WorldWideScience

Sample records for water processor catalytic

  1. Alternative Water Processor Test Development

    Science.gov (United States)

    Pickering, Karen D.; Mitchell, Julie; Vega, Leticia; Adam, Niklas; Flynn, Michael; Wjee (er. Rau); Lunn, Griffin; Jackson, Andrew

    2012-01-01

    The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.

  2. Catalytic detritiation of water

    International Nuclear Information System (INIS)

    Rogers, M.L.; Lamberger, P.H.; Ellis, R.E.; Mills, T.K.

    1977-01-01

    A pilot-scale system has been used at Mound Laboratory to investigate the catalytic detritiation of water. A hydrophobic, precious metal catalyst is used to promote the exchange of tritium between liquid water and gaseous hydrogen at 60 0 C. Two columns are used, each 7.5 m long by 2.5 cm ID and packed with catalyst. Water flow is 5-10 cm 3 /min and countercurrent hydrogen flow is 9,000-12,000 cm 3 /min. The equipment, except for the columns, is housed in an inert atmosphere glovebox and is computer controlled. The hydrogen is obtained by electrolysis of a portion of the water stream. Enriched gaseous tritium is withdrawn for further enrichment. A description of the system is included along with an outline of its operation. Recent experimental data are discussed

  3. Study of the water-gas shift reaction on Mo2C/Mo catalytic coatings for application in microstructured fuel processors

    NARCIS (Netherlands)

    Rebrov, E.V.; Kuznetsov, S.A.; Croon, de M.H.J.M.; Schouten, J.C.

    2007-01-01

    The activity and stability of two types of molybdenum carbide coatings deposited on molybdenum substrates (Mo2C/Mo) were compared in the water-gas shift reaction at 513–631 K. The activity of the Mo2C/Mo coatings obtained by carburization of preoxidized molybdenum substrates in a CH4/H2 mixture at

  4. Space Station Water Processor Process Pump

    Science.gov (United States)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  5. Performance Evaluation of the ISS Water Processor Multifiltration Beds

    Science.gov (United States)

    Bowman, Elizabeth M.; Carter, Layne; Wilson, Mark; Cole, Harold; Orozco, Nicole; Snowdon, Doug

    2012-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Bed, which includes adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. The first Multifiltration Bed was replaced on ISS in July 2010 after initial indication of inorganic breakthrough. This bed was returned to ground in July 2011 for an engineering investigation. The water resident in the bed was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed. In addition, an unused Multifiltration Bed was evaluated after two years in storage to assess the generation of leachates during storage. This assessment was performed to evaluate the possibility that these leachates are impacting performance of the Catalytic Reactor located downstream of the Multifiltration Bed. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  6. Biological Water Processor and Forward Osmosis Secondary Treatment

    Science.gov (United States)

    Shull, Sarah; Meyer, Caitlin

    2014-01-01

    The goal of the Biological Water Processor (BWP) is to remove 90% organic carbon and 75% ammonium from an exploration-based wastewater stream for four crew members. The innovative design saves on space, power and consumables as compared to the ISS Urine Processor Assembly (UPA) by utilizing microbes in a biofilm. The attached-growth system utilizes simultaneous nitrification and denitrification to mineralize organic carbon and ammonium to carbon dioxide and nitrogen gas, which can be scrubbed in a cabin air revitalization system. The BWP uses a four-crew wastewater comprised of urine and humidity condensate, as on the ISS, but also includes hygiene (shower, shave, hand washing and oral hygiene) and laundry. The BWP team donates 58L per day of this wastewater processed in Building 7.

  7. An Alternative Water Processor for Long Duration Space Missions

    Science.gov (United States)

    Barta, Daniel J.; Pickering, Karen D.; Meyer, Caitlin; Pennsinger, Stuart; Vega, Leticia; Flynn, Michael; Jackson, Andrew; Wheeler, Raymond

    2014-01-01

    A new wastewater recovery system has been developed that combines novel biological and physicochemical components for recycling wastewater on long duration human space missions. Functionally, this Alternative Water Processor (AWP) would replace the Urine Processing Assembly on the International Space Station and reduce or eliminate the need for the multi-filtration beds of the Water Processing Assembly (WPA). At its center are two unique game changing technologies: 1) a biological water processor (BWP) to mineralize organic forms of carbon and nitrogen and 2) an advanced membrane processor (Forward Osmosis Secondary Treatment) for removal of solids and inorganic ions. The AWP is designed for recycling larger quantities of wastewater from multiple sources expected during future exploration missions, including urine, hygiene (hand wash, shower, oral and shave) and laundry. The BWP utilizes a single-stage membrane-aerated biological reactor for simultaneous nitrification and denitrification. The Forward Osmosis Secondary Treatment (FOST) system uses a combination of forward osmosis (FO) and reverse osmosis (RO), is resistant to biofouling and can easily tolerate wastewaters high in non-volatile organics and solids associated with shower and/or hand washing. The BWP has been operated continuously for over 300 days. After startup, the mature biological system averaged 85% organic carbon removal and 44% nitrogen removal, close to stoichiometric maximum based on available carbon. To date, the FOST has averaged 93% water recovery, with a maximum of 98%. If the wastewater is slighty acidified, ammonia rejection is optimal. This paper will provide a description of the technology and summarize results from ground-based testing using real wastewater

  8. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    Science.gov (United States)

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Havstad, Mark A [Davis, CA

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  9. Airborne ocean water lidar (OWL) real time processor (RTP)

    Science.gov (United States)

    Hryszko, M.

    1995-03-01

    The Hyperflo Real Time Processor (RTP) was developed by Pacific-Sierra Research Corporation as a part of the Naval Air Warfare Center's Ocean Water Lidar (OWL) system. The RTP was used for real time support of open ocean field tests at Barbers Point, Hawaii, in March 1993 (EMERALD I field test), and Jacksonville, Florida, in July 1994 (EMERALD I field test). This report describes the system configuration, and accomplishments associated with the preparation and execution of these exercises. This document is intended to supplement the overall test reports and provide insight into the development and use of the PTP. A secondary objective is to provide basic information on the capabilities, versatility and expandability of the Hyperflo RTP for possible future projects. It is assumed herein that the reader has knowledge of the OWL system, field test operations, general lidar processing methods, and basic computer architecture.

  10. Updated Performance Evaluation of the ISS Water Processor Multifiltration Beds

    Science.gov (United States)

    Bowman, Elizabeth M.; Carter, Layne; Carpenter, Joyce; Orozco, Nicole; Weir, Natalee; Wilson, Mark

    2014-01-01

    The ISS Water Processor Assembly (WPA) produces potable water from a waste stream containing humidity condensate and urine distillate. The primary treatment process is achieved in the Multifiltration Beds, which include adsorbent media and ion exchange resin for the removal of dissolved organic and inorganic contaminants. Two Multifiltration Beds (MF Beds) were replaced on ISS in July 2010 after initial indication of inorganic breakthrough of the first bed and an increasing Total Organic Carbon (TOC) trend in the product water. The first bed was sampled and analyzed Sept 2011 through March 2012. The second MF Bed was sampled and analyzed June 2012 through August 2012. The water resident in the both beds was analyzed for various parameters to evaluate adsorbent loading, performance of the ion exchange resin, microbial activity, and generation of leachates from the ion exchange resin. Portions of the adsorbent media and ion exchange resin were sampled and subsequently desorbed to identify the primary contaminants removed at various points in the bed in addition to microbial analysis. Analysis of the second bed will be compared to results from the first bed to provide a comprehensive overview of how the Multifiltration Beds function on orbit. New data from the second bed supplements the analysis of the first bed (previously reported) and gives a more complete picture of breakthrough compounds, resin breakdown products, microbial activity, and difficult to remove compounds. The results of these investigations and implications to the operation of the WPA on ISS are documented in this paper.

  11. Fuel processor integrated H{sub 2}S catalytic partial oxidation technology for sulfur removal in fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, T.H.; Berry, D.A.; Lyons, K.D.; Beer, S.K.; Freed, A.D. [U.S. Department of Energy, Morgantown, WV (USA). National Energy Technology Laboratory

    2002-12-01

    H{sub 2}S catalytic partial oxidation technology with an activated carbon catalyst was found to be a promising method for the removal of hydrogen sulfide from fuel cell hydrocarbon feedstocks. Three different fuel cell feedstocks were considered for analysis: sour natural gas, sour effluent from a liquid middle distillate fuel processor and a Texaco O{sub 2}-blown coal-derived synthesis gas. The H{sub 2}S catalytic partial oxidation reaction, its integratability into fuel cell power plants with different hydrocarbon feedstocks and its salient features are discussed. Experimental results indicate that H{sub 2}S concentration can be removed down to the part-per-million level in these plants. Additionally, a power law rate expression was developed and reaction kinetics compared to prior literature. The activation energy for this reaction was determined to be 34.4 kJ/g mol with the reaction being first order in H{sub 2}S and 0.3 order in O{sub 2}. 18 refs., 14 figs., 3 tabs.

  12. A Trade Study of Two Membrane-Aerated Biological Water Processors

    Science.gov (United States)

    Allada, Ram; Lange, Kevin; Vega. Leticia; Roberts, Michael S.; Jackson, Andrew; Anderson, Molly; Pickering, Karen

    2011-01-01

    Biologically based systems are under evaluation as primary water processors for next generation life support systems due to their low power requirements and their inherent regenerative nature. This paper will summarize the results of two recent studies involving membrane aerated biological water processors and present results of a trade study comparing the two systems with regards to waste stream composition, nutrient loading and system design. Results of optimal configurations will be presented.

  13. Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants

    Science.gov (United States)

    Torosyan, V. F.; Torosyan, E. S.; Kryuchkova, S. O.; Gromov, V. E.

    2017-01-01

    The system: water supply source - potable and industrial water - wastewater - sewage treatment - water supply source is necessary for water supply and efficient utilization of water resources. Up-to-date technologies of waste water biological treatment require for special microorganisms, which are technologically complex and expensive but unable to solve all the problems. Application of photolytic and catalytically-oxidizing destruction is quite promising. However, the most reagents are strong oxidizers in catalytic oxidation of organic substances and can initiate toxic substance generation. Methodic and scientific approaches to assess bread making industry influence on the environment have been developed in this paper in order to support forecasting and taking technological decisions concerning reduction of this influence. Destructive methods have been tested: ultra violet irradiation and catalytic oxidation for extraction of organic compounds from waste water by natural reagents.

  14. Contaminant Permeation in the Ionomer-Membrane Water Processor (IWP) System

    Science.gov (United States)

    Kelsey, Laura K.; Finger, Barry W.; Pasadilla, Patrick; Perry, Jay

    2016-01-01

    The Ionomer-membrane Water Processor (IWP) is a patented membrane-distillation based urine brine water recovery system. The unique properties of the IWP membrane pair limit contaminant permeation from the brine to the recovered water and purge gas. A paper study was conducted to predict volatile trace contaminant permeation in the IWP system. Testing of a large-scale IWP Engineering Development Unit (EDU) with urine brine pretreated with the International Space Station (ISS) pretreatment formulation was then conducted to collect air and water samples for quality analysis. Distillate water quality and purge air GC-MS results are presented and compared to predictions, along with implications for the IWP brine processing system.

  15. Predictive Uncertainty Estimation in Water Demand Forecasting Using the Model Conditional Processor

    Directory of Open Access Journals (Sweden)

    Amos O. Anele

    2018-04-01

    Full Text Available In a previous paper, a number of potential models for short-term water demand (STWD prediction have been analysed to find the ones with the best fit. The results obtained in Anele et al. (2017 showed that hybrid models may be considered as the accurate and appropriate forecasting models for STWD prediction. However, such best single valued forecast does not guarantee reliable and robust decisions, which can be properly obtained via model uncertainty processors (MUPs. MUPs provide an estimate of the full predictive densities and not only the single valued expected prediction. Amongst other MUPs, the purpose of this paper is to use the multi-variate version of the model conditional processor (MCP, proposed by Todini (2008, to demonstrate how the estimation of the predictive probability conditional to a number of relatively good predictive models may improve our knowledge, thus reducing the predictive uncertainty (PU when forecasting into the unknown future. Through the MCP approach, the probability distribution of the future water demand can be assessed depending on the forecast provided by one or more deterministic forecasting models. Based on an average weekly data of 168 h, the probability density of the future demand is built conditional on three models’ predictions, namely the autoregressive-moving average (ARMA, feed-forward back propagation neural network (FFBP-NN and hybrid model (i.e., combined forecast from ARMA and FFBP-NN. The results obtained show that MCP may be effectively used for real-time STWD prediction since it brings out the PU connected to its forecast, and such information could help water utilities estimate the risk connected to a decision.

  16. Water detritiation: better catalysts for liquid phase catalytic exchange

    International Nuclear Information System (INIS)

    Braet, J.

    2005-01-01

    Fusion reactors are our hope for a clean nuclear energy. But as they shall handle huge amounts of tritium, 1.5 10 19 Bq GWth -1 a -1 or about 50 000 times more tritium than light water fission reactors, they need detritiation. Most tritium losses can be trapped as or can easily be transformed into tritiated water. Water detritiation is preferably based on the multiplication of the large equilibrium isotope effect during the exchange reaction of tritium between hydrogen gas and liquid water in a counter current trickle bed reactor. Such LPCE (Liquid Phase Catalytic Exchange) requires an efficient hydrophobic catalyst. SCK-CEN invented and developed such a catalyst in the past. In combination with an appropriate packing, different batches of this catalyst performed very well during years of extensive testing, allowing to develop the ELEX process for water detritiation at inland reprocessing plants. The main objectives of this study were to reproduce and possibly improve the SCK-CEN catalyst for tritium exchange between hydrogen and liquid water; and to demonstrate the high overall exchange rate and thus high detritiation factors that can be realized with it in a small and simple LPCE column under typical but conservative operating conditions

  17. Catalytic Enzyme-Based Methods for Water Treatment and Water Distribution System Decontamination. 1. Literature Survey

    Science.gov (United States)

    2006-06-01

    best examples of this is glucose isomerase, which has been used in the commercial production of high fructose corn syrup (HFCS) since 1967.230 Most...EDGEWOOD CHEMICAL BIOLOGICAL CENTER U.S. ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND ECBC-TR-489 CATALYTIC ENZYME-BASED METHODS FOR WATER ...TREATMENT AND WATER DISTRIBUTION SYSTEM DECONTAMINATION 1. LITERATURE SURVEY Joseph J. DeFrank RESEARCH AND TECHNOLOGY DIRECTORATE June 2006 Approved for

  18. Experimental studies on catalytic hydrogen recombiners for light water reactors

    International Nuclear Information System (INIS)

    Drinovac, P.

    2006-01-01

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  19. Integrated fuel processor development

    International Nuclear Information System (INIS)

    Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

    2001-01-01

    The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed

  20. Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts

    Science.gov (United States)

    Nadejde, C.; Neamtu, M.; Schneider, R. J.; Hodoroaba, V.-D.; Ababei, G.; Panne, U.

    2015-10-01

    The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant under very mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, the surface of magnetite (Fe3O4) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxide oxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H2O2 concentration, and contact time was studied in the dye degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H2O2 after 240 min of oxidation for a catalyst concentration of 10 g L-1 at 25 °C and initial pH value of 9.0. CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment method for complete decolorization of effluents from textile dyeing and finishing processes, once the optimum operating conditions are established.

  1. Recycle attuned catalytic exchange (RACE) for reliable and low inventory processing of highly tritiated water

    International Nuclear Information System (INIS)

    Iseli, M.; Schaub, M.; Ulrich, D.

    1992-01-01

    The detritiation of highly tritiated water by liquid phase catalytic exchange needs dilution of the feed with water to tritium concentrations suitable for catalyst and safety rules and to assure flow rates large enough for wetting the catalyst. Dilution by recycling detritiated water from within the exchange process has three advantages: the amount and concentration of the water for dilution is controlled within the exchange process, there is no additional water load to processes located downstream RACE, and the ratio of gas to liquid flow rates in the exchange column could be adjusted by using several recycles differing in amount and concentration to avoid an excessively large number of theoretical separation stages. In this paper, the flexibility of the recycle attuned catalytic exchange (RACE) and its effect on the cryogenic distillation are demonstrated for the detritiation of the highly tritiated water from a tritium breeding blanket

  2. Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nadejde, C., E-mail: claudia.nadejde@uaic.ro [Interdisciplinary Research Department – Field Science, ‘Alexandru Ioan Cuza’ University, Lascar Catargi 54, 700107 Iasi (Romania); Neamtu, M., E-mail: mariana.neamtu@uaic.ro [Interdisciplinary Research Department – Field Science, ‘Alexandru Ioan Cuza’ University, Lascar Catargi 54, 700107 Iasi (Romania); Schneider, R.J.; Hodoroaba, V.-D. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin (Germany); Ababei, G. [National Institute of Research and Development for Technical Physics, Dimitrie Mangeron Bd. 47, 700050 Iasi (Romania); Panne, U. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin (Germany); Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin (Germany)

    2015-10-15

    Graphical abstract: - Highlights: • Non-hazardous, facile and inexpensive procedure for efficient wastewater treatment. • Chemical synthesis of ferrous oxalate modified Fe{sub 3}O{sub 4} nanoparticles. • Structural characterization confirmed the senzitized catalysts' nanometric size. • The highly magnetic catalysts can be easily recovered from solution. • 99.7% of azo dye was removed in 4 h using Fenton-like process in alkaline media. - Abstract: The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant under very mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, the surface of magnetite (Fe{sub 3}O{sub 4}) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxide oxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H{sub 2}O{sub 2} concentration, and contact time was studied in the dye degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H{sub 2}O{sub 2} after 240 min of oxidation for a catalyst concentration of 10 g L{sup −1} at 25 °C and initial pH value of 9.0. CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment method for complete decolorization of effluents from textile dyeing and finishing processes, once the optimum operating conditions are established.

  3. Catalytic Conversion of Glucose into 5-Hydroxymethylfurfural by Hf(OTf4 Lewis Acid in Water

    Directory of Open Access Journals (Sweden)

    Junjie Li

    2015-12-01

    Full Text Available A series of Lewis acidic metal salts were used for glucose dehydration to 5-hydroymethylfurfural (HMF in water. Effect of valence state, ionic radii of Lewis acidic cation, and the type of anions on the catalytic performance have been studied systematically. The experimental results showed that the valence state played an important role in determining catalytic activity and selectivity. It was found that a higher glucose conversion rate and HMF selectivity could be obtained over high valent Lewis acid salts, where the ionic radii of these Lewis acidic metal salts are usually relatively small. Analysis on the effect of the anions of Lewis acid salts on the catalytic activity and the selectivity suggested that a higher glucose conversion and HMF selectivity could be readily obtained with Cl−. Furthermore, the recyclability of high valence state Lewis acid salt was also studied, however, inferior catalytic performance was observed. The deactivation mechanism was speculated to be the fact that high valence state Lewis acid salt was comparatively easier to undergo hydrolysis to yield complicated metal aqua ions with less catalytic activity. The Lewis acidic activity could be recovered by introducing a stoichiometric amount of hydrochloric acid (HCl to the catalytic before the reaction.

  4. Catalytic membrane in denitrification of water: a means to facilitate intraporous diffusion of reactants

    NARCIS (Netherlands)

    Ilinich, O.M.; Cuperus, F.P.; Gemert, van R.W.; Gribov, E.N.; Nosova, L.V.

    2000-01-01

    The series of mono- and bi-metallic catalysts with Pd and/or Cu supported over γ-Al 2O 3 was investigated with respect to reduction of nitrate and nitrite ions in water by hydrogen. Pronounced limitations of catalytic performance due to intraporous diffusion of the reactants were observed in the

  5. Tritium removal from air streams by catalytic oxidation and water adsorption

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1976-06-01

    An effective method of capturing tritium from air streams is by catalytic oxidation followed by water adsorption on a microporous solid adsorbent. Performance of a burner/dryer combination is illustrated by overall mass balance equations. Engineering design methods for packed bed reactors and adsorbers are reviewed, emphasizing the experimental data needed for design and the effect of operating conditions on system performance

  6. Catalytic reforming of glycerol in supercritical water over bimetallic Pt-Ni catalyst

    NARCIS (Netherlands)

    Chakinala, A.G.; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.; de Vlieger, Dennis; Seshan, Kulathuiyer; Brilman, Derk Willem Frederik

    2013-01-01

    Catalytic reforming of pure glycerol for the production of hydrogen at low temperature and short residence times in supercritical water was investigated using a bimetallic Pt–Ni catalyst supported on alumina. Initial tests were carried out to study the reforming activity of bimetallic Pt–Ni

  7. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi

    2014-10-16

    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  8. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi; Takanabe, Kazuhiro; Domen, Kazunari

    2014-01-01

    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical

  9. Spacecraft Water Regeneration by Catalytic Wet Air Oxidation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop advanced catalysts for a volatile removal assembly used to purify spacecraft water. The innovation of the proposed...

  10. The development of catalytic nucleophilic additions of terminal alkynes in water.

    Science.gov (United States)

    Li, Chao-Jun

    2010-04-20

    One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in

  11. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO(sub 2), bulk TiO(sub 2), and CuO supported on Al(sub 2) O(sub 3). We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO(sub 2) yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO(sub 2) and TiO(sub 2) catalysts enhance both the phenol disappearance and CO(sub 2) formation rates during SCWO. MnO(sub 2) does not affect the selectivity to CO(sub 2), or to the phenol dimers at a given phenol conversion. However, the selectivities to CO(sub 2) are increased and the selectivities to phenol dimers are decreased in the presence of TiO(sub 2) , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  12. Combined electrolysis and catalytic exchange (CECE) technology - an economical alternative for heavy water upgraders using water distillation

    International Nuclear Information System (INIS)

    Ryland, D.K.; Sadhankar, R.R.

    2003-01-01

    Heavy water upgrading is a unique and crucial part of a CANDU power station. Water distillation (DW) systems are used for heavy water upgrading in all CANDU stations. The DW upgrader is designed to take advantage of the difference in relative volatility (a measure of separation of isotopes) between H 2 O and D 2 O. However, the low relative volatility of the H 2 O/D 2 O system requires large number of stages (long columns) and large reflux ratios (large reboiler loads) - thus resulting in significant capital and operating costs. Atomic Energy of Canada Limited (AECL) developed the Combined Electrolysis and Catalytic Exchange (CECE) technology as an economical alternative to the DW system. CECE-based upgraders have been demonstrated in pilot scale facilities at AECL Chalk River Laboratories and in Hamilton, Ontario. This design is based on catalytic hydrogen isotope exchange between water and hydrogen gas. (author)

  13. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Liger, Karine, E-mail: karine.liger@cea.fr [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Mascarade, Jérémy [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Joulia, Xavier; Meyer, Xuan-Mi [Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, Toulouse F-31030 (France); CNRS, Laboratoire de Génie Chimique, Toulouse F-31030 (France); Troulay, Michèle; Perrais, Christophe [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France)

    2016-11-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q{sub 2} form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  14. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    International Nuclear Information System (INIS)

    Liger, Karine; Mascarade, Jérémy; Joulia, Xavier; Meyer, Xuan-Mi; Troulay, Michèle; Perrais, Christophe

    2016-01-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q_2 form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  15. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  16. Catalytic hydrotreating of lignin with water-soluble molybdenum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Osmaa, A.; Johansson, A. (Technical Research Centre of Finland, Espoo (Finland). Lab. of Fuel and Process Technology)

    High yields (61% of the original lignin) of low molecular weight oil (84% of the oil eluted through GC) have been obtained by hydrotreating kraft pine lignin with a water-soluble molybdenum catalyst at 430[degree]C for 60 min. The main compounds in the product oil were phenols (8.7% of the original lignin), cyclohexanes (5.0%), benzenes (3.8%), naphthalenes (4.0%), and phenanthrenes (1.2%). The degree of hydrodeoxygenation was 98%. The quality (measured by GPC and GC) of the product was as good as when using more expensive solid NiMo-CR[sub 2]O[sub 3] catalysts. 30 refs., 6 tabs.

  17. The effect of temperature on the catalytic conversion of Kraft lignin using near-critical water

    DEFF Research Database (Denmark)

    Nguyen, Thi Dieu Huyen; Maschietti, Marco; Åmand, Lars-Erik

    2014-01-01

    The catalytic conversion of suspended LignoBoost Kraft lignin was performed in near-critical water using ZrO2/K2CO3 as the catalytic system and phenol as the co-solvent and char suppressing agent. The reaction temperature was varied from 290 to 370 C and its effect on the process was investigated...... in a continuous flow (1 kg/h). The yields of water-soluble organics (WSO), bio-oil and char (dry lignin basis) were in the ranges of 5–11%, 69–87% and 16–22%, respectively. The bio-oil, being partially deoxygenated, exhibited higher carbon content and heat value, but lower sulphur content than lignin. The main 1...

  18. Detection of Water Bodies from AVHRR Data—A TIMELINE Thematic Processor

    Directory of Open Access Journals (Sweden)

    Andreas J. Dietz

    2017-01-01

    Full Text Available The assessment of water body dynamics is not only in itself a topic of strong demand, but the presence of water bodies is important information when it comes to the derivation of products such as land surface temperature, leaf area index, or snow/ice cover mapping from satellite data. For the TIMELINE project, which aims to derive such products for a long time series of Advanced Very High Resolution Radiometer (AVHRR data for Europe, precise water masks are therefore not only an important stand-alone product themselves, they are also an essential interstage information layer, which has to be produced automatically after preprocessing of the raw satellite data. The respective orbit segments from AVHRR are usually more than 2000 km wide and several thousand km long, thus leading to fundamentally different observation geometries, including varying sea surface temperatures, wave patterns, and sediment and algae loads. The water detection algorithm has to be able to manage these conditions based on a limited amount of spectral channels and bandwidths. After reviewing and testing already available methods for water body detection, we concluded that they cannot fully overcome the existing challenges and limitations. Therefore an extended approach was implemented, which takes into account the variations of the reflectance properties of water surfaces on a local to regional scale; the dynamic local threshold determination will train itself automatically by extracting a coarse-scale classification threshold, which is refined successively while analyzing subsets of the orbit segment. The threshold is then interpolated by fitting a minimum curvature surface before additional steps also relying on the brightness temperature are included to reduce possible misclassifications. The classification results have been validated using Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS data and proven an overall accuracy of 93.4%, with the majority of

  19. Clean Catalysts for Water Recovery Systems in Long-Duration Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A catalytic post-processor is the last unit operation that reclaimed water typically sees before being consumed by the crew, therefore the entire sub-system must be...

  20. Photo catalytic BiFeO3 Nano fibrous Mats for Effective Water Treatment

    International Nuclear Information System (INIS)

    Shaibani, P.M.; Prashanthi, K.; Sohrabi, A.; Thundat, Th.

    2013-01-01

    One-dimensional BiFeO 3 (BFO) nano fibers fabricated by electro spinning of a solution of Nylon 6 /BFO followed by calcination were used for photo catalytic degradation of contaminants in water. The BFO fibers were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-Vis spectroscopy. The SEM images of the as-spun samples demonstrated the successful production of nano fibers and the SEM images of the samples after calcination confirmed the integrity of the continuous BFO nano fibers. XRD analysis indicated the dominant presence of BFO phase throughout the calcinated nano fibers. Photo catalytic activity of the nano fibers and their application in water purification were investigated against 4-chloro phenol (4CP) as a model water contaminant. The results of the UV-Vis spectroscopy show the degradation of the 4CP by means of the photo catalytic activity of the BFO nano fibers. The kinetics of the photodegradation of 4CP is believed to be governed by a pseudo-first-order kinetics model.

  1. Potential Water Reuse for High Strength Fruit and Vegetable Processor Wastewater with an MBR.

    Science.gov (United States)

    Moore, Adam W; Zytner, Richard G; Chang, Sheng

      High strength food processing wastewater from two processing plants was studied to determine the effectiveness of an aerobic membrane bioreactor (MBR) to reduce BOD, TSS and nutrients below municipal sewer discharge limits. The MBR comprised a 20 L lab-scale reactor combined with a flat sheet, ultrafiltration membrane module. The parameters studied included the operational flux, solids and hydraulic retention times and recirculation ratio with regards to nitrification/denitrification. The MBR system provided excellent removal efficiency at 97% COD, 99% BOD, 99.9% TSS, 90% TKN, and 60% TP for both processing plants, which eliminated the surcharges, allowing the firms to stay competitive. Effluent reuse tests showed that activated carbon proved effective in removing color from the MBR permeate, while UV treatment was able to achieve a 5 log reduction in bacteriophage. Overall, these treatment successes show the potential for water reuse in the agrifood sector.

  2. Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood

    Energy Technology Data Exchange (ETDEWEB)

    Renders, Tom; Van den Bosch, Sander; Vangeel, Thijs; Ennaert, Thijs; Koelewijn, Steven-Friso; Van den Bossche, Gil; Courtin, Christophe M.; Schutyser, Wouter; Sels, Bert F.

    2016-12-05

    One of the foremost challenges in lignocellulose conversion encompasses the integration of effective lignin valorization in current carbohydrate-oriented biorefinery schemes. Catalytic reductive fractionation (CRF) of lignocellulose offers a technology to simultaneously produce lignin-derived platform chemicals and a carbohydrate-enriched pulp via the combined action of lignin solvolysis and metal-catalyzed hydrogenolysis. Herein, the solvent (composition) plays a crucial role. In this contribution, we study the influence of alcohol/water mixtures by processing poplar sawdust in varying MeOH/water and EtOH/water blends. The results show particular effects that strongly depend on the applied water concentration. Low water concentrations enhance the removal of lignin from the biomass, while the majority of the carbohydrates are left untouched (scenario A). Contrarily, high water concentrations favor the solubilization of both hemicellulose and lignin, resulting in a more pure cellulosic residue (scenario B). For both scenarios, an evaluation was made to determine the most optimal solvent composition, based on two earlier introduced empirical efficiency descriptors (denoted LFDE and LFFE). According to these measures, 30 (A) and 70 vol % water (B) showed to be the optimal balance for both MeOH/water and EtOH/water mixtures. This successful implementation of alcohol/water mixtures allows operation under milder processing conditions in comparison to pure alcohol solvents, which is advantageous from an industrial point of view.

  3. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H.

    2000-01-01

    Experiments on aqueous TiO 2 photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO 2 photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  4. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.W.; Na, J. W.; Cho, Y. H.; Chung, H. H

    2000-01-01

    Experiments on aqueous TiO{sub 2} photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO{sub 2} photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  5. A new type separation column for the water-hydrogen isotope catalytic exchange process

    International Nuclear Information System (INIS)

    Fedorchenko, O.A.; Alekseev, I.A.; Trenin, V.D.

    2001-01-01

    The catalytic water/hydrogen isotope exchange process is by right considered the most attractive for the solution a number of urgent problems of hydrogen isotope separation. A new type exchange reaction column is described and studied in details by computer simulation and with the help of McCabe-Thiele diagrams. It is shown that the new column in comparison with a traditional one needs less catalyst quantity and a smaller diameter for the solving of the same separation tasks. Generalized calculation data are presented in graphical form

  6. The LASS hardware processor

    International Nuclear Information System (INIS)

    Kunz, P.F.

    1976-01-01

    The problems of data analysis with hardware processors are reviewed and a description is given of a programmable processor. This processor, the 168/E, has been designed for use in the LASS multi-processor system; it has an execution speed comparable to the IBM 370/168 and uses the subset of IBM 370 instructions appropriate to the LASS analysis task. (Auth.)

  7. Catalytic isotope exchange reaction between deuterium gas and water pre-adsorbed on platinum/alumina

    International Nuclear Information System (INIS)

    Iida, Itsuo; Kato, Junko; Tamaru, Kenzi.

    1976-01-01

    The catalytic isotope exchange reaction between deuterium gas and the water pre-adsorbed on Pt/Al 2 O 3 was studied. At reaction temperatures above 273 K, the exchange rate was proportional to the deuterium pressure and independent of the amount of adsorbed water, which suggests that the rate determining step is the supply of deuterium from the gas phase. Its apparent activation energy was 38 kJ mol -1 . Below freezing point of water, the kinetic behaviour was different from that above freezing point. At higher deuterium pressures the rate dropped abruptly at 273 K. Below the temperature the apparent activation energy was 54 kJ mol -1 and the exchange rate depended not on the deuterium pressure but on the amount of the pre-adsorbed water. At lower pressures, however, the kinetic behaviour was the same as the above 273 K, till the rate of the supply of deuterium from the gas phase exceeded the supply of hydrogen from adsorbed water to platinum surface. These results suggest that below 273 K the supply of hydrogen is markedly retarded, the state of the adsorbed water differing from that above 273 K. It was also demonstrated that when the adsorbed water is in the state of capillary condensation, the exchange rate becomes very small. (auth.)

  8. Endotoxin Removal from Water Using Heterogenus Catalytic Ozonation by Bone Char

    Directory of Open Access Journals (Sweden)

    Abas Rezaee

    2011-10-01

    Full Text Available The endotoxin is one of pollutants with lipopolysaccharide structure which release from gram negative bacteria and cyanobacters. The aim of this study was removal of endotoxin from water using catalytic ozonation by bone char. The endotoxin for experiments have extracted from Escherichia coli bacterium cell wall by Stefan and Jan method. Chromogenic limulus ambusite lysate method in 405-410 nm wave length was used for analysing of endotoxin. The ozone have analysed by potassium iodine method. Results: Results of the research shown endotoxin removal rates using heterogenous catalytic ozonation were 6.0 Eu/ml.min and 0.5 Eu/ml.min for grey bone char and white bone char, respectively. The efficency of the process was found eighty percent. Primary concentration of basic compounds had no effect on endotoxin removal rate. Therefore, endotoxin removal kinetic of reaction is a zero order reaction. This study revealed that ozonation process using bone char is more efficient than other proposed methods such as ozonation or chlorination and can be used successfully for endotoxin removal from water as a efficient method.

  9. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    Science.gov (United States)

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  10. Integration of In-Flight and Post-Flight Water Monitoring Resources in Addressing the U.S. Water Processor Assembly Total Organic Carbon (TOC) Anomaly

    Science.gov (United States)

    Straub, John E., II; McCly, J. Torin

    2011-01-01

    Beginning in June of 2010, the total organic carbon (TOC) concentration in the U.S. Water Processor Assembly (WPA) product water started to increase. A surprisingly consistent upward TOC trend was observed through weekly ISS total organic carbon analyzer (TOCA) monitoring. As TOC is a general organic compound indicator, return of water archive samples was needed to make better-informed crew health decisions on the specific compounds of concern and to aid in WPA troubleshooting. TOCA-measured TOC was more than halfway to the health-based screening limit of 3,000 g/L before archive samples were returned. Archive samples were returned on 22 Soyuz in September 2010 and on ULF5 in November of 2010. The samples were subjected to extensive analysis. Although TOC was confirmed to be elevated, somewhat surprisingly, none of the typical target compounds were detected at high levels. After some solid detective work, it was confirmed that the TOC was associated with a compound known as dimethylsilanediol (DMSD). DMSD is believed to be a breakdown product of siloxanes which are thought to be ubiquitous in the ISS atmosphere. A toxicological limit was set for DMSD and a forward plan was developed for conducting operations in the context of understanding the composition of the TOC measured in flight. This required careful consideration of existing ISS flight rules, coordination with ISS stakeholders, and development of a novel approach for the blending of inflight TOCA data with archive results to protect crew health. Among other challenges, team members had to determine how to utilize TOCA readings when making decisions about crew consumption of WPA water. This involved balancing very real concerns associated with the assumption that TOC would continue to be comprised of only DMSD. Demonstrated teamwork, multidisciplinary awareness, and innovative problem-solving were required to respond effectively to this anomaly.

