deviations in water quality outside the envelope of historical data. The goal of this chapter is to present fundamental concepts dictating the conditions of basic water quality parameters in rivers and streams (herein generally referred to as rivers unless discussing a specific system) in the context of temporal (diel (24 h) to decadal) longitudinal scaling. Understanding water quality scaling in rivers is imperative as water is continually reused and recycled (see also Chapters 3.1 and 3.15); upstream discharges from anthropogenic sources are incorporated into bulk riverine water quality that is used by downstream consumers. Water quality parameters reviewed here include temperature, pH, dissolved oxygen (DO), and suspended sediment and were selected given the abundance of data available for these parameters due to recent advances in water quality sensor technology (see Chapter 4.13 for use of hydrologic data in watershed management). General equations describing reactions affecting water temperature, pH, DO, and suspended sediment are included to convey the complexity of how simultaneously occurring reactions can affect water quality

  20. Windward Community College Heeia Stream and Kaneohe Bay Water Quality Assessment Project 2004-2005 (NODC Accession 0002449)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Measurements of water quality parameters were taken by Windward Community College faculty and students at eight sites in the Heeia Stream and adjacent Kaneohe Bay...

  1. Are the streams of the Sinos River basin of good water quality? Aquatic macroinvertebrates may answer the question

    Directory of Open Access Journals (Sweden)

    L. Bieger

    Full Text Available Macroinvertebrate communities are one of the most used groups in assessments of water quality, since they respond directly to the level of contamination of aquatic ecosystems. The main objective of this study was the assessment of the water quality of the Sinos River basin (Rio Grande do Sul state, Brazil through biotic indices based on the macroinvertebrate community ("Family Biotic Index - FBI", and "Biological Monitoring Working Party Score System - BMWP". Three lower order streams (2nd order were selected in each one of three main regions of the basin. In each stream, the samplings were performed in three reaches (upper, middle, and lower, totalling 27 reaches. Two samplings were carried in each reach over one year (winter and summer. A total of 6,847 macroinvertebrates distributed among 54 families were sampled. The streams from the upper region were of better water quality than the lower region. The water quality did not change between the upper, middle and lower reaches of the streams. However, the upper reaches of the streams were of better water quality in all the regions of the basin. The water quality of the streams did not vary between the summer and the winter. This result demonstrated that water quality may be analysed in both studied seasons (summer and winter using biotic indices. The analysis of the results allows us to conclude that the biotic indices used reflected the changes related to the water quality along the longitudinal gradient of the basin. Thus, aquatic macroinvertebrates were important bioindicators of the water and environmental quality of the streams of the Sinos River basin.

  2. Stormwater management impacts on urban stream water quality and quantity during and after development in Clarksburg, MD

    Science.gov (United States)

    Loperfido, J. V.; Noe, G. B.; Jarnagin, S.; Mohamoud, Y. M.; Van Ness, K.; Hogan, D. M.

    2012-12-01

    Urbanization and urban land use leads to degradation of local stream habitat and 'urban stream syndrome.' Best Management Practices (BMPs) are often used in an attempt to mitigate the impact of urban land use on stream water quality and quantity. Traditional development has employed stormwater BMPs that were placed in a centralized manner located either in the stream channel or near the riparian zone to treat stormwater runoff from large drainage areas; however, urban streams have largely remained impaired. Recently, distributed placement of BMPs throughout the landscape has been implemented in an attempt to detain, treat, and infiltrate stormwater runoff from smaller drainage areas near its source. Despite increasing implementation of distributed BMPs, little has been reported on the catchment-scale (1-10 km^2) performance of distributed BMPs and how they compare to centralized BMPs. The Clarksburg Special Protection Area (CSPA), located in the Washington, DC exurbs within the larger Chesapeake Bay watershed, is undergoing rapid urbanization and employs distributed BMPs on the landscape that treat small drainage areas with the goal of preserving high-quality stream resources in the area. In addition, the presence of a nearby traditionally developed (centralized BMPs) catchment and an undeveloped forested catchment makes the CSPA an ideal setting to understand how the best available stormwater management technology implemented during and after development affects stream water quality and quantity through a comparative watershed analysis. The Clarksburg Integrated Monitoring Partnership is a consortium of local and federal agencies and universities that conducts research in the CSPA including: monitoring of stream water quality, geomorphology, and biology; analysis of stream hydrological and water quality data; and GIS mapping and analysis of land cover, elevation change and BMP implementation data. Here, the impacts of urbanization on stream water quantity

  3. The quality of our Nation’s waters--ecological health in the Nation's streams, 1993-2005

    Science.gov (United States)

    Carlisle, Daren M.; Meador, Michael R.; Short, Terry M.; Tate, Cathy M.; Gurtz, Martin E.; Bryant, Wade L.; Falcone, James A.; Woodside, Michael D.

    2013-01-01

    This report summarizes a national assessment of the ecological health of streams done by the U.S. Geological Survey's (USGS) National Water-Quality Assessment Program (NAWQA). Healthy functioning stream ecosystems provide society with many benefits, including water purification, flood control, nutrient recycling, waste decomposition, fisheries, and aesthetics. The value to society of many of these benefits is substantial; for example, sportfishing in the United States generates an estimated annual economic output of $125 billion, including more than 1 million jobs (National Research Council, 2005; American Sportfishing Association, 2008). Continued monitoring and assessment of the Nation’s streams is needed to support informed decisions that will safeguard this important natural and economic resource. The quality of streams and rivers is often assessed with measures of the chemical or physical properties of water. However, a more comprehensive perspective is obtained if resident biological communities are also assessed. Guidelines to protect human health and aquatic life have been established for specific physical and chemical properties of water and have become useful yardsticks with which to assess water quality. Biological communities provide additional crucial information because they live within streams for weeks to years and therefore integrate through time the effects of changes to their chemical or physical environment. In addition, biological communities are a direct measure of stream health—an indicator of the ability of a stream to support aquatic life. Thus, the condition of biological communities, integrated with key physical and chemical properties, provides a comprehensive assessment of stream health.

  4. Evaluation of stream water quality in Atlanta, Georgia, and the surrounding region (USA)

    Science.gov (United States)

    Peters, N.E.; Kandell, S.J.

    1999-01-01

    A water-quality index (WQI) was developed from historical data (1986-1995) for streams in the Atlanta Region and augmented with 'new' and generally more comprehensive biweekly data on four small urban streams, representing an industrial area, a developed medium-density residential area and developing and developed low-density residential areas. Parameter WQIs were derived from percentile ranks of individual water-quality parameter values for each site by normalizing the constituent ranks for values from all sites in the area for a base period, i.e. 1990-1995. WQIs were developed primarily for nutrient-related parameters due to data availability. Site WQIs, which were computed by averaging the parameter WQIs, range from 0.2 (good quality) to 0.8 (poor quality), and increased downstream of known nutrient sources. Also, annual site WQI decreases from 1986 to 1995 at most long-term monitoring sites. Annual site WQI for individual parameters correlated with annual hydrological characteristics, particularly runoff, precipitation quantity, and water yield, reflecting the effect of dilution on parameter values. The WQIs of the four small urban streams were evaluated for the core-nutrient-related parameters, parameters for specific dissolved trace metal concentrations and sediment characteristics, and a species diversity index for the macro-invertebrate taxa. The site WQI for the core-nutrient-related parameters used in the retrospective analysis was, as expected, the worst for the industrial area and the best for the low-density residential areas. However, macro-invertebrate data indicate that although the species at the medium-density residential site were diverse, the taxa at the site were for species tolerant of degraded water quality. Furthermore, although a species-diversity index indicates no substantial difference between the two low-density residential areas, the number for macro-invertebrates for the developing area was much less than that for the developed area

  5. The spatial structure and temporal synchrony of water quality in stream networks

    Science.gov (United States)

    Abbott, Benjamin; Gruau, Gerard; Zarneske, Jay; Barbe, Lou; Gu, Sen; Kolbe, Tamara; Thomas, Zahra; Jaffrezic, Anne; Moatar, Florentina; Pinay, Gilles

    2017-04-01

    To feed nine billion people in 2050 while maintaining viable aquatic ecosystems will require an understanding of nutrient pollution dynamics throughout stream networks. Most regulatory frameworks such as the European Water Framework Directive and U.S. Clean Water Act, focus on nutrient concentrations in medium to large rivers. This strategy is appealing because large rivers integrate many small catchments and total nutrient loads drive eutrophication in estuarine and oceanic ecosystems. However, there is growing evidence that to understand and reduce downstream nutrient fluxes we need to look upstream. While headwater streams receive the bulk of nutrients in river networks, the relationship between land cover and nutrient flux often breaks down for small catchments, representing an important ecological unknown since 90% of global stream length occurs in catchments smaller than 15 km2. Though continuous monitoring of thousands of small streams is not feasible, what if we could learn what we needed about where and when to implement monitoring and conservation efforts with periodic sampling of headwater catchments? To address this question we performed repeat synoptic sampling of 56 nested catchments ranging in size from 1 to 370 km2 in western France. Spatial variability in carbon and nutrient concentrations decreased non-linearly as catchment size increased, with thresholds in variance for organic carbon and nutrients occurring between 36 and 68 km2. While it is widely held that temporal variance is higher in smaller streams, we observed consistent temporal variance across spatial scales and the ranking of catchments based on water quality showed strong synchrony in the water chemistry response to seasonal variation and hydrological events. We used these observations to develop two simple management frameworks. The subcatchment leverage concept proposes that mitigation and restoration efforts are more likely to succeed when implemented at spatial scales expressing

  6. Evaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration.

    OpenAIRE

    Hayakawa, A; Shimizu, M.; Woli, K. P.; Kuramochi, K.; HATANO, R

    2006-01-01

    We evaluated the impacts of natural wetlands and various land uses on stream nitrogen concentration in two grassland-dominated catchments in eastern Hokkaido, Japan. Analyzing land use types in drainage basins, measuring denitrification potential of its soil, and water sampling in all seasons of 2003 were performed. Results showed a highly significant positive correlation between the concentration of stream NO3–N and the proportion of upland area in drainage basins in both catchments. The reg...

  7. Data from selected U.S. Geological Survey national stream water quality monitoring networks

    Science.gov (United States)

    Alexander, R.B.; Slack, J.R.; Ludtke, A.S.; Fitzgerald, K.K.; Schertz, T.L.

    1998-01-01

    A nationally consistent and well-documented collection of water quality and quantity data compiled during the past 30 years for streams and rivers in the United States is now available on CD-ROM and accessible over the World Wide Web. The data include measurements from two U.S. Geological Survey (USGS) national networks for 122 physical, chemical, and biological properties of water collected at 680 monitoring stations from 1962 to 1995, quality assurance information that describes the sample collection agencies, laboratories, analytical methods, and estimates of laboratory measurement error (bias and variance), and information on selected cultural and natural characteristics of the station watersheds. The data are easily accessed via user-supplied software including Web browser, spreadsheet, and word processor, or may be queried and printed according to user-specified criteria using the supplied retrieval software on CD-ROM. The water quality data serve a variety of scientific uses including research and educational applications related to trend detection, flux estimation, investigations of the effects of the natural environment and cultural sources on water quality, and the development of statistical methods for designing efficient monitoring networks and interpreting water resources data.

  8. Evaluating the accotink creek restoration project for improving water quality, in-stream habitat, and bank stability

    Science.gov (United States)

    Struck, S.D.; Selvakumar, A.; Hyer, K.; O'Connor, T.

    2007-01-01

    Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy metals) to receiving waters. To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff as well as to minimize pollutants and other stressors contained in stormwater runoff. It is well known that land-use practices directly impact urban streams. Stream flows in urbanized watersheds increase in magnitude as a function of impervious area and can result in degradation of the natural stream channel morphology affecting the physical, chemical, and biological integrity of the stream. Stream bank erosion, which also increases with increased stream flows, can lead to bank instability, property loss, infrastructure damage, and increased sediment loading to the stream. Increased sediment loads may lead to water quality degradation downstream and have negative impacts on fish, benthic invertebrates, and other aquatic life. Accotink Creek is in the greater Chesapeake Bay and Potomac watersheds, which have strict sediment criteria. The USEPA (United States Environmental Protection Agency) and USGS (United States Geological Survey) are investigating the effectiveness of stream restoration techniques as a BMP to decrease sediment load and improve bank stability, biological integrity, and in-stream water quality in an impaired urban watershed in Fairfax, Virginia. This multi-year project continuously monitors turbidity, specific conductance, pH, and water temperature, as well as biological and chemical water quality parameters. In addition, physical parameters (e.g., pebble counts, longitudinal and cross sectional stream surveys) were measured to assess geomorphic changes associated with the restoration. Data

  9. Simulation of in-stream water quality on global scale under changing climate and anthropogenic conditions

    Science.gov (United States)

    Voss, Anja; Bärlund, Ilona; Punzet, Manuel; Williams, Richard; Teichert, Ellen; Malve, Olli; Voß, Frank

    2010-05-01

    Although catchment scale modelling of water and solute transport and transformations is a widely used technique to study pollution pathways and effects of natural changes, policies and mitigation measures there are only a few examples of global water quality modelling. This work will provide a description of the new continental-scale model of water quality WorldQual and the analysis of model simulations under changed climate and anthropogenic conditions with respect to changes in diffuse and point loading as well as surface water quality. BOD is used as an indicator of the level of organic pollution and its oxygen-depleting potential, and for the overall health of aquatic ecosystems. The first application of this new water quality model is to river systems of Europe. The model itself is being developed as part of the EU-funded SCENES Project which has the principal goal of developing new scenarios of the future of freshwater resources in Europe. The aim of the model is to determine chemical fluxes in different pathways combining analysis of water quantity with water quality. Simple equations, consistent with the availability of data on the continental scale, are used to simulate the response of in-stream BOD concentrations to diffuse and anthropogenic point loadings as well as flow dilution. Point sources are divided into manufacturing, domestic and urban loadings, whereas diffuse loadings come from scattered settlements, agricultural input (for instance livestock farming), and also from natural background sources. The model is tested against measured longitudinal gradients and time series data at specific river locations with different loading characteristics like the Thames that is driven by domestic loading and Ebro with relative high share of diffuse loading. With scenario studies the influence of climate and anthropogenic changes on European water resources shall be investigated with the following questions: 1. What percentage of river systems will have

  10. Hydrology and water quality of lakes and streams in Orange County, Florida

    Science.gov (United States)

    German, Edward R.; Adamski, James C.

    2005-01-01

    Orange County, Florida, is continuing to experience a large growth in population. In 1920, the population of Orange County was less than 20,000; in 2000, the population was about 896,000. The amount of urban area around Orlando has increased considerably, especially in the northwest part of the County. The eastern one-third of the County, however, had relatively little increase in urbanization from 1977-97. The increase of population, tourism, and industry in Orange County and nearby areas changed land use; land that was once agricultural has become urban, industrial, and major recreation areas. These changes could impact surface-water resources that are important for wildlife habitat, for esthetic reasons, and potentially for public supply. Streamflow characteristics and water quality could be affected in various ways. As a result of changing land use, changes in the hydrology and water quality of Orange County's lakes and streams could occur. Median runoff in 10 selected Orange County streams ranges from about 20 inches per year (in/yr) in the Wekiva River to about 1.1 in/yr in Cypress Creek. The runoff for the Wekiva River is significantly higher than other river basins because of the relatively constant spring discharge that sustains streamflow, even during drought conditions. The low runoff for the Cypress Creek basin results from a lack of sustained inflow from ground water and a relatively large area of lakes within the drainage basin. Streamflow characteristics for 13 stations were computed on an annual basis and examined for temporal trends. Results of the trend testing indicate changes in annual mean streamflow, 1-day high streamflow, or 7-day low streamflow at 8 of the 13 stations. However, changes in 7-day low streamflow are more common than changes in annual mean or 1-day high streamflow. There is probably no single reason for the changes in 7-day low streamflows, and for most streams, it is difficult to determine definite reasons for the flow

  11. Can we properly assess water quality status in streams with low-frequency data?

    Science.gov (United States)

    Minaudo, Camille; Moatar, Florentina; Abbott, Benjamin W.; Meybeck, Michel; Carré, Catherine; Lestel, Laurence

    2017-04-01

    The European Water Framework Directive uses the 90th percentile of concentration (C90) as a key metric to assess the water quality status in streams. The fact that most pollutant concentrations vary widely with changes in discharge on seasonal and event-scales throws doubt on the reliability of C90 estimates derived from low-frequency monitoring. To address this problem, we tested the effect of sampling frequency on C90 with a multi-decadal daily water quality dataset from 11 tributaries of Lake Erie in the United States. The dataset included common water-quality parameters including suspended solids, total and reactive phosphorus, inorganic nitrogen, silica, chloride, sulfate, and conductivity. We estimated C90 with subsets of these daily time series resampled at various frequencies from 1 sample every two days to a monthly sampling. Additionally, we generated a semi-synthetic time series based on concentration-discharge (C-Q) relationships and various statistical descriptors. These simulated time series allowed us to investigate the theoretical link between the C-Q slope and the error in C90 estimations for different sampling frequencies. The largest errors in estimating C90 were in highly chemodynamic parameters such as suspended solids and phosphorus. For these parameters, even relatively high-frequency sampling (i.e. 1 sample every 2 days) substantially underestimated C90 by 20 to 40%. Surprisingly and for all parameters, errors in C90 estimates did not increase as sampling frequency decreased. However, the variability in C90 estimates increased with steeper C-Q slopes and lower sampling frequencies. This type of sensitivity analysis could be used to calculate confidence intervals for C90 estimates and readjust water quality standards accordingly.

  12. Stream Water Quality and Service Learning in an Introductory Biology Class

    Directory of Open Access Journals (Sweden)

    Wendy L. Gorman

    2010-04-01

    Full Text Available Northland College is a small environmental liberal arts college in northern Wisconsin near Lake Superior. In the fall of 2007 and 2008 students in a mixed science majors/non-majors introductory biology course engaged in a semester-long, service-learning project to monitor E. coli in city stormwater draining into Bay City Creek, a small stream that flows through campus and the town of Ashland before flowing into Lake Superior. Such monitoring is beyond the budget of most municipalities, but is an important public health and aesthetic issue for Ashland and Lake Superior. Our hypothesis was that this service-learning research project would have a positive impact on student learning and student perception of science, and the project would generate useful information for city leaders. Students collected and processed water samples using a standard protocol, analyzed the effect of stormwater on stream water quality, and presented their data in the form of posters to the mayor, a city administrator, and the Provost. Student learning was assessed by a poster-grading rubric, and by online and Northland College instruments. Student perceptions of science were found to be more positive than in the year preceding this project, even when clear answers were not found from their scientific investigation, and there appeared to be no distinction in responses between science majors and non-majors.

  13. The Midwest Stream Quality Assessment

    Science.gov (United States)

    ,

    2012-01-01

    In 2013, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) and USGS Columbia Environmental Research Center (CERC) will be collaborating with the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA) to assess stream quality across the Midwestern United States. The sites selected for this study are a subset of the larger NRSA, implemented by the EPA, States and Tribes to sample flowing waters across the United States (http://water.epa.gov/type/rsl/monitoring/riverssurvey/index.cfm). The goals are to characterize water-quality stressors—contaminants, nutrients, and sediment—and ecological conditions in streams throughout the Midwest and to determine the relative effects of these stressors on aquatic organisms in the streams. Findings will contribute useful information for communities and policymakers by identifying which human and environmental factors are the most critical in controlling stream quality. This collaborative study enhances information provided to the public and policymakers and minimizes costs by leveraging and sharing data gathered under existing programs. In the spring and early summer, NAWQA will sample streams weekly for contaminants, nutrients, and sediment. During the same time period, CERC will test sediment and water samples for toxicity, deploy time-integrating samplers, and measure reproductive effects and biomarkers of contaminant exposure in fish or amphibians. NRSA will sample sites once during the summer to assess ecological and habitat conditions in the streams by collecting data on algal, macroinvertebrate, and fish communities and collecting detailed physical-habitat measurements. Study-team members from all three programs will work in collaboration with USGS Water Science Centers and State agencies on study design, execution of sampling and analysis, and reporting.

  14. Initial Characterization and Water Quality Assessment of Stream Landscapes in Northern Mongolia

    Directory of Open Access Journals (Sweden)

    Jürgen Hofmann

    2015-06-01

    Full Text Available A comprehensive monitoring project (2006–2013 provided data on hydrology, hydromorphology, climatology, water physico-chemistry, sedimentology, macroinvertebrate community and fish diversity in the Kharaa River basin in northern Mongolia, thus enabling, for the first time, a detailed characterization of the stream landscapes. Surface waters were categorized into separate “water bodies” according to their identifiable abiotic and biocoenotic features, subsequently creating the smallest management sub-units within the river basin. Following the approach of the European Water Framework Directive (EC-WFD, in order to obtain a good ecological status (GES, four clearly identifiable water bodies in the Kharaa River main channel and seven water bodies consisting of the basin’s tributaries were delineated. The type-specific undisturbed reference state of various aquatic ecosystems was identified in the assessment and used to set standards for restoration goals. With regards to water quality and quantity, the upper reaches of the Kharaa River basin in the Khentii Mountains were classified as having a “good” ecological and chemical status. Compared with these natural reference conditions in the upper reaches, the initial risk assessment identified several “hot spot” regions with impacted water bodies in the middle and lower basin. Subsequently, the affected water bodies are at risk of not obtaining a level of good ecological and/or chemical status for surface waters. Finally, a matrix of cause-response relationships and stressor complexes has been developed and is presented here. The applicability of management approaches is discussed to better foster the development of a sustainable river basin management plan. The application of natural references states offers a sound scientific base to assess the impact of anthropogenic activities across the Kharaa River basin.

  15. A Reaction-Based River/Stream Water Quality Model: Reaction Network Decomposition and Model Application

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2012-01-01

    Full Text Available This paper describes details of an automatic matrix decomposition approach for a reaction-based stream water quality model. The method yields a set of equilibrium equations, a set of kinetic-variable transport equations involving kinetic reactions only, and a set of component transport equations involving no reactions. Partial decomposition of the system of water quality constituent transport equations is performed via Gauss-Jordan column reduction of the reaction network by pivoting on equilibrium reactions to decouple equilibrium and kinetic reactions. This approach minimizes the number of partial differential advective-dispersive transport equations and enables robust numerical integration. Complete matrix decomposition by further pivoting on linearly independent kinetic reactions allows some rate equations to be formulated individually and explicitly enforces conservation of component species when component transport equations are solved. The methodology is demonstrated for a case study involving eutrophication reactions in the Des Moines River in Iowa, USA and for two hypothetical examples to illustrate the ability of the model to simulate sediment and chemical transport with both mobile and immobile water phases and with complex reaction networks involving both kinetic and equilibrium reactions.

  16. Sampling frequency for water quality variables in streams: Systems analysis to quantify minimum monitoring rates.

    Science.gov (United States)

    Chappell, Nick A; Jones, Timothy D; Tych, Wlodek

    2017-10-15

    Insufficient temporal monitoring of water quality in streams or engineered drains alters the apparent shape of storm chemographs, resulting in shifted model parameterisations and changed interpretations of solute sources that have produced episodes of poor water quality. This so-called 'aliasing' phenomenon is poorly recognised in water research. Using advances in in-situ sensor technology it is now possible to monitor sufficiently frequently to avoid the onset of aliasing. A systems modelling procedure is presented allowing objective identification of sampling rates needed to avoid aliasing within strongly rainfall-driven chemical dynamics. In this study aliasing of storm chemograph shapes was quantified by changes in the time constant parameter (TC) of transfer functions. As a proportion of the original TC, the onset of aliasing varied between watersheds, ranging from 3.9-7.7 to 54-79 %TC (or 110-160 to 300-600 min). However, a minimum monitoring rate could be identified for all datasets if the modelling results were presented in the form of a new statistic, ΔTC. For the eight H(+), DOC and NO3-N datasets examined from a range of watershed settings, an empirically-derived threshold of 1.3(ΔTC) could be used to quantify minimum monitoring rates within sampling protocols to avoid artefacts in subsequent data analysis. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Land Use and Hydrologic Sensitivities of In-stream Water Quality in Complex Coastal-urban Watersheds

    Science.gov (United States)

    Abdul-Aziz, O. I.; Ahmed, S.

    2016-12-01

    We employed sensitivity analysis to study the complex interactions of various water quality indicators with their drivers in the coastal-urban watersheds of southeast Florida, U.S.A. The total nitrogen (TN), total phosphorus (TP), chlorophyll-a (Chla), and dissolved oxygen (DO) were used to represent the stream water quality. Land use/cover and hydrologic variables along with the upstream (inlet) concentrations and distance from the coastal outlet were used to represent the sources and drivers of stream water quality at each monitoring station. Separate analyses were performed for the wet and dry seasons, acknowledging the variable climatic influence in different seasons. Power-law based nonlinear partial least square (PLS) regression models were developed with bootstrap resampling to achieve a robust estimation of parameters. The model showed good performance in both wet and dry seasons. The estimated model parameters were used to analytically derive relative sensitivity coefficients to determine the relative influence of different drivers on the stream water quality. Numerical sensitivity analyses were also performed with a range of perturbed model drivers to estimate the changes of stream water quality under different changing scenarios of land use/cover and hydrologic variables. Results showed that the major sources of in-stream pollutants were the agricultural land uses and the upstream sources. In both wet and dry seasons, TN showed relatively strong sensitivity to the upstream concentrations and distance from the coastal outlet; whereas TP and Chla showed relatively high sensitivity to the upstream concentrations and the watershed land uses. For DO, relatively strong sensitivity was found to the groundwater depth and watershed hydrology, respectively, in the wet and dry seasons. The sensitivity coefficients and mechanistic insights obtained from the study will guide the management of urban stream water quality to maintain healthy aquatic ecosystems.

  18. A short report regarding the physicochemical properties of surface water quality in Karaçomak stream, Turkey

    Science.gov (United States)

    Şuţan, Nicoleta Anca; Mutlu, Ekrem; Yanik, Telat; Dobre, Raluca

    2016-04-01

    Within the scope of present study, the water quality of stream Karaçomak in Kastamonu-Turkey was investigated. Water samples were collected from 9 stations selected on Karaçomak stream, considering the pollution points and the points, where the entrance of water into stream is high. The samples taken were analyzed in terms of water temperature, pH, dissolved oxygen, saltiness, electrical conductivity, chemical composition and heavy metal content, and for their genotoxic and cytotoxic potential. Physicochemical evaluation indicated that all samples had heterogeneous intensity of environmental influence, but the considerable impact was noticed for the third and seventh stations. The present study highlights the need for continuous evaluation of water pollution level, and is intended to help in mitigating the environmental impacts and improve environmental performance.

  19. Water Quality Assessment of Streams and Wetlands in a Fast Growing East African City

    Directory of Open Access Journals (Sweden)

    Niels De Troyer

    2016-03-01

    Full Text Available The combination of rapid urbanization, industrialization, population growth, and low environmental awareness poses a major threat to worldwide valuable freshwater resources, which provide important ecosystem services to humans. There is an urgent need to monitor and assess these resources, as this information is indispensable for sustainable decision-making and management. In this context, we analyzed the chemical and ecological water quality of the riverine environment of a fast growing city in Southwest Ethiopia for which we proposed possible remediation options that were evaluated with an empirical model. The chemical and ecological water quality was assessed at 53 sampling locations using the oxygen Prati index and the ETHbios, which is a biotic index based on macroinvertebrates. In addition, a microbiological analysis was performed to estimate the degree of fecal contamination. Finally, we analyzed the relationship between the oxygen content and the organic pollution to simulate the effect of organics removal from waste streams on the chemical water quality. Our results showed that the average values for dissolved oxygen (4.2 mg DO·L−1 and nutrients (0.9 mg oPO43−·L−1 and 12.8 mg TAN·L−1 exceeded international standards. Moreover, high turbidity levels revealed that land erosion is a severe problem in the region. Along the rivers, a significant increase in oxygen consumption and in nutrient concentrations was observed, indicating organic pollution originating from different diffuse and point sources of pollution. The lack of proper sanitation also led to exceedingly high abundances of fecal coliforms in the surface water (>320 MPN·mL−1. However, fecal contamination was strongly reduced (>92% after the polluted river water passed Boye wetland, indicating the purification potential of natural wetlands and the importance of conserving and protecting those ecosystems. The simulation results of the model showed that water quality

  20. Testing the effects of different agricultural measures on stream water quality

    Science.gov (United States)

    Jomaa, Seifeddine; Yang, Xiaoqiang; Rode, Michael

    2017-04-01

    It is well known that eutrophication is a serious environmental problem. Nutrient loads from agriculture are one of the major drivers. It remains very unclear, which nutrient mitigation measures and to what levels are appropriate to achieve water quality improvements. To this end, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was applied to test the effect of different agricultural measures on reducing nutrient loads in the Selke catchment (456 km2) located in lower mountain ranges in Eastern Germany. First, the baseline simulations of nutrient loads (N and P) were conducted in the period 2004-2015. Second, the impacts of different agricultural measures on stream water quality were evaluated using scenarios-based approach. Mainly four different measures were tested: introduction of 10 m buffer strips close the watercourses, reduced tillage, contour ploughing and 20% reduction of fertiliser applications. Three gauging stations with different dominant topography, soil and land use characteristics were used for calibration and validation of the model. Also, the model performance was tested against two different temporal resolutions: grab sample (bi-weekly to monthly) and high-resolution (daily aggregated from15 min time interval) records. Results showed that the baseline simulations of discharge and nutrients (nitrate-N (NO3-N) and total phosphorus (TP)) loads for the period 2004-2015 were reproduced well by the HYPE model (the lowest NSE were 0.78 and 0.72 for daily NO3-N and TP loads, respectively). Moreover, results revealed that the phosphorus-limited measures (such as buffer strips, reduced tillage and contour ploughing) reduced significantly the TP mainly in summer periods through reducing the mobilisation and increasing deposition of suspended particles in the terrestrial part. However, the introduction of 20% reduction of fertiliser application decreased only slightly the NO3-N concentrations

  1. Effects of land use on the water quality and biota of three streams in the Piedmont province of North Carolina

    Science.gov (United States)

    Crawford, J.K.; Lenat, D.R.

    1989-01-01

    Three small streams in North Carolina 's northern Piedmont were studied to compare the effects of land use in their watersheds on water quality characteristics and aquatic biota. Devil 's Cradle Creek (agricultural watershed) had more than two times the sediment yield of Smith Creek (forested watershed) (0.34 tons/acre compared to 0.13 tons/acre), and Marsh Creek (urban watershed) had more than four times the yield of Smith Creek (0.59 tons/acre). Concentrations of nutrients were consistently highest in Devil 's Craddle Creek. Concentrations of total copper, iron, and lead in samples from each of the three streams at times exceeded State water quality standards as did concentrations of total zinc in samples from both Smith and Marsh Creeks. Successively lower aquatic invertebrate taxa richness was found in the forested, the agricultural, and the urban watershed streams. Invertebrate biota in Smith Creek was dominated by insects, such as Ephemeroptera, that are intolerant to stress from pollution, whereas Devil 's Cradle Creek was dominated by the more tolerant Diptera, and Marsh Creek was dominated by the most pollution-tolerant group, the Oligochaeta. Fish communities in the forested and agricultural watershed streams were characterized by more species and more individuals of each species, relative to a limited community in urban Marsh Creek. Three independent variables closely linked to land use--suspended-sediment yield, suspended-sediment load, and total lead concentrations in stream water--are inversely associated with the biological communities of the streams.

  2. Statistical Assessment of Water Quality Parameters for Pollution Source Identification in Sukhnag Stream: An Inflow Stream of Lake Wular (Ramsar Site, Kashmir Himalaya

    Directory of Open Access Journals (Sweden)

    Salim Aijaz Bhat

    2014-01-01

    Full Text Available The precursors of deterioration of immaculate Kashmir Himalaya water bodies are apparent. This study statistically analyzes the deteriorating water quality of the Sukhnag stream, one of the major inflow stream of Lake Wular. Statistical techniques, such as principal component analysis (PCA, regression analysis, and cluster analysis, were applied to 26 water quality parameters. PCA identified a reduced number of mean 2 varifactors, indicating that 96% of temporal and spatial changes affect the water quality in this stream. First factor from factor analysis explained 66% of the total variance between velocity, total-P, NO3–N, Ca2+, Na+, TS, TSS, and TDS. Bray-Curtis cluster analysis showed a similarity of 96% between sites IV and V and 94% between sites II and III. The dendrogram of seasonal similarity showed a maximum similarity of 97% between spring and autumn and 82% between winter and summer clusters. For nitrate, nitrite, and chloride, the trend in accumulation factor (AF showed that the downstream concentrations were about 2.0, 2.0, and 2.9, times respectively, greater than upstream concentrations.

  3. Chironomus larvae (Chironomidae: Diptera as water quality indicators along an environmental gradient in a neotropical urban stream

    Directory of Open Access Journals (Sweden)

    Nadja Gomes Machado

    2015-04-01

    Full Text Available Anthropogenic interference in urban lotic systems is a factor affecting the biota of waterbodies. Aquatic macro invertebrates are an important food source for fish and are valuable indicators of water quality. The objective of this work was to study Chironomus larvae (Chironomidae: Diptera distribution along an environmental gradient in Barbado Stream, Cuiabá, MT, Brazil. No individual Chironomus was found in the springs of Barbado Stream, which may indicate preservation of the area. During the study period, we found 40.3 and 94.4 individuals/m2 at points 3 and 4 (low course, respectively. There is eutrophication in these sites due to domestic sewage discharges, indicating low quality water. The Barbado Stream needs restoration projects that include an awareness of the residents of their neighborhood’s environmental importance, and investments in the sanitation sector to prioritize the collection and treatment of wastewater and solid waste collection.

  4. Stream water chemistry and quality along an upland lowland rural land-use continuum, south west England

    Science.gov (United States)

    Jarvie, H. P.; Haygarth, P. M.; Neal, C.; Butler, P.; Smith, B.; Naden, P. S.; Joynes, A.; Neal, M.; Wickham, H.; Armstrong, L.; Harman, S.; Palmer-Felgate, E. J.

    2008-02-01

    SummaryThis study examined stream water quality across a range of catchments which are representative of the key environments and land uses of rural south-west England. These catchments included: (a) an acidic upland headwater catchment, rising on the moorlands of Dartmoor, with low-intensity sheep rearing; (b) a headwater catchment rising on the weathered granite lower slopes of Dartmoor, with cattle farming; (c) a lowland headwater clay catchment with sub-surface drainage and high intensity livestock farming, fodder crop cultivation, and hard-standing/slurry storage; and (d) the main River Taw, a lowland river system receiving drainage from a range of tributaries, exemplified by the above catchment types. Variations in water chemistry and quality were observed along an upland-lowland transition, from headwater streams to the main river channel. Within the livestock-dominated headwater streams, total phosphorus (TP) was dominated by particulate phosphorus (PP). These PP concentrations appeared to be mainly linked to two sets of processes: (1) in-stream sediment precipitation with sorption/co-precipitation of phosphate and/or localised in-channel mobilisation of sediment (by cattle or channel-clearing operations) under low flow conditions, and (2) sediment erosion and transportation associated with near-surface runoff during storm events. Under baseflow conditions, in-stream and/or riparian processes played a significant role in controlling general nutrient chemistry, particularly in the headwater streams which were heavily impacted by livestock.

  5. Water Quality Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Our water quality sampling program is to determine the quality of Moosehorn's lakes and a limited number of streams. Water quality is a measure of the body of water,...

  6. Afloat in a Boat: Linking Land Use / Land Cover to the Spatial Evolution of Water Quality along a Blackwater Stream

    Science.gov (United States)

    Neville, J.; Vose, J. M.; Nichols, E. G.; Jass, T. L.; Emanuel, R. E.; McRae, J.

    2016-12-01

    Water quality and land use/land cover (LULC) are linked intimately in many watersheds, although exact relationships are often nonlinear and sometimes complex. Together with watershed topography, LULC can affect water quality in various ways. As such, attributing water quality characteristics to LULC variations (either in space or time) can be difficult. Many studies seek to understand these relationships from a Eulerian reference frame, which typically involves many samples or observations through time at a fixed location. Here we explore an alternative approach to understanding relationships between LULC and water quality that relies on a Lagrangian, or moving, reference frame, in which the effects of LULC and watershed topography on water quality can be observed through a different lens. We studied three reaches of the Lumber River, a blackwater stream in North Carolina's Coastal Plain, to assess relationships between LULC and water quality in a watershed that is a patchwork of agriculture, forests, wetlands and developed land. Our study combines spatially intensive water quality measurements (temperature, specific conductance, dissolved oxygen, pH and nitrate concentration), collected by boat, with geospatial analyses of LULC to understand influences on the spatial evolution of reach-scale water quality. In particular, we investigate relationships between spatial patterns in nitrate and the changing spatial characteristics of the watershed integrated at sampling points along each reach. We also assess relationships between nitrate and other water quality variables, such as pH, temperature, and dissolved oxygen to better understand the potential role of in-stream nutrient processing in observed spatial patterns. This work has implications for the regulation and management of agriculture, wetlands, and forests in a region that has long struggled to balance agriculture, a major economic driver, with water quality, a major concern for recreation and cultural

  7. Effects of land use and surficial geology on flow and water quality of streams in the coal-mining region of southwestern Indiana, October 1979 through September 1980

    Science.gov (United States)

    Wilber, William G.; Renn, Danny E.; Crawford, Charles G.

    1985-01-01

    An assessment of streams in the coal-mining region of southwestern Indiana was done from October 1979 through September 1980 during stable stream flows to provide baseline hydrologic and water-quality information and to document the effect of several natural and human-induced factors on water quality in the region.

  8. Methods and Sources of Data Used to Develop Selected Water-Quality Indicators for Streams and Ground Water for EPA's 2007 Report on the Environment: Science Report

    Science.gov (United States)

    Baker, Nancy T.; Wilson, John T.; Moran, Michael J.

    2008-01-01

    The U.S. Geological Survey (USGS) was one of numerous governmental agencies, private organizations, and the academic community that provided data and interpretations for the U.S. Environmental Protection Agency?s (USEPA) 2007 Report on the Environment: Science Report. This report documents the sources of data and methods used to develop selected water?quality indicators for the 2007 edition of the report compiled by USEPA. Stream and ground?water?quality data collected nationally in a consistent manner as part of the USGS?s National Water?Quality Assessment Program (NAWQA) were provided for several water?quality indicators, including Nitrogen and Phosphorus in Streams in Agricultural Watersheds; Pesticides in Streams in Agricultural Watersheds; and Nitrate and Pesticides in Shallow Ground Water in Agricultural Watersheds. In addition, the USGS provided nitrate (nitrate plus nitrite) and phosphorus riverine load estimates calculated from water?quality and streamflow data collected as part of its National Stream Water Quality Accounting Network (NASQAN) and its Federal?State Cooperative Program for the Nitrogen and Phosphorus Discharge from Large Rivers indicator.

  9. Watershed scale assessment of the impact of forested riparian zones on stream water quality

    Science.gov (United States)

    J. A. Webber; K. W. J. Williard; M. R. Whiles; M. L. Stone; J. J. Zaczek; D. K. Davie

    2003-01-01

    Federal and state land management agencies have been promoting forest and grass riparian zones to combat non-point source nutrient and sediment pollution of our nations' waters. The majority of research examining the effectiveness of riparian buffers at reducing nutrient and sediment inputs to streams has been conducted at the field scale. This study took a...

  10. Effect of development on water quality for seven streams in North Carolina.

    Science.gov (United States)

    Line, D E

    2013-08-01

    In this study, baseflow and storm discharges were monitored in seven watersheds of varying development density to document the effects of development on stream water quality. In addition, two of the watersheds contained package wastewater treatment facilities, which were evaluated as an alternative to residential on-site septic systems. Monthly grab samples of baseflow and flow-proportional samples of storm event discharge were collected and analyzed for nitrogen, phosphorus, sediment, and bacteria. For the five watersheds without wastewater treatment facilities, a significant linear relationship was documented between fecal coliform and enterococci levels in baseflow samples and the percentage of residential or impervious area. For the two watersheds with wastewater discharge, bacteria levels were significantly greater than those from the two relatively undeveloped watersheds. These results indicate that bacteria levels increased with increasing residential development even if many of the septic systems were replaced by a community wastewater treatment system. Computed annual export rates for ammonia nitrogen (NH3-N) were correlated to the percentage of impervious surfaces in the watersheds, while the rates for other nitrogen forms, total phosphorus, and total suspended sediment were not. Annual export rates from the two mostly undeveloped watersheds were greater than a compilation of rates for undeveloped areas across the USA. Export from the four watersheds with more than 68 % residential land use was less than those reported from local and national studies of residential areas.

  11. Effects of land use change on streamflow and stream water quality of ...

    African Journals Online (AJOL)

    This study aimed to link land cover/use change to water quality in an important water supply coastal catchment. The approach followed a spatial and temporal analysis of historical catchment land use change to assess how changes influenced water quality and river flow in the Touws and Duiwe Rivers, southwestern Cape, ...

  12. Seasonality, water quality trends and biological responses in four streams in the Cairngorm Mountains, Scotland

    Directory of Open Access Journals (Sweden)

    C. Soulsby

    2001-01-01

    Full Text Available The chemical composition and invertebrate communities found in four streams in the Cairngorms, Scotland, were monitored between 1985-1997. Stream waters were mildly acidic (mean pH ca. 6.5, with low alkalinity (mean acid neutralising capacity varying from 35-117 meq l-1 and low ionic strength. Subtle differences in the chemistry of each stream were reflected in their invertebrate faunas. Strong seasonality in water chemistry occurred, with the most acid, low alkalinity waters observed during the winter and early spring. This was particularly marked during snowmelt between January and April. In contrast, summer flows were usually groundwater dominated and characterised by higher alkalinity and higher concentrations of most other weathering-derived solutes. Seasonality was also clear in the invertebrate data, with Canonical Correspondence Analysis (CCA separating seasonal samples along axes related to water temperature and discharge characteristics. Inter-annual hydrological and chemical differences were marked, particularly with respect to the winter period. Invertebrate communities found in each of the streams also varied from year to year, with spring communities significantly more variable (PHydrochemical trends over the study period were analysed using a seasonal Kendall test, LOcally WEighted Scatterplot Smoothing (LOWESS and graphical techniques. These indicated that a reduction in sulphate concentrations in stream water is occurring, consistent with declining levels of atmospheric deposition. This may be matched by increases in pH and declining calcium concentrations, though available evidence is inconclusive. Other parameters, such as chloride, total organic carbon and zinc, reveal somewhat random patterns, probably reflecting irregular variations in climatic factors and/or atmospheric deposition. Previous studies have shown that the stream invertebrate communities have remained stable over this period (i.e. no significant linear trends

  13. Impact of urbanization on water quality and chemical flux in urban streams: implications for management

    Science.gov (United States)

    Bushey, J. T.; Aragon-jose, A. T.; Perkins, C.; Lancaster, N.; Ulatowski, G.

    2012-12-01

    Contaminant source and biogeochemical processes are altered in urban ecosystems. Given the high impervious cover and altered hydrologic cycle, contaminant mobilization is particularly important during high discharge events. Many urban systems not only receive contaminant loading from stormwater, but also receive sewage contributions from combined sewer overflows (CSOs). Additionally, biogeochemical processes are altered by the changing chemistry and flashier hydrology. Management of contaminant loading often ignores these temporal shifts in speciation as well as the alteration of fate processes within the receiving water body, further compounding the difficult and challenging problem that many municipalities face of assessing ecological impacts. To assess potential changes in loading and chemical speciation we have collected stream water and sediment samples in the Park River sewershed (Hartford, CT) during base flow and events to assess potential for contaminant loading and mobilization. Six events have been collected to date. Trace metal, TSS and DOC concentrations increased with discharge. However, trace metal concentrations and flux values reflected the degree of urbanization and industry present in the watersheds. All samples contained low DOC with the majority of the flux occurring in the particulate phase. Dissolved transport with DOC, particularly for Hg, decreased with urbanization; however, the dominant phase, dissolved versus particulate, varied by storm. The degree of urbanization also increased TN flux as well as the distribution among N chemical species, with urbanized systems increasing in the NOx fraction. The altered watershed processes was also evident in an analysis of dissolved organic matter binding, with stormwater contributions contributing to higher microbial organic matter fractions as determined by EEMs. This shift in DOM quality has been linked to end member source contributions including forest, stormwater and sewage. Particulate

  14. Evaluation of Measurements Collected with Multi-Parameter Continuous Water-Quality Monitors in Selected Illinois Streams, 2001-03

    Science.gov (United States)

    Groschen, George E.; King, Robin B.

    2005-01-01

    Eight streams, representing a wide range of environmental and water-quality conditions across Illinois, were monitored from July 2001 to October 2003 for five water-quality parameters as part of a pilot study by the U.S. Geological Survey (USGS) in cooperation with the Illinois Environmental Protection Agency (IEPA). Continuous recording multi-parameter water-quality monitors were installed to collect data on water temperature, dissolved-oxygen concentrations, specific conductivity, pH, and turbidity. The monitors were near USGS streamflow-gaging stations where stage and streamflow are continuously recorded. During the study period, the data collected for these five parameters generally met the data-quality objectives established by the USGS and IEPA at all eight stations. A similar pilot study during this period for measurement of chlorophyll concentrations failed to achieve the data-quality objectives. Of all the sensors used, the temperature sensors provided the most accurate and reliable measurements (generally within ?5 percent of a calibrated thermometer reading). Signal adjustments and calibration of all other sensors are dependent upon an accurate and precise temperature measurement. The dissolved-oxygen sensors were the next most reliable during the study and were responsive to changing conditions and accurate at all eight stations. Specific conductivity was the third most accurate and reliable measurement collected from the multi-parameter monitors. Specific conductivity at the eight stations varied widely-from less than 40 microsiemens (?S) at Rayse Creek near Waltonville to greater than 3,500 ?S at Salt Creek at Western Springs. In individual streams, specific conductivity often changed quickly (greater than 25 percent in less than 3 hours) and the sensors generally provided good to excellent record of these variations at all stations. The widest range of specific-conductivity measurements was in Salt Creek at Western Springs in the Greater Chicago

  15. Guidelines for collection and field analysis of water-quality samples from streams in Texas

    Science.gov (United States)

    Wells, F.C.; Gibbons, W.J.; Dorsey, M.E.

    1990-01-01

    This manual provides standardized guidelines and quality-control procedures for the collection and preservation of water-quality samples and defines procedures for making field analyses of unstable constituents or properties.

  16. The water quality of streams draining a plantation forest on gley soils: the Nant Tanllwyth, Plynlimon mid-Wales

    Directory of Open Access Journals (Sweden)

    C. Neal

    2004-01-01

    Full Text Available The water quality of the Nant Tanllwyth stream in the Plynlimon region of mid-Wales is related to the key hydrobiogeological controls and the effects of conifer harvesting based on an analysis of rain, cloud, stream and groundwater measurements. The results show the normal patterns of stream water quality response to hydrology. Thus, there is a high damping of atmospheric inputs due to storage in a highly heterogeneous soil and groundwater system. Correspondingly, there is a highly dynamic response for components such as calcium, bicarbonate and aluminium. This response links to the relative inputs of acidic and aluminium-bearing soil waters under high flow conditions and base enriched bicarbonate bearing waters from the groundwater areas under baseflow conditions. The introduction of a deep borehole near the main stem of the river opened up a groundwater flow route to the stream and other parts of the catchment. There were two aspects to this. Firstly, it caused a change to the stream water quality, particularly under baseflow conditions, by increasing the concentrations of calcium and magnesium and by reducing the acidity. The monitoring shows that this change has persisted for over eight years and that there is no sign of reversion to pre-borehole times. Secondly, it caused a change in the groundwater level and chemistry at a borehole on the other side of the river. This feature shows that the fracture system is of hydrogeochemical and hydrogeological complexity. The effects of conifer harvesting are remarkable. At the local scale, felling leads to the expected short term increase in nitrate, ammonium and phosphate from the disturbance of the soil and the reduction in uptake into the vegetation. Correspondingly, there is a reduction in sodium and chloride linked to reduced scavenging of atmospheric inputs from cloud water by the vegetation and also due to increased dilution potential due to reductions in transpiration by the trees. However

  17. Computer program documentation for the enhanced stream-water quality model QUAL2E. Final report, August 1984-June 1985

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.C.; Barnwell, T.O.

    1985-08-01

    Presented in the manual are recent modifications and improvements to the widely used stream water quality model QUAL-II. Called QUAL2E, the enhanced model incorporates improvements in eight areas: (1) algal, nitrogen, phosphorus, and dissolved oxygen interactions; (2) algal growth rate; (3) temperature; (4) dissolved oxygen; (5) arbitrary non-conservative constituents; (6) hydraulics; (7) downstream boundary concentrations; and (8) input/output modifications. QUAL2E, which can be operated either as a steady-state or as a dynamic model, is intended for use as a water-quality planning tool.

  18. Training the next generation of scientists: Modeling Infectious Disease and Water Quality of Montana Streams

    Science.gov (United States)

    Fytilis, N.; Wyman, S.; Lamb, R.; Stevens, L.; Kerans, B.; Rizzo, D. M.

    2010-12-01

    water quality and the presence of these taxa is important in determining stream health. In addition, system dynamics software (STELLA) is used to model the non-linear relationships and feedback between worm prevalence and disease dynamics. These types of collaborations between engineers, biologists, field ecologists and geneticists from secondary, post-secondary and higher institutions proved useful in linking complex geochemical data, worm community structure and molecular genetics to develop the next-generation scientists and better understand disease dynamics.

  19. Long-term changes in the water quality of rainfall, cloud water and stream water for moorland, forested and clear-felled catchments at Plynlimon, mid-Wales

    Directory of Open Access Journals (Sweden)

    C. Neal

    2001-01-01

    Full Text Available Long term changes in the water quality of rainfall, cloud water and stream waters draining acidic and acid sensitive moorland and forested catchments at Plynlimon, mid-Wales, are examined for the period 1983 to 2001. Atmospheric inputs of chloride and sulphate are influenced by the relative inputs of clean maritime and polluted land based air masses. There is no systematic increase or decrease over time for chloride and non-sea-salt sulphate. Rather, there is a decadal scale process possibly representative of the influence of the North Atlantic Oscillation that affects the maritime and pollution climate of the Atlantic seaboard of the UK. Over 17 years of study, there may be a small decrease in non-sea-salt sulphate of about 10 μeq l-1 and a small improvement in acid neutralising capacity of about 20 to 30 μeq l-1 in rainfall. There is a clear improvement in cloud water chemistry with respect to pollutant components (ammonium, nitrate, non-sea-salt sulphate and acidity (acid neutralising capacity improved by about 300 μeq l-1 through the study period. Many of the changes in cloud water chemistry are similar to rainfall over the same period except the magnitude of change is larger for the cloud water. Within the streams, there is some evidence for reductions in acidity as reflected by acid neutralising capacity becoming less negative. For one stream, deforestation occurred during the sampling period and this led to large increases in nitrate and smaller increases in aluminium midway through the study period. However, the climate and hydrological variability largely masked out other changes. The current analysis provides only a start to identifying trends for such a complex and variable environmental system. The need for strong statistical tools is emphasised to resolve issues of: (a hydrological induced water quality variability, (b changing soil and groundwater "endmember" chemistry contribution to the stream and (c the non-linear patterns of

  20. Assessing the impact of groundwater contamination on stream water quality by multiple approaches at the groundwater-surface water interface (Invited Presentation)

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Rønde, Vinni Kampman; Balbarini, Nicola

    Contaminants such as chlorinated solvents and pesticides, as well as new classes of compounds or emerging micropollutants are extensively produced, utilized and then discarded in society and subsequently released to streams from multiple point and diffuse sources. Sustainable management of water...... resources requires assessment of multiple contamination sources within a watershed in order to assess their direct impact on water quality. Determination of flow paths and groundwater fluxes are essential for evaluating the transport, fate and potential impact of contaminant plumes discharging to streams...... of the Grindsted stream area including geology, hydrogeology, geophysics, environmental chemistry, ecology and environmental engineering was carried out in 2012-2017, to develop the scientific basis for conducting risk assessments for contaminated sites impacting surface waters. The Grindsted stream area is a well...