  11. Green Synthesis and Catalytic Activity of Gold Nanoparticles Synthesized by Artemisia capillaris Water Extract

    Science.gov (United States)

    Lim, Soo Hyeon; Ahn, Eun-Young; Park, Youmie

    2016-10-01

    Gold nanoparticles were synthesized using a water extract of Artemisia capillaris (AC-AuNPs) under different extract concentrations, and their catalytic activity was evaluated in a 4-nitrophenol reduction reaction in the presence of sodium borohydride. The AC-AuNPs showed violet or wine colors with characteristic surface plasmon resonance bands at 534 543 nm that were dependent on the extract concentration. Spherical nanoparticles with an average size of 16.88 ± 5.47 29.93 ± 9.80 nm were observed by transmission electron microscopy. A blue shift in the maximum surface plasmon resonance was observed with increasing extract concentration. The face-centered cubic structure of AC-AuNPs was confirmed by high-resolution X-ray diffraction analysis. Based on phytochemical screening and Fourier transform infrared spectra, flavonoids, phenolic compounds, and amino acids present in the extract contributed to the reduction of Au ions to AC-AuNPs. The average size of the AC-AuNPs decreased as the extract concentration during the synthesis was increased. Higher 4-nitrophenol reduction reaction rate constants were observed for smaller sizes. The extract in the AC-AuNPs was removed by centrifugation to investigate the effect of the extract in the reduction reaction. Interestingly, the removal of extracts greatly enhanced their catalytic activity by up to 50.4 %. The proposed experimental method, which uses simple centrifugation, can be applied to other metallic nanoparticles that are green synthesized with plant extracts to enhance their catalytic activity.

  12. First-principles quantum-mechanical investigations: The role of water in catalytic conversion of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Borja, Miguel Gonzalez; Resasco, Daniel E.; Wang, Sanwu

    2015-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of water has attracted wide attention. Recent experiments showed that the proportion of alcohol product from catalytic reactions of furfural conversion with palladium in the presence of water is significantly increased, when compared with other solvent including dioxane, decalin, and ethanol. We investigated the microscopic mechanism of the reactions based on first-principles quantum-mechanical calculations. We particularly identified the important role of water and the liquid/solid interface in furfural conversion. Our results provide atomic-scale details for the catalytic reactions. Supported by DOE (DE-SC0004600). This research used the supercomputer resources at NERSC, of XSEDE, at TACC, and at the Tandy Supercomputing Center.

  13. Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation.

    Science.gov (United States)

    Hu, Xiao Liang; Piccinin, Simone; Laio, Alessandro; Fabris, Stefano

    2012-12-21

    Solar-driven water splitting is a key photochemical reaction that underpins the feasible and sustainable production of solar fuels. An amorphous cobalt-phosphate catalyst (Co-Pi) based on earth-abundant elements has been recently reported to efficiently promote water oxidation to protons and dioxygen, a main bottleneck for the overall process. The structure of this material remains largely unknown. We here exploit ab initio and classical atomistic simulations combined with metadynamics to build a realistic and statistically meaningful model of Co-Pi nanoparticles. We demonstrate the emergence and stability of molecular-size ordered crystallites in nanoparticles initially formed by a disordered Co-O network and phosphate groups. The stable crystallites consist of bis-oxo-bridged Co centers that assemble into layered structures (edge-sharing CoO(6) octahedra) as well as in corner- and face-sharing cubane units. These layered and cubane motifs coexist in the crystallites, which always incorporate disordered phosphate groups at the edges. Our computational nanoparticles, although limited in size to ~1 nm, can contain more than one crystallite and incorporate up to 18 Co centers in the cubane/layered structures. The crystallites are structurally stable up to high temperatures. We simulate the extended X-ray absorption fine structure (EXAFS) of our nanoparticles. Those containing several complete and incomplete cubane motifs-which are believed to be essential for the catalytic activity-display a very good agreement with the experimental EXAFS spectra of Co-Pi grains. We propose that the crystallites in our nanoparticles are reliable structural models of the Co-Pi catalyst surface. They will be useful to reveal the origin of the catalytic efficiency of these novel water-oxidation catalysts.

  14. Session 6: Water depollution from aniline and phenol by air oxidation and adsorptive-catalytic oxidation in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynkin, N.M.; Batygina, M.V.; Noskov, A.S. [Boreskov Institute of Catalysis of Siberian Branch of Russian Academy of Sciences, Pr. Ak. Lavrentieva (Russian Federation)

    2004-07-01

    This paper is devoted to development of carbon catalysts and application of catalytic wet air oxidation for deep cleaning of polluted waters. The described catalysts and method are solving the problem of development environmentally reliable method for fluids treatment and allow carrying out the adsorption of pollutants on carbon CAPM (catalytically active porous material) with following regeneration of the CAPM without the loss of adsorptive qualities. The experiments have shown a principal capability simultaneously to use carbon CAPM as adsorbent and either as catalyst, or as a catalyst support for oxidation of aniline and phenol in water solutions. (authors)

  15. Microbiological Evaluation of Broiler Carcasses, Wash and Rinse Water from Pluck Shops (Cottage Poultry Processors in the County Nariva/Mayaro, Trinidad, Trinidad and Tobago, West Indies

    Directory of Open Access Journals (Sweden)

    Thomas, A.

    2006-01-01

    Full Text Available A study on the prevalence and levels of Campylobacter, Salmonella and E. coli on broiler chicken carcasses, wash and rinse water from pluck shops/ cottage poultry processors (CPP in county Nariva Mayaro Trinidad was done. There are 21 pluck shops/ cottage poultry processors in the county, 14 pluck shops were randomly selected for the study. Samples consisted of 28 broiler carcasses, 14 wash water samples and 14 rinse water samples. Over all the isolation rate of Campylobacter, Salmonella and E. coli from broiler carcasses wash and rinse water showed significant differences (P< 0.05 between pluck shops. Of the 56 samples examined from the 14 pluck shops sampled, 34 (60.7% were positive for Campylobacter, 34 (60.7% for Salmonella and 40 (71.4% for E. coli. The correlation between the levels of Campylobacter found on carcasses and in wash water (r2= 0.657 and rinse water (r2= 0.600 was significant (P< 0.05 among pluck shops/CPP. There was also a high correlation (P< 0.05 between wash and rinse water samples (r2= 0.950 for Campylobacter. Salmonella levels on carcasses and in wash water were positively (P< 0.05 correlated (r2= 0.947. Of the 14 pluck shops examined 6 (42.9% had Campylobacter levels that corresponded to infectious dose in humans. The infectious doses for Salmonella were isolated from 3 (21.4% pluck shops and 13 (92.9% pluck shops evaluated had E. coli present at potentially infectious levels. Three pluck shops/CPP (21.4% had infectious dose for Campylobacter, Salmonella and E. coli where as all others had infectious levels for one or two pathogens. It was concluded that these pathogens are present in pluck shops/CPP in the county, having levels considered to be potentially infectious to humans and as such there should be health concern.

  16. Measurement of capacity coefficient of inclined liquid phase catalytic exchange column for tritiated water processing

    International Nuclear Information System (INIS)

    Yamai, Hideki; Konishi, Satoshi; Yamanishi, Toshihiko; Okuno, Kenji

    1994-01-01

    Liquid phase catalytic exchange (LPCE) is effective method for enrichment and removal of tritium from tritiated water. Capacity coefficients of operating LPCE column that are essential to evaluate column performance were measured. Experiments were performed with short catalyst packed columns and effect of inclination was studied. Method for evaluation of capacity coefficients was established from measurement of isotope concentration of liquid, vapor, gas phases at the two ends of the column. The capacity coefficients were measured under various superficial gas velocities. Feasibility study of helical columns with roughened inner surface was performed with short inclined columns. The column performance was not strongly affected by the inclination. The result indicates technological feasibility of helical LPCE column, that is expected to have operation stability and reduced height

  17. Many - body simulations using an array processor

    International Nuclear Information System (INIS)

    Rapaport, D.C.

    1985-01-01

    Simulations of microscopic models of water and polypeptides using molecular dynamics and Monte Carlo techniques have been carried out with the aid of an FPS array processor. The computational techniques are discussed, with emphasis on the development and optimization of the software to take account of the special features of the processor. The computing requirements of these simulations exceed what could be reasonably carried out on a normal 'scientific' computer. While the FPS processor is highly suited to the kinds of models described, several other computationally intensive problems in statistical mechanics are outlined for which alternative processor architectures are more appropriate

  18. Novel Fe-Pd/SiO2 catalytic materials for degradation of chlorinated organic compounds in water

    Science.gov (United States)

    Novel reactive materials for catalytic degradation of chlorinated organic compounds in water at ambient conditions have been prepared on the basis of silica-supported Pd-Fe nanoparticles. Nanoscale Fe-Pd particles were synthesized inside porous silica supports using (NH4

  19. Probabilistic programmable quantum processors

    International Nuclear Information System (INIS)

    Buzek, V.; Ziman, M.; Hillery, M.

    2004-01-01

    We analyze how to improve performance of probabilistic programmable quantum processors. We show how the probability of success of the probabilistic processor can be enhanced by using the processor in loops. In addition, we show that an arbitrary SU(2) transformations of qubits can be encoded in program state of a universal programmable probabilistic quantum processor. The probability of success of this processor can be enhanced by a systematic correction of errors via conditional loops. Finally, we show that all our results can be generalized also for qudits. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  20. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water

    Science.gov (United States)

    Cortright, R. D.; Davda, R. R.; Dumesic, J. A.

    2002-08-01

    Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose-which makes up the major energy reserves in plants and animals-to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.

  1. Photo-catalytic reactors for in-building grey water reuse. Comparison with biological processes and market potential

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, B.; Murray, C.; Diaper, C.; Parsons, S.A.; Jeffrey, P. [School of Water Sciences, Cranfield Univ., Cranfield, Bedfordshire (United Kingdom); Bedel, C. [Dept. of Industrial Process, National Inst. of Applied Sciences (France); Centeno, C. [Dept. of the Faculty of Engineering, Univ. of Santo Tomas, Manila (Philippines)

    2003-07-01

    Photo catalytic reactors potentially have a market in the reuse of grey water as they do not suffer from problems associated with toxic shocks and can be compact. The process is dependant upon the ratio of TOC to TiO{sub 2} concentration such that a greater proportion of the feed is degraded when either are increased. Economic assessment of grey water recycling showed both scale of operation and regional location to be the two most important factors in deciding the financial acceptability of any reuse technology. Overall the assessment suggested that photo catalytic oxidation (PCO) technology was suitable for grey water recycling and that the technology should be marketed at large buildings such as residential accommodation and offices. (orig.)

  2. Catalytic effect of different reactor materials under subcritical water conditions: decarboxylation of cysteic acid into taurine

    Science.gov (United States)

    Faisal, M.

    2018-03-01

    In order to understand the influence of reactor materials on the catalytic effect for a particular reaction, the decomposition of cysteic acid from Ni/Fe-based alloy reactors under subcritical water conditions was examined. Experiments were carried out in three batch reactors made of Inconel 625, Hastelloy C-22 and SUS 316 over temperatures of 200 to 300 °C. The highest amount of eluted metals was found for SUS 316. The results demonstrated that reactor materials contribute to the resulting product. Under the tested conditions, cysteic acid decomposes readily with SUS 316. However, the Ni-based materials (Inconel 625 and Hastelloy C-22) show better resistance to metal elution. It was found that among the materials used in this work, SUS 316 gave the highest reaction rate constant of 0.1934 s‑1. The same results were obtained at temperatures of 260 and 300 °C. Investigation of the Arrhenius activation energy revealed that the highest activation energy was for Hastelloy C-22 (109 kJ/mol), followed by Inconel 625 (90 kJ/mol) and SUS 316 (70 kJ/mol). The decomposition rate of cysteic acid was found to follow the results for the trend of the eluted metals. Therefore, it can be concluded that the decomposition of cysteic acid was catalyzed by the elution of heavy metals from the surface of the reactor. The highest amount of taurine from the decarboxylation of cysteic acid was obtained from SUS 316.

  3. Phenomenological modeling and study of a catalytic membrane reactor for water detritiation

    International Nuclear Information System (INIS)

    Mascarade, Jeremy

    2015-01-01

    Tritium is produced in light and heavy water reactor fuel by ternary fission or neutron activation. This by-product is used as fuel in fusion fuel reactors such as JET in Culham or ITER in Cadarache (France). The growing interest of this research area will make the tritium fluxes increase; it is then worth addressing the question of its future whether it will be used or flushed out from liquid and gaseous effluents or waste. This thesis studies the recovery of tritium as fuel for fusion machines by means of packed bed membrane reactor (PBMR). Such a reactor combines catalytic conversion of tritiated water thanks to isotope exchange with hydrogen according to the reversible reaction Q 2 O+H 2 ↔H 2 O+Q 2 (Q=H,D or T) and selective permeation of Q 2 through Pd-based membrane. In fact, palladium has the ability to bond with hydrogen isotopes, creating a selective permeation barrier. In the PBMR, thanks to the reaction products withdrawal, these permeation fluxes drive the heavy water conversion rate, to higher values than those reached in conventional fixed bed reactors (Le Chatelier's law). In order to study PBMRs, the CEA has built a test bench, using deuterium instead of tritium, allowing the analysis of their conversion and separation performances at the laboratory scale. An in-house method has been developed to determine simultaneously hydrogen and water isotopologues content by mass spectrometer analysis. It was experimentally shown that the activity of Ni-based catalyst used in this study was sufficient to allow the isotope exchange reactions to reach their thermodynamic equilibrium in a very short time. In addition, hydrogen permeation flux was shown to follow a Richardson's law. Sensitivity studies performed on the PBMR's main operating parameters revealed that its global performance (i.e. de-deuteration factor) increases with the temperature, the transmembrane pressure difference, the sweep gas flow rate and the residence time in the catalyst

  4. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, Djamaladdin G [Chemistry, Emory University; Hill, Craig L [Chemistry, Emory University; Morokuma, Keiji [Chemistry, Emory University

    2014-10-28

    Abstract The central thrust of this integrated experimental and computational research program was to obtain an atomistic-level understanding of the structural and dynamic factors underlying the design of catalysts for water oxidation and selective reductant-free O2-based transformations. The focus was on oxidatively robust polyoxometalate (POM) complexes in which a catalytic active site interacts with proximal metal centers in a synergistic manner. Thirty five publications in high-impact journals arose from this grant. I. Developing an oxidatively and hydrolytically stable and fast water oxidation catalyst (WOC), a central need in the production of green fuels using water as a reductant, has proven particularly challenging. During this grant period we have designed and investigated several carbon-free, molecular (homogenous), oxidatively and hydrolytically stable WOCs, including the Rb8K2[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]·25H2O (1) and [Co4(H2O)2(α-PW9O34)2]10- (2). Although complex 1 is fast, oxidatively and hydrolytically stable WOC, Ru is neither abundant nor inexpensive. Therefore, development of a stable and fast carbon-free homogenous WOC, based on earth-abundant elements became our highest priority. In 2010, we reported the first such catalyst, complex 2. This complex is substantially faster than 1 and stable under homogeneous conditions. Recently, we have extended our efforts and reported a V2-analog of the complex 2, i.e. [Co4(H2O)2(α-VW9O34)2]10- (3), which shows an even greater stability and reactivity. We succeeded in: (a) immobilizing catalysts 1 and 2 on the surface of various electrodes, and (b) elucidating the mechanism of O2 formation and release from complex 1, as well as the Mn4O4L6 “cubane” cluster. We have shown that the direct O-O bond formation is the most likely pathway for O2 formation during water oxidation catalyzed by 1. II. Oxo transfer catalysts that contain two proximal and synergistically interacting redox active metal

  5. alpha,beta-unsaturated 2-acyl imidazoles as a practical class of dienophiles for the DNA-Based catalytic asymmetric diels-alder reaction in water

    NARCIS (Netherlands)

    Boersma, A.J.; Feringa, B.L.; Roelfes, G.

    2007-01-01

    alpha,beta-Unsaturated 2-acyl imidazoles are a novel and practical class of dienophiles for the DNA-based catalytic asymmetric Diels-Alder reaction in water. The Diels-Alder products are obtained with very high diastereoselectivities and enantioselectivities in the range of 83-98%. The catalytic

  6. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  7. Multithreading in vector processors

    Science.gov (United States)

    Evangelinos, Constantinos; Kim, Changhoan; Nair, Ravi

    2018-01-16

    In one embodiment, a system includes a processor having a vector processing mode and a multithreading mode. The processor is configured to operate on one thread per cycle in the multithreading mode. The processor includes a program counter register having a plurality of program counters, and the program counter register is vectorized. Each program counter in the program counter register represents a distinct corresponding thread of a plurality of threads. The processor is configured to execute the plurality of threads by activating the plurality of program counters in a round robin cycle.

  8. Experimental Investigation in Order to Determine Catalytic Package Performances in Case of Tritium Transfer from Water to Gas

    International Nuclear Information System (INIS)

    Bornea, Anisia; Peculea, M.; Zamfirache, M.; Varlam, Carmen

    2005-01-01

    The processes for hydrogen isotope's separation are very important for nuclear technology. One of the most important processes for tritium separation, is the catalyst isotope exchange water-hydrogen.Our catalytic package consists of Romanian patented catalysts with platinum on charcoal and polytetrafluoretylene (Pt/C/PTFE) and the ordered Romanian patented package B7 type. The catalytic package was tested in an isotope exchange facility for water detritiation at the Experimental Pilot Plant from ICIT Rm.Valcea.In a column of isotope exchange tritium is transferred from liquid phase (tritiated heavy water) in gaseous phase (hydrogen). In the experimental set-up, which was used, the column of catalytic isotope exchange is filled with successive layers of catalyst and ordered package. The catalyst consists of 95.5 wt.% of PTFE, 4.1 wt. % of carbon and 0.40 wt. % of platinum and was of Raschig rings 10 x 10 x 2 mm. The ordered package was B7 type consists of wire mesh phosphor bronze 4 x 1 wire and the mesh dimension is 0.18 x 0.48 mm.We analyzed the transfer phenomena of tritium from liquid to gaseous phase, in this system.The mass transfer coefficient which characterized the isotopic exchange on the package, were determined as function of experimental parameters

  9. A natural-gas fuel processor for a residential fuel cell system

    Science.gov (United States)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor - namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor - were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing ∼48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  10. Amine binding and oxidation at the catalytic site for photosynthetic water oxidation

    Science.gov (United States)

    Ouellette, Anthony J. A.; Anderson, Lorraine B.; Barry, Bridgette A.

    1998-01-01

    Photosynthetic water oxidation occurs at the Mn-containing catalytic site of photosystem II (PSII). By the use of 14C-labeled amines and SDS-denaturing PAGE, covalent adducts derived from primary amines and the PSII subunits, CP47, D2/D1, and the Mn-stabilizing protein, can be observed. When PSII contains the 18- and 24-kDa extrinsic proteins, which restrict access to the active site, no 14C labeling is obtained. NaCl, but not Na2SO4, competes with 14C labeling in Mn-containing PSII preparations, and the concentration dependence of this competition parallels the activation of oxygen evolution. Formation of 14C-labeled adducts is observed in the presence or in the absence of a functional manganese cluster. However, no significant Cl− effect on 14C labeling is observed in the absence of the Mn cluster. Isolation and quantitation of the 14C-labeled aldehyde product, produced from [14C]benzylamine, gives yields of 1.8 ± 0.3 mol/mol PSII and 2.9 ± 0.2 mol/mol in Mn-containing and Mn-depleted PSII, respectively. The corresponding specific activities are 0.40 ± 0.07 μmol(μmol PSII-hr)−1 and 0.64 ± 0.04 μmol(μmol PSII-hr)−1. Cl− suppresses the production of [14C]benzaldehyde in Mn-containing PSII, but does not suppress the production in Mn-depleted preparations. Control experiments show that these oxidation reactions do not involve the redox-active tyrosines, D and Z. Our results suggest the presence of one or more activated carbonyl groups in protein subunits that form the active site of PSII. PMID:9482863

  11. Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle

    International Nuclear Information System (INIS)

    Tosti, S.; Violante, V.; Basile, A.; Chiappetta, G.; Castelli, S.; De Francesco, M.; Scaglione, S.; Sarto, F.

    2000-01-01

    Palladium and palladium-silver permeators have been obtained by coating porous ceramic tubes with a thin metal layer. Three coating techniques have been studied and characterized: chemical electroless deposition (PdAg film thickness of 10 μm), ion sputtering (about 1 μm) and rolling of thin metal sheets (50 μm). The Pd-ceramic membranes have been used for manufacturing catalytic membrane reactors (CMR) for hydrogen and its isotopes recovering and purifying. These composite membranes and the CMR have been studied and developed for a closed-loop process with reference to the design requirements of the international thermonuclear experimental reactor (ITER) blanket tritium recovery system in the enhanced performance phase of operation. The membranes and CMR have been tested in a pilot plant equipped with temperature, pressure and flow-rate on-line measuring and controlling devices. The conversion value for the water gas shift reaction in the CMR has been measured close to 100% (always above the equilibrium one, 80% at 350 deg. C): the effect of the membrane is very clear since the reaction is moved towards the products because of the continuous hydrogen separation. The rolled thin film membranes have separated the hydrogen from other gases with a complete selectivity and exhibited a slightly larger mass transfer resistance with respect to the electroless membranes. Preliminary tests on the sputtered membranes have also been carried out with a promising performance. Considerations on the use of different palladium alloy in order to improve the performances of the membranes in terms of permeation flux and mechanical strength, such as palladium/yttrium, are also reported

  12. Removal of Humic Substances from Water by Advanced Oxidation Process Using UV/TiO2 Photo Catalytic Technology

    Directory of Open Access Journals (Sweden)

    Hassan Khorsandi

    2009-01-01

    Full Text Available Humic substances have been known as precursors to disinfection by-products. Because conventional treatment processes cannot meet disinfection by-product standards, novel methods have been increasingly applied for the removal of disinfection by-products precursors. The UV/TiO2 process is one of the advanced oxidation processes using the photocatalytic technology. The most important advantages of this process are its stability and high efficiency removal. The present study aims to investigate the effect of UV/TiO2 photo-catalytic technology on removal of humic substances. The study was conducted in a lab-scale batch photo-catalytic reactor using the interval experimental method. The UV irradiation source was a low pressure mercury vapor lamp 55w that was axially centered and was immersed in a humic acids solution within a stainless steel tubular 2.8 L reaction volume. Each of the samples taken from the UV/TiO2 process and other processes studied were analyzed for their dissolved organic carbon, UV absorbance at 254nm, and specific UV254 absorbance. The results indicated the high efficiency of the UV/TiO2 photo-catalytic process (TiO2=0.1 g/L and pH=5, compared to other processes, for humic substances removal from water sources. The process was also found to be capable of decreasing the initial dissolved organic carbon from 5 to 0.394 mg/L. The Specific UV254 Absorbance of 2.79 L/mg.m was attained after 1.5 hr. under photo-catalytic first order reaction (k= 0.0267 min-1. It may be concluded that the UV/TiO2 process can provide desirable drinking water quality in terms of humic substance content.

  13. Effect of NO2 and water on the catalytic oxidation of soot

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Grunwaldt, Jan-Dierk; Jensen, Anker Degn

    2017-01-01

    The influence of adding NO2 to 10 vol% O2/N2 on non-catalytic soot oxidation and soot oxidation in intimate or loose contact with a catalyst has been investigated. In non-catalytic soot oxidation the oxidation rate is increased significantly at lower temperatures by NO2. For soot oxidation in tig...... exhibited a volcano-curve dependence on the heat of oxygen chemisorption, and among the tested pure metals and oxides Cr2O3 was the most active catalyst. Further improvements were achieved with a FeaCrbOx binary oxide catalyst....

  14. Surface-Enhanced Separation of Water from Hydrocarbons: Potential Dewatering Membranes for the Catalytic Fast Pyrolysis of Pine Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Engtrakul, Chaiwat; Hu, Michael Z.; Bischoff, Brian L.; Jang, Gyoung G.

    2016-10-20

    The impact of surface-selective coatings on water permeation through a membrane when exposed to catalytic fast pyrolysis (CFP) vapor products was studied by tailoring the surface properties of the membrane coating from superhydrophilic to superhydrophobic. Our approach used high-performance architectured surface-selective (HiPAS) membranes that were inserted after a CFP reactor. At this insertion point, the inner wall surface of a tubular membrane was exposed to a mixture of water and upgraded product vapors, including light gases and deoxygenated hydrocarbons. Under proper membrane operating conditions, a high selectivity for water over one-ring upgraded biomass pyrolysis hydrocarbons was observed as a result of a surface-enhanced capillary condensation process. Owing to this surface-enhanced effect, HiPAS membranes have the potential to enable high flux separations, suggesting that water can be selectively removed from the CFP product vapors.

  15. An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle

    Science.gov (United States)

    Flynn, Michael; Borchers, Bruce

    1998-01-01

    An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.

  16. Logistic Fuel Processor Development

    National Research Council Canada - National Science Library

    Salavani, Reza

    2004-01-01

    ... to light gases then steam reform the light gases into hydrogen rich stream. This report documents the efforts in developing a fuel processor capable of providing hydrogen to a 3kW fuel cell stack...

  17. 3081/E processor

    International Nuclear Information System (INIS)

    Kunz, P.F.; Gravina, M.; Oxoby, G.

    1984-04-01

    The 3081/E project was formed to prepare a much improved IBM mainframe emulator for the future. Its design is based on a large amount of experience in using the 168/E processor to increase available CPU power in both online and offline environments. The processor will be at least equal to the execution speed of a 370/168 and up to 1.5 times faster for heavy floating point code. A single processor will thus be at least four times more powerful than the VAX 11/780, and five processors on a system would equal at least the performance of the IBM 3081K. With its large memory space and simple but flexible high speed interface, the 3081/E is well suited for the online and offline needs of high energy physics in the future

  18. Logistic Fuel Processor Development

    National Research Council Canada - National Science Library

    Salavani, Reza

    2004-01-01

    The Air Base Technologies Division of the Air Force Research Laboratory has developed a logistic fuel processor that removes the sulfur content of the fuel and in the process converts logistic fuel...

  19. Adaptive signal processor

    Energy Technology Data Exchange (ETDEWEB)

    Walz, H.V.

    1980-07-01

    An experimental, general purpose adaptive signal processor system has been developed, utilizing a quantized (clipped) version of the Widrow-Hoff least-mean-square adaptive algorithm developed by Moschner. The system accommodates 64 adaptive weight channels with 8-bit resolution for each weight. Internal weight update arithmetic is performed with 16-bit resolution, and the system error signal is measured with 12-bit resolution. An adapt cycle of adjusting all 64 weight channels is accomplished in 8 ..mu..sec. Hardware of the signal processor utilizes primarily Schottky-TTL type integrated circuits. A prototype system with 24 weight channels has been constructed and tested. This report presents details of the system design and describes basic experiments performed with the prototype signal processor. Finally some system configurations and applications for this adaptive signal processor are discussed.

  20. Adaptive signal processor

    International Nuclear Information System (INIS)

    Walz, H.V.

    1980-07-01

    An experimental, general purpose adaptive signal processor system has been developed, utilizing a quantized (clipped) version of the Widrow-Hoff least-mean-square adaptive algorithm developed by Moschner. The system accommodates 64 adaptive weight channels with 8-bit resolution for each weight. Internal weight update arithmetic is performed with 16-bit resolution, and the system error signal is measured with 12-bit resolution. An adapt cycle of adjusting all 64 weight channels is accomplished in 8 μsec. Hardware of the signal processor utilizes primarily Schottky-TTL type integrated circuits. A prototype system with 24 weight channels has been constructed and tested. This report presents details of the system design and describes basic experiments performed with the prototype signal processor. Finally some system configurations and applications for this adaptive signal processor are discussed

  1. Array processor architecture

    Science.gov (United States)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1983-01-01

    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  2. Non-Catalytic and MgSO4 - Catalyst based Degradation of Glycerol in Subcritical and Supercritical Water Media

    Directory of Open Access Journals (Sweden)

    Mahfud Mahfud

    2011-02-01

    Full Text Available This research aims to study the glycerol degradation reaction in subcritical and supercritical water media. The degradation of glycerol into other products was performed both with sulphate salt catalysts and without catalyst. The reactant was made from glycerol and water with the mass ratio of 1:10. The experiments were carried out using a batch reactor at a constant pressure of 250 kgf/cm2, with the temperature range of 200-400oC, reaction time of 30 minutes, and catalyst mol ratio in glycerol of 1:10 and 1:8. The products of the non-catalytic glycerol degradation were acetaldehyde, methanol, and ethanol. The use of sulphate salt as catalyst has high selectivity to acetaldehyde and still allows the formation alcohol product in small quantities. The mechanism of ionic reaction and free radical reaction can occur at lower temperature in hydrothermal area or subcritical water. Conversion of glycerol on catalytic reaction showed a higher yield when compared with the reaction performed without catalyst

  3. A Broad Spectrum Catalytic System for Removal of Toxic Organics from Water by Deep Oxidation - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ayusman

    2000-12-01

    A most pressing need for the DOE environmental management program is the removal of toxic organic compounds present in groundwater and soil at specific DOE sites. While several remediation procedures have been proposed, they suffer from one or more drawbacks. The objective of the present research was to develop new catalytic procedures for the removal of toxic organic compounds from the environment through their deep oxidation to harmless products. In water, metallic palladium was found to catalyze the deep oxidation of a wide variety of toxic organic compounds by dioxygen at 80-90 C in the presence of carbon monoxide or dihydrogen. Several classes of organic compounds were examined: benzene, phenol and substituted phenols, nitro and halo organics, organophosphorus, and organosulfur compounds. In every case, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 hour period. For substrates susceptible to hydrogenation, the conversions were generally high with dihydrogen than with carbon monoxide. It is clear from the results obtained that we have discovered an exceptionally versatile catalytic system for the deep oxidation of toxic organic compounds in water. This system possesses several attractive features not found simultaneously in other reported systems. These are (a) the ability to directly utilize dioxygen as the oxidant, (b) the ability to carry out the deep oxidation of a particularly wide range of functional organics, and (c) the ease of recovery of the catalyst by simple filtration.

  4. Functional unit for a processor

    NARCIS (Netherlands)

    Rohani, A.; Kerkhoff, Hans G.

    2013-01-01

    The invention relates to a functional unit for a processor, such as a Very Large Instruction Word Processor. The invention further relates to a processor comprising at least one such functional unit. The invention further relates to a functional unit and processor capable of mitigating the effect of

  5. Investigation of catalytic oxidation of diamond by water vapor and carbon dioxide in the presence of alkali melts of some rare earth oxides

    International Nuclear Information System (INIS)

    Kulakova, I.I.; Rudenko, A.P.; Sulejmenova, A.S.; Tolstopyatova, A.A.

    1978-01-01

    The results of an investigation of the catalytic oxydation of diamond by carbon dioxide and water vapors at 906 deg C in the presence of melts of some rare earth oxides in potassium hydroxide are given. The ion La 3+ was shown to possess the most catalytic activity. The earlier proposed mechanisms of the diamond oxidation by CO 2 and H 2 O were corroborated. The ions of rare earth elements were found to accelerate the different stages of the process

  6. 3081//sub E/ processor

    International Nuclear Information System (INIS)

    Kunz, P.F.; Gravina, M.; Oxoby, G.; Trang, Q.; Fucci, A.; Jacobs, D.; Martin, B.; Storr, K.

    1983-03-01

    Since the introduction of the 168//sub E/, emulating processors have been successful over an amazingly wide range of applications. This paper will describe a second generation processor, the 3081//sub E/. This new processor, which is being developed as a collaboration between SLAC and CERN, goes beyond just fixing the obvious faults of the 168//sub E/. Not only will the 3081//sub E/ have much more memory space, incorporate many more IBM instructions, and have much more memory space, incorporate many more IBM instructions, and have full double precision floating point arithmetic, but it will also have faster execution times and be much simpler to build, debug, and maintain. The simple interface and reasonable cost of the 168//sub E/ will be maintained for the 3081//sub E/

  7. Hydrothermal synthesis of Yttrium Orthovanadate (YVO4) and its application in photo catalytic degradation of sewage water

    International Nuclear Information System (INIS)

    Komal, J. K.; Karimi, P.; Hui, K. S.

    2010-01-01

    In this paper; YVO 4 powder was successfully synthesized from Vanadium Pentaoxide (V 2 O 5 ), Yttrium Oxide (Y 2 O 3 ) and ethyl acetate as a mineralizer by hydrothermal method at a low temperature (T=.230 d egree C , and P=100 bars). The as-prepared powders were characterized by X-ray Diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, UV-V Spectroscopy and Chemical Oxygen Demand of the sewage water, respectively. The results show that hydrothermal method can greatly promote the crystallization and growth of YVO 4 phase. X-ray Diffraction pattern clearly indicates the tetragonal structure and crystallinity. An fourier transform infrared spectrum of the YVO 4 shows the presence of Y-O and V-O bond, respectively. The presence of these two peaks indicates that yttrium vanadate has been formed. UV-V is absorption spectra suggesting that YVO 4 particles have stronger UV absorption than natural sunlight and subsequent photo catalytic degradation data also confirmed their higher photo catalytic activity.

  8. Synthesis, Characterization, and Photoelectrochemical Catalytic Studies of a Water-Stable Zinc-Based Metal-Organic Framework.

    Science.gov (United States)

    Altaf, Muhammad; Sohail, Manzar; Mansha, Muhammad; Iqbal, Naseer; Sher, Muhammad; Fazal, Atif; Ullah, Nisar; Isab, Anvarhusein A

    2018-02-09

    Metal-organic frameworks (MOFs) are class of porous materials that can be assembled in a modular manner by using different metal ions and organic linkers. Owing to their tunable structural properties, these materials are found to be useful for gas storage and separation technologies, as well as for catalytic applications. A cost-effective zinc-based MOF ([Zn(bpcda)(bdc)] n ) is prepared by using N,N'-bis(pyridin-4-ylmethylene)cyclohexane-1,4-diamine [N,N'-bis(pyridin-4-ylmethylene)cyclohexane-1,4-diamine] and benzenedicarboxylic acid (bdc) linkers. This new material exhibits remarkable photoelectrochemical (PEC) catalytic activity in water splitting for the evolution of oxygen. Notably, this non-noble metal-based MOF, without requiring immobilization on other supports or containing metal particles, produced a highest photocurrent density of 31 μA cm -2 at 0.9 V, with appreciable stability and negligible photocorrosion. Advantageously for the oxygen evolution process, no external reagents or sacrificial agents are required in the aqueous electrolyte solution. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A broad spectrum catalytic system for removal of toxic organics from water by deep oxidation. 1998 annual progress report

    International Nuclear Information System (INIS)

    Sen, A.

    1998-01-01

    'Toxic organics and polymers pose a serious threat to the environment, especially when they are present in aquatic systems. The objective of the research is the design of practical procedures for the removal and/or recycling of such pollutants by oxidation. This report summarizes the work performed in the first one and half years of a three year project. The authors had earlier described a catalytic system for the deep oxidation of toxic organics, such as benzene, phenol and substituted phenols, aliphatic and aromatic halogenated compounds, organophosphorus, and organosulfur compounds [1]. In this system, metallic palladium was found to catalyze the oxidation of the substrate by dioxygen in aqueous medium at 80--100 C in the presence of carbon monoxide. For all the substrates examined, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 h period. Because of a pressing need for new procedures for the destruction of chemical warfare agents, the authors have examined in detail the deep oxidation of appropriate model compounds containing phosphorus-carbon and sulfur-carbon bonds using the same catalytic system. The result is the first observation of the efficient catalytic oxidative cleavage of phosphorus-carbon and sulfur-carbon bonds under mild conditions, using dioxygen as the oxidant [2]. In addition to the achievements described above, they have unpublished results in several other areas. For example, they have investigated the possibility of using dihydrogen rather than carbon monoxide as a coreductant in the catalytic deep oxidation of substrates. Even more attractive from a practical standpoint is the possibility of using a mixture of carbon monoxide and dihydrogen (synthesis gas). Indeed, experiments indicated that it is possible to substitute carbon monoxide by dihydrogen or synthesis gas. Significantly, in the case of nitro compounds, the deep oxidation in fact proceeded

  10. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior.

    Science.gov (United States)

    Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven

    2014-02-03

    A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.

  11. Catalytic production of hydrogen from methanol for mobile, stationary and portable fuel-cell power plants

    International Nuclear Information System (INIS)

    Lukyanov, Boris N

    2008-01-01

    Main catalytic processes for hydrogen production from methanol are considered. Various schemes of fuel processors for hydrogen production in stationary, mobile and portable power plants based on fuel cells are analysed. The attention is focussed on the design of catalytic reactors of fuel processors and on the state-of-the-art in the design of catalysts for methanol conversion, carbon monoxide steam conversion and carbon monoxide selective oxidation. Prospects for the use of methanol in on-board fuel processors are discussed.

  12. Validation of water vapour profiles (version 13 retrieved by the IMK/IAA scientific retrieval processor based on full resolution spectra measured by MIPAS on board Envisat

    Directory of Open Access Journals (Sweden)

    M. Milz

    2009-07-01

    Full Text Available Vertical profiles of stratospheric water vapour measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS with the full resolution mode between September 2002 and March 2004 and retrieved with the IMK/IAA scientific retrieval processor were compared to a number of independent measurements in order to estimate the bias and to validate the existing precision estimates of the MIPAS data. The estimated precision for MIPAS is 5 to 10% in the stratosphere, depending on altitude, latitude, and season. The independent instruments were: the Halogen Occultation Experiment (HALOE, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS, the Improved Limb Atmospheric Spectrometer-II (ILAS-II, the Polar Ozone and Aerosol Measurement (POAM III instrument, the Middle Atmospheric Water Vapour Radiometer (MIAWARA, the Michelson Interferometer for Passive Atmospheric Sounding, balloon-borne version (MIPAS-B, the Airborne Microwave Stratospheric Observing System (AMSOS, the Fluorescent Stratospheric Hygrometer for Balloon (FLASH-B, the NOAA frostpoint hygrometer, and the Fast In Situ Hygrometer (FISH. For the in-situ measurements and the ground based, air- and balloon borne remote sensing instruments, the measurements are restricted to central and northern Europe. The comparisons to satellite-borne instruments are predominantly at mid- to high latitudes on both hemispheres. In the stratosphere there is no clear indication of a bias in MIPAS data, because the independent measurements in some cases are drier and in some cases are moister than the MIPAS measurements. Compared to the infrared measurements of MIPAS, measurements in the ultraviolet and visible have a tendency to be high, whereas microwave measurements have a tendency to be low. The results of χ2-based precision validation are somewhat controversial among the comparison estimates. However, for comparison instruments whose error budget also includes

  13. Conserved water-mediated H-bonding dynamics of catalytic Asn ...

    Indian Academy of Sciences (India)

    Prakash

    Extensive energy minimization and molecular dynamics simulation studies up to 2 ns ... Conserved water in molecular recognition; MD simulation; plant cysteine protease ..... Mustata G and Briggs J M 2004 Cluster analysis of water molecules.

  14. The Central Trigger Processor (CTP)

    CERN Multimedia

    Franchini, Matteo

    2016-01-01

    The Central Trigger Processor (CTP) receives trigger information from the calorimeter and muon trigger processors, as well as from other sources of trigger. It makes the Level-1 decision (L1A) based on a trigger menu.

  15. Very Long Instruction Word Processors

    Indian Academy of Sciences (India)

    Pentium Processor have modified the processor architecture to exploit parallelism in a program. .... The type of operation itself is encoded using 14 bits. .... text of designing simple architectures with low power consump- tion and execute x86 ...

  16. The Molen Polymorphic Media Processor

    NARCIS (Netherlands)

    Kuzmanov, G.K.

    2004-01-01

    In this dissertation, we address high performance media processing based on a tightly coupled co-processor architectural paradigm. More specifically, we introduce a reconfigurable media augmentation of a general purpose processor and implement it into a fully operational processor prototype. The

  17. Dual-core Itanium Processor

    CERN Multimedia

    2006-01-01

    Intel’s first dual-core Itanium processor, code-named "Montecito" is a major release of Intel's Itanium 2 Processor Family, which implements the Intel Itanium architecture on a dual-core processor with two cores per die (integrated circuit). Itanium 2 is much more powerful than its predecessor. It has lower power consumption and thermal dissipation.

  18. Catalytic oxidation of sulfide in drinking water treatment: activated carbon as catalyst; Katalytische Oxidation von Sulfid bei der Trinkwasseraufbereitung: Aktivkohle als Katalysator

    Energy Technology Data Exchange (ETDEWEB)

    Hultsch, V; Grischek, T; Wolff, D; Worch, E [Technische Univ. Dresden (Germany). Inst. fuer Wasserchemie; Gun, J [Hebrew Univ. of Jerusalem (Israel). Div. of Environmental Sciences, Fredy and Nadine Herrmann School of Applied Science

    2001-07-01

    In regions with warm climate and limited water resources high sulfide concentrations in groundwater can cause problems during drinking water treatment. Aeration of the raw water is not always sufficient to ensure the hydrogen sulfide concentration below the odour threshold value for hydrogen sulfide. As an alternative, activated carbon can be used as a catalyst for sulfide oxidation of raw water. The use of different types of activated carbon was investigated in kinetic experiments. Both Catalytic Carbon from Calgon Carbon and granulated activated carbon from Norit showed high catalytic activities. The results of the experiments are discussed with regard to the practical use of activated carbon for the elimination of hydrogen sulfide during drinking water treatment. (orig.)

  19. On the Catalytic Effect of Water in the Intramolecular Diels–Alder Reaction of Quinone Systems: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Renato Contreras

    2012-11-01

    Full Text Available The mechanism of the intramolecular Diels–Alder (IMDA reaction of benzoquinone 1, in the absence and in the presence of three water molecules, 1w, has been studied by means of density functional theory (DFT methods, using the M05-2X and B3LYP functionals for exploration of the potential energy surface (PES. The energy and geometrical results obtained are complemented with a population analysis using the NBO method, and an analysis based on the global, local and group electrophilicity and nucleophilicity indices. Both implicit and explicit solvation emphasize the increase of the polarity of the reaction and the reduction of activation free energies associated with the transition states (TSs of this IMDA process. These results are reinforced by the analysis of the reactivity indices derived from the conceptual DFT, which show that the increase of the electrophilicity of the quinone framework by the hydrogen-bond formation correctly explains the high polar character of this intramolecular process. Large polarization at the TSs promoted by hydrogen-bonds and implicit solvation by water together with a high electrophilicity-nucleophilicity difference consistently explains the catalytic effects of water molecules.

  20. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Directory of Open Access Journals (Sweden)

    Vishal Prashar

    Full Text Available BACKGROUND: It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS. In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. PRINCIPAL FINDINGS: We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. CONCLUSIONS/SIGNIFICANCE: The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  1. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis.

    Science.gov (United States)

    Prashar, Vishal; Bihani, Subhash; Das, Amit; Ferrer, Jean-Luc; Hosur, Madhusoodan

    2009-11-17

    It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.

  2. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    KAUST Repository

    Zhang, Tao; Li, Weiwei; Croue, Jean-Philippe

    2012-01-01

    with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic

  3. Corrigendum to Photo catalytic Oxidation of Trichloroethylene in Water Using a Porous Ball of Nano-Zn O and Nano clay Composite

    International Nuclear Information System (INIS)

    Bak, S. A.; Song, M. S.; Nam, I.T.; Lee, W.G.

    2015-01-01

    In the published paper entitled Photo catalytic Oxidation of Trichloroethylene in Water Using a Porous Ball of Nano-Zn O and Nano clay Composite [1], we mistakenly used Laponite in our paper. The corrected name is Laponite (BYK Corporations products). So we are making some changes from Laponite to Laponite (BYK Corporations products) in our paper.

  4. Multimode power processor

    Science.gov (United States)

    O'Sullivan, George A.; O'Sullivan, Joseph A.

    1999-01-01

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  5. An Assessment of the Technical Readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR) Technology

    Science.gov (United States)

    Flynn, Michael

    2000-01-01

    This poster provides an assessment of the technical readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR). The VPCAR technology is a fully regenerative water recycling technology designed specifically for applications such as a near term Mars exploration mission. The VPCAR technology is a highly integrated distillation/catalytic oxidation based water processor. It is designed to accept a combined wastewater stream (urine, condensate, and hygiene) and produces potable water in a single process step which requires -no regularly scheduled re-supply or maintenance for a 3 year mission. The technology is designed to be modular and to fit into a volume comparable to a single International Space Station Rack (when sized for a crew of 6). This poster provides a description of the VPCAR technology and a summary of the current performance of the technology. Also provided are the results of two separate NASA sponsored system trade studies which investigated the potential payback of further development of the VPCAR technology.

  6. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed

  7. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  8. Role of Defects and Adsorbed Water Film in Influencing the Electrical, Optical and Catalytic Properties of Transition Metal Oxides

    Science.gov (United States)

    Wang, Qi

    , gallium nitride and zinc oxide. Most TMOs at room temperature are known to be strongly hydrated. We show that an adsorbed water film present on the surface of TMOs facilitates the dissolution of gaseous species and promotes charge transfers at the adsorbed-water/oxide interfaces. Further, we show the role of vacancy defects in enhancing catalytic processes by directly monitoring the charge transfer process between gaseous species and vacancy defects in non-stoichiometric p-type nickel oxide and n-type tungsten oxide using in-situ NIR-PL, electrical resistance, and X-ray photoelectron spectroscopy. We find the importance of adsorbed water and vacancy defects in affecting catalytic, electronic, electrical, and optical changes such as insulator-to-metal transitions and radiative emissions during electrochemical reactions. In addition, we demonstrate that electrochemical surface transfer doping exists in another system, specifically, in gallium nitride, and the presence of this adsorbed water film present on the surface of GaN induces electron transfer from GaN that leads to the formation of an electron depletion region on the surface.

  9. Direct catalytic conversion of brown seaweed-derived alginic acid to furfural using 12-tungstophosphoric acid catalyst in tetrahydrofuran/water co-solvent

    International Nuclear Information System (INIS)

    Park, Geonu; Jeon, Wonjin; Ban, Chunghyeon; Woo, Hee Chul; Kim, Do Heui

    2016-01-01

    Highlights: • Furfural was produced by catalytic conversion of macroalgae-derived alginic acid. • 12-Tungstophosphoric acid (H_3PW_1_2O_4_0) showed remarkable catalytic performance. • Tetrahydrofuran (THF) as a reaction medium significantly enhanced production of furfural. - Abstract: Furfural, a biomass-derived platform chemical, was produced by acid-catalyzed reaction of alginic acid extracted from brown seaweed. Three acid catalysts, H_2SO_4, Amberlyst15 and 12-tungstophosphoric acid (H_3PW_1_2O_4_0), were compared to evaluate their catalytic performance for the alginic acid conversion. The H_3PW_1_2O_4_0 catalyst showed the highest catalytic activity, yielding the maximum furfural yield (33.8%) at 180 °C for 30 min in tetrahydrofuran/water co-solvent. Higher reaction temperature promoted the conversion of alginic acid to furfural, but the transformation of furfural to humin was also accelerated. To our knowledge, this is the highest furfural yield among studies about the direct catalytic conversion of alginic acid. Furthermore, products distribution with time-on-stream was investigated in detail, which led us to propose a reaction pathway.

  10. Catalytic hydrolysis of Metil Teret Botil Eter in under ground contaminated water

    International Nuclear Information System (INIS)

    Nikpey, A.; Mortazavi, B.; Asilian, H.; Khavanin, A.; Rezaee, A.; Soleimanian, A.; Kazemian, H.

    2005-01-01

    The behavior of ZSM-5 and Mordenite catalyst in the hydrolysis at room temperature of methyl tert-butyl ether was studied with reference to the possibility of its conversion to more biodegradable products in underground water contaminated by methyl tert-butyl ether. Hydrolysis products were determined using a gas chromatograph equipped with a flame ionization detector. The results indicate that acid ZSM-5 catalyst are effective in both adsorption and hydrolysis of methyl tert-butyl ether and may be applied for both in situ underground water remediation and as protection barrier for wells or leaking tanks. However, acid mordenite catalyst completely inactive

  11. Surface water retardation around single-chain polymeric nanoparticles: critical for catalytic function?

    Science.gov (United States)

    Stals, Patrick J M; Cheng, Chi-Yuan; van Beek, Lotte; Wauters, Annelies C; Palmans, Anja R A; Han, Songi; Meijer, E W

    2016-03-01

    A library of water-soluble dynamic single-chain polymeric nanoparticles (SCPN) was prepared using a controlled radical polymerisation technique followed by the introduction of functional groups, including probes at targeted positions. The combined tools of electron paramagnetic resonance (EPR) and Overhauser dynamic nuclear polarization (ODNP) reveal that these SCPNs have structural and surface hydration properties resembling that of enzymes.

  12. Catalytic Conversion of Dihydroxyacetone to Lactic Acid Using Metal Salts in Water

    NARCIS (Netherlands)

    Rasrendra, Carolus B.; Fachri, Boy A.; Makertihartha, I. Gusti B. N.; Adisasmito, Sanggono; Heeres, Hero J.

    2011-01-01

    We herein present a study on the application of homogeneous catalysts in the form of metal salts on the conversion of trioses, such as dihydroxyacetone (DHA), and glyceraldehyde (GLY) to lactic acid (LA) in water. A wide range of metal salts (26 in total) were examined. Al(III) salts were identified

  13. Effects of complexation of oppositely charged water-soluble cobaltphthalocyanines on catalytic mercaptoethanol autoxidation

    NARCIS (Netherlands)

    Schipper, E.T.W.M.; Heuts, J.P.A.; Piet, P.; Beelen, T.P.M.; German, A.L.

    1994-01-01

    In order to elucidate the different promoting effects polycations have on cobalt(II) phthalocyanine-catalyzed autoxidn. of 2-mercaptoethanol, the properties of mixts. of oppositely charged water-sol. cobalt(II) phthalocyanines were studied. The contribution of polycation-induced dimerization of the

  14. Video frame processor

    International Nuclear Information System (INIS)

    Joshi, V.M.; Agashe, Alok; Bairi, B.R.

    1993-01-01

    This report provides technical description regarding the Video Frame Processor (VFP) developed at Bhabha Atomic Research Centre. The instrument provides capture of video images available in CCIR format. Two memory planes each with a capacity of 512 x 512 x 8 bit data enable storage of two video image frames. The stored image can be processed on-line and on-line image subtraction can also be carried out for image comparisons. The VFP is a PC Add-on board and is I/O mapped within the host IBM PC/AT compatible computer. (author). 9 refs., 4 figs., 19 photographs

  15. Trigger and decision processors

    International Nuclear Information System (INIS)

    Franke, G.

    1980-11-01

    In recent years there have been many attempts in high energy physics to make trigger and decision processes faster and more sophisticated. This became necessary due to a permanent increase of the number of sensitive detector elements in wire chambers and calorimeters, and in fact it was possible because of the fast developments in integrated circuits technique. In this paper the present situation will be reviewed. The discussion will be mainly focussed upon event filtering by pure software methods and - rather hardware related - microprogrammable processors as well as random access memory triggers. (orig.)

  16. Optical Finite Element Processor

    Science.gov (United States)

    Casasent, David; Taylor, Bradley K.

    1986-01-01

    A new high-accuracy optical linear algebra processor (OLAP) with many advantageous features is described. It achieves floating point accuracy, handles bipolar data by sign-magnitude representation, performs LU decomposition using only one channel, easily partitions and considers data flow. A new application (finite element (FE) structural analysis) for OLAPs is introduced and the results of a case study presented. Error sources in encoded OLAPs are addressed for the first time. Their modeling and simulation are discussed and quantitative data are presented. Dominant error sources and the effects of composite error sources are analyzed.

  17. First-principles quantum mechanical investigations: Catalytic reactions of furfural on Pd(111) and at the water/Pd(111) interface

    Science.gov (United States)

    Xue, Wenhua

    Bio-oils have drawn more and more attention from scientists as a promising new clean, cheap energy source. One of the most interesting relevant issues is the effect of catalysts on the catalytic reactions that are used for producing bio-oils. Furfural, as a very important intermediate during these reactions, has attracted significant studies. However, the effect of catalysts, including particularly the liquid/solid interface formed by a metal catalyst and liquid water, in the catalytic reactions involving furfural still remains elusive. In this research, we performed ab initio molecular dynamics simulations and first-principles density-functional theory calculations to investigate the atomic-scale mechanisms of catalytic hydrogenation of furfural on the palladium surface and at the liquid/state interface formed by the palladium surface and liquid water. We studied all the possible mechanisms that lead to formation of furfuryl alcohol (FOL), formation of tetrahydrofurfural (THFAL), and formation of tetrahydrofurfurfuryl alcohol (THFOL). We found that liquid water plays a significant role in the hydrogenation reactions. During the reaction in the presence of water and the palladium catalyst, in particular, water directly participates in the hydrogenation of the aldehyde group of furfural and facilitates the formation of FOL by reducing the activation energy. Our calculations show that water provides hydrogen for the hydrogenation of the aldehyde group, and at the same time, a pre-existing hydrogen atom, which is resulted from dissociation of molecular hydrogen (experimentally, molecular hydrogen is always supplied for hydrogenation) on the palladium surface, is bonded to water, making the water molecule intact in structure. In the absence of water, on the other hand, formation of FOL and THFAL on the palladium surface involves almost the same energy barriers, suggesting a comparable selectivity. Overall, as water reduces the activation energy for the formation of FOL

  18. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with Redox Active Ligand

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O.

    2017-01-01

    The oxidation of water to dioxygen is important in natural photosynthesis. One of nature’s strategies for managing such multi-electron transfer reactions is to employ redox active metal-organic cofactor arrays. One prototype example is the copper-tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel-phenolate complex capable of catalyzing the oxidation of water to O2 electrochemically at neutral pH with a modest overpotential. The employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s−1) is retained. PMID:29099176

  19. The influence of water vapor and sulfur dioxide on the catalytic decomposition of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Yalamas, C.; Heinisch, R.; Barz, M. [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik; Cournil, M. [Ecole Nationale Superieure des Mines, 42 - Saint-Etienne (France)

    2001-03-01

    For the nitrous oxide decomposition three groups of catalysts such as metals on support, hydrotalcites, and perovskites were studied relating to their activity in the presence of vapor or sulfur dioxide, in the temperature range from 200 to 500 C. It was found that the water vapor strongly inhibates the nitrous oxide decomposition at T=200-400 C. The sulfur dioxide poisons the catalysts, in particular the perovskites. (orig.)

  20. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    Directory of Open Access Journals (Sweden)

    Jakob G. Howalt

    2014-01-01

    Full Text Available The presence of water often gives rise to oxygen adsorption on catalyst surfaces through decomposition of water and the adsorbed oxygen or hydroxide species often occupy important surfaces sites, resulting in a decrease or a total hindrance of other chemical reactions taking place at that site. In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density functional theory calculations are used in combination with the computational hydrogen electrode approach to calculate the free energy profile for electrochemical protonation of O and N2 species on cuboctahedral Mo13 nanoclusters. The calculations show that the molybdenum nanocluster will preferentially bind oxygen over nitrogen and hydrogen at neutral bias, but under electrochemical reaction conditions needed for nitrogen reduction, oxygen adsorption is severely weakened and the adsorption energy is comparable to hydrogen and nitrogen adsorption. The potentials required to reduce oxygen off the surface are −0.72 V or lower for all oxygen coverages studied, and it is thus possible to (reactivate (partially oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface and electrochemical ammonia production via the associative mechanism is possible at potentials as low as −0.45 V to −0.7 V.

  1. A Self-Assembled Trigonal Prismatic Molecular Vessel for Catalytic Dehydration Reactions in Water.

    Science.gov (United States)

    Das, Paramita; Kumar, Atul; Howlader, Prodip; Mukherjee, Partha Sarathi

    2017-09-12

    A water-soluble Pd 6 trigonal prism (A) was synthesized by two-component coordination-driven self-assembly of a Pd II 90° acceptor with a tetraimidazole donor. The walls of the prism are constructed by three conjugated aromatic building blocks, which means that the confined pocket of the prism is hydrophobic. In addition to the hydrophobic cavity, large product egress windows make A an ideal molecular vessel to catalyze otherwise challenging pseudo-multicomponent dehydration reactions in its confined nanospace in aqueous medium. This study is an attempt at selective generation of the intermediate tetraketones and xanthenes by fine-tuning the reaction conditions employing a supramolecular molecular vessel. Moreover, either poor or no yield of the dehydrated products in the absence of A under similar reaction conditions supports the ability of the confined space of the barrel to promote such reactions in water. Furthermore, we focused on the rigidification of the tetraphenylethylene-based tetraimidazole unit anchored within the Pd II coordination architecture; enabling counter-anion dependent aggregation induced emission in the presence of water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Experimental testing of the noise-canceling processor.

    Science.gov (United States)

    Collins, Michael D; Baer, Ralph N; Simpson, Harry J

    2011-09-01

    Signal-processing techniques for localizing an acoustic source buried in noise are tested in a tank experiment. Noise is generated using a discrete source, a bubble generator, and a sprinkler. The experiment has essential elements of a realistic scenario in matched-field processing, including complex source and noise time series in a waveguide with water, sediment, and multipath propagation. The noise-canceling processor is found to outperform the Bartlett processor and provide the correct source range for signal-to-noise ratios below -10 dB. The multivalued Bartlett processor is found to outperform the Bartlett processor but not the noise-canceling processor. © 2011 Acoustical Society of America

  3. AMD's 64-bit Opteron processor

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    This talk concentrates on issues that relate to obtaining peak performance from the Opteron processor. Compiler options, memory layout, MPI issues in multi-processor configurations and the use of a NUMA kernel will be covered. A discussion of recent benchmarking projects and results will also be included.BiographiesDavid RichDavid directs AMD's efforts in high performance computing and also in the use of Opteron processors...

  4. Catalytic subcritical water liquefaction of flax straw for high yield of furfural

    International Nuclear Information System (INIS)

    Harry, Inibehe; Ibrahim, Hussameldin; Thring, Ron; Idem, Raphael

    2014-01-01

    There is substantial interest in the application of biomass as a renewable fuel or for production of chemicals. Flax straw can be converted into valuable chemicals and biofuels via liquefaction in sub-critical water. In this study, the yield of furfural and the kinetics of flax straw liquefaction under sub-critical water conditions were investigated using a high-pressure autoclave reactor. The liquefaction was conducted in the temperature range of 175–325 °C, pressure of 0.1 MPa–8 MPa, retention time in the range of 0 min–120 min, and flax straw mass fraction (w F ) of 5–20 %. Also, the effect of acid catalysts on furfural yield was studied. The kinetic parameters of flax straw liquefaction were determined using nonlinear regression of the experimental data, assuming second-order kinetics. The apparent activation energy was found to be 27.97 kJ mol −1 while the reaction order was 2.0. The optimum condition for furfural yield was at 250 °C, 6.0 MPa, w F of 5% and 0 retention time after reaching set conditions. An acid catalyst was found to selectively favour furfural yield with 40% flax straw conversion. - Highlights: • Flax straw liquefaction in subcritical water. • Creation of a reaction pathway that can be used to optimized furfural production. • Acid catalyst selectively favoured furfural yield with respect to other liquid products. • At the highest process temperature of 325 °C, a carbon conversion of 40% was achieved. • Activation energy and reaction order was 28 kJ/mol and 2.0 respectively

  5. Preparation of fluidized catalytic cracking slurry oil-in-water emulsion as anti-collapse agent for drilling fluids

    Directory of Open Access Journals (Sweden)

    Zhengqiang Xiong

    2016-12-01

    Full Text Available Fluidized catalytic cracking slurry oil-in-water emulsion (FCCSE was prepared by using interfacial complexes generation method that was simple and versatile. The critical factors influencing the sample preparation process were optimized, for instance, the optimum value of the mixed hydrophile-lipophile balance of compound emulsifier was 11.36, the content of compound emulsifier was 4 wt%, the emulsification temperature was 75 °C, the agitation speed was 200 rpm, and the emulsification time was 30–45 min. The performance as a drilling fluid additive was also investigated with respect to rheological properties, filtration loss and inhibition of FCCSE. Experimental results showed that FCCSE was favorable to inhibiting clay expansion and dispersion and reducing fluid loss. Furthermore, it had good compatibility with other additives and did not affect the rheological properties of drilling fluids. FCCSE exhibited better performance than the available emulsified asphalt. It has a promising application as anti-collapse agent in petroleum and natural gas drilling.

  6. Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Song, Na [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Brookhaven National Lab. (BNL), Upton, NY (United States); Concepcion, Javier J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Binstead, Robert A. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Rudd, Jennifer A. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Vannucci, Aaron K. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemistry and Biochemistry; Dares, Christopher J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Coggins, Michael K. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry; Meyer, Thomas J. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Chemistry

    2015-04-06

    In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [RuII(bda)(isoq)2] (bda is 2,2'-bipyridine-6,6'-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [RuII(CO2-bpy-CO2$-$)(isoq)2(NCCH3)], as shown by 1H and 13C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV). In 1.0 M PO43–, the calculated half-time for water oxidation is ~7 μs. In conclusion, the key to the rate accelerations with added bases is direct involvement of the buffer base in either atom–proton transfer (APT) or concerted electron–proton transfer (EPT) pathways.

  7. Proton transport facilitating water-oxidation: the role of second sphere ligands surrounding the catalytic metal cluster.

    Science.gov (United States)

    Bao, Han; Dilbeck, Preston L; Burnap, Robert L

    2013-10-01

    The ability of PSII to extract electrons from water, with molecular oxygen as a by-product, is a remarkable biochemical and evolutionary innovation. From an evolutionary perspective, the invention of PSII approximately 2.7 Ga led to the accelerated accumulation of biomass in the biosphere and the accumulation of oxygen in the atmosphere, a combination that allowed for the evolution of a much more complex and extensive biosphere than would otherwise have been possible. From the biochemical and enzymatic perspective, PSII is remarkable because of the thermodynamic and kinetic obstacles that needed to have been overcome to oxidize water as the ultimate photosynthetic electron donor. This article focuses on how proton release is an integral part of how these kinetic and thermodynamic obstacles have been overcome: the sequential removal of protons from the active site of H2O-oxidation facilitates the multistep oxidation of the substrate water at the Mn4CaOx, the catalytic heart of the H2O-oxidation reaction. As noted previously, the facilitated deprotonation of the Mn4CaOx cluster exerts a redox-leveling function preventing the accumulation of excess positive charge on the cluster, which might otherwise hinder the already energetically difficult oxidation of water. Using recent results, including the characteristics of site-directed mutants, the role of the second sphere of amino acid ligands and the associated network of water molecules surrounding the Mn4CaOx is discussed in relation to proton transport in other systems. In addition to the redox-leveling function, a trapping function is assigned to the proton release step occurring immediately prior to the dioxygen chemistry. This trapping appears to involve a yet-to-be clarified gating mechanism that facilitates to coordinated release of a proton from the neighborhood of the active site thereby insuring that the backward charge-recombination reaction does not out-compete the forward reaction of dioxygen chemistry

  8. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    KAUST Repository

    Zhang, Tao

    2012-06-01

    Oxalate is usually used as a refractory model compound that cannot be effectively removed by ozone and hydroxyl radical oxidation in water. In this study, we found that ceria supported CuO significantly improved oxalate degradation in reaction with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic or alkaline. Moreover, bicarbonate, a ubiquitous hydroxyl radical scavenger in natural waters, significantly improved the catalytic degradation of oxalate. Therefore, the degradation relies on neither hydroxyl radical oxidation nor acid assistance, two pathways usually proposed for catalytic ozonation. These special characters of the catalyst make it suitable to be potentially used for practical degradation of refractory hydrophilic organic matter and compounds in water and wastewater. With in situ characterization, the new surface Cu(II) formed from ozone oxidation of the trace Cu(I) of the catalyst was found to be an active site in coordination with oxalate forming multi-dentate surface complex. It is proposed that the complex can be further oxidized by molecular ozone and then decomposes through intra-molecular electron transfer. The ceria support enhanced the activity of the surface Cu(I)/Cu(II) in this process. © 2012 Elsevier B.V.

  9. Solar Photo Catalytic Hydrogen Production from water using a dual bed photosystem

    Energy Technology Data Exchange (ETDEWEB)

    Florida Solar Energy Center

    2003-03-30

    A body of work was performed in which the feasibility of photocatalytically decomposing water into its constituent elements using a dual bed, or modular photosystem, under solar radiation was investigated. The system envisioned consists of two modules, each consisting of a shallow, flat, sealed container, in which microscopic photocatalytic particles are immobilized. The photocatalysts absorb light, generating free electrons and lattice vacancy holes, which are capable of performing reductive and oxidative chemistry, respectively. The photocatalysts would be chosen as to whether they specifically promote H{sub 2} or O{sub 2} evolution in their respective containers. An aqueous solution containing a redox mediator is pumped between the two chambers in order to transfer electron equivalents from one reaction to the other.

  10. The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production

    DEFF Research Database (Denmark)

    Howalt, Jakob Geelmuyden; Vegge, Tejs

    2014-01-01

    are -0.72 V or lower for all oxygen coverages studied, and it is thus possible to (re)activate (partially) oxidized nanoclusters for electrochemical ammonia production, e.g., using a dry proton conductor or an aqueous electrolyte. At lower oxygen coverages, nitrogen molecules can adsorb to the surface...... and electrochemical ammonia production via the associative mechanism is possible at potentials as low as -0.45 V to -0.7 V. © 2014 Howalt and Vegge........ In this study, we present theoretical investigations of the influence of oxygen adsorption and reduction on pure and nitrogen covered molybdenum nanocluster electro catalysts for electrochemical reduction of N2 to NH3 with the purpose of understanding oxygen and water poisoning of the catalyst. Density...

  11. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with a Redox-Active Ligand.

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O

    2017-11-20

    The oxidation of water (H 2 O) to dioxygen (O 2 ) is important in natural photosynthesis. One of nature's strategies for managing such multi-electron transfer reactions is to employ redox-active metal-organic cofactor arrays. One prototype example is the copper tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel phenolate complex capable of catalyzing the oxidation of H 2 O to O 2 electrochemically at neutral pH with a modest overpotential. Employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s -1 ) is retained.

  12. Removal of distal protein-water hydrogen bonds in a plant epoxide hydrolase increases catalytic turnover but decreases thermostability.

    Science.gov (United States)

    Thomaeus, Ann; Naworyta, Agata; Mowbray, Sherry L; Widersten, Mikael

    2008-07-01

    A putative proton wire in potato soluble epoxide hydrolase 1, StEH1, was identified and investigated by means of site-directed mutagenesis, steady-state kinetic measurements, temperature inactivation studies, and X-ray crystallography. The chain of hydrogen bonds includes five water molecules coordinated through backbone carbonyl oxygens of Pro(186), Leu(266), His(269), and the His(153) imidazole. The hydroxyl of Tyr(149) is also an integrated component of the chain, which leads to the hydroxyl of Tyr(154). Available data suggest that Tyr(154) functions as a final proton donor to the anionic alkylenzyme intermediate formed during catalysis. To investigate the role of the putative proton wire, mutants Y149F, H153F, and Y149F/H153F were constructed and purified. The structure of the Y149F mutant was solved by molecular replacement and refined to 2.0 A resolution. Comparison with the structure of wild-type StEH1 revealed only subtle structural differences. The hydroxyl group lost as a result of the mutation was replaced by a water molecule, thus maintaining a functioning hydrogen bond network in the proton wire. All mutants showed decreased catalytic efficiencies with the R,R-enantiomer of trans-stilbene oxide, whereas with the S,S-enantiomer, k (cat)/K (M) was similar or slightly increased compared with the wild-type reactions. k (cat) for the Y149F mutant with either TSO enantiomer was increased; thus the lowered enzyme efficiencies were due to increases in K (M). Thermal inactivation studies revealed that the mutated enzymes were more sensitive to elevated temperatures than the wild-type enzyme. Hence, structural alterations affecting the hydrogen bond chain caused increases in k (cat) but lowered thermostability.

  13. Support effects and catalytic trends for water gas shift activity of transition metals

    DEFF Research Database (Denmark)

    Boisen, Astrid; Janssens, T.V.W.; Schumacher, Nana Maria Pii

    2010-01-01

    Water gas shift activity measurements for 12 transition metals (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Re, Ir, Pt, Au) supported on inert MgAl2O4 and Ce0.75Zr0.25O2 are presented, to elucidate the influence of the active metal and the support. The activity is related to the adsorption energy of molecular...... activity on the MgAl2O4 support and are both characterized by weak CO adsorption. For the MgAl2O4-supported catalysts a volcano-type relation between the activity and the adsorption energy of atomic oxygen on the metal is obtained. The maximum activity is found for metals with a binding energy of oxygen...... around −2.5 eV. No clear correlation exists with the adsorption energy of CO. In contrast, the activity for the Ce0.75Zr0.25O2 support increases with increasing adsorption strength for CO, and based on a relatively low activity of Cu the activity does not seem to depend on the adsorption energy of oxygen...

  14. JP-8 Catalytic Cracking for Compact Fuel Processors

    National Research Council Canada - National Science Library

    Campbell, Timothy

    2004-01-01

    ...), kerosene, and diesel to produce hydrogen for fuel cell use, several issues arise. First, these fuels have high sulfur content, which can poison and deactivate components of the reforming process and the fuel cell stack...

  15. Catalytic activity of some oxime-based Pd(II-complexes in Suzuki coupling of aryl and heteroaryl bromides in water

    Directory of Open Access Journals (Sweden)

    Kamal M. Dawood

    2017-05-01

    Full Text Available The catalytic activity of four Pd(II-complexes of benzoazole-oximes was extensively studied in Suzuki–Miyaura C–C cross coupling reactions in water, as an eco-friendly green solvent, under both thermal heating as well as microwave irradiation conditions. The cross-coupling reactions included different activated and deactivated aryl- or heteroaryl-bromides with several arylboronic acids. The protected oxime-complexes were found to be more efficient than the free ones.

  16. Composable processor virtualization for embedded systems

    NARCIS (Netherlands)

    Molnos, A.M.; Milutinovic, A.; She, D.; Goossens, K.G.W.

    2010-01-01

    Processor virtualization divides a physical processor's time among a set of virual machines, enabling efficient hardware utilization, application security and allowing co-existence of different operating systems on the same processor. Through initially intended for the server domain, virtualization

  17. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil

    International Nuclear Information System (INIS)

    Mohamed, Badr A.; Ellis, Naoko; Kim, Chang Soo; Bi, Xiaotao; Emam, Ahmed El-raie

    2016-01-01

    Engineered biochars produced from microwave-assisted catalytic pyrolysis of switchgrass have been evaluated in terms of their ability on improving water holding capacity (WHC), cation exchange capacity (CEC) and fertility of loamy sand soil. The addition of K 3 PO 4 , clinoptilolite and/or bentonite as catalysts during the pyrolysis process increased biochar surface area and plant nutrient contents. Adding biochar produced with 10 wt.% K 3 PO 4 + 10 wt.% clinoptilolite as catalysts to the soil at 2 wt% load increased soil WHC by 98% and 57% compared to the treatments without biochar (control) and with 10 wt.% clinoptilolite, respectively. Synergistic effects on increased soil WHC were manifested for biochars produced from combinations of two additives compared to single additive, which may be the result of increased biochar microporosity due to increased microwave heating rate. Biochar produced from microwave catalytic pyrolysis was more efficient in increasing the soil WHC due to its high porosity in comparison with the biochar produced from conventional pyrolysis at the same conditions. The increases in soil CEC varied widely compared to the control soil, ranging from 17 to 220% for the treatments with biochars produced with 10 wt% clinoptilolite at 400 °C, and 30 wt% K 3 PO 4 at 300 °C, respectively. Strong positive correlations also exist among soil WHC with CEC and biochar micropore area. Biochar from microwave-assisted catalytic pyrolysis appears to be a novel approach for producing biochar with high sorption affinity and high CEC. These catalysts remaining in the biochar product would provide essential nutrients for the growth of bioenergy and food crops. - Highlights: • High quality biochar was made by catalytic pyrolysis in a microwave reactor. • High heating rate and good biochar quality were achieved using K 3 PO 4 and clinoptilolite mixture. • Biochars showed significant increase in soil WHC and CEC. • Microwave catalytic pyrolysis can produce

  18. Distributed processor systems

    International Nuclear Information System (INIS)

    Zacharov, B.