  1. Relation between stream-water quality and geohydrology during base-flow conditions, Roberts creek watershed, Clayton County, Iowa

    Science.gov (United States)

    Kalkhoff, Stephen J.

    1995-01-01

    An investigation to determine the relation between stream water quality and geohydrology in the Roberts Creek watershed, Clayton County, Iowa, was conducted during selected base-flow periods in 1988-90. Discharge measurements were made and water samples collected for analyses of nutrients and selected herbicides in 19 subbasins along the main stem and tributaries of Roberts Creek. The areal extent of unconsolidated and bedrock units subcropping in each subbasin was quantified. The hydrologic data were correlated statistically with the geologic data to determine relations. Roberts Creek generally gained water and had larger nitrogen concentrations in subbasins in which loess and alluvial material were underlain primarily by low-permeability till and shale units. Roberts Creek generally lost water and had lower nitrate concentrations in subbasins with subcropping karstic units. Nitrogen concentrations decreased in streams underlain by the karstic units because the nitrogen removed by biological processes was not replaced by ground-water inflow. Seepage from Roberts Creek to ground water in areas of subcropping karstic carbonate rocks reduced the flow, which reduced the velocity, causing increased residence time of water in the stream. The additional residence time may allow additional time for biological processes to remove nitrogen from solution. There was no significant relation between dissolved orthophosphate or atrazine and the underlying geology.

  2. Trends in surface-water quality at selected National Stream Quality Accounting Network (NASQAN) stations, in Michigan

    Science.gov (United States)

    Syed, Atiq U.; Fogarty, Lisa R.

    2005-01-01

    To demonstrate the value of long-term, water-quality monitoring, the Michigan Department of Environmental Quality (MDEQ), in cooperation with the U.S. Geological Survey (USGS), initiated a study to evaluate potential trends in water-quality constituents for selected National Stream Quality Accounting Network (NASQAN) stations in Michigan. The goal of this study is to assist the MDEQ in evaluating the effectiveness of water-pollution control efforts and the identification of water-quality concerns. The study included a total of nine NASQAN stations in Michigan. Approximately 28 constituents were analyzed for trend tests. Station selection was based on data availability, land-use characteristics, and station priority for the MDEQ Water Chemistry Monitoring Project. Trend analyses were completed using the uncensored Seasonal Kendall Test in the computer program Estimate Trend (ESTREND), a software program for the detection of trends in water-quality data. The parameters chosen for the trend test had (1) at least a 5-year period of record (2) about 5 percent of the observations censored at a single reporting limit, and (3) 40 percent of the values within the beginning one-fifth and ending one-fifth of the selected period. In this study, a negative trend indicates a decrease in concentration of a particular constituent, which generally means an improvement in water quality; whereas a positive trend means an increase in concentration and possible degradation of water quality. The results of the study show an overall improvement in water quality at the Clinton River at Mount Clemens, Manistee River at Manistee, and Pigeon River near Caseville. The detected trend for these stations show decreases in concentrations of various constituents such as nitrogen compounds, conductance, sulfate, fecal coliform bacteria, and fecal streptococci bacteria. The negative trend may indicate an overall improvement in agricultural practices, municipal and industrial wastewater

  3. Modeling the interannual variability of microbial quality metrics of irrigation water in a Pennsylvanian stream

    Science.gov (United States)

    Knowledge of the microbial quality of irrigation waters is extremely limited. For this reason, the US FDA has promulgated the Produce Rule, mandating the testing of irrigation water sources for many farms. The rule requires the collection and analysis of at least 20 water samples over two to four ye...

  4. Modeling the interannual variability of microbial quality metrics of irrigation water in a Pennsylvania stream.

    Science.gov (United States)

    Hong, Eun-Mi; Shelton, Daniel; Pachepsky, Yakov A; Nam, Won-Ho; Coppock, Cary; Muirhead, Richard

    2017-02-01

    Knowledge of the microbial quality of irrigation waters is extremely limited. For this reason, the US FDA has promulgated the Produce Rule, mandating the testing of irrigation water sources for many farms. The rule requires the collection and analysis of at least 20 water samples over two to four years to adequately evaluate the quality of water intended for produce irrigation. The objective of this work was to evaluate the effect of interannual weather variability on surface water microbial quality. We used the Soil and Water Assessment Tool model to simulate E. coli concentrations in the Little Cove Creek; this is a perennial creek located in an agricultural watershed in south-eastern Pennsylvania. The model performance was evaluated using the US FDA regulatory microbial water quality metrics of geometric mean (GM) and the statistical threshold value (STV). Using the 90-year time series of weather observations, we simulated and randomly sampled the time series of E. coli concentrations. We found that weather conditions of a specific year may strongly affect the evaluation of microbial quality and that the long-term assessment of microbial water quality may be quite different from the evaluation based on short-term observations. The variations in microbial concentrations and water quality metrics were affected by location, wetness of the hydrological years, and seasonality, with 15.7-70.1% of samples exceeding the regulatory threshold. The results of this work demonstrate the value of using modeling to design and evaluate monitoring protocols to assess the microbial quality of water used for produce irrigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of highway construction on stream water quality and macroinvertebrate condition in a mid-atlantic highlands watershed, USA.

    Science.gov (United States)

    Chen, Yushun; Viadero, Roger C; Wei, Xinchao; Fortney, Ronald; Hedrick, Lara B; Welsh, Stuart A; Anderson, James T; Lin, Lian-Shin

    2009-01-01

    Refining best management practices (BMPs) for future highway construction depends on a comprehensive understanding of environmental impacts from current construction methods. Based on a before-after-control impact (BACI) experimental design, long-term stream monitoring (1997-2006) was conducted at upstream (as control, n = 3) and downstream (as impact, n = 6) sites in the Lost River watershed of the Mid-Atlantic Highlands region, West Virginia. Monitoring data were analyzed to assess impacts of during and after highway construction on 15 water quality parameters and macroinvertebrate condition using the West Virginia stream condition index (WVSCI). Principal components analysis (PCA) identified regional primary water quality variances, and paired t tests and time series analysis detected seven highway construction-impacted water quality parameters which were mainly associated with the second principal component. In particular, impacts on turbidity, total suspended solids, and total iron during construction, impacts on chloride and sulfate during and after construction, and impacts on acidity and nitrate after construction were observed at the downstream sites. The construction had statistically significant impacts on macroinvertebrate index scores (i.e., WVSCI) after construction, but did not change the overall good biological condition. Implementing BMPs that address those construction-impacted water quality parameters can be an effective mitigation strategy for future highway construction in this highlands region.

  6. Hydrology and water quality of an urban stream reach in the Great Basin - Little Cottonwood Creek near Salt Lake City, Utah, water years 1999-2000

    Science.gov (United States)

    Gerner, Steven J.; Waddell, Kidd M.

    2003-01-01

    The hydrology and water quality of an urbanized reach of Little Cottonwood Creek near Salt Lake City, Utah, were examined as part of the Great Salt Lake Basins study, part of the U.S. Geological Survey National Water-Quality Assessment program. Physical and chemical properties of the stream were referenced to established aquatic-life criteria as available. Two fixed sampling sites were established on Little Cottonwood Creek with the purpose of determining the influence of urbanization on the water quality of the stream. The fixed-site assessment is a component of the National Water-Quality Assessment surface-water study design used to assess the spatial and temporal distribution of selected water-quality constituents.The occurrence and distribution of major ions, nutrients, trace elements, dissolved and suspended organic carbon, pesticides, volatile organic compounds, and suspended sediment were monitored during this study. From October 1998 to September 2000, stream samples were collected at regular intervals at the two fixed sites. Additional samples were collected at these sites during periods of high flow, which included runoff from snowmelt in the headwaters and seasonal thunderstorms in the lower basin.

  7. Forestry best management practices: evaluation of alternate streamside management zones on stream water quality in Pockwock Lake and Five Mile Lake watersheds in central Nova Scotia, Canada.

    Science.gov (United States)

    Vaidya, O C; Smith, T P; Fernand, H; McInnis Leek, Nancy R

    2008-02-01

    The effects of timber harvesting on stream water quality and efficiency of alternate streamside management zones were evaluated in Pockwock Lake and Five Mile Lake watersheds in central Nova Scotia, Canada. The streamside management zone (SMZ) included a 20 m no cut, 20 m select cut and a 30 m select cut buffer strips along the stream. Water quality of eight streams, six in harvested and two in not-harvested watersheds were monitored for two years before and two years after the harvesting of timber. Nonparametric statistical tests on stream water quality showed that there was significant change in the concentration of potassium in six streams, manganese in five streams, zinc in two streams and total nitrogen in one stream after timber harvesting. There was no significant change in the quality of water in two streams used as control sites in the neighboring watersheds of similar size and hydrological characteristics. The results show that forest management practices were most favorable in streams maintained with 30 m select cut followed by 20 m no cut and 20 m select cut SMZ. The streamside zone width and treatment of select cut or no cut in the zone played an important role in filtering or retaining the minerals in surface water runoff. In buffer zones of similar width, the buffer zone with no cut or forested buffer was relatively more effective at protecting stream water quality than select cut SMZ. The vegetation in the zone may have decreased the flow velocity and increased residence time and thus increased filtration and retention of minerals in the riparian soil.

  8. Water quality in Pearl Harbor and feeder streams during 1971 - 2001 collected primarily by oceanography students from Leeward Community College (NODC Accession 0000590)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water quality data were collected in Pearl Harbor and surrounding feeder streams from 30 December 1971 to 24 August 2001. Data were collected by Leeward Community...

  9. Analysis of postfire hydrology, water quality, and sediment transport for selected streams in areas of the 2002 Hayman and Hinman fires, Colorado

    Science.gov (United States)

    Stevens, Michael R.

    2013-01-01

    The U.S. Geological Survey (USGS) began a 5-year study in 2003 that focused on postfire stream-water quality and postfire sediment load in streams within the Hayman and Hinman fire study areas. This report compares water quality of selected streams receiving runoff from unburned areas and burned areas using concentrations and loads, and trend analysis, from seasonal data (approximately April–November) collected 2003–2007 at the Hayman fire study area, and data collected from 1999–2000 (prefire) and 2003 (postfire) at the Hinman fire study area. The water-quality data collected during this study include onsite measurements of streamflow, specific conductance, and turbidity, laboratory-determined pH, and concentrations of major ions, nutrients, organic carbon, trace elements, and suspended sediment. Postfire floods and effects on water quality of streams, lakes and reservoirs, drinking-water treatment, and the comparison of measured concentrations to applicable water quality standards also are discussed. Exceedances of Colorado water-quality standards in streams of both the Hayman and Hinman fire study areas only occurred for concentrations of five trace elements (not all trace-element exceedances occurred in every stream). Selected samples analyzed for total recoverable arsenic (fixed), dissolved copper (acute and chronic), total recoverable iron (chronic), dissolved manganese (acute, chronic, and fixed) and total recoverable mercury (chronic) exceeded Colorado aquatic-life standards.

  10. Effects of geothermal energy utilization on stream biota and water quality at The Geysers, California. Final report. [Big Sulphur, Little Sulphur, Squaw, and Pieta Creeks

    Energy Technology Data Exchange (ETDEWEB)

    LeGore, R.S.

    1975-01-01

    The discussion is presented under the following section headings: biological studies, including fish, insects, and microbiology; stream hydrology; stream water quality, including methods and results; the contribution of tributaries to Big Sulphur Creek, including methods, results, and tributary characterization; standing water at wellheads; steam condensate quality; accidental discharges; trout spawning bed quality; major conclusions; list of references; and appendices. It is concluded that present operational practices at Geysers geothermal field do not harm the biological resources in adjacent streams. The only effects of geothermal development observed during the study were related to operational accidents. (JGB)

  11. Environmental Monitoring, Water Quality - MO 2014 Section 305b Water Quality Report Complete Listing of Impaired Rivers and Streams (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set contains those Missouri waters which have been assessed as impaired in 2014, including waters on Missouri's proposed 2014 Section 303(d) List, but also...

  12. Environmental Monitoring, Water Quality - MO 2012 Section 305b Water Quality Report Complete Listing of Impaired Rivers and Streams (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set contains those Missouri waters which have been assessed as impaired in 2012, including waters on Missouri's proposed 2012 Section 303(d) List, but also...

  13. Linking Near Real-Time Water Quality Measurements to Fecal Coliforms and Trace Organic Pollutants in Urban Streams

    Science.gov (United States)

    Henjum, M.; Wennen, C.; Hondzo, M.; Hozalski, R. M.; Novak, P. J.; Arnold, W. A.

    2009-05-01

    Anthropogenic pollutants, including pesticides, herbicides, pharmaceuticals, and estrogens are detected in urban water bodies. Effective examination of dilute organic and microbial pollutant loading rates within surface waters is currently prohibitively expensive and labor intensive. Effort is being placed on the development of improved monitoring methodologies to more accurately assess surface water quality and evaluate the effectiveness of water quality management practices. Throughout the summer and fall of 2008 a "real-time" wireless network equipped with high frequency fundamental water quality parameter sensors measured turbidity, conductivity, pH, depth, temperature, dissolved oxygen and nitrate above and below stormwater inputs at two urban stream locations. At each location one liter grab samples were concurrently collected by ISCO automatic samplers at two hour intervals for 24 hour durations during three dry periods and five rain events. Grab samples were analyzed for fecal coliforms, atrazine (agricultural herbicide), prometon (residential herbicide) and caffeine (wastewater indicator). Surrogate relationships between easy-to-measure water quality parameters and difficult-to-measure pollutants were developed, subsequently facilitating monitoring of these pollutants without the development of new, and likely costly, technologies. Additionally, comparisons were made between traditional grab sampling techniques and the "real-time" monitoring to assess the accuracy of Total Maximum Daily Load (TMDL) calculations.

  14. Influence of agricultural practices on water quality in Nebraska: a survey of streams, groundwater, and precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.A.; Seim, E.C.; Muir, J.

    1973-01-01

    Rainfall, stream flow and groundwater have been sampled systematically throughout Nebraska since 1970 and analyzed for mineral N and P and the character of any sediments contained. Fallout N and P in rainfall ranges from 5-14 pounds N and 1/2-1 pounds P/a/yr, increasing from west to east across the state with increasing rainfall. The amount of NH/sub 4//sup n/ is essentially double that of NO/sub 3//sup -n/. The mean concentration of 2ppm n in rainfall is four times the mean N concentration of streams, demonstrating a substantial depolluting action of soils and growing crops. Where nutrient levels of streams are elevated, cause can usually be traced especially to industrial, sewage or livestock waste intrusion and not to crop production practices. The only significant quantity of nutrient N and P induced by cultivation is that accompanying sediments from eroded fields. The P content of Nebraska groundwater has remained essentially constant during the past 10 years while average NO/sub 3//sup -n/ has increased slightly, a period during which farmer fertilizer use quadrupled. During the same time, irrigation acreage has increased by 50%, livestock numbers by 30%, with corresponding growth in human population and attendant industries. Indications are that irrigation practice has contributed more than any other factor to the small increase in groundwater NO/sub 3//sup -n/ recorded. Individual cases do exist where groundwater NO/sub 3//sup -n/ has increased substantially, especially in areas of intensive irrigation agriculture on very sandy soils and elsewhere with irrigation development in the proximity of ancient NO/sub 3//sup -n/ deposits in mantlerock above the water table.

  15. Water Quality, Macroinvertebrates, and Fisheries in Tailwaters and Related Streams. An Annotated Bibliography.

    Science.gov (United States)

    1981-05-01

    predation and water quality on the rainbow trout fishery of the lower Illinois River. M. S. thesis. Univ. Okla., Norman . 103 pp. A creel survey was...Instream disturbances which negatively affect the benthic community can be expected to reduce drift. F,W Doudoroff, P. and D. L. Shumway . 1967

  16. Streamflow, water quality, and aquatic macroinvertebrates of selected streams in Fairfax County, Virginia, 2007-12

    Science.gov (United States)

    Jastram, John D.

    2014-01-01

    few exceptions. Nitrogen concentrations in monthly samples were generally low and dominated by nitrate. Exceptions to the generally low N concentrations occurred at Captain Hickory Run, which had a median total N concentration of approximately 4.9 milligrams per liter (mg/L), compared to the network-wide median of approximately 1.7 mg/L, and at Popes Head Creek Tributary, where total N concentrations spiked to 6–8 mg/L during low-flow periods in August or September of each year. Phosphorus concentrations in monthly samples were generally low and dominated by the dissolved fraction. Two monitoring stations in the network, Flatlick Branch and Frog Branch, are notable for having median total P concentrations that were, on average, approximately three times greater than the median total P concentration of 0.02 mg/L observed at the other 12 stations in the network. Suspended-sediment and nutrient loads and yields were similar to those of urbanized watersheds in other studies, although the yields from these urbanized basins were greater than, or within, the upper quartile of yields observed throughout the Chesapeake Bay watershed. Annual suspended-sediment loads ranged from 289–10,275 tons, with a median of 1,311 tons, and corresponding yields ranged from 107–2,827 tons per square mile (ton/mi2), with a median of 277 ton/mi2. Annual total N loads ranged from 8,014–36,413 pounds, with a median of 21,314 pounds, and corresponding yields ranged from 3,361–8,360 pounds per square mile (lb/mi2), with a median of 6,200 lb/mi2. Annual total P loads ranged from 380–6,558 pounds, with a median of 1,874 pounds, and corresponding yields ranged from 140–1,562 lb/mi2, with a median of 543 lb/mi2. Benthic macroinvertebrate community metrics indicated that streams throughout Fairfax County are generally of poor health. One station, Castle Creek, was an exception with results indicating relatively high quality aquatic health. Six additional monitoring stations were added to

  17. Methods to characterize environmental settings of stream and groundwater sampling sites for National Water-Quality Assessment

    Science.gov (United States)

    Nakagaki, Naomi; Hitt, Kerie J.; Price, Curtis V.; Falcone, James A.

    2012-01-01

    Characterization of natural and anthropogenic features that define the environmental settings of sampling sites for streams and groundwater, including drainage basins and groundwater study areas, is an essential component of water-quality and ecological investigations being conducted as part of the U.S. Geological Survey's National Water-Quality Assessment program. Quantitative characterization of environmental settings, combined with physical, chemical, and biological data collected at sampling sites, contributes to understanding the status of, and influences on, water-quality and ecological conditions. To support studies for the National Water-Quality Assessment program, a geographic information system (GIS) was used to develop a standard set of methods to consistently characterize the sites, drainage basins, and groundwater study areas across the nation. This report describes three methods used for characterization-simple overlay, area-weighted areal interpolation, and land-cover-weighted areal interpolation-and their appropriate applications to geographic analyses that have different objectives and data constraints. In addition, this document records the GIS thematic datasets that are used for the Program's national design and data analyses.

  18. Stream salamanders as indicators of stream quality in Maryland, USA

    Science.gov (United States)

    Southerland, M.T.; Jung, R.E.; Baxter, D.P.; Chellman, I.C.; Mercurio, G.; Volstad, J.H.

    2004-01-01

    Biological indicators are critical to the protection of small, headwater streams and the ecological values they provide. Maryland and other state monitoring programs have determined that fish indicators are ineffective in small streams, where stream salamanders may replace fish as top predators. Because of their life history, physiology, abundance, and ubiquity, stream salamanders are likely representative of biological integrity in these streams. The goal of this study was to determine whether stream salamanders are effective indicators of ecological conditions across biogeographic regions and gradients of human disturbance. During the summers of 2001 and 2002, we intensively surveyed for stream salamanders at 76 stream sites located west of the Maryland Coastal Plain, sites also monitored by the Maryland Biological Stream Survey (MBSS) and City of Gaithersburg. We found 1,584 stream salamanders, including all eight species known in Maryland, using two 15 ? 2 m transects and two 4 m2 quadrats that spanned both stream bank and channel. We performed removal sampling on transects to estimate salamander species detection probabilities, which ranged from 0.67-0.85. Stepwise regressions identified 15 of 52 non-salamander variables, representing water quality, physical habitat, land use, and biological conditions, which best predicted salamander metrics. Indicator development involved (1) identifying reference (non-degraded) and degraded sites (using percent forest, shading, riparian buffer width, aesthetic rating, and benthic macroinvertebrate and fish indices of biotic integrity); (2) testing 12 candidate salamander metrics (representing species richness and composition, abundance, species tolerance, and reproductive function) for their ability to distinguish reference from degraded sites; and (3) combining metrics into an index that effectively discriminated sites according to known stream conditions. Final indices for Highlands, Piedmont, and Non-Coastal Plain

  19. Assessing environmental impacts on stream water quality: the use of cumulative flux and cumulative flux difference approaches to deforestation of the Hafren Forest, mid-Wales

    Directory of Open Access Journals (Sweden)

    C. Neal

    2002-01-01

    Full Text Available A method for examining the impacts of disturbance on stream water quality based on paired catchment “controlâ€? and “responseâ€? water quality time series is described in relation to diagrams of cumulative flux and cumulative flux difference. The paper describes the equations used and illustrates the patterns expected for idealised flux changes followed by an application to stream water quality data for a spruce forested catchment, the Hore, subjected to clear fell. The water quality determinands examined are sodium, chloride, nitrate, calcium and acid neutralisation capacity. The anticipated effects of felling are shown in relation to reduction in mist capture and nitrate release with felling as well as to the influence of weathering and cation exchange mechanisms, but in a much clearer way than observed previously using other approaches. Keywords: Plynlimon, stream, Hore, acid neutralisation capacity, calcium, chloride, nitrate, sodium, cumulative flux, flux

  20. Effects of land use, stream habitat, and water quality on biological communities of wadeable streams in the Illinois River Basin of Arkansas, 2011 and 2012

    Science.gov (United States)

    Petersen, James C.; Justus, B.G.; Meredith, Bradley J.

    2014-01-01

    The Illinois River Basin includes an area of diverse land use in northwestern Arkansas. Land-use data collected in 2006 indicate that most of the land in the basin is agricultural. The agricultural land is used primarily for production of poultry and cattle. Eighteen sites were selected from the list of candidate sites based on drainage area, land use, presence or absence of an upstream wastewater-treatment plant, water quality, and other information gathered during the reconnaissance. An important consideration in the process was to select sites along gradients of forest to urban land use and forest to agricultural land use. Water-quality samples were collected for analysis of nutrients, and a multiparameter field meter was used to measure water temperature, specific conductance, pH, and dissolved oxygen. Streamflow was measured immediately following the water-quality sampling. Macroalgae coverage was estimated and periphyton, macroinvertebrate, and fish communities were sampled at each site. Stream habitat also was assessed. Many types of land-use, water-quality, and habitat factors affected one or more aspects of the biological communities. Several macroinvertebrate and fish metrics changed in response to changes in percent forest; sites that would be considered most disturbed, based on these metrics, are sites with the highest percentages of urban land use in their associated basins. The presence of large mats of macroalgae was one of the most noticeable biological characteristics in several streams within the Illinois River Basin. The highest macroalgae percent cover values were recorded at four sites downstream from wastewater-treatment plants. Macroalgae percent cover was strongly correlated only with bed substrate size, canopy closure, and specific conductance. Periphyton metrics were most often and most strongly correlated with riparian shading, specific conductance, substrate turbidity, percent agriculture, poultry house density, and unpaved road density

  1. Stress, shredders and streams: using gammarus energetics to assess water quality

    OpenAIRE

    Maltby, L.

    1994-01-01

    This paper reviews the effectiveness of Gammarus scope for growth (SfG) as an indicator of water quality. In addition, the link between physiological changes and effects at higher levels of biological organisation is addressed. Exposure to a range of toxicants resulted in decreases in Gammarus SfG which were qualitatively and quantitatively correlated with subsequent reductions in growth and reproduction. Reductions in SfG were due principally to a decrease in energy intake (i.e. feeding rate...

  2. Quantifying in-stream nitrate reaction rates using continuously-collected water quality data

    Science.gov (United States)

    Matthew Miller; Anthony Tesoriero; Paul Capel

    2016-01-01

    High frequency in situ nitrate data from three streams of varying hydrologic condition, land use, and watershed size were used to quantify the mass loading of nitrate to streams from two sources – groundwater discharge and event flow – at a daily time step for one year. These estimated loadings were used to quantify temporally-variable in-stream nitrate processing ...

  3. Multiple Time-Scale Monitoring to Address Dynamic Seasonality and Storm Pulses of Stream Water Quality in Mountainous Watersheds

    Directory of Open Access Journals (Sweden)

    Hyun-Ju Lee

    2015-11-01

    Full Text Available Rainfall variability and extreme events can amplify the seasonality and storm pulses of stream water chemistry in mountainous watersheds under monsoon climates. To establish a monitoring program optimized for identifying potential risks to stream water quality arising from rainfall variability and extremes, we examined water chemistry data collected on different timescales. At a small forested watershed, bi-weekly sampling lasted over two years, in comparison to three other biweekly sampling sites. In addition, high-frequency continuous measurements of pH, electrical conductivity, and turbidity were conducted in tandem with automatic water sampling at 2 h intervals during eight rainfall events. Biweekly monitoring showed that during the summer monsoon period, electrical conductivity (EC, dissolved oxygen (DO, and dissolved ion concentrations generally decreased, but total suspended solids (TSS slightly increased. A noticeable variation from the usual seasonal pattern was that DO levels substantially decreased during an extended drought. Bi-hourly storm event samplings exhibited large changes in the concentrations of TSS and particulate and dissolved organic carbon (POC; DOC during intense rainfall events. However, extreme fluctuations in sediment export during discharge peaks could be detected only by turbidity measurements at 5 min intervals. Concomitant measurements during rainfall events established empirical relationships between turbidity and TSS or POC. These results suggest that routine monitoring based on weekly to monthly sampling is valid only in addressing general seasonal patterns or long-lasting phenomena such as drought effects. We propose an “adaptive” monitoring scheme that combines routine monitoring for general seasonal patterns and high-frequency instrumental measurements of water quality components exhibiting rapid responses pulsing during intense rainfall events.

  4. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation

    Science.gov (United States)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James W.

    2017-03-01

    High-frequency measurements of solutes and isotopes (18O and 2H) in rainfall and streamflow can shed important light on catchment flow pathways and travel times, but the workload and sample storage artifacts involved in collecting, transporting, and analyzing thousands of bottled samples severely constrain catchment studies in which conventional sampling methods are employed. However, recent developments towards more compact and robust analyzers have now made it possible to measure chemistry and water isotopes in the field at sub-hourly frequencies over extended periods. Here, we present laboratory and field tests of a membrane-vaporization continuous water sampler coupled to a cavity ring-down spectrometer for real-time measurements of δ18O and δ2H combined with a dual-channel ion chromatograph (IC) for the synchronous analysis of major cations and anions. The precision of the isotope analyzer was typically better than 0.03 ‰ for δ18O and 0.17 ‰ for δ2H in 10 min average readings taken at intervals of 30 min. Carryover effects were less than 1.2 % between isotopically contrasting water samples for 30 min sampling intervals, and instrument drift could be corrected through periodic analysis of secondary reference standards. The precision of the ion chromatograph was typically ˜ 0.1-1 ppm or better, with relative standard deviations of ˜ 1 % or better for most major ions in stream water, which is sufficient to detect subtle biogeochemical signals in catchment runoff. We installed the coupled isotope analyzer/IC system in an uninsulated hut next to a stream of a small catchment and analyzed stream water and precipitation samples every 30 min over 28 days. These high-frequency measurements facilitated a detailed comparison of event-water fractions via endmember mixing analysis with both chemical and isotope tracers. For two events with relatively dry antecedent moisture conditions, the event-water fractions were pre-event endmember used in hydrograph

  5. Factors affecting reservoir and stream-water quality in the Cambridge, Massachusetts, drinking-water source area and implications for source-water protection

    Science.gov (United States)

    Waldron, Marcus C.; Bent, Gardner C.

    2001-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the city of Cambridge, Massachusetts, Water Department, to assess reservoir and tributary-stream quality in the Cambridge drinking-water source area, and to use the information gained to help guide the design of a comprehensive water-quality monitoring program for the source area. Assessments of the quality and trophic state of the three primary storage reservoirs, Hobbs Brook Reservoir, Stony Brook Reservoir, and Fresh Pond, were conducted (September 1997-November 1998) to provide baseline information on the state of these resources and to determine the vulnerability of the reservoirs to increased loads of nutrients and other contaminants. The effects of land use, land cover, and other drainage-basin characteristics on sources, transport, and fate of fecal-indicator bacteria, highway deicing chemicals, nutrients, selected metals, and naturally occurring organic compounds in 11 subbasins that contribute water to the reservoirs also was investigated, and the data used to select sampling stations for incorporation into a water-quality monitoring network for the source area. All three reservoirs exhibited thermal and chemical stratification, despite artificial mixing by air hoses in Stony Brook Reservoir and Fresh Pond. The stratification produced anoxic or hypoxic conditions in the deepest parts of the reservoirs and these conditions resulted in the release of ammonia nitrogen orthophosphate phosphorus, and dissolved iron and manganese from the reservoir bed sediments. Concentrations of sodium and chloride in the reservoirs usually were higher than the amounts recommended by the U.S. Environmental Protection agency for drinking-water sources (20 milligrams per liter for sodium and 250 milligrams per liter for chloride). Maximum measured sodium concentrations were highest in Hobbs Brook Reservoir (113 milligrams per liter), intermediate in Stony Brook Reservoir (62

  6. Water-quality trends for streams and reservoirs in the Research Triangle area of North Carolina, 1983-95

    Science.gov (United States)

    Childress, C.J.; Bathala, Neeti

    1997-01-01

    Water-quality and streamflow monitoring data, collected from 1983 to 1995, were analyzed for 34 stream and reservoir sites in a seven- county region within the upper Neuse and upper Cape Fear River Basins. Early data (1983-88) were compiled from U.S. Geological Survey water- quality studies and from the ambient water-quality monitoring network of the North Carolina Department of Environment, Health, and Natural Resources. Analyses of major ions, nutrients, metals, trace elements, and synthetic organic compounds were compiled from samples collected by the U.S. Geological Survey from 1988 to 1995 as part of a continuing project to monitor the water quality of surface-water supplies in the Research Triangle area of North Carolina, and from the North Carolina Department of Environment, Health, and Natural Resources ambient water-quality monitoring network. This report presents the results of analysis of consistently increasing or decreasing trends in concentrations of nitrogen and phosphorus species, suspended sediment, suspended solids, sodium, chloride, iron, manganese, zinc, and chlorophyll a from seasonal Kendall trend analysis on flow-adjusted concentrations for streams and concentrations in lakes. Total phosphorus concentrations also were tested for a step decrease in concentration (step trend) associated with the North Carolina phosphate-detergent ban of 1988. For some other constituents, insufficient data or values below laboratory detection limits precluded trend analysis. A regionwide decrease in total phosphorus, ranging from 25 to 81 percent was observed that coincided with increased phosphorus removal efforts at municipal wastewater-treatment facilities in the region and the statewide phosphate-detergent ban. Most sites had stable or decreasing trends in nitrogen concentrations; however, increasing trends occurred in the Neuse River near Clayton and at Smithfield, both of which are downstream from the developing Raleigh-Durham area. Chlorophyll a

  7. Evaluating Effects of Land-use Change on Stream Hydrology and Water Quality in the Reedy River Watershed

    Science.gov (United States)

    Santikari, V. P.; Murdoch, L. C.; Schlautman, M. A.

    2009-05-01

    Conversion of land cover from forested to urban is a major cause of nonpoint source pollution of the surface waters. During active land conversion/development, suspended sediment eroded from exposed soils often is the primary source of surface water degradation. Despite the use of Best Management Practices (BMPs), the overall protective goals of erosion prevention and sediment control regulations are not always achieved. The objective of this study is to understand and predict the impact of construction activities on stream hydrology and water quality and to assess the overall, collective effectiveness of BMPs that were implemented. Hydrologic, sediment, and nutrient data were collected from several streams that are tributaries of the Reedy River, South Carolina. These streams drain catchments (~1 km2) with varying degrees of active disturbance due to housing construction. Some were highly disturbed, others moderately disturbed, while others served as relatively undisturbed references. Stationary and handheld instruments that use Doppler technology were employed to measure the flowrate in these streams. Upon comparing measurements from these two types of instruments, it has been observed that the stationary instrument consistently over-estimated flowrates because it sampled only a small, faster moving portion of the stream. Therefore, one empirical and several physically based procedures (conveyance-slope method, and rectangular channel approximation method) were developed to correct the time series of flow made with the stationary instrument. Sediment and nutrient concentrations in the outflows from the disturbed catchments are compared with those of the undisturbed catchments to quantify the extent of disturbance. Peak flows from disturbed catchments were up to two orders of magnitude greater, and sediment yields were up to three orders of magnitude greater than those from the reference catchments. Several metal concentrations (e.g. Fe, Mn, Al, Mg, and K) follow

  8. Hydrologic conditions, stream-water quality, and selected groundwater studies conducted in the Lawrenceville area, Georgia, 2003-2008

    Science.gov (United States)

    Clarke, John S.; Williams, Lester J.

    2010-01-01

    Hydrologic studies conducted during 2003-2008 as part of the U.S. Geological Survey Cooperative Water Program with the City of Lawrenceville, Georgia, provide important data for the management of water resources. The Cooperative Water Program includes (1) hydrologic monitoring (precipitation, streamflow, and groundwater levels) to quantify baseline conditions in anticipation of expanded groundwater development, (2) surface-water-quality monitoring to provide an understanding of how stream quality is affected by natural (such as precipitation) and anthropogenic factors (such as impervious area), and (3) geologic studies to better understand groundwater flow and hydrologic processes in a crystalline rock setting. The hydrologic monitoring network includes each of the two watersheds projected for groundwater development?the Redland-Pew Creek and upper Alcovy River watersheds?and the upper Apalachee River watershed, which serves as a background or control watershed because of its similar hydrologic and geologic characteristics to the other two watersheds. In each watershed, precipitation was generally greater during 2003-2005 than during 2006-2008, and correspondingly streamflow and groundwater levels decreased. In the upper Alcovy River and Redland-Pew Creek watersheds, groundwater level declines during 2003-2008 were mostly between 2 and 7 feet, with maximum observed declines of as much as 28.5 feet in the upper Alcovy River watershed, and 49.1 feet in the Redland-Pew Creek watershed. Synoptic base-flow measurements were used to locate and quantify gains or losses to streamflow resulting from groundwater interaction (groundwater seepage). In September 2006, seepage gains were measured at five of nine reaches evaluated in the upper Alcovy River watershed, with losses in the other four. The four losing reaches were near the confluence of the Alcovy River and Cedar Creek where the stream gradient is low and bedrock is at or near the land surface. In the Redland

  9. Water quality of streams draining abandoned and reclaimed mined lands in the Kantishna Hills area, Denali National Park and Preserve, Alaska, 2008–11

    Science.gov (United States)

    Brabets, Timothy P.; Ourso, Robert T.

    2013-01-01

    The Kantishna Hills are an area of low elevation mountains in the northwest part of Denali National Park and Preserve, Alaska. Streams draining the Kantishna Hills are clearwater streams that support several species of fish and are derived from rain, snowmelt, and subsurface aquifers. However, the water quality of many of these streams has been degraded by mining. Past mining practices generated acid mine drainage and excessive sediment loads that affected water quality and aquatic habitat. Because recovery through natural processes is limited owing to a short growing season, several reclamation projects have been implemented on several streams in the Kantishna Hills region. To assess the current water quality of streams in the Kantishna Hills area and to determine if reclamation efforts have improved water quality, a cooperative study between the U.S. Geological Survey and the National Park Service was undertaken during 2008-11. High levels of turbidity, an indicator of high concentrations of suspended sediment, were documented in water-quality data collected in the mid-1980s when mining was active. Mining ceased in 1985 and water-quality data collected during this study indicate that levels of turbidity have declined significantly. Turbidity levels generally were less than 2 Formazin Nephelometric Units and suspended sediment concentrations generally were less than 1 milligram per liter during the current study. Daily turbidity data at Rock Creek, an unmined stream, and at Caribou Creek, a mined stream, documented nearly identical patterns of turbidity in 2009, indicating that reclamation as well as natural revegetation in mined streams has improved water quality. Specific conductance and concentrations of dissolved solids and major ions were highest from streams that had been mined. Most of these streams flow into Moose Creek, which functions as an integrator stream, and dilutes the specific conductance and ion concentrations. Calcium and magnesium are the

  10. Uncertainty Of Stream Nutrient Transport Estimates Using Random Sampling Of Storm Events From High Resolution Water Quality And Discharge Data

    Science.gov (United States)

    Scholefield, P. A.; Arnscheidt, J.; Jordan, P.; Beven, K.; Heathwaite, L.

    2007-12-01

    The uncertainties associated with stream nutrient transport estimates are frequently overlooked and the sampling strategy is rarely if ever investigated. Indeed, the impact of sampling strategy and estimation method on the bias and precision of stream phosphorus (P) transport calculations is little understood despite the use of such values in the calibration and testing of models of phosphorus transport. The objectives of this research were to investigate the variability and uncertainty in the estimates of total phosphorus transfers at an intensively monitored agricultural catchment. The Oona Water which is located in the Irish border region, is part of a long term monitoring program focusing on water quality. The Oona Water is a rural river catchment with grassland agriculture and scattered dwelling houses and has been monitored for total phosphorus (TP) at 10 min resolution for several years (Jordan et al, 2007). Concurrent sensitive measurements of discharge are also collected. The water quality and discharge data were provided at 1 hour resolution (averaged) and this meant that a robust estimate of the annual flow weighted concentration could be obtained by simple interpolation between points. A two-strata approach (Kronvang and Bruhn, 1996) was used to estimate flow weighted concentrations using randomly sampled storm events from the 400 identified within the time series and also base flow concentrations. Using a random stratified sampling approach for the selection of events, a series ranging from 10 through to the full 400 were used, each time generating a flow weighted mean using a load-discharge relationship identified through log-log regression and monte-carlo simulation. These values were then compared to the observed total phosphorus concentration for the catchment. Analysis of these results show the impact of sampling strategy, the inherent bias in any estimate of phosphorus concentrations and the uncertainty associated with such estimates. The

  11. THE EFFECT OF ANTHROPOGENIC CHANGE IN THE STRUCTURE OF DIATOMS AND WATER QUALITY OF THE ŻOŁYNIANKA AND JAGIELNIA STREAMS

    Directory of Open Access Journals (Sweden)

    Łukasz Peszek

    2015-02-01

    Full Text Available The studies on bentic diatoms were conducted in 2009–2011 at eight samplings sites over the Żołynianka stream and its tributary, the Jagielnia. 427 diatom taxa were recorded in total. Achnanthidium minutissimum var. minutissimum, Aulacoseira ambigua, Fragilaria capucina var. capucina, Gomphonema parvlum, Navicula gregaria, Nitzschia palea and Planothidium lanceolatum were dominant taxa in both watercourses. Chemical analysis of water showed high chemical status of water at most of sampling sites. The results of diatomaceous analysis conducted with OMNIDIA software revealed moderate and poor condition of water. The best water quality was recorded in the Jagielnia stream (good or moderate status. The values of the analyzed indices showed the worst water quality on the Żołynianka at site four, showing bad ecological status. TDI index deviated the most from the other two indices (IPS and GDI, always indicating poorer water quality.

  12. The Effect of Restored and Native Oxbows on Hydraulic Loads of Nutrients and Stream Water Quality

    Science.gov (United States)

    The use of oxbow wetlands has been identified as a potential strategy to reduce nutrient transport from agricultural drainage tiles to streams in Iowa. In 2013 and 2014, a study was conducted in north central Iowa in a native oxbow in the Lyons Creek watershed and two reconstruc...

  13. Impact of Industrial Effluents on Water Quality of Streams in Nakawa ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: In Uganda industries generate large proportions of solid wastes and wastewater. The wastes are disposed into the environment untreated leading to pollution. This study was undertaken to examine selected physicochemical parameters of streams that receive effluents from different categories of industries in ...

  14. Biomarkers as diagnostic tools for evaluating effects of unknown past water quality conditions on stream organisms.

    Science.gov (United States)

    Triebskorn, Rita; Adam, Stefan; Casper, Heidi; Honnen, Wolfgang; Pawert, Michael; Schramm, Michael; Schwaiger, Julia; Köhler, Heinz-R

    2002-12-01

    The following biomarkers were investigated in stream populations of juvenile brown trout (Salmo trutta f. fario) and gammarids (Gammarus pulex) to determine if crayfish mortality could have been confounded by pollutants: (1) alterations of fish liver ultrastructure, (2) fish gill and kidney histopathology, (3) stress protein (hsp70) expression in fish liver and gills and in gammarids, and (4) changes in various blood parameters of brown trout. In addition, the following measurements were conducted in parallel with the biological sampling: (a) chemical analyses including several pesticides, organochlorines, PCBs, and PAHs in sediment and tissue samples of brown trout and crayfish (Astacus astacus), and (b) limnochemical analyses of nutrients, electrolytes, dissolved oxygen content, temperature and pH. Biomarkers together with chemical and limnochemical analyses concomitantly indicated moderate pollution of the stream at all sampling sites. Biological data indicated a transient, episodic event at one sampling site resulting (a) in altered stress protein levels in gills and livers of trout and in whole gammarids as well as (b) in elevated numbers of macrophages in liver tissue. Biomarker responses provided spatial and temporal evidence that a contaminant release was associated with the crayfish mortalities observed in this stream system.

  15. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis.

    Science.gov (United States)

    Ding, Jiao; Jiang, Yuan; Liu, Qi; Hou, Zhaojiang; Liao, Jianyu; Fu, Lan; Peng, Qiuzhi

    2016-05-01

    Understanding the relationships between land use patterns and water quality in low-order streams is useful for effective landscape planning to protect downstream water quality. A clear understanding of these relationships remains elusive due to the heterogeneity of land use patterns and scale effects. To better assess land use influences, we developed empirical models relating land use patterns to the water quality of low-order streams at different geomorphic regions across multi-scales in the Dongjiang River basin using multivariate statistical analyses. The land use pattern was quantified in terms of the composition, configuration and hydrological distance of land use types at the reach buffer, riparian corridor and catchment scales. Water was sampled under summer base flow at 56 low-order catchments, which were classified into two homogenous geomorphic groups. The results indicated that the water quality of low-order streams was most strongly affected by the configuration metrics of land use. Poorer water quality was associated with higher patch densities of cropland, orchards and grassland in the mountain catchments, whereas it was associated with a higher value for the largest patch index of urban land use in the plain catchments. The overall water quality variation was explained better by catchment scale than by riparian- or reach-scale land use, whereas the spatial scale over which land use influenced water quality also varied across specific water parameters and the geomorphic basis. Our study suggests that watershed management should adopt better landscape planning and multi-scale measures to improve water quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Linking land-use type and stream water quality using spatial data of fecal indicator bacteria and heavy metals in the Yeongsan river basin.

    Science.gov (United States)

    Kang, Joo-Hyon; Lee, Seung Won; Cho, Kyung Hwa; Ki, Seo Jin; Cha, Sung Min; Kim, Joon Ha

    2010-07-01

    This study reveals land-use factors that explain stream water quality during wet and dry weather conditions in a large river basin using two different linear models-multiple linear regression (MLR) models and constrained least squares (CLS) models. Six land-use types and three topographical parameters (size, slope, and permeability) of the watershed were incorporated into the models as explanatory variables. The suggested models were then demonstrated using a digitized elevation map in conjunction with the land-use and the measured concentration data for Escherichia coli (EC), Enterococci bacteria (ENT), and six heavy metal species collected monthly during 2007-2008 at 50 monitoring sites in the Yeongsan Watershed, Korea. The results showed that the MLR models can be a powerful tool for predicting the average concentrations of pollutants in stream water (the Nash-Sutcliffe (NS) model efficiency coefficients ranged from 0.67 to 0.95). On the other hand, the CLS models, with moderately good prediction performance (the NS coefficients ranged 0.28-0.85), were more suitable for quantifying contributions of respective land-uses to the stream water quality. The CLS models suggested that industrial and urban land-uses are major contributors to the stream concentrations of EC and ENT, whereas agricultural, industrial, and mining areas were significant sources of many heavy metal species. In addition, the slope, size, and permeability of the watershed were found to be important factors determining the extent of the contribution from each land-use type to the stream water quality. The models proposed in this paper can be considered useful tools for developing land cover guidelines and for prioritizing locations for implementing management practices to maintain stream water quality standard in a large river basin. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Water-quality and streamflow datasets used in Seasonal Kendall trend tests for the Nation’s rivers and streams, 1972-2012

    Science.gov (United States)

    Mills, Taylor J.; Sprague, Lori A.; Murphy, Jennifer C.; Riskin, Melissa L.; Falcone, James A.; Stets, Edward G.; Oelsner, Gretchen P.; Johnson, Henry M.

    2017-01-01

    In 1991, the U.S. Geological Survey (USGS) began a study of more than 50 major river basins across the Nation as part of the National Water-Quality Assessment (NAWQA) project of the National Water-Quality Program. One of the major goals of the NAWQA project is to determine how water-quality conditions change over time. To support that goal, long-term consistent and comparable monitoring has been conducted on streams and rivers throughout the Nation. Outside of the NAWQA project, the USGS and other Federal, State, and local agencies also have collected long-term water-quality data to support their own assessments of changing water-quality conditions. Data from these multiple sources have been combined to support one of the most comprehensive assessments conducted to date of water-quality trends in the United States. Ultimately, these data will provide insight into how natural features and human activities have contributed to water-quality changes over time in Nation’s streams and rivers. This USGS data release contains all of the input and output files necessary to reproduce the results of the Seasonal Kendall trend tests described in the associated U.S. Geological Survey Scientific Investigations Report (http://dx.doi.org/10.3133/sir20175006). Data preparation for input to the model is also fully described in the above-mentioned report.

  18. Water Quality Response to Changes in Agricultural Land Use Practices at Headwater Streams in Georgia

    Science.gov (United States)

    Poorly managed agricultural watersheds may be one of the most important contributors to high levels of bacterial and sediment loadings in surface waters. We investigated two cattle farms with differing management schemes to compare how physicochemical and meteorological parameter...

  19. Use of index analysis to evaluate the water quality of a stream ...

    African Journals Online (AJOL)

    AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News. OTHER RESOURCES... for Researchers · for Journals · for Authors · for Policy Makers · about Open Access · Journal Quality.

  20. Stream water quality in the western regions of Iran | Marofi | African ...

    African Journals Online (AJOL)

    AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News. OTHER RESOURCES... for Researchers · for Journals · for Authors · for Policy Makers · about Open Access · Journal Quality.

  1. Effects of land use change on streamflow and stream water quality of ...

    African Journals Online (AJOL)

    AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News. OTHER RESOURCES... for Researchers · for Journals · for Authors · for Policy Makers · about Open Access · Journal Quality.

  2. Effects of land use change on streamflow and stream water quality of a coastal catchment

    CSIR Research Space (South Africa)

    Petersen, Chantel R

    2017-01-01

    Full Text Available intensified rapidly in the Duiwe River catchment with most arable land cultivated by 1960 and water storage as farm dams escalating. Concentrations of nutrients and electrical conductivity were higher in the Duiwe River than in the more natural Touws River...

  3. Survival of brown trout during spring flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled pre-industrial water quality.

    Science.gov (United States)

    Laudon, Hjalmar; Poléo, Antonio B S; Vøllestad, Leif Asbjørn; Bishop, Kevin

    2005-05-01

    Mortality and physiological responses in brown trout (Salmo trutta) were studied during spring snow melt in six streams in northern Sweden that differed in concentrations of dissolved organic carbon (DOC) and pH declines. Data from these streams were used to create an empirical model for predicting fish responses (mortality and physiological disturbances) in DOC-rich streams using readily accessible water chemistry parameters. The results suggest that fish in these systems can tolerate higher acidity and inorganic aluminium levels than fish in low DOC streams. But even with the relatively low contemporary deposition load, anthropogenic deposition can cause fish mortality in the most acid-sensitive surface waters in northern Sweden during spring flood. However, the results suggests that it is only in streams with high levels of organically complexed aluminium in combination with a natural pH decline to below 5.0 during the spring where current sulphur deposition can cause irreversible damage to brown trout in the region. This study support earlier studies suggesting that DOC has an ameliorating effect on physiological disturbances in humic waters but the study also shows that surviving fish recover physiologically when the water quality returns to less toxic conditions following a toxic high flow period. The physiological response under natural, pre-industrial conditions was also estimated.

  4. Diatom diversity and water quality of a suburban stream: a case study of the Rzeszów city in SE Poland

    Directory of Open Access Journals (Sweden)

    Noga Teresa

    2016-03-01

    Full Text Available The aim of this work was to investigate the diversity of diatom assemblages developed in the Przyrwa stream, to assess water quality based on benthic diatoms and to make an attempt at the identification of physicochemical factors having the greatest impact on the differentiation of diatom assemblages. Studies were conducted in 2011-2012 on the Przyrwa stream, a left-side tributary of the Wisłok River flowing through the city of Rzeszów and with its spring section located on the borders of the city. A total of 259 diatom taxa were identified in the Przyrwa stream during three studied seasons. At all investigated sites, the most abundant population consisted of Ulnaria ulna (Nitzsch Compère, Cocconeis pediculus Ehrenb., Achnanthidium minutissimum (Kütz. Czarnecki var. minutissimum, Navicula gregaria Donkin, Planothidium frequentissimum (Lange-Bert. Lange-Bert., P. lanceolatum (Brébisson Lange-Bert., Navicula lanceolata (C. Agardh Ehrenb., Amphora pediculus (Kütz. Grunow, Eolimna minima, (Grunow Lange-Bert., Melosira varians C. Agardh and Cyclotella meneghiniana Kütz. Based on IPS (Specific Pollution Sensitivity Index and GDI (Generic Diatom Index indices, the ecological status of the Przyrwa stream was assessed as moderate to poor (mostly III-IV class of water quality, while the TDI (Trophic Diatom Index index indicated a poor to bad ecological status (mainly IV-V class of water quality.

  5. Quality scalable video data stream

    OpenAIRE

    Wiegand, T.; Kirchhoffer, H.; Schwarz, H

    2008-01-01

    An apparatus for generating a quality-scalable video data stream (36) is described which comprises means (42) for coding a video signal (18) using block-wise transformation to obtain transform blocks (146, 148) of transformation coefficient values for a picture (140) of the video signal, a predetermined scan order (154, 156, 164, 166) with possible scan positions being defined among the transformation coefficient values within the transform blocks so that in each transform block, for each pos...

  6. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin: Nitrogen and phosphorus in streams, streambed sediment, and ground water, 1971-94

    Science.gov (United States)

    Kroening, S.E.; Andrews, W.J.