    1976-01-01

    In recent years, there has been a growing tendency in high-energy physics and in other fields to solve computational problems by distributing tasks among the resources of inter-coupled processing devices and associated system elements. This trend has gained further momentum more recently with the increased availability of low-cost processors and with the development of the means of data distribution. In two lectures, the broad question of distributed computing systems is examined and the historical development of such systems reviewed. An attempt is made to examine the reasons for the existence of these systems and to discern the main trends for the future. The components of distributed systems are discussed in some detail and particular emphasis is placed on the importance of standards and conventions in certain key system components. The ideas and principles of distributed systems are discussed in general terms, but these are illustrated by a number of concrete examples drawn from the context of the high-energy physics environment. (Auth.)

  19. Green Secure Processors: Towards Power-Efficient Secure Processor Design

    Science.gov (United States)

    Chhabra, Siddhartha; Solihin, Yan

    With the increasing wealth of digital information stored on computer systems today, security issues have become increasingly important. In addition to attacks targeting the software stack of a system, hardware attacks have become equally likely. Researchers have proposed Secure Processor Architectures which utilize hardware mechanisms for memory encryption and integrity verification to protect the confidentiality and integrity of data and computation, even from sophisticated hardware attacks. While there have been many works addressing performance and other system level issues in secure processor design, power issues have largely been ignored. In this paper, we first analyze the sources of power (energy) increase in different secure processor architectures. We then present a power analysis of various secure processor architectures in terms of their increase in power consumption over a base system with no protection and then provide recommendations for designs that offer the best balance between performance and power without compromising security. We extend our study to the embedded domain as well. We also outline the design of a novel hybrid cryptographic engine that can be used to minimize the power consumption for a secure processor. We believe that if secure processors are to be adopted in future systems (general purpose or embedded), it is critically important that power issues are considered in addition to performance and other system level issues. To the best of our knowledge, this is the first work to examine the power implications of providing hardware mechanisms for security.

  20. Processors and systems (picture processing)

    Energy Technology Data Exchange (ETDEWEB)

    Gemmar, P

    1983-01-01

    Automatic picture processing requires high performance computers and high transmission capacities in the processor units. The author examines the possibilities of operating processors in parallel in order to accelerate the processing of pictures. He therefore discusses a number of available processors and systems for picture processing and illustrates their capacities for special types of picture processing. He stresses the fact that the amount of storage required for picture processing is exceptionally high. The author concludes that it is as yet difficult to decide whether very large groups of simple processors or highly complex multiprocessor systems will provide the best solution. Both methods will be aided by the development of VLSI. New solutions have already been offered (systolic arrays and 3-d processing structures) but they also are subject to losses caused by inherently parallel algorithms. Greater efforts must be made to produce suitable software for multiprocessor systems. Some possibilities for future picture processing systems are discussed. 33 references.

  1. SutraPlot, a graphical post-processor for SUTRA, a model for ground-water flow with solute or energy transport

    Science.gov (United States)

    Souza, W.R.

    1999-01-01

    This report documents a graphical display post-processor (SutraPlot) for the U.S. Geological Survey Saturated-Unsaturated flow and solute or energy TRAnsport simulation model SUTRA, Version 2D3D.1. This version of SutraPlot is an upgrade to SutraPlot for the 2D-only SUTRA model (Souza, 1987). It has been modified to add 3D functionality, a graphical user interface (GUI), and enhanced graphic output options. Graphical options for 2D SUTRA (2-dimension) simulations include: drawing the 2D finite-element mesh, mesh boundary, and velocity vectors; plots of contours for pressure, saturation, concentration, and temperature within the model region; 2D finite-element based gridding and interpolation; and 2D gridded data export files. Graphical options for 3D SUTRA (3-dimension) simulations include: drawing the 3D finite-element mesh; plots of contours for pressure, saturation, concentration, and temperature in 2D sections of the 3D model region; 3D finite-element based gridding and interpolation; drawing selected regions of velocity vectors (projected on principal coordinate planes); and 3D gridded data export files. Installation instructions and a description of all graphic options are presented. A sample SUTRA problem is described and three step-by-step SutraPlot applications are provided. In addition, the methodology and numerical algorithms for the 2D and 3D finite-element based gridding and interpolation, developed for SutraPlot, are described. 1

  2. Seismometer array station processors

    International Nuclear Information System (INIS)

    Key, F.A.; Lea, T.G.; Douglas, A.

    1977-01-01

    A description is given of the design, construction and initial testing of two types of Seismometer Array Station Processor (SASP), one to work with data stored on magnetic tape in analogue form, the other with data in digital form. The purpose of a SASP is to detect the short period P waves recorded by a UK-type array of 20 seismometers and to edit these on to a a digital library tape or disc. The edited data are then processed to obtain a rough location for the source and to produce seismograms (after optimum processing) for analysis by a seismologist. SASPs are an important component in the scheme for monitoring underground explosions advocated by the UK in the Conference of the Committee on Disarmament. With digital input a SASP can operate at 30 times real time using a linear detection process and at 20 times real time using the log detector of Weichert. Although the log detector is slower, it has the advantage over the linear detector that signals with lower signal-to-noise ratio can be detected and spurious large amplitudes are less likely to produce a detection. It is recommended, therefore, that where possible array data should be recorded in digital form for input to a SASP and that the log detector of Weichert be used. Trial runs show that a SASP is capable of detecting signals down to signal-to-noise ratios of about two with very few false detections, and at mid-continental array sites it should be capable of detecting most, if not all, the signals with magnitude above msub(b) 4.5; the UK argues that, given a suitable network, it is realistic to hope that sources of this magnitude and above can be detected and identified by seismological means alone. (author)

  3. Catalytic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bindley, W T.R.

    1931-04-18

    An apparatus is described for the catalytic treatment of liquids, semi-liquids, and gases comprising a vessel into which the liquid, semi-liquid, or gas to be treated is introduced through a common inlet to a chamber within the vessel whence it passes to contact with a catalyst through radially arranged channels or passages to a common outlet chamber.

  4. Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal-Organic Frameworks.

    Science.gov (United States)

    Momeni, Mohammad R; Cramer, Christopher J

    2018-05-22

    Recent experimental studies on Zr IV -based metal-organic frameworks (MOFs) have shown the extraordinary effectiveness of these porous materials for the detoxification of phosphorus-based chemical warfare agents (CWAs). However, pressing challenges remain with respect to characterizing these catalytic processes both at the molecular and crystalline levels. We here use theory to compare the reactivity of different zirconium-based MOFs for the catalytic hydrolysis of the CWA sarin, using both periodic and cluster modeling. We consider both hydrated and dehydrated secondary building units, as well as linker functionalized MOFs, to more fully understand and rationalize available experimental findings as well as to enable concrete predictions for achieving higher activities for the decomposition of CWAs.

  5. Basic research for nuclear energy : a study on photo-catalytic decomposition reactions of organics dissolved in water

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K. W.; Na, J. W.; Cho, Y. H.; Kim, K. R

    1999-01-01

    In an experiment on TiO{sub 2} photo-catalysis of five nitrogen-containing organic compounds, the changes of pH and total carbon contents were measured, and the dependence of their photo-catalytic characteristic upon their chemical structures were investigated. -- calculation of the effect of ionic carbon species in an aqueous solution on thermodynamic equilibrium, pH and conductivity showed a small quantity of organics could lead conductivity increase and pH reduction. -- Based on the results of photo-catalytic experiment of ethylamine, phenylhydrazine, pyridine, urea or EDTA, irradiated for 180 minutes after adsorption onto titanium dioxide for 60 minutes, relationship between nitrogen atomic charge and the first-order rate constant was as the following: R (1st - order rate constant) = {delta} ({epsilon} - a ){sup 1/3} + b where, {epsilon} : atomic charge of nitrogen in a molecular, {delta}, a and b : corrective coefficients.

  6. I2-SDS-H2O System: A highly Efficient Dual Catalytic Green System for Deprotection of Imines and in Situ Preparation of Bis(indolyl)alkanes from Indoles in Water.

    Science.gov (United States)

    Hazarika, Parasa; Pahari, Pallab; Borah, Manash Jyoti; Konwar, Dilip

    2012-01-01

    A novel catalytic system consisting of I2-SDS-H2O has been developed which cleaves 2,3-diaza-1,3-butadiene, 1-aza-1,3-butadienes, oximes and in presence of indoles in the medium uses the corresponding aldehyde products to produce bis(indolyl)alkanes in situ. This one pot simple and mild dual catalytic system works in water at room temperature under neutral conditions.

  7. Nuclear interactive evaluations on distributed processors

    International Nuclear Information System (INIS)

    Dix, G.E.; Congdon, S.P.

    1988-01-01

    BWR [boiling water reactor] nuclear design is a complicated process, involving trade-offs among a variety of conflicting objectives. Complex computer calculations and usually required for each design iteration. GE Nuclear Energy has implemented a system where the evaluations are performed interactively on a large number of small microcomputers. This approach minimizes the time it takes to carry out design iterations even through the processor speeds are low compared with modern super computers. All of the desktop microcomputers are linked to a common data base via an ethernet communications system so that design data can be shared and data quality can be maintained

  8. Engineered biochar from microwave-assisted catalytic pyrolysis of switchgrass for increasing water-holding capacity and fertility of sandy soil

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Badr A. [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Agricultural Engineering Department, Cairo University, Giza (Egypt); Ellis, Naoko [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Kim, Chang Soo [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Clean Energy Research Center, Korea Institute of Science and Technology, 14 gil 5 Hwarang-no Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Bi, Xiaotao, E-mail: tony.bi@ubc.ca [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z3 (Canada); Emam, Ahmed El-raie [Agricultural Engineering Department, Cairo University, Giza (Egypt)

    2016-10-01

    Engineered biochars produced from microwave-assisted catalytic pyrolysis of switchgrass have been evaluated in terms of their ability on improving water holding capacity (WHC), cation exchange capacity (CEC) and fertility of loamy sand soil. The addition of K{sub 3}PO{sub 4}, clinoptilolite and/or bentonite as catalysts during the pyrolysis process increased biochar surface area and plant nutrient contents. Adding biochar produced with 10 wt.% K{sub 3}PO{sub 4} + 10 wt.% clinoptilolite as catalysts to the soil at 2 wt% load increased soil WHC by 98% and 57% compared to the treatments without biochar (control) and with 10 wt.% clinoptilolite, respectively. Synergistic effects on increased soil WHC were manifested for biochars produced from combinations of two additives compared to single additive, which may be the result of increased biochar microporosity due to increased microwave heating rate. Biochar produced from microwave catalytic pyrolysis was more efficient in increasing the soil WHC due to its high porosity in comparison with the biochar produced from conventional pyrolysis at the same conditions. The increases in soil CEC varied widely compared to the control soil, ranging from 17 to 220% for the treatments with biochars produced with 10 wt% clinoptilolite at 400 °C, and 30 wt% K{sub 3}PO{sub 4} at 300 °C, respectively. Strong positive correlations also exist among soil WHC with CEC and biochar micropore area. Biochar from microwave-assisted catalytic pyrolysis appears to be a novel approach for producing biochar with high sorption affinity and high CEC. These catalysts remaining in the biochar product would provide essential nutrients for the growth of bioenergy and food crops. - Highlights: • High quality biochar was made by catalytic pyrolysis in a microwave reactor. • High heating rate and good biochar quality were achieved using K{sub 3}PO{sub 4} and clinoptilolite mixture. • Biochars showed significant increase in soil WHC and CEC.

  9. XL-100S microprogrammable processor

    International Nuclear Information System (INIS)

    Gorbunov, N.V.; Guzik, Z.; Sutulin, V.A.; Forytski, A.

    1983-01-01

    The XL-100S microprogrammable processor providing the multiprocessor operation mode in the XL system crate is described. The processor meets the EUR 6500 CAMAC standards, address up to 4 Mbyte memory, and interacts with 7 CAMAC branchas. Eight external requests initiate operations preset by a sequence of microcommands in a memory of the capacity up to 64 kwords of 32-Git. The microprocessor architecture allows one to emulate commands of the majority of mini- or micro-computers, including floating point operations. The XL-100S processor may be used in various branches of experimental physics: for physical experiment apparatus control, fast selection of useful physical events, organization of the of input/output operations, organization of direct assess to memory included, etc. The Am2900 microprocessor set is used as an elementary base. The device is made in the form of a single width CAMAC module

  10. Making CSB + -Trees Processor Conscious

    DEFF Research Database (Denmark)

    Samuel, Michael; Pedersen, Anders Uhl; Bonnet, Philippe

    2005-01-01

    of the CSB+-tree. We argue that it is necessary to consider a larger group of parameters in order to adapt CSB+-tree to processor architectures as different as Pentium and Itanium. We identify this group of parameters and study how it impacts the performance of CSB+-tree on Itanium 2. Finally, we propose......Cache-conscious indexes, such as CSB+-tree, are sensitive to the underlying processor architecture. In this paper, we focus on how to adapt the CSB+-tree so that it performs well on a range of different processor architectures. Previous work has focused on the impact of node size on the performance...... a systematic method for adapting CSB+-tree to new platforms. This work is a first step towards integrating CSB+-tree in MySQL’s heap storage manager....

  11. Java Processor Optimized for RTSJ

    Directory of Open Access Journals (Sweden)

    Tu Shiliang

    2007-01-01

    Full Text Available Due to the preeminent work of the real-time specification for Java (RTSJ, Java is increasingly expected to become the leading programming language in real-time systems. To provide a Java platform suitable for real-time applications, a Java processor which can execute Java bytecode is directly proposed in this paper. It provides efficient support in hardware for some mechanisms specified in the RTSJ and offers a simpler programming model through ameliorating the scoped memory of the RTSJ. The worst case execution time (WCET of the bytecodes implemented in this processor is predictable by employing the optimization method proposed in our previous work, in which all the processing interfering predictability is handled before bytecode execution. Further advantage of this method is to make the implementation of the processor simpler and suited to a low-cost FPGA chip.

  12. A comparison study of the start-up of a MnOx filter for catalytic oxidative removal of ammonium from groundwater and surface water.

    Science.gov (United States)

    Cheng, Ya; Li, Ye; Huang, Tinglin; Sun, Yuankui; Shi, Xinxin; Shao, Yuezong

    2018-03-01

    As an efficient method for ammonium (NH 4 + ) removal, contact catalytic oxidation technology has drawn much attention recently, due to its good low temperature resistance and short start-up period. Two identical filters were employed to compare the process for ammonium removal during the start-up period for ammonium removal in groundwater (Filter-N) and surface water (Filter-S) treatment. Two types of source water (groundwater and surface water) were used as the feed waters for the filtration trials. Although the same initiating method was used, Filter-N exhibited much better ammonium removal performance than Filter-S. The differences in catalytic activity among these two filters were probed using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and compositional analysis. XRD results indicated that different manganese oxide species were formed in Filter-N and Filter-S. Furthermore, the Mn3p XPS spectra taken on the surface of the filter films revealed that the average manganese valence of the inactive manganese oxide film collected from Filter-S (FS-MnO x ) was higher than in the film collected from Filter-N (FN-MnO x ). Mn(IV) was identified as the predominant oxidation state in FS-MnO x and Mn(III) was identified as the predominant oxidation state in FN-MnO x . The results of compositional analyses suggested that polyaluminum ferric chloride (PAFC) used during the surface water treatment was an important factor in the mineralogy and reactivity of MnO x . This study provides the theoretical basis for promoting the wide application of the technology and has great practical significance. Copyright © 2017. Published by Elsevier B.V.

  13. Optical Array Processor: Laboratory Results

    Science.gov (United States)

    Casasent, David; Jackson, James; Vaerewyck, Gerard

    1987-01-01

    A Space Integrating (SI) Optical Linear Algebra Processor (OLAP) is described and laboratory results on its performance in several practical engineering problems are presented. The applications include its use in the solution of a nonlinear matrix equation for optimal control and a parabolic Partial Differential Equation (PDE), the transient diffusion equation with two spatial variables. Frequency-multiplexed, analog and high accuracy non-base-two data encoding are used and discussed. A multi-processor OLAP architecture is described and partitioning and data flow issues are addressed.

  14. Fast processor for dilepton triggers

    International Nuclear Information System (INIS)

    Katsanevas, S.; Kostarakis, P.; Baltrusaitis, R.

    1983-01-01

    We describe a fast trigger processor, developed for and used in Fermilab experiment E-537, for selecting high-mass dimuon events produced by negative pions and anti-protons. The processor finds candidate tracks by matching hit information received from drift chambers and scintillation counters, and determines their momenta. Invariant masses are calculated for all possible pairs of tracks and an event is accepted if any invariant mass is greater than some preselectable minimum mass. The whole process, accomplished within 5 to 10 microseconds, achieves up to a ten-fold reduction in trigger rate

  15. Study on treatment of distilled ammonia waste water from coke plant with activated carbon-NaClO catalytic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Luo, D.; Yi, P.; Liu, J.; Chen, A. [Xiangtan Polytechnic University, Xiangtan (China). Dept. of Chemical Enginering

    2001-12-01

    Catalytic oxidation method for the treatment of distilled ammonia waste water from coke plant was investigated using activated carbon as catalyst and NaClO as oxidant. The influences of main factors, such as NaClO, activated carbon, pH and reactionary time were discussed. The results showed that under the conditions of 25{degree}C, NaClO/CODO=1.5, carbon/NaClO=0.6 and pH=3.0, the reaction completed within 120 minutes with 99.5% of phenol removal and 75.8% of COD removal when the distilled ammonia waste water from coke plant which containing phenol 510 mg/L and CODO 8420 mg/L was treated. 13 refs., 4 figs.

  16. Very Long Instruction Word Processors

    Indian Academy of Sciences (India)

    Explicitly Parallel Instruction Computing (EPIC) is an instruction processing paradigm that has been in the spot- light due to its adoption by the next generation of Intel. Processors starting with the IA-64. The EPIC processing paradigm is an evolution of the Very Long Instruction. Word (VLIW) paradigm. This article gives an ...

  17. Catalytic activity of hydrophobic Pt/C/PTFE catalysts of different PTFE content for hydrogen-water liquid exchange reaction

    International Nuclear Information System (INIS)

    Hu Sheng; Xiao Chengjian; Zhu Zuliang; Luo Shunzhong; Wang Heyi; Luo Yangming; Wang Changbin

    2007-01-01

    10%Pt/C catalysts were prepared by liquid reduction method. PTFE and Pt/ C catalysts were adhered to porous metal and hydrophobic Pt/C/PTFE catalysts were prepared. The structure and size of Pt crystal particles of Pt/C catalysts were analyzed by XRD, and their mean size was 3.1 nm. The dispersion state of Pt/C and PTFE was analyzed by SEM, and they had good dispersion mostly, but PTFE membrane could be observed on local parts of Pt/C/PTFE surface. Because of low hydrophobicity, Pt/C/ PTFE catalysts have low activity when the mass ratio of PTFE and Pt/C is 0.5: 1, and their catalytic activity increases markedly when the ratio is 1:1. When the ratio increases again, more Pt active sites would be covered by PTFE and interior diffusion effect would increase, which result in the decrease of catalytic activity of Pt/C/PTFE. By PTFE pretreatment of porous metal carrier, the activity of Pt/C/PTFE catalysts decreases when the mass ratio of PTFE and Pt/C is 0.5:1, and their activity decreases when the mass ratio is 1:1. (authors)

  18. VON WISPR Family Processors: Volume 1

    National Research Council Canada - National Science Library

    Wagstaff, Ronald

    1997-01-01

    ...) and the background noise they are embedded in. Processors utilizing those fluctuations such as the von WISPR Family Processors discussed herein, are methods or algorithms that preferentially attenuate the fluctuating signals and noise...

  19. Design Principles for Synthesizable Processor Cores

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; McKee, Sally A.; Karlsson, Sven

    2012-01-01

    As FPGAs get more competitive, synthesizable processor cores become an attractive choice for embedded computing. Currently popular commercial processor cores do not fully exploit current FPGA architectures. In this paper, we propose general design principles to increase instruction throughput...

  20. Deterministic chaos in the processor load

    International Nuclear Information System (INIS)

    Halbiniak, Zbigniew; Jozwiak, Ireneusz J.

    2007-01-01

    In this article we present the results of research whose purpose was to identify the phenomenon of deterministic chaos in the processor load. We analysed the time series of the processor load during efficiency tests of database software. Our research was done on a Sparc Alpha processor working on the UNIX Sun Solaris 5.7 operating system. The conducted analyses proved the presence of the deterministic chaos phenomenon in the processor load in this particular case

  1. JPP: A Java Pre-Processor

    OpenAIRE

    Kiniry, Joseph R.; Cheong, Elaine

    1998-01-01

    The Java Pre-Processor, or JPP for short, is a parsing pre-processor for the Java programming language. Unlike its namesake (the C/C++ Pre-Processor, cpp), JPP provides functionality above and beyond simple textual substitution. JPP's capabilities include code beautification, code standard conformance checking, class and interface specification and testing, and documentation generation.

  2. Photobiodegradation of chlorinated water pollutants by a combined TiO2-polyaniline-enzyme catalytic system

    Science.gov (United States)

    Campanella, Luigi; Crescentini, G.; Militerno, S.

    1995-10-01

    The removal of xenobiotic compounds, such as chlorophenols and pesticides, from municipal and industrial wastewaters is an important task because of the toxicity and the tendency to bioaccumulation of these compounds. Among the several methods proposed, photodegradation catalyzed by suspended inorganic semiconductors (i.e. TiO2) has lately received wide attention because this process is fast, leads to non-toxic final products and shows a high degradation efficiency. In this work, the results obtained in the photodegradation of monochlorophenols using a new catalyst, made of TiO2 and polyaniline both immobilized on a polyvinylchloride (PVC) membrane, in presence (and in absence) of an enzyme are presented. Different enzymes have been tested by adding 5, 10 or 15 U/mL to 50 mL of aqueous solution (1 multiplied by 10-4 mol/L) of o-chloro-phenol containing the catalytic membrane. The samples were irradiated using a QUV panel accelerated weathering tester, which simulates very well the solar radiation up to lambda equals 400 nm and HPLC was used to measure the variation of the compound's concentration with the time. While some enzymes (i.e., peroxidase) do not improve the photodegradation process since they do not survive under the irradiation conditions used, some of them show marked effect both in terms of rate degradation and time required to reach the total degradation of the compound examined. For example, the addition of Laccase reduces the 100% degradation time from 35 hrs to about 20 hrs. Attempts to immobilize the enzyme on the catalytic membrane (by adsorption) have been carried out and the performance of the catalyst with non-immobilized and immobilized enzyme has been studied.

  3. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water

    International Nuclear Information System (INIS)

    Ma, Wei; Zong, Panpan; Cheng, Zihong; Wang, Baodong; Sun, Qi

    2014-01-01

    Highlights: • Biomass and fly ash which were widespread for adsorption of heavy metal ions. • Preparation of catalyst by saturated adsorbents for 2-chlorophenol ozone degradation. • This work demonstrated that the O 3 /catalyst process was an effective pathway. • The use of nickel ions, fly ash and sawdust to achieve the recycling utilization of resources. -- Abstract: This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid–solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH = 7 with a 2:1 liquid–solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03–0.1 min −1 ) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH = 7.0 compared with ozonation alone

  4. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wei, E-mail: chmawv@yahoo.com [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Zong, Panpan; Cheng, Zihong [School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Wang, Baodong; Sun, Qi [National Institute of Clean-and-low Carbon Energy, Beijing 102209 (China)

    2014-02-15

    Highlights: • Biomass and fly ash which were widespread for adsorption of heavy metal ions. • Preparation of catalyst by saturated adsorbents for 2-chlorophenol ozone degradation. • This work demonstrated that the O{sub 3}/catalyst process was an effective pathway. • The use of nickel ions, fly ash and sawdust to achieve the recycling utilization of resources. -- Abstract: This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid–solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH = 7 with a 2:1 liquid–solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03–0.1 min{sup −1}) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH = 7.0 compared with ozonation alone.

  5. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  6. Online Fastbus processor for LEP

    International Nuclear Information System (INIS)

    Mueller, H.

    1986-01-01

    The author describes the online computing aspects of Fastbus systems using a processor module which has been developed at CERN and is now available commercially. These General Purpose Master/Slaves (GPMS) are based on 68000/10 (or optionally 68020/68881) processors. Applications include use as event-filters (DELPHI), supervisory controllers, Fastbus stand-alone diagnostic tools, and multiprocessor array components. The direct mapping of single, 32-bit assembly instructions to execute Fastbus protocols makes the use of a GPM both simple and flexible. Loosely coupled processing in Fastbus networks is possible between GPM's as they support access semaphores and use a two port memory as I/O buffer for Fastbus. Both master and slave-ports support block transfers up to 20 Mbytes/s. The CERN standard Fastbus software and the MoniCa symbolic debugging monitor are available on the GPM with real time, multiprocessing support. (Auth.)

  7. Invasive tightly coupled processor arrays

    CERN Document Server

    LARI, VAHID

    2016-01-01

    This book introduces new massively parallel computer (MPSoC) architectures called invasive tightly coupled processor arrays. It proposes strategies, architecture designs, and programming interfaces for invasive TCPAs that allow invading and subsequently executing loop programs with strict requirements or guarantees of non-functional execution qualities such as performance, power consumption, and reliability. For the first time, such a configurable processor array architecture consisting of locally interconnected VLIW processing elements can be claimed by programs, either in full or in part, using the principle of invasive computing. Invasive TCPAs provide unprecedented energy efficiency for the parallel execution of nested loop programs by avoiding any global memory access such as GPUs and may even support loops with complex dependencies such as loop-carried dependencies that are not amenable to parallel execution on GPUs. For this purpose, the book proposes different invasion strategies for claiming a desire...

  8. Improvement of catalytic activity in selective oxidation of styrene with H{sub 2}O{sub 2} over spinel Mg–Cu ferrite hollow spheres in water

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Jinhui, E-mail: jinhuitong@126.com [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Cai, Xiaodong; Wang, Haiyan; Zhang, Qianping [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2014-07-01

    Graphical abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. Solid spinel Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods for comparison. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be magnetically separated easily for reuse and no obvious loss of activity was observed when reused in six consecutive runs. - Highlights: • Uniform spinel ferrite hollow spheres were prepared by a simple method. • The catalyst has been proved much more efficient for styrene oxidation than the reported analogues. • The catalyst can be easily separated by external magnetic field and has exhibited excellent reusability. • The catalytic system is environmentally friendly. - Abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. For comparison, solid Mg–Cu ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods. All the samples were characterized by Fourier transform infrared spectrophotometry (FT-IR), X-ray diffractometry (XRD), transmission electron microscopy (TEM) and N{sub 2} physisorption. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed, and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be

  9. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  10. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    Science.gov (United States)

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  11. [State of Fungal Lipases of Rhizopus microsporus, Penicillium sp. and Oospora lactis in Border Layers Water-Solid Phase and Factors Affecting Catalytic Properties of Enzymes].

    Science.gov (United States)

    Khasanov, Kh T; Davranov, K; Rakhimov, M M

    2015-01-01

    We demonstrated that a change in the catalytic activity of fungal lipases synthesized by Rhizopus microsporus, Penicillium sp. and Oospora lactis and their ability to absorb on different sorbents depended on the nature of groups on the solid phase surface in the model systems water: lipid and water: solid phase. Thus, the stability of Penicillium sp. lipases increased 85% in the presence ofsorsilen or DEAE-cellulose, and 55% of their initial activity respectively was preserved. In the presence of silica gel and CM-cellulose, a decreased rate of lipid hydrolysis by Pseudomonas sp. enzymes was observed in water medium, and the hydrolysis rate increased by 2.4 and 1.5 times respectively in the presence of aminoaerosil and polykefamid. In an aqueous-alcohol medium, aminoaerosil and polykefamid decreased the rate of substrate hydrolysis by more than 30 times. The addition of aerosil to aqueous and aqueous-alcohol media resulted in an increase in the hydrolysis rate by 1.2-1.3 times. Sorsilen stabilized Penicillium sp. lipase activity at 40, 45, 50 and 55 degrees C. Either stabilization or inactivation of lipases was observed depending on the pH of the medium and the nature of chemical groups localized on the surface of solid phase. The synthetizing activity of lipases also changed depending on the conditions.

  12. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-09-19

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields.

  13. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; Hale, William G.; Wang, Hsinping; Zhou, Xinghao; Plymale, Noah T.; Omelchenko, Stefan T.; He, Jr-Hau; Papadantonakis, Kimberly M.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide

  14. The impact of water concentration on the catalytic oxidation of ethanol on platinum electrode in concentrated phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, A.P.M.; Previdello, B.A.F.; Varela, H.; Gonzalez, E.R. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, C.P. 780, CEP 13560-970 Sao Carlos, SP (Brazil)

    2010-01-15

    The electro-oxidation of ethanol on platinum in phosphoric acid opens the door to promote the oxidation reaction at higher temperatures. However, the effect of the presence of water is not well understood. In this work, the electro-oxidation of ethanol on platinum was studied in concentrated phosphoric acid containing different concentrations of water at room temperature. The results show that effect of bulk water on the rate electro-oxidation is highest at 0.60 V and decreases for increasing potentials. This was suggested as due to the increasing formation of oxygenated species on the electrode surface with potential, which in turn is more efficient than the increase of water content in the electrolyte. Altogether, these results were interpreted as an evidence of a Langmuir-Hinshelwood step involving oxygenated species as one of the adsorbed partners. (author)

  15. Characterization of a trinuclear ruthenium species in catalytic water oxidation by Ru(bda)(pic)2 in neutral media.

    Science.gov (United States)

    Zhang, Biaobiao; Li, Fei; Zhang, Rong; Ma, Chengbing; Chen, Lin; Sun, Licheng

    2016-06-30

    A Ru(III)-O-Ru(IV)-O-Ru(III) type trinuclear species was crystallographically characterized in water oxidation by Ru(bda)(pic)2 (H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; pic = 4-picoline) under neutral conditions. The formation of a ruthenium trimer due to the reaction of Ru(IV)[double bond, length as m-dash]O with Ru(II)-OH2 was fully confirmed by chemical, electrochemical and photochemical methods. Since the oxidation of the trimer was proposed to lead to catalyst decomposition, the photocatalytic water oxidation activity was rationally improved by the suppression of the formation of the trimer.

  16. Accuracies Of Optical Processors For Adaptive Optics

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1992-01-01

    Paper presents analysis of accuracies and requirements concerning accuracies of optical linear-algebra processors (OLAP's) in adaptive-optics imaging systems. Much faster than digital electronic processor and eliminate some residual distortion. Question whether errors introduced by analog processing of OLAP overcome advantage of greater speed. Paper addresses issue by presenting estimate of accuracy required in general OLAP that yields smaller average residual aberration of wave front than digital electronic processor computing at given speed.

  17. Functional Verification of Enhanced RISC Processor

    OpenAIRE

    SHANKER NILANGI; SOWMYA L

    2013-01-01

    This paper presents design and verification of a 32-bit enhanced RISC processor core having floating point computations integrated within the core, has been designed to reduce the cost and complexity. The designed 3 stage pipelined 32-bit RISC processor is based on the ARM7 processor architecture with single precision floating point multiplier, floating point adder/subtractor for floating point operations and 32 x 32 booths multiplier added to the integer core of ARM7. The binary representati...

  18. The UA1 trigger processor

    International Nuclear Information System (INIS)

    Grayer, G.H.

    1981-01-01

    Experiment UA1 is a large multi-purpose spectrometer at the CERN proton-antiproton collider, scheduled for late 1981. The principal trigger is formed on the basis of the energy deposition in calorimeters. A trigger decision taken in under 2.4 microseconds can avoid dead time losses due to the bunched nature of the beam. To achieve this we have built fast 8-bit charge to digital converters followed by two identical digital processors tailored to the experiment. The outputs of groups of the 2440 photomultipliers in the calorimeters are summed to form a total of 288 input channels to the ADCs. A look-up table in RAM is used to convert the digitised photomultiplier signals to energy in one processor, combinations of input channels, and also counts the number of clusters with electromagnetic or hadronic energy above pre-determined levels. Up to twelve combinations of these conditions, together with external information, may be combined in coincidence or in veto to form the final trigger. Provision has been made for testing using simulated data in an off-line mode, and sampling real data when on-line. (orig.)

  19. Data register and processor for multiwire chambers

    International Nuclear Information System (INIS)

    Karpukhin, V.V.

    1985-01-01

    A data register and a processor for data receiving and processing from drift chambers of a device for investigating relativistic positroniums are described. The data are delivered to the register input in the form of the Grey 8 bit code, memorized and transformed to a position code. The register information is delivered to the KAMAK trunk and to the front panel plug. The processor selects particle tracks in a horizontal plane of the facility. ΔY maximum coordinate divergence and minimum point quantity on the track are set from the processor front panel. Processor solution time is 16 μs maximum quantity of simultaneously analyzed coordinates is 16

  20. Sensitometric control of roentgen film processors

    International Nuclear Information System (INIS)

    Forsberg, H.; Karolinska Sjukhuset, Stockholm

    1987-01-01

    Monitoring of film processors performance is essential since image quality, patient dose and costs are influenced by the performance. A system for sensitometric constancy control of film processors and their associated components is described. Experience with the system for 3 years is given when implemented on 17 film processors. Modern high quality film processors have a stability that makes a test frequency of once a week sufficient to maintain adequate image quality. The test system is so sensitive that corrective actions almost invariably have been taken before any technical problem degraded the image quality to a visible degree. (orig.)

  1. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

    Science.gov (United States)

    Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S

    2015-03-24

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

  2. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke

    2015-03-11

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). © 2015, National Academy of Sciences. All rights reserved.

  3. The catalytic role of tungsten electrode material in the plasmachemical activity of a pulsed corona discharge in water

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Sisrová, I.; Janda, V.

    2011-01-01

    Roč. 20, č. 3 (2011), 034011-034011 ISSN 0963-0252 R&D Projects: GA AV ČR IAAX00430802; GA ČR(CZ) GD104/09/H080 Institutional research plan: CEZ:AV0Z20430508 Keywords : corona discharge * water * erosion * tungsten * hydrogen peroxide * dimethylsulfoxide Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.521, year: 2011 http://www.ipp.cas.cz/Ips/public/lukes_2011a.pdf

  4. Preliminary radiation-oxidizing treatment influence on radiation-catalytic activity of zirconium during water decomposition process

    International Nuclear Information System (INIS)

    Garibov, A.A.; Aliyev, A.G.; Agayev, T.N.; Aliyev, S.M.; Velibekova, G.Z.

    2004-01-01

    The study of physical-chemical processes proceeding in contact of metal constructional materials nuclear reactors with water at simultaneous influence of temperature and radiation represents the large interest at the decision of problems material authority and safety of work of nuclear -power installations [1-2]. One of the widely widespread materials of active zone nuclear reactors is metal zirconium and its alloys. The influence of preliminary radiation processing on radiation, radiation -thermal and thermal processes of accumulation of molecular hydrogen and oxidation zirconium in contact with water is investigated at T=673 K and ρ=5mg/sm 3 [3-4]. Initial samples zirconium previously has been exposed by an irradiation in medium H 2 O 2 at D=20-410 kGy. The contribution of radiation processes in these contacts in process thermo-radiation decomposition of water and oxidation of materials of zirconium is revealed. It is established that the interaction of Zr metal, preliminary treated by radiation, with water at radiation -heterogeneous processes leads to passivity of a surface. The rate meanings of thermal, radiation -thermal processes and radiation-chemical yields of hydrogen are determined. It is revealed, that at radiation-heterogeneous processes in system Zr +H 2 O (ρ =5mg/sm 3 T=673 K) the increase of the absorbed doze up to 123 kGy results to reduction of a radiation -chemical yield of molecular hydrogen. The further increase of the absorbed doze results to increase of a radiation -chemical yield of hydrogen. The observable effect at the preliminary radiation of zirconium is connected to formation of oxide phase on a surface. The mechanism of radiation -heterogeneous processes proceeding in system Zr+H 2 O is suggested. (author)

  5. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    Directory of Open Access Journals (Sweden)

    Bernardo Castro-Dominguez

    2016-09-01

    Full Text Available Palladium-based catalytic membrane reactors (CMRs effectively remove H2 to induce higher conversions in methane steam reforming (MSR and water-gas-shift reactions (WGS. Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i a conventional packed bed reactor packed (PBR for MSR, (ii a PBR with five layers of two catalysts in series and (iii a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields.

  6. Preventing Precipitation in the ISS Urine Processor

    Science.gov (United States)

    Muirhead, Dean; Carter, Layne; Williamson, Jill; Chambers, Antja

    2017-01-01

    The ISS Urine Processor Assembly (UPA) was initially designed to achieve 85% recovery of water from pretreated urine on ISS. Pretreated urine is comprised of crew urine treated with flush water, an oxidant (chromium trioxide), and an inorganic acid (sulfuric acid) to control microbial growth and inhibit precipitation. Unfortunately, initial operation of the UPA on ISS resulted in the precipitation of calcium sulfate at 85% recovery. This occurred because the calcium concentration in the crew urine was elevated in microgravity due to bone loss. The higher calcium concentration precipitated with sulfate from the pretreatment acid, resulting in a failure of the UPA due to the accumulation of solids in the Distillation Assembly. Since this failure, the UPA has been limited to a reduced recovery of water from urine to prevent calcium sulfate from reaching the solubility limit. NASA personnel have worked to identify a solution that would allow the UPA to return to a nominal recovery rate of 85%. This effort has culminated with the development of a pretreatment based on phosphoric acid instead of sulfuric acid. By eliminating the sulfate associated with the pretreatment, the brine can be concentrated to a much higher concentration before calcium sulfate reach the solubility limit. This paper summarizes the development of this pretreatment and the testing performed to verify its implementation on ISS.

  7. Producing chopped firewood with firewood processors

    International Nuclear Information System (INIS)

    Kaerhae, K.; Jouhiaho, A.

    2009-01-01

    The TTS Institute's research and development project studied both the productivity of new, chopped firewood processors (cross-cutting and splitting machines) suitable for professional and independent small-scale production, and the costs of the chopped firewood produced. Seven chopped firewood processors were tested in the research, six of which were sawing processors and one shearing processor. The chopping work was carried out using wood feeding racks and a wood lifter. The work was also carried out without any feeding appliances. Altogether 132.5 solid m 3 of wood were chopped in the time studies. The firewood processor used had the most significant impact on chopping work productivity. In addition to the firewood processor, the stem mid-diameter, the length of the raw material, and of the firewood were also found to affect productivity. The wood feeding systems also affected productivity. If there is a feeding rack and hydraulic grapple loader available for use in chopping firewood, then it is worth using the wood feeding rack. A wood lifter is only worth using with the largest stems (over 20 cm mid-diameter) if a feeding rack cannot be used. When producing chopped firewood from small-diameter wood, i.e. with a mid-diameter less than 10 cm, the costs of chopping work were over 10 EUR solid m -3 with sawing firewood processors. The shearing firewood processor with a guillotine blade achieved a cost level of 5 EUR solid m -3 when the mid-diameter of the chopped stem was 10 cm. In addition to the raw material, the cost-efficient chopping work also requires several hundred annual operating hours with a firewood processor, which is difficult for individual firewood entrepreneurs to achieve. The operating hours of firewood processors can be increased to the required level by the joint use of the processors by a number of firewood entrepreneurs. (author)

  8. An efficient route for catalytic activity promotion via hybrid electro-depositional modification on commercial nickel foam for hydrogen evolution reaction in alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guanshui; He, Yongwei; Wang, Mei; Zhu, Fuchun; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); Wang, Xiaoguang, E-mail: wangxiaog1982@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga (Portugal)

    2014-09-15

    Highlights: • Mono-Cu surface modification depress the HER activity of Ni-foam. • Hybrid Ni-foam/Cu0.01/Co0.05 exhibits superior HER performance. • Layer-by-layer structure may contribute to a synergistic promoting effect. - Abstract: In this paper, the single- and hybrid-layered Cu, Ni and Co thin films were electrochemically deposited onto the three-dimensional nickel foam as composite cathode catalyst for hydrogen evolution reaction in alkaline water electrolysis. The morphology, structure and chemical composition of the electrodeposited composite catalysts were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Electrochemical measurement depicted that, for the case of the monometallic layered samples, the general activity for hydrogen evolution reaction followed the sequence: Ni-foam/Ni > Ni-foam/Co > bare Ni-foam > Ni-foam/Cu. It is noteworthy that, the hybrid-layered Ni-foam/Cu0.01/Co0.05 exhibited the highest catalytic activity towards hydrogen evolution reaction with the current density as high as 2.82 times that of the bare Ni-foam. Moreover, both excellent electrochemical and physical stabilities can also be acquired on the Ni-foam/Cu0.01/Co0.05, making this hybrid-layered composite structure as a promising HER electro-catalyst.

  9. Phase Behaviour of 1-Ethyl-3-methylimidazolium Thiocyanate Ionic Liquid with Catalytic Deactivated Compounds and Water at Several Temperatures: Experiments and Theoretical Predictions

    Directory of Open Access Journals (Sweden)

    Ramalingam Anantharaj

    2011-01-01

    Full Text Available Density, surface tension and refractive index were determined for the binary mixture of catalytic deactivated compounds with 1-ethyl-3-methylimidazolium thiocyanate {[EMIM][SCN]} at temperature of (298.15 to 323.15 K. For all the compounds with ILs, the densities varied linearly in the entire mole fraction with increasing temperature. From the obtained data, the excess molar volume and deviation of surface tension and refractive index have been calculated. A strong interaction was found between similar (cation-thiophene or cation-pyrrole compounds. The interaction of IL with dissimilar compounds such as indoline and quinoline and other multiple ring compounds was found to strongly depend on the composition of IL at any temperatures. For the mixtures, the surface tension decreases in the order of: thiophene > quinoline > pyridine > indoline > pyrrole > water. In general from the excess volume studies, the IL-sulphur/nitrogen mixture has stronger interaction as compared to IL-IL, thiophene-thiophene or pyrrole-pyrrole interaction. The deviation of surface tension was found to be inversely proportional to deviation of refractive index. The quantum chemical based COSMO-RS was used to predict the non-ideal liquid phase activity coefficient for all mixtures. It indicated an inverse relation between activity coefficient and excess molar volumes.

  10. Effect of iron content on the catalytic activity of Fe-MnOx electrodeposited films in water oxidation

    Science.gov (United States)

    Selinger, Elizabeth; Ryczko, Kevin; Lopinski, Gregory; Armandi, Marco; Bonelli, Barbara; Tamblyn, Isaac

    We report on the experimental and computational optimization and characterization of an MnOx structure containing a small amount of Fe, used as a catalyst for the water oxidation reaction (WOR), the key limiting reaction in water splitting. MnOx materials are earth-abundant and known to be efficient for WOR, and the method of cathodically electrodepositing catalysts allows for quick synthesis and a homogeneous coverage of the substrate. We present an increase in WOR activity due to the presence of Fe in this MnOx catalyst structure. First, we explored the optimal range for Fe(NO3)3 concentration in an KMnO4 solution for electrodeposition and tested for WOR activity. The catalyst structure was then analyzed using FESEM, XPS, and a Kelvin probe. We then developed a computational model of this structure, using density functional theory to obtain adsorption energies, work functions, projected density of states, and Born-Oppenheimer molecular dynamics. In this theoretical framework, we explore how these observables change with respect to concentration of Fe, and compare the theoretical model with experiment. special acknowledgement to the Italian Cultural Centre of Durham scholarship program.

  11. Polar aprotic solvent-water mixture as the medium for catalytic production of hydroxymethylfurfural (HMF) from bread waste.

    Science.gov (United States)

    Yu, Iris K M; Tsang, Daniel C W; Chen, Season S; Wang, Lei; Hunt, Andrew J; Sherwood, James; De Oliveira Vigier, Karine; Jérôme, François; Ok, Yong Sik; Poon, Chi Sun

    2017-12-01

    Valorisation of bread waste for hydroxymethylfurfural (HMF) synthesis was examined in dimethyl sulfoxide (DMSO)-, tetrahydrofuran (THF)-, acetonitrile (ACN)-, and acetone-water (1:1v/v), under heating at 140°C with SnCl 4 as the catalyst. The overall rate of the process was the fastest in ACN/H 2 O and acetone/H 2 O, followed by DMSO/H 2 O and THF/H 2 O due to the rate-limiting glucose isomerisation. However, the formation of levulinic acid (via rehydration) and humins (via polymerisation) was more significant in ACN/H 2 O and acetone/H 2 O. The constant HMF maxima (26-27mol%) in ACN/H 2 O, acetone/H 2 O, and DMSO/H 2 O indicated that the rates of desirable reactions (starch hydrolysis, glucose isomerisation, and fructose dehydration) relative to undesirable pathways (HMF rehydration and polymerisation) were comparable among these mediums. They also demonstrated higher selectivity towards HMF production over the side reactions than THF/H 2 O. This study differentiated the effects of polar aprotic solvent-water mediums on simultaneous pathways during biomass conversion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Micro processors for plant protection

    International Nuclear Information System (INIS)

    McAffer, N.T.C.

    1976-01-01

    Micro computers can be used satisfactorily in general protection duties with economic advantages over hardwired systems. The reliability of such protection functions can be enhanced by keeping the task performed by each protection micro processor simple and by avoiding such a task being dependent on others in any substantial way. This implies that vital work done for any task is kept within it and that any communications from it to outside or to it from outside are restricted to those for controlling data transfer. Also that the amount of this data should be the minimum consistent with satisfactory task execution. Technology is changing rapidly and devices may become obsolete and be supplanted by new ones before their theoretical reliability can be confirmed or otherwise by field service. This emphasises the need for users to pool device performance data so that effective reliability judgements can be made within the lifetime of the devices. (orig.) [de

  13. Survey of cochlear implant user satisfaction with the Neptune™ waterproof sound processor

    Directory of Open Access Journals (Sweden)

    Jeroen J. Briaire

    2016-04-01

    Full Text Available A multi-center self-assessment survey was conducted to evaluate patient satisfaction with the Advanced Bionics Neptune™ waterproof sound processor used with the AquaMic™ totally submersible microphone. Subjective satisfaction with the different Neptune™ wearing options, comfort, ease of use, sound quality and use of the processor in a range of active and water related situations were assessed for 23 adults and 73 children, using an online and paper based questionnaire. Upgraded subjects compared their previous processor to the Neptune™. The Neptune™ was most popular for use in general sports and in the pool. Subjects were satisfied with the sound quality of the sound processor outside and under water and following submersion. Seventyeight percent of subjects rated waterproofness as being very useful and 83% of the newly implanted subjects selected waterproofness as one of the reasons why they chose the Neptune™ processor. Providing a waterproof sound processor is considered by cochlear implant recipients to be useful and important and is a factor in their processor choice. Subjects reported that they were satisfied with the Neptune™ sound quality, ease of use and different wearing options.

  14. Towards a Process Algebra for Shared Processors

    DEFF Research Database (Denmark)

    Buchholtz, Mikael; Andersen, Jacob; Løvengreen, Hans Henrik

    2002-01-01

    We present initial work on a timed process algebra that models sharing of processor resources allowing preemption at arbitrary points in time. This enables us to model both the functional and the timely behaviour of concurrent processes executed on a single processor. We give a refinement relation...

  15. Vector and parallel processors in computational science

    International Nuclear Information System (INIS)

    Duff, I.S.; Reid, J.K.

    1985-01-01

    These proceedings contain the articles presented at the named conference. These concern hardware and software for vector and parallel processors, numerical methods and algorithms for the computation on such processors, as well as applications of such methods to different fields of physics and related sciences. See hints under the relevant topics. (HSI)

  16. The communication processor of TUMULT-64

    NARCIS (Netherlands)

    Smit, Gerardus Johannes Maria; Jansen, P.G.

    1988-01-01

    Tumult (Twente University MULTi-processor system) is a modular extendible multi-processor system designed and implemented at the Twente University of Technology in co-operation with Oce Nederland B.V. and the Dr. Neher Laboratories (Dutch PTT). Characteristics of the hardware are: MIMD type,

  17. An interactive parallel processor for data analysis

    International Nuclear Information System (INIS)

    Mong, J.; Logan, D.; Maples, C.; Rathbun, W.; Weaver, D.

    1984-01-01

    A parallel array of eight minicomputers has been assembled in an attempt to deal with kiloparameter data events. By exporting computer system functions to a separate processor, the authors have been able to achieve computer amplification linearly proportional to the number of executing processors

  18. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    Science.gov (United States)

    Zhang, Yanzong; Zheng, Jingtang; Qu, Xianfeng; Yu, Weizhao; Chen, Honggang

    2008-06-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H2O2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  19. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    International Nuclear Information System (INIS)

    Zhang Yanzong; Zheng Jingtang; Qu Xianfeng; Yu Weizhao; Chen Honggang

    2008-01-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H 2 O 2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  20. Comparison of Processor Performance of SPECint2006 Benchmarks of some Intel Xeon Processors

    OpenAIRE

    Abdul Kareem PARCHUR; Ram Asaray SINGH

    2012-01-01

    High performance is a critical requirement to all microprocessors manufacturers. The present paper describes the comparison of performance in two main Intel Xeon series processors (Type A: Intel Xeon X5260, X5460, E5450 and L5320 and Type B: Intel Xeon X5140, 5130, 5120 and E5310). The microarchitecture of these processors is implemented using the basis of a new family of processors from Intel starting with the Pentium 4 processor. These processors can provide a performance boost for many ke...

  1. Neurovision processor for designing intelligent sensors

    Science.gov (United States)

    Gupta, Madan M.; Knopf, George K.

    1992-03-01

    A programmable multi-task neuro-vision processor, called the Positive-Negative (PN) neural processor, is proposed as a plausible hardware mechanism for constructing robust multi-task vision sensors. The computational operations performed by the PN neural processor are loosely based on the neural activity fields exhibited by certain nervous tissue layers situated in the brain. The neuro-vision processor can be programmed to generate diverse dynamic behavior that may be used for spatio-temporal stabilization (STS), short-term visual memory (STVM), spatio-temporal filtering (STF) and pulse frequency modulation (PFM). A multi- functional vision sensor that performs a variety of information processing operations on time- varying two-dimensional sensory images can be constructed from a parallel and hierarchical structure of numerous individually programmed PN neural processors.

  2. Development of a highly reliable CRT processor

    International Nuclear Information System (INIS)

    Shimizu, Tomoya; Saiki, Akira; Hirai, Kenji; Jota, Masayoshi; Fujii, Mikiya

    1996-01-01

    Although CRT processors have been employed by the main control board to reduce the operator's workload during monitoring, the control systems are still operated by hardware switches. For further advancement, direct controller operation through a display device is expected. A CRT processor providing direct controller operation must be as reliable as the hardware switches are. The authors are developing a new type of highly reliable CRT processor that enables direct controller operations. In this paper, we discuss the design principles behind a highly reliable CRT processor. The principles are defined by studies of software reliability and of the functional reliability of the monitoring and operation systems. The functional configuration of an advanced CRT processor is also addressed. (author)

  3. Online track processor for the CDF upgrade

    International Nuclear Information System (INIS)

    Thomson, E. J.

    2002-01-01

    A trigger track processor, called the eXtremely Fast Tracker (XFT), has been designed for the CDF upgrade. This processor identifies high transverse momentum (> 1.5 GeV/c) charged particles in the new central outer tracking chamber for CDF II. The XFT design is highly parallel to handle the input rate of 183 Gbits/s and output rate of 44 Gbits/s. The processor is pipelined and reports the result for a new event every 132 ns. The processor uses three stages: hit classification, segment finding, and segment linking. The pattern recognition algorithms for the three stages are implemented in programmable logic devices (PLDs) which allow in-situ modification of the algorithm at any time. The PLDs reside on three different types of modules. The complete system has been installed and commissioned at CDF II. An overview of the track processor and performance in CDF Run II are presented

  4. Computer Generated Inputs for NMIS Processor Verification

    International Nuclear Information System (INIS)

    J. A. Mullens; J. E. Breeding; J. A. McEvers; R. W. Wysor; L. G. Chiang; J. R. Lenarduzzi; J. T. Mihalczo; J. K. Mattingly

    2001-01-01

    Proper operation of the Nuclear Identification Materials System (NMIS) processor can be verified using computer-generated inputs [BIST (Built-In-Self-Test)] at the digital inputs. Preselected sequences of input pulses to all channels with known correlation functions are compared to the output of the processor. These types of verifications have been utilized in NMIS type correlation processors at the Oak Ridge National Laboratory since 1984. The use of this test confirmed a malfunction in a NMIS processor at the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) in 1998. The NMIS processor boards were returned to the U.S. for repair and subsequently used in NMIS passive and active measurements with Pu at VNIIEF in 1999

  5. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  6. Catalytic supercritical water gasification of primary paper sludge using a homogeneous and heterogeneous catalyst: Experimental vs thermodynamic equilibrium results.

    Science.gov (United States)

    Louw, Jeanne; Schwarz, Cara E; Burger, Andries J

    2016-02-01

    H2, CH4, CO and CO2 yields were measured during supercritical water gasification (SCWG) of primary paper waste sludge (PWS) at 450°C. Comparing these yields with calculated thermodynamic equilibrium values offer an improved understanding of conditions required to produce near-equilibrium yields. Experiments were conducted at different catalyst loads (0-1g/gPWS) and different reaction times (15-120min) in a batch reactor, using either K2CO3 or Ni/Al2O3-SiO2 as catalyst. K2CO3 up to 1g/gPWS increased the H2 yield significantly to 7.5mol/kgPWS. However, these yields and composition were far from equilibrium values, with carbon efficiency (CE) and energy recovery (ER) of only 29% and 20%, respectively. Addition of 0.5-1g/gPWS Ni/Al2O3-SiO2 resulted in high H2 and CH4 yields (6.8 and 14.8mol/kgPWS), CE of 84-90%, ER of 83% and a gas composition relatively close to the equilibrium values (at hold times of 60-120min). Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Analytical Bounds on the Threads in IXP1200 Network Processor

    OpenAIRE

    Ramakrishna, STGS; Jamadagni, HS

    2003-01-01

    Increasing link speeds have placed enormous burden on the processing requirements and the processors are expected to carry out a variety of tasks. Network Processors (NP) [1] [2] is the blanket name given to the processors, which are traded for flexibility and performance. Network Processors are offered by a number of vendors; to take the main burden of processing requirement of network related operations from the conventional processors. The Network Processors cover a spectrum of design trad...

  8. Effect of processor temperature on film dosimetry

    International Nuclear Information System (INIS)

    Srivastava, Shiv P.; Das, Indra J.

    2012-01-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d max. , 10 × 10 cm 2 , 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4–40.6°C (85–105°F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.

  9. Optical Associative Processors For Visual Perception"

    Science.gov (United States)

    Casasent, David; Telfer, Brian

    1988-05-01

    We consider various associative processor modifications required to allow these systems to be used for visual perception, scene analysis, and object recognition. For these applications, decisions on the class of the objects present in the input image are required and thus heteroassociative memories are necessary (rather than the autoassociative memories that have been given most attention). We analyze the performance of both associative processors and note that there is considerable difference between heteroassociative and autoassociative memories. We describe associative processors suitable for realizing functions such as: distortion invariance (using linear discriminant function memory synthesis techniques), noise and image processing performance (using autoassociative memories in cascade with with a heteroassociative processor and with a finite number of autoassociative memory iterations employed), shift invariance (achieved through the use of associative processors operating on feature space data), and the analysis of multiple objects in high noise (which is achieved using associative processing of the output from symbolic correlators). We detail and provide initial demonstrations of the use of associative processors operating on iconic, feature space and symbolic data, as well as adaptive associative processors.

  10. Development of Innovative Design Processor

    International Nuclear Information System (INIS)

    Park, Y.S.; Park, C.O.

    2004-01-01

    The nuclear design analysis requires time-consuming and erroneous model-input preparation, code run, output analysis and quality assurance process. To reduce human effort and improve design quality and productivity, Innovative Design Processor (IDP) is being developed. Two basic principles of IDP are the document-oriented design and the web-based design. The document-oriented design is that, if the designer writes a design document called active document and feeds it to a special program, the final document with complete analysis, table and plots is made automatically. The active documents can be written with ordinary HTML editors or created automatically on the web, which is another framework of IDP. Using the proper mix-up of server side and client side programming under the LAMP (Linux/Apache/MySQL/PHP) environment, the design process on the web is modeled as a design wizard style so that even a novice designer makes the design document easily. This automation using the IDP is now being implemented for all the reload design of Korea Standard Nuclear Power Plant (KSNP) type PWRs. The introduction of this process will allow large reduction in all reload design efforts of KSNP and provide a platform for design and R and D tasks of KNFC. (authors)

  11. Onboard spectral imager data processor

    Science.gov (United States)

    Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.

    1999-10-01

    Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.

  12. A data base processor semantics specification package

    Science.gov (United States)

    Fishwick, P. A.

    1983-01-01

    A Semantics Specification Package (DBPSSP) for the Intel Data Base Processor (DBP) is defined. DBPSSP serves as a collection of cross assembly tools that allow the analyst to assemble request blocks on the host computer for passage to the DBP. The assembly tools discussed in this report may be effectively used in conjunction with a DBP compatible data communications protocol to form a query processor, precompiler, or file management system for the database processor. The source modules representing the components of DBPSSP are fully commented and included.

  13. Hardware trigger processor for the MDT system

    CERN Document Server

    AUTHOR|(SzGeCERN)757787; The ATLAS collaboration; Hazen, Eric; Butler, John; Black, Kevin; Gastler, Daniel Edward; Ntekas, Konstantinos; Taffard, Anyes; Martinez Outschoorn, Verena; Ishino, Masaya; Okumura, Yasuyuki

    2017-01-01

    We are developing a low-latency hardware trigger processor for the Monitored Drift Tube system in the Muon spectrometer. The processor will fit candidate Muon tracks in the drift tubes in real time, improving significantly the momentum resolution provided by the dedicated trigger chambers. We present a novel pure-FPGA implementation of a Legendre transform segment finder, an associative-memory alternative implementation, an ARM (Zynq) processor-based track fitter, and compact ATCA carrier board architecture. The ATCA architecture is designed to allow a modular, staged approach to deployment of the system and exploration of alternative technologies.

  14. Photonics and Fiber Optics Processor Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Photonics and Fiber Optics Processor Lab develops, tests and evaluates high speed fiber optic network components as well as network protocols. In addition, this...

  15. A light hydrocarbon fuel processor producing high-purity hydrogen

    Science.gov (United States)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    thermal efficiency is better than 67% operating at full load. This fuel processor has been integrated with a 5-kW fuel cell producing electricity and hot water.

  16. Keystone Business Models for Network Security Processors

    OpenAIRE

    Arthur Low; Steven Muegge

    2013-01-01

    Network security processors are critical components of high-performance systems built for cybersecurity. Development of a network security processor requires multi-domain experience in semiconductors and complex software security applications, and multiple iterations of both software and hardware implementations. Limited by the business models in use today, such an arduous task can be undertaken only by large incumbent companies and government organizations. Neither the “fabless semiconductor...

  17. Real time monitoring of electron processors

    International Nuclear Information System (INIS)

    Nablo, S.V.; Kneeland, D.R.; McLaughlin, W.L.

    1995-01-01

    A real time radiation monitor (RTRM) has been developed for monitoring the dose rate (current density) of electron beam processors. The system provides continuous monitoring of processor output, electron beam uniformity, and an independent measure of operating voltage or electron energy. In view of the device's ability to replace labor-intensive dosimetry in verification of machine performance on a real-time basis, its application to providing archival performance data for in-line processing is discussed. (author)

  18. New self-assembled material based on Ru nanoparticles and 4-sulfocalix[4]arene as an efficient and recyclable catalyst for reduction of brilliant yellow azo dye in water: a new model catalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu, Darsi; Pradeep, Chullikkattil P.; Dhir, Abhimanew, E-mail: abhimanew@iitmandi.ac.in [Indian Institute of Technology (India)

    2016-12-15

    New self-assembled material (Ru@SC) with ruthenium nanoparticles (Ru NPs) and 4-sulfocalix[4]arene (SC) is synthesized in water at room temperature. Ru@SC is characterized by thermal gravimetric analysis, FT-IR, powder x-ray diffraction, TEM and SEM analysis. The size of Ru nanoparticles in the self-assembly is approximately 5 nm. The self-assembled material Ru@SC shows an efficient catalytic reduction of toxic ‘brilliant yellow’ (BY) azo dye. The reduced amine products were successfully separated and confirmed by single-crystal XRD, NMR and UV-Vis spectroscopy. Ru@SC showed a better catalytic activity in comparison with commercial catalysts Ru/C (ruthenium on charcoal 5 %) and Pd/C (palladium on charcoal 5 and 10 %). The catalyst also showed a promising recyclability and heterogeneous nature as a catalyst for reduction of ‘BY’ azo dye.

  19. Accuracy Limitations in Optical Linear Algebra Processors

    Science.gov (United States)

    Batsell, Stephen Gordon

    1990-01-01

    One of the limiting factors in applying optical linear algebra processors (OLAPs) to real-world problems has been the poor achievable accuracy of these processors. Little previous research has been done on determining noise sources from a systems perspective which would include noise generated in the multiplication and addition operations, noise from spatial variations across arrays, and from crosstalk. In this dissertation, we propose a second-order statistical model for an OLAP which incorporates all these system noise sources. We now apply this knowledge to determining upper and lower bounds on the achievable accuracy. This is accomplished by first translating the standard definition of accuracy used in electronic digital processors to analog optical processors. We then employ our second-order statistical model. Having determined a general accuracy equation, we consider limiting cases such as for ideal and noisy components. From the ideal case, we find the fundamental limitations on improving analog processor accuracy. From the noisy case, we determine the practical limitations based on both device and system noise sources. These bounds allow system trade-offs to be made both in the choice of architecture and in individual components in such a way as to maximize the accuracy of the processor. Finally, by determining the fundamental limitations, we show the system engineer when the accuracy desired can be achieved from hardware or architecture improvements and when it must come from signal pre-processing and/or post-processing techniques.

  20. Performance evaluation of integrated fuel processor for residential PEMFCs application

    International Nuclear Information System (INIS)

    Yu Taek Seo; Dong Joo Seo; Young-Seog Seo; Hyun-Seog Roh; Wang Lai Yoon; Jin Hyeok Jeong

    2006-01-01

    KIER has been developing the natural gas fuel processor to produce hydrogen rich gas for residential PEMFCs system. To realize a compact and high efficiency, the unit processes of steam reforming, water gas shift, and preferential oxidation are chemically and physically integrated in a package. Current fuel processor designed for 1 kW class PEMFCs shows thermal efficiency of 78% as a HHV basis with methane conversion of 90% at rated load operation. CO concentration below 10 ppm in the produced gas is achieved with preferential oxidation unit using Pt and Ru based catalyst under the condition of [O 2 ]/[CO]=2.0. The partial load operation have been carried out to test the performance of fuel processor from 40% to 80% load, showing stable methane conversion and CO concentration below 10 ppm. The durability test for the daily start-stop and 8 hr operation procedure is under investigation and shows no deterioration of its performance after 40 start-stop cycles. (authors)

  1. A lock circuit for a multi-core processor

    DEFF Research Database (Denmark)

    2015-01-01

    An integrated circuit comprising a multiple processor cores and a lock circuit that comprises a queue register with respective bits set or reset via respective, connections dedicated to respective processor cores, whereby the queue register identifies those among the multiple processor cores...... that are enqueued in the queue register. Furthermore, the integrated circuit comprises a current register and a selector circuit configured to select a processor core and identify that processor core by a value in the current register. A selected processor core is a prioritized processor core among the cores...... configured with an integrated circuit; and a silicon die configured with an integrated circuit....

  2. Catalytic hydrodechlorination of trichloroethylene in a novel NaOH/2-propanol/methanol/water system on ceria-supported Pd and Rh catalysts.

    Science.gov (United States)

    Cobo, Martha; Becerra, Jorge; Castelblanco, Miguel; Cifuentes, Bernay; Conesa, Juan A

    2015-08-01

    The catalytic hydrodechlorination (HDC) of high concentrations of trichloroethylene (TCE) (4.9 mol%, 11.6 vol%) was studied over 1%Pd, 1%Rh and 0.5%Pd-0.5%Rh catalysts supported on CeO2 under conditions of room temperature and pressure. For this, a one-phase system of NaOH/2-propanol/methanol/water was designed with molar percentages of 13.2/17.5/36.9/27.6, respectively. In this system, the alcohols delivered the hydrogen required for the reaction through in-situ dehydrogenation reactions. PdRh/CeO2 was the most active catalyst for the degradation of TCE among the evaluated materials, degrading 85% of the trichloroethylene, with alcohol dehydrogenation rates of 89% for 2-propanol and 83% for methanol after 1 h of reaction. Fresh and used catalysts were characterized by Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Thermogravimetric analysis (TGA). These results showed important differences of the active phase in each catalyst sample. Rh/CeO2 had particle sizes smaller than 1 nm and the active metal was partially oxidized (Rh(0)/Rh(+δ) ratio of 0.43). This configuration showed to be suitable for alcohols dehydrogenation. On the contrary, Pd/CeO2 showed a Pd completed oxidized and with a mean particle size of 1.7 nm, which seemed to be unfavorable for both, alcohols dehydrogenation and TCE HDC. On PdRh/CeO2, active metals presented a mean particle size of 2.7 nm and more reduced metallic species, with ratios of Rh(0)/Rh(+δ) = 0.67 and Pd(0)/Pd(+δ) = 0.28, which showed to be suitable features for the TCE HDC. On the other hand, TGA results suggested some deposition of NaCl residues over the catalyst surfaces. Thus, the new reaction system using PdRh/CeO2 allowed for the degradation of high concentrations of the chlorinated compound by using in situ hydrogen liquid donors in a reaction at room temperature and pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Compact gasoline fuel processor for passenger vehicle APU

    Science.gov (United States)

    Severin, Christopher; Pischinger, Stefan; Ogrzewalla, Jürgen

    Due to the increasing demand for electrical power in today's passenger vehicles, and with the requirements regarding fuel consumption and environmental sustainability tightening, a fuel cell-based auxiliary power unit (APU) becomes a promising alternative to the conventional generation of electrical energy via internal combustion engine, generator and battery. It is obvious that the on-board stored fuel has to be used for the fuel cell system, thus, gasoline or diesel has to be reformed on board. This makes the auxiliary power unit a complex integrated system of stack, air supply, fuel processor, electrics as well as heat and water management. Aside from proving the technical feasibility of such a system, the development has to address three major barriers:start-up time, costs, and size/weight of the systems. In this paper a packaging concept for an auxiliary power unit is presented. The main emphasis is placed on the fuel processor, as good packaging of this large subsystem has the strongest impact on overall size. The fuel processor system consists of an autothermal reformer in combination with water-gas shift and selective oxidation stages, based on adiabatic reactors with inter-cooling. The configuration was realized in a laboratory set-up and experimentally investigated. The results gained from this confirm a general suitability for mobile applications. A start-up time of 30 min was measured, while a potential reduction to 10 min seems feasible. An overall fuel processor efficiency of about 77% was measured. On the basis of the know-how gained by the experimental investigation of the laboratory set-up a packaging concept was developed. Using state-of-the-art catalyst and heat exchanger technology, the volumes of these components are fixed. However, the overall volume is higher mainly due to mixing zones and flow ducts, which do not contribute to the chemical or thermal function of the system. Thus, the concept developed mainly focuses on minimization of those

  4. Architectural design and analysis of a programmable image processor

    International Nuclear Information System (INIS)

    Siyal, M.Y.; Chowdhry, B.S.; Rajput, A.Q.K.

    2003-01-01

    In this paper we present an architectural design and analysis of a programmable image processor, nicknamed Snake. The processor was designed with a high degree of parallelism to speed up a range of image processing operations. Data parallelism found in array processors has been included into the architecture of the proposed processor. The implementation of commonly used image processing algorithms and their performance evaluation are also discussed. The performance of Snake is also compared with other types of processor architectures. (author)

  5. Impact of water quality on removal of carbamazepine in natural waters by N-doped TiO{sub 2} photo-catalytic thin film surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Avisar, Dror, E-mail: drorvi@post.tau.ac.il [The Hydro-Chemistry Laboratory, Faculty of Geography and the Environment, Tel Aviv University, Tel Aviv 69978 (Israel); Horovitz, Inna [The Hydro-Chemistry Laboratory, Faculty of Geography and the Environment, Tel Aviv University, Tel Aviv 69978 (Israel); School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Lozzi, Luca; Ruggieri, Fabrizio [Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, I-67010 Coppito, L’Aquila (Italy); Baker, Mark; Abel, Marie-Laure [The Surface Analysis Laboratory, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Mamane, Hadas [School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-01-15

    Highlights: ► N-doped TiO{sub 2} thin films have been deposited by sol–gel dip-coating. ► CBZ removal improved with increasing medium pH in the range of 5–9. ► DOC at a concentration of 5 mg/L resulted in an ∼20% reduction in CBZ removal. ► Alkalinity values of 100 mg/L as CaCO{sub 3} resulted in a 40% decrease in CBZ removal. ► Complete suppression of the photocatalytic process in wastewater effluent. -- Abstract: Photocatalytic experiments on the pharmaceutical pollutant carbamazepine (CBZ) were conducted using sol–gel nitrogen-doped TiO{sub 2}-coated glass slides under a solar simulator. CBZ was stable to photodegradation under direct solar irradiation. No CBZ sorption to the catalyst surface was observed, as further confirmed by surface characterization using X-ray photoelectron spectroscopic analysis of N-doped TiO{sub 2} surfaces. When exposing the catalyst surface to natural organic matter (NOM), an excess amount of carbon was detected relative to controls, which is consistent with NOM remaining on the catalyst surface. The catalyst surface charge was negative at pH values from 4 to 10 and decreased with increasing pH, correlated with enhanced CBZ removal with increasing medium pH in the range of 5–9. A dissolved organic carbon concentration of 5 mg/L resulted in ∼20% reduction in CBZ removal, probably due to competitive inhibition of the photocatalytic degradation of CBZ. At alkalinity values corresponding to CaCO{sub 3} addition at 100 mg/L, an over 40% decrease in CBZ removal was observed. A 35% reduction in CBZ occurred in the presence of surface water compared to complete suppression of the photocatalytic process in wastewater effluent.

  6. Control structures for high speed processors

    Science.gov (United States)

    Maki, G. K.; Mankin, R.; Owsley, P. A.; Kim, G. M.