    1997-01-01

    Nitrogen and phosphorus in streams, streambed sediment, and ground water were summarized using data from Federal, state, and local agencies as part of an analysis of historical water-quality data for the Upper Mississippi River Basin study unit of the U.S. Geological Survey's National Water-Quality Assessment Program. The Upper Mississippi River Basin study unit encompasses the drainage of the Mississippi River from the source to the outlet of Lake Pepin. This report focuses on a 19,500-square-mile study area in the eastern part of the study unit. The study area included the part of the Upper Mississippi River Basin from Royalton, Minnesota, to the outlet of Lake Pepin, located near Red Wing, Minnesota; the Minnesota River Basin from Jordan, Minnesota, to the confluence with the Mississippi River; and the entire drainage basins of the St. Croix, Cannon, and Vermillion Rivers. The Twin Cities metropolitan area, with a population of approximately 2.3 million people, is located in the south-central part of the study area.

  7. Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China.

    Science.gov (United States)

    Wan, Rongrong; Cai, Shanshan; Li, Hengpeng; Yang, Guishan; Li, Zhaofu; Nie, Xiaofei

    2014-01-15

    Lake eutrophication has become a very serious environmental problem in China. If water pollution is to be controlled and ultimately eliminated, it is essential to understand how human activities affect surface water quality. A recently developed technique using the Bayesian hierarchical linear regression model revealed the effects of land use and land cover (LULC) on stream water quality at a watershed scale. Six LULC categories combined with watershed characteristics, including size, slope, and permeability were the variables that were studied. The pollutants of concern were nutrient concentrations of total nitrogen (TN) and total phosphorus (TP), common pollutants found in eutrophication. The monthly monitoring data at 41 sites in the Xitiaoxi Watershed, China during 2009-2010 were used for model demonstration. The results showed that the relationships between LULC and stream water quality are so complicated that the effects are varied over large areas. The models suggested that urban and agricultural land are important sources of TN and TP concentrations, while rural residential land is one of the major sources of TN. Certain agricultural practices (excessive fertilizer application) result in greater concentrations of nutrients in paddy fields, artificial grasslands, and artificial woodlands. This study suggests that Bayesian hierarchical modeling is a powerful tool for examining the complicated relationships between land use and water quality on different scales, and for developing land use and water management policies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Surface-water quantity and quality, aquatic biology, stream geomorphology, and groundwater-flow simulation for National Guard Training Center at Fort Indiantown Gap, Pennsylvania, 2002-05

    Science.gov (United States)

    Langland, Michael J.; Cinotto, Peter J.; Chichester, Douglas C.; Bilger, Michael D.; Brightbill, Robin A.

    2010-01-01

    Base-line and long-term monitoring of water resources of the National Guard Training Center at Fort Indiantown Gap in south-central Pennsylvania began in 2002. Results of continuous monitoring of streamflow and turbidity and monthly and stormflow water-quality samples from two continuous-record long-term stream sites, periodic collection of water-quality samples from five miscellaneous stream sites, and annual collection of biological data from 2002 to 2005 at 27 sites are discussed. In addition, results from a stream-geomorphic analysis and classification and a regional groundwater-flow model are included. Streamflow at the facility was above normal for the 2003 through 2005 water years and extremely high-flow events occurred in 2003 and in 2004. Water-quality samples were analyzed for nutrients, sediments, metals, major ions, pesticides, volatile and semi-volatile organic compounds, and explosives. Results indicated no exceedances for any constituent (except iron) above the primary and secondary drinking-water standards or health-advisory levels set by the U.S. Environmental Protection Agency. Iron concentrations were naturally elevated in the groundwater within the watershed because of bedrock lithology. The majority of the constituents were at or below the method detection limit. Sediment loads were dominated by precipitation due to the remnants of Hurricane Ivan in September 2004. More than 60 percent of the sediment load measured during the entire study was transported past the streamgage in just 2 days during that event. Habitat and aquatic-invertebrate data were collected in the summers of 2002-05, and fish data were collected in 2004. Although 2002 was a drought year, 2003-05 were above-normal flow years. Results indicated a wide diversity in invertebrates, good numbers of taxa (distinct organisms), and on the basis of a combination of metrics, the majority of the 27 sites indicated no or slight impairment. Fish-metric data from 25 sites indicated results

  9. Stream-water and groundwater quality in and near the Citizen Potawatomi Nation Tribal Jurisdictional Area, Pottawatomie County, Oklahoma, 2012-13

    Science.gov (United States)

    Becker, Carol J.

    2014-01-01

    The Citizen Potawatomi Nation needs to characterize their existing surface-water and groundwater resources in and near their tribal jurisdictional area to complete a water-resource management plan. Water resources in this area include surface water from the North Canadian and Little Rivers and groundwater from the terrace and alluvial aquifers and underlying bedrock aquifers. To assist in this effort, the U.S. Geological Survey (USGS), in cooperation with the Citizen Potawatomi Nation, collected water-quality samples at 4 sites on 3 streams and from 30 wells during 2012 and 2013 in and near the Citizen Potawatomi Nation Tribal Jurisdictional Area in central Oklahoma. Stream samples were collected eight times on the North Canadian River at the upstream USGS streamflow-gaging station North Canadian River near Harrah, Okla. (07241550); at the downstream USGS streamflow-gaging station North Canadian River at Shawnee, Okla. (07241800); and on the Little River at the USGS streamflow-gaging station Little River near Tecumseh, Okla., (07230500). Stream samples also were collected three times at an ungaged site, Deer Creek near McLoud, Okla. (07241590). Water properties were measured, and water samples were analyzed for concentrations of major ions, nutrients, trace elements, counts of fecal-indicator bacteria, and 69 organic compounds.

  10. Water quality

    Science.gov (United States)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  11. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  12. APPLICATION OF DIATOMS TO ASSESS THE QUALITY OF THE WATERS OF THE BARYCZKA STREAM, LEFT-SIDE TRIBUTARY OF THE RIVER SAN

    Directory of Open Access Journals (Sweden)

    Teresa Noga

    2013-07-01

    Full Text Available The Baryczka stream is a small (about 20 km long, left bank tributary of the River San (Podkarpackie Voivodeship. Studies on diversity of diatom communities using OMNIDIA software were conducted in 2010 and 2011. Diatomaceous indices IPS, GDI and TDI and Van Dam et al. classification system were used for water quality assessment. Planothidium lanceolatum, Cocconeis placentula var. lineata, Achnanthidium minutissimum var. minutissimum, Nitzschia linearis, Rhoicosphenia abbreviata, Navicula lanceolata and Naicula gregaria were the most numerous. Values of the IPS index indicate good water quality (II–III class. Based on the GDI index, waters of the Baryczka stream were classified to III class water quality. The TDI index indicated poor and bad ecological state on the most sampling sites. On all sampling sites alaliphilous (pH>7 diatoms taxa predominated. The most common were eutraphentic and hypereutraphentic diatoms. With respect to trophy, it was shown that α- and β-mesosaprobous diatoms were the most common (III and II class water quality.

  13. Macroinvertebrate community in relation to water quality and riparian land use in a substropical mountain stream, China.

    Science.gov (United States)

    Wang, Xingzhong; Tan, Xiang

    2017-06-01

    Exploring how water quality and land use shape the benthic macroinvertebrate community composition is of widespread interest in biodiversity conservation and environmental management. In this study, we investigated the structures of benthic macroinvertebrate assemblages and their environmental controls in terms of water quality and riparian land use in the Jinshui River, China. We carried out three campaigns including wet season (August 2009), dry season (November 2009), and normal season (April 2010) based on the hydrological regime in Jinshui basin. The result showed that macroinvertebrate assemblage variations were better explained by water quality factors than land use based on variance partitioning procedure. The land use of 2 km upstream from the sampling sites had explained more variation than that of the whole riparian zone in upstream catchment on macroinvertebrate community, and land use of 2 km upstream also had more interactions with water quality. Canonical correspondence analysis (CCA) indicated that the elements or nutrient of magnesium (Mn), selenium (Se), strontium (Sr), silicon (Si), dissolved inorganic nitrogen (DN), sulfur (S), total organic carbon (TOC), and total nitrogen (TN) in water exhibited a strong relationship with macroinvertebrate assemblages. However, the variance in water quality explained by land use was lower than that explained by water quality in rivers using redundancy analysis. Our study suggested that proximate factors (i.e., water quality) were more important to interpret the macroinvertebrate community compared to ultimate factors (i.e., land use) for macroinvertebrate assemblages in river system.

  14. Integrated assessment of sources, chemical stressors and stream quality along a groundwater fed stream system

    Science.gov (United States)

    Løgstrup Bjerg, Poul; Sonne, Anne T.; Rønde, Vinni; McKnight, Ursula S.

    2016-04-01

    Streams are impacted by significant contamination at the catchment scale, as they are often locations of multiple chemical stressor inputs. The European Water Framework Directive requires EU member states to ensure good chemical and ecological status of surface water bodies by 2027. This requires monitoring of stream water quality, comparison with environmental quality standards (EQS) and assessment of ecological status. However, the achievement of good status of stream water also requires a strong focus on contaminant sources, pathways and links to stream water impacts, so source management and remedial measures can be implemented. Fate and impacts of different contaminant groups are governed by different processes and are dependent on the origin (geogenic, anthropogenic), source type (point or diffuse) and pathway of the contaminant. To address this issue, we identified contaminant sources and chemical stressors on a groundwater-fed stream to quantify the contaminant discharges, link the chemical impact and stream water quality and assess the main chemical risk drivers in the stream system potentially driving ecological impact. The study was conducted in the 8 m wide Grindsted stream (Denmark) along a 16 km stream stretch that is potentially impacted by two contaminated sites (Grindsted Factory site, Grindsted Landfill), fish farms, waste water discharges, and diffuse sources from agriculture and urban areas. Water samples from the stream and the hyporheic zone as well as bed sediment samples were collected during three campaigns in 2012 and 2014. Data for xenobiotic organic groundwater contaminants, pesticides, heavy metals, general water chemistry, physical conditions and stream flow were collected. The measured chemical concentrations were converted to toxic units (TU) based on the 48h acute toxicity tests with D. magna. The results show a substantial impact of the Grindsted Factory site at a specific stretch of the stream. The groundwater plume caused

  15. Water-quality trends in the nation’s rivers and streams, 1972–2012—Data preparation, statistical methods, and trend results

    Science.gov (United States)

    Oelsner, Gretchen P.; Sprague, Lori A.; Murphy, Jennifer C.; Zuellig, Robert E.; Johnson, Henry M.; Ryberg, Karen R.; Falcone, James A.; Stets, Edward G.; Vecchia, Aldo V.; Riskin, Melissa L.; De Cicco, Laura A.; Mills, Taylor J.; Farmer, William H.

    2017-04-04

    Since passage of the Clean Water Act in 1972, Federal, State, and local governments have invested billions of dollars to reduce pollution entering rivers and streams. To understand the return on these investments and to effectively manage and protect the Nation’s water resources in the future, we need to know how and why water quality has been changing over time. As part of the National Water-Quality Assessment Project, of the U.S. Geological Survey’s National Water-Quality Program, data from the U.S. Geological Survey, along with multiple other Federal, State, Tribal, regional, and local agencies, have been used to support the most comprehensive assessment conducted to date of surface-water-quality trends in the United States. This report documents the methods used to determine trends in water quality and ecology because these methods are vital to ensuring the quality of the results. Specific objectives are to document (1) the data compilation and processing steps used to identify river and stream sites throughout the Nation suitable for water-quality, pesticide, and ecology trend analysis, (2) the statistical methods used to determine trends in target parameters, (3) considerations for water-quality, pesticide, and ecology data and streamflow data when modeling trends, (4) sensitivity analyses for selecting data and interpreting trend results with the Weighted Regressions on Time, Discharge, and Season method, and (5) the final trend results at each site. The scope of this study includes trends in water-quality concentrations and loads (nutrient, sediment, major ion, salinity, and carbon), pesticide concentrations and loads, and metrics for aquatic ecology (fish, invertebrates, and algae) for four time periods: (1) 1972–2012, (2) 1982–2012, (3) 1992–2012, and (4) 2002–12. In total, nearly 12,000 trends in concentration, load, and ecology metrics were evaluated in this study; there were 11,893 combinations of sites, parameters, and trend periods. The

  16. Qualifying variability: patterns in water quality and biota from a long-term, multi-stream dataset

    Science.gov (United States)

    Camille Flinders; Douglas McLaughlin

    2016-01-01

    Effective water resources assessment and management requires quantitative information on the variability of ambient and biological conditions in aquatic communities. Although it is understood that natural systems are variable, robust estimates of variation in water quality and biotic endpoints (e.g. community-based structure and function metrics) are rare in US waters...

  17. Water and bed-material quality of selected streams and reservoirs in the Research Triangle area of North Carolina, 1988-94

    Science.gov (United States)

    Oblinger, C.J.; Treece, M.W.

    1996-01-01

    The Triangle Area Water Supply Monitoring Project was formed by a consortium of local governments and governmental agencies in cooperation with the U.S. Geological Survey to supplement existing data on conventional pollutants, nutrients, and metals to enable eventual determination of long-term trends; to examine spatial differences among water supplies within the region, especially differences between smaller upland sources, large multipurpose reservoirs, and run-of-river supplies; to provide tributary loading inlake data for predictive modeling of Falls of the Neuse and B. Everett Jordan reservoirs; and to establish a database for synthetic organic compounds. Water-quality sampling began in October 1988 at 35 sites located on area run-of-river and reservoir water supplies and their tributaries. Sampling has continued through 1994. Samples were analyzed for major ions, nutrients, trace metals, pesticides, and semivolatile and volatile organic compounds. Monthly concentration data, high-flow concentration data, and data on daily mean streamflow at most stream sites were used to calculate loadings of nitrogen, phosphorus, suspended sediment, and trace metals to reservoirs. Stream and lake sites were assigned to one of five site categories-- (1) rivers, (2) large multipurpose reservoirs, (3) small water-supply reservoirs, (4) streams below urban areas and wastewater-treatment plants, and (5) headwater streams--according to general site characteristics. Concentrations of nitrogen species, phosphorus species, and selected trace metals were compared by site category using nonparametric analysis of variance techniques and qualitatively (trace metals). Wastewater-treatment plant effluents and urban runoff had a significant impact on water quality compared to reservoirs and headwater streams. Streams draining these areas had more mineralized water than streams draining undeveloped areas. Moreover, median nitrogen and nitrite plus nitrate concentrations were significantly

  18. Estimated fecal coliform bacteria concentrations using near real-time continuous water-quality and streamflow data from five stream sites in Chester County, Pennsylvania, 2007–16

    Science.gov (United States)

    Senior, Lisa A.

    2017-09-15

    Several streams used for recreational activities, such as fishing, swimming, and boating, in Chester County, Pennsylvania, are known to have periodic elevated concentrations of fecal coliform bacteria, a type of bacteria used to indicate the potential presence of fecally related pathogens that may pose health risks to humans exposed through water contact. The availability of near real-time continuous stream discharge, turbidity, and other water-quality data for some streams in the county presents an opportunity to use surrogates to estimate near real-time concentrations of fecal coliform (FC) bacteria and thus provide some information about associated potential health risks during recreational use of streams.The U.S. Geological Survey (USGS), in cooperation with the Chester County Health Department (CCHD) and the Chester County Water Resources Authority (CCWRA), has collected discrete stream samples for analysis of FC concentrations during March–October annually at or near five gaging stations where near real-time continuous data on stream discharge, turbidity, and water temperature have been collected since 2007 (or since 2012 at 2 of the 5 stations). In 2014, the USGS, in cooperation with the CCWRA and CCHD, began to develop regression equations to estimate FC concentrations using available near real-time continuous data. Regression equations included possible explanatory variables of stream discharge, turbidity, water temperature, and seasonal factors calculated using Julian Day with base-10 logarithmic (log) transformations of selected variables.The regression equations were developed using the data from 2007 to 2015 (101–106 discrete bacteria samples per site) for three gaging stations on Brandywine Creek (West Branch Brandywine Creek at Modena, East Branch Brandywine Creek below Downingtown, and Brandywine Creek at Chadds Ford) and from 2012 to 2015 (37–38 discrete bacteria samples per site) for one station each on French Creek near Phoenixville and

  19. Water and Streambed Sediment Quality, and Ecotoxicology of a Stream along the Blue Ridge Parkway, Adjacent to a Closed Landfill, near Roanoke, Virginia: 1999

    Science.gov (United States)

    Ebner, Donna Belval; Cherry, Donald S.; Currie, Rebecca J.

    2004-01-01

    A study was done of the effects of a closed landfill on the quality of water and streambed sediment and the benthic macroinvertebrate community of an unnamed stream and its tributary that flow through Blue Ridge Parkway lands in west-central Virginia. The primary water source for the tributary is a 4-inch polyvinyl chloride (PVC) pipe that protrudes from the slope at the base of the embankment bordering the landfill. An unusual expanse of precipitate was observed in the stream near the PVC pipe. Stream discharge was measured and water and streambed sediment samples were collected at a nearby reference site and at three sites downstream of the landfill in April and September 1999. Water samples were analyzed for major ions, nitrate, total and dissolved metals, total dissolved solids, total organic carbon, and volatile and semivolatile organic compounds, including organochlorine pesticides and polychlorinated biphenyls (PCBs). Streambed sediment samples were analyzed for total metals, total organic carbon, percent moisture, and volatile and semivolatile organic compounds, including organochlorine pesticides and PCBs. The benthic macroinvertebrate community within the stream channel also was sampled at the four chemical sampling sites and at one additional site in April and September. Each of the five sites was assessed for physical habitat quality. Water collected periodically at the PVC pipe discharge between November 1998 and November 1999 was used to conduct 48-hour acute and 7-day chronic toxicity tests using selected laboratory test organisms. Two 10-day chronic toxicity tests of streambed sediments collected near the discharge pipe also were conducted. Analyses showed that organic and inorganic constituents in water from beneath the landfill were discharged into the sampled tributary. In April, 79 percent of inorganic constituents detected in water had their highest concentrations at the site closest to the landfill; at the same site, 59 percent of inorganic

  20. Application of the probability-based Maryland Biological Stream Survey to the state's assessment of water quality standards.

    Science.gov (United States)

    Southerland, Mark T; Vølstad, Jon H; Weber, Edward D; Klauda, Ronald J; Poukish, Charles A; Rowe, Matthew C

    2009-03-01

    The Clean Water Act presents a daunting task for states by requiring them to assess and restore all their waters. Traditional monitoring has led to two beliefs: (1) ad hoc sampling (i.e., non-random) is adequate if enough sites are sampled and (2) more intensive sampling (e.g., collecting more organisms) at each site is always better. We analyzed the 1,500 Maryland Biological Stream Survey (MBSS) random sites sampled in 2000-2004 to describe the variability of Index of Biotic Integrity (IBI) scores at the site, reach, and watershed scales. Average variability for fish and benthic IBI scores increased with increasing spatial scale, demonstrating that single site IBI scores are not representative at watershed scales and therefore at best 25% of a state's stream length can be representatively sampled with non-random designs. We evaluated the effects on total taxa captured and IBI precision of sampling for twice as many benthic macroinvertebrates at 73 MBSS sites with replicate samples. When sampling costs were fixed, the precision of the IBI decreased as the number of sites had to be reduced by 15%. Only 1% more taxa were found overall when the 73 sites where combined. We concluded that (1) comprehensive assessment of a state's waters should be done using probability-based sampling that allows the condition across all reaches to be inferred statistically and (2) additional site sampling effort should not be incorporated into state biomonitoring when it will reduce the number of sites sampled to the point where overall assessment precision is lower.

  1. How much is enough? Minimal responses of water quality and stream biota to partial retrofit stormwater management in a suburban neighborhood.

    Directory of Open Access Journals (Sweden)

    Allison H Roy

    Full Text Available Decentralized stormwater management approaches (e.g., biofiltration swales, pervious pavement, green roofs, rain gardens that capture, detain, infiltrate, and filter runoff are now commonly used to minimize the impacts of stormwater runoff from impervious surfaces on aquatic ecosystems. However, there is little research on the effectiveness of retrofit, parcel-scale stormwater management practices for improving downstream aquatic ecosystem health. A reverse auction was used to encourage homeowners to mitigate stormwater on their property within the suburban, 1.8 km(2 Shepherd Creek catchment in Cincinnati, Ohio (USA. In 2007-2008, 165 rain barrels and 81 rain gardens were installed on 30% of the properties in four experimental (treatment subcatchments, and two additional subcatchments were maintained as controls. At the base of the subcatchments, we sampled monthly baseflow water quality, and seasonal (5×/year physical habitat, periphyton assemblages, and macroinvertebrate assemblages in the streams for the three years before and after treatment implementation. Given the minor reductions in directly connected impervious area from the rain barrel installations (11.6% to 10.4% in the most impaired subcatchment and high total impervious levels (13.1% to 19.9% in experimental subcatchments, we expected minor or no responses of water quality and biota to stormwater management. There were trends of increased conductivity, iron, and sulfate for control sites, but no such contemporaneous trends for experimental sites. The minor effects of treatment on streamflow volume and water quality did not translate into changes in biotic health, and the few periphyton and macroinvertebrate responses could be explained by factors not associated with the treatment (e.g., vegetation clearing, drought conditions. Improvement of overall stream health is unlikely without additional treatment of major impervious surfaces (including roads, apartment buildings, and

  2. Water-quality characteristics indicative of wastewater in selected streams in the upper Neuse River Basin, Durham and Orange Counties, North Carolina, from 2004 to 2013

    Science.gov (United States)

    Ferrell, Gloria M.; Yearout, Matthew S.; Grimes, Barbara H.; Graves, Alexandria K.; Fitzgerald, Sharon A.; Meyer, Michael T.

    2014-01-01

    Data were collected during three time periods to assess the effects of wastewater treatment and disposal practices on the occurrence of selected contaminants indicative of wastewater in the upper Neuse River Basin, North Carolina. The first phase of data collection, December 2004 to June 2005, and the second phase, April to October 2008, addressed the effects of point and nonpoint sources of wastewater effluent on stream quality during baseflow conditions. Point-source effects were assessed by sampling a municipal wastewater treatment plant outfall and sites on the Eno River upstream and downstream from the outfall. Water-quality data suggest that the wastewater treatment plant effluent contributed to increases in concentrations of nitrogen and carbamazepine at the downstream site. Nonpoint source effects were assessed by sampling seven small streams that drained an undeveloped area and residential areas served by either centralized or onsite wastewater treatment systems. Samples were analyzed for inorganic constituents, including nutrients, ions, and metals; organic compounds considered indicative of wastewater contamination; antibiotics, optical brighteners, and fecal coliform bacteria. Hypothesized differences in water quality between the sites with primarily centralized and onsite wastewater treatment were not apparent, likely due to the relatively large heterogeneity of the sites within each category.

  3. Water quality, streamflow conditions, and annual flow-duration curves for streams of the San Juan–Chama Project, southern Colorado and northern New Mexico, 1935-2010

    Science.gov (United States)

    Falk, Sarah E.; Anderholm, Scott K.; Hafich, Katya A.

    2013-01-01

    The Albuquerque–Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with water diverted from the Rio Grande. Water diverted from the Rio Grande for municipal use is derived from the San Juan–Chama Project, which delivers water from streams in the southern San Juan Mountains in the Colorado River Basin in southern Colorado to the Rio Chama watershed and the Rio Grande Basin in northern New Mexico. The U.S. Geological Survey, in cooperation with Albuquerque–Bernalillo County Water Utility Authority, has compiled historical streamflow and water-quality data and collected new water-quality data to characterize the water quality and streamflow conditions and annual flow variability, as characterized by annual flow-duration curves, of streams of the San Juan–Chama Project. Nonparametric statistical methods were applied to calculate annual and monthly summary statistics of streamflow, trends in streamflow conditions were evaluated with the Mann–Kendall trend test, and annual variation in streamflow conditions was evaluated with annual flow-duration curves. The study area is located in northern New Mexico and southern Colorado and includes the Rio Blanco, Little Navajo River, and Navajo River, tributaries of the San Juan River in the Colorado River Basin located in the southern San Juan Mountains, and Willow Creek and Horse Lake Creek, tributaries of the Rio Chama in the Rio Grande Basin. The quality of water in the streams in the study area generally varied by watershed on the basis of the underlying geology and the volume and source of the streamflow. Water from the Rio Blanco and Little Navajo River watersheds, primarily underlain by volcanic deposits, volcaniclastic sediments and landslide deposits derived from these materials, was compositionally similar and had low specific-conductance values relative to the other streams in the study area. Water from the Navajo River

  4. Real time high frequency monitoring of water quality in river streams using a UV-visible spectrometer: interest, limits and consequences for monitoring strategies

    Science.gov (United States)

    Faucheux, Mikaël; Fovet, Ophélie; Gruau, Gérard; Jaffrézic, Anne; Petitjean, Patrice; Gascuel-Odoux, Chantal; Ruiz, Laurent

    2013-04-01

    Stream water chemistry is highly variable in space and time, therefore high frequency water quality measurement methods are likely to lead to conceptual advances in the hydrological sciences. Sub-daily data on water quality improve the characterization of pollutant sources and pathways during flood events as well as during long-term periods [1]. However, real time, high frequency monitoring devices needs to be properly calibrated and validated in real streams. This study analyses data from in situ monitoring of a stream water quality. During two hydrological years (2010-11, 2011-12), a submersible UV-visible spectrometer (Scan Spectrolyser) was used for surface water quality measurement at the outlet of a headwater catchment located at Kervidy-Naizin, Western France (AgrHys long-term hydrological observatory, http://www.inra.fr/ore_agrhys/). The spectrometer is reagentless and equipped with an auto-cleaning system. It allows real time, in situ and high frequency (20 min) measurements and uses a multiwavelengt spectral (200-750 nm) for simultaneous measurement of nitrate, dissolved organic carbon (DOC) and total suspended solids (TSS). A global calibration based on a PLS (Partial Least Squares) regression is provided by the manufacturer as default configuration of the UV-visible spectrometer. We carried out a local calibration of the spectrometer based on nitrates and DOC concentrations analysed in the laboratory from daily manual sampling and sub-daily automatic sampling of flood events. TSS results are compared with 15 min turbidity records from a continuous turdidimeter (Ponsel). The results show a good correlation between laboratory data and spectrometer data both during basis flows periods and flood events. However, the local calibration gives better results than the global one. Nutrient fluxes estimates based on high and different low frequency time series (daily to monthly) are compared to discuss the implication for environmental monitoring strategies. Such

  5. Water quality, organic chemistry of sediment, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee

    Science.gov (United States)

    Bradfield, A.D.; Flexner, N.M.; Webster, D.A.

    1993-01-01

    An investigation of water quality, organic sediment chemistry, and biological conditions of streams near an abandoned wood-preserving plant site at Jackson, Tennessee, was conducted during December 1990. The study was designed to assess the extent of possible contamination of water and biota in the streams from creosote-related discharge originating at this Superfund site. Central Creek, adjacent to the plant, had degraded water quality and biological conditions. Water samples from the most downstream station on Central Creek contained 30 micrograms per liter of pentachlorophenol, which exceeds the State's criterion maximum concentrations of 9 micrograms per liter for fish and aquatic life. Bottom-sediment samples from stations on Central Creek contained concentrations of acenaphthene, napthalene, and phenanthrene ranging from 1,400 to 2,500 micrograms per kilogram. Chronic or acute toxicity resulted during laboratory experiments using test organisms exposed to creosote-related contaminants. Sediment elutriate samples from Central Creek caused slightly to highly toxic effects on Ceriodaphnia dubia. Pimephales promelas, and Photobacterium phosphoreum. Fish-tissue samples from this station contained concentrations of naphthalene. dibenzofuran, fluorene, and phenanthrene ranging from 1.5 to 3.9 micrograms per kilogram Blue-green algae at this station represented about 79 percent of the organisms counted, whereas diatoms accounted for only 11 percent. Benthic invertebrate and fish samples from Central Creek had low diversity and density. Sediment samples from a station on the South Fork Forked Deer River downstream from its confluence with Central Creek contained concentrations of acenaphthene, anthracene, chrysene, fluoranthene, fluorene, pyrere, and phenanthrene ranging from 2,800 to 69,000 micrograms per kilogram. Sediment elutriate samples using water as elutriate from this station contained concentrations of extractable organic compounds ranging from an estimated

  6. Water-quality variability and constituent transport and processes in streams of Johnson County, Kansas, using continuous monitoring and regression models, 2003-11

    Science.gov (United States)

    Rasmussen, Teresa; Gatotho, Jackline

    2014-01-01

    The population of Johnson County, Kansas increased by about 24 percent between 2000 and 2012, making it one of the most rapidly developing areas of Kansas. The U.S. Geological Survey, in cooperation with the Johnson County Stormwater Management Program, began a comprehensive study of Johnson County streams in 2002 to evaluate and monitor changes in stream quality. The purpose of this report is to describe water-quality variability and constituent transport for streams representing the five largest watersheds in Johnson County, Kansas during 2003 through 2011. The watersheds ranged in urban development from 98.3 percent urban (Indian Creek) to 16.7 percent urban (Kill Creek). Water-quality conditions are quantified among the watersheds of similar size (50.1 square miles to 65.7 square miles) using continuous, in-stream measurements, and using regression models developed from continuous and discrete data. These data are used to quantify variability in concentrations and loads during changing streamflow and seasonal conditions, describe differences among sites, and assess water quality relative to water-quality standards and stream management goals. Water quality varied relative to streamflow conditions, urbanization in the upstream watershed, and contributions from wastewater treatment facilities and storm runoff. Generally, as percent impervious surface (a measure of urbanization) increased, streamflow yield increased. Water temperature of Indian Creek, the most urban site which is also downstream from wastewater facility discharges, was higher than the other sites about 50 percent of the time, particularly during winter months. Dissolved oxygen concentrations were less than the Kansas Department of Health and Environment minimum criterion of 5 milligrams per liter about 15 percent of the time at the Indian Creek site. Dissolved oxygen concentrations were less than the criterion about 10 percent of the time at the rural Blue River and Kill Creek sites, and less than

  7. Water-quality, bed-sediment, and biological data (October 2014 through September 2015) and statistical summaries of data for streams in the Clark Fork Basin, Montana

    Science.gov (United States)

    Dodge, Kent A.; Hornberger, Michelle I.; Turner, Matthew A.

    2017-01-19

    Water, bed sediment, and biota were sampled in selected streams from Butte to near Missoula, Montana, as part of a monitoring program in the upper Clark Fork Basin of western Montana. The sampling program was led by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to characterize aquatic resources in the Clark Fork Basin, with emphasis on trace elements associated with historic mining and smelting activities. Sampling sites were located on the Clark Fork and selected tributaries. Water samples were collected periodically at 20 sites from October 2014 through September 2015. Bed-sediment and biota samples were collected once at 13 sites during August 2015.This report presents the analytical results and quality-assurance data for water-quality, bed-sediment, and biota samples collected at sites from October 2014 through September 2015. Water-quality data include concentrations of selected major ions, trace elements, and suspended sediment. At 12 sites, samples for analysis of dissolved organic carbon and turbidity were collected. In addition, samples for analysis of nitrogen (nitrate plus nitrite) were collected at two sites. Daily values of mean suspended-sediment concentration and suspended-sediment discharge were determined for three sites. Seasonal daily values of turbidity were determined for four sites. Bed-sediment data include trace-element concentrations in the fine-grained fraction. Biological data include trace-element concentrations in whole-body tissue of aquatic benthic insects. Statistical summaries of water-quality, bed-sediment, and biological data for sites in the upper Clark Fork Basin are provided for the period of record.

  8. Protocols for collection of streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data to describe stream quality for the Hydrobiological Monitoring Program, Equus Beds Aquifer Storage and Recovery Program, city of Wichita, Kansas

    Science.gov (United States)

    Stone, Mandy L.; Rasmussen, Teresa J.; Bennett, Trudy J.; Poulton, Barry C.; Ziegler, Andrew C.

    2012-01-01

    The city of Wichita, Kansas uses the Equus Beds aquifer, one of two sources, for municipal water supply. To meet future water needs, plans for artificial recharge of the aquifer have been implemented in several phases. Phase I of the Equus Beds Aquifer Storage and Recovery (ASR) Program began with injection of water from the Little Arkansas River into the aquifer for storage and subsequent recovery in 2006. Construction of a river intake structure and surface-water treatment plant began as implementation of Phase II of the Equus Beds ASR Program in 2010. An important aspect of the ASR Program is the monitoring of water quality and the effects of recharge activities on stream conditions. Physical, chemical, and biological data provide the basis for an integrated assessment of stream quality. This report describes protocols for collecting streamflow, water-quality, streambed-sediment, periphyton, macroinvertebrate, fish, and habitat data as part of the city of Wichita's hydrobiological monitoring program (HBMP). Following consistent and reliable methods for data collection and processing is imperative for the long-term success of the monitoring program.

  9. Flux rates of atmospheric lead pollution within soils of a small catchment in northern Sweden and their implications for future stream water quality.

    Science.gov (United States)

    Klaminder, Jonatan; Bindler, Richard; Laudon, Hjalmar; Bishop, Kevin; Emteryd, Ove; Renberg, Ingemar

    2006-08-01

    It is not well-known how the accumulated pool of atmospheric lead pollution in the boreal forest soil will affect the groundwater and surface water chemistry in the future as this lead migrates through the soil profile. This study uses stable lead isotopes (206Pb/207Pb and 208Pb/ 207Pb ratios) to trace the transport of atmospheric lead pollution within the soil of a small catchment and predict future lead level changes in a stream draining the catchment. Low 206Pb/207Pb and 208Pb/207Pb ratios for the lead in the soil water (1.16 +/- 0.02; 2.43 +/- 0.03) and streamwater (1.18 +/- 0.03; 2.42 +/- 0.03) in comparison to that of the mineral soil (>1.4; >2.5) suggest that atmospheric pollution contributes by about 90% (65-100%) to the lead pool found in these matrixes. Calculated transport rates of atmospheric lead along a soil transect indicate that the mean residence time of lead in organic and mineral soil layers is at a centennial to millennial time scale. A maximum release of the present pool of lead pollution in the soil to the stream is predicted to occur within 200-800 years. Even though the uncertainty of the prediction is large, it emphasizes the magnitude of the time lag between the accumulation of atmospheric lead pollution in soils and the subsequent response in streamwater quality.

  10. Nitrate Relationships between Stream Baseflow, Well Water, and Land Use in the Tomorrow-Waupaca Watershed

    OpenAIRE

    Henry Lin; Rebecca Cook; Byron Shaw

    2001-01-01

    We examined the use of stream baseflow water quality as a representative measure of mean ground water quality in the Tomorrow-Waupaca Watershed in central Wisconsin and the relationship between agricultural land use and watershed water quality. From 1997 to 1999, 38 stream sites were sampled for nitrate during winter and summer baseflow conditions. Some sites have been sampled during winter baseflow conditions since 1994. The land area contributing ground water to each stream sampling site wa...

  11. Estimation of Constituent Concentrations, Loads, and Yields in Streams of Johnson County, Northeast Kansas, Using Continuous Water-Quality Monitoring and Regression Models, October 2002 through December 2006

    Science.gov (United States)

    Rasmussen, Teresa J.; Lee, Casey J.; Ziegler, Andrew C.

    2008-01-01

    Johnson County is one of the most rapidly developing counties in Kansas. Population growth and expanding urban land use affect the quality of county streams, which are important for human and environmental health, water supply, recreation, and aesthetic value. This report describes estimates of streamflow and constituent concentrations, loads, and yields in relation to watershed characteristics in five Johnson County streams using continuous in-stream sensor measurements. Specific conductance, pH, water temperature, turbidity, and dissolved oxygen were monitored in five watersheds from October 2002 through December 2006. These continuous data were used in conjunction with discrete water samples to develop regression models for continuously estimating concentrations of other constituents. Continuous regression-based concentrations were estimated for suspended sediment, total suspended solids, dissolved solids and selected major ions, nutrients (nitrogen and phosphorus species), and fecal-indicator bacteria. Continuous daily, monthly, seasonal, and annual loads were calculated from concentration estimates and streamflow. The data are used to describe differences in concentrations, loads, and yields and to explain these differences relative to watershed characteristics. Water quality at the five monitoring sites varied according to hydrologic conditions; contributing drainage area; land use (including degree of urbanization); relative contributions from point and nonpoint constituent sources; and human activity within each watershed. Dissolved oxygen (DO) concentrations were less than the Kansas aquatic-life-support criterion of 5.0 mg/L less than 10 percent of the time at all sites except Indian Creek, which had DO concentrations less than the criterion about 15 percent of the time. Concentrations of suspended sediment, chloride (winter only), indicator bacteria, and pesticides were substantially larger during periods of increased streamflow. Suspended

  12. Permafrost Degradation and Stream Metabolism in the Arctic: The effect of thaw slump sedimentation on biological productivity and water quality in the Selawik River, Northwest Alaska

    Science.gov (United States)

    Calhoun, J. P.; Crosby, B. T.

    2011-12-01

    The Selawik River in northwest Alaska, drains ~12,500 km^2 of tree line spruce forest, upland tundra and lowland wetlands. Along the river corridor, high concentrations of fine sediment from a large, young, active retrogressive thaw slump alter the physical and ecological form and function of the stream. This disturbance impacts the entire downstream river corridor, affecting the viability of fish habitat and quality drinking water that subsistence-based native communities depend on. In anticipated warming scenarios, it can be expected that there will be an increase in both the frequency and magnitude of these permafrost degradation features, increasing the extent to which local villages and ecosystems are affected. Our study aims to improve our physical understanding of this system in order to provide biologists, land managers and city officials improved predictive capabilities. Whole stream metabolism (WSM) combines nutrient cycling and organic matter processing to provide an integrated measure of stream health. We utilized a suite of water quality data including temperature, dissolved oxygen, turbidity, pH, pressure, and conductance to calculate WSM values at two experimental reaches up and downstream of the slump over the past three summers. The immediate effects are large magnitude diurnal increases in turbidity, suppressed dissolved oxygen values, and strong attenuation of photosynthetically active radiation (PAR) with depth. We found from 2010 data that, on average, the waters downstream from the slump were 23 times more turbid, had roughly half the dissolved oxygen, and had 4.7 and 2.7 times lower gross primary production (GPP) and ecosystem respiration (ER) respectively. In the summer of 2011, we collected measurements of terrestrial PAR, subsurface PAR, dissolved oxygen and turbidity at multiple river depths at 5 experimental locations. Though turbidity varied roughly by two orders of magnitude and terrestrial PAR increased 850 times between solar

  13. Water-Quality Data

    Science.gov (United States)

    ... Water Quality? [1.7MB PDF] Past featured science... Water Quality Data Today's Water Conditions Get continuous real- ... list of USGS water-quality data resources . USGS Water Science Areas Water Resources Groundwater Surface Water Water ...

  14. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell

    OpenAIRE

    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie

    2012-01-01

    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  15. An analysis of the long-term variation in stream water quality for three upland catchments at Loch Dee (Galloway, S.W. Scotland under contrasting land management

    Directory of Open Access Journals (Sweden)

    S. J. Langan

    2004-01-01

    Full Text Available A long term record of water chemistry, consisting of twenty years of weekly spot samples, from three sub-catchments draining into a loch and the loch outflow in Galloway, S.W. Scotland have been analysed. The analysis undertaken consisted of a three component statistical trend model. The technique allows the identification of long-term, seasonal and short-term trends, as well as differentiation between base flow and high flow responses. The land usage in the three sub-catchments is moorland, forest and forest plus lime. The results show that, since the mid-1980s, there has been a gradual decline in stream-water sulphate of the same order as reductions in the deposition of non-marine sulphate. Superimposed on this trend are somewhat random but considerable perturbations to this decline, caused by sea-salt deposition. There is no evidence of changes in surface water nitrate concentrations. The influence of different land management is evident in the sulphate, nitrate and pH data, whilst variations in calcium concentrations are also a product of differences in hydrological routing and the impact of sea-salt episodes. Keywords: trend analysis, acid deposition, land management, water quality, sea-salts, Galloway, S.W. Scotland

  16. Water quality within biofuel production landscape: Integrating flow paths, residence time distribution and mixing dynamics in the stream side management zone

    Science.gov (United States)

    Blake, J. I.; Jackson, C. R.; Griffiths, N. A.; Klaus, J.; Du, E.; Vache, K. B.; McDonnell, J. J.

    2012-12-01

    Best Management Practices designed to protect water quality are largely based on empirical studies of runoff from various cropping practices and associated mitigation strategies. Application of the resulting mitigation strategies has resulted in significant improvements in water quality, particularly reductions in sediment yields. Watershed modeling can extend the observations to other crops, landscapes and climates, but extrapolation is often compromised by too many model parameters and assumptions. The sheer number of potential dedicated biofuel-biochemical crop species, crop practices and hydrologic landscapes makes it difficult to comprehensively test various alternatives when the final configurations are largely unknown. We argue that a dominant hydrologic process framework for evaluating and mitigating potential water quality impacts can be constructed from basic hydrologic principles coupled to the crop fertilizer uptake efficiency and pesticide properties. We illustrate the approach in the southeastern U.S. on an old-field landscape with zero and first order streams suitable for cellulosic biofuel crops. In this region nitrogen additions are essential to sustain and enhance production and herbicides are frequently required for establishment. If overland flow is effectively managed, the primary flow path transmits water to groundwater and contaminates are subject to dispersion, sorption, and biochemical reaction. Average residence times in headwater basins typically ranges from3-12 years. However, the array of flow paths and distribution of residence times may lead to undesirable transport of contaminates. For example, significant lateral interflow may occur within 25-50 meters of the stream interface. Transmissions of these materials through the biological active riparian zones can substantially reduce contaminate concentrations as long as flux rates do not exceed uptake rates. To the extent that subsurface interflow and groundwater dynamics can be

  17. Integrated assessment of chemical quality and genotoxicity of the water of the Luiz Rau Stream in the lower stretch of the Sinos River Basin, in South Brazil

    Directory of Open Access Journals (Sweden)

    Camila Tamires Petry

    2016-11-01

    Full Text Available This study assessed the chemical quality and genotoxicity of the water of the Luiz Rau Stream in Novo Hamburgo (Rio Grande do Sul, Brazil and investigated the relationship between the genetic damage observed in Tradescantia pallida var. purpurea and the chemical parameters analyzed. Water samplings were collected bimonthly from September 2012 to March 2013 from two sites, near the headspring (S1 and near the mouth (S2. Cuttings with flower buds were exposed to water from the sites and distilled water (negative control. Micronuclei (MCN frequencies were determined in pollen mother cells. The chemical parameters analyzed were pH, total dissolved solids, biochemical oxygen demand (DBO5, dissolved oxygen, total phosphorus (TP and the trace elements cadmium, lead, copper, total chromium and zinc. In all samplings, the MCN frequencies observed in buds exposed to water from both sites were significantly higher (S1: 2.48 to 3.38, S2: 3.24 to 5.19 than those observed in the respective negative controls (1.33 to 1.62. The TP was above the legal limit throughout the monitored period and DBO5 presented concentrations higher than those established by legislation in two months at S1 and three months at S2. The principal component analysis showed a relationship between MCN frequency, DBO5 and TP, pointing to the negative influence of pollutants present in water on the bioindicator species and reinforcing the importance of considering the environmental factors in an integrated way in water-body monitoring programs.

  18. Machine learning and hurdle models for improving regional predictions of stream water acid neutralizing capacity

    Science.gov (United States)

    Nicholas A. Povak; Paul F. Hessburg; Keith M. Reynolds; Timothy J. Sullivan; Todd C. McDonnell; R. Brion Salter

    2013-01-01

    In many industrialized regions of the world, atmospherically deposited sulfur derived from industrial, nonpoint air pollution sources reduces stream water quality and results in acidic conditions that threaten aquatic resources. Accurate maps of predicted stream water acidity are an essential aid to managers who must identify acid-sensitive streams, potentially...

  19. Water and sediment quality assessment in the Colastiné-Corralito stream system (Santa Fe, Argentina): impact of industry and agriculture on aquatic ecosystems.

    Science.gov (United States)

    Regaldo, Luciana; Gutierrez, María F; Reno, Ulises; Fernández, Viviana; Gervasio, Susana; Repetti, María R; Gagneten, Ana M

    2017-12-22

    The present study focuses on the evaluation of metal (chromium, copper, and lead), arsenic, and pesticide (atrazine and endosulfan) contamination in freshwater streams of one of the most important agricultural and industrial areas of central-eastern Argentina, which has not been reported earlier. The environmental fate of inorganic microcontaminants and pesticides was assessed. Samples were collected monthly for a year. Pesticide concentrations were measured in water; metal and arsenic concentrations were measured in water and sediments, and physicochemical variables were analyzed. In most cases, metals and arsenic in water exceeded the established guideline levels for the protection of aquatic biota: 98 and 56.25% of the samples showed higher levels of Cr and Pb, while 81.25 and 85% of the samples presented higher values for Cu and As, respectively. Cr, Pb, Cu, and As exceeded 181.5 times, 41.6 times, 57.5 times, and 12.9 times, respectively, the guideline level values. In sediment samples, permitted levels were also surpassed by 40% for Pb, 15% for As, 4% for Cu, and 2% for Cr. Geoaccumulation Index (Igeo) demonstrated that most of the sediment samples were highly polluted by Cr and Cu and very seriously polluted by Pb, which indicates progressive deterioration of the sediment quality. Atrazine never exceeded them, but 27% of the 48 water samples contained total endosulfan that surpassed the guidelines. The findings of this study suggest risk to the freshwater biota over prolong periods and possible risk to humans if such type of contaminated water is employed for recreation or human use. Improper disposal of industrial effluents and agricultural runoffs need to be controlled, and proper treatment should be done before disposal to avoid further deterioration of the aquifers of this area.

  20. 77 FR 74985 - Water Quality Standards for the State of Florida's Streams and Downstream Protection Values for...

    Science.gov (United States)

    2012-12-18

    ... Downstream Protection Values for Lakes: Remanded Provisions AGENCY: Environmental Protection Agency (EPA... cannot be performed to derive downstream protection values (DPVs) that will ensure the attainment and... lakes, springs, flowing waters, estuaries, and coastal waters, as well as downstream protection values...

  1. Bottle data collected for chemical analysis along the coastal waters of Hawai'i as part of the Windward Community College Heeia Stream and Kaneohe Bay Water Quality Assessment Project from May 22, 2004 to March 19, 2005 (NODC Accession 0002449)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Measurements of water quality parameters were taken by Windward Community College faculty and students at eight sites in the Heeia Stream and adjacent Kaneohe Bay...

  2. Water quality of the Edwards Aquifer and streams recharging the aquifer in the San Antonio region, Texas

    Science.gov (United States)

    Roddy, W.R.

    1992-01-01

    The Edwards aquifer in south-central Texas is one of the most productive and most important aquifers in the State, with an average annual discharge of about 608,000 acre-ft of water during 1932-82 (Reeves and Ozuna, 1985).  The Edwards aquifer is the principal source of water for municipal, industrial, and irrigation use in all or parts of five counties- Bexar, Comal, hays, Medina, and Uvalde- and is the only source of water for San Antonio, the tenth-largest city in the United States (1980 population, 786,000) (A.H. Belo Corporation, 1985).

  3. Nitrate Relationships between Stream Baseflow, Well Water, and Land Use in the Tomorrow-Waupaca Watershed

    Directory of Open Access Journals (Sweden)

    Henry Lin

    2001-01-01

    Full Text Available We examined the use of stream baseflow water quality as a representative measure of mean ground water quality in the Tomorrow-Waupaca Watershed in central Wisconsin and the relationship between agricultural land use and watershed water quality. From 1997 to 1999, 38 stream sites were sampled for nitrate during winter and summer baseflow conditions. Some sites have been sampled during winter baseflow conditions since 1994. The land area contributing ground water to each stream sampling site was delineated, resulting in 38 sub-basins. In addition, over 3500 test results from private wells in the watershed were compiled and mapped using a Geographic Information System (GIS. Nitrate concentrations in stream baseflow and well waters were found to have strong positive correlation in the sub-basins of second order or higher. This indicates that stream baseflow may be valid for monitoring mean ground water quality in watersheds predominantly fed by ground water, where much of the stream nitrate is believed to originate from ground water. Analysis of seasonal variation in the stream data showed that winter nitrate concentrations were higher than summer concentrations, implying that winter stream monitoring may be more critical for the assessment of overall ground water quality in the watershed. We also found that, as the amount of agricultural land increased in each sub-basin, average nitrate concentrations in the well and stream waters also increased, suggesting a connection between agricultural land use and nitrate contamination of water resources in the watershed.

  4. Stream water responses to timber harvest: Riparian buffer width effectiveness

    Science.gov (United States)

    Barton D. Clinton

    2011-01-01

    Vegetated riparian buffers are critical for protecting aquatic and terrestrial processes and habitats in southern Appalachian ecosystems. In this case study, we examined the effect of riparian buffer width on stream water quality following upland forest management activities in four headwater catchments. Three riparian buffer widths were delineated prior to cutting; 0m...

  5. Source Water Flow Pathways In Forested, Mountain, Headwater Streams: A Link Between Sediment Movement Patterns And Stream Water Chemistry.

    Science.gov (United States)

    Martin, S.; Conklin, M. H.; Liu, F.

    2015-12-01

    Three years of continuous and discrete sediment and water quality data, from four forested, mountain, headwater catchments in the Sierra Nevada, is used to identify water sources, determine the importance of sub-surface flow pathways, detect any changes in source waters due to seasonal variation or drought, and link flow pathways with observed patterns of in-channel sediment movement within the study watersheds. Patterns in stream chemistry and turbidity point to infiltration as the dominant flow pathway within these catchments. Data support a flow pathway conceptual model in which precipitation water infiltrates into the shallow or deeper subsurface, increasing the hydraulic head of the water table and pushing pre-event water into the stream ahead of event water. Study catchments contain perennial streams and are characterized by a Mediterranean climate with a distinct wet and dry season. Sites are located in the rain-snow transition zone with snow making up 40 to 60 percent of average annual precipitation. Barring human disturbances such as logging/grazing (compaction) or fire (hydrophobicity), catchment soils have high infiltration capacities. Springs and seeps maintain baseflow during the summer low-flow season, and shifting chemical signals within the streams indicate the increased importance of sub-surface water sources during drought years. End-member mixing analysis was conducted to identify possible water end members. Turbidity hysteresis patterns described by previous studies show in-channel sources are dominant for discharge events year round, and there is no difference in fine sediment delivery to streams with or without a soil protecting layer of snow on the land surface. The dominance of sub-surface water sources and evidence for infiltration flow fits with turbidity data, as little material is reaching the stream due to erosive overland flow. An understanding of flow pathways provides a foundation for sustainable land use management in forested

  6. Quality of water and sediment in streams affected by historical mining, and quality of Mine Tailings, in the Rio Grande/Rio Bravo Basin, Big Bend Area of the United States and Mexico, August 2002

    Science.gov (United States)

    Lambert, Rebecca B.; Kolbe, Christine M.; Belzer, Wayne

    2008-01-01

    The U.S. Geological Survey, in cooperation with the International Boundary and Water Commission - U.S. and Mexican Sections, the National Park Service, the Texas Commission on Environmental Quality, the Secretaria de Medio Ambiente y Recursos Naturales in Mexico, the Area de Proteccion de Flora y Fauna Canon de Santa Elena in Mexico, and the Area de Proteccion de Flora y Fauna Maderas del Carmen in Mexico, collected samples of stream water, streambed sediment, and mine tailings during August 2002 for a study to determine whether trace elements from abandoned mines in the area in and around Big Bend National Park have affected the water and sediment quality in the Rio Grande/Rio Bravo Basin of the United States and Mexico. Samples were collected from eight sites on the main stem of the Rio Grande/Rio Bravo, four Rio Grande/Rio Bravo tributary sites downstream from abandoned mines or mine-tailing sites, and 11 mine-tailing sites. Mines in the area were operated to produce fluorite, germanium, iron, lead, mercury, silver, and zinc during the late 1800s through at least the late 1970s. Moderate (relatively neutral) pHs in stream-water samples collected at the 12 Rio Grande/Rio Bravo main-stem and tributary sites indicate that water is well mixed, diluted, and buffered with respect to the solubility of trace elements. The highest sulfate concentrations were in water samples from tributaries draining the Terlingua mining district. Only the sample from the Rough Run Draw site exceeded the Texas Surface Water Quality Standards general-use protection criterion for sulfate. All chloride and dissolved solids concentrations in water samples were less than the general-use protection criteria. Aluminum, copper, mercury, nickel, selenium, and zinc were detected in all water samples for which each element was analyzed. Cadmium, chromium, and lead were detected in samples less frequently, and silver was not detected in any of the samples. None of the sample concentrations of

  7. Quality of streams in Johnson County, Kansas, 2002--10

    Science.gov (United States)

    Rasmussen, Teresa J.; Stone, Mandy S.; Poulton, Barry C.; Graham, Jennifer L.

    2012-01-01

    Stream quality in Johnson County, northeastern Kansas, was assessed on the basis of land use, hydrology, stream-water and streambed-sediment chemistry, riparian and in-stream habitat, and periphyton and macroinvertebrate community data collected from 22 sites during 2002 through 2010. Stream conditions at the end of the study period are evaluated and compared to previous years, stream biological communities and physical and chemical conditions are characterized, streams are described relative to Kansas Department of Health and Environment impairment categories and water-quality standards, and environmental factors that most strongly correlate with biological stream quality are evaluated. The information is useful for improving water-quality management programs, documenting changing conditions with time, and evaluating compliance with water-quality standards, total maximum daily loads (TMDLs), National Pollutant Discharge Elimination System (NPDES) permit conditions, and other established guidelines and goals. Constituent concentrations in water during base flow varied across the study area and 2010 conditions were not markedly different from those measured in 2003, 2004, and 2007. Generally the highest specific conductance and concentrations of dissolved solids and major ions in water occurred at urban sites except the upstream Cedar Creek site, which is rural and has a large area of commercial and industrial land less than 1 mile upstream on both sides of the creek. The highest base-flow nutrient concentrations in water occurred downstream from wastewater treatment facilities. Water chemistry data represent base-flow conditions only, and do not show the variability in concentrations that occurs during stormwater runoff. Constituent concentrations in streambed sediment also varied across the study area and some notable changes occurred from previously collected data. High organic carbon and nutrient concentrations at the rural Big Bull Creek site in 2003 decreased

  8. Water quality of groundwater and stream base flow in the Marcellus Shale Gas Field of the Monongahela River Basin, West Virginia, 2011-12

    Science.gov (United States)

    Chambers, Douglas B.; Kozar, Mark D.; Messinger, Terence; Mulder, Michon L.; Pelak, Adam J.; White , Jeremy S.

    2015-01-01

    The Marcellus Shale gas field underlies portions of New York, Pennsylvania, Ohio, Virginia, Maryland, Tennessee, and West Virginia. Development of hydraulic fracturing and horizontal drilling technology led to extensive development of gas from the Marcellus Shale beginning about 2007. The need to identify and monitor changes in water-quality conditions related to development of the Marcellus Shale gas field prompted the U.S. Geological Survey, in cooperation with the West Virginia Department of Environmental Protection, Division of Water and Waste Management, to document water quality for comparison with water quality in samples collected at a future date. The identification of change in water-quality conditions over time is more difficult if baseline water-quality conditions have not been documented.

  9. Use of real-time and continuous water quality monitoring in Iowa streams to inform conservation strategy in an agricultural landscape

    Science.gov (United States)

    Jones, C. S.; Kim, S. W.; Davis, C. A.

    2015-12-01

    Agricultural watersheds in the Midwestern U.S. are major contributors of nutrients to the Mississippi River Basin and the Gulf of Mexico. Many states within the Upper Mississippi River Basin, including Iowa, are developing nutrient reduction strategies to reduce non-point and point source loads of nitrogen and phosphorous in an effort to reverse degradation of streams and lakes. Quantifying nutrient loads in Iowa and assessing loads transported within Iowa rivers are important components of Iowa's strategy. Nutrient loads estimated with data collected using traditional methods of grab sampling are expensive and have met with limited usefulness to the agricultural community when assessing the effectiveness of implemented conservation practices. New sensor technology is allowing for real-time measurement of nutrient loads in many Iowa rivers. IIHR Hydroscience and Engineering has deployed 22 nitrate-nitrogen sensors in several Iowa rivers to provide accurate measure of nutrient loads. Combined with 17 sensors operated by the USGS, the sensor network captures nutrient transport and loading patterns in rivers across the state. A new Iowa Water Quality Information System (IWQIS) is being developed to display and share the continuous, real-time data. The data reported here will compare and contrast load calculations obtained using continuous monitors with those from a more traditional grab samples. We also will demonstrate how continuous nitrate monitoring informs watershed hydrology and the assessment of conservation practices designed to reduce nutrient loss from farmed fields. Finally, we will establish that the costs of real time continuous monitoring are modest when compared to grab sampling strategies and the costs of implementing conservation on productive lands in the Western Corn Belt of Iowa.

  10. Macroinvertebrate community structure and function along gradients of physical stream quality and pesticide contamination in Danish streams

    DEFF Research Database (Denmark)

    Rasmussen, Jes

    to stream are surface runoff and tile drainage giving rise to short pulses of acute contamination strongly coinciding with high levels of precipitation. Field studies indicate that macroinvertebrate community structure can be impacted by pesticides during spraying seasons in May and June, but also......  A wide array of pesticides are applied to agricultural crops during spring and autumn spraying season, and detections of pesticides in stream water and bed sediments of agricultural streams emphasize the potential exposure of benthic macroinvertebrates. Major transportation routes from catchment...... in each stream were measured applying sediment sampling and event triggered water samplers. Furthermore, on all reaches macroinvertebrate community structure was assessed before, during and after the spring application season. Stream reaches with good physical quality generally contain a higher abundance...

  11. A multi-year longitudinal study of water quality parameters in four salmon-bearing and recreational streams on mount hood, Oregon.

    Directory of Open Access Journals (Sweden)

    Ronald Wasowski

    Full Text Available Four streams-Clear Fork, Lost Creek, Camp Creek and Still Creek-in northwestern Oregon's Sandy River Basin were monitored for temperature, dissolved oxygen levels, and fecal bacterial concentrations in a multi-year analysis examining stream health for recreational users and anchor habitat for Pacific Salmon. Temperatures were recorded using micro -T temperature loggers at 15 locations, during 22 July - 5 September 2006, 2 July - 4 September 2007, 20 June - 7 September 2008, 23 June - 9 September 2009, and 2 July -9 September 2010. The Seven-Day Average Maximum water temperature (7-DAM of 13°C was used as a reference value for the biological limit governing suitable salmonid spawning and egg incubation conditions. The maximum 7-DAM temperatures occurred on different dates and all streams neared or exceeded the 13°C standard at least once each summer. Dissolved oxygen levels were measured at weekly or longer intervals in 2006, 2007, 2008, and 2009. Dissolved oxygen levels fell below the 9.0 ppm standard for Clear Fork on almost half the sampling dates in 2006, 2007, and 2009. Concentrations of the bacterial genus Enterococcus were measured as an indicator of fecal contamination. Samples were collected at 15 sites along the four streams. Weekly samples were collected during a 9 week period from July - September 2007, an 11 week period from June - September 2008, and an 11 week period from June - September 2009. Enterococcus counts exceeded the federal recommended national criterion value of 61 colony forming units (CFU per 100 mL every year in Camp Creek and occasionally elsewhere, with exceedances trending towards late summer.

  12. Assessment Of The Physicochemical And Microbial Quality Of Water In Ke-Nya Stream At Babato-Kuma Community In The Kintampo North Municipal Assembly Of Brong Ahafo Region Of Ghana

    Directory of Open Access Journals (Sweden)

    Frimpong

    2015-06-01

    Full Text Available ABSTRACT The study was carried out to evaluate the physicochemical and microbiological quality of the Ke-enya stream which is relied on by the inhabitants of Babato-kuma and its surrounding villages for their domestic and Agricultural activities. A total of twenty eight 28 water samples were collected at upstream midstream and downstream from November 2012 to January 2013 for analysis. Most of the physicochemical parameters were within WHO guidelines recommended for potable water with the exception of Turbidity and Colour which exceeded the WHO standard of 5 NTU and 15 Hz respectively. Colour ranged from 100 to 130 Hz with a mean of 1179.45 Hz whiles Turbidity ranged from 9 to 36 NTU with a mean of 20.7810.5 NTU. However Total Coliform 420-1188 CFU100ml 757261 Faecal Coliform 140-623 CFU100ml 305145 E.coli 46-391 CFU100ml 135102 and Total Heterotrophic bacteria 444-3129 CFUml 1341778 were higher than WHO standards. Bacterial contamination could be traced to settlements along the stream livestock production poor or non-existence sewage system coupled with poor sanitary conditions among others. Alternative sources of water supplies in the form of hand-dug wells or boreholes if possible by the Municipal assembly NGOs and other philanthropies to the inhabitants whose traditional sources of drinking water is directly from this stream will be beneficial in reducing the health implications associated with this pollution.

  13. Heat, chloride, and specific conductance as ground water tracers near streams

    Science.gov (United States)

    Cox, M.H.; Su, G.W.; Constantz, J.

    2007-01-01

    Commonly measured water quality parameters were compared to heat as tracers of stream water exchange with ground water. Temperature, specific conductance, and chloride were sampled at various frequencies in the stream and adjacent wells over a 2-year period. Strong seasonal variations in stream water were observed for temperature and specific conductance. In observation wells where the temperature response correlated to stream water, chloride and specific conductance values were similar to stream water values as well, indicating significant stream water exchange with ground water. At sites where ground water temperature fluctuations were negligible, chloride and/or specific conductance values did not correlate to stream water values, indicating that ground water was not significantly influenced by exchange with stream water. Best-fit simulation modeling was performed at two sites to derive temperature-based estimates of hydraulic conductivities of the alluvial sediments between the stream and wells. These estimates were used in solute transport simulations for a comparison of measured and simulated values for chloride and specific conductance. Simulation results showed that hydraulic conductivities vary seasonally and annually. This variability was a result of seasonal changes in temperature-dependent hydraulic conductivity and scouring or clogging of the streambed. Specific conductance fits were good, while chloride data were difficult to fit due to the infrequent (quarterly) stream water chloride measurements during the study period. Combined analyses of temperature, chloride, and specific conductance led to improved quantification of the spatial and temporal variability of stream water exchange with shallow ground water in an alluvial system. ?? 2007 National Ground Water Association.

  14. Trace Metals' Contamination of Stream Water and Irrigated Crop at ...

    African Journals Online (AJOL)

    Pb) in stream water and irrigated crop Carrots (Daucus carota sativa) in Naraguta area of Jos were determined. The stream water was sampled at three different sites A, B and C which were about 200m apart along the stream. The Daucus ...

  15. Design and methods of the Southeast Stream Quality Assessment (SESQA), 2014

    Science.gov (United States)

    Journey, Celeste; Van Metre, Peter C.; Bell, Amanda H.; Button, Daniel T.; Garrett, Jessica D.; Nakagaki, Naomi; Qi, Sharon L.; Bradley, Paul M.

    2015-07-15

    During 2014, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) assessed stream quality across the Piedmont and southern Appalachian Mountain regions of the southeastern United States. This Southeast Stream Quality Assessment (SESQA) simultaneously characterized watershed and stream-reach water-quality stressors along with instream biological conditions, in order to better understand regional stressor-effects relations. The goal of SESQA is to provide communities and policymakers with information about those human and environmental factors that have the greatest impact on stream quality across the region. The SESQA design focused on hydrologic alteration and urbanization because of their importance as ecological stressors of particular concern to Southeast region resource managers.

  16. Quality Adaptive Video Streaming Mechanism Using the Temporal Scalability

    Science.gov (United States)

    Lee, Sunhun; Chung, Kwangsue

    In video streaming applications over the Internet, TCP-friendly rate control schemes are useful for improving network stability and inter-protocol fairness. However, they do not always guarantee a smooth video streaming. To simultaneously satisfy both the network and user requirements, video streaming applications should be quality-adaptive. In this paper, we propose a new quality adaptation mechanism to adjust the quality of congestion-controlled video stream by controlling the frame rate. Based on the current network condition, it controls the frame rate of video stream and the sending rate in a TCP-friendly manner. Through a simulation, we prove that our adaptation mechanism appropriately adjusts the quality of video stream while improving network stability.

  17. Rainfall, Discharge, and Water-Quality Data During Stormwater Monitoring, July 1, 2007, to June 30, 2008; Halawa Stream Drainage Basin and the H-1 Storm Drain, Oahu, Hawaii

    Science.gov (United States)

    Presley, Todd K.; Jamison, Marcael T.J.; Young, Stacie T.M.

    2008-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. The program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream and to assess the effects from the H-1 storm drain on Manoa Stream. For this program, rainfall data were collected at three stations, continuous discharge data at four stations, and water-quality data at six stations, which include the four continuous discharge stations. This report summarizes rainfall, discharge, and water-quality data collected between July 1, 2007, and June 30, 2008. A total of 16 environmental samples were collected over two storms during July 1, 2007, to June 30, 2008, within the Halawa Stream drainage area. Samples were analyzed for total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, and zinc). Additionally, grab samples were analyzed for oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Some samples were analyzed for only a partial list of these analytes because an insufficient volume of sample was collected by the automatic samplers. Three additional quality-assurance/quality-control samples were collected concurrently with the storm samples. A total of 16 environmental samples were collected over four storms during July 1, 2007, to June 30, 2008 at the H-1 Storm Drain. All samples at this site were collected using an automatic sampler. Samples generally were analyzed for total suspended solids, nutrients, chemical oxygen demand, oil and grease, total petroleum hydrocarbons, and selected trace metals (cadmium, chromium, copper, lead, nickel, and zinc), although some samples were analyzed for only a partial list of these analytes. During the storm of January 29, 2008, 10 discrete samples were collected. Varying constituent concentrations were detected for the samples collected

  18. Water quality impacts of forest fires

    Science.gov (United States)

    Tecle Aregai; Daniel Neary

    2015-01-01

    Forest fires have been serious menace, many times resulting in tremendous economic, cultural and ecological damage to many parts of the United States. One particular area that has been significantly affected is the water quality of streams and lakes in the water thirsty southwestern United States. This is because the surface water coming off burned areas has resulted...

  19. Water-quality trend analysis and sampling design for streams in the Red River of the North Basin, Minnesota, North Dakota, and South Dakota, 1970-2001

    Science.gov (United States)

    Vecchia, Aldo V.

    2005-01-01

    The Bureau of Reclamation is considering several alternatives to meet the future municipal, rural, and industrial water-supply needs in the Red River of the North (Red River) Basin, and an environmental impact statement is being prepared to evaluate the potential effects of the various alternatives on the water quality and aquatic health in the basin in relation to the historical variability of streamflow and constituent concentration. Therefore, a water-quality trend analysis was needed to determine the amount of natural water-quality variability that can be expected to occur in the basin, to determine if significant water-quality changes have occurred as a result of human activities, to explore potential causal mechanisms for water-quality changes, and to establish a baseline from which to monitor future water-quality trends. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, to analyze historical water-quality trends in two dissolved major ions, dissolved solids, three nutrients, and two dissolved trace metals for nine streamflow-gaging stations in the basin. Annual variability in streamflow in the Red River Basin was high during the trend-analysis period (1970-2001). The annual variability affects constituent concentrations in individual tributaries to the Red River and, in turn, affects constituent concentrations in the main stem of the Red River because of the relative streamflow contribution from the tributaries to the main stem. Therefore, an annual concentration anomaly, which is an estimate of the interannual variability in concentration that can be attributed to long-term variability in streamflow, was used to analyze annual streamflow-related variability in constituent concentrations. The concentration trend is an estimate of the long-term systematic changes in concentration that are unrelated to seasonal or long-term variability in streamflow. Concentrations that have both

  20. Water Quality Analysis Simulation

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural...

  1. Water Quality Criteria

    Science.gov (United States)

    EPA develops water quality criteria based on the latest scientific knowledge to protect human health and aquatic life. This information serves as guidance to states and tribes in adopting water quality standards.

  2. Water Quality Analysis Simulation

    Science.gov (United States)

    The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural phenomena and man-made pollution for variious pollution management decisions.

  3. Water Quality Monitoring Sites

    Data.gov (United States)

    Vermont Center for Geographic Information — Water Quality Monitoring Site identifies locations across the state of Vermont where water quality data has been collected, including habitat, chemistry, fish and/or...

  4. System Regulates the Water Contents of Fuel-Cell Streams

    Science.gov (United States)

    Vasquez, Arturo; Lazaroff, Scott

    2005-01-01

    An assembly of devices provides for both humidification of the reactant gas streams of a fuel cell and removal of the product water (the water generated by operation of the fuel cell). The assembly includes externally-sensing forward-pressure regulators that supply reactant gases (fuel and oxygen) at variable pressures to ejector reactant pumps. The ejector supply pressures depend on the consumption flows. The ejectors develop differential pressures approximately proportional to the consumption flow rates at constant system pressure and with constant flow restriction between the mixer-outlet and suction ports of the ejectors. For removal of product water from the circulating oxygen stream, the assembly includes a water/gas separator that contains hydrophobic and hydrophilic membranes. The water separator imposes an approximately constant flow restriction, regardless of the quality of the two-phase flow that enters it from the fuel cell. The gas leaving the water separator is nearly 100 percent humid. This gas is returned to the inlet of the fuel cell along with a quantity of dry incoming oxygen, via the oxygen ejector, thereby providing some humidification.

  5. Analyzing Conductivity Profiles in Stream Waters Influenced by Mine Water Discharges

    Science.gov (United States)

    Räsänen, Teemu; Hämäläinen, Emmy; Hämäläinen, Matias; Turunen, Kaisa; Pajula, Pasi; Backnäs, Soile

    2015-04-01

    Conductivity is useful as a general measure of stream water quality. Each stream inclines to have a quite constant range of conductivity that can be used as a baseline for comparing and detecting influence of contaminant sources. Conductivity in natural streams and rivers is affected primarily by the geology of the watershed. Thus discharges from ditches and streams affect not only the flow rate in the river but also the water quality and conductivity. In natural stream waters, the depth and the shape of the river channel change constantly, which changes also the water flow. Thus, an accurate measuring of conductivity or other water quality indicators is difficult. Reliable measurements are needed in order to have holistic view about amount of contaminants, sources of discharges and seasonal variation in mixing and dilution processes controlling the conductivity changes in river system. We tested the utility of CastAway-CTD measuring device (SonTek Inc) to indicate the influence of mine waters as well as mixing and dilution occurring in the recipient river affected by treated dewatering and process effluent water discharges from a Finnish gold mine. The CastAway-CTD measuring device is a small, rugged and designed for profiling of depths of up to 100m. Device measures temperature, salinity, conductivity and sound of speed using 5 Hz response time. It has also built-in GPS which produces location information. CTD casts are normally used to produce vertical conductivity profile for rather deep waters like seas or lakes. We did seasonal multiple Castaway-CTD measurements during 2013 and 2014 and produced scaled vertical and horizontal profiles of conductivity and water temperature at the river. CastAway-CTD measurement pinpoints how possible contaminants behave and locate in stream waters. The conductivity profiles measured by CastAway-CTD device show the variation in maximum conductivity values vertically in measuring locations and horizontally in measured cross

  6. Streaming Induced by Ultrasonic Vibration in a Water Vessel

    Science.gov (United States)

    Nomura, Shinfuku; Murakami, Koichi; Sasaki, Yuuichi

    2000-06-01

    The flow pattern induced by ultrasonic vibration in a water vessel is investigated experimentally using several liquids. In tap water, vortex streaming of cavitation bubbles around the pressure node of a standing wave occurred because of the large number of cavitation bubbles generated by the ultrasonic vibration. Acoustic streaming of the Rayleigh type caused by cavitation bubble streaming is also induced in tap water. In a glycerin aqueous solution of 30%, Eckart streaming, which flowed upward from the vibrator, occurred due to the dissipation of ultrasonic energy caused by viscosity. On the other hand, in degassed water, streaming is hardly generated at all since a uniform and stable standing wave is formed in the water vessel. The velocity of the acoustic streaming generated in the water vessel by 27.8 kHz vibration is 1 to 6 mm/s. The cavitation bubble streaming in tap water is completely independent of normal Rayleigh or Eckart streaming. This bubble streaming is considerably faster than previous streaming.

  7. Evaluation of Water from Bokro Stream for Irrigation and Its Effect on ...

    African Journals Online (AJOL)

    This study focused on evaluating the water quality of the Bokro stream for its suitability for irrigation purposes. Among the water quality parameters examined were pH, total dissolved solids, conductivity, dissolved oxygen, hardness, major ions and concentration of some trace metals. The results revealed that most of the ...

  8. Tsunamis: Water Quality

    Science.gov (United States)

    ... Transmission in Pet Shelters Protect Your Pets Tsunamis: Water Quality Language: English Español (Spanish) Recommend on Facebook ... about testing should be directed to local authorities. Water for Drinking, Cooking, and Personal Hygiene Safe water ...

  9. Baseline assessment of physical characteristics, aquatic biota, and selected water-quality properties at the reach and mesohabitat scale for three stream reaches in the Big Cypress Basin, northeastern Texas, 2010-11

    Science.gov (United States)

    Braun, Christopher L.; Moring, James B.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Northeast Texas Municipal Water District and the Texas Commission on Environmental Quality, did a baseline assessment in 2010-11 of physical characteristics and selected aquatic biota (fish and mussels) collected at the mesohabitat scale for three stream reaches in the Big Cypress Basin in northeastern Texas for which environmental flows have been prescribed. Mesohabitats are visually distinct units of habitat within the stream with unique depth, velocity, slope, substrate, and cover. Mesohabitats in reaches of Big Cypress, Black Cypress, and Little Cypress Bayous were evaluated to gain an understanding of how fish communities and mussel populations varied by habitat. Selected water-quality properties were also measured in isolated pools in Black Cypress and Little Cypress. All of the data were collected in the context of the prescribed environmental flows. The information acquired during the study will support the long-term monitoring of biota in relation to the prescribed environmental flows.

  10. StreamStats: A water resources web application

    Science.gov (United States)

    Ries, Kernell G.; Guthrie, John G.; Rea, Alan H.; Steeves, Peter A.; Stewart, David W.

    2008-01-01

    Streamflow statistics, such as the 1-percent flood, the mean flow, and the 7-day 10-year low flow, are used by engineers, land managers, biologists, and many others to help guide decisions in their everyday work. For example, estimates of the 1-percent flood (the flow that is exceeded, on average, once in 100 years and has a 1-percent chance of being exceeded in any year, sometimes referred to as the 100-year flood) are used to create flood-plain maps that form the basis for setting insurance rates and land-use zoning. This and other streamflow statistics also are used for dam, bridge, and culvert design; water-supply planning and management; water-use appropriations and permitting; wastewater and industrial discharge permitting; hydropower facility design and regulation; and the setting of minimum required streamflows to protect freshwater ecosystems. In addition, researchers, planners, regulators, and others often need to know the physical and climatic characteristics of the drainage basins (basin characteristics) and the influence of human activities, such as dams and water withdrawals, on streamflow upstream from locations of interest to understand the mechanisms that control water availability and quality at those locations. Knowledge of the streamflow network and downstream human activities also is necessary to adequately determine whether an upstream activity, such as a water withdrawal, can be allowed without adversely affecting downstream activities.Streamflow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no streamflow data are available to compute the statistics. At U.S. Geological Survey (USGS) streamflow data-collection stations, which include streamgaging stations, partial-record stations, and miscellaneous-measurement stations, streamflow statistics can be computed from available data for the stations. Streamflow data are collected continuously at streamgaging stations

  11. Hydrology and water quality characteristics of a stressed lotic ...

    African Journals Online (AJOL)

    The hydrology and water quality of Aiba stream were investigated from November 2012 to April 2013 on monthly basis. This was with a view to assessing the status of the stream sequel to its last study which indicated a poor physico-chemical water quality. Four sampling stations were established for the study along the ...

  12. Linkages between forest soils and water quality and quantity

    Science.gov (United States)

    Daniel G. Neary; George G. Ice; C. Rhett Jackson

    2009-01-01

    The most sustainable and best quality fresh water sources in the world originate in forest ecosystems. The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, moderating stream hydrology, and providing diverse aquatic habitat. Forest soils feature litter layers and...

  13. Macroinvertebrates as bioindicators of water quality in the Mkondoa ...

    African Journals Online (AJOL)

    The suitability of using macroinvertebrates as bioindicators of stream water quality was tested in the Mkondoa River in an agricultural area at Kilosa, using the rapid bioassessment protocol. The family biotic index (FBI) showed marked variation in water quality along the stream from values ranging from 4.1 to 5.0 in the ...

  14. Design and methods of the Pacific Northwest Stream Quality Assessment (PNSQA), 2015

    Science.gov (United States)

    Sheibley, Rich W.; Morace, Jennifer L.; Journey, Celeste A.; Van Metre, Peter C.; Bell, Amanda H.; Nakagaki, Naomi; Button, Daniel T.; Qi, Sharon L.

    2017-08-25

    In 2015, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project conducted the Pacific Northwest Stream Quality Assessment (PNSQA) to investigate stream quality across the western part of the Pacific Northwest. The goal of the PNSQA was to assess the health of streams in the region by characterizing multiple water-quality factors that are stressors to in-stream aquatic life and by evaluating the relation between these stressors and the condition of biological communities. The effects of urbanization and agriculture on stream quality for the Puget Lowland and Willamette Valley Level III Ecoregions were the focus of this regional study. Findings will help inform the public and policymakers about human and environmental factors that are the most critical in affecting stream quality and, thus, provide insights into possible strategies to protect or improve the health of streams in the region.Land-use data were used in the study to identify and select sites within the region that ranged in levels of urban and agricultural development. A total of 88 sites were selected across the region—69 were on streams that explicitly spanned a range of urban land use in their watersheds, 8 were on streams in agricultural watersheds, and 11 were reference sites with little or no development in their watersheds. Depending on the type of land use, sites were sampled for contaminants, nutrients, and sediment for either a 4- or 10-week period during April, May, and June 2015. This water-quality “index period” was immediately followed with an ecological survey of all sites that included stream habitat, benthic algae, benthic macroinvertebrates, and fish. Additionally, streambed sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing.This report provides a detailed description of the specific study components and methods of the PNSQA, including (1) surveys of stream habitat and aquatic biota, (2) discrete

  15. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    This study assessed the seasonal variation in heavy metal contamination of stream water and sediments in the gold mining area of Atakunmosa West local Government, Osun State, Nigeria. Twelve villages of prominence in illegal gold mining were selected for the study covering dry and wet seasons of 2012. Stream water ...

  16. Caracterização da água da microbacia do córrego rico avaliada pelo índice de qualidade de água e de estado trófico Water quality of rico stream micro-basin evalueted by water quality index and trophic state index

    Directory of Open Access Journals (Sweden)

    Helen L. H. T. Zanini

    2010-08-01

    Full Text Available A avaliação do índice de qualidade da água (IQA e do índice de estado trófico médio (IETm pode subsidiar a formulação de planos de manejo e gestão de sistemas aquáticos. Neste trabalho, foi avaliada a qualidade da água da microbacia do Córrego Rico, que abastece a cidade de Jaboticabal (SP, utilizando o IQA e IETm. As amostragens de água foram realizadas entre setembro-2007 e agosto-2008, em três pontos: a em uma das nascentes; b após a Estação de Tratamento de Esgoto de Monte Alto, e c na captação de água para abastecimento público de Jaboticabal. As amostras foram analisadas quanto aos parâmetros físicos, químicos e microbiológicos: temperatura, oxigênio dissolvido, pH, DBO5, nitrogênio total, fósforo total, turbidez, resíduo total, ortofosfato, clorofila-a e Escherichia coli. De acordo com os resultados obtidos, concluiu-se que: a as atividades antrópicas às margens do Córrego Rico reduzem a qualidade de sua água, durante os diferentes períodos do ano; b os valores médios de IQA nos três pontos analisados apresentaram relação direta com os valores médios de IETm, porém ocorreu maior discriminação da qualidade da água pelo IETm, identificando diferentes graus de trofia para os pontos e períodos de amostragens; c o IQA apresentou melhor diferenciação da qualidade da água entre pontos no período seco e o IETm diferenciou melhor no período chuvoso; d o processo de autodepuração e/ou a confluência do Córrego Tijuco com o Córrego Rico contribuem para melhor qualidade da água, tornando-a adequada ao abastecimento urbano após tratamento convencional.The evaluation of water quality index (WQI and mean trophic state index (mTSI may be useful for management and administration projects of water systems. Quality of water from the stream Rico micro-basin that supplies the town of Jaboticabal - SP, Brazil, with fresh water has been evaluated, using WQI and mTSI. Collects were undertaken between

  17. Headwater streams in the EU Water Framework Directive: Evidence-based decision support to select streams for river basin management plans

    DEFF Research Database (Denmark)

    Baattrup-Pedersen, Annette; Larsen, Søren Erik; Andersen, Dagmar K.

    2018-01-01

    , however, it is intensely debated whether the small size and low slopes, typical of Danish streams, in combination with degraded habitat conditions obstruct their ability to fulfill the ecological quality objectives required by the EU Water Framework Directive (WFD). The purpose of this studywas to provide...... obtained between the ecological quality ratio assessed by applying the Danish Stream Fauna Index (DSFIEQR) and stream slope, width, sinuosity, and DHI. The obtained models were used to produce pressureresponse curves describing the probability of achieving good ecological status along gradients...... an analytically based framework for guiding the selection of headwater streams for RBMP. Specifically, the following hypotheses were addressed: i) stream slope, width, planform, and general physical habitat quality can act as criteria for selecting streams for the next generation of RBMPs, and ii) probability...

  18. Continuous water quality monitoring to determine the cause of coral reef ecosystem degradation for coastal Windward Oahu streams during 2002 (NODC Accession 0001070)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Kaneohe and Waimanalo streams on the windward side of the island of Oahu in the Hawaiian Islands have been hardened to prevent flooding. The hardening process has...

  19. EFFECTS OF HYDROGEOMORPHIC REGION, CATCHMENT STORAGE, AND MATURE FOREST ON BASEFLOW AND SNOWMELT STREAM WATER QUALITY IN SECOND-ORDER LAKE SUPERIOR BASIN TRIBUTARIES

    Science.gov (United States)

    In this study we predict stream sensitivity to nonpoint source pollution based on the nonlinear responses of hydrologic regimes and associated loadings of nonpoint source pollutants to watershed attributes. - - - A stratified random sampling scheme for baseflow and snowmelt stre...

  20. Continuous water quality monitoring to determine the cause of coral reef ecosystem degradation for coastal windward Oahu streams during 2002 (NODC Accession 0001070)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Kaneohe and Waimanalo streams on the windward side of the island of Oahu in the Hawaiian Islands have been hardened to prevent flooding. The hardening process has...

  1. Habitat hydraulic models - a tool for Danish stream quality assessment?

    DEFF Research Database (Denmark)

    Olsen, Martin

    ) from 1995-2004 and the simulated WUA are correlated between years for the whole stream and between stretches in the stream to estimate the relation between the present measures of biological quality and the habitat hydraulic simulation. The applicability/utility of habitat hydraulic models in relation...... and hydromorphological and chemical characteristics has to be enlightened (EUROPA, 2005). This study links catchment hydrology, stream discharge and physical habitat in a small Danish stream, the stream Ledreborg, and discusses the utility of habitat hydraulic models in relation to the present criteria and methods used...... observations and "site-specific" habitat suitability indices (HSI) are constructed. "Site-specific" HSI's are compared to other HSI's for Danish streams (Søholm and Jensen, 2003) and general HSI's used in other habitat hydraulic modelling projects (Lund, 1996; Fjordback et al. 2002; Thorn and Conallin, 2004...

  2. Quality of Streams in Johnson County, Kansas, and Relations to Environmental Variables, 2003-07

    Science.gov (United States)

    Rasmussen, Teresa J.; Poulton, Barry C.; Graham, Jennifer L.

    2009-01-01

    The quality of streams and relations to environmental variables in Johnson County, northeastern Kansas, were evaluated using water, streambed sediment, land use, streamflow, habitat, algal periphyton (benthic algae), and benthic macroinvertebrate data. Water, streambed sediment, and macroinvertebrate samples were collected in March 2007 during base flow at 20 stream sites that represent 11 different watersheds in the county. In addition, algal periphyton samples were collected twice (spring and summer 2007) at one-half of the sites. Environmental data including water and streambed-sediment chemistry data (primarily nutrients, fecal-indicator bacteria, and organic wastewater compounds), land use, streamflow, and habitat data were used in statistical analyses to evaluate relations between biological conditions and variables that may affect them. This report includes an evaluation of water and streambed-sediment chemistry, assessment of habitat conditions, comparison of biological community attributes (such as composition, diversity, and abundance) among sampling sites, placement of sampling sites into impairment categories, evaluation of biological data relative to environmental variables, and evaluation of changes in biological communities and effects of urbanization. This evaluation is useful for understanding factors that affect stream quality, for improving water-quality management programs, and for documenting changing conditions over time. The information will become increasingly important for protecting streams in the future as urbanization continues. Results of this study indicate that the biological quality at nearly all biological sampling sites in Johnson County has some level of impairment. Periphyton taxa generally were indicative of somewhat degraded conditions with small to moderate amounts of organic enrichment. Camp Branch in the Blue River watershed was the only site that met State criteria for full support of aquatic life in 2007. Since 2003

  3. Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Gallaher; R.J. Koch

    2004-09-15

    In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

  4. Spatiotemporal dynamics of spring and stream water chemistry in a high-mountain area

    Energy Technology Data Exchange (ETDEWEB)

    Zelazny, Miroslaw, E-mail: miroslaw.zelazny@uj.edu.pl [Jagiellonian University, Institute of Geography and Spatial Management, Department of Hydrology, 7 Gronostajowa Str., 30-387 Cracow (Poland); Astel, Aleksander, E-mail: astel@apsl.edu.pl [Environmental Chemistry Research Unit, Biology and Environmental Protection Institute, Pomeranian Academy, 22a Arciszewskiego Str., Slupsk, 76-200 (Poland); Wolanin, Anna [Jagiellonian University, Institute of Geography and Spatial Management, Department of Hydrology, 7 Gronostajowa Str., 30-387 Cracow (Poland); Malek, Stanislaw, E-mail: rlmalek@cyf-kr.edu.pl [Department of Forest Ecology, Forest Faculty, Agricultural University of Cracow, 46 29 Listopada Ave., Cracow, 31-425 (Poland)

    2011-05-15

    The present study deals with the application of the self-organizing map (SOM) technique in the exploration of spatiotemporal dynamics of spring and stream water samples collected in the Chocholowski Stream Basin located in the Tatra Mountains (Poland). The SOM-based classification helped to uncover relationships between physical and chemical parameters of water samples and factors determining the quality of water in the studied high-mountain area. In the upper part of the Chocholowski Stream Basin, located on the top of the crystalline core of the Tatras, concentrations of the majority of ionic substances were the lowest due to limited leaching. Significantly higher concentration of ionic substances was detected in spring and stream samples draining sedimentary rocks. The influence of karst-type springs on the quality of stream water was also demonstrated. - Highlights: > We use SOM approach to explore physiochemical data for mountain waters. > Geologic structure and hydrological events impact water chemistry. > Limited leaching, typical of crystalline core, reflects in low water mineralization. > Sedimentary rocks are susceptible for leaching. > Eutrophication has not been shown to be a threat in the Chocholowska Valley. - Spatiotemporal dynamics of spring and stream water chemistry in unique high-mountain area was evaluated by the self-organizing map technique.

  5. Assessing the suitability of stream water for five different uses and its aquatic environment.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali

    2013-01-01

    Surface water is one of the essential resources for supporting sustainable development. The suitability of such water for a given use depends both on the available quantity and tolerable quality. Temporary status for a surface water quality has been identified extensively. Still the suitability of the water for different purposes needs to be verified. This study proposes a water quality evaluation system to assess the aptitude of the Selangor River water for aquatic biota, drinking water production, leisure and aquatic sport, irrigation use, livestock watering, and aquaculture use. Aptitude of the water has been classified in many parts of the river segment as unsuitable for aquatic biota, drinking water production, leisure and aquatic sport as well as aquaculture use. The water quality aptitude classes of the stream water for nine locations along the river are evaluated to contribute to decision support system. The suitability of the water for five different uses and its aquatic ecosystem are verified.

  6. Stream water temperature limits occupancy of salamanders in mid-Atlantic protected areas

    Science.gov (United States)

    Grant, Evan H. Campbell; Wiewel, Amber N. M.; Rice, Karen C.

    2014-01-01

    Stream ecosystems are particularly sensitive to urbanization, and tolerance of water-quality parameters is likely important to population persistence of stream salamanders. Forecasted climate and landscape changes may lead to significant changes in stream flow, chemical composition, and temperatures in coming decades. Protected areas where landscape alterations are minimized will therefore become increasingly important for salamander populations. We surveyed 29 streams at three national parks in the highly urbanized greater metropolitan area of Washington, DC. We investigated relationships among water-quality variables and occupancy of three species of stream salamanders (Desmognathus fuscus, Eurycea bislineata, and Pseudotriton ruber). With the use of a set of site-occupancy models, and accounting for imperfect detection, we found that stream-water temperature limits salamander occupancy. There was substantial uncertainty about the effects of the other water-quality variables, although both specific conductance (SC) and pH were included in competitive models. Our estimates of occupancy suggest that temperature, SC, and pH have some importance in structuring stream salamander distribution.

  7. Water Quality Protection Charges

    Data.gov (United States)

    Montgomery County of Maryland — The Water Quality Protection Charge (WQPC) is a line item on your property tax bill. WQPC funds many of the County's clean water initiatives including: • Restoration...

  8. Biological Water Quality Criteria

    Science.gov (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  9. Evaluation of nonpoint-source contamination, Wisconsin: Land-use and Best-Management-Practices inventory, selected streamwater-quality data, urban-watershed quality assurance and quality control, constituent loads in rural streams, and snowmelt-runoff analysis, water year 1994

    Science.gov (United States)

    Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.

    1995-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP) for controlling nonpoint-source contamination in rural and urban watersheds. This report is an annual summary of the data collected for the program by the U.S Geological Survey and a report of the results of several different detailed analyses of the data. A land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track the sources of nonpoint-source pollution in each watershed and to document implementation of BMP's that may cause changes in the water quality of streams. Updated information is gathered each year, mapped, and stored in a geographic-information-system data base. Summaries of data collected during water years 1989-94 are presented. A water year is the period beginning October 1 and ending September 30; the water year is designated by the calendar year in which it ends. Suspended-sediment and total-phosphorus data (storm loads and annual loads) are summarized for eight rural sites. For all sites, the annual suspended-sediment or suspended-solids load for water year 1993 exceeded the average for the period of data collection; the minimum annual loads were transported in water year 1991 or 1992. Continuous dissolved-oxygen data were collected at seven rural sites during water year 1994. Data for water years 1990-93 are summarized and plotted in terms of percentage of time that a particular concentration is equaled or exceeded. Dissolved-oxygen concentrations in four streams were less than 9 mg/L at least 50 percent of the time, a condition that fails to meet suggested criterion for coldwater streams. The dissolved-oxygen probability curve for one of the coldwater streams is markedly different than the curves for the other streams, perhaps because of differences in aquatic biomass. Blank quality-assurance samples were collected at two of the urban evaluation monitoring sites to

  10. Missouri StreamStats—A water-resources web application

    Science.gov (United States)

    Ellis, Jarrett T.

    2018-01-31

    The U.S. Geological Survey (USGS) maintains and operates more than 8,200 continuous streamgages nationwide. Types of data that may be collected, computed, and stored for streamgages include streamgage height (water-surface elevation), streamflow, and water quality. The streamflow data allow scientists and engineers to calculate streamflow statistics, such as the 1-percent annual exceedance probability flood (also known as the 100-year flood), the mean flow, and the 7-day, 10-year low flow, which are used by managers to make informed water resource management decisions, at each streamgage location. Researchers, regulators, and managers also commonly need physical characteristics (basin characteristics) that describe the unique properties of a basin. Common uses for streamflow statistics and basin characteristics include hydraulic design, water-supply management, water-use appropriations, and flood-plain mapping for establishing flood-insurance rates and land-use zones. The USGS periodically publishes reports that update the values of basin characteristics and streamflow statistics at selected gaged locations (locations with streamgages), but these studies usually only update a subset of streamgages, making data retrieval difficult. Additionally, streamflow statistics and basin characteristics are most often needed at ungaged locations (locations without streamgages) for which published streamflow statistics and basin characteristics do not exist. Missouri StreamStats is a web-based geographic information system that was created by the USGS in cooperation with the Missouri Department of Natural Resources to provide users with access to an assortment of tools that are useful for water-resources planning and management. StreamStats allows users to easily obtain the most recent published streamflow statistics and basin characteristics for streamgage locations and to automatically calculate selected basin characteristics and estimate streamflow statistics at ungaged

  11. Air- and stream-water-temperature trends in the Chesapeake Bay region, 1960-2014

    Science.gov (United States)

    Jastram, John D.; Rice, Karen C.

    2015-12-14

    Water temperature is a basic, but important, measure of the condition of all aquatic environments, including the flowing waters in the streams that drain our landscape and the receiving waters of those streams. Climatic conditions have a strong influence on water temperature, which is therefore naturally variable both in time and across the landscape. Changes to natural water-temperature regimes, however, can result in a myriad of effects on aquatic organisms, water quality, circulation patterns, recreation, industry, and utility operations. For example, most species of fish, insects, and other organisms, as well as aquatic vegetation, are highly dependent on water temperature. Warming waters can result in shifts in floral and faunal species distributions, including invasive species and pathogens previously unable to inhabit the once cooler streams. Many chemical processes are temperature dependent, with reactions occurring faster in warmer conditions, leading to degraded water quality as contaminants are released into waterways at greater rates. Circulation patterns in receiving waters, such as bays and estuaries, can change as a result of warmer inflows from streams, thereby affecting organisms in those receiving waters. Changes in abundance of some aquatic species and (or) degradation of water quality can reduce the recreational value of water bodies as waters are perceived as less desirable for water-related activities or as sportfish become less available for anglers. Finally, increasing water temperatures can affect industry and utilities as the thermal capacity is reduced, making the water less effective for cooling purposes.Chesapeake Bay is the largest estuary in the United States. Eutrophication, the enrichment of a water body with excess nutrients, has plagued the bay for decades and has led to extensive restoration efforts throughout the bay watershed. The warming of stream water can exacerbate eutrophication through increased release of nutrients from

  12. 40 CFR 35.2111 - Revised water quality standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Revised water quality standards. 35... stream segments which have not, at least once since December 29, 1981, had their water quality standards...) The State has in good faith submitted such water quality standards and the Regional Administrator has...

  13. Qualidade da água de um córrego sob influência de efluente tratado de abate bovino Water quality of a stream under influence of cattle slaughter treated effluent

    Directory of Open Access Journals (Sweden)

    Michael S. Thebaldi

    2011-03-01

    Full Text Available As agroindústrias figuram entre as maiores fontes poluidoras das águas no Brasil, em função da grande quantidade de resíduos produzidos, contendo substâncias orgânicas, nutrientes, sólidos, óleos e graxas. O objetivo deste trabalho foi analisar o efeito do lançamento de efluente de abate de bovinos sobre a qualidade da água do Córrego Jurubatuba, em Anápolis, GO. As amostras de efluente e a água foram obtidas em seis diferentes dias e em quatro posições, em relação ao ponto de lançamento: P1 - na saída do efluente tratado, antes do lançamento no córrego; P2 - 50 m à montante do ponto de descarga; P3 - 50 m à jusante do ponto de descarga e P4 - 120 m à jusante do ponto de descarga. Analisaram-se as concentrações de OD, DBO, DQO, amônia, nitrito e nitrato. Os valores de DBO em todos os pontos de coleta no Córrego Jurubatuba foram superiores aos padrões descritos na Resolução do CONAMA nº 357/2005 para cursos de água da classe 2. O lançamento de efluente no Córrego Jurubatuba elevou os valores de DBO e DQO no ponto P3, enquanto no ponto P4 foi semelhante aos valores obtidos antes do lançamento de efluente. As concentrações de oxigênio dissolvido, amônia, nitrito e nitrato, não sofreram alterações significativas no córrego.Agroindustrial systems are among the largest sources of water pollution in Brazil, due to the large amount of waste produced, containing organic substances, nutrients, solids, oils and fats. This study aimed to analyze the effect of release of cattle slaughter treated effluent on the water quality of the Jurubatuba Stream in the municipality of Anápolis, GO. The effluent and stream water samples were obtained at six different days and at four positions in relation to the point of discharge: P1 - the discharge of the treated wastewater, before launching it into the stream; P2 - upstream, 50 m away from the discharge point; P3 - downstream, 50 m away from the discharge point; and P4

  14. Water Quality Assessment and Management

    Science.gov (United States)

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  15. A model to predict stream water temperature across the conterminous USA

    Science.gov (United States)

    Catalina Segura; Peter Caldwell; Ge Sun; Steve McNulty; Yang Zhang

    2014-01-01

    Stream water temperature (ts) is a critical water quality parameter for aquatic ecosystems. However, ts records are sparse or nonexistent in many river systems. In this work, we present an empirical model to predict ts at the site scale across the USA. The model, derived using data from 171 reference sites selected from the Geospatial Attributes of Gages for Evaluating...

  16. Irrigation water quality assessments

    Science.gov (United States)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  17. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  18. Qualidade da água para irrigação de um córrego após receber efluente tratado de abate bovino Irrigation water quality of a stream after receiving treated wastewater from cattle slaughter

    Directory of Open Access Journals (Sweden)

    Michael S. Thebaldi

    2013-02-01

    Full Text Available A qualidade da água de irrigação é de fundamental importância para não comprometer a qualidade dos produtos e o funcionamento dos equipamentos de irrigação, especialmente quando são diluídos outros compostos. O objetivo deste trabalho foi avaliar a influência do lançamento de efluente de abate de bovinos tratado sobre a qualidade da água para fins de irrigação do Córrego Jurubatuba, Anápolis-GO. As amostras de efluente e água foram obtidas em seis diferentes dias e nos seguintes locais: na descarga do efluente tratado antes do lançamento no córrego -P1, 50 m a montante do ponto de descarga -P2, 50 m a jusante do ponto de descarga -P3 e 120 m a jusante do ponto de descarga -P4. Analisaram-se os sólidos dissolvidos, pH, ferro, dureza, sódio, cálcio, magnésio, manganês, RAS, boro e DBO. Constatou-se risco médio ou alto de entupimento de emissores pelo uso do efluente na irrigação localizada, quando foram considerados pH, sólidos dissolvidos, ferro, dureza e manganês. A água dos locais avaliados no Córrego Jurubatuba apresentou risco médio de entupimento e restrição de uso moderada em relação a problemas de infiltração de água no solo. Em todos os pontos avaliados, as concentrações de DBO foram superiores aos limites para irrigação de vegetais consumidos in natura e cozidos.Quality of irrigation water is very important to conserve products quality and the operation of irrigation equipment, especially when it contains effluent from residuary sources. The aim of this study was to evaluate the release of treated effluent from cattle slaughter on irrigation water quality of the Jurubatuba Stream, Anápolis -GO, Brazil. The effluent and water samples were taken on six different days and at the following locations: at the discharge of treated effluent before released into the stream -P1, 50 m upstream from the discharge point -P2, 50 m downstream from the discharge point -P3 and 120 m downstream from the

  19. Crowdsourcing based subjective quality assessment of adaptive video streaming

    DEFF Research Database (Denmark)

    Shahid, M.; Søgaard, Jacob; Pokhrel, J.

    2014-01-01

    humans are considered to be the most valid method of the as- sessment of QoE. Besides lab-based subjective experiments, crowdsourcing based subjective assessment of video quality is gaining popularity as an alternative method. This paper presents insights into a study that investigates perceptual pref......- erences of various adaptive video streaming scenarios through crowdsourcing based subjective quality assessment....

  20. Rainfall, Discharge, and Water-Quality Data During Stormwater Monitoring, July 1, 2008, to June 30, 2009 - Halawa Stream Drainage Basin and the H-1 Storm Drain, Oahu, Hawaii

    Science.gov (United States)

    Presley, Todd K.; Jamison, Marcael T.J.

    2009-01-01

    Storm runoff water-quality samples were collected as part of the State of Hawaii Department of Transportation Stormwater Monitoring Program. The program is designed to assess the effects of highway runoff and urban runoff on Halawa Stream, and to assess the effects from the H-1 storm drain on Manoa Stream. For this program, rainfall data were collected at three stations, continuous discharge data at five stations, and water-quality data at six stations, which include the five continuous discharge stations. This report summarizes rainfall, discharge, and water-quality data collected between July 1, 2008, and June 30, 2009. Within the Halawa Stream drainage area, three storms (October 25 and December 11, 2008, and February 3, 2009) were sampled during July 1, 2008, to June 30, 2009. A total of 43 environmental samples were collected during these three storms. During the storm of October 25, 2009, 31 samples were collected and analyzed individually for metals only. The other 12 samples from the other two storms were analyzed for some or all of the following analytes: total suspended solids, total dissolved solids, nutrients, chemical oxygen demand, and selected trace metals (cadmium, chromium, copper, lead, and zinc). Additionally, grab samples were analyzed for some or all of the following analytes: oil and grease, total petroleum hydrocarbons, fecal coliform, and biological oxygen demand. Some grab and composite samples were analyzed for only a partial list of these analytes, either because samples could not be delivered to the laboratory in a timely manner, or an insufficient volume of sample was collected by the automatic samplers. Two quality-assurance/quality-control samples were collected after cleaning automatic sampler lines to verify that the sampling lines were not contaminated. Four environmental samples were collected at the H-1 Storm Drain during July 1, 2008, to June 30, 2009. An oil and grease sample and a composite sample were collected during the

  1. New challenges in integrated water quality modelling

    NARCIS (Netherlands)

    Rode, M.; Arhonditsis, G.; Balin, D.; Kebede, T.; Krysanova, V.; Griensven, A.; Zee, van der S.E.A.T.M.

    2010-01-01

    There is an increasing pressure for development of integrated water quality models that effectively couple catchment and in-stream biogeochemical processes. This need stems from increasing legislative requirements and emerging demands related to contemporary climate and land use changes. Modelling

  2. TEMPORAL AND SPATIAL PHYSICOCHEMICAL WATER QUALITY ...

    African Journals Online (AJOL)

    biochemical oxygen demand (BOD), suspended solids (SS), pH, oil and grease, and electroconductivity. (EC). The samples were collected in both dry and rainy seasons of 2006 and analysed using standard methods. Results showed that the impairment of water quality in a stream depended on the type of industry in its ...