    1982-01-01

    A special processor was designed to function as a Reed Solomon decoder with throughput data rate in the Mhz range. This data rate is significantly greater than is possible with conventional digital architectures. To achieve this rate, the processor design includes sequential, pipelined, distributed, and parallel processing. The processor was designed using a high level language register transfer language. The RTL can be used to describe how the different processes are implemented by the hardware. One problem of special interest was the development of dependent processes which are analogous to software subroutines. For greater flexibility, the RTL control structure was implemented in ROM. The special purpose hardware required approximately 1000 SSI and MSI components. The data rate throughput is 2.5 megabits/second. This data rate is achieved through the use of pipelined and distributed processing. This data rate can be compared with 800 kilobits/second in a recently proposed very large scale integration design of a Reed Solomon encoder.

  7. Real time processor for array speckle interferometry

    Science.gov (United States)

    Chin, Gordon; Florez, Jose; Borelli, Renan; Fong, Wai; Miko, Joseph; Trujillo, Carlos

    1989-02-01

    The authors are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element two-dimensional complex FFT (fast Fourier transform) and average the power spectrum, all within the 25 ms coherence time for speckles at near-IR (infrared) wavelength. The processor will be a compact unit controlled by a PC with real-time display and data storage capability. This will provide the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with offline methods. The image acquisition and processing, design criteria, and processor architecture are described.

  8. The UA1 upgrade calorimeter trigger processor

    International Nuclear Information System (INIS)

    Bains, M.; Charleton, D.; Ellis, N.; Garvey, J.; Gregory, J.; Jimack, M.P.; Jovanovic, P.; Kenyon, I.R.; Baird, S.A.; Campbell, D.; Cawthraw, M.; Coughlan, J.; Flynn, P.; Galagedera, S.; Grayer, G.; Halsall, R.; Shah, T.P.; Stephens, R.; Biddulph, P.; Eisenhandler, E.; Fensome, I.F.; Landon, M.; Robinson, D.; Oliver, J.; Sumorok, K.

    1990-01-01

    The increased luminosity of the improved CERN Collider and the more subtle signals of second-generation collider physics demand increasingly sophisticated triggering. We have built a new first-level trigger processor designed to use the excellent granularity of the UA1 upgrade calorimeter. This device is entirely digital and handles events in 1.5 μs, thus introducing no dead time. Its most novel feature is fast two-dimensional electromagnetic cluster-finding with the possibility of demanding an isolated shower of limited penetration. The processor allows multiple combinations of triggers on electromagnetic showers, hadronic jets and energy sums, including a total-energy veto of multiple interactions and a full vector sum of missing transverse energy. This hard-wired processor is about five times more powerful than its predecessor, and makes extensive use of pipelining techniques. It was used extensively in the 1988 and 1989 runs of the CERN Collider. (orig.)

  9. Embedded processor extensions for image processing

    Science.gov (United States)

    Thevenin, Mathieu; Paindavoine, Michel; Letellier, Laurent; Heyrman, Barthélémy

    2008-04-01

    The advent of camera phones marks a new phase in embedded camera sales. By late 2009, the total number of camera phones will exceed that of both conventional and digital cameras shipped since the invention of photography. Use in mobile phones of applications like visiophony, matrix code readers and biometrics requires a high degree of component flexibility that image processors (IPs) have not, to date, been able to provide. For all these reasons, programmable processor solutions have become essential. This paper presents several techniques geared to speeding up image processors. It demonstrates that a gain of twice is possible for the complete image acquisition chain and the enhancement pipeline downstream of the video sensor. Such results confirm the potential of these computing systems for supporting future applications.

  10. The UA1 upgrade calorimeter trigger processor

    International Nuclear Information System (INIS)

    Bains, N.; Baird, S.A.; Biddulph, P.

    1990-01-01

    The increased luminosity of the improved CERN Collider and the more subtle signals of second-generation collider physics demand increasingly sophisticated triggering. We have built a new first-level trigger processor designed to use the excellent granularity of the UA1 upgrade calorimeter. This device is entirely digital and handles events in 1.5 μs, thus introducing no deadtime. Its most novel feature is fast two-dimensional electromagnetic cluster-finding with the possibility of demanding an isolated shower of limited penetration. The processor allows multiple combinations of triggers on electromagnetic showers, hadronic jets and energy sums, including a total-energy veto of multiple interactions and a full vector sum of missing transverse energy. This hard-wired processor is about five times more powerful than its predecessor, and makes extensive use of pipelining techniques. It was used extensively in the 1988 and 1989 runs of the CERN Collider. (author)

  11. Development methods for VLSI-processors

    International Nuclear Information System (INIS)

    Horninger, K.; Sandweg, G.

    1982-01-01

    The aim of this project, which was originally planed for 3 years, was the development of modern system and circuit concepts, for VLSI-processors having a 32 bit wide data path. The result of this first years work is the concept of a general purpose processor. This processor is not only logically but also physically (on the chip) divided into four functional units: a microprogrammable instruction unit, an execution unit in slice technique, a fully associative cache memory and an I/O unit. For the ALU of the execution unit circuits in PLA and slice techniques have been realized. On the basis of regularity, area consumption and achievable performance the slice technique has been prefered. The designs utilize selftesting circuitry. (orig.) [de

  12. A broad spectrum catalytic system for removal of toxic organics from water by deep oxidation. Annual progress report, September 15, 1996 - September 14, 1997

    International Nuclear Information System (INIS)

    Sen, A.

    1997-01-01

    'During the first year, the palladium-catalyzed deep oxidation of toxic organics by dioxygen in aqueous solution was examined in some detail. The research performed has established the viability of the catalytic system to effect the deep (and complete) oxidation of a very wide range of organic substrates under mild conditions. One significant observation was that chemical warfare agent models containing phosphorus-carbon and sulfur-carbon bonds could be eliminated by using this procedure.'

  13. Software-defined reconfigurable microwave photonics processor.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José

    2015-06-01

    We propose, for the first time to our knowledge, a software-defined reconfigurable microwave photonics signal processor architecture that can be integrated on a chip and is capable of performing all the main functionalities by suitable programming of its control signals. The basic configuration is presented and a thorough end-to-end design model derived that accounts for the performance of the overall processor taking into consideration the impact and interdependencies of both its photonic and RF parts. We demonstrate the model versatility by applying it to several relevant application examples.

  14. Parallel processor for fast event analysis

    International Nuclear Information System (INIS)

    Hensley, D.C.

    1983-01-01

    Current maximum data rates from the Spin Spectrometer of approx. 5000 events/s (up to 1.3 MBytes/s) and minimum analysis requiring at least 3000 operations/event require a CPU cycle time near 70 ns. In order to achieve an effective cycle time of 70 ns, a parallel processing device is proposed where up to 4 independent processors will be implemented in parallel. The individual processors are designed around the Am2910 Microsequencer, the AM29116 μP, and the Am29517 Multiplier. Satellite histogramming in a mass memory system will be managed by a commercial 16-bit μP system

  15. Time Manager Software for a Flight Processor

    Science.gov (United States)

    Zoerne, Roger

    2012-01-01

    Data analysis is a process of inspecting, cleaning, transforming, and modeling data to highlight useful information and suggest conclusions. Accurate timestamps and a timeline of vehicle events are needed to analyze flight data. By moving the timekeeping to the flight processor, there is no longer a need for a redundant time source. If each flight processor is initially synchronized to GPS, they can freewheel and maintain a fairly accurate time throughout the flight with no additional GPS time messages received. How ever, additional GPS time messages will ensure an even greater accuracy. When a timestamp is required, a gettime function is called that immediately reads the time-base register.

  16. Comparison of Processor Performance of SPECint2006 Benchmarks of some Intel Xeon Processors

    Directory of Open Access Journals (Sweden)

    Abdul Kareem PARCHUR

    2012-08-01

    Full Text Available High performance is a critical requirement to all microprocessors manufacturers. The present paper describes the comparison of performance in two main Intel Xeon series processors (Type A: Intel Xeon X5260, X5460, E5450 and L5320 and Type B: Intel Xeon X5140, 5130, 5120 and E5310. The microarchitecture of these processors is implemented using the basis of a new family of processors from Intel starting with the Pentium 4 processor. These processors can provide a performance boost for many key application areas in modern generation. The scaling of performance in two major series of Intel Xeon processors (Type A: Intel Xeon X5260, X5460, E5450 and L5320 and Type B: Intel Xeon X5140, 5130, 5120 and E5310 has been analyzed using the performance numbers of 12 CPU2006 integer benchmarks, performance numbers that exhibit significant differences in performance. The results and analysis can be used by performance engineers, scientists and developers to better understand the performance scaling in modern generation processors.

  17. Simulation of a parallel processor on a serial processor: The neutron diffusion equation

    International Nuclear Information System (INIS)

    Honeck, H.C.

    1981-01-01

    Parallel processors could provide the nuclear industry with very high computing power at a very moderate cost. Will we be able to make effective use of this power. This paper explores the use of a very simple parallel processor for solving the neutron diffusion equation to predict power distributions in a nuclear reactor. We first describe a simple parallel processor and estimate its theoretical performance based on the current hardware technology. Next, we show how the parallel processor could be used to solve the neutron diffusion equation. We then present the results of some simulations of a parallel processor run on a serial processor and measure some of the expected inefficiencies. Finally we extrapolate the results to estimate how actual design codes would perform. We find that the standard numerical methods for solving the neutron diffusion equation are still applicable when used on a parallel processor. However, some simple modifications to these methods will be necessary if we are to achieve the full power of these new computers. (orig.) [de

  18. Special purpose processors for high energy physics applications

    International Nuclear Information System (INIS)

    Verkerk, C.

    1978-01-01

    The review on the subject of hardware processors from very fast decision logic for the split field magnet facility at CERN, to a point-finding processor used to relieve the data-acquisition minicomputer from the task of monitoring the SPS experiment is given. Block diagrams of decision making processor, point-finding processor, complanarity and opening angle processor and programmable track selector module are presented and discussed. The applications of fully programmable but slower processor on the one hand, and very fast and programmable decision logic on the other hand are given in this review

  19. Performance evaluation and comparison of fuel processors integrated with PEM fuel cell based on steam or autothermal reforming and on CO preferential oxidation or selective methanation

    International Nuclear Information System (INIS)

    Ercolino, Giuliana; Ashraf, Muhammad A.; Specchia, Vito; Specchia, Stefania

    2015-01-01

    Highlights: • Modeling of different fuel processors integrated with PEM fuel cell stack. • Steam or autothermal reforming + CO selective methanation or preferential oxidation. • Reforming of different hydrocarbons: gasoline, light diesel oil, natural gas. • 5 kW e net systems comparison via energy efficiency and primary fuel rate consumed. • Highest net efficiency: steam reformer + CO selective methanation based system. - Abstract: The performances of four different auxiliary power unit (APU) schemes, based on a 5 kW e net proton exchange membrane fuel cell (PEM-FC) stack, are evaluated and compared. The fuel processor section of each APU is characterized by a reformer (autothermal ATR or steam SR), a non-isothermal water gas shift (NI-WGS) reactor and a final syngas catalytic clean-up step: the CO preferential oxidation (PROX) reactor or the CO selective methanation (SMET) one. Furthermore, three hydrocarbon fuels, the most commonly found in service stations (gasoline, light diesel oil and natural gas) are considered as primary fuels. The comparison is carried out examining the results obtained by a series of steady-state system simulations in Aspen Plus® of the four different APU schemes by varying the fed fuel. From the calculated data, the performance of CO-PROX is not very different compared to that of the CO-SMET, but the performance of the SR based APUs is higher than the scheme of the ATR based APUs. The most promising APU scheme with respect to an overall performance target is the scheme fed with natural gas and characterized by a fuel processor chain consisting of SR, NI-WGS and CO-SMET reactors. This processing reactors scheme together with the fuel cell section, notwithstanding having practically the same energy efficiency of the scheme with SR, NI-WGS and CO-PROX reactors, ensures a less complex scheme, higher hydrogen concentration in the syngas, lower air mass rate consumption, the absence of nitrogen in the syngas and higher potential

  20. SHORT COMMUNICATION CATALYTIC KINETIC ...

    African Journals Online (AJOL)

    IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...

  1. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  2. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  3. Noise limitations in optical linear algebra processors.

    Science.gov (United States)

    Batsell, S G; Jong, T L; Walkup, J F; Krile, T F

    1990-05-10

    A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.

  4. Cassava processors' awareness of occupational and environmental ...

    African Journals Online (AJOL)

    A larger percentage (74.5%) of the respondents indicated that the Agricultural Development Programme (ADP) is their source of information. The result also showed that processor's awareness of occupational hazards associated with the different stages of cassava processing vary because their involvement in these stages

  5. A high-speed analog neural processor

    NARCIS (Netherlands)

    Masa, P.; Masa, Peter; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    Targeted at high-energy physics research applications, our special-purpose analog neural processor can classify up to 70 dimensional vectors within 50 nanoseconds. The decision-making process of the implemented feedforward neural network enables this type of computation to tolerate weight

  6. Beeldverwerking met de Micron Automatic Processor

    OpenAIRE

    Goyens, Frank

    2017-01-01

    Deze thesis is een onderzoek naar toepassingen binnen beeldverwerking op de Micron Automata Processor hardware. De hardware wordt vergeleken met populaire hedendaagse hardware. Ook bevat dit onderzoek nuttige informatie en strategieën voor het ontwikkelen van nieuwe toepassingen. Bevindingen in dit onderzoek omvatten proof of concept algoritmes en een praktische toepassing.

  7. 7 CFR 1215.14 - Processor.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Processor. 1215.14 Section 1215.14 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... CONSUMER INFORMATION Popcorn Promotion, Research, and Consumer Information Order Definitions § 1215.14...

  8. Simplifying cochlear implant speech processor fitting

    NARCIS (Netherlands)

    Willeboer, C.

    2008-01-01

    Conventional fittings of the speech processor of a cochlear implant (CI) rely to a large extent on the implant recipient's subjective responses. For each of the 22 intracochlear electrodes the recipient has to indicate the threshold level (T-level) and comfortable loudness level (C-level) while

  9. Vector and parallel processors in computational science

    International Nuclear Information System (INIS)

    Duff, I.S.; Reid, J.K.

    1985-01-01

    This book presents the papers given at a conference which reviewed the new developments in parallel and vector processing. Topics considered at the conference included hardware (array processors, supercomputers), programming languages, software aids, numerical methods (e.g., Monte Carlo algorithms, iterative methods, finite elements, optimization), and applications (e.g., neutron transport theory, meteorology, image processing)

  10. Interleaved Subtask Scheduling on Multi Processor SOC

    NARCIS (Netherlands)

    Zhe, M.

    2006-01-01

    The ever-progressing semiconductor processing technique has integrated more and more embedded processors on a single system-on-achip (SoC). With such powerful SoC platforms, and also due to the stringent time-to-market deadlines, many functionalities which used to be implemented in ASICs are

  11. User manual Dieka PreProcessor

    NARCIS (Netherlands)

    Valkering, Kasper

    2000-01-01

    This is the user manual belonging to the Dieka-PreProcessor. This application was written by Wenhua Cao and revised and expanded by Kasper Valkering. The aim of this preproccesor is to be able to draw and mesh extrusion dies in ProEngineer, and do the FE-calculation in Dieka. The preprocessor makes

  12. Globe hosts launch of new processor

    CERN Multimedia

    2006-01-01

    Launch of the quadecore processor chip at the Globe. On 14 November, in a series of major media events around the world, the chip-maker Intel launched its new 'quadcore' processor. For the regions of Europe, the Middle East and Africa, the day-long launch event took place in CERN's Globe of Science and Innovation, with over 30 journalists in attendance, coming from as far away as Johannesburg and Dubai. CERN was a significant choice for the event: the first tests of this new generation of processor in Europe had been made at CERN over the preceding months, as part of CERN openlab, a research partnership with leading IT companies such as Intel, HP and Oracle. The event also provided the opportunity for the journalists to visit ATLAS and the CERN Computer Centre. The strategy of putting multiple processor cores on the same chip, which has been pursued by Intel and other chip-makers in the last few years, represents an important departure from the more traditional improvements in the sheer speed of such chips. ...

  13. Event analysis using a massively parallel processor

    International Nuclear Information System (INIS)

    Bale, A.; Gerelle, E.; Messersmith, J.; Warren, R.; Hoek, J.

    1990-01-01

    This paper describes a system for performing histogramming of n-tuple data at interactive rates using a commercial SIMD processor array connected to a work-station running the well-known Physics Analysis Workstation software (PAW). Results indicate that an order of magnitude performance improvement over current RISC technology is easily achievable

  14. Fuel processor and method for generating hydrogen for fuel cells

    Science.gov (United States)

    Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL; Carter, John David [Bolingbrook, IL; Krumpelt, Michael [Naperville, IL; Myers, Deborah J [Lisle, IL

    2009-07-21

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  15. Performance evaluation of throughput computing workloads using multi-core processors and graphics processors

    Science.gov (United States)

    Dave, Gaurav P.; Sureshkumar, N.; Blessy Trencia Lincy, S. S.

    2017-11-01

    Current trend in processor manufacturing focuses on multi-core architectures rather than increasing the clock speed for performance improvement. Graphic processors have become as commodity hardware for providing fast co-processing in computer systems. Developments in IoT, social networking web applications, big data created huge demand for data processing activities and such kind of throughput intensive applications inherently contains data level parallelism which is more suited for SIMD architecture based GPU. This paper reviews the architectural aspects of multi/many core processors and graphics processors. Different case studies are taken to compare performance of throughput computing applications using shared memory programming in OpenMP and CUDA API based programming.

  16. Data collection from FASTBUS to a DEC UNIBUS processor through the UNIBUS-Processor Interface

    International Nuclear Information System (INIS)

    Larwill, M.; Barsotti, E.; Lesny, D.; Pordes, R.

    1983-01-01

    This paper describes the use of the UNIBUS Processor Interface, an interface between FASTBUS and the Digital Equipment Corporation UNIBUS. The UPI was developed by Fermilab and the University of Illinois. Details of the use of this interface in a high energy physics experiment at Fermilab are given. The paper includes a discussion of the operation of the UPI on the UNIBUS of a VAX-11, and plans for using the UPI to perform data acquisition from FASTBUS to a VAX-11 Processor

  17. Array processors based on Gaussian fraction-free method

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S; Sedukhin, S [Aizu Univ., Aizuwakamatsu, Fukushima (Japan); Sedukhin, I

    1998-03-01

    The design of algorithmic array processors for solving linear systems of equations using fraction-free Gaussian elimination method is presented. The design is based on a formal approach which constructs a family of planar array processors systematically. These array processors are synthesized and analyzed. It is shown that some array processors are optimal in the framework of linear allocation of computations and in terms of number of processing elements and computing time. (author)

  18. CATALYTIC SPECTROPHOTOMETRIC DETERMINATION OF Mn(II ...

    African Journals Online (AJOL)

    Preferred Customer

    method is based on the catalytic effect of Mn(II) with the oxidation of Celestine blue .... water samples were filtered through a 0.45 μm pore size membrane filter to remove suspended .... slope of the calibration graph as the optimization criterion. ..... In presence of Phen as stability enhancement agent in indicator system. ( ) +.

  19. Lipsi: Probably the Smallest Processor in the World

    DEFF Research Database (Denmark)

    Schoeberl, Martin

    2018-01-01

    While research on high-performance processors is important, it is also interesting to explore processor architectures at the other end of the spectrum: tiny processor cores for auxiliary functions. While it is common to implement small circuits for such functions, such as a serial port, in dedica...... at a minimal cost....

  20. Design and development of a diesel and JP-8 logistic fuel processor

    Science.gov (United States)

    Roychoudhury, Subir; Lyubovsky, Maxim; Walsh, D.; Chu, Deryn; Kallio, Erik

    The paper describes the design and performance of a breadboard prototype for a 5 kW fuel-processor for powering a solid oxide fuel cell (SOFC) stack. The system was based on a small, modular catalytic Microlith auto-thermal (ATR) reactor with the versatility of operating on diesel, Jet-A or JP-8 fuels. The reforming reactor utilized Microlith substrates and catalyst technology (patented and trademarked). These reactors have demonstrated the capability of efficiently reforming liquid and gaseous hydrocarbon fuels at exceptionally high power densities. The performance characteristics of the auto-thermal reactor (ATR) have been presented along with durability data. The fuel processor integrates fuel preparation, steam generation, sulfur removal, pumps, blowers and controls. The system design was developed via ASPEN ® Engineering Suite process simulation software and was analyzed with reference to system balance requirements. Since the fuel processor has not been integrated with a fuel cell, aspects of thermal integration with the stack have not been specifically addressed.

  1. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  2. The Influence of the Silicon Component in the Paste for Processor Cooling

    Directory of Open Access Journals (Sweden)

    Antun Koren

    2003-12-01

    Full Text Available The development of computer coolers foreseen for the processors keeps step with the processors for PC platform. There are still working and development areas where one could find new technologies and the kinds of the alternative cooling which give better results that the existing classical methods. There are several kinds of alternative cooling, from cooling with the mixture of water and methanol to the usage of freon and liquid nitrogen as the cooling media. The purpose of this work is to point at some new alternative cooling methods and to compare them with the classical ones as well as to stress the problems in classical - mechanically treated cooler and additives of chemically prepared pastes for better heat conductivity from the core surface of the processor.

  3. Bulk-memory processor for data acquisition

    International Nuclear Information System (INIS)

    Nelson, R.O.; McMillan, D.E.; Sunier, J.W.; Meier, M.; Poore, R.V.

    1981-01-01

    To meet the diverse needs and data rate requirements at the Van de Graaff and Weapons Neutron Research (WNR) facilities, a bulk memory system has been implemented which includes a fast and flexible processor. This bulk memory processor (BMP) utilizes bit slice and microcode techniques and features a 24 bit wide internal architecture allowing direct addressing of up to 16 megawords of memory and histogramming up to 16 million counts per channel without overflow. The BMP is interfaced to the MOSTEK MK 8000 bulk memory system and to the standard MODCOMP computer I/O bus. Coding for the BMP both at the microcode level and with macro instructions is supported. The generalized data acquisition system has been extended to support the BMP in a manner transparent to the user

  4. Design of Processors with Reconfigurable Microarchitecture

    Directory of Open Access Journals (Sweden)

    Andrey Mokhov

    2014-01-01

    Full Text Available Energy becomes a dominating factor for a wide spectrum of computations: from intensive data processing in “big data” companies resulting in large electricity bills, to infrastructure monitoring with wireless sensors relying on energy harvesting. In this context it is essential for a computation system to be adaptable to the power supply and the service demand, which often vary dramatically during runtime. In this paper we present an approach to building processors with reconfigurable microarchitecture capable of changing the way they fetch and execute instructions depending on energy availability and application requirements. We show how to use Conditional Partial Order Graphs to formally specify the microarchitecture of such a processor, explore the design possibilities for its instruction set, and synthesise the instruction decoder using correct-by-construction techniques. The paper is focused on the design methodology, which is evaluated by implementing a power-proportional version of Intel 8051 microprocessor.

  5. Real time processor for array speckle interferometry

    International Nuclear Information System (INIS)

    Chin, G.; Florez, J.; Borelli, R.; Fong, W.; Miko, J.; Trujillo, C.

    1989-01-01

    With the construction of several new large aperture telescopes and the development of large format array detectors in the near IR, the ability to obtain diffraction limited seeing via IR array speckle interferometry offers a powerful tool. We are constructing a real-time processor to acquire image frames, perform array flat-fielding, execute a 64 x 64 element 2D complex FFT, and to average the power spectrum all within the 25 msec coherence time for speckles at near IR wavelength. The processor is a compact unit controlled by a PC with real time display and data storage capability. It provides the ability to optimize observations and obtain results on the telescope rather than waiting several weeks before the data can be analyzed and viewed with off-line methods

  6. Parallel processor programs in the Federal Government

    Science.gov (United States)

    Schneck, P. B.; Austin, D.; Squires, S. L.; Lehmann, J.; Mizell, D.; Wallgren, K.

    1985-01-01

    In 1982, a report dealing with the nation's research needs in high-speed computing called for increased access to supercomputing resources for the research community, research in computational mathematics, and increased research in the technology base needed for the next generation of supercomputers. Since that time a number of programs addressing future generations of computers, particularly parallel processors, have been started by U.S. government agencies. The present paper provides a description of the largest government programs in parallel processing. Established in fiscal year 1985 by the Institute for Defense Analyses for the National Security Agency, the Supercomputing Research Center will pursue research to advance the state of the art in supercomputing. Attention is also given to the DOE applied mathematical sciences research program, the NYU Ultracomputer project, the DARPA multiprocessor system architectures program, NSF research on multiprocessor systems, ONR activities in parallel computing, and NASA parallel processor projects.

  7. RISC Processors and High Performance Computing

    Science.gov (United States)

    Bailey, David H.; Saini, Subhash; Craw, James M. (Technical Monitor)

    1995-01-01

    This tutorial will discuss the top five RISC microprocessors and the parallel systems in which they are used. It will provide a unique cross-machine comparison not available elsewhere. The effective performance of these processors will be compared by citing standard benchmarks in the context of real applications. The latest NAS Parallel Benchmarks, both absolute performance and performance per dollar, will be listed. The next generation of the NPB will be described. The tutorial will conclude with a discussion of future directions in the field. Technology Transfer Considerations: All of these computer systems are commercially available internationally. Information about these processors is available in the public domain, mostly from the vendors themselves. The NAS Parallel Benchmarks and their results have been previously approved numerous times for public release, beginning back in 1991.

  8. Multi-Core Processor Memory Contention Benchmark Analysis Case Study

    Science.gov (United States)

    Simon, Tyler; McGalliard, James

    2009-01-01

    Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.

  9. VIRTUS: a multi-processor system in FASTBUS

    International Nuclear Information System (INIS)

    Ellett, J.; Jackson, R.; Ritter, R.; Schlein, P.; Yaeger, D.; Zweizig, J.

    1986-01-01

    VIRTUS is a system of parallel MC68000-based processors interconnected by FASTBUS that is used either on-line as an intelligent trigger component or off-line for full event processing. Each processor receives the complete set of data from one event. The host computer, a VAX 11/780, down-line loads all software to the processors, controls and monitors the functioning of all processors, and writes processed data to tape. Instructions, programs, and data are transferred among the processors and the host in the form of fixed format, variable length data blocks. (Auth.)

  10. Low-Latency Embedded Vision Processor (LLEVS)

    Science.gov (United States)

    2016-03-01

    algorithms, low-latency video processing, embedded image processor, wearable electronics, helmet-mounted systems, alternative night / day imaging...external subsystems and data sources with the device. The establishment of data interfaces in terms of data transfer rates, formats and types are...video signals from Near-visible Infrared (NVIR) sensor, Shortwave IR (SWIR) and Longwave IR (LWIR) is the main processing for Night Vision (NI) system

  11. Keystone Business Models for Network Security Processors

    Directory of Open Access Journals (Sweden)

    Arthur Low

    2013-07-01

    Full Text Available Network security processors are critical components of high-performance systems built for cybersecurity. Development of a network security processor requires multi-domain experience in semiconductors and complex software security applications, and multiple iterations of both software and hardware implementations. Limited by the business models in use today, such an arduous task can be undertaken only by large incumbent companies and government organizations. Neither the “fabless semiconductor” models nor the silicon intellectual-property licensing (“IP-licensing” models allow small technology companies to successfully compete. This article describes an alternative approach that produces an ongoing stream of novel network security processors for niche markets through continuous innovation by both large and small companies. This approach, referred to here as the "business ecosystem model for network security processors", includes a flexible and reconfigurable technology platform, a “keystone” business model for the company that maintains the platform architecture, and an extended ecosystem of companies that both contribute and share in the value created by innovation. New opportunities for business model innovation by participating companies are made possible by the ecosystem model. This ecosystem model builds on: i the lessons learned from the experience of the first author as a senior integrated circuit architect for providers of public-key cryptography solutions and as the owner of a semiconductor startup, and ii the latest scholarly research on technology entrepreneurship, business models, platforms, and business ecosystems. This article will be of interest to all technology entrepreneurs, but it will be of particular interest to owners of small companies that provide security solutions and to specialized security professionals seeking to launch their own companies.

  12. Silicon Processors Using Organically Reconfigurable Techniques (SPORT)

    Science.gov (United States)

    2014-05-19

    AFRL-OSR-VA-TR-2014-0132 SILICON PROCESSORS USING ORGANICALLY RECONFIGURABLE TECHNIQUES ( SPORT ) Dennis Prather UNIVERSITY OF DELAWARE Final Report 05...5a. CONTRACT NUMBER Silicon Processes for Organically Reconfigurable Techniques ( SPORT ) 5b. GRANT NUMBER FA9550-10-1-0363 5c...Contract: Silicon Processes for Organically Reconfigurable Techniques ( SPORT ) Contract #: FA9550-10-1-0363 Reporting Period: 1 July 2010 – 31 December

  13. Quantum chemistry on a superconducting quantum processor

    Energy Technology Data Exchange (ETDEWEB)

    Kaicher, Michael P.; Wilhelm, Frank K. [Theoretical Physics, Saarland University, 66123 Saarbruecken (Germany); Love, Peter J. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2016-07-01

    Quantum chemistry is the most promising civilian application for quantum processors to date. We study its adaptation to superconducting (sc) quantum systems, computing the ground state energy of LiH through a variational hybrid quantum classical algorithm. We demonstrate how interactions native to sc qubits further reduce the amount of quantum resources needed, pushing sc architectures as a near-term candidate for simulations of more complex atoms/molecules.

  14. Debugging in a multi-processor environment

    International Nuclear Information System (INIS)

    Spann, J.M.

    1981-01-01

    The Supervisory Control and Diagnostic System (SCDS) for the Mirror Fusion Test Facility (MFTF) consists of nine 32-bit minicomputers arranged in a tightly coupled distributed computer system utilizing a share memory as the data exchange medium. Debugging of more than one program in the multi-processor environment is a difficult process. This paper describes what new tools were developed and how the testing of software is performed in the SCDS for the MFTF project

  15. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  16. Intelligent trigger processor for the crystal box

    International Nuclear Information System (INIS)

    Sanders, G.H.; Butler, H.S.; Cooper, M.D.

    1981-01-01

    A large solid angle modular NaI(Tl) detector with 432 phototubes and 88 trigger scintillators is being used to search simultaneously for three lepton flavor changing decays of muon. A beam of up to 10 6 muons stopping per second with a 6% duty factor would yield up to 1000 triggers per second from random triple coincidences. A reduction of the trigger rate to 10 Hz is required from a hardwired primary trigger processor described in this paper. Further reduction to < 1 Hz is achieved by a microprocessor based secondary trigger processor. The primary trigger hardware imposes voter coincidence logic, stringent timing requirements, and a non-adjacency requirement in the trigger scintillators defined by hardwired circuits. Sophisticated geometric requirements are imposed by a PROM-based matrix logic, and energy and vector-momentum cuts are imposed by a hardwired processor using LSI flash ADC's and digital arithmetic loci. The secondary trigger employs four satellite microprocessors to do a sparse data scan, multiplex the data acquisition channels and apply additional event filtering

  17. Multibus-based parallel processor for simulation

    Science.gov (United States)

    Ogrady, E. P.; Wang, C.-H.

    1983-01-01

    A Multibus-based parallel processor simulation system is described. The system is intended to serve as a vehicle for gaining hands-on experience, testing system and application software, and evaluating parallel processor performance during development of a larger system based on the horizontal/vertical-bus interprocessor communication mechanism. The prototype system consists of up to seven Intel iSBC 86/12A single-board computers which serve as processing elements, a multiple transmission controller (MTC) designed to support system operation, and an Intel Model 225 Microcomputer Development System which serves as the user interface and input/output processor. All components are interconnected by a Multibus/IEEE 796 bus. An important characteristic of the system is that it provides a mechanism for a processing element to broadcast data to other selected processing elements. This parallel transfer capability is provided through the design of the MTC and a minor modification to the iSBC 86/12A board. The operation of the MTC, the basic hardware-level operation of the system, and pertinent details about the iSBC 86/12A and the Multibus are described.

  18. Code compression for VLIW embedded processors

    Science.gov (United States)

    Piccinelli, Emiliano; Sannino, Roberto

    2004-04-01

    The implementation of processors for embedded systems implies various issues: main constraints are cost, power dissipation and die area. On the other side, new terminals perform functions that require more computational flexibility and effort. Long code streams must be loaded into memories, which are expensive and power consuming, to run on DSPs or CPUs. To overcome this issue, the "SlimCode" proprietary algorithm presented in this paper (patent pending technology) can reduce the dimensions of the program memory. It can run offline and work directly on the binary code the compiler generates, by compressing it and creating a new binary file, about 40% smaller than the original one, to be loaded into the program memory of the processor. The decompression unit will be a small ASIC, placed between the Memory Controller and the System bus of the processor, keeping unchanged the internal CPU architecture: this implies that the methodology is completely transparent to the core. We present comparisons versus the state-of-the-art IBM Codepack algorithm, along with its architectural implementation into the ST200 VLIW family core.

  19. Techniques for optimizing inerting in electron processors

    International Nuclear Information System (INIS)

    Rangwalla, I.J.; Korn, D.J.; Nablo, S.V.

    1993-01-01

    The design of an ''inert gas'' distribution system in an electron processor must satisfy a number of requirements. The first of these is the elimination or control of beam produced ozone and NO x which can be transported from the process zone by the product into the work area. Since the tolerable levels for O 3 in occupied areas around the processor are 3 in the beam heated process zone, or exhausting and dilution of the gas at the processor exit. The second requirement of the inerting system is to provide a suitable environment for completing efficient, free radical initiated addition polymerization. The competition between radical loss through de-excitation and that from O 2 quenching must be understood. This group has used gas chromatographic analysis of electron cured coatings to study the trade-offs of delivered dose, dose rate and O 2 concentrations in the process zone to determine the tolerable ranges of parameter excursions for production quality control purposes. These techniques are described for an ink coating system on paperboard, where a broad range of process parameters have been studied (D, D radical, O 2 ). It is then shown how the technique is used to optimize the use of higher purity (10-100 ppm O 2 ) nitrogen gas for inerting, in combination with lower purity (2-20,000 ppm O 2 ) non-cryogenically produced gas, as from a membrane or pressure swing adsorption generators. (author)

  20. Treecode with a Special-Purpose Processor

    Science.gov (United States)

    Makino, Junichiro

    1991-08-01

    We describe an implementation of the modified Barnes-Hut tree algorithm for a gravitational N-body calculation on a GRAPE (GRAvity PipE) backend processor. GRAPE is a special-purpose computer for N-body calculations. It receives the positions and masses of particles from a host computer and then calculates the gravitational force at each coordinate specified by the host. To use this GRAPE processor with the hierarchical tree algorithm, the host computer must maintain a list of all nodes that exert force on a particle. If we create this list for each particle of the system at each timestep, the number of floating-point operations on the host and that on GRAPE would become comparable, and the increased speed obtained by using GRAPE would be small. In our modified algorithm, we create a list of nodes for many particles. Thus, the amount of the work required of the host is significantly reduced. This algorithm was originally developed by Barnes in order to vectorize the force calculation on a Cyber 205. With this algorithm, the computing time of the force calculation becomes comparable to that of the tree construction, if the GRAPE backend processor is sufficiently fast. The obtained speed-up factor is 30 to 50 for a RISC-based host computer and GRAPE-1A with a peak speed of 240 Mflops.

  1. Multi-processor network implementations in Multibus II and VME

    International Nuclear Information System (INIS)

    Briegel, C.

    1992-01-01

    ACNET (Fermilab Accelerator Controls Network), a proprietary network protocol, is implemented in a multi-processor configuration for both Multibus II and VME. The implementations are contrasted by the bus protocol and software design goals. The Multibus II implementation provides for multiple processors running a duplicate set of tasks on each processor. For a network connected task, messages are distributed by a network round-robin scheduler. Further, messages can be stopped, continued, or re-routed for each task by user-callable commands. The VME implementation provides for multiple processors running one task across all processors. The process can either be fixed to a particular processor or dynamically allocated to an available processor depending on the scheduling algorithm of the multi-processing operating system. (author)

  2. Evaluation of the Sentinel-3 Hydrologic Altimetry Processor prototypE (SHAPE) methods.

    Science.gov (United States)

    Benveniste, J.; Garcia-Mondéjar, A.; Bercher, N.; Fabry, P. L.; Roca, M.; Varona, E.; Fernandes, J.; Lazaro, C.; Vieira, T.; David, G.; Restano, M.; Ambrózio, A.

    2017-12-01

    Inland water scenes are highly variable, both in space and time, which leads to a much broader range of radar signatures than ocean surfaces. This applies to both LRM and "SAR" mode (SARM) altimetry. Nevertheless the enhanced along-track resolution of SARM altimeters should help improve the accuracy and precision of inland water height measurements from satellite. The SHAPE project - Sentinel-3 Hydrologic Altimetry Processor prototypE - which is funded by ESA through the Scientific Exploitation of Operational Missions Programme Element (contract number 4000115205/15/I-BG) aims at preparing for the exploitation of Sentinel-3 data over the inland water domain. The SHAPE Processor implements all of the steps necessary to derive rivers and lakes water levels and discharge from Delay-Doppler Altimetry and perform their validation against in situ data. The processor uses FBR CryoSat-2 and L1A Sentinel-3A data as input and also various ancillary data (proc. param., water masks, L2 corrections, etc.), to produce surface water levels. At a later stage, water level data are assimilated into hydrological models to derive river discharge. This poster presents the improvements obtained with the new methods and algorithms over the regions of interest (Amazon and Danube rivers, Vanern and Titicaca lakes).

  3. Merged ozone profiles from four MIPAS processors

    Science.gov (United States)

    Laeng, Alexandra; von Clarmann, Thomas; Stiller, Gabriele; Dinelli, Bianca Maria; Dudhia, Anu; Raspollini, Piera; Glatthor, Norbert; Grabowski, Udo; Sofieva, Viktoria; Froidevaux, Lucien; Walker, Kaley A.; Zehner, Claus

    2017-04-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was an infrared (IR) limb emission spectrometer on the Envisat platform. Currently, there are four MIPAS ozone data products, including the operational Level-2 ozone product processed at ESA, with the scientific prototype processor being operated at IFAC Florence, and three independent research products developed by the Istituto di Fisica Applicata Nello Carrara (ISAC-CNR)/University of Bologna, Oxford University, and the Karlsruhe Institute of Technology-Institute of Meteorology and Climate Research/Instituto de Astrofísica de Andalucía (KIT-IMK/IAA). Here we present a dataset of ozone vertical profiles obtained by merging ozone retrievals from four independent Level-2 MIPAS processors. We also discuss the advantages and the shortcomings of this merged product. As the four processors retrieve ozone in different parts of the spectra (microwindows), the source measurements can be considered as nearly independent with respect to measurement noise. Hence, the information content of the merged product is greater and the precision is better than those of any parent (source) dataset. The merging is performed on a profile per profile basis. Parent ozone profiles are weighted based on the corresponding error covariance matrices; the error correlations between different profile levels are taken into account. The intercorrelations between the processors' errors are evaluated statistically and are used in the merging. The height range of the merged product is 20-55 km, and error covariance matrices are provided as diagnostics. Validation of the merged dataset is performed by comparison with ozone profiles from ACE-FTS (Atmospheric Chemistry Experiment-Fourier Transform Spectrometer) and MLS (Microwave Limb Sounder). Even though the merging is not supposed to remove the biases of the parent datasets, around the ozone volume mixing ratio peak the merged product is found to have a smaller (up to 0.1 ppmv

  4. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  5. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  6. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  7. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Alcinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Shindler, Y.; Tatrtakovsky, L.; Zvirin, Y.

    1998-01-01

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  8. Metal Ion Sensor with Catalytic DNA in a Nanofluidic Intelligent Processor

    Science.gov (United States)

    2011-12-01

    the SU8 epoxy group of polymers , but two common problems resulted from its use. First, SU8 shrinks during curing leaving cracks along channels...expands and contracts at the same CTE as the coverglass, which leads to layer misalignment. .................... 32 Figure 20. Modification of the SU8 ...tradeoff between forming a flat layer, although highly stressed on glass, or an unstressed layer but highly non-uniform on a polymer substrate. Because

  9. Iridium complexes containing mesoionic C donors: selective C(sp3)-H versus C(sp2)-H bond activation, reactivity towards acids and bases, and catalytic oxidation of silanes and water.

    Science.gov (United States)

    Petronilho, Ana; Woods, James A; Mueller-Bunz, Helge; Bernhard, Stefan; Albrecht, Martin

    2014-11-24

    Metalation of a C2-methylated pyridylimidazolium salt with [IrCp*Cl2]2 affords either an ylidic complex, resulting from C(sp(3))-H bond activation of the C2-bound CH3 group if the metalation is performed in the presence of a base, such as AgO2 or Na2CO3, or a mesoionic complex via cyclometalation and thermally induced heterocyclic C(sp(2))-H bond activation, if the reaction is performed in the absence of a base. Similar cyclometalation and complex formation via C(sp(2))-H bond activation is observed when the heterocyclic ligand precursor consists of the analogous pyridyltriazolium salt, that is, when the metal bonding at the C2 position is blocked by a nitrogen rather than a methyl substituent. Despite the strongly mesoionic character of both the imidazolylidene and the triazolylidene, the former reacts rapidly with D(+) and undergoes isotope exchange at the heterocyclic C5 position, whereas the triazolylidene ligand is stable and only undergoes H/D exchange under basic conditions, where the imidazolylidene is essentially unreactive. The high stability of the Ir-C bond in aqueous solution over a broad pH range was exploited in catalytic water oxidation and silane oxidation. The catalytic hydrosilylation of ketones proceeds with turnover frequencies as high as 6,000 h(-1) with both the imidazolylidene and the triazolylidene system, whereas water oxidation is enhanced by the stronger donor properties of the imidazol-4-ylidene ligands and is more than three times faster than with the triazolylidene analogue. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. ANALYSIS OF MILK QUALITY AND ITS IMPORTANCE FOR MILK PROCESSORS

    Directory of Open Access Journals (Sweden)

    AGATHA POPESCU

    2009-05-01

    Full Text Available The paper aimed to present some aspects regarding milk quality and its importance for milk processors , taking into account a study case at FLAV O’RICH DAIRY INC,USA. The study analyses how milk quality is checked from the bulk milk to final product according to the Milk Quality Program in force. The main aspects concerning raw milk selection criteria such as : antibiotic test, temperature, bacteria, organoleptic properties , acidity, somatic cell count , but also main milk components such as water, butterfat , total solids, protein, lactose , solids non fats , minerals, acids have been approached . Also a comparison for 7 butterfat producers for East Fluid Group has been done . Milk processing assures the destruction of human pathogens , the maintenance of product quality without significant loss of flavor, appearance, physical and nutritive properties and the selection of organisms which may produce unsatisfactory products.

  11. Modcomp MAX IV System Processors reference guide

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.

    1990-10-01

    A user almost always faces a big problem when having to learn to use a new computer system. The information necessary to use the system is often scattered throughout many different manuals. The user also faces the problem of extracting the information really needed from each manual. Very few computer vendors supply a single Users Guide or even a manual to help the new user locate the necessary manuals. Modcomp is no exception to this, Modcomp MAX IV requires that the user be familiar with the system file usage which adds to the problem. At General Atomics there is an ever increasing need for new users to learn how to use the Modcomp computers. This paper was written to provide a condensed Users Reference Guide'' for Modcomp computer users. This manual should be of value not only to new users but any users that are not Modcomp computer systems experts. This Users Reference Guide'' is intended to provided the basic information for the use of the various Modcomp System Processors necessary to, create, compile, link-edit, and catalog a program. Only the information necessary to provide the user with a basic understanding of the Systems Processors is included. This document provides enough information for the majority of programmers to use the Modcomp computers without having to refer to any other manuals. A lot of emphasis has been placed on the file description and usage for each of the System Processors. This allows the user to understand how Modcomp MAX IV does things rather than just learning the system commands.

  12. Optical linear algebra processors - Architectures and algorithms

    Science.gov (United States)

    Casasent, David

    1986-01-01

    Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.

  13. The design of a graphics processor

    International Nuclear Information System (INIS)

    Holmes, M.; Thorne, A.R.

    1975-12-01

    The design of a graphics processor is described which takes into account known and anticipated user requirements, the availability of cheap minicomputers, the state of integrated circuit technology, and the overall need to minimise cost for a given performance. The main user needs are the ability to display large high resolution pictures, and to dynamically change the user's view in real time by means of fast coordinate processing hardware. The transformations that can be applied to 2D or 3D coordinates either singly or in combination are: translation, scaling, mirror imaging, rotation, and the ability to map the transformation origin on to any point on the screen. (author)

  14. Dual-scale topology optoelectronic processor.

    Science.gov (United States)

    Marsden, G C; Krishnamoorthy, A V; Esener, S C; Lee, S H

    1991-12-15

    The dual-scale topology optoelectronic processor (D-STOP) is a parallel optoelectronic architecture for matrix algebraic processing. The architecture can be used for matrix-vector multiplication and two types of vector outer product. The computations are performed electronically, which allows multiplication and summation concepts in linear algebra to be generalized to various nonlinear or symbolic operations. This generalization permits the application of D-STOP to many computational problems. The architecture uses a minimum number of optical transmitters, which thereby reduces fabrication requirements while maintaining area-efficient electronics. The necessary optical interconnections are space invariant, minimizing space-bandwidth requirements.

  15. Integral Fast Reactor fuel pin processor

    International Nuclear Information System (INIS)

    Levinskas, D.

    1993-01-01

    This report discusses the pin processor which receives metal alloy pins cast from recycled Integral Fast Reactor (IFR) fuel and prepares them for assembly into new IFR fuel elements. Either full length as-cast or precut pins are fed to the machine from a magazine, cut if necessary, and measured for length, weight, diameter and deviation from straightness. Accepted pins are loaded into cladding jackets located in a magazine, while rejects and cutting scraps are separated into trays. The magazines, trays, and the individual modules that perform the different machine functions are assembled and removed using remote manipulators and master-slaves

  16. Lattice gauge theory using parallel processors

    International Nuclear Information System (INIS)

    Lee, T.D.; Chou, K.C.; Zichichi, A.

    1987-01-01

    The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory

  17. Introduction to programming multiple-processor computers

    International Nuclear Information System (INIS)

    Hicks, H.R.; Lynch, V.E.

    1985-04-01

    FORTRAN applications programs can be executed on multiprocessor computers in either a unitasking (traditional) or multitasking form. The latter allows a single job to use more than one processor simultaneously, with a consequent reduction in wall-clock time and, perhaps, the cost of the calculation. An introduction to programming in this environment is presented. The concepts of synchronization and data sharing using EVENTS and LOCKS are illustrated with examples. The strategy of strong synchronization and the use of synchronization templates are proposed. We emphasize that incorrect multitasking programs can produce irreproducible results, which makes debugging more difficult

  18. OFFSCALE: A PC input processor for the SCALE code system. The ORIGNATE processor for ORIGEN-S

    International Nuclear Information System (INIS)

    Bowman, S.M.

    1994-11-01

    OFFSCALE is a suite of personal computer input processor programs developed at Oak Ridge National Laboratory to provide an easy-to-use interface for modules in the SCALE-4 code system. ORIGNATE is a program in the OFFSCALE suite that serves as a user-friendly interface for the ORIGEN-S isotopic generation and depletion code. It is designed to assist an ORIGEN-S user in preparing an input file for execution of light-water-reactor (LWR) fuel depletion and decay cases. ORIGNATE generates an input file that may be used to execute ORIGEN-S in SCALE-4. ORIGNATE features a pulldown menu system that accesses sophisticated data entry screens. The program allows the user to quickly set up an ORIGEN-S input file and perform error checking. This capability increases productivity and decreases the chance of user error

  19. Concentric catalytic combustor

    Science.gov (United States)

    Bruck, Gerald J [Oviedo, FL; Laster, Walter R [Oviedo, FL

    2009-03-24

    A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

  20. Recommending the heterogeneous cluster type multi-processor system computing

    International Nuclear Information System (INIS)

    Iijima, Nobukazu

    2010-01-01

    Real-time reactor simulator had been developed by reusing the equipment of the Musashi reactor and its performance improvement became indispensable for research tools to increase sampling rate with introduction of arithmetic units using multi-Digital Signal Processor(DSP) system (cluster). In order to realize the heterogeneous cluster type multi-processor system computing, combination of two kinds of Control Processor (CP) s, Cluster Control Processor (CCP) and System Control Processor (SCP), were proposed with Large System Control Processor (LSCP) for hierarchical cluster if needed. Faster computing performance of this system was well evaluated by simulation results for simultaneous execution of plural jobs and also pipeline processing between clusters, which showed the system led to effective use of existing system and enhancement of the cost performance. (T. Tanaka)

  1. Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance

    NARCIS (Netherlands)

    Ilinitch, O.M.; Cuperus, F.P.; Nosova, L.V.; Gribov, E.N.

    2000-01-01

    The catalytic membrane with palladium-copper active component supported over the macroporous ceramic membrane, and a series of γ-Al 2O 3 supported Pd-Cu catalysts were prepared and investigated. In reduction of nitrate ions by hydrogen in water at ambient temperature, pronounced internal diffusion

  2. SSC 254 Screen-Based Word Processors: Production Tests. The Lanier Word Processor.

    Science.gov (United States)

    Moyer, Ruth A.

    Designed for use in Trident Technical College's Secretarial Lab, this series of 12 production tests focuses on the use of the Lanier Word Processor for a variety of tasks. In tests 1 and 2, students are required to type and print out letters. Tests 3 through 8 require students to reformat a text; make corrections on a letter; divide and combine…

  3. Multiprocessor Real-Time Scheduling with Hierarchical Processor Affinities

    OpenAIRE

    Bonifaci , Vincenzo; Brandenburg , Björn; D'Angelo , Gianlorenzo; Marchetti-Spaccamela , Alberto

    2016-01-01

    International audience; Many multiprocessor real-time operating systems offer the possibility to restrict the migrations of any task to a specified subset of processors by setting affinity masks. A notion of " strong arbitrary processor affinity scheduling " (strong APA scheduling) has been proposed; this notion avoids schedulability losses due to overly simple implementations of processor affinities. Due to potential overheads, strong APA has not been implemented so far in a real-time operat...

  4. Coordinated Energy Management in Heterogeneous Processors

    Directory of Open Access Journals (Sweden)

    Indrani Paul

    2014-01-01

    Full Text Available This paper examines energy management in a heterogeneous processor consisting of an integrated CPU–GPU for high-performance computing (HPC applications. Energy management for HPC applications is challenged by their uncompromising performance requirements and complicated by the need for coordinating energy management across distinct core types – a new and less understood problem. We examine the intra-node CPU–GPU frequency sensitivity of HPC applications on tightly coupled CPU–GPU architectures as the first step in understanding power and performance optimization for a heterogeneous multi-node HPC system. The insights from this analysis form the basis of a coordinated energy management scheme, called DynaCo, for integrated CPU–GPU architectures. We implement DynaCo on a modern heterogeneous processor and compare its performance to a state-of-the-art power- and performance-management algorithm. DynaCo improves measured average energy-delay squared (ED2 product by up to 30% with less than 2% average performance loss across several exascale and other HPC workloads.

  5. Expert System Constant False Alarm Rate (CFAR) Processor

    National Research Council Canada - National Science Library

    Wicks, Michael C

    2006-01-01

    An artificial intelligence system improves radar signal processor performance by increasing target probability of detection and reducing probability of false alarm in a severe radar clutter environment...

  6. Fast track trigger processor for the OPAL detector at LEP

    Energy Technology Data Exchange (ETDEWEB)

    Carter, A A; Carter, J R; Ward, D R; Heuer, R D; Jaroslawski, S; Wagner, A

    1986-09-20

    A fast hardware track trigger processor being built for the OPAL experiment is described. The processor will analyse data from the central drift chambers of OPAL to determine whether any tracks come from the interaction region, and thereby eliminate background events. The processor will find tracks over a large angular range, vertical strokecos thetavertical stroke < or approx. 0.95. The design of the processor is described, together with a brief account of its hardware implementation for OPAL. The results of feasibility studies are also presented.

  7. Special processor for in-core control systems

    International Nuclear Information System (INIS)

    Golovanov, M.N.; Duma, V.R.; Levin, G.L.; Mel'nikov, A.V.; Polikanin, A.V.; Filatov, V.P.

    1978-01-01

    The BUTs-20 special processor is discussed, designed to control the units of the in-core control equipment which are incorporated into the VECTOR communication channel, and to provide preliminary data processing prior to computer calculations. A set of instructions and flowsheet of the processor, organization of its communication with memories and other units of the system are given. The processor components: a control unit and an arithmetic logical unit are discussed. It is noted that the special processor permits more effective utilization of the computer time

  8. Development of level 2 processor for the readout of TMC

    International Nuclear Information System (INIS)

    Arai, Y.; Ikeno, M.; Murata, T.; Sudo, F.; Emura, T.

    1995-01-01

    We have developed a prototype 8-bit processor for the level 2 data processing for the Time Memory Cell (TMC). The first prototype processor successfully runs with 18 MHz clock. The operation of same clock frequency as TMC (30 MHz) will be easily achieved with simple modifications. Although the processor is very primitive one but shows its powerful performance and flexibility. To realize the compact TMC/L2P (Level 2 Processor) system, it is better to include the microcode memory within the chip. Encoding logic of the microcode must be included to reduce the microcode memory in this case. (J.P.N.)

  9. A simple and sensitive flow injection method based on the catalytic activity of CdS quantum dots in an acidic permanganate chemiluminescence system for determination of formaldehyde in water and wastewater.

    Science.gov (United States)

    Khataee, Alireza; Lotfi, Roya; Hasanzadeh, Aliyeh; Iranifam, Mortaza

    2016-04-01

    A simple and sensitive flow injection chemiluminescence (CL) method in which CdS quantum dots (QDs) enhanced the CL intensity of a KMnO4-formaldehyde (HCHO) reaction was offered for the determination of HCHO. This CL system was based on the catalytic activity of CdS QDs and their participation in the CL resonance energy transfer (CRET) phenomenon. A possible mechanism for the supplied CL system was proposed using the kinetic curves of the CL systems and the spectra of CL, photoluminescence (PL) and ultraviolet-visible (UV-Vis). The emanated CL intensity of the KMnO4-CdS QDs system was amplified in the presence of a trace level of HCHO. Based on this enhancement effect, a simple and sensitive flow injection CL method was suggested for the determination of HCHO concentration in environmental water and wastewater samples. Under selected optimized experimental conditions, the increased CL intensity was proportional to the HCHO concentration in the range of 0.03-4.5 μg L(-1) and 4.5-10.0 μg L(-1). The detection limits (3σ) were 0.0003 μg L(-1) and 1.2 μg L(-1). The relative standard deviations (RSD%) for eleven replicate determinations of 4.0 μg L(-1) HCHO were 2.2%. Furthermore, the feasibility of the developed method was investigated via the determination of HCHO concentration in environmental water and wastewater samples.

  10. Reactive Distillation and Air Stripping Processes for Water Recycling and Trace Contaminant Control

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  11. Catalytic water oxidation by ruthenium(II) quaterpyridine (qpy) complexes: evidence for ruthenium(III) qpy-N,N'''-dioxide as the real catalysts.

    Science.gov (United States)

    Liu, Yingying; Ng, Siu-Mui; Yiu, Shek-Man; Lam, William W Y; Wei, Xi-Guang; Lau, Kai-Chung; Lau, Tai-Chu

    2014-12-22

    Polypyridyl and related ligands have been widely used for the development of water oxidation catalysts. Supposedly these ligands are oxidation-resistant and can stabilize high-oxidation-state intermediates. In this work a series of ruthenium(II) complexes [Ru(qpy)(L)2 ](2+) (qpy=2,2':6',2'':6'',2'''-quaterpyridine; L=substituted pyridine) have been synthesized and found to catalyze Ce(IV) -driven water oxidation, with turnover numbers of up to 2100. However, these ruthenium complexes are found to function only as precatalysts; first, they have to be oxidized to the qpy-N,N'''-dioxide (ONNO) complexes [Ru(ONNO)(L)2 ](3+) which are the real catalysts for water oxidation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evaluation of MERIS Chlorophyll-a Retrieval Processors in a Complex Turbid Lake Kasumigaura over a 10-Year Mission

    Directory of Open Access Journals (Sweden)

    Salem Ibrahim Salem

    2017-10-01

    Full Text Available Abstract: The chlorophyll-a (Chla products of seven processors developed for the Medium Resolution Imaging Spectrometer (MERIS sensor were evaluated. The seven processors, based on a neural network and band height, were assessed over an optically complex water body with Chla concentrations of 8.10–187.40 mg∙m−3 using 10-year MERIS archival data. These processors were adopted for the Ocean and Land Color Instrument (OLCI sensor. Results indicated that the four processors of band height (i.e. the Maximum Chlorophyll Index (MCI_L1; and Fluorescence Line Height (FLH_L1; neural network (i.e. Eutrophic Lake (EUL; and Case 2 Regional (C2R possessed reasonable retrieval accuracy with root mean square error (R2 in the range of 0.42–0.65. However, these processors underestimated the retrieved Chla > 100 mg∙m−3, reflecting the limitation of the band height processors to eliminate the influence of non-phytoplankton matter and highlighting the need to train the neural network for highly turbid waters. MCI_L1 outperformed other processors during the calibration and validation stages (R2 = 0.65, Root mean square error (RMSE = 22.18 mg∙m−3, the mean absolute relative error (MARE = 36.88%. In contrast, the results from the Boreal Lake (BOL and Free University of Berlin (FUB processors demonstrated their inadequacy to accurately retrieve Chla concentration > 50 mg∙m−3, mainly due to the limitation of the training datasets that resulted in a high MARE for BOL (56.20% and FUB (57.00%. Mapping the spatial distribution of Chla concentrations across Lake Kasumigaura using the seven processors showed that all processors—except for the BOL and FUB—were able to accurately capture the Chla distribution for moderate and high Chla concentrations. In addition, MCI_L1 and C2R processors were evaluated over 10-years of monthly measured Chla as they demonstrated the best retrieval accuracy from both groups (i.e. band height and neural network

  13. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: Catalytic disproportionation of hypobromous acid

    KAUST Repository

    Liu, Chao; von Gunten, Urs; Croue, Jean-Philippe

    2012-01-01

    of bromide-containing waters in the presence of cupric oxide (CuO). CuO was effective to catalyze hypochlorous acid (HOCl) or hypobromous acid (HOBr) decay (e.g., at least 104 times enhancement for HOBr at pH 8.6 by 0.2 g L-1 CuO). Significant halate

  14. Metal membrane-type 25-kW methanol fuel processor for fuel-cell hybrid vehicle

    Science.gov (United States)

    Han, Jaesung; Lee, Seok-Min; Chang, Hyuksang

    A 25-kW on-board methanol fuel processor has been developed. It consists of a methanol steam reformer, which converts methanol to hydrogen-rich gas mixture, and two metal membrane modules, which clean-up the gas mixture to high-purity hydrogen. It produces hydrogen at rates up to 25 N m 3/h and the purity of the product hydrogen is over 99.9995% with a CO content of less than 1 ppm. In this fuel processor, the operating condition of the reformer and the metal membrane modules is nearly the same, so that operation is simple and the overall system construction is compact by eliminating the extensive temperature control of the intermediate gas streams. The recovery of hydrogen in the metal membrane units is maintained at 70-75% by the control of the pressure in the system, and the remaining 25-30% hydrogen is recycled to a catalytic combustion zone to supply heat for the methanol steam-reforming reaction. The thermal efficiency of the fuel processor is about 75% and the inlet air pressure is as low as 4 psi. The fuel processor is currently being integrated with 25-kW polymer electrolyte membrane fuel-cell (PEMFC) stack developed by the Hyundai Motor Company. The stack exhibits the same performance as those with pure hydrogen, which proves that the maximum power output as well as the minimum stack degradation is possible with this fuel processor. This fuel-cell 'engine' is to be installed in a hybrid passenger vehicle for road testing.

  15. Aerobic, catalytic oxidation of alcohols in ionic liquids

    Directory of Open Access Journals (Sweden)

    Souza Roberto F. de

    2006-01-01

    Full Text Available An efficient and simple catalytic system based on RuCl3 dissolved in ionic liquids has been developed for the oxidation of alcohols into aldehydes and ketones under mild conditions. A new fluorinated ionic liquid, 1-n-butyl-3-methylimidazolium pentadecafluorooctanoate, was synthesized and demonstrated better performance that the other ionic liquids employed. Moreover this catalytic system utilizes molecular oxygen as an oxidizing agent, producing water as the only by-product.

  16. Catalytic biomass pyrolysis process

    Science.gov (United States)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.; Kataria, Atish; Shen, Jian-Ping

    2018-04-17

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  17. Catalytic reforming methods

    Science.gov (United States)

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  18. Aspects of computation on asynchronous parallel processors

    International Nuclear Information System (INIS)

    Wright, M.

    1989-01-01

    The increasing availability of asynchronous parallel processors has provided opportunities for original and useful work in scientific computing. However, the field of parallel computing is still in a highly volatile state, and researchers display a wide range of opinion about many fundamental questions such as models of parallelism, approaches for detecting and analyzing parallelism of algorithms, and tools that allow software developers and users to make effective use of diverse forms of complex hardware. This volume collects the work of researchers specializing in different aspects of parallel computing, who met to discuss the framework and the mechanics of numerical computing. The far-reaching impact of high-performance asynchronous systems is reflected in the wide variety of topics, which include scientific applications (e.g. linear algebra, lattice gauge simulation, ordinary and partial differential equations), models of parallelism, parallel language features, task scheduling, automatic parallelization techniques, tools for algorithm development in parallel environments, and system design issues

  19. Efficient quantum walk on a quantum processor

    Science.gov (United States)

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  20. The ALICE Central Trigger Processor (CTP) upgrade

    International Nuclear Information System (INIS)

    Krivda, M.; Alexandre, D.; Barnby, L.S.; Evans, D.; Jones, P.G.; Jusko, A.; Lietava, R.; Baillie, O. Villalobos; Pospíšil, J.

    2016-01-01

    The ALICE Central Trigger Processor (CTP) at the CERN LHC has been upgraded for LHC Run 2, to improve the Transition Radiation Detector (TRD) data-taking efficiency and to improve the physics performance of ALICE. There is a new additional CTP interaction record sent using a new second Detector Data Link (DDL), a 2 GB DDR3 memory and an extension of functionality for classes. The CTP switch has been incorporated directly onto the new LM0 board. A design proposal for an ALICE CTP upgrade for LHC Run 3 is also presented. Part of the development is a low latency high bandwidth interface whose purpose is to minimize an overall trigger latency

  1. Processor-in-memory-and-storage architecture

    Science.gov (United States)

    DeBenedictis, Erik

    2018-01-02

    A method and apparatus for performing reliable general-purpose computing. Each sub-core of a plurality of sub-cores of a processor core processes a same instruction at a same time. A code analyzer receives a plurality of residues that represents a code word corresponding to the same instruction and an indication of whether the code word is a memory address code or a data code from the plurality of sub-cores. The code analyzer determines whether the plurality of residues are consistent or inconsistent. The code analyzer and the plurality of sub-cores perform a set of operations based on whether the code word is a memory address code or a data code and a determination of whether the plurality of residues are consistent or inconsistent.

  2. Optimal processor for malfunction detection in operating nuclear reactor

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1990-01-01

    An optimal processor for diagnosing operational transients in a nuclear reactor is described. Basic design of the processor involves real-time processing of noise signal obtained from a particular in core sensor and the optimality is based on minimum alarm failure in contrast to minimum false alarm criterion from the safe and reliable plant operation viewpoint

  3. Sojourn time tails in processor-sharing systems

    NARCIS (Netherlands)

    Egorova, R.R.

    2009-01-01

    The processor-sharing discipline was originally introduced as a modeling abstraction for the design and performance analysis of the processing unit of a computer system. Under the processor-sharing discipline, all active tasks are assumed to be processed simultaneously, receiving an equal share of

  4. ACP/R3000 processors in data acquisition systems

    International Nuclear Information System (INIS)

    Deppe, J.; Areti, H.; Atac, R.

    1989-02-01

    We describe ACP/R3000 processor based data acquisition systems for high energy physics. This VME bus compatible processor board, with a computational power equivalent to 15 VAX 11/780s or better, contains 8 Mb of memory for event buffering and has a high speed secondary bus that allows data gathering from front end electronics. 2 refs., 3 figs

  5. On the effective parallel programming of multi-core processors

    NARCIS (Netherlands)

    Varbanescu, A.L.

    2010-01-01

    Multi-core processors are considered now the only feasible alternative to the large single-core processors which have become limited by technological aspects such as power consumption and heat dissipation. However, due to their inherent parallel structure and their diversity, multi-cores are

  6. Bank switched memory interface for an image processor

    International Nuclear Information System (INIS)

    Barron, M.; Downward, J.

    1980-09-01

    A commercially available image processor is interfaced to a PDP-11/45 through an 8K window of memory addresses. When the image processor was not in use it was desired to be able to use the 8K address space as real memory. The standard method of accomplishing this would have been to use UNIBUS switches to switch in either the physical 8K bank of memory or the image processor memory. This method has the disadvantage of being rather expensive. As a simple alternative, a device was built to selectively enable or disable either an 8K bank of memory or the image processor memory. To enable the image processor under program control, GEN is contracted in size, the memory is disabled, a device partition for the image processor is created above GEN, and the image processor memory is enabled. The process is reversed to restore memory to GEN. The hardware to enable/disable the image and computer memories is controlled using spare bits from a DR-11K output register. The image processor and physical memory can be switched in or out on line with no adverse affects on the system's operation

  7. Digital image processing software system using an array processor

    International Nuclear Information System (INIS)

    Sherwood, R.J.; Portnoff, M.R.; Journeay, C.H.; Twogood, R.E.

    1981-01-01

    A versatile array processor-based system for general-purpose image processing was developed. At the heart of this system is an extensive, flexible software package that incorporates the array processor for effective interactive image processing. The software system is described in detail, and its application to a diverse set of applications at LLNL is briefly discussed. 4 figures, 1 table

  8. Designing a dataflow processor using CλaSH

    NARCIS (Netherlands)

    Niedermeier, A.; Wester, Rinse; Wester, Rinse; Rovers, K.C.; Baaij, C.P.R.; Kuper, Jan; Smit, Gerardus Johannes Maria

    2010-01-01

    In this paper we show how a simple dataflow processor can be fully implemented using CλaSH, a high level HDL based on the functional programming language Haskell. The processor was described using Haskell, the CλaSH compiler was then used to translate the design into a fully synthesisable VHDL code.

  9. Biomass is beginning to threaten the wood-processors

    International Nuclear Information System (INIS)

    Beer, G.; Sobinkovic, B.

    2004-01-01

    In this issue an exploitation of biomass in Slovak Republic is analysed. Some new projects of constructing of the stoke-holds for biomass processing are published. The grants for biomass are ascending the prices of wood raw material, which is thus becoming less accessible for the wood-processors. An excessive wood export threatens the domestic processors

  10. Digital Signal Processor System for AC Power Drivers

    Directory of Open Access Journals (Sweden)

    Ovidiu Neamtu

    2009-10-01

    Full Text Available DSP (Digital Signal Processor is the bestsolution for motor control systems to make possible thedevelopment of advanced motor drive systems. The motorcontrol processor calculates the required motor windingvoltage magnitude and frequency to operate the motor atthe desired speed. A PWM (Pulse Width Modulationcircuit controls the on and off duty cycle of the powerinverter switches to vary the magnitude of the motorvoltages.

  11. Evaluation of the Intel Sandy Bridge-EP server processor

    CERN Document Server

    Jarp, S; Leduc, J; Nowak, A; CERN. Geneva. IT Department

    2012-01-01

    In this paper we report on a set of benchmark results recently obtained by CERN openlab when comparing an 8-core “Sandy Bridge-EP” processor with Intel’s previous microarchitecture, the “Westmere-EP”. The Intel marketing names for these processors are “Xeon E5-2600 processor series” and “Xeon 5600 processor series”, respectively. Both processors are produced in a 32nm process, and both platforms are dual-socket servers. Multiple benchmarks were used to get a good understanding of the performance of the new processor. We used both industry-standard benchmarks, such as SPEC2006, and specific High Energy Physics benchmarks, representing both simulation of physics detectors and data analysis of physics events. Before summarizing the results we must stress the fact that benchmarking of modern processors is a very complex affair. One has to control (at least) the following features: processor frequency, overclocking via Turbo mode, the number of physical cores in use, the use of logical cores ...

  12. Recursive Matrix Inverse Update On An Optical Processor

    Science.gov (United States)

    Casasent, David P.; Baranoski, Edward J.

    1988-02-01

    A high accuracy optical linear algebraic processor (OLAP) using the digital multiplication by analog convolution (DMAC) algorithm is described for use in an efficient matrix inverse update algorithm with speed and accuracy advantages. The solution of the parameters in the algorithm are addressed and the advantages of optical over digital linear algebraic processors are advanced.

  13. Polymer supported gold nanoparticles: Synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water

    Science.gov (United States)

    Kaboudin, Babak; Khanmohammadi, Hamid; Kazemi, Foad

    2017-12-01

    Sulfonated polystyrene microsphere were functionalized using ethylene diamine to introduce amine groups to the polymer chains. The amine functionalized polymers were used as a support for gold nanoparticles. A thorough structural characterization has been carried out by means of transmission electron microscopy (TEM), scanning electron microscopy (SEM) images, EDS, CHN and atomic absorption spectroscopy. The polymer supported gold nanoparticles was found to be an efficient catalyst for the oxidation of alcohols in water.

  14. Simulation of a 250 kW diesel fuel processor/PEM fuel cell system

    Science.gov (United States)

    Amphlett, J. C.; Mann, R. F.; Peppley, B. A.; Roberge, P. R.; Rodrigues, A.; Salvador, J. P.

    Polymer-electrolyte membrane (PEM) fuel cell systems offer a potential power source for utility and mobile applications. Practical fuel cell systems use fuel processors for the production of hydrogen-rich gas. Liquid fuels, such as diesel or other related fuels, are attractive options as feeds to a fuel processor. The generation of hydrogen gas for fuel cells, in most cases, becomes the crucial design issue with respect to weight and volume in these applications. Furthermore, these systems will require a gas clean-up system to insure that the fuel quality meets the demands of the cell anode. The endothermic nature of the reformer will have a significant affect on the overall system efficiency. The gas clean-up system may also significantly effect the overall heat balance. To optimize the performance of this integrated system, therefore, waste heat must be used effectively. Previously, we have concentrated on catalytic methanol-steam reforming. A model of a methanol steam reformer has been previously developed and has been used as the basis for a new, higher temperature model for liquid hydrocarbon fuels. Similarly, our fuel cell evaluation program previously led to the development of a steady-state electrochemical fuel cell model (SSEM). The hydrocarbon fuel processor model and the SSEM have now been incorporated in the development of a process simulation of a 250 kW diesel-fueled reformer/fuel cell system using a process simulator. The performance of this system has been investigated for a variety of operating conditions and a preliminary assessment of thermal integration issues has been carried out. This study demonstrates the application of a process simulation model as a design analysis tool for the development of a 250 kW fuel cell system.

  15. Acoustooptic linear algebra processors - Architectures, algorithms, and applications

    Science.gov (United States)

    Casasent, D.

    1984-01-01

    Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.

  16. APRON: A Cellular Processor Array Simulation and Hardware Design Tool

    Science.gov (United States)

    Barr, David R. W.; Dudek, Piotr

    2009-12-01

    We present a software environment for the efficient simulation of cellular processor arrays (CPAs). This software (APRON) is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.