  3. Water Quality Data (WQX)

    Science.gov (United States)

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  4. Comparative Assessment of the Physico-Chemical and Bacteriological Qualities of Selected Streams in Louisiana

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2005-04-01

    Full Text Available The objective of this research was to compare the chemical/physical parameters and bacterial qualities of selected surface water streams in Louisiana, including a natural stream (control and an animal waste related stream. Samples were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols (LaMotte 2002. An analysis of biological oxygen demand (BOD, chemical oxygen demand (COD, total organic carbon (TOC, total dissolved solids (TDS, conductivity, pH, temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, turbidity, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [9]. Results of the comparisons of the various surface water streams showed that phosphate levels, according to Mitchell and Stapp, were considered good for Lake Claiborne (control and Bayou Dorcheat. The levels were found to be .001 mg/L and .007 mg/L respectively. Other streams associated with animal waste, had higher phosphate levels of 2.07 mg/L and 2.78 mg/L, respectively. Conductivity and total dissolved solids (TDS levels were the lowest in Lake Claiborne and highest in the Hill Farm Research Station stream. It can be concluded from the data that some bacterial levels and various nutrient levels can be affected in water resources due to non-point source pollution. Many of these levels will remain unaffected.

  5. Physico-chemical characteristics of water sample from Aiba Stream ...

    African Journals Online (AJOL)

    This study aimed at assessing the effectiveness of solar distillation in purification of water. The water sample collected from Aiba stream was subjected to double slope solar water distillation unit. The physicochemical characteristics of the raw sample and the distillate were determined using standard methods. The results ...

  6. Purified water quality study

    Energy Technology Data Exchange (ETDEWEB)

    Spinka, H.; Jackowski, P.

    2000-04-03

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals.

  7. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  8. Factors influencing the persistence of fecal Bacteroides in stream water.

    Science.gov (United States)

    Bell, Alyssa; Layton, Alice C; McKay, Larry; Williams, Dan; Gentry, Randy; Sayler, Gary S

    2009-01-01

    Laboratory microcosm experiments were used to assess the effects of environmental parameters on the persistence of the Bacteroides 16S rRNA genes derived from equine fecal samples in stream water to investigate the utility of Bacteroides spp. as fecal indicator organisms. Quantitative real-time polymerase chain reaction (qPCR) was used to measure gene concentrations over time with treatments designed to compare filtered vs. unfiltered stream water, fecal aggregate size, initial fecal concentrations, and water temperatures. Comparison of Bacteroides16S rRNA genes/mL in microcosms constructed with unfiltered stream water and filtered stream water indicated that stream water filtration to remove indigenous microorganisms followed by temperature had the largest effects on gene persistence. First-order exponential decay functions were fitted to the data from each microcosm constructed using unfiltered stream water, and the decay constants (k) ranged from 0.0071 h(-1) in the microcosms incubated at 5 degrees C to 0.0336 h(-1) in a set of microcosms incubated at 25 degrees C. Analysis of k calculated from the 10 experimental treatments indicated that k is more highly correlated to temperature than initial Bacteroides 16S rRNA gene starting concentrations. The equation resulting from graphing k (as the dependent variable) vs. temperature (as the independent variable) best fit a peak, Gaussian, 3 parameter function with a maximum decay at 30 degrees C, a r(2) of 0.83 and all parameters were significant (P < 0.0015). Thus this data suggest that factors that reduce biological activity, such as physical removal of stream microorganisms by filtration and low temperature, result in slower Bacteroides 16S rRNA gene decay.

  9. Percent Agriculture Adjacent to Streams

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  10. Mild desalination of various raw water streams

    NARCIS (Netherlands)

    Groot, C.K.; Broek, W.B.P. van den; Loewenberg, J.; Koeman-Stein-N.E.; Heidekamp, M.; Schepper, W. de

    2015-01-01

    For chemical industries, fresh water availability is a pre-requisite for sustainable operation. However, in many delta areas around the world, fresh water is scarce. Therefore, the E4Water project (http://www.e4water.eu) comprises a case study at the Dow site in Terneuzen, The Netherlands, which is

  11. THE INFLUENCE OF MONK EQUIPPED PONDS ON THE QUALITY OF BASIN HEAD STREAMS, THE EXAMPLE OF WATER TEMPERATURE IN LIMOUSIN AND BERRY (FRANCE

    Directory of Open Access Journals (Sweden)

    Laurent TOUCHART

    2010-12-01

    Full Text Available In the centre-west regions of France, the deep water outlet system known as a “monk” is used in 13% of bodies of water. The authorities are strongly encouraging this to increase, arguing that this system would reduce pond induced warming of the hydrographical network. We have measured the water temperature in four monk equipped ponds for 13 years to such an extent that this paper draws on an analysis of 142,200 original measurements. Compared to a surface outflow, a monk is a system which shifts the warming of the emissary water course to the end of summer and the autumn which reduces average annual warming by about 1°C. This reduces the heating of diurnal maxima but increases warming of the minima. A monk equipped pond warms the river with deep water which has acquired its heat by mechanical convection generated by the wind, as opposed to a weir equipped pond which provides surface water warmed by insolation. In winter the monk equipped pond does not damage the thermal living conditions for Fario trout embryos and larvae under the gravel. In summer, the monk prevents night time cooling of the emissary and increases the temperature of the minima excessively for sensitive species.

  12. Effective Quality-of-Service Renegotiating Schemes for Streaming Video

    Directory of Open Access Journals (Sweden)

    Song Hwangjun

    2004-01-01

    Full Text Available This paper presents effective quality-of-service renegotiating schemes for streaming video. The conventional network supporting quality of service generally allows a negotiation at a call setup. However, it is not efficient for the video application since the compressed video traffic is statistically nonstationary. Thus, we consider the network supporting quality-of-service renegotiations during the data transmission and study effective quality-of-service renegotiating schemes for streaming video. The token bucket model, whose parameters are token filling rate and token bucket size, is adopted for the video traffic model. The renegotiating time instants and the parameters are determined by analyzing the statistical information of compressed video traffic. In this paper, two renegotiating approaches, that is, fixed renegotiating interval case and variable renegotiating interval case, are examined. Finally, the experimental results are provided to show the performance of the proposed schemes.

  13. Impact and interaction of granular streams in waters

    Science.gov (United States)

    Utter, Brian; Christensen, Alex; Hobbs, Emily; Mandeles, Harry; Parkhouse, Jacob

    We experimentally investigate the flow and interaction of granular streams in water, composed of either hydrophobic grains impacting a water surface from above or the interaction of two counter-propagating streams of non-hydrophobic particles. We characterize the stability and character of the aggregates formed in impacting jets with variations of hydrophobic concentration, stream diameter, and drop height. We find that increased hydrophobic grain concentration leads to increased aggregation due to an effectively cohesive interaction mediated by entrained air and, at lower concentrations, the stream exhibits a lateral instability. Under bidirectional flow, we observe a clogging transition and show that the jamming probability increases as a function of the number of beads in the system and decreases with channel diameter, and that the clog undergoes an instability with increased channel width due to lateral variations in particle density.

  14. Changing of water status along a small stream due to urbanization

    Science.gov (United States)

    Gribovszki, Z.; Kalicz, P.; Csáfordi, P.; Szita, R.; Sermaul, K.

    2012-04-01

    Considerable qualitative and quantitative changes can be generally detected in case of urban sections of the streams as the results of strong human interventions along the stream channel or in the drainage basin in urban areas. The water status becomes worse and the water regime becomes more extreme. The negative changes have an effect on the broader environment and they bring usually diminution of the biodiversity. The assessments of the above mentioned combined effects are very important from the viewpoint of the good state of the water systems, which is the main purpose in the European Water Framework Directive. Water status changing are monitored and analysed along different (natural, rural and urbanized) sections of a small stream (Rák Brook in Sopron) taking into account the connection of the hydrological and the water quality monitoring expediently. Seven monitoring points are set up along the stream system of the Rák Brook from the headwaters to the stream mouth, in designation of the points mainly focusing the change of the surface cover and human impacts. Samples were taken on the measurement points fortnightly or for flood-linked between the dates 01.09.2010-01.03.2012. The following features were examined: hydro-morphological (velocity, discharge, stream bed sediment type), physico-chemical (pH, conductivity, suspended sediment), chemical (sulphate, chloride, COD, ammonium, nitrate, total phosphorous), and biological (makrozoobenthos) parameters. Simple and multivariate statistical methods were used for data processing to present the magnitude of the differences between the stream sections. Based on the results the effect of the different degree of urbanization on the drainage basin and the hydro-morphological interventions in the stream bed was well demonstrable.

  15. Dissolved oxygen, stream temperature, and fish habitat response to environmental water purchases.

    Science.gov (United States)

    Null, Sarah E; Mouzon, Nathaniel R; Elmore, Logan R

    2017-07-15

    Environmental water purchases are increasingly used for ecological protection. In Nevada's Walker Basin (western USA), environmental water purchases augment streamflow in the Walker River and increase lake elevation of terminal Walker Lake. However, water quality impairments like elevated stream temperatures and low dissolved oxygen concentrations also limit ecosystems and species, including federally-threatened Lahontan cutthroat trout. In this paper, we prioritize water volumes and locations that most enhance water quality for riverine habitat from potential environmental water rights purchases. We monitored and modeled streamflows, stream temperatures, and dissolved oxygen concentrations using River Modeling System, an hourly, physically-based hydrodynamic and water quality model. Modeled environmental water purchases ranged from average daily increases of 0.11-1.41 cubic meters per second (m 3 /s) during 2014 and 2015, two critically dry years. Results suggest that water purchases consistently cooled maximum daily stream temperatures and warmed nightly minimum temperatures. This prevented extremely low dissolved oxygen concentrations below 5.0 mg/L, but increased the duration of moderate conditions between 5.5 and 6.0 mg/L. Small water purchases less than approximately 0.71 m 3 /s per day had little benefit for Walker River habitat. Dissolved oxygen concentrations were affected by upstream environmental conditions, where suitable upstream water quality improved downstream conditions and vice versa. Overall, this study showed that critically dry water years degrade environmental water quality and habitat, but environmental water purchases of at least 0.71 m 3 /s were promising for river restoration. Published by Elsevier Ltd.

  16. The application and testing of diatom-based indices of stream water ...

    African Journals Online (AJOL)

    The objective of this study was to test the applicability of foreign diatom-based water quality assessment indices to urban streams in Zimbabwe, with the view of stimulating research to develop improved approaches for assessing ecological integrity of lotic systems in the country. The study evaluated the relationship between ...

  17. Toxicity and genotoxicity of water and sediment from streams on dotted duckweed (Landoltia punctata

    Directory of Open Access Journals (Sweden)

    R Factori

    Full Text Available Most rivers are used as a source to supply entire cities; the quality of water is directly related to the quality of tributaries. Unfortunately men have neglected the importance of streams, which receive domestic and industrial effluents and transport nutrients and pesticides from rural areas. Given the complexity of the mixtures discharged into these water bodies, this study aimed to evaluate the quality of water and sediment of ten tributaries of Pirapó River, in Maringá, Paraná State, Brazil. To this end, the free-floating macrophyte Landoltia punctata (G. Meyer Les & D.J.Crawford was used as test organism in microcosm, and the toxicity of water and sediment samples was evaluated by the relative growth rate, dry/fresh biomass ratio, and genotoxic effects (comet assay. Samples of water and sediment of each stream were arranged in microcosms with L. punctata. Seven days later, plants were collected for analysis. Nutrient levels were higher than the reference location, indicating eutrophication, but the results indicated a toxic effect for only three streams, and a genotoxic effect for all streams.

  18. Water quantity and quality at the urban-rural interface

    Science.gov (United States)

    Ge Sun; B. Graeme Lockaby

    2012-01-01

    Population growth and urban development dramatically alter natural watershed ecosystem structure and functions and stress water resources. We review studies on the impacts of urbanization on hydrologic and biogeochemical processes underlying stream water quantity and water quality issues, as well as water supply challenges in an urban environment. We conclude that...

  19. Evaluación de la calidad de las aguas del estero Limache (Chile central, mediante bioindicadores y bioensayos Water quality assessment in the Limache stream (central Chile, using bioindicators and bioassays

    Directory of Open Access Journals (Sweden)

    Salomé Córdova

    2009-01-01

    Full Text Available Se evaluó la calidad de las aguas del estero Limache en cinco estaciones de muestreo en el período de bajo caudal. En cada estación se colectaron macroinvertebrados acuáticos, se midió in situ pH, conductividad, oxígeno disuelto, y sólidos disueltos totales. En el laboratorio se determinó la demanda biológica de oxígeno (DBO, fósforo total y nitrógeno total. También se determinó la toxicidad del agua mediante bioensayos con la microalga Pseudokirchrneriella subcapitata. Se determinaron 33 familias de macroinvertebrados, los taxa dominantes fueron Dugessidae, Oligochaeta y Chironomidae. Se encontró correlación significativa entre el índice biótico de familias (ChIBF, la conductividad eléctrica y los sólidos disueltos totales (r = 0,92; p The water quality in the Limache stream was evaluated at five sampling stations during the pe-riod of low water flow. At each station, aquatic macroinvertebrates were collected and the following parame-ters were measured in situ: pH, conductivity, dissolved oxygen, and total dissolved solids. The biological oxy-gen demand, total phosphorus, and total nitrogen were determined in the laboratory. Water toxicity was deter-mined through toxicity bioassays with the microalga Pseudokirchrneriella subcapitata. Thirty-three macroin-vertebrate families were found and the dominant taxa were Dugessidae, Oligochaeta and Chironomidae. A significant correlation was found among the Family Biotic índex ChFBI, conductivity, and total dissolved solids (r = 0.92; p < 0.05. Species diversity was lowest, as was the growth rate of P. subcapitata, at the stations with the greatest anthropogenic activity and in the discharge zone of a domestic wastewater treatment plant.

  20. Qualidade da água de córrego em função do lançamento de efluente de abate de bovino Water quality of stream due to release of effluent from cattle slaughter

    Directory of Open Access Journals (Sweden)

    Erlon A. Ribeiro

    2013-04-01

    Full Text Available Objetivou-se, com este trabalho, avaliar a influência do lançamento de efluente de um frigorífico de abate de bovinos sobre a qualidade da água do córrego Jurubatuba, Anápolis, GO. Analisaram-se: o efluente tratado antes do lançamento no córrego e a água do córrego 50 m à montante e 50 e 500 m à jusante do ponto de lançamento. Foram realizadas oito coletas no período seco (08/07 a 24/09/09 e oito no chuvoso (01/10 a 03/12/09 quantificando o pH, turbidez, oxigênio dissolvido, saturação de oxigênio, carbono orgânico total, cloro, alumínio, amônia, cobre, manganês, ferro total, fósforo total, sulfeto, sódio, demanda biológica de oxigênio, demanda química de oxigênio, nitrogênio total, condutividade elétrica, nitrato e nitrito. Os valores de pH, NH3-, Zn+, sulfeto, NO3-, e cloreto nos dois períodos e em todos os pontos analisados no córrego, atenderam aos critérios para água de classe 2; o Na+, NH3-, carbono orgânico total, P total, CE e NO3-, aumentaram nos pontos após o lançamento do efluente. A turbidez, Al e o Mg no efluente tratado foram, nos períodos seco e chuvoso, maiores ao permitido para corpos hídricos de classe 2; o Fe total no efluente apresentou risco médio para uso na irrigação.The objective of this study was to evaluate the influence of release of effluent from a cattle slaughter house on water quality of Jurubatuba stream, in Anápolis - Goiás. The treated effluent before release into the stream, the stream water at 50 m upstream, and 50 and 500 m downstream from the launch place were analysed. Eight samples were taken during the dry season (08/07 to 24/09/2009 and eight in the rainy season (01/10 to 03/12/2009, quantifying pH, turbidity, dissolved oxygen, oxygen saturation, total organic carbon, chlorine, aluminum, ammonia, copper, manganese, total iron, total phosphorus, sulfate, sodium, biological oxygen demand, chemical oxygen demand, total nitrogen, electrical conductivity, nitrate and

  1. Water Stage Forecasting in Tidal streams during High Water Using EEMD

    Science.gov (United States)

    Chen, Yen-Chang; Kao, Su-Pai; Su, Pei-Yi

    2017-04-01

    There are so many factors may affect the water stages in tidal streams. Not only the ocean wave but also the stream flow affects the water stage in a tidal stream. During high water, two of the most important factors affecting water stages in tidal streams are flood and tide. However the hydrological processes in tidal streams during high water are nonlinear and nonstationary. Generally the conventional methods used for forecasting water stages in tidal streams are very complicated. It explains the accurately forecasting water stages, especially during high water, in tidal streams is always a difficult task. The study makes used of Ensemble Empirical Model Decomposition (EEMD) to analyze the water stages in tidal streams. One of the advantages of the EEMD is it can be used to analyze the nonlinear and nonstationary data. The EEMD divides the water stage into several intrinsic mode functions (IMFs) and a residual; meanwhile, the physical meaning still remains during the process. By comparing the IMF frequency with tidal frequency, it is possible to identify if the IMF is affected by tides. Then the IMFs is separated into two groups, affected by tide or not by tide. The IMFs in each group are assembled to become a factor. Therefore the water stages in tidal streams are only affected by two factors, tidal factor and flood factor. Finally the regression analysis is used to establish the relationship between the factors of the gaging stations in the tidal stream. The available data during 15 typhoon periods of the Tanshui River whose downstream reach is in estuary area is used to illustrate the accuracy and reliability of the proposed method. The results show that the simple but reliable method is capable of forecasting water stages in tidal streams.

  2. Design and methods of the Midwest Stream Quality Assessment (MSQA), 2013

    Science.gov (United States)

    Garrett, Jessica D.; Frey, Jeffrey W.; Van Metre, Peter C.; Journey, Celeste A.; Nakagaki, Naomi; Button, Daniel T.; Nowell, Lisa H.

    2017-10-18

    During 2013, the U.S. Geological Survey (USGS) National Water-Quality Assessment Project (NAWQA), in collaboration with the USGS Columbia Environmental Research Center, the U.S. Environmental Protection Agency (EPA) National Rivers and Streams Assessment (NRSA), and the EPA Office of Pesticide Programs assessed stream quality across the Midwestern United States. This Midwest Stream Quality Assessment (MSQA) simultaneously characterized watershed and stream-reach water-quality stressors along with instream biological conditions, to better understand regional stressor-effects relations. The MSQA design focused on effects from the widespread agriculture in the region and urban development because of their importance as ecological stressors of particular concern to Midwest region resource managers.A combined random stratified selection and a targeted selection based on land-use data were used to identify and select sites representing gradients in agricultural intensity across the region. During a 14-week period from May through August 2013, 100 sites were selected and sampled 12 times for contaminants, nutrients, and sediment. This 14-week water-quality “index” period culminated with an ecological survey of habitat, periphyton, benthic macroinvertebrates, and fish at all sites. Sediment was collected during the ecological survey for analysis of sediment chemistry and toxicity testing. Of the 100 sites, 50 were selected for the MSQA random stratified group from 154 NRSA sites planned for the region, and the other 50 MSQA sites were selected as targeted sites to more evenly cover agricultural and urban stressor gradients in the study area. Of the 50 targeted sites, 12 were in urbanized watersheds and 21 represented “good” biological conditions or “least disturbed” conditions. The remaining 17 targeted sites were selected to improve coverage of the agricultural intensity gradient or because of historical data collection to provide temporal context for the

  3. Chemical pollution and toxicity of water samples from stream receiving leachate from controlled municipal solid waste (MSW) landfill.

    Science.gov (United States)

    Melnyk, A; Kuklińska, K; Wolska, L; Namieśnik, J

    2014-11-01

    The present study was aimed to determine the impact of municipal waste landfill on the pollution level of surface waters, and to investigate whether the choice and number of physical and chemical parameters monitored are sufficient for determining the actual risk related to bioavailability and mobility of contaminants. In 2007-2012, water samples were collected from the stream flowing through the site at two sampling locations, i.e. before the stream׳s entry to the landfill, and at the stream outlet from the landfill. The impact of leachate on the quality of stream water was observed in all samples. In 2007-2010, high values of TOC and conductivity in samples collected down the stream from the landfill were observed; the toxicity of these samples was much greater than that of samples collected up the stream from the landfill. In 2010-2012, a significant decrease of conductivity and TOC was observed, which may be related to the modernization of the landfill. Three tests were used to evaluate the toxicity of sampled water. As a novelty the application of Phytotoxkit F™ for determining water toxicity should be considered. Microtox(®) showed the lowest sensitivity of evaluating the toxicity of water samples, while Phytotoxkit F™ showed the highest. High mortality rates of Thamnocephalus platyurus in Thamnotoxkit F™ test can be caused by high conductivity, high concentration of TOC or the presence of compounds which are not accounted for in the water quality monitoring program. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Estimation of the fate of microbial water-quality contaminants in a South-African river

    CSIR Research Space (South Africa)

    Hohls, D

    1995-01-01

    Full Text Available The aim of this study was to evaluate the validity of assumptions, regarding assimilative capacity for microbial contaminants, implicit in microbial water quality management in South Africa. A one dimensional steady state stream water quality model...

  5. Guidelines for the collection of continuous stream water-temperature data in Alaska

    Science.gov (United States)

    Toohey, Ryan C.; Neal, Edward G.; Solin, Gary L.

    2014-01-01

    Objectives of stream monitoring programs differ considerably among many of the academic, Federal, state, tribal, and non-profit organizations in the state of Alaska. Broad inclusion of stream-temperature monitoring can provide an opportunity for collaboration in the development of a statewide stream-temperature database. Statewide and regional coordination could reduce overall monitoring cost, while providing better analyses at multiple spatial and temporal scales to improve resource decision-making. Increased adoption of standardized protocols and data-quality standards may allow for validation of historical modeling efforts with better projection calibration. For records of stream water temperature to be generally consistent, unbiased, and reproducible, data must be collected and analyzed according to documented protocols. Collection of water-temperature data requires definition of data-quality objectives, good site selection, proper selection of instrumentation, proper installation of sensors, periodic site visits to maintain sensors and download data, pre- and post-deployment verification against an NIST-certified thermometer, potential data corrections, and proper documentation, review, and approval. A study created to develop a quality-assurance project plan, data-quality objectives, and a database management plan that includes procedures for data archiving and dissemination could provide a means to standardize a statewide stream-temperature database in Alaska. Protocols can be modified depending on desired accuracy or specific needs of data collected. This document is intended to guide users in collecting time series water-temperature data in Alaskan streams and draws extensively on the broader protocols already published by the U.S. Geological Survey.

  6. Precipitation and stream water stable isotope data from the Marys River, Oregon in water year 2015.

    Data.gov (United States)

    U.S. Environmental Protection Agency — Water stable isotope data collected from a range of streams throughout the Marys River basin in water year 2015, and precipitation data collected within the basin at...

  7. Influence of natural factors on the quality of midwestern streams and rivers

    Science.gov (United States)

    Porter, Stephen D.; Harris, Mitchell A.; Kalkhoff, Stephen J.

    2001-01-01

    Streams flowing through cropland in the Midwestern Corn Belt differ considerably in their chemical and ecological characteristics, even though agricultural land use is highly intensive throughout the entire region. These differences likely are attributable to differences in riparian vegetation, soil properties, and hydrology. This conclusion is based on results from a study of the upper Midwest region conducted during seasonally low-flow conditions in August 1997 by the U.S. Geological Survey (USGS) National Water Quality Assessment (NAWQA) Program. This report summarizes significant results from the study and presents some implications for the design and interpretation of water-quality monitoring and assessment studies based on these results.

  8. Physico-chemical characteristics of water sample from Aiba Stream ...

    African Journals Online (AJOL)

    areas of the developing countries like Nigeria; this make the efforts to improve on this old technology inevitable. Therefore, this work presents the physico-chemical characteristics of raw water sample of Aiba stream in Iwo and the distillate gotten from it using a double slope solar distillation unit. MATERIALS AND METHODS.

  9. Quality matters for water scarcity

    Science.gov (United States)

    van Vliet, Michelle T. H.; Flörke, Martina; Wada, Yoshihide

    2017-11-01

    Quality requirements for water differ by intended use. Sustainable management of water resources for different uses will not only need to account for demand in water quantity, but also for water temperature and salinity, nutrient levels and other pollutants.

  10. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  11. Environmental setting, water budget, and stream assessment for the Broad Run watershed, Chester County, Pennsylvania

    Science.gov (United States)

    Cinotto, Peter J.; Reif, Andrew G.; Olson, Leif E.

    2005-01-01

    The Broad Run watershed lies almost entirely in West Bradford Township, Chester County, Pa., and drains 7.08 square miles to the West Branch Brandywine Creek. Because of the potential effect of encroaching development and other stresses on the Broad Run watershed, West Bradford Township, the Chester County Water Resources Authority, and the Chester County Health Department entered into a cooperative study with the U.S. Geological Survey to complete an annual water budget and stream assessment of overall conditions. The annual water budget quantified the basic parameters of the hydrologic cycle for the climatic conditions present from April 1, 2003, to March 31, 2004. These water-budget data identified immediate needs and (or) deficits that were present within the hydrologic cycle during that period, if present; however, an annual water budget encompassing a single year does not identify long-term trends. The stream assessment was conducted in two parts and assessed the overall condition of the watershed, an overall assessment of the fluvial-geomorphic conditions within the watershed and an overall assessment of the stream-quality conditions. The data collected will document present (2004) conditions and identify potential vulnerabilities to future disturbances. For the annual period from April 1, 2003, to March 31, 2004, determination of an annual water budget indicated that of the 67.8 inches of precipitation that fell on the Broad Run watershed, 38.8 inches drained by way of streamflow to the West Branch Brandywine Creek. Of this 38.8 inches of streamflow, local-minimum hydrograph separation techniques determined that 7.30 inches originated from direct runoff and 31.5 inches originated from base flow. The remaining precipitation went into ground-water storage (1.71 inches) and was lost to evapotranspiration (27.3 inches). Ground-water recharge for this period-35.2 inches-was based on these values and an estimated ground-water evapotranspiration rate of 2 inches

  12. Water's Journey from Rain to Stream in perspective

    Science.gov (United States)

    Rodhe, Allan; Grip, Harald

    2015-04-01

    The International Hydrological Decade (IHD) 1965-1974, sponsored by UNESCO, initiated a research effort for coordinating the fragmented branches of hydrology and for understanding and quantifying the hydrologic cycle on various scales, from continents to small catchments. One important part of the Swedish IHD-program was to quantify the terms of the water budget, including detailed data on soil water and groundwater storage dynamics, of several medium sized to small. As an outcome of these studies and subsequent process oriented studies, a new view of the runoff process in forested till soils was developed in the 1970's, stressing the dominating role of groundwater in delivering water to the streams and the usefulness of subdividing catchments into recharge and discharge areas for groundwater for understanding the flowpaths of water. This view contrasted with the general view among the public, and also among professionals within the field and in text books, according to which overland flow is the main process for runoff. With this latter view it would, for instance, not be possible to understand stream water chemistry, which had become an important question in a time of growing environmental concern. In order to decrease the time lag between research results and practice, the Swedish Natural Science Research Council initiated a text book project for presenting the recent results of hydrologic research on stream flow generation applied to Swedish conditions, and in 1985 our book "Water's Journey from Rain to Stream" was published. Founded on the basic principles for water storage and flow in soils, the book gives a general picture of the water flow through the forested till landscape, with separate chapters for recharge and discharge areas. Chemical processes along the flowpaths of water are treated and the book concludes with a few applications to current issues. The book is written in Swedish and the target audience is those working professionally with water and

  13. Effects of exposure to agricultural drainage ditch water on survivorship, distribution, and abundnance of riffle beetles (Coleoptera: Elmidae) in headwater streams of the Cedar Creek watershed, Indiana

    Science.gov (United States)

    Riffle Beetles (Coleoptera: Elmidae) require very good water quality, mature streams with riffle habitat, and high dissolved oxygen content. As such, they prove to be good indicators of ecological health in agricultural headwater streams. We conducted static renewal aquatic bioassays using water fro...

  14. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    Science.gov (United States)

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  15. Experimental forest watershed studies contribution to the effect of disturbances on water quality

    Science.gov (United States)

    Daniel G. Neary

    2012-01-01

    The most sustainable and best quality fresh water sources in the world originate in forested watersheds (Dissmeyer 2000, Brooks et al. 2003, Barten and Ernst 2004). The biological, chemical, and physical characteristics of forest soils are particularly well suited to delivering high quality water to streams, and moderating the climatic extremes which affect stream...

  16. Application of integral pumping tests to investigate the influence of a losing stream on groundwater quality

    Directory of Open Access Journals (Sweden)

    S. Leschik

    2009-10-01

    Full Text Available Losing streams that are influenced by wastewater treatment plant effluents and combined sewer overflows (CSOs can be a source of groundwater contamination. Released micropollutants such as pharmaceuticals, endocrine disrupters and other ecotoxicologically relevant substances as well as inorganic wastewater constituents can reach the groundwater, where they may deteriorate groundwater quality. This paper presents a method to quantify exfiltration mass flow rates per stream length unit Mex of wastewater constituents from losing streams by the operation of integral pumping tests (IPTs up- and downstream of a target section. Due to the large sampled water volume during IPTs the results are more reliable than those from conventional point sampling. We applied the method at a test site in Leipzig (Germany. Wastewater constituents K+ and NO3 showed Mex values of 1241 to 4315 and 749 to 924 mg mstream−1 d−1, respectively, while Cl (16.8 to 47.3 g mstream−1 d−1 and SO42− (20.3 to 32.2 g mstream−1 d−1 revealed the highest observed Mex values at the test site. The micropollutants caffeine and technical-nonylphenol were dominated by elimination processes in the groundwater between upstream and downstream wells. Additional concentration measurements in the stream and a connected sewer at the test site were performed to identify relevant processes that influence the concentrations at the IPT wells.

  17. Percent Forest Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  18. Percent Agriculture Adjacent to Streams (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The type of vegetation along a stream influences the water quality in the stream. Intact buffer strips of natural vegetation along streams tend to intercept...

  19. Quality of surface water in Missouri, water year 2015

    Science.gov (United States)

    Barr, Miya N.; Heimann, David C.

    2016-11-14

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.

  20. Controls on stream water dissolved mercury in three mid-Appalachian forested headwater catchments

    Science.gov (United States)

    Riscassi, Ami L.; Scanlon, Todd M.

    2011-12-01

    Determining the controls on dissolved mercury (HgD) transport is necessary to improve estimations of export from unmonitored watersheds and to forecast responses to changes in deposition and other environmental forcings. Stream water HgD and dissolved organic carbon (DOC) were evaluated over a range of discharge conditions in three streams within Shenandoah National Park, VA. Watersheds are distinguished by stream water pH (ranging from neutral to acidic) and soil size fractioning (ranging from clays to sands). At all sites, discharge was a significant but poor predictor of HgD concentrations (r2 from 0.13-0.52). HgD was strongly coupled with DOC at all sites (r2 from 0.74-0.89). UV absorbance at 254 nm (UV254), a proxy for DOC quantity and quality, slightly improved the predictions of HgD. Mean DOC quality differed between streams, with less aromatic DOC mobilized from the more acidic watershed. The site with less aromatic DOC and sandy soils mobilized more Hg to the stream for the same quantity and quality of DOC, likely due to the reduced capacity of the larger-grained soils to retain Hg, leaving a greater fraction associated with the organic matter. A similar amount of 0.54 ng HgD/mg DOC is transported at all sites, suggesting the less aromatic DOC transports less Hg per unit DOC, offsetting the effects of soil type. This research demonstrates that soil composition and DOC quality influence HgDexport. We also provide evidence that soil organic carbon is a primary control on Hg-DOC ratios (0.12-1.4 ng mg-1) observed across the U.S. and Sweden.

  1. Ecological Status of Rivers and Streams in Saxony (Germany According to the Water Framework Directive and Prospects of Improvement

    Directory of Open Access Journals (Sweden)

    Uwe Müller

    2012-11-01

    Full Text Available The Federal State of Saxony (Germany transposed the EU Water Framework Directive into state law, identifying 617 surface water bodies (rivers and streams for implementation of the water framework directive (WFD. Their ecological status was classified by biological quality elements (macrophytes and phytobenthos, benthic invertebrates and fish, and in large rivers, phytoplankton and specific synthetic and non-synthetic pollutants. Hydromorphological and physico-chemical quality elements were used to identify significant anthropogenic pressures, which surface water bodies are susceptible to, and to assess the effect of these pressures on the status of surface water bodies. In 2009, the data for classification of the ecological status and the main pressures and impacts on water bodies were published in the river basin management plans (RBMP of the Elbe and Oder rivers. To that date, only 23 (4% streams achieved an ecological status of “good”, while the rest failed to achieve the environmental objective. The two main reasons for the failure were significant alterations to the stream morphology (81% of all streams and nutrient enrichment (62% caused by point (industrial and municipal waste water treatment plants and non-point (surface run-off from arable fields, discharges from urban drainages and decentralized waste water treatment plants sources. It was anticipated that a further 55 streams would achieve the environmental objective by 2015, but the remaining 539 need extended deadlines.

  2. Progress and lessons learned from water-quality monitoring networks

    Science.gov (United States)

    Myers, Donna N.; Ludtke, Amy S.

    2017-01-01

    Stream-quality monitoring networks in the United States were initiated and expanded after passage of successive federal water-pollution control laws from 1948 to 1972. The first networks addressed information gaps on the extent and severity of stream pollution and served as early warning systems for spills. From 1965 to 1972, monitoring networks expanded to evaluate compliance with stream standards, track emerging issues, and assess water-quality status and trends. After 1972, concerns arose regarding the ability of monitoring networks to determine if water quality was getting better or worse and why. As a result, monitoring networks adopted a hydrologic systems approach targeted to key water-quality issues, accounted for human and natural factors affecting water quality, innovated new statistical methods, and introduced geographic information systems and models that predict water quality at unmeasured locations. Despite improvements, national-scale monitoring networks have declined over time. Only about 1%, or 217, of more than 36,000 US Geological Survey monitoring sites sampled from 1975 to 2014 have been operated throughout the four decades since passage of the 1972 Clean Water Act. Efforts to sustain monitoring networks are important because these networks have collected information crucial to the description of water-quality trends over time and are providing information against which to evaluate future trends.

  3. Bivariate functional data clustering: grouping streams based on a varying coefficient model of the stream water and air temperature relationship

    Science.gov (United States)

    H. Li; X. Deng; Andy Dolloff; E. P. Smith

    2015-01-01

    A novel clustering method for bivariate functional data is proposed to group streams based on their water–air temperature relationship. A distance measure is developed for bivariate curves by using a time-varying coefficient model and a weighting scheme. This distance is also adjusted by spatial correlation of streams via the variogram. Therefore, the proposed...

  4. Macrophyte abundance and water quality status of three impacted ...

    African Journals Online (AJOL)

    Assessment of macrophyte abundance and water quality of three impacted inlet streams along Ikpa River Basin were investigated. A 5m x 5m quadrat through systematic sampling was used to sample the vegetation for density and frequency of species. Sediment and water samples were collected and analyzed using ...

  5. Nutrient and pesticide data collected from the USGS National Water Quality Network and previous networks, 1980-2015

    Science.gov (United States)

    Deacon, Jeffrey R.; Lee, Casey; Norman, Julia E.; Reutter, David C.

    2016-01-01

    The National Water Quality Network (NWQN) for Rivers and Streams includes 113 surface-water river and stream sites monitored by the U.S. Geological Survey (USGS) National Water Quality Program, National Water-Quality Assessment (NAWQA) Project. The NWQN includes 19 large river coastal sites, 44 large river inland sites, 30 wadeable stream reference sites, 10 wadeable stream urban sites, and 10 wadeable stream agricultural sites. In addition to the 113 NWQN sites, 3 large inland river monitoring sites from the USGS Cooperative Water Program are also included in this annual water-quality reporting Web site to be consistent with previous USGS studies of nutrient transport in the Mississippi-Atchafalaya River Basin. This data release provides streamflow, nutrient, pesticide and sediment data collected and analyzed by NWQN and other historical water-quality networks from 1980-2015. Data from this release are presented at the USGS Tracking Water Quality page: http://cida.usgs.gov/quality/rivers/home.

  6. Water quality modeling based on landscape analysis: Importance of riparian hydrology

    Science.gov (United States)

    Thomas Grabs

    2010-01-01

    Several studies in high-latitude catchments have demonstrated the importance of near-stream riparian zones as hydrogeochemical hotspots with a substantial influence on stream chemistry. An adequate representation of the spatial variability of riparian-zone processes and characteristics is the key for modeling spatiotemporal variations of stream-water quality. This...

  7. Data on Mercury in Water, Bed Sediment, and Fish from Streams Across the United States, 1998-2005

    Science.gov (United States)

    Bauch, Nancy J.; Chasar, Lia C.; Scudder, Barbara C.; Moran, Patrick W.; Hitt, Kerie J.; Brigham, Mark E.; Lutz, Michelle A.; Wentz, Dennis A.

    2009-01-01

    The U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) and Toxic Substances Hydrology Programs conducted the National Mercury Pilot Study in 1998 to examine relations of mercury (Hg) in water, bed sediment and fish in streams across the United States, including Alaska and Hawaii. Water and bed-sediment samples were analyzed for total Hg (THg), methylmercury (MeHg), and other constituents; fish were analyzed for THg. Similar sampling was conducted at additional streams across the country in 2002 and 2004-05. This report summarizes sample collection and processing protocols, analytical methods, environmental data, and quality-assurance data for stream water, bed sediment, and fish for these national studies. To extend the geographic coverage of the data, this report also includes four regional USGS Hg studies conducted during 1998-2001 and 2004. The environmental data for these national and regional Hg studies are provided in an electronic format.

  8. 49 Trace Metals' Contamination of Stream Water and Irrigated Crop ...

    African Journals Online (AJOL)

    ABUBAKAR AHMED

    health, safety and welfare of any living species (Pickering & Owen, 1996). Water pollution leads to deterioration of water quality which is also defined by temperature, amount and character of mineral particle, dissolved substance and organic matter content of a body of water in relation to its intended use (Skinner & Porter, ...

  9. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey.

    Science.gov (United States)

    Demirak, Ahmet; Yilmaz, Fevzi; Tuna, A Levent; Ozdemir, Nedim

    2006-06-01

    Concentrations of heavy metals (Cd, Cr, Cu, Pb and Zn) were measured in water, bottom sediment and tissues (muscle and gills) of Leuciscus cephalus from the Dipsiz stream in the Yatagan basin (southwestern Turkey), the site of a thermal power plant. Results for levels in water were compared with national and international water quality guidelines, as well as literature values were reported for streams and rivers. Comparisons were made of metal concentrations in water and sediment with those in the muscle and gills of L. cephalus caught from the Dipsiz stream. We found that there was metal accumulation in the gills compared to the muscle. Concentrations of Cd, Pb, Zn and Cr in the gills were higher than that in the muscle; however, Cu levels were higher in muscle than that in gills. Concentrations of heavy metals in L. cephalus muscle were below the legal limits for human consumption, although Cr, Pb and Zn levels in the gills were above the limits in the fish taken from the Dipsiz stream. On the other hand, no correlation was found between metal concentrations in water and sediment or between metal concentrations in water and muscle and gills of L. cephalus. A positive correlation was found between concentrations of Cu and Zn in the sediment and in fish tissue, whereas there was no relationship between other metal concentrations in the sediment and water, and muscle and gills of L. cephalus. As with water, Pb and Cd concentrations in particular were higher in sediment than that in background levels. The results show that the pollutants from the thermal power plant may be a source of these elements.

  10. Removal of Dental Biofilms with an Ultrasonically Activated Water Stream.

    Science.gov (United States)

    Howlin, R P; Fabbri, S; Offin, D G; Symonds, N; Kiang, K S; Knee, R J; Yoganantham, D C; Webb, J S; Birkin, P R; Leighton, T G; Stoodley, P

    2015-09-01

    Acidogenic bacteria within dental plaque biofilms are the causative agents of caries. Consequently, maintenance of a healthy oral environment with efficient biofilm removal strategies is important to limit caries, as well as halt progression to gingivitis and periodontitis. Recently, a novel cleaning device has been described using an ultrasonically activated stream (UAS) to generate a cavitation cloud of bubbles in a freely flowing water stream that has demonstrated the capacity to be effective at biofilm removal. In this study, UAS was evaluated for its ability to remove biofilms of the cariogenic pathogen Streptococcus mutans UA159, as well as Actinomyces naeslundii ATCC 12104 and Streptococcus oralis ATCC 9811, grown on machine-etched glass slides to generate a reproducible complex surface and artificial teeth from a typodont training model. Biofilm removal was assessed both visually and microscopically using high-speed videography, confocal scanning laser microscopy (CSLM), and scanning electron microscopy (SEM). Analysis by CSLM demonstrated a statistically significant 99.9% removal of S. mutans biofilms exposed to the UAS for 10 s, relative to both untreated control biofilms and biofilms exposed to the water stream alone without ultrasonic activation (P biofilm removal. The UAS was also highly effective at S. mutans, A. naeslundii, and S. oralis biofilm removal from machine-etched glass and S. mutans from typodont surfaces with complex topography. Consequently, UAS technology represents a potentially effective method for biofilm removal and improved oral hygiene. © International & American Associations for Dental Research 2015.

  11. Accumulation of anthropogenic radionuclides in crops in conditions of water stream and classical hydroponics

    Energy Technology Data Exchange (ETDEWEB)

    Mayrapetyan, Khachatur; Hovsepyan, Albert; Daryadar, Mahsa; Alexanyan, Julietta; Tovmasyan, Anahit; Ghalachyan, Laura; Tadevosyan, Anna; Mayrapetyan, Stepan [Institute of Hydroponics Problems, NAS, Noragyugh 108, 0082, Yerevan (Armenia)

    2014-07-01

    Natural and artificial radionuclides (RN) dangerous for health are emitted into ecosystems because of human anthropogenic activities in the field of nuclear energetics. Biologically artificial RN {sup 90}Sr(T{sub 1/2}=28,6 years) and {sup 137}Cs (T{sub 1/2}=30,1 years)are very dangerous. Therefore obtaining radio-ecologically safe raw material of high quality is a very urgent problem now. Taking into account the above mentioned, in order to obtain ecologically safe raw material we carried out comparative radiochemical investigations on essential oil and medicinal plants peppermint(Mentha piperita L.) and sweet basil (Ocimum basilicum L.) grown in new water-stream (continuous, gully, cylindrical) and classical hydroponics, with the aim of revealing accumulation peculiarities of {sup 90}Sr and {sup 137}Cs. The results of experiments have shown that in classical hydroponics peppermint and sweet basil exceeded the same indices of water-stream hydroponics with {sup 90}Sr and {sup 137}Cs content 1,1-1,2; 1,2-1,3 and 1,5-1,8; 1,4-1,8 times, respectively. Moreover, sweet basil exceeded peppermint in water-stream hydroponics {sup 90}Sr 1,3-1,6; {sup 137}Cs 1,2-1,4 times and in classical hydroponics {sup 90}Sr 1,6; {sup 137}Cs 1,2 times. The content of controlled artificial RN in raw material did not exceed the allowed concentration limit (ACL). New water-stream hydroponics system worked out in Institute of Hydroponics Problems is a radio-ecologically more profitable method for producing raw material than classical hydroponics. At the same time water-stream hydroponics system in comparison with classical hydroponics promoted productivity (dry raw material) increase of peppermint and sweet basil 1,1-1,4 times. (authors)

  12. StreamStats in North Carolina: a water-resources Web application

    Science.gov (United States)

    Weaver, J. Curtis; Terziotti, Silvia; Kolb, Katharine R.; Wagner, Chad R.

    2012-01-01

    A statewide StreamStats application for North Carolina was developed in cooperation with the North Carolina Department of Transportation following completion of a pilot application for the upper French Broad River basin in western North Carolina (Wagner and others, 2009). StreamStats for North Carolina, available at http://water.usgs.gov/osw/streamstats/north_carolina.html, is a Web-based Geographic Information System (GIS) application developed by the U.S. Geological Survey (USGS) in consultation with Environmental Systems Research Institute, Inc. (Esri) to provide access to an assortment of analytical tools that are useful for water-resources planning and management (Ries and others, 2008). The StreamStats application provides an accurate and consistent process that allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection sites and user-selected ungaged sites. In the North Carolina application, users can compute 47 basin characteristics and peak-flow frequency statistics (Weaver and others, 2009; Robbins and Pope, 1996) for a delineated drainage basin. Selected streamflow statistics and basin characteristics for data-collection sites have been compiled from published reports and also are immediately accessible by querying individual sites from the web interface. Examples of basin characteristics that can be computed in StreamStats include drainage area, stream slope, mean annual precipitation, and percentage of forested area (Ries and others, 2008). Examples of streamflow statistics that were previously available only through published documents include peak-flow frequency, flow-duration, and precipitation data. These data are valuable for making decisions related to bridge design, floodplain delineation, water-supply permitting, and sustainable stream quality and ecology. The StreamStats application also allows users to identify stream reaches upstream and downstream from user-selected sites

  13. Relationship between structural features and water chemistry in boreal headwater streams--evaluation based on results from two water management survey tools suggested for Swedish forestry.

    Science.gov (United States)

    Lestander, Ragna; Löfgren, Stefan; Henrikson, Lennart; Ågren, Anneli M

    2015-04-01

    Forestry may cause adverse impacts on water quality, and the forestry planning process is a key factor for the outcome of forest operation effects on stream water. To optimise environmental considerations and to identify actions needed to improve or maintain the stream biodiversity, two silvicultural water management tools, BIS+ (biodiversity, impact, sensitivity and added values) and Blue targeting, have been developed. In this study, we evaluate the links between survey variables, based on BIS+ and Blue targeting data, and water chemistry in 173 randomly selected headwater streams in the hemiboreal zone. While BIS+ and Blue targeting cannot replace more sophisticated monitoring methods necessary for classifying water quality in streams according to the EU Water Framework Directive (WFD, 2000/60/EC), our results lend support to the idea that the BIS+ protocol can be used to prioritise the protection of riparian forests. The relationship between BIS+ and water quality indicators (concentrations of nutrients and organic matter) together with data from fish studies suggests that this field protocol can be used to give reaches with higher biodiversity and conservation values a better protection. The tools indicate an ability to mitigate forestry impacts on water quality if the operations are adjusted to this knowledge in located areas.

  14. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woo-Jin [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Ryu, Jong-Sik [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Mayer, Bernhard [Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Lee, Kwang-Sik, E-mail: kslee@kbsi.re.kr [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Lee, Sin-Woo [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geology, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2014-07-01

    Acid mine drainage (AMD) in a watershed provides potential sources of pollutants for surface and subsurface waters that can deteriorate water quality. Between March and early August 2011, water samples were collected from two streams in South Korea, one dominantly draining a watershed with carbonate bedrock affected by coal mines and another draining a watershed with silicate bedrock and a relatively undisturbed catchment area. The objective of the study was to identify the sources and processes controlling water chemistry, which was dependent on bedrock and land use. In the Odae stream (OS), the stream in the silicate-dominated catchment, Ca, Na, and HCO{sub 3} were the dominant ions and total dissolved solids (TDS) was low (26.1–165 mg/L). In the Jijang stream (JS), in the carbonate-dominated watershed, TDS (224–434 mg/L) and ion concentrations were typically higher, and Ca and SO{sub 4} were the dominant ions due to carbonate weathering and oxidation of pyrite exposed at coal mines. Dual isotopic compositions of sulfate (δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4}) verified that the SO{sub 4} in JS is derived mainly from sulfide mineral oxidation in coal mines. Cl in JS was highest upstream and decreased progressively downstream, which implies that pollutants from recreational facilities in the uppermost part of the catchment are the major source governing Cl concentrations within the discharge basin. Dual isotopic compositions of nitrate (δ{sup 15}N{sub NO3} and δ{sup 18}O{sub NO3}) indicated that NO{sub 3} in JS is attributable to nitrification of soil organic matter but that NO{sub 3} in OS is derived mostly from manure. Additionally, the contributions of potential anthropogenic sources to the two streams were estimated in more detail by using a plot of δ{sup 34}S{sub SO4} and δ{sup 15}N{sub NO3}. This study suggests that the dual isotope approach for sulfate and nitrate is an excellent additional tool for elucidating the sources and processes

  15. Water Quality Assessment Tool 2014

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Water Quality Assessment Tool project was developed to assess the potential for water-borne contaminants to adversely affect biota and habitats on Service lands.

  16. System design and treatment efficiency of a surface flow constructed wetland receiving runoff impacted stream water.

    Science.gov (United States)

    Maniquiz, M C; Choi, J Y; Lee, S Y; Kang, C G; Yi, G S; Kim, L H

    2012-01-01

    This study reported the efficiency of a free water surface flow constructed wetland (CW) system that receives runoff impacted stream water from a forested and agricultural watershed. Investigations were conducted to examine the potential effect of hydraulic fluctuations on the CW as a result of storm events and the changes in water quality along the flow path of the CW. Based on the results, the incoming pollutant concentrations were increased during storm events and greater at the near end of the storm than at the initial time of storm. A similar trend was observed to the concentrations exiting the CW due to the wetland being a relatively small percentage of the watershed (time during storm events. The concentrations of most pollutants were significantly reduced (p retention of most pollutants during storm events as the actual water quality of the outflow was significantly better by 21-71% than the inflow and the levels of pollutants were reduced to appreciable levels.

  17. Microbiological quality of natural waters.

    Science.gov (United States)

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  18. Valuing Water Quality As a Functionof Water Quality Measures

    OpenAIRE

    Egan, Kevin J.; Joseph A. Herriges; Catherine L. Kling; Downing, John A.

    2004-01-01

    This paper incorporates a rich set of physical water quality attributes, as well as site and household characteristics, into a model of recreational lake usage in Iowa. Our analysis shows individuals are responsive to physical water quality measures. Willingness-to-pay estimates are reported based on improvements in these measures.

  19. From a water resource to a point pollution source: the daily journey of a coastal urban stream

    Directory of Open Access Journals (Sweden)

    LR. Rörig

    Full Text Available The aim of this study was to understand how a stream ecosystem that flows from its fountainhead to its mouth inside a city, changes from a water resource to a point pollution source. A multidisciplinary descriptive approach was adopted, including the short-term temporal and spatial determination of physical, chemical, biological and ecotoxicological variables. Results showed that water quality rapidly decreases with increasing urbanization, leading the system to acquire raw sewage attributes even in the first hundred meters after the fountainheads. Despite the tidal circulation near the stream mouth being restricted by shallowness, some improvement of the water quality was detected in this area. The multidisciplinary evaluation showed to be useful for obtaining a more realistic understanding of the stream degradation process, and to forecast restoration and mitigation measures.

  20. From a water resource to a point pollution source: the daily journey of a coastal urban stream.

    Science.gov (United States)

    Rörig, L R; Tundisi, J G; Schettini, C A F; Pereira-Filho, J; Menezes, J T; Almeida, T C M; Urban, S R; Radetski, C M; Sperb, R C; Stramosk, C A; Macedo, R S; Castro-Silva, M A; Perez, J A A

    2007-11-01

    The aim of this study was to understand how a stream ecosystem that flows from its fountainhead to its mouth inside a city, changes from a water resource to a point pollution source. A multidisciplinary descriptive approach was adopted, including the short-term temporal and spatial determination of physical, chemical, biological and ecotoxicological variables. Results showed that water quality rapidly decreases with increasing urbanization, leading the system to acquire raw sewage attributes even in the first hundred meters after the fountainheads. Despite the tidal circulation near the stream mouth being restricted by shallowness, some improvement of the water quality was detected in this area. The multidisciplinary evaluation showed to be useful for obtaining a more realistic understanding of the stream degradation process, and to forecast restoration and mitigation measures.

  1. National Water-Quality Assessment Program: Island of Oahu, Hawaii

    Science.gov (United States)

    Anthony, Stephen S.

    1998-01-01

    During the past 25 years, our Nation has sought to improve its water quality; however, many water-quality issues remain unresolved. To address the need for consistent and scientifically sound information for managing the Nation's water resources, the U.S. Geological Survey began a full-scale National Water-Quality Assessment (NAWQA) Program in 1991. This program is unique compared with other national water-quality assessment studies in that it integrates the monitoring of the quality of surface and ground waters with the study of aquatic ecosystems. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location of the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units. These study units represent the diverse geography, water resources, and land and water uses of the Nation. The island of Oahu, Hawaii, is one such study unit designed to supplement water-quality information collected in other study units across the Nation while addressing issues relevant to the island of Oahu.

  2. Identification of water quality degradation hotspots in developing countries by applying large scale water quality modelling

    Science.gov (United States)

    Malsy, Marcus; Reder, Klara; Flörke, Martina

    2014-05-01

    Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across

  3. Applicability of Existing Objective Metrics of Perceptual Quality for Adaptive Video Streaming

    DEFF Research Database (Denmark)

    Søgaard, Jacob; Krasula, Lukás; Shahid, Muhammad

    2016-01-01

    Objective video quality metrics are designed to estimate the quality of experience of the end user. However, these objective metrics are usually validated with video streams degraded under common distortion types. In the presented work, we analyze the performance of published and known full......-reference and noreference quality metrics in estimating the perceived quality of adaptive bit-rate video streams knowingly out of scope. Experimental results indicate not surprisingly that state of the art objective quality metrics overlook the perceived degradations in the adaptive video streams and perform poorly...... in estimating the subjective quality results....

  4. Using DASH assisting network elements for optimizing video streaming quality

    NARCIS (Netherlands)

    J.W.M. Kleinrouweler (Jan Willem)

    2017-01-01

    textabstractOn-demand video streaming is a popular application which accounts for a large share of today's Internet traffic. Dynamic Adaptive Streaming over HTTP (DASH) is the major streaming technology used by large content providers. However, this technology suffers from performance problems when

  5. Lead uptake of water plants in water stream at Kiteezi landfill site ...

    African Journals Online (AJOL)

    The purpose of this study was twofold: (i) to quantify the lead (Pb) uptake by two water plants reeds (Phragmites australis) and papyrus (Cyperus papyrus) in water stream at Kiteezi landfill site, Kampala (Uganda) and (ii) to compare the two species in Pb uptake downstream. As such, leachate samples were collected at the ...

  6. Fertilizer Use and Water Quality.

    Science.gov (United States)

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are…

  7. 5 Water Quality.cdr

    African Journals Online (AJOL)

    Administrator

    the basins cause an acceleration of the. Water Quality Assessment of Densu, Birim and Ayensu. Rivers in the Okyeman Area. 1. 2. O. D. Ansa-Asare * and C. ... The aim of this paper is to develop an understanding of the spatial water quality throughout the basins and also identify the main sources of contaminants within the ...

  8. Space Station Water Quality

    Science.gov (United States)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  9. Subjective quality assessment of an adaptive video streaming model

    Science.gov (United States)

    Tavakoli, Samira; Brunnström, Kjell; Wang, Kun; Andrén, Börje; Shahid, Muhammad; Garcia, Narciso

    2014-01-01

    With the recent increased popularity and high usage of HTTP Adaptive Streaming (HAS) techniques, various studies have been carried out in this area which generally focused on the technical enhancement of HAS technology and applications. However, a lack of common HAS standard led to multiple proprietary approaches which have been developed by major Internet companies. In the emerging MPEG-DASH standard the packagings of the video content and HTTP syntax have been standardized; but all the details of the adaptation behavior are left to the client implementation. Nevertheless, to design an adaptation algorithm which optimizes the viewing experience of the enduser, the multimedia service providers need to know about the Quality of Experience (QoE) of different adaptation schemes. Taking this into account, the objective of this experiment was to study the QoE of a HAS-based video broadcast model. The experiment has been carried out through a subjective study of the end user response to various possible clients' behavior for changing the video quality taking different QoE-influence factors into account. The experimental conclusions have made a good insight into the QoE of different adaptation schemes which can be exploited by HAS clients for designing the adaptation algorithms.

  10. Development of the framework for a water quality monitoring system : controlling MoDOT's contribution to 303(d) listed streams in the state of Missouri, final report, February 2010.

    Science.gov (United States)

    2010-02-01

    By utilizing ArcGIS to quickly visualize the location of any impaired waterbody in relation to its projects/activities, MoDOT will : be able to allocate resources optimally. Additionally, the Water Quality Impact Database (WQID) will allow easy trans...

  11. Effects of Surface-Water Diversion and Ground-Water Withdrawal on Streamflow and Habitat, Punaluu Stream, Oahu, Hawaii

    Science.gov (United States)

    Oki, Delwyn S.; Wolff, Reuben H.; Perreault, Jeff A.

    2006-01-01

    The surface- and ground-water resources of the Punaluu area of northeast Oahu, Hawaii, have been and continue to be important for cultural, domestic, agricultural, recreational, and aesthetic purposes. Punaluu Stream flows perennially because rain falls frequently in the area and ground water discharges to the stream. Flow in Punaluu Stream is reduced by the direct diversion of water for off-stream uses and possibly from the withdrawal of ground water near the stream. Punaluu Ditch diverts water from Punaluu Stream near an altitude of 210 feet. During the recent period 1995-2004, discharge in Punaluu Stream that was equaled or exceeded 50 percent of the time (median or Q50 discharge) and discharge that was equaled or exceeded 95 percent of the time (Q95 discharge) measured immediately upstream from the Punaluu Ditch diversion intake, respectively, were 18 and 13 cubic feet per second, whereas the Q50 and Q95 discharges measured immediately downstream from the diversion intake, respectively, were 7.0 and 1.3 cubic feet per second. Thus, near an altitude of 210 feet, diversion of surface water by the Punaluu Ditch caused the Q50 discharge in Punaluu Stream to be reduced to 39 percent of the natural Q50 discharge, and the Q95 discharge was reduced to 10 percent of the natural value. The relative effects of the Punaluu Ditch diversion on flow in Punaluu Stream decreased in a downstream direction, mainly because of the compensating effects of tributary inflows and ditch return flows. At an altitude of 10 feet, the Q50 discharge in Punaluu Stream was 82 percent of the natural Q50 discharge, and the Q95 discharge was 69 percent of the natural value. Changes in streamflow affect the quantity and quality of physical habitat used by native stream fauna. The Physical Habitat Simulation System (PHABSIM) approach was used to evaluate the effects of different diversion scenarios on physical habitat for selected native species in Punaluu Stream. Habitat-suitability criteria

  12. What's in Your Water? An Educator's Guide to Water Quality.

    Science.gov (United States)

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  13. Human-Nature Relationship in Mediterranean Streams: Integrating Different Types of Knowledge to Improve Water Management

    Directory of Open Access Journals (Sweden)

    Carla Gonzalez

    2009-12-01

    Full Text Available The social and ecological systems of Mediterranean streams are intrinsically linked as a result of long human occupation. In this region, these links vary greatly across small distances due to geomorphology, resulting in great diversity across space, which poses particular challenges for understanding and managing these systems. This demands (i interdisciplinary integration of knowledge that focuses on the social-ecological interactions, while according due consideration to the whole; and also (ii transdisciplinary integration, integrating lay and expert knowledge to understand local specificities. To address these needs - a focus on interactions and local knowledge - the research presented here studies the human-nature relationship in Mediterranean streams. Its main objective is to improve understanding of Mediterranean streams, but it also provides practical inputs to enhance local-level management. The study adopts an applied approach from the perspective of natural resources management. A case study was developed conducting field work on streams within the Natura 2000 site of Monfurado, Portugal - a mainly privately owned area with conflicting land uses between conservation and farming. Rivers and streams in Portugal are considered to be in very bad condition, particularly with regard to water quality. The experimental design was based, from a critical realism perspective of inter- and trans-disciplinarity, on the complementarities between methodologies from (i the social sciences: value survey and analysis of discourse; and (ii the natural sciences: biomonitoring and integrity biotic indexes. Results characterized the connected systems from both ecological and social points of view. They also characterized the relationship between both dimensions. We concluded that well-established riparian vegetation cover of streams is a key structural element of the human-nature relationship in the Mediterranean streams of Monfurado at several levels

  14. Primer on Water Quality

    Science.gov (United States)

    ... such as roots and leaves, and react with algae, bacteria, and other microscopic organisms. Water may also carry plant debris and sand, silt, ... in a few locations. Pathogens can enter our water from leaking septic tanks, wastewater-treatment discharge, and animal wastes. How can I find ...

  15. Ground Water Quality

    African Journals Online (AJOL)

    Water is the next to air as a major support substance to life. Water therefore is important in that it is essential .... potassium (K ), zinc (Zn ), cadmium (Cd ), lead. 2+. 2+. 2+. (Pb ), iron (Fe ) and manganese (Mn ) and .... used storage batteries dumped indiscriminately into the environment as observed in parts of the study area.

  16. Spatio-temporal variation in stream water chemistry in a tropical urban watershed

    Science.gov (United States)

    A. Ramirez; K.G. Rosas; A.E. Lugo; O.M. Ramos-Gonzalez

    2014-01-01

    Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial...

  17. Assessment of pond effluent effect on water quality of Asuofia ...

    African Journals Online (AJOL)

    Assessment of pond effluent effect on water quality of Asuofia Stream, Ghana. D Amankwaah, SJ Cobbina, YA Tiwaa, N Bakobie, EAB Millicent. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO ...

  18. THE EFFECTS OF ABATTOIR WASTE ON WATER QUALITY IN ...

    African Journals Online (AJOL)

    Osondu

    Abstract. This paper examined the impact of abattoir wastes on water quality around an abattoir site in. Gwagwalada. The work was premised on the fact that untreated wastes from the abattoir are discharged directly into open drainage which flows into a nearby stream. Leachates from dumped and decomposed wastes ...

  19. Impact of Effluents on Water Quality and Benthic Macroinvertebrate ...

    African Journals Online (AJOL)

    A study on the impact of effluent discharge on water quality and the benthic macro invertebrate fauna of the Awba stream and reservoir was carried out between April 2007 and May 2008. Benthic macro invertebrate and sediment samples were collected with a Van Veen grab, while physico-chemical parameters were ...

  20. Placement of riparian forest buffers to improve water quality

    Science.gov (United States)

    Mark D. Tomer; Michael G. Dosskey; Michael R. Burkart; David E. James; Matthew J. Helmers; Dean E. Eisenhauer

    2005-01-01

    Riparian forest buffers can improve stream water quality, provided they intercept and remove contaminants from surface runoff and/or shallow groundwater. Soils, topography, hydrology, and surficial geology detemine the capability of forest buffers to intercept and treat these flows. This paper describes landscape analysis techniques for identifying and mapping...

  1. Beyond the Clean Water Rule: Impacts of a Non-Jurisdictional Ditch on Headwater Stream Discharge and Water Chemistry

    Directory of Open Access Journals (Sweden)

    John P. Gannon

    2016-12-01

    Full Text Available Ephemeral drainage ditches in upland areas, such as those draining roads, are excluded from the jurisdiction of the U.S. Clean Water Act (CWA. While several studies have shown that road drainage and/or development in forested watersheds can impact water quality, the direct physical and chemical impacts of a single drainage ditch have not been identified. In this study, we measured water chemistry (silicon, calcium, and sulfate and magnitude of discharge from one such feature and at the outlet of the catchment it is within. We found that discharge from the drainage ditch was sometimes over 10% of the larger stream into which it drains, despite the small relative size of the ditch catchment (1.1 ha compared to the main catchment (43 ha. Furthermore, we observed sharp decreases in silicon and calcium and increases in sulfate concentrations downstream from the drainage ditch across longitudinal sampling of the stream network. This illustrates the impacts of a common feature in high relief, forested areas that when aggregated over the landscape are likely responsible for regional water quality impacts.

  2. [Drinking water quality and safety].

    Science.gov (United States)

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Topographical characteristics and evaluating water quality in watershed management

    Directory of Open Access Journals (Sweden)

    Teresa Cristina Tarlé Pissarra

    2008-09-01

    Full Text Available Topographical characteristics and water quality were evaluated at Hacienda Gloria, in Jaboticabal, São Paulo State, Brazil. Un-derstanding the relief’s morphometric characteristics and the course of the streams in a small watershed supported the hypothesis that land-use affects water quality and helps predict how changes in water-flow and the surrounding landscape occur; areas protected by native forest and those dedicated to agriculture were considered. Water quality was sampled at six sites and physical and chemical changes were analysed. Monthly water samples were collected from the streams on the same day of each month during the course of a year; Horiba equipment was used for recording data. One-way analysis of variance (ANOVA was used for determining differences between the sites being investigated. Analysing the data revealed significant differences in pH, electric conductivity, turbidity, dissolved oxygen and temperature. Topographical characteristics have been influenced by agricultural activity, thereby having an environmental impact. Surface runoff was predominant on steep slopes, mainly in areas near the top of the watershed. Land-use has had a significant impact on many physical parameters, including stream turbidity and tem-perature which increased with deforestation. The results indicated the agricultural watershed’s fragility to pollutant exposure and/ or toxicity, mainly due to turbidity in the streams caused by soil erosion, waste discharge and runoff.

  4. Scale dependent controls of stream water temperatures - interaction of advective and diffusive energy fluxes

    Science.gov (United States)

    Schuetz, Tobias; Weiler, Markus

    2017-04-01

    Diurnal stream water temperature amplitudes (WTA) have a large impact on local ecohydrological conditions, e.g. aquatic habitat quality or biogeochemical cycling. Depending on discharge, streambed geomorphology, connectivity to the groundwater, hyporheic exchange flow and other local factors such as shading and climate conditions observable WTAs vary strongly from up- to downstream and can locally even exceed seasonal temperature variations. The main process which is responsible for the local expression of WTA is the energy balance which can be either dominated by advective energy fluxes (e. g. discharge and upwelling groundwater) or by diffusive energy fluxes (e. g. radiation, latent and sensible heat fluxes, heat exchange with the streambed). In recent years research has mainly focused on improving our knowledge how groundwater-surface water interaction, hyporheic exchange and shading processes influence locally observable WTA in smaller streams, while for larger streams or rivers WTA might even be non-observable throughout the year. Within this study we analyze the scaling behavior of advective and diffusive energy fluxes from small to large streams to better understand on which scales and under which conditions WTA might be dominated either by advective or diffusive energy fluxes and how groundwater - surface water interaction influences this relationship. For this purpose, we carried out a synthetic model study. Using published hydraulic geometry relations for different types of rivers, we apply a conceptual energy balance- and mixing model, which includes GW-SW interaction, discharges from 100 l/s up to 50 m3/s on length scales from 100 m up to 50 km. Simulated boundary conditions were constant discharges at the upstream boundary and constant and uniformly distributed exchange fluxes to the groundwater. Upstream water temperatures were 15 °C (WTA of 5 °C), while groundwater temperature was assumed to be cooler than the stream with 9°C. Net diffusive energy

  5. 43 CFR 414.5 - Water quality.

    Science.gov (United States)

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a) Water Quality is not guaranteed. The Secretary does not warrant the quality of water released or...

  6. On subjective quality assessment of adaptive video streaming via crowdsourcing and laboratory based experiments

    DEFF Research Database (Denmark)

    Søgaard, Jacob; Shahid, Muhammad; Pokhrel, Jeevan

    2017-01-01

    Video streaming services are offered over the Internet and since the service providers do not have full control over the network conditions all the way to the end user, streaming technologies have been developed to maintain the quality of service in these varying network conditions i.e. so called...... adaptive video streaming. In order to cater for users' Quality of Experience (QoE) requirements, HTTP based adaptive streaming solutions of video services have become popular. However, the keys to ensure the users a good QoE with this technology is still not completely understood. User QoE feedback...

  7. Recreational Water Quality Criteria Limits

    Science.gov (United States)

    This set of Frequently Asked Questions (FAQ) provides an overview of NPDES permitting applicable to continuous dischargers (such as POTWs) based on water quality standards for pathogens and pathogen indicators associated with fecal contamination.

  8. Assessment of the aquatic habitat quality of the mountain streams in Eastern Slovakia by bioindication

    Science.gov (United States)

    Jalcovikova, Monika; Skrovinova, Marcela; Stankoci, Ivan; Bajtek, Zbynek

    2010-05-01

    In 2008 was implemented topographical and ichtyological research on the chosen streams on the east of Slovakia. For hydraulic modeling was used RHABSIM model which is component of the IFIM (Instream Flow Incremental Methodology). IFIM is an interdisciplinary decision-making system, which has arisen as a result of the knowledge that most fish species prefer certain combinations of water depths, flow velocities, hiding places and materials of a riverbed. The research was aimed at the relationship between the quantitative parameters of ichthyofauna as a bioindicator and the ratio of habitat suitability. In the IFIM methodology the relationship between abiotic and biotic characteristics is represented by the habitat suitability curves of various fish species. Fish are the best bioindicators that most sensitively indicate the quality of a stream microhabitat. The habitat suitability curves of particular fish species are determined for the two most important abiotic characteristics - flow velocity and water depth. From our research, it follows that the technique of processing for the habitat suitability curve is a very important factor that significantly influences the whole process of habitat modeling. The assessment of the habitat quality proves the appropriate input for water-management planning and decision-making, e.g. determination of the minimal (ecological) flow, river restoration planning, or the assessment of the river regulation influence on the quality and quantity of its biological guilds. It can also be used as a substitute of the ichthyofauna biodiversity assessment. These models provide a basic overview of time and spatial interaction of physical and biological components of the river system. This methodology can even be used for modeling the unaffected character of stream according to the EU framework directive 2000/60/EC. Modeling of the aquatic habitat quality using the RHABSIM model requires the simulation of the velocity field verified for two water

  9. Water Quality Protection from Nutrient Pollution: Case ...

    Science.gov (United States)

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, increased nutrient fluxes from the Mississippi River Basin have been linked to increased occurrences of seasonal hypoxia in northern Gulf of Mexico. Lake Erie is another example where in the summer of 2014 nutrients, nutrients, particularly phosphorus, washed from fertilized farms, cattle feedlots, and leaky septic systems; caused a severe algae bloom, much of it poisonous; and resulted in the loss of drinking water for a half-million residents. Our current management strategies for point and non-point source nutrient loadings need to be improved to protect and meet the expected increased future demands of water for consumption, recreation, and ecological integrity. This presentation introduces management practices being implemented and their effectiveness in reducing nutrient loss from agricultural fields, a case analysis of nutrient pollution of the Grand Lake St. Marys and possible remedies, and ongoing work on watershed modeling to improve our understanding on nutrient loss and water quality. Presented at the 3rd International Conference on Water Resource and Environment.

  10. Near Real-Time Sensing of Clear Creek Water Quality

    Science.gov (United States)

    Loperfido, J. V.; Just, C. L.; Papanicolaou, A.; Schnoor, J. L.

    2007-12-01

    The transport of sediments, nutrients, and fecal bacteria from agricultural runoff through a watershed can have deleterious effects on receiving streams. It can impair aquatic ecosystems and cause excessive export of nutrients downstream, which can contribute to hypoxia. The ability to sense sediment and nutrient concentrations with high temporal resolution in near real-time could greatly improve our ability to understand processes which affect downstream water quality. Observations by sensors placed in streams can relay measurements to databases, and data mining can be used to glean information from streaming data for statistical and mathematical assimilation. Results from models can be used to provide advanced warning of harmful events and/or implement remedial measures. The goal of this research is to use the initial station of the Environmental Field Facility located in Clear Creek, Iowa to study processes and relationships which are essential to modeling water quality throughout the entire watershed. This station consists of several components including data loggers, telemetry hardware, and water quality sensors. Measurements collected at this field facility include conductivity, dissolved oxygen, pH, temperature, and turbidity. The measurements can be used as inputs to water quality models at the hillslope scale. This data will also provide estimates of other parameters that cannot be obtained in near real-time, and will improve our understanding of fundamental biogeochemical processes which dictate water quality in Clear Creek.

  11. A Hyporheic Mesocosm Experiment: Influence of Quantity and Quality of stream-source DOC on Rates of Hyporheic Metabolism

    Science.gov (United States)

    Serchan, S. P.; Wondzell, S. M.; Haggerty, R.; Pennington, R.; Feris, K. P.; Sanfilippo, A. R.; Reeder, W. J.; Tonina, D.

    2016-12-01

    Hyporheic zone biogeochemical processes can influence stream water chemistry. Some estimates show that 50-90% stream water CO2 is produced in the hyporheic zone through heterotrophic metabolism of organic matter, usually supplied from the stream as dissolved organic carbon (DOC). Preliminary results from our well network at the HJ Andrews WS1, indicate that dissolved inorganic carbon (DIC) is 1.5-2 times higher in the hyporheic zone than in stream water. Conversely, DOC (mg/L) is 1.5 times higher in stream water than in the hyporheic zone throughout the year. Overall, the hyporheic zone appears to be a net source of DIC. However, the increase in DIC along hyporheic flow paths is approximately 10-times greater than the loss of DOC, suggesting that metabolism of buried particulate organic carbon (POC) is a major source of organic carbon for microbial metabolism. However, we cannot completely rule out alternative sources of DIC, especially those originating in the overlying riparian soil, because hyporheic processes are difficult to isolate in well networks. To study hyporheic zone biogeochemical processes, particularly the transformation of organic carbon to inorganic carbon species, we designed and built six replicate 2-m long hyporheic mesocosms in which we are conducting DOC amendment experiments. We examine the role of DOC quality and quantity on hyporheic respiration by injecting labile (acetate) and refractory (fulvic acid) organic carbon and comparing rates of O2 consumption, DOC loss, and DIC gains against a control. We expect that stream source DOC is limiting in this small headwater stream, forcing hyporheic metabolism to rely on buried POC. However, the long burial time of POC suggests it is likely of low quality so that supplying labile DOC in stream water should shift hyporheic metabolism away from POC rather than increase the overall rate of metabolism. Future experiments will examine natural sources of DOC (stream periphyton, leaf, and soil humic

  12. Preimpoundment Water Quality Study

    Science.gov (United States)

    1981-12-01

    Passiflora incarnara No Camin N,-tn P. lutea Crossvixe Anisosticus capreolata Climbing hydrangea Decumaria barbara PJapanese Honeysuckle Lonicera japonica...Impatiens, Balsam Impatiens balsandina Curly Dock Rumex Plantain Plantago virginica Water Hemlock Cicuta maculata Violet Viola floridana Ironweied Sida acuta

  13. From a water resource to a point pollution source: the daily journey of a coastal urban stream

    OpenAIRE

    LR. Rörig; JG. Tundisi; CAF. Schettini; Pereira-Filho,J.; JT. Menezes; TCM. Almeida; SR. Urban; CM. Radetski; RC. Sperb; CA. Stramosk; RS. Macedo; MA. Castro-Silva; JAA. Perez

    2007-01-01

    The aim of this study was to understand how a stream ecosystem that flows from its fountainhead to its mouth inside a city, changes from a water resource to a point pollution source. A multidisciplinary descriptive approach was adopted, including the short-term temporal and spatial determination of physical, chemical, biological and ecotoxicological variables. Results showed that water quality rapidly decreases with increasing urbanization, leading the system to acquire raw sewage attributes ...

  14. Water Quality Control, Curriculum Guide.

    Science.gov (United States)

    Washington City Board of Education, NC.

    Activities which study how water is used, contaminated, and treated or purified are presented in this curriculum guide, culminating in the investigation of a local water quality problem. Designed as a 12 week mini-course for students in grades eight and nine, the guide first presents a review of the content, objectives, major concepts, and sources…

  15. A space satellite perspective to monitor water quality using ...

    Science.gov (United States)

    Good water quality is important for human health, economic development, and the health of our environment. Across the country, we face the challenge of degraded water quality in many of our rivers, lakes, coastal regions and oceans. The EPA National Rivers and Stream Assessment report found that more than half - 55 percent - of our rivers and streams are in poor condition for aquatic life. Likewise, the EPA Lakes Assessment found that 22 percent of our lakes are in poor condition for aquatic life. The reasons for unhealthy water quality are vast. Likewise, poor water quality has numerous impacts to ecosystems. One indicator, which trends during warm weather months, is the duration and frequency of harmful algal blooms. A healthy environment includes good water quality to support a rich and varied ecosystem, economic growth, and protects the health of the people in the community who rely on that water. Having the ability to monitor and provide timely response to harmful algal blooms would be one step in protecting the benefits people receive from good water quality (U.S. EPA 2010 and 2013). Published in the North American Lake Management Society-LakeLine Magazine.

  16. Water quality of the Swatara Creek Basin, PA

    Science.gov (United States)

    McCarren, Edward F.; Wark, J.W.; George, J.R.

    1964-01-01

    The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and

  17. Optical sensors for water quality

    Science.gov (United States)

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Shifts in land use, population, and climate have altered hydrologic systems in the United States in ways that affect water quality and ecosystem function. Water diversions, detention in reservoirs, increased channelization, and changes in rainfall and snowmelt are major causes, but there are also more subtle causes such as changes in soil temperature, atmospheric deposition, and shifting vegetation patterns. The effects on water quality are complex and interconnected, and occur at timeframes of minutes (e.g., flash floods) to decades (e.g., evolving management practices).

  18. Real-time Observational Water Level Data Stream Online Filtering Method with Hydrological Changes Semantic Constraints

    Directory of Open Access Journals (Sweden)

    DING Yulin

    2015-12-01

    Full Text Available Irregular environmental changes and occasional instrument malfunctions have made noises and exceptions in observational data prominence. Therefore, before processing real-time water level data online, data cleaning is urgently needed to ensure data quality. Since traditional data filtering methods didn't take the data change pattern into consideration, these methods have encountered some severe problems, including the poor adaptability of filter model, the low estimation precision and prohibitively high calculation cost. To overcome these shortcomings, this paper presents a hydrological change semantics constrained online Kalman filtering method: creating dynamic semantic mapping between real-time data changing pattern and the rules of spatial-temporal hydrological process evolution; implementing the change semantic constrained Kalman filtering method to support the adaptive parameter optimization. Observational water level data streams of different precipitation scenarios are selected for testing. Experimental results prove that by means of this method, more accurate and reliable water level information can be available.

  19. Surface-Water to Groundwater Transport of Pharmaceuticals in a Wastewater-Impacted Stream in the U.S.

    Science.gov (United States)

    Bradley, P. M.; Barber, L. B.; Duris, J. W.; Foreman, W. T.; Furlong, E. T.; Hubbard, L. E.; Hutchinson, K. J.; Keefe, S. H.; Kolpin, D. W.

    2014-12-01

    Wastewater pharmaceutical contamination of shallow groundwater is a substantial concern in effluent-dominated streams, due to aqueous mobility and designed bioactivity of pharmaceuticals and due to effluent-driven hydraulic gradients. Improved understanding of the environmental fate and transport of wastewater-derived pharmaceuticals is essential for effective protection of vital aquatic ecosystem services, environmental health, and drinking-water supplies. Substantial longitudinal (downstream) transport of pharmaceutical contaminants has been documented in effluent-impacted streams. The comparative lack of information on vertical and lateral transport (infiltration) of wastewater contaminants from surface-water to hyporheic and shallow groundwater compartments is a critical scientific data gap, given the potential for contamination of groundwater supplies in effluent-impacted systems. Growing dependencies on bank filtration and artificial recharge applications for release of wastewater to the environment and for pretreatment of poor-quality surface-water for drinking water emphasize the critical need to better understand the exchange of wastewater contaminants, like pharmaceuticals, between surface-water and groundwater compartments. The potential transport of effluent-derived pharmaceutical contaminants from surface-water to hyporheic-water and shallow groundwater compartments was examined in a wastewater-treatment-facility (WWTF) impacted stream in Ankeny, Iowa under effluent-dominated (71-99% of downstream flow) conditions. Strong hydraulic gradients and hydrologic connectivity were evident between surface-water and shallow-groundwater compartments in the vicinity of the WWTF outfall. Carbamazepine, sulfamethoxazole, and immunologically-related compounds were detected in groundwater 10-20 meters from the stream bank. Direct aqueous-injection HPLC-MS/MS revealed high percentage detections of pharmaceuticals (110 total analytes) in surface-water and groundwater

  20. Improving Water Quality With Conservation Buffers

    Science.gov (United States)

    Lowrance, R.; Dabney, S.; Schultz, R.

    2003-12-01

    Conservation buffer technologies are new approaches that need wider application. In-field buffer practices work best when used in combination with other buffer types and other conservation practices. Vegetative barriers may be used in combination with edge-of-field buffers to protect and improve their function and longevity by dispersing runoff and encouraging sediment deposition upslope of the buffer. It's important to understand how buffers can be managed to help reduce nutrient transport potential for high loading of nutrients from manure land application sites, A restored riparian wetland buffer retained or removed at least 59 percent of the nitrogen and 66 percent of the phosphorus that entered from an adjacent manure land application site. The Bear Creek National Restoration Demonstration Watershed project in Iowa has been the site of riparian forest buffers and filter strips creation; constructed wetlands to capture tile flow; stream-bank bioengineering; in-stream structures; and controlling livestock grazing. We need field studies that test various widths of buffers of different plant community compositions for their efficacy in trapping surface runoff, reducing nonpoint source pollutants in subsurface waters, and enhancing the aquatic ecosystem. Research is needed to evaluate the impact of different riparian grazing strategies on channel morphology, water quality, and the fate of livestock-associated pathogens and antibiotics. Integrating riparian buffers and other conservation buffers into these models is a key objective in future model development.

  1. BACTERIOLOGICAL QUALITY OF TAP WATER

    Directory of Open Access Journals (Sweden)

    Justyna Zamorska

    2016-06-01

    Full Text Available The most sensitive method of detecting contamination in water supply networks is microbiological testing. Microbiological water safety is evaluated mainly based on the results of traditional tests that rely on bacteria culturing on the so called bacterial growth mediums. Flow cytometry is a modern technology that has been used in microbiology only recently. The diagnostic method based on flow cytometry is much faster and more versatile. Microbiological quality testing was conducted in rzeszowski district, in the area of water network supplied by surface waters, and in the area of water network supplied by underground waters. The scope of the analysis of the microbiological quality of tap water was based on the determination of selected indicators of the sanitary condition of water ie; the total number of psychrophilic and mesophilic bacteria on nutrient agar (reference called Agar A and additionally called agar supplemented with R, the number of coliforms and faecal streptococci. Determination of the total number of microorganisms by flow cytometry was performed using two dyes SYBR Green and iodide pyridine. Water from underground water intakes, not under the permanent control of microbial had worse microbiological parameters. Used new methods of microbiological assays showed greater amounts of microbiological contamination.

  2. Effect of Remediation in the Chemical Evolution of Waters and Sediments Along Three Streams Impacted by Acid Mine Drainage in Southeast Ohio

    Science.gov (United States)

    Lopez, D. L.

    2005-12-01

    The chemical evolution of water and sediment along three streams impacted by acid mine drainage in southeast Ohio have been investigated (Sulphur Run in the Federal Creek watershed, Rock Run in the Monday Creek watershed, and Buffer Run in the Raccoon Creek watershed). Sulphur Run neutralizes acidic inputs naturally due to abundant carbonate lithology surrounding the stream. Rock Run and Buffer Run have been anthropogenically remediated using successive alkalinity producing wetlands (SAPS), open limestone channels, and alkaline capping of adjacent coal refuse piles. Sulphur Run has neutral to alkaline pH (which increases away from the AMD source), relatively low acidity and dissolved metals. It has the best overall water quality. However, sediment quality is poor due to mineral precipitation. At Rock Run and Buffer Run, water quality is poorer and pH is lower. Precipitation of metals is occurring at the SAPS and at the stream channel, but it is less significant due to higher solubility of metals at lower pH. Accumulation of metals in the sediments downstream of the SAPS suggests that metal-based compounds precipitated in the SAPS can be transported from there to the stream. In general, a constant supply of alkaline material (such as in watersheds rich in carbonates) may be more effective at improving water quality than passive treatment methods (e.g. SAPS), but without a means of retaining precipitates, sediment quality will be degraded by accumulation of metals in both, anthropogenically remediated AMD streams as well as in naturally remediated streams.

  3. Stream Physical Characteristics Impact Habitat Quality for Pacific Salmon in Two Temperate Coastal Watersheds.

    Science.gov (United States)

    Fellman, Jason B; Hood, Eran; Dryer, William; Pyare, Sanjay

    2015-01-01

    Climate warming is likely to cause both indirect and direct impacts on the biophysical properties of stream ecosystems especially in regions that support societally important fish species such as Pacific salmon. We studied the seasonal variability and interaction between stream temperature and DO in a low-gradient, forested stream and a glacial-fed stream in coastal southeast Alaska to assess how these key physical parameters impact freshwater habitat quality for salmon. We also use multiple regression analysis to evaluate how discharge and air temperature influence the seasonal patterns in stream temperature and DO. Mean daily stream temperature ranged from 1.1 to 16.4°C in non-glacial Peterson Creek but only 1.0 to 8.8°C in glacial-fed Cowee Creek, reflecting the strong moderating influence glacier meltwater had on stream temperature. Peterson Creek had mean daily DO concentrations ranging from 3.8 to 14.1 mg L(-1) suggesting future climate changes could result in an even greater depletion in DO. Mean daily stream temperature strongly controlled mean daily DO in both Peterson (R2=0.82, Psalmon were abundant. Our results demonstrate the complexity of stream temperature and DO regimes in coastal temperate watersheds and highlight the need for watershed managers to move towards multi-factor risk assessment of potential habitat quality for salmon rather than single factor assessments alone.

  4. Class frequency distribution for a surface raw water quality index in ...

    African Journals Online (AJOL)

    A harmonised in-stream water quality guideline was constructed to develop a water quality index for the Upper and Middle Vaal Water Management Areas, in the Vaal basin of South Africa. The study area consisted of 12 water quality monitoring points; V1, S1, B1, S4, K9, T1, R2, L1, V7, V9, V12, and V17. These points are ...

  5. Numerical Modelling of Streams

    DEFF Research Database (Denmark)

    Vestergaard, Kristian

    In recent years there has been a sharp increase in the use of numerical water quality models. Numeric water quality modeling can be divided into three steps: Hydrodynamic modeling for the determination of stream flow and water levels. Modelling of transport and dispersion of a conservative dissol...... dissolved substance. Modeling of chemical and biological turnover of substances....

  6. Anthropogenic impact on water chemistry and benthic macroinvertebrate associated changes in a southern Nigeria stream.

    Science.gov (United States)

    Arimoro, Francis O; Odume, O Nelson; Uhunoma, Samson I; Edegbene, Augustine O

    2015-02-01

    The Ogba River in southern Nigeria is an important water resource for its riparian communities. This study evaluates impact of anthropogenic influences on the Ogba River using water chemistry and macroinvertebrate data sets obtained over a period of 6 months between January and June 2012. Four stations, stations 1-4, characterised by various human activities were chosen along the river. Organic wastes from domestic and industrial sources were the major point sources of pollutants. Station 2 where the municipal wastewater drains into the river had elevated values of flow velocity, BOD5, sulphate, phosphate, nitrate and sodium. Based on the canonical correspondence analysis (CCA), 5-day biochemical oxygen demand (BOD5), sulphate, nitrate and phosphate were the main factors that help to shape the macroinvertebrate assemblage structure of the Ogba River. Macroinvertebrates clustered strongly by stations than by seasons indicating that water quality differences between the stations were responsible for the observed differences in the biotic assemblage. The preponderance of naidid oligochaetes, baetid nymphs and certain tolerant dipteran taxa including chironomids and ceratopogonids at all four stations was an indication that the entire water body was stressed. The odonates were the single most abundant taxa; their dominance could be attributed to the vegetative nature of the stream, favouring odonate colonisation. Overall, the responses of macroinvertebrates to stress were reflected by the different assemblage structures recorded at the four study stations. Substrate and microhabitat obliteration and poor water quality appeared to be the factors responsible for the observed assemblage structure in the Ogba River.

  7. Olfactory responses to natal stream water in sockeye salmon by BOLD fMRI.

    Directory of Open Access Journals (Sweden)

    Hiroshi Bandoh

    Full Text Available Many studies have shown that juvenile salmon imprint olfactory memory of natal stream odors during downstream migration, and adults recall this stream-specific odor information to discriminate their natal stream during upstream migration for spawning. The odor information processing of the natal stream in the salmon brain, however, has not been clarified. We applied blood oxygenation level-dependent (BOLD functional magnetic resonance imaging to investigate the odor information processing of the natal stream in the olfactory bulb and telencephalon of lacustrine sockeye salmon (Oncorhynchus nerka. The strong responses to the natal stream water were mainly observed in the lateral area of dorsal telencephalon (Dl, which are homologous to the medial pallium (hippocampus in terrestrial vertebrates. Although the concentration of L-serine (1 mM in the control water was 20,000-times higher than that of total amino acid in the natal stream water (47.5 nM, the BOLD signals resulting from the natal stream water were stronger than those by L-serine in the Dl. We concluded that sockeye salmon could process the odor information of the natal stream by integrating information in the Dl area of the telencephalon.

  8. The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo.

    Science.gov (United States)

    Luke, Sarah H; Barclay, Holly; Bidin, Kawi; Chey, Vun Khen; Ewers, Robert M; Foster, William A; Nainar, Anand; Pfeifer, Marion; Reynolds, Glen; Turner, Edgar C; Walsh, Rory P D; Aldridge, David C

    2017-06-01

    Freshwaters provide valuable habitat and important ecosystem services but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian-scale disturbance. We studied 16 streams in Sabah, Borneo, including old-growth forest, logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the whole catchment and compared it with stream environmental conditions including water quality, structural complexity, and organic inputs. We found that streams with the highest riparian forest quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy cover, more stored leaf litter, and wider channels than oil palm streams with the lowest riparian forest quality. Other variables were significantly related to catchment-scale forest quality, with streams in the highest quality forest catchments having 40% more bedrock and 20 times more dead wood, along with higher phosphorus, and lower nitrate-N levels compared to streams with the lowest catchment-scale forest quality. Although riparian buffer strips went some way to protecting waterways, they did not maintain fully forest-like stream conditions. In addition, logged forest streams still showed signs of disturbance 10-15 years after selective logging. Our results suggest that maintenance and restoration of buffer strips can help to protect healthy freshwater ecosystems but logging practices and catchment-scale forest management also need to be considered.

  9. Urban and Suburban Influences on Water Chemistry in Washington DC: Impervious Surfaces and Urban Stream Syndrome

    Science.gov (United States)

    MacAvoy, S. E.; Petersen, E.

    2015-12-01

    Among the challenges facing urban rivers are water stormwater runoff problems and changing water chemistry, not only from air and water pollution sources, but also from altered geology with the development of "urban karst". Seventy five percent of the Anacostia River in Washington, D.C. is urban or impervious. The Anacostia River experiences environmental challenges similar to those of other urban industrial rivers (heavy metal, PCB and PAH contamination). It also has Ca/Sr ratios above 200, and Na concentrations higher than Ca, and elevated ionic strength, all associated with extended chemical interaction with concrete. While these chemical characteristics have been documented in the urban areas within DC, they have not been examined in the largely suburban/mixed development tributaries of the Anacostia. Here we examine the base-flow geochemistry of the Anacostia River and its suburban tributaries (6 locations) over a year (November 2014- August 2015), concentrating on the following water chemistry variables: pH, hardness, SAR, alkalinity, Ca, Mg, Na, K, Fe, Mn, Zn, Al, Ba, Ni, total P, S, Sr, NO3-, NH4+, PO43-. NO3- and NH4+ were generally lowest in at all sites in January, but rose to between 0.5 and 2.4 mg/L in June, with highest NO3- concentrations in suburban areas. Na and Cl concentrations were 5x higher in suburban areas than urban areas during the winter months. Ca/Sr concentration ratios, were between 120 and 200 for suburban sites but increased as the sites became more urban (to a high of 240 for the most urban site). These trends have been observed in other urban streams, and correlate with percent impervious area. The data follow patterns expected for "urban stream syndrome" and dissolution of concrete. Suburban areas, with their relatively small streams, show greater winter salting effects than more urban areas down stream. Suburban areas also show higher NO3- (and occasionally higher NH4+) than urban areas except in winter. The data presented here

  10. 18 CFR 801.7 - Water quality.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7... POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin for water quality management and control. However, protection of the water resources of the basin from...

  11. Attenuation coefficients for water quality trading.

    Science.gov (United States)

    Keller, Arturo A; Chen, Xiaoli; Fox, Jessica; Fulda, Matt; Dorsey, Rebecca; Seapy, Briana; Glenday, Julia; Bray, Erin

    2014-06-17

    Water quality trading has been proposed as a cost-effective approach for reducing nutrient loads through credit generation from agricultural or point source reductions sold to buyers facing costly options. We present a systematic approach to determine attenuation coefficients and their uncertainty. Using a process-based model, we determine attenuation with safety margins at many watersheds for total nitrogen (TN) and total phosphorus (TP) loads as they transport from point of load reduction to the credit buyer. TN and TP in-stream attenuation generally increases with decreasing mean river flow; smaller rivers in the modeled region of the Ohio River Basin had TN attenuation factors per km, including safety margins, of 0.19-1.6%, medium rivers of 0.14-1.2%, large rivers of 0.13-1.1%, and very large rivers of 0.04-0.42%. Attenuation in ditches transporting nutrients from farms to receiving rivers is 0.4%/km for TN, while for TP attenuation in ditches can be up to 2%/km. A 95 percentile safety margin of 30-40% for TN and 6-10% for TP, applied to the attenuation per km factors, was determined from the in-stream sensitivity of load reductions to watershed model parameters. For perspective, over 50 km a 1% per km factor would result in 50% attenuation = 2:1 trading ratio.

  12. 5 Water Quality.cdr

    African Journals Online (AJOL)

    Administrator

    degraded forested area from the developing world where agricultural-derived revenue ... The water quality assessment conducted in the Densu, Birim and Ayensu Basins of Ghana in the Okyeman area between August 2005 and June 2006 .... Akwadun (Bridge-down) and. Kukurantumi. • Birim River Stations: Bunso Cocoa.

  13. Portable water quality monitoring system

    Science.gov (United States)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  14. Shallow Water Optical Water Quality Buoy

    Science.gov (United States)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  15. Stream Physical Characteristics Impact Habitat Quality for Pacific Salmon in Two Temperate Coastal Watersheds.

    Directory of Open Access Journals (Sweden)

    Jason B Fellman

    Full Text Available Climate warming is likely to cause both indirect and direct impacts on the biophysical properties of stream ecosystems especially in regions that support societally important fish species such as Pacific salmon. We studied the seasonal variability and interaction between stream temperature and DO in a low-gradient, forested stream and a glacial-fed stream in coastal southeast Alaska to assess how these key physical parameters impact freshwater habitat quality for salmon. We also use multiple regression analysis to evaluate how discharge and air temperature influence the seasonal patterns in stream temperature and DO. Mean daily stream temperature ranged from 1.1 to 16.4°C in non-glacial Peterson Creek but only 1.0 to 8.8°C in glacial-fed Cowee Creek, reflecting the strong moderating influence glacier meltwater had on stream temperature. Peterson Creek had mean daily DO concentrations ranging from 3.8 to 14.1 mg L(-1 suggesting future climate changes could result in an even greater depletion in DO. Mean daily stream temperature strongly controlled mean daily DO in both Peterson (R2=0.82, P<0.01 and Cowee Creek (R2=0.93, P<0.01. However, DO in Peterson Creek was mildly related to stream temperature (R2=0.15, P<0.01 and strongly influenced by discharge (R2=0.46, P<0.01 on days when stream temperature exceeded 10°C. Moreover, Peterson Creek had DO values that were particularly low (<5.0 mg L(-1 on days when discharge was low but also when spawning salmon were abundant. Our results demonstrate the complexity of stream temperature and DO regimes in coastal temperate watersheds and highlight the need for watershed managers to move towards multi-factor risk assessment of potential habitat quality for salmon rather than single factor assessments alone.

  16. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2008

    Science.gov (United States)

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.A.

    2012-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area's water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2007 through September 2008. Major findings for this period include:

  17. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    Science.gov (United States)

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  18. Methodology to produce a water and energy stream map (WESM in the South African manufacturing industry

    Directory of Open Access Journals (Sweden)

    Davies, Edward

    2016-11-01

    Full Text Available The increasing demand for water and energy in South Africa, and the capacity constraints and restrictions of both resources, have led to a rapid increase in their cost. The manufacturing industry remains South Africa’s third-largest consumer of water and second- largest consumer of national energy. The improvement of water and energy efficiency is becoming an increasingly important theme for both organisational success and national economic sustainability. This paper presents the ‘lean based water and energy stream mapping framework’ developed for the manufacturing industry, with the specific objective of decreasing its water and energy intensity. As with the traditional value stream mapping tool, the water and energy stream mapping focuses on eliminating water- and energy-specific wastes within a process. Water and energy waste categories that will be used in conjunction with the framework will also be discussed. The key objective of this paper is to detail the process of creating the water and energy stream mapping, and the statistical forecasting methodology used to develop the baseline water and energy demand data. The outcome of the implementation of the framework is the future state water and energy stream mapping, which is effectively a blueprint for increased water and energy efficiency within a studied process.

  19. A space satellite perspective to monitor water quality using your mobile phone

    Science.gov (United States)

    Good water quality is important for human health, economic development, and the health of our environment. Across the country, we face the challenge of degraded water quality in many of our rivers, lakes, coastal regions and oceans. The EPA National Rivers and Stream Assessment r...

  20. Eliminating Phytophthora spp. from stream water throughout the year with algaecides.

    Science.gov (United States)

    Inga M. Meadows; Jaesoon Hwang; Steven N. Jeffers

    2013-01-01

    Due to the aquatic nature of oomycetes, Phytophthora spp. can be found in a wide variety of waterways in and around natural and agricultural ecosystems—including forest streams, urban streams, and irrigation ponds. They are disseminated effectively and efficiently in flowing water, so Phytophthora spp. can be moved readily from...

  1. Short-term stream water temperature observations permit rapid assessment of potential climate change impacts

    Science.gov (United States)

    Peter Caldwell; Catalina Segura; Shelby Gull Laird; Ge Sun; Steven G. McNulty; Maria Sandercock; Johnny Boggs; James M. Vose

    2015-01-01

    Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long-term datasets are available to evaluate changes over time. In this study, we...

  2. Saline waters and soil quality

    Directory of Open Access Journals (Sweden)

    Carmelo Dazzi

    Full Text Available The processes of secondary salinization due to anthropic actions are considered one of the most important environmental emergencies owing to their level of dangerousness. The soils of the dry areas of the Mediterranean basin are particularly prone to these processes. In such environments, it is imperative to resort to irrigation that allow for the reduction of risks due to soil moisture deficit and for the stabilization of yields. Frequently, saline waters are used that cause a lowering of the soil quality. If on one hand the presence of salts can benefit the soils mainly improving soil structure, on the other high levels of salts produce negative effects on soils and crops.When sodium prevails problems of soil quality can rise such as structure degradation, low hydraulic conductivity, soil sealing. The processes of secondary soil salinization due to the use of saline waters for irrigation are particularly evident in our Country among others. In Italy, saline soils are mainly distributed in long strips of the coastal belt of the Tyrrhenian sea and Adriatic sea, in the coastal belt of Apulia, Basilicata and Sardinia and in wide areas of Sicily. It is not possible to suggest general actions to combat soil salinization because we must take into consideration that in the relationship soil-water two different quality concept interact: one linked to the soils, the other to the waters.

  3. Saline waters and soil quality

    Directory of Open Access Journals (Sweden)

    Carmelo Dazzi

    2011-02-01

    Full Text Available The processes of secondary salinization due to anthropic actions are considered one of the most important environmental emergencies owing to their level of dangerousness. The soils of the dry areas of the Mediterranean basin are particularly prone to these processes. In such environments, it is imperative to resort to irrigation that allow for the reduction of risks due to soil moisture deficit and for the stabilization of yields. Frequently, saline waters are used that cause a lowering of the soil quality. If on one hand the presence of salts can benefit the soils mainly improving soil structure, on the other high levels of salts produce negative effects on soils and crops.When sodium prevails problems of soil quality can rise such as structure degradation, low hydraulic conductivity, soil sealing. The processes of secondary soil salinization due to the use of saline waters for irrigation are particularly evident in our Country among others. In Italy, saline soils are mainly distributed in long strips of the coastal belt of the Tyrrhenian sea and Adriatic sea, in the coastal belt of Apulia, Basilicata and Sardinia and in wide areas of Sicily. It is not possible to suggest general actions to combat soil salinization because we must take into consideration that in the relationship soil-water two different quality concept interact: one linked to the soils, the other to the waters.

  4. Understanding Groundwater and Surface Water Exchange Processes Along a Controlled Stream Using Thermal Remote Sensing and In-Situ Measurements

    Science.gov (United States)

    Varli, D.; Yilmaz, K. K.

    2016-12-01

    Effective management of water resources requires understanding and quantification of interaction between groundwater and surface water bodies. Moreover, the exchange processes have recently received increasing attention due to important influences on biogeochemical and ecological status of watersheds. In this study we investigated the exchange processes between surface water and groundwater along Kirmir stream - a controlled stream nearby Kizilcahamam, Ankara, Turkey. At the first stage, potential stream reaches where the exchange processes could occur were pinpointed using geological and geomorphological information. Then, thermal remote sensing was utilized to further narrow down the potential locations in which interaction could occur at a smaller scale. Nested piezometers were installed at identified locations to observe the variations in vertical hydraulic gradient over time. Differential discharge measurements were performed to understand the gains and losses along the stream reach. Streambed temperature measurements were taken at two different depths for a period of time using temperature loggers to calculate the vertical fluid fluxes through the streambed at various locations. Basic water quality field parameters (temperature, electrical conductivity, total dissolved solid amount, dissolved oxygen, pH and oxidation - reduction potential) were measured along the stream reach, from surface water and the piezometers as wells as from the nearby springs and wells. Chloride mass balance was performed to find the contribution of groundwater and chloride concentrations were associated with the geology of the area. This hierarchical, multi-scale methodology provided an efficient and effective way to determine the locations and the direction of groundwater and surface water exchange processes within the study area.

  5. A geospatial approach to identify water quality issues for National Wildlife Refuges in Oregon and Washington

    Science.gov (United States)

    Hinck, Jo Ellen; Chojnacki, Kimberly; Finger, Susan E.; Linder, Greg; Kilbride, Kevin

    2011-01-01

    Many National Wildlife Refuges (Refuges) have impaired water quality resulting from historic and current land uses, upstream sources, and aerial pollutant deposition. Competing duties limit the time available for Refuge staff to identify and evaluate potential water quality issues. As a result, water quality–related issues may not be resolved until a problem has already arisen. This study developed a geospatial approach for identifying and prioritizing water quality issues affecting natural resources (including migratory birds and federally listed species) within Refuge boundaries. We assessed the location and status of streams pursuant to the Clean Water Act in relation to individual Refuges in Oregon and Washington, United States. Although twelve Refuges in Oregon (60%) and eight Refuges in Washington (40%) were assessed under the Clean Water Act, only 12% and 3% of total Refuge stream lengths were assessed, respectively. Very few assessed Refuge streams were not designated as impaired (0% in Oregon, 1% in Washington). Despite the low proportions of stream lengths assessed, most Refuges in Oregon (70%) and Washington (65%) are located in watersheds with approved total maximum daily loads. We developed summaries of current water quality issues for individual Refuges and identified large gaps for Refuge-specific water quality data and habitat utilization by sensitive species. We conclude that monitoring is warranted on many Refuges to better characterize water quality under the Clean Water Act.

  6. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  7. 9 CFR 3.106 - Water quality.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure... additives (e.g. chlorine and copper) that are added to the water to maintain water quality standards...

  8. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry......The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... weather, while the overflow from the combined sewer system plays a minor role. Oxygen depletion in urban rivers is caused by intermittent discharges from both sewer system and wastewater treatment plant. Neglecting one of them in the evaluation of the environmental impact gives a wrong impression of total...

  9. Mycoflora and Water Quality index Assessment of Water Sources in ...

    African Journals Online (AJOL)

    Mycoflora and Water quality index assessment studies of hand-dug wells and a river in Oproama Community, Niger Delta were studied. Water samples was taken from the ten sampling stations (7 wells and 3 river points) and water quality index using water quality index calculator given by National Sanitation Foundation ...

  10. Freshwater quality of a stream in agricultural area where organic compost from animal and vegetable wastes is used

    Directory of Open Access Journals (Sweden)

    Luciana Maria Saran

    Full Text Available ABSTRACT Organic compost from biomass residues constitutes a viable alternative for partial or total replacement of mineral fertilizers for growing vegetables. This study evaluated the effects of compost on the water quality of a stream used mainly for irrigation of agricultural crops cultivated in nearby soil that has been treated with organic compost produced by carcasses, animal and vegetable waste for the last ten years. We sampled water biannually for two years, 2013 and 2014, from five locations along the stream. Physical variables and some chemical variables were analyzed. We also analyzed the total number of coliforms (Escherichia coli. Bacterial populations were compared by carbon substrate consumption. Total phosphorus contents in the samples from 2014 exceeded 0.1 mg L-1. The concentrations of other chemical species analyzed and the results for the physical variables were in accordance with the expected values compared with national and international water quality standards. The environment showed differential carbon source consumption and a high diversity of microorganisms, but our results did not show any evidence that the applied compost is changing the microbial population or its metabolic activity. This study shows that the use of the organic compost in agricultural areas seen does not negatively influence the quality of surface water in the study area. These results are important because the process of composting animal and vegetable waste and the use of compost obtained can be an alternative sustainable for adequate destination of these wastes.

  11. Enhancing the quality of service of video streaming over MANETs using MDC and FEC

    Science.gov (United States)

    Zang, Weihua; Guo, Rui

    2012-04-01

    Path and server diversities have been used to guarantee reliable video streaming communication over wireless networks. In this paper, server diversity over mobile wireless ad hoc networks (MANETs) is implemented. Particularly, multipoint-to-point transmission together with multiple description coding (MDC) and forward error correction (FEC) technique is used to enhance the quality of service of video streaming over the wireless lossy networks. Additionally, the dynamic source routing (DSR) protocol is used to discover maximally disjoint routes for each sender and to distribute the workload evenly within the MANETs for video streaming applications. NS-2 Simulation study demonstrates the feasibility of the proposed mechanism and it shows that the approach achieves better quality of video streaming, in terms of the playable frame rate, reliability and real-time performance on the receiving side.

  12. Using Value Stream Mapping to improve quality of care in low-resource facility settings.

    Science.gov (United States)

    Ramaswamy, Rohit; Rothschild, Claire; Alabi, Funmi; Wachira, Eric; Muigai, Faith; Pearson, Nick

    2017-11-01

    Jacaranda Health (JH) is a Kenya-based organization that attempts to provide affordable, high-quality maternal and newborn healthcare through a chain of private health facilities in Nairobi. JH needed to adopted quality improvement as an organization-wide strategy to optimize effectiveness and efficiency. Value Stream Mapping, a Lean Management tool, was used to engage staff in prioritizing opportunities to improve clinical outcomes and patient-centered quality of care. Implementation was accomplished through a five-step process: (i) leadership engagement and commitment; (ii) staff training; (iii) team formation; (iv) process walkthrough; and (v) construction and validation. The Value Stream Map allowed the organization to come together and develop an end-to-end view of the process of care at JH and to select improvement opportunities for the entire system. The Value Stream Map is a simple visual tool that allows organizations to engage staff at all levels to gain commitment around quality improvement efforts.

  13. Influence of teleconnection on water quality in agricultural river catchments

    Science.gov (United States)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2015-04-01

    Influences such as weather, flow controls and lag time play an important role in the processes influencing the water quality of agricultural catchments. In particular weather signals need to be clearly considered when interpreting the effectiveness of current measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies. In north-western Europe weather patterns and trends are influenced by large-scale systems such as the North Atlantic Oscillation (NAO) and the position of the Gulf Stream, the latter expressed as the Gulf Stream North Wall index (GSNW index). Here we present five years of monthly data of nitrate-N concentration in stream water and groundwater (aggregated from sub-hourly monitoring in the stream outlet and monthly sampling in multilevel monitoring wells) from four agricultural catchments (ca. 10 km2) together with monitored weather parameters, long-term weather data and the GSNW index. The catchments are situated in Ireland on the Atlantic seaboard and are susceptible to sudden and seasonal shifts in oceanic climate patterns. Rain anomalies and soil moisture deficit dynamics were similar to the dynamics of the GSNW index. There were monitored changes in nitrate-N concentration in both groundwater and surface water with no apparent connection to agricultural management; instead such changes also appeared to follow the GSNW index. For example, in catchments with poorly drained soils and a 'flashy hydrology' there were seasonal dynamics in nitrate-N concentration that correlated with the seasonal dynamics of the GSNW index. In a groundwater driven catchment there was a consistent increase in nitrate-N concentration over the monitored period which may be the result of increasingly more recharge in summer and autumn (as indicated by more flux in the GSNW index). The results highlight that the position of the Gulf Stream may influence the nitrate-N concentration in groundwater and stream water and there is a risk

  14. Characterization of Flow Paths, Residence Time and Media Chemistry in Complex Landscapes to Integrate Surface, Groundwater and Stream Processes and Inform Models of Hydrologic and Water Quality Response to Land Use Activities; Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Bitew, Menberu [Univ. of Georgia Research Foundation, Inc., Athens, GA (United States); Jackson, Rhett [University of Georgia Research Foundation, Inc.

    2015-02-01

    The objective of this report is to document the methodology used to calculate the three hydro-geomorphic indices: C Index, Nhot spot, and Interflow Contributing Area (IFC Area). These indices were applied in the Upper Four Mile Creek Watershed in order to better understand the potential mechanisms controlling retention time, path lengths, and potential for nutrient and solute metabolism and exchange associated with the geomorphic configurations of the upland contributing areas, groundwater, the riparian zone, and stream channels.

  15. Quantity is nothing without quality: automated QA/QC for streaming sensor networks

    Science.gov (United States)

    John L. Campbell; Lindsey E. Rustad; John H. Porter; Jeffrey R. Taylor; Ethan W. Dereszynski; James B. Shanley; Corinna Gries; Donald L. Henshaw; Mary E. Martin; Wade. M. Sheldon; Emery R. Boose

    2013-01-01

    Sensor networks are revolutionizing environmental monitoring by producing massive quantities of data that are being made publically available in near real time. These data streams pose a challenge for ecologists because traditional approaches to quality assurance and quality control are no longer practical when confronted with the size of these data sets and the...

  16. The Modeling of Time-Varying Stream Water Age Distributions: Preliminary Investigations with Non-Conservative Solutes

    Science.gov (United States)

    Wilusz, D. C.; Harman, C. J.; Ball, W. P.

    2014-12-01

    Modeling the dynamics of chemical transport from the landscape to streams is necessary for water quality management. Previous work has shown that estimates of the distribution of water age in streams, the transit time distribution (TTD), can improve prediction of the concentration of conservative tracers (i.e., ones that "follow the water") based on upstream watershed inputs. A major challenge however has been accounting for climate and transport variability when estimating TDDs at the catchment scale. In this regard, Harman (2014, in review) proposed the Omega modeling framework capable of using watershed hydraulic fluxes to approximate the time-varying TTD. The approach was previously applied to the Plynlimon research watershed in Wales to simulate stream concentration dynamics of a conservative tracer (chloride) including 1/f attenuation of the power spectra density. In this study we explore the extent to which TTDs estimated by the Omega model vary with the concentration of non-conservative tracers (i.e., ones whose concentrations are also affected by transformations and interactions with other phases). First we test the hypothesis that the TTD calibrated in Plynlimon can explain a large part of the variation in non-conservative stream water constituents associated with storm flow (acidity, Al, DOC, Fe) and base flow (Ca, Si). While controlling for discharge, we show a correlation between the percentage of water of different ages and constituent concentration. Second, we test the hypothesis that TTDs help explain variation in stream nitrate concentration, which is of particular interest for pollution control but can be highly non-conservative. We compare simulation runs from Plynlimon and the agricultural Choptank watershed in Maryland, USA. Following a top-down approach, we estimate nitrate concentration as if it were a conservative tracer and examine the structure of residuals at different temporal resolutions. Finally, we consider model modifications to

  17. The quality of drinking water used by the communities in some ...

    African Journals Online (AJOL)

    Risk of Contamination (ROC) assessment agreed with water quality analysis that found boreholes to be the safest (<1 CFU/100mL) water source, followed in order by rainwater, standpipe taps and protected springs. Shallow wells, unprotected springs and surface water (e.g. streams) were high risk (≥100 CFU/100 mL) ...

  18. Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration Model

    Directory of Open Access Journals (Sweden)

    J. Seibert

    2009-12-01

    Full Text Available The riparian zone, the last few metres of soil through which water flows before entering a gaining stream, has been identified as a first order control on key aspects of stream water chemistry dynamics. We propose that the distribution of lateral flow of water across the vertical profile of soil water chemistry in the riparian zone provides a conceptual explanation of how this control functions in catchments where matrix flow predominates. This paper presents a mathematical implementation of this concept as well as the model assumptions. We also present an analytical solution, which provides a physical basis for the commonly used power-law flow-load equation. This approach quantifies the concept of riparian control on stream-water chemistry providing a basis for testing the concept of riparian control. By backward calculation of soil-water-chemistry profiles, and comparing those with observed profiles we demonstrate that the simple juxtaposition of the vertical profiles of water flux and soil water chemistry provides a plausible explanation for observed variations in stream water chemistry of several major stream components such as Total Organic Carbon (TOC, magnesium, calcium and chloride. The "static" implementation of the model structure presented here provides a basis for further development to account for seasonal influences and hydrological hysteresis in the representation of hyporheic, riparian, and hillslope processes.

  19. Geospatial database of the study boundary, sampled sites, watersheds, and riparian zones developed for the U.S. Geological Survey Midwest Stream Quality Assessment

    Science.gov (United States)

    Nakagaki, Naomi; Qi, Sharon L.; Frey, Jeffrey W.; Button, Daniel T.; Baker, Nancy T.; Burley, Thomas E.; Van Metre, Peter C.

    2016-01-01

    In 2013, the first of several Regional Stream Quality Assessments (RSQA) was done in the Midwest United States. The Midwest Stream Quality Assessment (MSQA) was a collaborative study by the U.S. Geological Survey (USGS) National Water Quality Assessment (NAWQA), the USGS Columbia Environmental Research Center, and the U.S. Environmental Protection Agency (USEPA) National Rivers and Streams Assessment (NRSA). One of the objectives of the RSQA, and thus the MSQA, is to characterize the relationships between water-quality stressors and stream ecology and to determine the relative effects of these stressors on aquatic biota within the streams (U.S. Geological Survey, 2012). To meet this objective, a framework of fundamental geospatial data was required to develop physical and anthropogenic characteristics of the study region, sampled sites and corresponding watersheds, and riparian zones. This dataset is composed of the four fundamental geospatial data layers that were developed for the Midwest study: 1) study boundary, 2) sampled sites, 3) watershed boundaries, and 4) riparian-zone boundaries.References cited:Nakagaki, N., Qi, S.L., and Baker, N.T., 2016, Selected environmental characteristics of sampled sites, watersheds, and riparian zones for the U.S. Geological Survey Midwest Stream Quality Assessment: U.S. Geological Survey data release, http://dx.doi.org/10.5066/F77W699S.U.S. Geological Survey, 2012, The Midwest stream quality assessment: U.S. Geological Survey Fact Sheet 2012-3124, 2 p.

  20. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning; Yearsley, John; Baptiste, Marisa; Cao, Qian; Lettenmaier, Dennis P.; Nijssen, B.

    2016-12-15

    While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution. DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and

  1. From soil water to surface water - how the riparian zone controls element transport from a boreal forest to a stream

    Science.gov (United States)

    Lidman, Fredrik; Boily, Åsa; Laudon, Hjalmar; Köhler, Stephan J.

    2017-06-01

    Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr) and other parameters such as sulfate and total organic carbon (TOC). The results showed that the concentrations of most investigated elements increased substantially (up to 60 times) as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the solubility of many

  2. Quality of surface-water supplies in the Triangle area of North Carolina, water year 2009

    Science.gov (United States)

    Pfeifle, C. A.; Giorgino, M. J.; Rasmussen, R. B.

    2014-01-01

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2008 through September 2009. Major findings for this period include: - Annual precipitation was approximately 20 percent below the long-term mean (average) annual precipitation. - Streamflow was below the long-term mean at the 10 project streamgages during most of the year. - More than 7,000 individual measurements of water quality were made at a total of 26 sites—15 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-seven water-quality properties and constituents were measured. - All observations met North Carolina water-quality standards for water temperature, pH, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium. - North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved oxygen percent saturation, chlorophyll a, mercury, copper, iron, manganese, silver, and zinc. Exceedances occurred at 23 sites—13 in the Neuse River Basin and 10 in the Cape Fear River Basin. - Stream samples collected during storm events contained elevated concentrations of 18 water-quality constituents compared to samples collected during non-storm events. - Concentrations of nitrogen and phosphorus were within ranges observed during previous years. - Five reservoirs had chlorophyll a concentrations in excess of 40 micrograms per liter at least once during 2009: Little River Reservoir, Falls Lake, Cane Creek Reservoir, University Lake, and Jordan Lake.

  3. Cold-water refuges for climate resilience in Oregon coastal stream

    Science.gov (United States)

    Many rivers and streams in the Pacific Northwest are currently listed as impaired under the Clean Water Act as a result of high summer water temperatures. Adverse effects of warm waters include impacts to salmon and steelhead populations that may already be stressed by habitat al...

  4. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Science.gov (United States)

    2013-04-04

    ... AGENCY 40 CFR Part 131 RIN 2040-AF33 Water Quality Standards; Withdrawal of Certain Federal Water Quality... certain human health and aquatic life water quality criteria applicable to waters of New Jersey, Puerto... establish numeric water quality criteria for 12 states and two Territories, including New Jersey, Puerto...

  5. Stream restoration and sewers impact sources and fluxes of water, carbon, and nutrients in urban watersheds

    Science.gov (United States)

    Pennino, Michael J.; Kaushal, Sujay S.; Mayer, Paul M.; Utz, Ryan M.; Cooper, Curtis A.

    2016-08-01

    An improved understanding of sources and timing of water, carbon, and nutrient fluxes associated with urban infrastructure and stream restoration is critical for guiding effective watershed management globally. We investigated how sources, fluxes, and flowpaths of water, carbon (C), nitrogen (N), and phosphorus (P) shift in response to differences in urban stream restoration and sewer infrastructure. We compared an urban restored stream with two urban degraded streams draining varying levels of urban development and one stream with upland stormwater management systems over a 3-year period. We found that there was significantly decreased peak discharge in response to precipitation events following stream restoration. Similarly, we found that the restored stream showed significantly lower (p management systems and less impervious surface cover in its watershed (13.2 ± 1.9 mm day-1). The restored stream exported most carbon, nitrogen, and phosphorus at relatively lower streamflow than the two more urban catchments, which exported most carbon and nutrients at higher streamflow. Annual exports of total carbon (6.6 ± 0.5 kg ha-1 yr-1), total nitrogen (4.5 ± 0.3 kg ha-1 yr-1), and total phosphorus (161 ± 15 kg ha-1 yr-1) were significantly lower in the restored stream compared to both urban degraded streams (p management systems, for N exports. However, nitrate isotope data suggested that 55 ± 1 % of the nitrate in the urban restored stream was derived from leaky sanitary sewers (during baseflow), statistically similar to the urban degraded streams. These isotopic results as well as additional tracers, including fluoride (added to drinking water) and iodide (contained in dietary salt), suggested that groundwater contamination was a major source of urban nutrient fluxes, which has been less considered compared to upland sources. Overall, leaking sewer pipes are a problem globally and our results suggest that combining stream restoration with restoration of aging sewer

  6. R2 Water Quality Portal Monitoring Stations

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on...

  7. HAWQS (Hydrologic and Water Quality System)

    Science.gov (United States)

    A water quantity and quality modeling system to evaluate the impacts of management alternatives, pollution control scenarios, and climate change scenarios on the quantity and quality of water at a national scale.

  8. Water Quality Trading Toolkit for Permit Writers

    Science.gov (United States)

    The Water Quality Trading Toolkit for Permit Writers is EPA’s first “how-to” manual on designing and implementing water quality trading programs. It helps NPDES permitting authorities incorporate trading provisions into permits.

  9. National Water Quality Standards Database (NWQSD)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Water Quality Standards Database (WQSDB) provides access to EPA and state water quality standards (WQS) information in text, tables, and maps. This data...

  10. Assessing water quality in Lake Naivasha

    NARCIS (Netherlands)

    Ndungu, J.N.

    2014-01-01

    Water quality in aquatic systems is important because it maintains the ecological processes that support biodiversity. However, declining water quality due to environmental perturbations threatens the stability of the biotic integrity and therefore hinders the ecosystem services and functions of

  11. Ecological attributes of the benthic community and indices of water quality in urban, rural and preserved environments

    Directory of Open Access Journals (Sweden)

    Claudia Eiko Yoshida

    Full Text Available INTRODUCTION: Reference streams are pristine streams, untouched or unaltered by man, it being possible to use their environmental characteristics as quality threshold values. Besides the organic impacts measured via water quality biological monitoring programs, it has become necessary to evaluate the relationship between alterations in the landscape of streams and surrounding areas and changes in the structure of the macroinvertebrate community; AIM: The objective of the present study was to correlate the changes in the landscape with the ecological attributes of the community and indices of water quality, and to recommend reference condition values for the integrity of streams in the region of Jundiai (SP; METHODS: The benthic fauna were sampled in three urban streams, three rural streams and three preserved streams during July 2010, using a Surber-type sampler. The characteristics of the landscape were evaluated by means of Diversity of Habitat; the community, analyzed for several biodiversity indices, and; the water quality assessed using the indices River-BCI, BMWP-CETEC (CETEC - Science and Technology Center, ASPT and SOMI (SOMI - Serra dos Órgãos Multimetric Index (Serra dos Órgãos is a mountain range national park in the state of Rio de Janeiro; RESULTS: The structure and the composition of the communities varied according to the stream and this was reflected in the values of the biological and environmental quality indices. The best conditions were found in preserved streams, intermediate streams and rural streams while the worst conditions were found in the urban streams. The significant Pearson correlations (r > 0.73 and P < 0.05 between the diversity of habitat index and the ecological and water quality index attributes in the streams of Jundiai demonstrated that diversity of habitat may be a good predictor of the environmental characteristics evaluated.

  12. Structure of Water Mist Stream and its Impact on Cooling Efficiency of Casting Die

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2012-04-01

    Full Text Available The work is a continuation of research on the use water mist cooling in order to increase efficiency of die-casting aluminum alloys. The paper presents results of research and analysis process, spraying water and generated a stream of water mist, the effect of the type of nozzle, the nozzle size and shape of the emitting of the water mist on the wall surface of casting die on the microstructure and geometry of water mist stream and cooling efficiency. Tests were used to perform high-speed camera to record video in the visible and infrared camera. Results were used to develop a computerized image analysis and statistical analysis. The study showed that there are statistical relationships between water and air flow and geometry of the nozzle and nozzle emitting a stream of microstructure parameters of water mist and heat the incoming stream. These relationships are described mathematical models that allow you to control the generating of adequate stream of water mist and a further consequence, the cooling efficiency of casting die.

  13. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions.

    Science.gov (United States)

    Böhlke, J K; O'Connell, Michael E; Prestegaard, Karen L

    2007-01-01

    Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.

  14. Contamination of water in Oliwski Stream after the flood in 2016

    Directory of Open Access Journals (Sweden)

    Matej-Łukowicz Karolina

    2017-01-01

    Full Text Available In the article pollution of stream waters with surface runoff from an urbanized area caused by an extremely high rainfall is discussed. The analyzes were carried out after the rainfall of the depth 152 mm which took place in Gdańsk on 14th and 15th July 2016. This extreme rainfall caused urban flooding, damage of several retention ponds and pollution of surface waters. In the article the results of physical and chemical analyzes of the water samples from Oliwski Stream, inflowing to the Gulf of Gdańsk at the beach in Jelitkowo, are presented. The samples were collected at six points along the Stream in order to evaluate potential pollution sources. The results of the study indicated elevated concentrations of phosphorus compounds and nitrates (V. Additionally, the concentrations of total suspended solids (TSS, solids granulometry and grain size distribution along the stream was investigated.

  15. R2 Water Quality Portal Monitoring Stations

    Science.gov (United States)

    The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on the form including location, site, sampling, and date parameters to filter and customize the returned results. The The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council (NWQMC) that integrates publicly available water quality data from the USGS National Water Information System (NWIS) the EPA STOrage and RETrieval (STORET) Data Warehouse, and the USDA ARS Sustaining The Earth??s Watersheds - Agricultural Research Database System (STEWARDS).

  16. Arsenic in stream waters is bioaccumulated but neither biomagnified through food webs nor biodispersed to land.

    Science.gov (United States)

    Hepp, Luiz U; Pratas, João A M S; Graça, Manuel A S

    2017-05-01

    Human activities such as mining have contributed substantially to the increase of metals in aquatic environments worldwide. These metals are bioaccumulated by aquatic organisms and can be biomagnified along trophic webs. The dispersal of contaminants from water to land has been little investigated, even though most aquatic invertebrates in streams have aerial stages. We used field and laboratory approaches to investigate the effects of arsenic pollution on stream invertebrate assemblages, and its bioaccumulation, biomagnification and trophic transfer from aquatic to terrestrial environments by emergent insects. We conducted the study in an arsenic-impacted stream (40μgL-1 As at the most polluted site) and a reference stream (0.3μgL-1 As). Invertebrate abundance and richness were lowest at the most impacted site. Arsenic in biofilm and in invertebrates increased with the arsenic content in the water. The highest arsenic accumulators were bryophytes (1760μgg-1), followed by the biofilm (449μgg-1) and shredder invertebrates (313μgg-1); predators had the lowest arsenic concentration. Insects emerging from water and spiders along streambanks sampled from the reference and the impacted stream did not differ in their body arsenic concentrations. In the laboratory, the shredder Sericostoma vittatum had reduced feeding rates when exposed to water from the impacted stream in comparison with the reference stream (15.6 vs. 19.0mg leaves mg body mass-1 day-1; parsenic from food, not through contact with water. We concluded that although arsenic is bioaccumulated, mainly by food ingestion, it is not biomagnified through food webs and is not transported from the aquatic to terrestrial environment when insects leave the stream water. Copyright © 2017. Published by Elsevier Inc.

  17. Effects of wastewater effluent discharge on stream quality in Indian Creek, Johnson County, Kansas

    Science.gov (United States)

    Graham, Jennifer L.; Foster, Guy M.

    2014-01-01

    Contaminants from point and other urban sources affect stream quality in Indian Creek, which is one of the most urban drainage basins in Johnson County, Kansas. The Johnson County Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities discharge to Indian Creek. Data collected by the U.S. Geological Survey, in cooperation with Johnson County Wastewater, during June 2004 through June 2013 were used to evaluate stream quality in Indian Creek. This fact sheet summarizes the effects of wastewater effluent discharge on physical, chemical, and biological conditions in Indian Creek downstream from the Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities.

  18. Effect of the addition of wheat bran stream on dough rheology and bread quality

    Directory of Open Access Journals (Sweden)

    Iuliana Banu

    2012-08-01

    Full Text Available The milling by-products have high nutritional value and can be incorporated into white flour. This study was aimed at comparatively examining the rheological behaviour of the doughs made from wheat white flour with different levels (3-30% of bran streams incorporated and from wholewheat. The results indicated significant correlations between the ash content of the wheat bran streams incorporated into flour and Alveograph, Rheofermentograph and Mixolab parameters. The white flour sample with 25% wheat bran streams had the ash content similar to wholewheat, but the dough rheology was improved. The quality of the white flour bread with 25% wheat bran streams was improved compared to the wholemeal bread.

  19. Water quality of coal deposits and abandoned mines, Saginaw County, Michigan

    Science.gov (United States)

    Handy, A.H.

    1982-01-01

    Surface water arid;ground water from an area underlain by coal- bearing rocks in the vicinity of St. Charles Michigan, were analyzed to determine the quality characteristics of these water resources and to assess the relation between the two. Data for 15 constituents, including boron, phenol, lithium, strontium and manganese, were in such high concentrations that they could be used to differentiate between water from wells drilled into coal-bearing beds and water from streams not directly associated with coal deposits. Ground water from abandoned mines and undisturbed coal-bearing beds is highly mineralized, and contains higher concentrations of trace metals than surface water. Water from the undistrubed coal- bearing beds and abandoned mines is not suitable for domestic, public supply, or agricultural uses. Large amounts of this highly mineralized ground water reaching local streams would have a deleterious effect on surface-water quality.

  20. Water quality assessment of bioenergy production

    Science.gov (United States)

    Rocio Diaz-Chavez; Goran Berndes; Dan Neary; Andre Elia Neto; Mamadou Fall

    2011-01-01

    Water quality is a measurement of the biological, chemical, and physical characteristics of water against certain standards set to ensure ecological and/or human health. Biomass production and conversion to fuels and electricity can impact water quality in lakes, rivers, and aquifers with consequences for aquatic ecosystem health and also human water uses. Depending on...

  1. Iowater Water Quality Monitoring Sites

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This coverage contains points representing monitoring locations on streams, lakes and ponds that have been registered by IOWATER monitors. IOWATER, Iowa's volunteer...

  2. The influence of riparian woodland on the spatial and temporal variability of stream water temperatures in an upland salmon stream

    Directory of Open Access Journals (Sweden)

    I. A. Malcolm

    2004-01-01

    Full Text Available The spatio-temporal variability of stream water temperatures was investigated at six locations on the Girnock Burn (30km2 catchment, Cairngorms, Scotland over three hydrological years between 1998 and 2002. The key site-specific factors affecting the hydrology and climatology of the sampling points were investigated as a basis for physical process inference. Particular emphasis was placed on assessing the effects of riparian forest in the lower catchment versus the heather moorland riparian zones that are spatially dominant in the upper catchment. The findings were related to river heat budget studies that provided process detail. Gross changes in stream temperature were affected by the annual cycle of incoming solar radiation and seasonal changes in hydrological and climatological conditions. Inter-annual variation in these controlling variables resulted in inter-annual variability in thermal regime. However, more subtle inter-site differences reflected the impact of site-specific characteristics on various components of the river energy budget. Inter-site variability was most apparent at shorter time scales, during the summer months and for higher stream temperatures. Riparian woodland in the lower catchment had a substantial impact on thermal regime, reducing diel variability (over a period of 24 hours and temperature extremes. Observed inter-site differences are likely to have a substantial effect on freshwater ecology in general and salmonid fish in particular. Keywords: temperature, thermal regime, forest, salmon, hydrology, Girnock Burn, Cairngorm

  3. Stream Water and Groundwater Interaction Revealed by Temperature Monitoring in Agricultural Areas

    Directory of Open Access Journals (Sweden)

    Youngyun Park

    2013-10-01

    Full Text Available Variations in stream water, streambed, adjacent stream sediment, and groundwater temperatures in the Haean basin, Korea were examined using time series analyses including auto-correlation, spectral density, and cross-correlation functions. The temperatures of the ambient air, stream water, streambed (depth = 10 cm, and adjacent stream sediment (depth = 10 cm showed distinctive diurnal variations with long-term seasonal cooling trends, while groundwater temperature showed only a seasonal decreasing trend with little diurnal variations. Auto-correlations and spectral densities of the stream water, streambed, and sediment temperatures also revealed strong daily cyclical behaviors, with longer periodic cycles varying from weekly to monthly. Amplitudes and lag times of the streambed thermal signals were also affected by the hydraulic conductivities of the sediments. Lower hydraulic conductivity indicates a more attenuated and slower thermal response for the streambed. The calculated vertical water flow velocities of the streambed revealed that the investigated stream locations were under losing or gaining conditions, depending on the location and time.

  4. Using of CFD software for setting the location of water stream micro turbines

    Directory of Open Access Journals (Sweden)

    Borsuk Łukasz

    2016-01-01

    Full Text Available The aim of this work was to estimate the efficiency of CFD software in calculating flow velocity magnitude in natural water streams. These kinds of estimations are essential for setting the locations of water stream micro turbines. These devices can be useful to provide electricity in areas remote from power generating facilities or as backup power supply in case of power grid failure. The analysed water stream has length of 100 m and its average slope was approximately 10%. Water velocity varies in the range from 0.5 m3*s−1 to 5 m3*s−1. Additionally, the influence of ground roughness on the stream velocity was also an important factor. Results proved to be satisfactory. In the analysed stream, velocities were in a range which allows the proposed micro turbine to be effective. Calculation grid created by CFD software did not have many areas which may raise doubts. Also, the influence of changes in the ground roughness factor was noticeable. Preliminary CFD simulations allow to estimate where in the stream the micro turbine will be most efficient. On the other hand, despite these calculations, profitability and return on the investment still can be questionable.

  5. Application of expert systems technology in water-quality modeling

    Energy Technology Data Exchange (ETDEWEB)

    Barnwell, T.O.; Brown, L.C.; Marek, W.

    1989-01-01

    Computerized modeling is becoming an integral part of decision making in water pollution control. Expert Systems is an innovative methodology that can assist in building, using, and interpreting the output of the models. The paper reviews the use and evaluates the potential of expert systems technology in environmental modeling and describes the elements of an expert advisor for the stream water quality model QUAL2E. Some general conclusions are presented about the tools available to develop the system, the level of available technology in knowledge-based engineering, and the value of approaching problems from a knowledge engineering perspective.

  6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction

    Science.gov (United States)

    Swain, Eric D.; Wexler, Eliezer J.

    1996-01-01

    Ground-water and surface-water flow models traditionally have been developed separately, with interaction between subsurface flow and streamflow either not simulated at all or accounted for by simple formulations. In areas with dynamic and hydraulically well-connected ground-water and surface-water systems, stream-aquifer interaction should be simulated using deterministic responses of both systems coupled at the stream-aquifer interface. Accordingly, a new coupled ground-water and surface-water model was developed by combining the U.S. Geological Survey models MODFLOW and BRANCH; the interfacing code is referred to as MODBRANCH. MODFLOW is the widely used modular three-dimensional, finite-difference ground-water model, and BRANCH is a one-dimensional numerical model commonly used to simulate unsteady flow in open- channel networks. MODFLOW was originally written with the River package, which calculates leakage between the aquifer and stream, assuming that the stream's stage remains constant during one model stress period. A simple streamflow routing model has been added to MODFLOW, but is limited to steady flow in rectangular, prismatic channels. To overcome these limitations, the BRANCH model, which simulates unsteady, nonuniform flow by solving the St. Venant equations, was restructured and incorporated into MODFLOW. Terms that describe leakage between stream and aquifer as a function of streambed conductance and differences in aquifer and stream stage were added to the continuity equation in BRANCH. Thus, leakage between the aquifer and stream can be calculated separately in each model, or leakages calculated in BRANCH can be used in MODFLOW. Total mass in the coupled models is accounted for and conserved. The BRANCH model calculates new stream stages for each time interval in a transient simulation based on upstream boundary conditions, stream properties, and initial estimates of aquifer heads. Next, aquifer heads are calculated in MODFLOW based on stream

  7. Effect of a reservoir in the water quality of the Reconquista River, Buenos Aires, Argentina.

    Science.gov (United States)

    Rigacci, Laura N; Giorgi, Adonis D N; Vilches, Carolina S; Ossana, Natalia Alejandra; Salibián, Alfredo

    2013-11-01

    The lower portion of the Reconquista River is highly polluted. However, little is known about the state of the high and middle basins. The aims of this work were to assess the water quality on the high and middle Reconquista River basins and to determinate if the presence of a reservoir in the river has a positive effect on the water quality. We conducted a seasonal study between August 2009 and November 2010 at the mouth of La Choza, Durazno, and La Horqueta streams at the Roggero reservoir--which receives the water from the former streams--at the origin of the Reconquista River and 17 km downstream from the reservoir. We measured 25 physical and chemical parameters, including six heavy metal concentrations, and performed a multivariate statistical analysis to summarize the information and allow the interpretation of the whole data set. We found that the Durazno and La Horqueta streams had better water quality than La Choza, and the presence of the reservoir contributed to the improvement of the water quality, allowing oxygenation of the water body and processing of organic matter and ammonia. The water quality of the Reconquista River at its origin is good and similar to the reservoir, but a few kilometers downstream, the water quality declines as a consequence of the presence of industries and human settlements. Therefore, the Roggero reservoir produces a significant improvement of water quality of the river, but the discharge of contaminants downstream quickly reverses this effect.

  8. Evaluation of groundwater and stream quality characteristics in the ...

    African Journals Online (AJOL)

    AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News. OTHER RESOURCES... for Researchers · for Journals · for Authors · for Policy Makers · about Open Access · Journal Quality.

  9. Effects of an Extreme Flood on Trace Elements in River Water-From Urban Stream to Major River Basin.

    Science.gov (United States)

    Barber, Larry B; Paschke, Suzanne S; Battaglin, William A; Douville, Chris; Fitzgerald, Kevin C; Keefe, Steffanie H; Roth, David A; Vajda, Alan M

    2017-09-19

    Major floods adversely affect water quality through surface runoff, groundwater discharge, and damage to municipal water infrastructure. Despite their importance, it can be difficult to assess the effects of floods on streamwater chemistry because of challenges collecting samples and the absence of baseline data. This study documents water quality during the September 2013 extreme flood in the South Platte River, Colorado, USA. Weekly time-series water samples were collected from 3 urban source waters (municipal tap water, streamwater, and wastewater treatment facility effluent) under normal-flow and flood conditions. In addition, water samples were collected during the flood at 5 locations along the South Platte River and from 7 tributaries along the Colorado Front Range. Samples were analyzed for 54 major and trace elements. Specific chemical tracers, representing different natural and anthropogenic sources and geochemical behaviors, were used to compare streamwater composition before and during the flood. The results differentiate hydrological processes that affected water quality: (1) in the upper watershed, runoff diluted most dissolved constituents, (2) in the urban corridor and lower watershed, runoff mobilized soluble constituents accumulated on the landscape and contributed to stream loading, and (3) flood-induced groundwater discharge mobilized soluble constituents stored in the vadose zone.

  10. Stream flow unaffected by Eucalyptus plantation harvesting implicates water use by the native forest streamside reserve

    Directory of Open Access Journals (Sweden)

    Philip J. Smethurst

    2015-03-01

    New hydrological insights: Plantation harvest had little effect on steam flow, despite a 6–11 m rise in water table level under the plantation area. This result suggests that the native forest reserve intercepted groundwater moving laterally between the plantation and the stream. Measured and simulated runoff coefficients were similarly low (5% and 3%, respectively, but simulated removal of the native forest led to an increase to 38%. Therefore, plantation management in this type of landscape is likely to have little impact on stream flows where there is an intact native rainforest reserve beside the stream.

  11. Water quality (chapter 11). Book chapter

    Energy Technology Data Exchange (ETDEWEB)

    McCutcheon, S.C.; Martin, J.L.; Barnwell, T.O.

    1993-01-01

    Water quality is important not only because of its linkage to the availability of water for various uses and its impact on public health, but also because water quality has an intrinsic value. The quality of life is often judged on the availability of pristine water. Contamination of water deprives present and future generations of a birthright. There is also the need to preserve the aquatic habitats of fish, birds, and mammals. To assist the practicing hydrologist in planning for and adapting to limitations on the use of water and to aid in the protection of valuable water resources, the chapter covers the basic concepts of water chemistry, the physical properties of water, and the constituents or impurities of water. To aid in the interpretation of measurements, water quality standards and criteria for various uses are presented.

  12. Phosphorus and Water Quality Paradox

    Science.gov (United States)

    Pant, H. K.

    2008-12-01

    Paradoxically, phosphorus (P) is one of the major nutrients for higher agricultural production, as well as it causes eutrophication/algal blooms in aquatic and semi-aquatic systems. Phosphorus loadings from agricultural/urban runoffs into lakes and rivers are becoming a global concern for the protection of water quality. Artificial wetlands are considered as a low cost alternative for treating wastewater including removal of P from sources such as agricultural and urban runoffs. However, the selection of the construction site may well determine the effectiveness of these wetlands. Studies show that P transformations in sediments/ soils are crucial for P sequestration in a wetland rather than the amounts of native P. Using 31Phosphorus Nuclear Magnetic Resonance Spectroscopy (31P NMR), previously unreported an active organic P form, phosphoarginine, was identified, and the study indicates that abandonment of P impacted sites may not solve the P loading problem to the water bodies as the organic P compounds would not be as stable as they were thought, thus, can play a detrimental role in eutrophication of water bodies, after all.

  13. The relationship between young brown trout density and water quality in tributary streams to lakes in three acidic watersheds; Effekter av vannkvalitet og habitat paa tettheten av aureunger i tilloepsbekker til innsjoeer i tre forsuringsomraader

    Energy Technology Data Exchange (ETDEWEB)

    Hesthagen, Trygve; Larsen, Bjoern M.; Berger, Hans M.; Forseth, Torbjoern

    1998-09-01

    This publication examines the relationship between young brown trout densities in lake tributaries, and water chemistry and habitat variables. The study was carried out during the autumn in three acidic, freshwater river systems in western and southwestern Norway. The variability in brown trout density in the three watersheds in relation to varying concentrations of calcium and inorganic Al, were investigated. Water chemistry variables seem to limit the density. 38 refs., 3 figs., 5 tabs.

  14. Incorporation of water-use summaries into the StreamStats web application for Maryland

    Science.gov (United States)

    Ries, Kernell G.; Horn, Marilee A.; Nardi, Mark R.; Tessler, Steven

    2010-01-01

    Approximately 25,000 new households and thousands of new jobs will be established in an area that extends from southwest to northeast of Baltimore, Maryland, as a result of the Federal Base Realignment and Closure (BRAC) process, with consequent new demands on the water resources of the area. The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment, has extended the area of implementation and added functionality to an existing map-based Web application named StreamStats to provide an improved tool for planning and managing the water resources in the BRAC-affected areas. StreamStats previously was implemented for only a small area surrounding Baltimore, Maryland, and it was extended to cover all BRAC-affected areas. StreamStats could provide previously published streamflow statistics, such as the 1-percent probability flood and the 7-day, 10-year low flow, for U.S. Geological Survey data-collection stations and estimates of streamflow statistics for any user-selected point on a stream within the implemented area. The application was modified for this study to also provide summaries of water withdrawals and discharges upstream from any user-selected point on a stream. This new functionality was made possible by creating a Web service that accepts a drainage-basin delineation from StreamStats, overlays it on a spatial layer of water withdrawal and discharge points, extracts the water-use data for the identified points, and sends it back to StreamStats, where it is summarized for the user. The underlying water-use data were extracted from the U.S. Geological Survey's Site-Specific Water-Use Database System (SWUDS) and placed into a Microsoft Access database that was created for this study for easy linkage to the Web service and StreamStats. This linkage of StreamStats with water-use information from SWUDS should enable Maryland regulators and planners to make more informed decisions on the use of water resources in the BRAC area, and

  15. Persistent Urban Influence on Surface Water Quality via Impacted Groundwater.

    Science.gov (United States)

    Gabor, Rachel S; Hall, Steven J; Eiriksson, David P; Jameel, Yusuf; Millington, Mallory; Stout, Trinity; Barnes, Michelle L; Gelderloos, Andrew; Tennant, Hyrum; Bowen, Gabriel J; Neilson, Bethany T; Brooks, Paul D

    2017-09-05

    Growing urban environments stress hydrologic systems and impact downstream water quality. We examined a third-order catchment that transitions from an undisturbed mountain environment into urban Salt Lake City, Utah. We performed synoptic surveys during a range of seasonal baseflow conditions and utilized multiple lines of evidence to identify mechanisms by which urbanization impacts water quality. Surface water chemistry did not change appreciably until several kilometers into the urban environment, where concentrations of solutes such as chloride and nitrate increase quickly in a gaining reach. Groundwater springs discharging in this gaining system demonstrate the role of contaminated baseflow from an aquifer in driving stream chemistry. Hydrometric and hydrochemical observations were used to estimate that the aquifer contains approximately 18% water sourced from the urban area. The carbon and nitrogen dynamics indicated the urban aquifer also serves as a biogeochemical reactor. The evidence of surface water-groundwater exchange on a spatial scale of kilometers and time scale of months to years suggests a need to evolve the hydrologic model of anthropogenic impacts to urban water quality to include exchange with the subsurface. This has implications on the space and time scales of water quality mitigation efforts.

  16. Oil palm plantation effects on water quality in Kalimantan, Indonesia

    Science.gov (United States)

    Carlson, K. M.; Curran, L. M.

    2011-12-01

    Global demand for palm oil has stimulated a 7-fold increase in oil palm (Elaeis guineensis) plantation area in Indonesia since 1990. Expansion will continue as Indonesia plans to double current production by 2020. Oil palm fertilizers, effluent from oil palm mills, and erosion from land clearing and roads threaten river water quality near plantations. These rivers provide essential ecosystem services including water for drinking, cooking, and washing. Robust empirical measurements of plantation expansion impacts on water resources are necessary to discern the effects of agribusiness on local livelihoods and ecosystems. In Ketapang District, West Kalimantan, Indonesian Borneo, we evaluated the effects of land cover change on water quality by assessing water chemistry in streams draining four end-member watersheds ( ~600-1900 ha watershed-1): Logged forest, mixed agro-forest dominated by rubber and upland rice fallows, young oil palm forest (0-5 years), and old oil palm forest (10-15 years). To assess land cover change, we used CLASLite software to derive fractional cover from a time series (1989-2008) of Landsat data. Nearest neighbor classification and post-classification change detection yielded classes including primary forest, logged forest, secondary forest regrowth, smallholder agriculture, and oil palm. Stream water quality (temperature, dissolved oxygen, turbidity, optical chlorphyll, and pH) and quantity (discharge) were quantified with the YSI 6600-V2 sonde. The sonde was deployed in each stream for month-long intervals 2-3 times from 2009-2010. Such extended deployment captures episodic events such as intense storms and allows examination of interdiel dynamics by sampling continuously and at high frequency, every 10 minutes. We find that across the Ketapang District study region (~12,000 km2), oil palm has cleared mostly forests (49%) and agroforests (39%). What are the impacts of such land cover changes on water quality? Compared to forests and

  17. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, November 1993--October 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.

    1995-08-01

    The Ecological Studies Team (EST) of ESH-20 at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies gather water quality measurements and collect aquatic macroinvertebrates from permanent sampling sites. Reports by Bennett (1994) and Cross (1994) discuss previous EST aquatic studies in Sandia Canyon. This report updates and expands those findings. EST collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon from November 1993 through October 1994. The two upstream stations are located below outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. Some water quality parameters are different at the first three stations from those expected of natural streams in the area, indicating degraded water quality due to effluent discharges. The aquatic habitat at the upper stations has also been degraded by sedimentation and channelization. The macroinvertebrate communities at these stations are characterized by low diversities and unstable communities. In contrast, the two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. The two lower stations have increased macroinvertebrate diversity and stable communities, further indications of downstream water quality improvement.

  18. Quality control in the recycling stream of PVC from window frames by hyperspectral imaging

    Science.gov (United States)

    Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Di Maio, Francesco; Rem, Peter

    2013-05-01

    Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.

  19. Stream nitrate variations explained by ground water head fluctuations in a pyrite-bearing aquifer.

    Science.gov (United States)

    Grimaldi, C; Viaud, V; Massa, F; Carteaux, L; Derosch, S; Regeard, A; Fauvel, Y; Gilliet, N; Rouault, F

    2004-01-01

    In the context of agricultural nitrogen excesses in northwestern France, pyrite-bearing weathered schist aquifers represent important hydrological compartments due to their capacity to eliminate nitrate (NO3-). Under oxygen-free conditions, nitrate is reduced simultaneously with the oxidation of pyrite leading to the release of sulfate (SO4/2-). The aim of the present study is to identify the hydrological conditions under which the weathered schist ground water influences the stream water chemistry, leading to a decrease in NO3- concentration. We measured the ground water head on a small catchment over weathered schist, near the bank and under the streambed, and analyzed the chemical composition of the ground water as well as the stream water on both seasonal and storm-event timescales. Using SO4/2- as a tracer of the weathered schist ground water, we showed that ground water inflow caused a decrease of NO3- concentration in the stream during the autumn as well as during storm events in spring and summer. In summer, the NO3- concentration was controlled by the sources of the stream, and in winter by the shallow ground water inflow. The effect of the weathered schist ground water on the NO3- depletion remained relatively limited in time. This effect persisted into late autumn as long as the NO3(-) -rich shallow ground water did not feed the stream. The duration and intensity of the effect would be extended by decreasing the shallow ground water inflow, which depends on climate as well as the presence of landscape features such as hedges and buffer zones.

  20. Avaliação da qualidade da água e autodepuração do ribeirão do meio, Leme (SP Evaluation of the water quality and auto-purification from the meio stream, Leme (SP

    Directory of Open Access Journals (Sweden)

    Diego de Souza Sardinha

    2008-09-01

    Full Text Available Este trabalho utilizou relações hidroquímicas para avaliar possíveis entradas antropogênicas nas águas superficiais do Ribeirão do Meio (SP. Realizaram-se três coletas de água durante os meses de fevereiro, abril e julho de 2005 em cinco pontos de coleta analisando: vazão, temperatura, turbidez, pH, condutividade, oxigênio dissolvido, sólidos totais dissolvidos, sólidos totais em suspensão, Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO4(2-, PO4(3- e NO3-. As características da água próximo à nascente até a cidade de Leme permitem concluir que há pouca interferência na sua qualidade, porém, a falta de tratamento para o esgoto doméstico da cidade de Leme piora a sua qualidade. Para se modelar à autodepuração utilizou-se o modelo QUAL 2K, que identificou as zonas de autodepuração e indicou a necessidade de tratamento de esgotos em nível secundário, com eficiência de 76%.This investigation utilized hydrochemical relations to evaluate possible anthropogenic inputs at Meio Stream, São Paulo State. Realized three sampling of water during the months of February, April and July/2005, in five sampling points analyzing: discharge, temperature, turbidity, pH, electrical conductivity (EC, dissolved oxygen (DO, TDS (total dissolved solids, TSS (total suspended solids, Ca2+, Mg2+, Na+, K+, HCO3-, Cl-, SO4(2-, PO4(3- and NO3-. The characteristics of water close to spring until Leme city allow concluding that there is a small interference in its quality, however the absence of treatment of domestic wastewater at Leme city reduced its quality. It was applied the QUAL 2K modeling to evaluate the Meio Stream auto-purification identified the auto-purification zones and indicated the necessity of secondary wastewater treatment, with 76% of efficiency.

  1. Exposure of wood in floodplains affects its chemical quality and its subsequent breakdown in streams.

    Science.gov (United States)

    del Campo, Rubén; Gómez, Rosa

    2016-02-01

    In stream ecosystems, coarse organic matter from the riparian vegetation, a key food resource, is often retained in the floodplains before reaching the channel. During floodplain exposure, organic matter can be affected by abiotic and biotic processes ("preconditioning"), which alter its quality and affect its subsequent decomposition in streams. We analyzed the effect of floodplain preconditioning on wood quality (lignin, C, N, P, K, among others), and its subsequent aquatic breakdown, paying special attention to microbial activity. We simulated preconditioned standard wooden sticks on one arid stream floodplain for 3 and 4 months, and then monitored their breakdown in three different streams, together with control (non-preconditioned) sticks. Preconditioning reduced lignin mass and C:N and lignin:N ratios, caused the leaching of soluble nutrients such as P and K, as well as N immobilization by microbes. These changes enhanced the breakdown of wood in the first week of immersion, but had no effect on breakdown rates after 4 months of incubation in the streams, although N immobilization was diminished. Our results suggest that terrestrial preconditioning could alter the role of wood as a long-lasting nutrients and energy source for freshwater ecosystem. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Water quality assessment and meta model development in Melen watershed - Turkey.

    Science.gov (United States)

    Erturk, Ali; Gurel, Melike; Ekdal, Alpaslan; Tavsan, Cigdem; Ugurluoglu, Aysegul; Seker, Dursun Zafer; Tanik, Aysegul; Ozturk, Izzet

    2010-07-01

    Istanbul, being one of the highly populated metropolitan areas of the world, has been facing water scarcity since the past decade. Water transfer from Melen Watershed was considered as the most feasible option to supply water to Istanbul due to its high water potential and relatively less degraded water quality. This study consists of two parts. In the first part, water quality data covering 26 parameters from 5 monitoring stations were analyzed and assessed due to the requirements of the "Quality Required of Surface Water Intended for the Abstraction of Drinking Water" regulation. In the second part, a one-dimensional stream water quality model with simple water quality kinetics was developed. It formed a basic design for more advanced water quality models for the watershed. The reason for assessing the water quality data and developing a model was to provide information for decision making on preliminary actions to prevent any further deterioration of existing water quality. According to the water quality assessment at the water abstraction point, Melen River has relatively poor water quality with regard to NH(4)(+), BOD(5), faecal streptococcus, manganese and phenol parameters, and is unsuitable for drinking water abstraction in terms of COD, PO(4)(3-), total coliform, total suspended solids, mercury and total chromium parameters. The results derived from the model were found to be consistent with the water quality assessment. It also showed that relatively high inorganic nitrogen and phosphorus concentrations along the streams are related to diffuse nutrient loads that should be managed together with municipal and industrial wastewaters. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. A First Look at Quality of Mobile Live Streaming Experience: the Case of Periscope

    OpenAIRE

    Siekkinen, Matti; Masala, Enrico; Kämäräinen, Teemu

    2016-01-01

    Live multimedia streaming from mobile devices is rapidly gaining popularity but little is known about the QoE they provide. In this paper, we examine the Periscope service. We first crawl the service in order to understand its usage patterns. Then, we study the protocols used, the typical quality of experience indicators, such as playback smoothness and latency, video quality, and the energy consumption of the Android application.

  4. E. coli Surface Properties Differ between Stream Water and Sediment Environments

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-11-01

    Full Text Available The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10mM and 22˚C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity and extracellular polymeric substance (EPS composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

  5. Integrating GIS, remote sensing and mathematical modelling for surface water quality management in irrigated watersheds

    NARCIS (Netherlands)

    Azab, A.M.

    2012-01-01

    The intensive uses of limited water resources, the growing population rates and the various increasing human activities put high and continuous stresses on these resources. Major problems affecting the water quality of rivers, streams and lakes may arise from inadequately treated sewage, poor land

  6. Forest cover correlates with good biological water quality. Insights from a regional study (Wallonia, Belgium).

    Science.gov (United States)

    Brogna, D; Dufrêne, M; Michez, A; Latli, A; Jacobs, S; Vincke, C; Dendoncker, N

    2018-01-22

    Forested catchments are generally assumed to provide higher quality water in opposition to agricultural and urban catchments. However, this should be tested in various ecological contexts and through the study of multiple variables describing water quality. Indeed, interactions between ecological variables, multiple land use and land cover (LULC) types, and water quality variables render the relationship between forest cover and water quality highly complex. Furthermore, the question of the scale at which land use within stream catchments most influences stream water quality and ecosystem health remains only partially answered. This paper quantifies, at the regional scale and across five natural ecoregions of Wallonia (Belgium), the forest cover effect on biological water quality indices (based on diatoms and macroinvertebrates) at the riparian and catchment scales. Main results show that forest cover - considered alone - explains around one third of the biological water quality at the regional scale and from 15 to 70% depending on the ecoregion studied. Forest cover is systematically positively correlated with higher biological water quality. When removing spatial, local morphological variations, or population density effect, forest cover still accounts for over 10% of the total biological water quality variation. Partitioning variance shows that physico-chemical water quality is one of the main drivers of biological water quality and that anthropogenic pressures often explain an important part of it (shared or not with forest cover). The proportion of forest cover in each catchment at the regional scale and across all ecoregions but the Loam region is more positively correlated with high water quality than when considering the proportion of forest cover in the riparian zones only. This suggests that catchment-wide impacts and a fortiori catchment-wide protection measures are the main drivers of river ecological water quality. However, distinctive results from the

  7. Draft Scientific Report Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence

    Science.gov (United States)

    Synthesizes peer-reviewed scientific literature on the biological, chemical, and hydrologic connectivity of waters and the effects that small streams, wetlands, and open waters have on larger downstream waters such as rivers, lakes, estuaries, and oceans.

  8. Water Quality Index Assessment of Pogradec Water- Supply, in Albania

    OpenAIRE

    , P. Icka; , R. Damo

    2016-01-01

    In this paper is applied for the first time in Albania Water Quality Index (WQI) of the Canadian Council of Ministries of the Environment (CCME) for assessment of water quality of water supply network on Pogradec city. CCME WQI, a technique of rating water quality, is an effective tool to assess spatial and temporal changes on the quality of any water body. Calculations of the index are based on a combination of three factors: scope - the number of variables whose objectives are not met; freq...

  9. Development of invertebrate community indexes of stream quality for the islands of Maui and Oahu, Hawaii

    Science.gov (United States)

    Wolff, Reuben H.

    2012-01-01

    In 2009-10 the U.S. Geological Survey (USGS) collected physical habitat information and benthic macroinvertebrates at 40 wadeable sites on 25 perennial streams on the Island of Maui, Hawaiʻi, to evaluate the relations between the macroinvertebrate assemblages and environmental characteristics and to develop a multimetric invertebrate community index (ICI) that could be used as an indicator of stream quality. The macroinvertebrate community data were used to identify metrics that could best differentiate among sites according to disturbance gradients such as embeddedness, percent fines (silt and sand areal coverage), or percent agricultural land in the contributing basin area. Environmental assessments were conducted using land-use/land-cover data and reach-level physical habitat data. The Maui data were first evaluated using the previously developed Preliminary-Hawaiian Benthic Index of Biotic Integrity (P-HBIBI) to determine if existing metrics would successfully differentiate stream quality among the sites. Secondly, a number of candidate invertebrate metrics were screened and tested and the individual metrics that proved the best at discerning among the sites along one or more disturbance gradients were combined into a multimetric invertebrate community index (ICI) of stream quality. These metrics were: total invertebrate abundance, Class Insecta relative abundance, the ratio of Trichoptera abundance to nonnative Diptera abundance, native snail (hihiwai) presence or absence, native mountain shrimp (′δpae) presence or absence, native torrent midge (Telmatogeton spp.) presence or absence, and native Megalagrion damselfly presence or absence. The Maui ICI classified 15 of the 40 sites (37.5 percent) as having "good" quality communities, 17 of the sites (42.5 percent) as having "fair" quality communities, and 8 sites (20 percent) as having "poor" quality communities, a classification that may be used to initiate further investigation into the causes of the poor

  10. Chemical and Physical Quality Criteria of Bulakbaşı Stream in Turkey and Usage of Drinking, Fisheries, and Irrigation

    Directory of Open Access Journals (Sweden)

    Fazıl Şen

    2015-01-01

    Full Text Available Water quality parameters were analyzed in Bulakbaşı stream. The in situ measurements and laboratory analyses were made on water samples taken from 4 sampling points on the Bulakbaşı stream monthly. During the study, the average water temperature as 16.3°C, dissolved oxygen (DO 12.91 mg/L, oxygen saturation (OS 152.8%, pH 8.25, electrical conductivity (EC 779.6 μS/cm, salinity 0.435‰, chloride 83.97 mg/L, calcium 56.5 mg/L, magnesium 57.1 mg/L, total hardness 391.1 mg/L CaCO3, carbonate 0 mg/L, bicarbonate 365.95 mg/L, total alkalinity 299.85 mg/L, nitrate 4.74 mg/L, nitrite 20.83 µg/L, ammonium 50.8 µg/L, ammonia 48.3 µg/L, phosphorus 77.5 µg/L, sulfate 57.6 mg/L, potassium 4.52 mg/L, copper and aluminum 0.0 µg/L, total iron 10.1 µg/L, zinc 168.2 µg/L, chromium 24 µg/L, manganese 401.7 µg/L, and cyanide 6.79 µg/L were found. According to EU, WHO, and Turkish standards, Bulakbaşı stream is not polluted and it has suitable quality with respect to drinking, aquaculture, and irrigation.

  11. Investigating the effect of surface water - groundwater interactions on stream temperature using Distributed temperature sensing and instream temperature model

    DEFF Research Database (Denmark)

    Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using the...

  12. Hydrologic and Water Quality System (HAWQS)

    Science.gov (United States)

    The Hydrologic and Water Quality System (HAWQS) is a web-based interactive water quantity and quality modeling system that employs as its core modeling engine the Soil and Water Assessment Tool (SWAT), an internationally-recognized public domain model. HAWQS provides users with i...

  13. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... surface water by rain and stormwater. On the other hand, run- off water increases pollutant concentrations, thereby decreases quality. To assess the water quality of the Buyuk Menderes. River under high-flow conditions, factor analysis was applied to data sets obtained from 21 monitoring stations between ...

  14. “Experimental study on water pollution tendencies around Lobuliet, Khor bou and Luri streams in Juba, South Sudan

    Directory of Open Access Journals (Sweden)

    John Leju Celestino Ladu

    2012-09-01

    Full Text Available Urbanization and population demand for resources in Juba has led to pollution of aquatic ecosystems and deteriorated water quality. The streams water samples in Juba, central equatoria state, were collected in sterile 500ml plastic containers and instantaneously experimented. The pH, total solids, total dissolved solids, alkalinity and nitrate were used for evaluation. The results were then compared with standard permissible limits. The pH for Khor bou and Luri streams ranges from 6.1 to 6.7. Lobuliet stream showed abnormal pH value ranging from 9.7 to 9.9. Alkalinity ranges from 106.67 to 1060.33 mg/l. Total dissolved solids (TDS ranges from 0.002mg/ml to 20.00mg/l. Statistical analysis using ANOVA indicated that TDS was insignificantly different (p>0.05 among the sites sampled. The nitrite level was low ranging from 0.04mg/l to 0.09mg/l. The cadmium and lead concentration ranges from 0.86mg/l to 1.92mg/l and 0.29mg/l to 0.95mg/l respectively. Analysis of variance showed the concentration of cadmium and lead were significantly different (P<0.05 among the sites sampled. Lobuliet stream had the highest concentration of heavy metals. The study concluded that pollution tendencies were attributed to the discharge of municipal and industrial effluent to the streams and if not properly tackled, may pose adverse impacts to the biogeochemical cycle.

  15. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A. W.; Smith, A. T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program.

  16. Water Quality Evaluation of Spring Waters in Nsukka, Nigeria ...

    African Journals Online (AJOL)

    Water qualities of springs in their natural state are supposed to be clean and potable. Although, water quality is not a static condition it depends on the local geology and ecosystem, as well as human activities such as sewage dispersion, industrial pollution, use of water bodies as a heat sink, and overuse. The activities on ...

  17. Anthropogenic organic compounds in source water of nine community water systems that withdraw from streams, 2002-05

    Science.gov (United States)

    Kingsbury, James A.; Delzer, Gregory C.; Hopple, Jessica A.

    2008-01-01

    Source water, herein defined as stream water collected at a water-system intake prior to water treatment, was sampled at nine community water systems, ranging in size from a system serving about 3,000 people to one that serves about 2 million people. As many as 17 source-water samples were collected at each site over about a 12-month period between 2002 and 2004 for analysis of 258 anthropogenic organic compounds. Most of these compounds are unregulated in drinking water, and the compounds analyzed include pesticides and selected pesticide degradates, gasoline hydrocarbons, personal-care and domestic-use compounds, and solvents. The laboratory analytical methods used in this study have relatively low detection levels - commonly 100 to 1,000 times lower than State and Federal standards and guidelines for protecting water quality. Detections, therefore, do not necessarily indicate a concern to human health but rather help to identify emerging issues and to track changes in occurrence and concentrations over time. About one-half (134) of the compounds were detected at least once in source-water samples. Forty-seven compounds were detected commonly (in 10 percent or more of the samples), and six compounds (chloroform, atrazine, simazine, metolachlor, deethylatrazine, and hexahydrohexamethylcyclopentabenzopyran (HHCB) were detected in more than one-half of the samples. Chloroform was the most commonly detected compound - in every sample (year round) at five sites. Findings for chloroform and the fragrances HHCB and acetyl hexamethyl tetrahydronaphthalene (AHTN) indicate an association between occurrence and the presence of large upstream wastewater discharges in the watersheds. The herbicides atrazine, simazine, and metolachlor also were among the most commonly detected compounds. Degradates of these herbicides, as well as those of a few other commonly occurring herbicides, generally were detected at concentrations similar to or greater than concentrations of the parent

  18. Flat Branch monitoring project: stream water temperature and sediment responses to forest cutting in the riparian zone

    Science.gov (United States)

    Barton D. Clinton; James M. Vose; Dick L. Fowler

    2010-01-01

    Stream water protection during timber-harvesting activities is of primary interest to forest managers. In this study, we examine the potential impacts of riparian zone tree cutting on water temperature and total suspended solids. We monitored stream water temperature and total suspended solids before and after timber harvesting along a second-order tributary of the...

  19. Occurrence and in vitro bioactivity of estrogen, androgen, and glucocorticoid compounds in a nationwide screen of United States stream waters

    Data.gov (United States)

    U.S. Environmental Protection Agency — In vitro bioactivity concentrations and chemical concentrations of estrogens, androgens, and glucocorticoids from a nationwide screen of United States stream water...

  20. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  1. Physico-chemical characteristics of water sample from Aiba Stream ...

    African Journals Online (AJOL)

    irrigation practices and motor park (Atobatele and Olutona, 2013). Sample collection. The water sample was collected ... logarithm of hydrogen ion concentration. (Jayalaskhmi et al., 2011). pH is one of the most important ... hydrogen sulphide (H2S), which gives a rotten egg smell. The presence of sulphate in drinking water ...

  2. Michigan lakes: An assessment of water quality

    Science.gov (United States)

    Minnerick, R.J.

    2004-01-01

    Michigan has more than 11,000 inland lakes, that provide countless recreational opportunities and are an important resource that makes tourism and recreation a $15-billion-dollar per-year industry in the State (Stynes, 2002). Knowledge of the water-quality characteristics of inland lakes is essential for the current and future management of these resources.Historically the U. S. Geological Survey (USGS) and the Michigan Department of Environmental Quality (MDEQ) jointly have monitored water quality in Michigan's lakes and rivers. During the 1990's, however, funding for surface-water-quality monitoring was reduced greatly. In 1998, the citizens of Michigan passed the Clean Michigan Initiative to clean up, protect, and enhance Michigan's environmental infrastructure. Because of expanding water-quality-data needs, the MDEQ and the USGS jointly redesigned and implemented the Lake Water-Quality Assessment (LWQA) Monitoring Program (Michigan Department of Environmental Quality, 1997).

  3. Water quality index for assessment of water quality of river ravi at ...

    African Journals Online (AJOL)

    ... as a tool in comparing the water quality of different sources. It gives the public a general idea of the possible problems with water in a particular region. The indices are among the most effective ways to communicate the information on water quality trends to the public or to the policy makers and water quality management.

  4. Variations in surface water-ground water interactions along a headwater mountain stream: comparisons between transient storage and water balance analyses

    Science.gov (United States)

    Adam S. Ward; Robert A. Payn; Michael N. Gooseff; Brian L. McGlynn; Kenneth E. Bencala; Christa A. Kellecher; Steven M. Wondzell; Thorsten. Wagener

    2013-01-01

    The accumulation of discharge along a stream valley is frequently assumed to be the primary control on solute transport processes. Relationships of both increasing and decreasing transient storage, and decreased gross losses of stream water have been reported with increasing discharge; however, we have yet to validate these relationships with extensive field study. We...

  5. Managing Forests for Water Quality: Streamside Management Zones

    OpenAIRE

    Daniels, Barbara

    2012-01-01

    Throughout Utah, forestlands act as collectors of pure water. Much of Utah’s water supply originates in high elevation forested watersheds. These forests play a vital role in purifying and maintaining clean water for streams, lakes and groundwater.

  6. Water temperature and baseflow discharge of streams throughout the range of Rio Grande cutthroat trout in Colorado and New Mexico—2010 and 2011

    Science.gov (United States)

    Zeigler, Matthew P.; Todd, Andrew S.; Caldwell, Colleen A.

    2013-01-01

    This study characterized the thermal regime in a number of Colorado and New Mexico streams that contain populations of Rio Grande cutthroat trout (Oncorhynchus clarkii virginalis) and had no previous record of continual temperature records. When compared to Colorado’s water temperature criteria (Cold Tier 1), a portion of these populations appeared to be at risk from elevated stream temperatures, as indicated by exceedance of both acute (17–22 percent) and chronic (2–9 percent) water quality metrics. Summer water temperature profiles recorded at sites within current Rio Grande cutthroat trout habitat indicated that although the majority of currently occupied conservation streams have temperatures that fall well below these biologically based acute and chronic thermal thresholds, several sites may be at or approaching water temperatures considered stressful to cutthroat trout. Further, water temperatures should be considered in decisions regarding the current and future thermal suitability of potential Rio Grande cutthroat trout restoration sites. Additionally, baseflow discharge sampling indicated that a majority of the sampled stream segments containing Rio Grande cutthroat trout have flows less than 1.0 cubic feet per second (cfs) in both 2010 (74 percent) and 2011 (77 percent). The relative drought sensitivity of these low baseflow streams containing Rio Grande cutthroat trout could be further evaluated to assess their probable sustainability under possible future drought conditions.

  7. Ground Water Quality of Selected Wells

    OpenAIRE

    Mosher R. Ahmed

    2013-01-01

    In order to characterize ground water quality in Zaweta district / Dohuk governorate, eight wells are selected to represent their water quality. Monthly samples are collected from the wells for the period from October 2005 to April 2006. The samples are tested for conductivity, total dissolved solids, pH, total hardness, chloride, alkalinity and nitrate according to the standard methods. The results of statistical analysis showed significant difference among the wells water quality in the mea...

  8. Policy Instruments for Water Quality Protection

    OpenAIRE

    James Shortle; Horan, Richard D.

    2013-01-01

    We examine policy instruments for ambient water quality protection. One objective is to illustrate the unique and complex informational challenges that must be addressed in constructing instruments that are effective and efficient for point and nonpoint sources. A second objective is to describe developments in real-world policies. Crucial to solving contemporary water quality challenges and improving the efficiency of water quality protection are reducing nonpoint pollution and efficiently i...

  9. ORD Studies of Water Quality in Hospitals

    Science.gov (United States)

    Presentation descibes results from two studies of water quality and pathogen occurrence in water and biofilm samples from two area hospitals. Includes data on the effectiveness of copper/silver ionization as a disinfectant.

  10. Polymer microcantilevers for water quality monitoring

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2012-10-01

    Full Text Available The microcantilever project aims to develop novel polymer based microcantilevers able to detect E.coli in water samples for use as a rapid diagnostic for on-site water quality monitoring....

  11. GENDER MAIN STREAMING IN WATER SUPPLY AND SANITATION PROJECTS

    Directory of Open Access Journals (Sweden)

    Simona FRONE

    2014-06-01

    Full Text Available As we have stated in the previous year conference paper, the human right to water and sanitation entitles everyoneto water and sanitation services which are available, accessible, affordable, acceptable and safe. Developmentprograms for water and sanitation services, as many other socio-economic development programs have often beenassumed to be neutral in terms of gender. However, sometimes there can be failures in the implementation andharnessing of such projects because of errors arising from lack of adequate integration of gender equality. In thispaper are highlighted some aspects and issues of gender mainstreaming in water supply and sanitation developmentprojects, including conclusions from a case study conducted by an NGO in a commune of Romania and ownrecommendations.

  12. West Knox Pond water budget and water quality

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to analyze the water budget and water quality for West Knox Pond for the May through September period of 2002 and 2003. The...

  13. Water quality modelling of Jadro spring.

    Science.gov (United States)

    Margeta, J; Fistanic, I

    2004-01-01

    Management of water quality in karst is a specific problem. Water generally moves very fast by infiltration processes but far more by concentrated flows through fissures and openings in karst. This enables the entire surface pollution to be transferred fast and without filtration into groundwater springs. A typical example is the Jadro spring. Changes in water quality at the spring are sudden, but short. Turbidity as a major water quality problem for the karst springs regularly exceeds allowable standards. Former practice in problem solving has been reduced to intensive water disinfection in periods of great turbidity without analyses of disinfection by-products risks for water users. The main prerequisite for water quality control and an optimization of water disinfection is the knowledge of raw water quality and nature of occurrence. The analysis of monitoring data and their functional relationship with hydrological parameters enables establishment of a stochastic model that will help obtain better information on turbidity in different periods of the year. Using the model a great number of average monthly and extreme daily values are generated. By statistical analyses of these data possibility of occurrence of high turbidity in certain months is obtained. This information can be used for designing expert system for water quality management of karst springs. Thus, the time series model becomes a valuable tool in management of drinking water quality of the Jadro spring.

  14. Infectious Disinfection: "Exploring Global Water Quality"

    Science.gov (United States)

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  15. Water quality of the river Damanganga (Gujarat)

    Digital Repository Service at National Institute of Oceanography (India)

    Zingde, M.D.; Narvekar, P.V.; Sarma, R.V.; Desai, B.N.

    strong. Quality of water in the discharge zone deteriorated considerably after March (DO decreasing to about 1 mg/litre). High acid content of the effluent lowered pH of water. The discharge in the fresh water zone, presently did not affect the water...

  16. Mycoflora and Water Quality index Assessment of Water Sources in ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    on this planet. We use water for various purposes and for each purpose we require water of appropriate quality. Consumption of water which has not met internationally acceptable standards could lead to an attack by water-borne such as cholera, typhoid fever and others (Udom et al., 2002). There is increasing awareness ...

  17. Hazardous water: an assessment of water quality and accessibility ...

    African Journals Online (AJOL)

    Access to potable water supply remains a serious challenge to the local communities in the Likangala River catchment in southern Malawi. The quality of water resources is generally poor and the supply is inadequate. This paper discusses the results of laboratory analysis of water samples collected from selected water ...

  18. Effects of streamflow variation on critical water quality for multiple discharges of decaying pollutants

    Science.gov (United States)

    Eheart, J. W.

    1988-01-01

    The assumption that the worst water quality occurs at the lowest streamflow may not always hold in instances involving multiple discharges and nonconservative pollutants. The additional dilution resulting from increased streamflow may be offset by adverse changes in the parameters that govern water quality and in decreased residence time, which allows the stream less time to recover from the effect of one discharge before receiving another. This paper addresses the question of whether, with multiple sources of decaying pollutants, water quality might worsen with increasing streamflow. For an isothermal uniform stream it is shown that the pattern of discharge that maximizes the derivative with respect to streamflow of critical dissolved oxygen deficit or the concentration of a substance exhibiting a first-order decay is an infinite uniform distributed load. Whether the maximum value of the derivative is positive or negative depends on the values of the parameters that characterize the hydraulic geometry of the channel and the dependence of reaeration on flow. Theoretical results presented here indicate that for most natural streams the traditional assumption, that the lowest streamflow is the worst from a water quality perspective, will usually be valid for first-order pollutants. Nevertheless, they also lead to the expectation that increases in impacts with increasing streamflow might occur for dissolved oxygen, especially in highly polluted and regulated streams (pollution, water quality models, rules and regulations, and management).

  19. Reconciling agriculture and stream restoration in Europe: A review relating to the EU Water Framework Directive

    DEFF Research Database (Denmark)

    Flavio, Hugo; Ferreira, P.; Formigo, N.

    2017-01-01

    Agriculture is widespread across the EU and has caused considerable impacts on freshwater ecosystems. To revert the degradation caused to streams and rivers, research and restoration efforts have been developed to recover ecosystem functions and services, with the European Water Framework Directive...... (WFD) playing a significant role in strengthening the progress. Analysing recent peer-reviewed European literature (2009–2016), this review explores 1) the conflicts and difficulties faced when restoring agriculturally impacted streams, 2) the aspects relevant to effectively reconcile agricultural land......-reviewed literature. The first WFD cycle ended in 2015 without reaching the goal of good ecological status in many European water-bodies. Addressing limitations reported in recent papers, including difficulties in stakeholder integration and importance of small headwater streams, is crucial. Analysing recent...

  20. Physical habitat and water quality correlates of crayfish distributions in a mined watershed

    Science.gov (United States)

    Welsh, Stuart; Loughman, Zachary J.

    2014-01-01

    In mined watersheds, water quality alters aquatic faunas, but few studies have focused on associations between stream habitat and crayfish distributions. We examined associations of water quality and physical habitat quality on presence/absence of six crayfish species in the upper Kanawha River drainage of southern West Virginia, USA, a region with a long history of surface and mountaintop removal mining of coal. Data supported an association of physical habitat quality with the presence of four species (Cambarus carinirostris, Cambarus robustus, Cambarus cf. sciotensis, and Orconectes sanbornii). Cambarus bartonii cavatus and the non-native Orconectes virilis were associated with lower quality physical habitat than that of the other four species. Relative to other species, C. b. cavatus was associated with the lowest conductivity values, whereas O. virilis was associated with the highest conductivity values. Secondary and tertiary burrowers were generally associated with relatively high-quality physical habitat. However, C. b. cavatus, a crayfish known to burrow extensively in headwater streams, was associated with the lowest quality physical habitat. Physical habitat quality was generally supported over stream conductivity as a variable influencing crayfish distributions. Our data demonstrate the importance of stream habitat quality when assessing crayfish assemblages within mined watersheds.

  1. Assess water scarcity integrating water quantity and quality

    Science.gov (United States)

    Liu, J.; Zeng, Z.

    2014-12-01

    Water scarcity has become widespread all over the world. Current methods for water scarcity assessment are mainly based on water quantity and seldom consider water quality. Here, we develop an approach for assessing water scarcity considering both water quantity and quality. In this approach, a new water scarcity index is used to describe the severity of water scarcity in the form of a water scarcity meter, which may help to communicate water scarcity to a wider audience. To illustrate the approach, we analyzed the historical trend of water scarcity for Beijing city in China during 1995-2009, as well as the assessment for different river basins in China. The results show that Beijing made a huge progress in mitigating water scarcity, and that from 1999 to 2009 the blue and grey water scarcity index decreased by 59% and 62%, respectively. Despite this progress, we demonstrate that Beijing is still characterized by serious water scarcity due to both water quantity and quality. The water scarcity index remained at a high value of 3.5 with a blue and grey water scarcity index of 1.2 and 2.3 in 2009 (exceeding the thresholds of 0.4 and 1, respectively). As a result of unsustainable water use and pollution, groundwater levels continue to decline, and water quality shows a continuously deteriorating trend. To curb this trend, future water policies should further decrease water withdrawal from local sources (in particular groundwater) within Beijing, and should limit the grey water footprint below the total amount of water resources.

  2. Parents' perceptions of water safety and quality.

    Science.gov (United States)

    Merkel, Lori; Bicking, Cara; Sekhar, Deepa

    2012-02-01

    Every day parents make choices about the source of water their families consume. There are many contributing factors which could affect decisions about water consumption including taste, smell, color, safety, cost, and convenience. However, few studies have investigated what parents with young children think about water quality and safety in the US and how this affects the choices they are making. This study aimed to describe the perceptions of parents with regard to water quality and safety and to compare bottled water and tap water use, as well as to examine motivation for water choices. We conducted an online questionnaire to survey parents living in Pennsylvania about water quality and safety, and preference for bottled versus tap water. Parents were recruited through child care centers, and 143 surveys were returned. The survey results showed high overall scores for perception of tap water quality and safety, and a preference for tap water over bottled water. We found that parents were concerned for the environmental impact that buying bottled water may have but were also concerned about potential contamination of tap water by natural gas drilling processes and nuclear power plants. These findings regarding parental concerns are critical to inform pediatric health care providers, water sellers, and suppliers in order that they may provide parents with the necessary information to make educated choices for their families.

  3. Heavy metal contamination in stream water and sediments of gold ...

    African Journals Online (AJOL)

    AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's Partners · Terms and Conditions of Use · Contact AJOL · News. OTHER RESOURCES... for Researchers · for Journals · for Authors · for Policy Makers · about Open Access · Journal Quality.

  4. Characterising the dynamics of surface water-groundwater interactions in intermittent and ephemeral streams using streambed thermal signatures

    Science.gov (United States)

    Rau, Gabriel C.; Halloran, Landon J. S.; Cuthbert, Mark O.; Andersen, Martin S.; Acworth, R. Ian; Tellam, John H.

    2017-09-01

    Ephemeral and intermittent flow in dryland stream channels infiltrates into sediments, replenishes groundwater resources and underpins riparian ecosystems. However, the spatiotemporal complexity of the transitory flow processes that occur beneath such stream channels are poorly observed and understood. We develop a new approach to characterise the dynamics of surface water-groundwater interactions in dryland streams using pairs of temperature records measured at different depths within the streambed. The approach exploits the fact that the downward propagation of the diel temperature fluctuation from the surface depends on the sediment thermal diffusivity. This is controlled by time-varying fractions of air and water contained in streambed sediments causing a contrast in thermal properties. We demonstrate the usefulness of this method with multi-level temperature and pressure records of a flow event acquired using 12 streambed arrays deployed along a ∼ 12 km dryland channel section. Thermal signatures clearly indicate the presence of water and characterise the vertical flow component as well as the occurrence of horizontal hyporheic flow. We jointly interpret thermal signatures as well as surface and groundwater levels to distinguish four different hydrological regimes: [A] dry channel, [B] surface run-off, [C] pool-riffle sequence, and [D] isolated pools. The occurrence and duration of the regimes depends on the rate at which the infiltrated water redistributes in the subsurface which, in turn, is controlled by the hydraulic properties of the variably saturated sediment. Our results have significant implications for understanding how transitory flows recharge alluvial sediments, influence water quality and underpin dryland ecosystems.

  5. Quality of surface-water supplies in the Triangle Area of North Carolina, water years 2012–13

    Science.gov (United States)

    Pfeifle, C.A.; Cain, J.L.; Rasmussen, R.B.

    2016-09-07

    Surface-water supplies are important sources of drinking water for residents in the Triangle area of North Carolina, which is located within the upper Cape Fear and Neuse River Basins. Since 1988, the U.S. Geological Survey and a consortium of local governments have tracked water-quality conditions and trends in several of the area’s water-supply lakes and streams. This report summarizes data collected through this cooperative effort, known as the Triangle Area Water Supply Monitoring Project, during October 2011 through September 2012 (water year 2012) and October 2012 through September 2013 (water year 2013). Major findings for this period include:Annual precipitation was approximately 2 percent above the long-term mean (average) annual precipitation in 2012 and approximately 3 percent below the long-term mean in 2013.In water year 2012, streamflow was generally below the long-term mean during most of the period for the 10 project streamflow gaging stations. Streamflow was near or above the long-term mean at the same streamflow gaging stations during the 2013 water year.More than 7,000 individual measurements of water quality were made at a total of 17 sites—6 in the Neuse River Basin and 11 in the Cape Fear River Basin. Forty-three water-quality properties or constituents were measured; State water-quality standards exist for 23 of these.All observations met State water-quality standards for pH, temperature, hardness, chloride, fluoride, sulfate, nitrate, arsenic, cadmium, chromium, lead, nickel, and selenium.North Carolina water-quality standards were exceeded one or more times for dissolved oxygen, dissolved-oxygen percent saturation, turbidity, chlorophyll a, copper, iron, manganese, mercury, silver, and zinc. Exceedances occurred at all 17 sites.Stream samples collected during storm events contained elevated concentrations of 19 water-quality constituents relative to non-storm events.

  6. Evaluation of simplified stream-aquifer depletion models for water rights administration

    Science.gov (United States)

    Sophocleous, Marios; Koussis, Antonis; Martin, J.L.; Perkins, S.P.

    1995-01-01

    We assess the predictive accuracy of Glover's (1974) stream-aquifer analytical solutions, which are commonly used in administering water rights, and evaluate the impact of the assumed idealizations on administrative and management decisions. To achieve these objectives, we evaluate the predictive capabilities of the Glover stream-aquifer depletion model against the MODFLOW numerical standard, which, unlike the analytical model, can handle increasing hydrogeologic complexity. We rank-order and quantify the relative importance of the various assumptions on which the analytical model is based, the three most important being: (1) streambed clogging as quantified by streambed-aquifer hydraulic conductivity contrast; (2) degree of stream partial penetration; and (3) aquifer heterogeneity. These three factors relate directly to the multidimensional nature of the aquifer flow conditions. From these considerations, future efforts to reduce the uncertainty in stream depletion-related administrative decisions should primarily address these three factors in characterizing the stream-aquifer process. We also investigate the impact of progressively coarser model grid size on numerically estimating stream leakage and conclude that grid size effects are relatively minor. Therefore, when modeling is required, coarser model grids could be used thus minimizing the input data requirements.

  7. Dipping our toes in the water: first models of GD-1 as a stream

    Science.gov (United States)

    Bowden, A.; Belokurov, V.; Evans, N. W.

    2015-05-01

    We present a model for producing tidal streams from disrupting progenitors in arbitrary potentials, utilizing the idea that the majority of stars escape from the progenitor's two Lagrange points. The method involves releasing test particles at the Lagrange points as the satellite orbits the host and dynamically evolving them in the potential of both host and progenitor. The method is sufficiently fast to allow large-dimensional parameter exploration using Monte Carlo methods. We provide the first direct modelling of 6D stream observations - assuming a stream rather than an orbit - by applying our methods to GD-1. This is a kinematically cold stream spanning 60° of the sky and residing in the outer Galaxy ≈15 kpc distant from the centre. We assume the stream moves in a flattened logarithmic potential characterized by an asymptotic circular velocity v0 and a flattening q. We recover values of normalization v0 = 227.2^{+15.6}_{-18.2} kms-1 and flattening q = 0.91^{+0.04}_{-0.1}, if the stream is assumed to be leading, and v0 = 226.5^{+17.9}_{-17.0} kms-1, q = 0.90^{+0.05}_{-0.09}, if it is assumed to be trailing. This can be compared to the values v0 = 224 ± 13 kms-1 and q= 0.87^{+0.07}_{-0.04} obtained by Koposov et al. using the simpler technique of orbit fitting. Although there are differences between stream and orbit fitting, we conclude that orbit fitting can provide accurate results given the current quality of the data, at least for this kinematically cold stream in this logarithmic model of the Galaxy.

  8. Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River.

    Science.gov (United States)

    Misaghi, Farhad; Delgosha, Fatemeh; Razzaghmanesh, Mostafa; Myers, Baden

    2017-07-01

    Rivers are one of the main water resources for agricultural, drinking, environmental and industrial use. Water quality indices can and have been used to identify threats to water quality along a stream and contribute to better water resources management. There are many water quality indices for the assessment and use of surface water for drinking purposes. However, there is no well-established index for the assessment and direct use of river water for irrigation purposes. The aim of this study was to adopt the framework of the National Sanitation Foundation Water Quality Index (NSFWQI) and, with adjustments, apply it in a way which will conform to irrigation water quality requirements. To accomplish this, the NSFWQI parameters for drinking water use were amended to include water quality parameters suitable for irrigation. For each selected parameter, an individual weighting chart was generated according to the FAO 29 guideline. The NSFWQI formula was then used to calculate a final index value, and for each parameter an acceptable range in this value was determined. The new index was then applied to the Ghezel Ozan River in Iran as a case study. A forty five year record of water quality data (1966 to 2010) was collected from four hydrometery stations along the river. Water quality parameters including Na + , Cl - , pH, HCO - 3, EC, SAR and TDS were employed for water quality analysis using the adjusted NSFWQI formula. The results of this case study showed variation in water quality from the upstream to downstream ends of the river. Consistent monitoring of the river water quality and the establishment of a long term management plan were recommended for the protection of this valuable water resource. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Interactions between stream channel incision, soil water levels and ...

    African Journals Online (AJOL)

    Wetland degradation in the form of channel incisioning can significantly alter the hydrological functioning of a wetland. In this study in a small headwater wetland in the Hogsback area, Eastern Cape province, the impact of channel incisioning on soil water levels and soil morphology was examined. A good correlation (R2 ...

  10. Acquisition and management of continuous data streams for crop water management

    Science.gov (United States)

    Wireless sensor network systems for decision support in crop water management offer many advantages including larger spatial coverage and multiple types of data input. However, collection and management of multiple and continuous data streams for near real-time post analysis can be problematic. Thi...

  11. The application and testing of diatom-based indices of stream water ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... broken sewage pipes finds its way into the stream. All of the sites were ... variances (Levene`s test, p < 0.05) and normality of distribution. (Shapiro-Wilk test, p ...... Water Board network In: Whitton BA and Rott E (eds.) Use of.

  12. Spatio-temporal variation in stream water chemistry in a tropical urban watershed

    Directory of Open Access Journals (Sweden)

    Alonso Ramírez

    2014-06-01

    Full Text Available Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial variability in stream physicochemistry in a highly urbanized watershed in Puerto Rico. The main objective of the study was to describe stream physicochemical characteristics and relate them to urban intensity, e.g., percent impervious surface cover, and watershed infrastructure, e.g., road and pipe densities. The Río Piedras Watershed in the San Juan Metropolitan Area, Puerto Rico, is one of the most urbanized regions on the island. The Río Piedras presented high solute concentrations that were related to watershed factors, such as percent impervious cover. Temporal variability in ion concentrations lacked seasonality, as did all other parameters measured except water temperature, which was lower during winter and highest during summer, as expected based on latitude. Spatially, stream physicochemistry was strongly related to watershed percent impervious cover and also to the density of urban infrastructure, e.g., roads, pipe, and building densities. Although the watershed is serviced by a sewage collection system, illegal discharges and leaky infrastructure are probably responsible for the elevated ion concentration found. Overall, the Río Piedras is an example of the response of a tropical urban watershed after major sewage inputs are removed, thus highlighting the importance of proper infrastructure maintenance and management of runoff to control ion concentrations in tropical streams.

  13. Land-based sources of marine pollution: Pesticides, PAHs and phthalates in coastal stream water, and heavy metals in coastal stream sediments in American Samoa.

    Science.gov (United States)

    Polidoro, Beth A; Comeros-Raynal, Mia T; Cahill, Thomas; Clement, Cassandra

    2017-03-15

    The island nations and territories of the South Pacific are facing a number of pressing environmental concerns, including solid waste management and coastal pollution. Here we provide baseline information on the presence and concentration of heavy metals and selected organic contaminants (pesticides, PAHs, phthalates) in 7 coastal streams and in surface waters adjacent to the Futiga landfill in American Samoa. All sampled stream sediments contained high concentrations of lead, and some of mercury. Several coastal stream waters showed relatively high concentrations of diethyl phthalate and of organophosphate pesticides, above chronic toxicity values for fish and other aquatic organisms. Parathion, which has been banned by the US Environmental Protection Agency since 2006, was detected in several stream sites. Increased monitoring and initiatives to limit non-point source land-based pollution will greatly improve the state of freshwater and coastal resources, as well as reduce risks to human health in American Samoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Stream water chemistry in the arsenic-contaminated Baccu Locci mine watershed (Sardinia, Italy) after remediation.

    Science.gov (United States)

    Ardau, Carla; Podda, Francesca; Da Pelo, Stefania; Frau, Franco

    2013-11-01

    The abandoned Pb-As Baccu Locci mine represents the first and only case of mine site remediation in Sardinia, Italy. Arsenic is the most relevant environmental concern in the Baccu Locci stream watershed, with concentrations in surface waters up to and sometimes over 1 mg/L. The main remediation action consisted in creation of a "storage site", for the collection of contaminated materials from different waste-rock dumps and most of tailings piles occurring along the Baccu Locci stream. This paper reports preliminary results on the level of contamination in the Baccu Locci stream after the completion of remediation measures. Post-remediation stream water chemistry has not substantially changed compared to the pre-remediation situation. In particular, dissolved As maintains an increasing trend along the Baccu Locci stream, with a concentration of about 400 μg/L measured at a distance of 7 km from the storage site. Future monitoring will provide fundamental information on the effectiveness of remediation actions conducted and their applicability to other mine sites in Sardinia. At the stage of mine site characterisation of future remediation plans, it is recommended to pay more attention to the understanding of mineralogical and geochemical processes responsible for pollution. Moreover, mixing of materials with different composition and reactivity in a storage site should require careful consideration and long-term leaching tests.

  15. Dynamics in surface water solute concentrations and consequences for water quality monitoring

    Science.gov (United States)

    Rozemeijer, J.; Van der Velde, Y.; Broers, H. P.; van Geer, F.

    2012-04-01

    For the evaluation of action programs to reduce surface water pollution, water authorities invest heavily in water quality monitoring. However, sampling frequencies are generally insufficient to capture the dynamical behavior of solute concentrations. This results in large uncertainties in the estimates of loads and average concentrations, which complicates water quality assessments. The main causes of dynamics in groundwater and surface water quality are variations in human land management, biochemical processes, and meteorological conditions. In this study, we focused on the short-term variations in water quality that are normally not captured with common monthly measurement intervals. Our multi-scale experimental research setup in The Netherlands revealed that weather induced variations are the major cause of short-term variations in water quality. During rainfall events, the relative contribution of different flow routes (groundwater, tile drain, overland flow) to the total surface water discharge changes. These different flow routes have different residence times in the subsurface and therefore different chemical compositions. For example, our continuous nitrate concentration measurements repetitively showed a lowering in stream water nitrate concentrations in response to rainfall events. This lowering was caused by a temporal dilution of nitrate-rich tile drain effluent with nitrate-poor rainwater. On the other hand, the continuously measured phosphorus concentrations peaked during rainfall events due to the resuspension of phosphorus-rich sediments. We will also present the following options to deal with the highly dynamic behavior of solute concentrations in surface water quality monitoring practice: (1) use modern equipment for continuous concentration measurements, (2) measure average concentrations using passive samplers, and (3) use the explanatory strength of generally available high-frequency data (e.g. precipitation and discharge records) to

  16. Volunteer stream monitoring: Do the data quality and monitoring experience support increased community involvement in freshwater decision making?

    Directory of Open Access Journals (Sweden)

    Richard G. Storey

    2016-12-01

    Full Text Available Recent freshwater policy reforms in New Zealand promote increased community involvement in freshwater decision making and management. Involving community members in scientific monitoring increases both their knowledge and their ability to discuss this knowledge with professionals, potentially increasing their influence in decision-making processes. However, these interactions rarely occur because, in particular, of perceptions that volunteer-collected data are unreliable. We assessed the agreement between volunteer (community group and local government (regional council data at nine stream sites across New Zealand. Over 18 months, community groups and regional council staff monitored, in parallel, a common set of water quality variables, physical habitat, periphyton and benthic macroinvertebrates that are routinely used by regional councils for statutory state of environment reporting. Community groups achieved close agreement (correlations ≥ 0.89, bias < 1% with regional councils for temperature, electrical conductivity, visual water clarity, and Escherichia coli. For dissolved oxygen, nitrate, and pH, correlations were weaker (0.2, 0.53, and 0.4, respectively. Volunteer assessments of physical habitat were as consistent over time as those of councils. For visual assessments of thick periphyton growths (% streambed cover, volunteers achieved a correlation of 0.93 and bias of 0.1% relative to councils. And for a macroinvertebrate biotic index that indicates water and habitat quality, correlation was 0.88, bias was < 5%, and the average difference was 12% of the index score. Volunteers showed increased awareness of local freshwaters, understanding of stream ecosystems, and attentiveness to local and national freshwater issues. Most volunteers had shared their knowledge and interest with others in their community. Most groups had developed relationships with their regional council, and some volunteers became more interested in engaging in

  17. Water quality assessment of Australian ports using water quality evaluation indices

    OpenAIRE

    Jahan, Sayka; Strezov, Vladimir

    2017-01-01

    Australian ports serve diverse and extensive activities, such as shipping, tourism and fisheries, which may all impact the quality of port water. In this work water quality monitoring at different ports using a range of water quality evaluation indices was applied to assess the port water quality. Seawater samples at 30 stations in the year 2016-2017 from six ports in NSW, Australia, namely Port Jackson, Botany, Kembla, Newcastle, Yamba and Eden, were investigated to determine the physicochem...

  18. Ptaquiloside from bracken in stream water at base flow and during storm events

    DEFF Research Database (Denmark)

    Clauson-Kaas, Frederik; Ramwell, Carmel; Hansen, Hans Chr. Bruun

    2016-01-01

    water soluble PTA has been shown to be leachable from bracken fronds, and present in the soil and water below bracken stands. This has raised concerns over whether the compound might pose a risk to drinking water sources. We investigated PTA concentrations in a small stream draining a bracken...... rainfall and PTA concentration in the stream, with a reproducible time lag of approx. 1 h from onset of rain to elevated concentrations, and returning rather quickly (about 2 h) to base flow concentration levels. The concentration of PTA behaved similar to an inert tracer (Cl(-)) in the pulse experiment....... The place and time of sampling governs the findings, and including event-based sampling is essential to provide a more complete picture of PTA loads to surface water....

  19. Surface water quality assessment using factor analysis

    African Journals Online (AJOL)

    2006-01-16

    Jan 16, 2006 ... In this study, the factor analysis technique is applied to surface water quality data sets obtained from the Buyuk Menderes. River Basin, Turkey, during two different hydrological periods. Results show that the indices which changed the quality of water in two seasons and locations differed. During low-flow ...

  20. Professional Development for Water Quality Control Personnel.

    Science.gov (United States)

    Shepard, Clinton Lewis

    This study investigated the availability of professional development opportunities for water quality control personnel in the midwest. The major objective of the study was to establish a listing of educational opportunities for the professional development of water quality control personnel and to compare these with the opportunities technicians…

  1. Principles and Practices of Water Quality Monitoring

    Science.gov (United States)

    J.L. Michael

    2001-01-01

    There are many activities in forest management that may affect water quality, i.e., timber harvestine, road building,mechanical and chemical site preparation, release operations, fuel reduction,wildlife opening maintenance, etc. How severely they affect water quality depends on how well the person in charge of the operation understands the activity itself, the...

  2. 40 CFR 240.204 - Water quality.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...

  3. Great Lakes Water Quality Agreement (GLWQA)

    Science.gov (United States)

    The Great Lakes Water Quality Agreement between the U.S. and Canada addresses critical environmental health issues in the Great Lakes region. It's a model of binational cooperation to protect water quality. It was first signed in 1972 and amended in 2012.

  4. Save Our Streams and Waterways.

    Science.gov (United States)

    Indiana State Dept. of Education, Indianapolis. Center for School Improvement and Performance.

    Protection of existing water supplies is critical to ensuring good health for people and animals alike. This program is aligned with the Izaak Walton League of American's Save Our Streams program which is based on the concept that students can greatly improve the quality of a nearby stream, pond, or river by regular visits and monitoring. The…

  5. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    Science.gov (United States)

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  6. Hillslope hydrologic connectivity controls riparian groundwater turnover: Implications of catchment structure for riparian buffering and stream water sources

    Science.gov (United States)

    Kelsey G. Jencso; Brian L. McGlynn; Michael N. Gooseff; Kenneth E. Bencala; Steven M. Wondzell

    2010-01-01

    Hydrologic connectivity between catchment upland and near stream areas is essential for the transmission of water, solutes, and nutrients to streams. However, our current understanding of the role of riparian zones in mediating landscape hydrologic connectivity and the catchment scale export of water and solutes is limited. We tested the relationship between the...

  7. Water temperature, dissolved oxygen, flow, and shade measurements in the three stream sections of the Golden Trout Wilderness

    Science.gov (United States)

    Kathleen R. Matthews

    2016-01-01

    To determine the current range of water temperatures in the streams inhabited by California golden trout, Oncorhynchus mykiss aguabonita, I deployed and monitored water temperature recording probes from 2008 through 2013 in three meadows in the Golden Trout Wilderness (GTW). Ninety probes were placed in three meadow streams: Mulkey Creek in Mulkey...

  8. FACTORS AFFECTING WATER QUALITY BEFORE TREATMENT

    Directory of Open Access Journals (Sweden)

    Artur Jachimowski

    2017-02-01

    Full Text Available The article assesses the impact of natural and anthropogenic factors on the quality of surface water grasped by Krakow's water treatment plants. We analyzed the indicators chosen in the physicochemical marked in the raw water in the years 2007–2014. The study shows that the water prior to treatment differed in the number and share of separate factors. These components, in turn, explained 63% to 71% of analyzed chemical composition of water.

  9. FACTORS AFFECTING WATER QUALITY BEFORE TREATMENT

    OpenAIRE

    Artur Jachimowski

    2017-01-01

    The article assesses the impact of natural and anthropogenic factors on the quality of surface water grasped by Krakow's water treatment plants. We analyzed the indicators chosen in the physicochemical marked in the raw water in the years 2007–2014. The study shows that the water prior to treatment differed in the number and share of separate factors. These components, in turn, explained 63% to 71% of analyzed chemical composition of water.

  10. SURFACE WATER QUALITY IN THE RIVER PRUT

    Directory of Open Access Journals (Sweden)

    MIHAELA DUMITRAN

    2011-03-01

    Full Text Available Water is an increasingly important and why it is important to surfacewater quality, which is given by the analysis of physical - chemical, biological andobserving the investigation of water, biota, environments investigation. Analysis ofthe Prut river in terms of biological and physical elements - chemical. Evaluationof ecological and chemical status of water was done according to order of approvalof the standard classification nr.161/2006 surface water to determine the ecologicalstatus of water bodies

  11. Modeling the time--varying subjective quality of HTTP video streams with rate adaptations.

    Science.gov (United States)

    Chen, Chao; Choi, Lark Kwon; de Veciana, Gustavo; Caramanis, Constantine; Heath, Robert W; Bovik, Alan C

    2014-05-01

    Newly developed hypertext transfer protocol (HTTP)-based video streaming technologies enable flexible rate-adaptation under varying channel conditions. Accurately predicting the users' quality of experience (QoE) for rate-adaptive HTTP video streams is thus critical to achieve efficiency. An important aspect of understanding and modeling QoE is predicting the up-to-the-moment subjective quality of a video as it is played, which is difficult due to hysteresis effects and nonlinearities in human behavioral responses. This paper presents a Hammerstein-Wiener model for predicting the time-varying subjective quality (TVSQ) of rate-adaptive videos. To collect data for model parameterization and validation, a database of longer duration videos with time-varying distortions was built and the TVSQs of the videos were measured in a large-scale subjective study. The proposed method is able to reliably predict the TVSQ of rate adaptive videos. Since the Hammerstein-Wiener model has a very simple structure, the proposed method is suitable for online TVSQ prediction in HTTP-based streaming.

  12. Water quality indexing for predicting variation of water quality over time

    African Journals Online (AJOL)

    PPoonoosamy

    evaluate the quality of a given water body in such a way that it is easily understood by managers. ... the problem of 'eclipsing' which arises during aggregation process. ... to improve the Water Quality index, mainly to stress on the importance of the ... Thus, since the water quality indexing method yields a single value, it is.

  13. Water quality indicators: bacteria, coliphages, enteric viruses.

    Science.gov (United States)

    Lin, Johnson; Ganesh, Atheesha

    2013-12-01

    Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.

  14. Water-quality assessment of the Central Arizona Basins, Arizona and northern Mexico; environmental setting and overview of water quality

    Science.gov (United States)

    Cordy, Gail E.; Rees, Julie A.; Edmonds, Robert J.; Gebler, Joseph B.; Wirt, Laurie; Gellenbeck, Dorinda J.; Anning, David W.

    1998-01-01

    The Central Arizona Basins study area in central and southern Arizona and northern Mexico is one of 60 study units that are part of the U.S. Geological Survey's National Water-Quality Assessment program. The purpose of this report is to describe the physical, chemical, and environmental characteristics that may affect water quality in the Central Arizona Basins study area and present an overview of water quality. Covering 34,700 square miles, the study area is characterized by generally north to northwestward-trending mountain ranges separated by broad, gently sloping alluvial valleys. Most of the perennial rivers and streams are in the northern part of the study area. Rivers and streams in the south are predominantly intermittent or ephemeral and flow in response to precipitation such as summer thunderstorms. Effluent-dependent streams do provide perennial flow in some reaches. The major aquifers in the study area are in the basin-fill deposits that may be as much as 12,000 feet thick. The 1990 population in the study area was about 3.45 million, and about 61 percent of the total was in Maricopa County (Phoenix and surrounding cities). Extensive population growth over the past decade has resulted in a twofold increase in urban land areas and increased municipal water use; however, agriculture remains the major water use. Seventy-three percent of all water with drawn in the study area during 1990 was used for agricultural purposes. The largest rivers in the study area-the Gila, Salt, and Verde-are perennial near their headwaters but become intermittent downstream because of impoundments and artificial diversions. As a result, the Central Arizona Basins study area is unique compared to less arid basins because the mean surface-water outflow is only 528 cubic feet per second from a total drainage area of 49,650 square miles. Peak flows in the northern part of the study area are the result of snowmelt runoff; whereas, summer thunderstorms account for the peak flows in

  15. Evaluating the impact of irrigation on surface water – groundwater interaction and stream temperature in an agricultural watershed

    Science.gov (United States)

    Essaid, Hedeff I.; Caldwell, Rodney R.

    2017-01-01

    Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natura