  17. Multiple Embedded Processors for Fault-Tolerant Computing

    Science.gov (United States)

    Bolotin, Gary; Watson, Robert; Katanyoutanant, Sunant; Burke, Gary; Wang, Mandy

    2005-01-01

    A fault-tolerant computer architecture has been conceived in an effort to reduce vulnerability to single-event upsets (spurious bit flips caused by impingement of energetic ionizing particles or photons). As in some prior fault-tolerant architectures, the redundancy needed for fault tolerance is obtained by use of multiple processors in one computer. Unlike prior architectures, the multiple processors are embedded in a single field-programmable gate array (FPGA). What makes this new approach practical is the recent commercial availability of FPGAs that are capable of having multiple embedded processors. A working prototype (see figure) consists of two embedded IBM PowerPC 405 processor cores and a comparator built on a Xilinx Virtex-II Pro FPGA. This relatively simple instantiation of the architecture implements an error-detection scheme. A planned future version, incorporating four processors and two comparators, would correct some errors in addition to detecting them.

  18. Simulation of a processor switching circuit with APLSV

    International Nuclear Information System (INIS)

    Dilcher, H.

    1979-01-01

    The report describes the simulation of a processor switching circuit with APL. Furthermore an APL function is represented to simulate a processor in an assembly like language. Both together serve as a tool for studying processor properties. By means of the programming function it is also possible to program other simulated processors. The processor is to be used in the processing of data in real time analysis that occur in high energy physics experiments. The data are already offered to the computer in digitalized form. A typical data rate is at 10 KB/ sec. The data are structured in blocks. The particular blocks are 1 KB wide and are independent from each other. Aprocessor has to decide, whether the block data belong to an event that is part of the backround noise and can therefore be forgotten, or whether the data should be saved for a later evaluation. (orig./WB) [de

  19. New development for low energy electron beam processor

    International Nuclear Information System (INIS)

    Takei, Taro; Goto, Hitoshi; Oizumi, Matsutoshi; Hirakawa, Tetsuya; Ochi, Masafumi

    2003-01-01

    Newly developed low-energy electron beam (EB) processors that have unique designs and configurations compared to conventional ones enable electron-beam treatment of small three-dimensional objects, such as grain-like agricultural products and small plastic parts. As the EB processor can irradiate the products from the whole angles, the uniform EB treatment can be achieved at one time regardless the complex shapes of the product. Here presented are two new EB processors: the first system has cylindrical process zone, which allows three-dimensional objects to be irradiated with one-pass treatment. The second is a tube-type small EB processor, achieving not only its compactor design, but also higher beam extraction efficiency and flexible installation of the irradiation heads. The basic design of each processor and potential applications with them will be presented in this paper. (author)

  20. MPC Related Computational Capabilities of ARMv7A Processors

    DEFF Research Database (Denmark)

    Frison, Gianluca; Jørgensen, John Bagterp

    2015-01-01

    In recent years, the mass market of mobile devices has pushed the demand for increasingly fast but cheap processors. ARM, the world leader in this sector, has developed the Cortex-A series of processors with focus on computationally intensive applications. If properly programmed, these processors...... are powerful enough to solve the complex optimization problems arising in MPC in real-time, while keeping the traditional low-cost and low-power consumption. This makes these processors ideal candidates for use in embedded MPC. In this paper, we investigate the floating-point capabilities of Cortex A7, A9...... and A15 and show how to exploit the unique features of each processor to obtain the best performance, in the context of a novel implementation method for the linear-algebra routines used in MPC solvers. This method adapts high-performance computing techniques to the needs of embedded MPC. In particular...

  1. APRON: A Cellular Processor Array Simulation and Hardware Design Tool

    Directory of Open Access Journals (Sweden)

    David R. W. Barr

    2009-01-01

    Full Text Available We present a software environment for the efficient simulation of cellular processor arrays (CPAs. This software (APRON is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.

  2. Direct determination of tellurium and its redox speciation at the low nanogram level in natural waters by catalytic cathodic stripping voltammetry.

    Science.gov (United States)

    Biver, Marc; Quentel, François; Filella, Montserrat

    2015-11-01

    Tellurium is one of the elements recently identified as technologically critical and is becoming a new emergent contaminant. No reliable method exists for its determination in environmental samples such as natural waters. This gap is filled by the method described here; it allows the rapid detection of trace concentrations of Te(IV) and Te(VI) in surface waters by differential pulse cathodic stripping voltammetry. It is based on the proton reduction catalysed by the absorption of Te(IV) on the mercury electrode. Under our conditions (0.1 mol L(-1) HCl) a detection limit of about 5 ng L(-1) for a deposition time of 300 s is achieved. Organic matter does not represent a problem at low concentrations; higher concentrations are eliminated by adsorptive purification. Tellurium occurs primarily as Te(IV) and Te(VI) in natural waters. Thus, determining total Te requires the reduction of Te(VI) that it is not electroactive. A number of reduction procedures have been carefully evaluated and a method based on the addition of TiCl3 to the acidified samples has been proven to reduce Te(VI) at the trace level to Te(IV) reliably and quantitatively. Therefore, the procedure described allows the direct determination of total Te and its redox speciation. It is flexible, reliable and cost effective compared to any possible alternative method based on the common preconcentration-ICPMS approach. It is readily implementable as a routine method and can be deployed in the field with relative ease. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Light-induced catalytic transformation of ofloxacin by solar Fenton in various water matrices at a pilot plant: mineralization and characterization of major intermediate products.

    Science.gov (United States)

    Michael, I; Hapeshi, E; Aceña, J; Perez, S; Petrović, M; Zapata, A; Barceló, D; Malato, S; Fatta-Kassinos, D

    2013-09-01

    This work investigated the application of a solar driven advanced oxidation process (solar Fenton), for the degradation of the antibiotic ofloxacin (OFX) in various environmental matrices at a pilot-scale. All experiments were carried out in a compound parabolic collector pilot plant in the presence of doses of H2O2 (2.5 mg L(-1)) and at an initial Fe(2+) concentration of 2 mg L(-1). The water matrices used for the solar Fenton experiments were: demineralized water (DW), simulated natural freshwater (SW), simulated effluent from municipal wastewater treatment plant (SWW) and pre-treated real effluent from municipal wastewater treatment plant (RE) to which OFX had been spiked at 10 mg L(-1). Dissolved organic carbon removal was found to be dependent on the chemical composition of the water matrix. OFX mineralization was higher in DW (78.1%) than in SW (58.3%) at 12 mg L(-1) of H2O2 consumption, implying the complexation of iron or the scavenging of hydroxyl radicals by the inorganic ions present in SW. On the other hand, the presence of dissolved organic matter (DOM) in SWW and RE, led to lower mineralization per dose of H2O2 compared to DW and SW. The major transformation products (TPs) formed during the solar Fenton treatment of OFX, were elucidated using liquid chromatography-time of flight-mass spectrometry (LC-ToF-MS). The transformation of OFX proceeded through a defluorination reaction, accompanied by some degree of piperazine and quinolone substituent transformation while a hydroxylation mechanism occurred by attack of the hydroxyl radicals generated during the process leading to the formation of TPs in all the water matrices, seven of which were tentatively identified. The results obtained from the toxicity bioassays indicated that the toxicity originates from the DOM present in RE and its oxidation products formed during the photocatalytic treatment and not from the TPs resulted from the oxidation of OFX. Copyright © 2013 The Authors. Published by

  4. Launching applications on compute and service processors running under different operating systems in scalable network of processor boards with routers

    Science.gov (United States)

    Tomkins, James L [Albuquerque, NM; Camp, William J [Albuquerque, NM

    2009-03-17

    A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure also permits easy physical scalability of the computing apparatus. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.

  5. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: Catalytic disproportionation of hypobromous acid

    KAUST Repository

    Liu, Chao

    2012-10-16

    Bromate (BrO3 -) in drinking water is traditionally seen as an ozonation byproduct from the oxidation of bromide (Br-), and its formation during chlorination is usually not significant. This study shows enhanced bromate formation during chlorination of bromide-containing waters in the presence of cupric oxide (CuO). CuO was effective to catalyze hypochlorous acid (HOCl) or hypobromous acid (HOBr) decay (e.g., at least 104 times enhancement for HOBr at pH 8.6 by 0.2 g L-1 CuO). Significant halate concentrations were formed from a CuO-catalyzed hypohalite disproportionation pathway. For example, the chlorate concentration was 2.7 ± 0.2 μM (225.5 ± 16.7 μg L-1) after 90 min for HOCl (Co = 37 μM, 2.6 mg L-1 Cl2) in the presence of 0.2 g L-1 CuO at pH 7.6, and the bromate concentration was 6.6 ± 0.5 μM (844.8 ± 64 μg L -1) after 180 min for HOBr (Co = 35 μM) in the presence of 0.2 g L-1 CuO at pH 8.6. The maximum halate formation was at pHs 7.6 and 8.6 for HOCl or HOBr, respectively, which are close to their corresponding pKa values. In a HOCl-Br--CuO system, BrO3 - formation increases with increasing CuO doses and initial HOCl and Br- concentrations. A molar conversion (Br - to BrO3 -) of up to (90 ± 1)% could be achieved in the HOCl-Br--CuO system because of recycling of Br - to HOBr by HOCl, whereas the maximum BrO3 - yield in HOBr-CuO is only 26%. Bromate formation is initiated by the formation of a complex between CuO and HOBr/OBr-, which then reacts with HOBr to generate bromite. Bromite is further oxidized to BrO3 - by a second CuO-catalyzed process. These novel findings may have implications for bromate formation during chlorination of bromide-containing drinking waters in copper pipes. © 2012 American Chemical Society.

  6. Possible influence of the Kuramoto length in a photo-catalytic water splitting reaction revealed by Poisson-Nernst-Planck equations involving ionization in a weak electrolyte

    Science.gov (United States)

    Suzuki, Yohichi; Seki, Kazuhiko

    2018-03-01

    We studied ion concentration profiles and the charge density gradient caused by electrode reactions in weak electrolytes by using the Poisson-Nernst-Planck equations without assuming charge neutrality. In weak electrolytes, only a small fraction of molecules is ionized in bulk. Ion concentration profiles depend on not only ion transport but also the ionization of molecules. We considered the ionization of molecules and ion association in weak electrolytes and obtained analytical expressions for ion densities, electrostatic potential profiles, and ion currents. We found the case that the total ion density gradient was given by the Kuramoto length which characterized the distance over which an ion diffuses before association. The charge density gradient is characterized by the Debye length for 1:1 weak electrolytes. We discuss the role of these length scales for efficient water splitting reactions using photo-electrocatalytic electrodes.

  7. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...

  8. Opportunities and Best Practices to Support Sustainable Production for Small Growers and Post-Harvest Processors in Southern California

    Science.gov (United States)

    Fissore, Cinzia; Duran, Daniel F.; Russell, Robert

    2015-01-01

    This article describes current practices and needs associated with water and gas conservation among Southern California greenhouse growers, Post-Harvest Processors (PHPs), and agricultural associations. Two communication forums were held with the goal of educating the local gas company and small growers and PHPs on the most compelling needs and…

  9. First level trigger processor for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Dawson, J.W.; Talaga, R.L.; Burr, G.W.; Laird, R.J.; Smith, W.; Lackey, J.

    1990-01-01

    This paper discusses the design of the first level trigger processor for the ZEUS calorimeter. This processor accepts data from the 13,000 photomultipliers of the calorimeter which is topologically divided into 16 regions, and after regional preprocessing, performs logical and numerical operations which cross regional boundaries. Because the crossing period at the HERA collider is 96 ns, it is necessary that first-level trigger decisions be made in pipelined hardware. One microsecond is allowed for the processor to perform the required logical and numerical operations, during which time the data from ten crossings would be resident in the processor while being clocked through the pipelined hardware. The circuitry is implemented in 100K ECL, Advanced CMOS discrete devices, and programmable gate arrays, and operates in a VME environment. All tables and registers are written/read from VME, and all diagnostic codes are executed from VME. Preprocessed data flows into the processor at a rate of 5.2GB/s, and processed data flows from the processor to the Global First-Level Trigger at a rate of 700MB/s. The system allows for subsets of the logic to be configured by software and for various important variables to be histogrammed as they flow through the processor. 2 refs., 3 figs

  10. A dedicated line-processor as used at the SHF

    International Nuclear Information System (INIS)

    Bevan, A.V.; Hatley, R.W.; Price, D.R.; Rankin, P.

    1985-01-01

    A hardwired trigger processor was used at the SLAC Hybrid Facility to find evidence for charged tracks originating from the fiducial volume of a 40'' rapidcycling bubble chamber. Straight-line projections of these tracks in the plane perpendicular to the applied magnetic field were searched for using data from three sets of proportional wire chambers (PWC). This information was made directly available to the processor by means of a special digitizing card. The results memory of the processor simulated read-only memory in a 168/E processor and was accessible by it. The 168/E controlled the issuing of a trigger command to the bubble chamber flash tubes. The same design of digitizer card used by the line processor was incorporated into the 168/E, again as read only memory, which allowed it access to the raw data for continual monitoring of trigger integrity. The design logic of the trigger processor was verified by running real PWC data through a FORTRAN simulation of the hardware. This enabled the debugging to become highly automated since a step by step, computer controlled comparison of processor registers to simulation predictions could be made

  11. First-level trigger processor for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Dawson, J.W.; Talaga, R.L.; Burr, G.W.; Laird, R.J.; Smith, W.; Lackey, J.

    1990-01-01

    The design of the first-level trigger processor for the Zeus calorimeter is discussed. This processor accepts data from the 13,000 photomultipliers of the calorimeter, which is topologically divided into 16 regions, and after regional preprocessing performs logical and numerical operations that cross regional boundaries. Because the crossing period at the HERA collider is 96 ns, it is necessary that first-level trigger decisions be made in pipelined hardware. One microsecond is allowed for the processor to perform the required logical and numerical operations, during which time the data from ten crossings would be resident in the processor while being clocked through the pipelined hardware. The circuitry is implemented in 100K emitter-coupled logic (ECL), advanced CMOS discrete devices and programmable gate arrays, and operates in a VME environment. All tables and registers are written/read from VME, and all diagnostic codes are executed from VME. Preprocessed data flows into the processor at a rate of 5.2 Gbyte/s, and processed data flows from the processor to the global first-level trigger at a rate of 70 Mbyte/s. The system allows for subsets of the logic to be configured by software and for various important variables to be histogrammed as they flow through the processor

  12. Highly efficient catalytic systems based on Pd-coated microbeads

    Science.gov (United States)

    Lim, Jin Hyun; Cho, Ahyoung; Lee, Seung Hwan; Park, Bumkyo; Kang, Dong Woo; Koo, Chong Min; Yu, Taekyung; Park, Bum Jun

    2018-01-01

    The efficiency of two prototype catalysis systems using palladium (Pd)-coated microparticles was investigated with regard to the recovery and recyclability of the catalytic particles. One such system was the interface-adsorption method, in which polymer particles coated with Pd nanoparticles strongly and irreversibly attach to the oil-water interface. Due to the irreversible adsorption of the catalytic particles to the interface, particle loss was completely prevented while mixing the aqueous solution and while collecting the products. The other system was based on the magnetic field-associated particle recovery method. The use of polymeric microparticles containing Pd nanoparticles and magnetite nanoparticles accelerated the sedimentation of the particles in the aqueous phase by applying a strong magnetic field, consequently suppressing drainage of the particles from the reactor along the product stream. Upon multiple runs of the catalytic reactions, it was found that conversion does not change significantly, demonstrating the excellent recyclability and performance efficiency in the catalytic processes.

  13. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  14. Novel memory architecture for video signal processor

    Science.gov (United States)

    Hung, Jen-Sheng; Lin, Chia-Hsing; Jen, Chein-Wei

    1993-11-01

    An on-chip memory architecture for video signal processor (VSP) is proposed. This memory structure is a two-level design for the different data locality in video applications. The upper level--Memory A provides enough storage capacity to reduce the impact on the limitation of chip I/O bandwidth, and the lower level--Memory B provides enough data parallelism and flexibility to meet the requirements of multiple reconfigurable pipeline function units in a single VSP chip. The needed memory size is decided by the memory usage analysis for video algorithms and the number of function units. Both levels of memory adopted a dual-port memory scheme to sustain the simultaneous read and write operations. Especially, Memory B uses multiple one-read-one-write memory banks to emulate the real multiport memory. Therefore, one can change the configuration of Memory B to several sets of memories with variable read/write ports by adjusting the bus switches. Then the numbers of read ports and write ports in proposed memory can meet requirement of data flow patterns in different video coding algorithms. We have finished the design of a prototype memory design using 1.2- micrometers SPDM SRAM technology and will fabricated it through TSMC, in Taiwan.

  15. A CNN-Specific Integrated Processor

    Directory of Open Access Journals (Sweden)

    Suleyman Malki

    2009-01-01

    Full Text Available Integrated Processors (IP are algorithm-specific cores that either by programming or by configuration can be re-used within many microelectronic systems. This paper looks at Cellular Neural Networks (CNN to become realized as IP. First current digital implementations are reviewed, and the memoryprocessor bandwidth issues are analyzed. Then a generic view is taken on the structure of the network, and a new intra-communication protocol based on rotating wheels is proposed. It is shown that this provides for guaranteed high-performance with a minimal network interface. The resulting node is small and supports multi-level CNN designs, giving the system a 30-fold increase in capacity compared to classical designs. As it facilitates multiple operations on a single image, and single operations on multiple images, with minimal access to the external image memory, balancing the internal and external data transfer requirements optimizes the system operation. In conventional digital CNN designs, the treatment of boundary nodes requires additional logic to handle the CNN value propagation scheme. In the new architecture, only a slight modification of the existing cells is necessary to model the boundary effect. A typical prototype for visual pattern recognition will house 4096 CNN cells with a 2% overhead for making it an IP.

  16. The ATLAS fast tracker processor design

    CERN Document Server

    Volpi, Guido; Albicocco, Pietro; Alison, John; Ancu, Lucian Stefan; Anderson, James; Andari, Nansi; Andreani, Alessandro; Andreazza, Attilio; Annovi, Alberto; Antonelli, Mario; Asbah, Needa; Atkinson, Markus; Baines, J; Barberio, Elisabetta; Beccherle, Roberto; Beretta, Matteo; Biesuz, Nicolo Vladi; Blair, R E; Bogdan, Mircea; Boveia, Antonio; Britzger, Daniel; Bryant, Partick; Burghgrave, Blake; Calderini, Giovanni; Camplani, Alessandra; Cavaliere, Viviana; Cavasinni, Vincenzo; Chakraborty, Dhiman; Chang, Philip; Cheng, Yangyang; Citraro, Saverio; Citterio, Mauro; Crescioli, Francesco; Dawe, Noel; Dell'Orso, Mauro; Donati, Simone; Dondero, Paolo; Drake, G; Gadomski, Szymon; Gatta, Mauro; Gentsos, Christos; Giannetti, Paola; Gkaitatzis, Stamatios; Gramling, Johanna; Howarth, James William; Iizawa, Tomoya; Ilic, Nikolina; Jiang, Zihao; Kaji, Toshiaki; Kasten, Michael; Kawaguchi, Yoshimasa; Kim, Young Kee; Kimura, Naoki; Klimkovich, Tatsiana; Kolb, Mathis; Kordas, K; Krizka, Karol; Kubota, T; Lanza, Agostino; Li, Ho Ling; Liberali, Valentino; Lisovyi, Mykhailo; Liu, Lulu; Love, Jeremy; Luciano, Pierluigi; Luongo, Carmela; Magalotti, Daniel; Maznas, Ioannis; Meroni, Chiara; Mitani, Takashi; Nasimi, Hikmat; Negri, Andrea; Neroutsos, Panos; Neubauer, Mark; Nikolaidis, Spiridon; Okumura, Y; Pandini, Carlo; Petridou, Chariclia; Piendibene, Marco; Proudfoot, James; Rados, Petar Kevin; Roda, Chiara; Rossi, Enrico; Sakurai, Yuki; Sampsonidis, Dimitrios; Saxon, James; Schmitt, Stefan; Schoening, Andre; Shochet, Mel; Shoijaii, Jafar; Soltveit, Hans Kristian; Sotiropoulou, Calliope-Louisa; Stabile, Alberto; Swiatlowski, Maximilian J; Tang, Fukun; Taylor, Pierre Thor Elliot; Testa, Marianna; Tompkins, Lauren; Vercesi, V; Wang, Rui; Watari, Ryutaro; Zhang, Jianhong; Zeng, Jian Cong; Zou, Rui; Bertolucci, Federico

    2015-01-01

    The extended use of tracking information at the trigger level in the LHC is crucial for the trigger and data acquisition (TDAQ) system to fulfill its task. Precise and fast tracking is important to identify specific decay products of the Higgs boson or new phenomena, as well as to distinguish the contributions coming from the many collisions that occur at every bunch crossing. However, track reconstruction is among the most demanding tasks performed by the TDAQ computing farm; in fact, complete reconstruction at full Level-1 trigger accept rate (100 kHz) is not possible. In order to overcome this limitation, the ATLAS experiment is planning the installation of a dedicated processor, the Fast Tracker (FTK), which is aimed at achieving this goal. The FTK is a pipeline of high performance electronics, based on custom and commercial devices, which is expected to reconstruct, with high resolution, the trajectories of charged-particle tracks with a transverse momentum above 1 GeV, using the ATLAS inner tracker info...

  17. Multipurpose silicon photonics signal processor core.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Crudgington, Lee; Thomson, David J; Khokhar, Ali Z; Li, Ke; Cao, Wei; Mashanovich, Goran Z; Capmany, José

    2017-09-21

    Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.Integrated optical circuits today are typically designed for a few special functionalities and require complex design and development procedures. Here, the authors demonstrate a reconfigurable but simple silicon waveguide mesh with different functionalities.

  18. Element Load Data Processor (ELDAP) Users Manual

    Science.gov (United States)

    Ramsey, John K., Jr.; Ramsey, John K., Sr.

    2015-01-01

    Often, the shear and tensile forces and moments are extracted from finite element analyses to be used in off-line calculations for evaluating the integrity of structural connections involving bolts, rivets, and welds. Usually the maximum forces and moments are desired for use in the calculations. In situations where there are numerous structural connections of interest for numerous load cases, the effort in finding the true maximum force and/or moment combinations among all fasteners and welds and load cases becomes difficult. The Element Load Data Processor (ELDAP) software described herein makes this effort manageable. This software eliminates the possibility of overlooking the worst-case forces and moments that could result in erroneous positive margins of safety and/or selecting inconsistent combinations of forces and moments resulting in false negative margins of safety. In addition to forces and moments, any scalar quantity output in a PATRAN report file may be evaluated with this software. This software was originally written to fill an urgent need during the structural analysis of the Ares I-X Interstage segment. As such, this software was coded in a straightforward manner with no effort made to optimize or minimize code or to develop a graphical user interface.

  19. Scientific Computing Kernels on the Cell Processor

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Samuel W.; Shalf, John; Oliker, Leonid; Kamil, Shoaib; Husbands, Parry; Yelick, Katherine

    2007-04-04

    The slowing pace of commodity microprocessor performance improvements combined with ever-increasing chip power demands has become of utmost concern to computational scientists. As a result, the high performance computing community is examining alternative architectures that address the limitations of modern cache-based designs. In this work, we examine the potential of using the recently-released STI Cell processor as a building block for future high-end computing systems. Our work contains several novel contributions. First, we introduce a performance model for Cell and apply it to several key scientific computing kernels: dense matrix multiply, sparse matrix vector multiply, stencil computations, and 1D/2D FFTs. The difficulty of programming Cell, which requires assembly level intrinsics for the best performance, makes this model useful as an initial step in algorithm design and evaluation. Next, we validate the accuracy of our model by comparing results against published hardware results, as well as our own implementations on a 3.2GHz Cell blade. Additionally, we compare Cell performance to benchmarks run on leading superscalar (AMD Opteron), VLIW (Intel Itanium2), and vector (Cray X1E) architectures. Our work also explores several different mappings of the kernels and demonstrates a simple and effective programming model for Cell's unique architecture. Finally, we propose modest microarchitectural modifications that could significantly increase the efficiency of double-precision calculations. Overall results demonstrate the tremendous potential of the Cell architecture for scientific computations in terms of both raw performance and power efficiency.

  20. Nonlinear Wave Simulation on the Xeon Phi Knights Landing Processor

    Science.gov (United States)

    Hristov, Ivan; Goranov, Goran; Hristova, Radoslava

    2018-02-01

    We consider an interesting from computational point of view standing wave simulation by solving coupled 2D perturbed Sine-Gordon equations. We make an OpenMP realization which explores both thread and SIMD levels of parallelism. We test the OpenMP program on two different energy equivalent Intel architectures: 2× Xeon E5-2695 v2 processors, (code-named "Ivy Bridge-EP") in the Hybrilit cluster, and Xeon Phi 7250 processor (code-named "Knights Landing" (KNL). The results show 2 times better performance on KNL processor.

  1. Nonlinear Wave Simulation on the Xeon Phi Knights Landing Processor

    Directory of Open Access Journals (Sweden)

    Hristov Ivan

    2018-01-01

    Full Text Available We consider an interesting from computational point of view standing wave simulation by solving coupled 2D perturbed Sine-Gordon equations. We make an OpenMP realization which explores both thread and SIMD levels of parallelism. We test the OpenMP program on two different energy equivalent Intel architectures: 2× Xeon E5-2695 v2 processors, (code-named “Ivy Bridge-EP” in the Hybrilit cluster, and Xeon Phi 7250 processor (code-named “Knights Landing” (KNL. The results show 2 times better performance on KNL processor.

  2. Photo-catalytic degradation of an oil-water emulsion using the photo-fenton treatment process: effects and statistical optimization.

    Science.gov (United States)

    Tony, Maha A; Purcell, P J; Zhao, Y Q; Tayeb, A M; El-Sherbiny, M F

    2009-02-01

    The application of advanced oxidation processes (AOPs) to the treatment of an effluent contaminated with hydrocarbon oils was investigated. The AOPs conducted were Fe2+/H2O2 (Fenton's reagent), Fe2+/H2O2/UV (Photo-Fenton's reagent) and UV-photolysis. These technologies utilize the very strong oxidizing power of hydroxyl radicals to oxidize organic compounds to harmless end products such as CO2 and H2O. A synthetic wastewater generated by emulsifying diesel oil and water was used. This wastewater might simulate, for example, a waste resulting from a hydrocarbon oil spill, onto which detergent was sprayed. The experiments utilising the Photo-Fenton treatment method with an artificial UV source, coupled with Fenton's reagent, suggest that the hydrocarbon oil is readily degradable, but that the emulsifying agent is much more resistant to degradation. The results showed that the COD (chemical oxygen demand) removal rate was affected by the Photo-Fenton parameters (Fe2+, H2O2 concentrations and the initial pH) of the aqueous solution. In addition, the applicability of the treatment method to a 'real' wastewater contaminated with hydrocarbon oil is demonstrated. The 'real' wastewater was sourced at a nearby car-wash facility located at a petroleum filling station and the experimental results demonstrate the effectiveness of the treatment method in this case. A statistical analysis of the experimental data using the Statistical Analysis System (SAS) and the response surface methodology (RSM) based on the experimental design was applied to optimize the Photo-Fenton parameters (concentrations of Fe2+, H2O2 and initial pH) and to maximize the COD removal rate (more than 70%).

  3. Median and Morphological Specialized Processors for a Real-Time Image Data Processing

    Directory of Open Access Journals (Sweden)

    Kazimierz Wiatr

    2002-01-01

    Full Text Available This paper presents the considerations on selecting a multiprocessor MISD architecture for fast implementation of the vision image processing. Using the author′s earlier experience with real-time systems, implementing of specialized hardware processors based on the programmable FPGA systems has been proposed in the pipeline architecture. In particular, the following processors are presented: median filter and morphological processor. The structure of a universal reconfigurable processor developed has been proposed as well. Experimental results are presented as delays on LCA level implementation for median filter, morphological processor, convolution processor, look-up-table processor, logic processor and histogram processor. These times compare with delays in general purpose processor and DSP processor.

  4. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  5. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  6. Catalytic pyrolysis of olive mill wastewater sludge

    Science.gov (United States)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  7. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  8. Reconfigurable VLIW Processor for Software Defined Radio, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We will design and formally verify a VLIW processor that is radiation-hardened, and where the VLIW instructions consist of predicated RISC instructions from the...

  9. Detailed algorithmic description of a processor: a recipe for ...

    African Journals Online (AJOL)

    International Journal of Natural and Applied Sciences ... a simple developed compiler could generate the code of a simple programming language. ... It should be noted that such code generation must be done on a particular processor- for ...

  10. Analysis of Intel IA-64 Processor Support for Secure Systems

    National Research Council Canada - National Science Library

    Unalmis, Bugra

    2001-01-01

    .... Systems could be constructed for which serious security threats would be eliminated. This thesis explores the Intel IA-64 processor's hardware support and its relationship to software for building a secure system...

  11. Fast parallel computation of polynomials using few processors

    DEFF Research Database (Denmark)

    Valiant, Leslie; Skyum, Sven

    1981-01-01

    It is shown that any multivariate polynomial that can be computed sequentially in C steps and has degree d can be computed in parallel in 0((log d) (log C + log d)) steps using only (Cd)0(1) processors....

  12. Optical backplane interconnect switch for data processors and computers

    Science.gov (United States)

    Hendricks, Herbert D.; Benz, Harry F.; Hammer, Jacob M.

    1989-01-01

    An optoelectronic integrated device design is reported which can be used to implement an all-optical backplane interconnect switch. The switch is sized to accommodate an array of processors and memories suitable for direct replacement into the basic avionic multiprocessor backplane. The optical backplane interconnect switch is also suitable for direct replacement of the PI bus traffic switch and at the same time, suitable for supporting pipelining of the processor and memory. The 32 bidirectional switchable interconnects are configured with broadcast capability for controls, reconfiguration, and messages. The approach described here can handle a serial interconnection of data processors or a line-to-link interconnection of data processors. An optical fiber demonstration of this approach is presented.

  13. High-speed packet filtering utilizing stream processors

    Science.gov (United States)

    Hummel, Richard J.; Fulp, Errin W.

    2009-04-01

    Parallel firewalls offer a scalable architecture for the next generation of high-speed networks. While these parallel systems can be implemented using multiple firewalls, the latest generation of stream processors can provide similar benefits with a significantly reduced latency due to locality. This paper describes how the Cell Broadband Engine (CBE), a popular stream processor, can be used as a high-speed packet filter. Results show the CBE can potentially process packets arriving at a rate of 1 Gbps with a latency less than 82 μ-seconds. Performance depends on how well the packet filtering process is translated to the unique stream processor architecture. For example the method used for transmitting data and control messages among the pseudo-independent processor cores has a significant impact on performance. Experimental results will also show the current limitations of a CBE operating system when used to process packets. Possible solutions to these issues will be discussed.

  14. 2009 Survey of Gulf of Mexico Dockside Seafood Processors

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This survey gathered and analyze economic data from seafood processors throughout the states in the Gulf region. The survey sought to collect financial variables...

  15. Huffman-based code compression techniques for embedded processors

    KAUST Repository

    Bonny, Mohamed Talal; Henkel, Jö rg

    2010-01-01

    % for ARM and MIPS, respectively. In our compression technique, we have conducted evaluations using a representative set of applications and we have applied each technique to two major embedded processor architectures, namely ARM and MIPS. © 2010 ACM.

  16. High-Performance Linear Algebra Processor using FPGA

    National Research Council Canada - National Science Library

    Johnson, J

    2004-01-01

    With recent advances in FPGA (Field Programmable Gate Array) technology it is now feasible to use these devices to build special purpose processors for floating point intensive applications that arise in scientific computing...

  17. Particle simulation on a distributed memory highly parallel processor

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Ikesaka, Morio

    1990-01-01

    This paper describes parallel molecular dynamics simulation of atoms governed by local force interaction. The space in the model is divided into cubic subspaces and mapped to the processor array of the CAP-256, a distributed memory, highly parallel processor developed at Fujitsu Labs. We developed a new technique to avoid redundant calculation of forces between atoms in different processors. Experiments showed the communication overhead was less than 5%, and the idle time due to load imbalance was less than 11% for two model problems which contain 11,532 and 46,128 argon atoms. From the software simulation, the CAP-II which is under development is estimated to be about 45 times faster than CAP-256 and will be able to run the same problem about 40 times faster than Fujitsu's M-380 mainframe when 256 processors are used. (author)

  18. Radiation Tolerant Software Defined Video Processor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MaXentric's is proposing a radiation tolerant Software Define Video Processor, codenamed SDVP, for the problem of advanced motion imaging in the space environment....

  19. Assembly processor program converts symbolic programming language to machine language

    Science.gov (United States)

    Pelto, E. V.

    1967-01-01

    Assembly processor program converts symbolic programming language to machine language. This program translates symbolic codes into computer understandable instructions, assigns locations in storage for successive instructions, and computer locations from symbolic addresses.

  20. Suboptimal processor for anomaly detection for system surveillance and diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Ciftcioglu, Oe.; Hoogenboom, J.E.; Dam, H. van

    1989-06-01

    Anomaly detection for nuclear reactor surveillance and diagnosis is described. The residual noise obtained as a result of autoregressive (AR) modelling is essential to obtain high sensitivity for anomaly detection. By means of the method of hypothesis testing a suboptimal anomaly detection processor is devised for system surveillance and diagnosis. Experiments are carried out to investigate the performance of the processor, which is in particular of interest for on-line and real-time applications.

  1. Reducing Competitive Cache Misses in Modern Processor Architectures

    OpenAIRE

    Prisagjanec, Milcho; Mitrevski, Pece

    2017-01-01

    The increasing number of threads inside the cores of a multicore processor, and competitive access to the shared cache memory, become the main reasons for an increased number of competitive cache misses and performance decline. Inevitably, the development of modern processor architectures leads to an increased number of cache misses. In this paper, we make an attempt to implement a technique for decreasing the number of competitive cache misses in the first level of cache memory. This tec...

  2. UA1 upgrade first-level calorimeter trigger processor

    International Nuclear Information System (INIS)

    Bains, N.; Charlton, D.; Ellis, N.; Garvey, J.; Gregory, J.; Jimack, M.P.; Jovanovic, P.; Kenyon, I.R.; Baird, S.A.; Campbell, D.; Cawthraw, M.; Coughlan, J.; Flynn, P.; Galagedera, S.; Grayer, G.; Halsall, R.; Shah, T.P.; Stephens, R.; Eisenhandler, E.; Fensome, I.; Landon, M.

    1989-01-01

    A new first-level trigger processor has been built for the UA1 experiment on the Cern SppS Collider. The processor exploits the fine granularity of the new UA1 uranium-TMP calorimeter to improve the selectivity of the trigger. The new electron trigger has improved hadron jet rejection, achieved by requiring low energy deposition around the electromagnetic cluster. A missing transverse energy trigger and a total energy trigger have also been implemented. (orig.)

  3. GA103: A microprogrammable processor for online filtering

    International Nuclear Information System (INIS)

    Calzas, A.; Danon, G.; Bouquet, B.

    1981-01-01

    GA 103 is a 16 bit microprogrammable processor which emulates the PDP 11 instruction set. It is based on the Am 2900 slices. It allows user-implemented microinstructions and addition of hardwired processors. It will perform on-line filtering tasks in the NA 14 experiment at CERN, based on the reconstruction of transverse momentum of photons detected in a lead glass calorimeter. (orig.)

  4. 16-Bit RISC Processor Design for Convolution Application

    OpenAIRE

    Anand Nandakumar Shardul

    2013-01-01

    In this project, we propose a 16-bit non-pipelined RISC processor, which is used for signal processing applications. The processor consists of the blocks, namely, program counter, clock control unit, ALU, IDU and registers. Advantageous architectural modifications have been made in the incremented circuit used in program counter and carry select adder unit of the ALU in the RISC CPU core. Furthermore, a high speed and low power modified modifies multiplier has been designed and introduced in ...

  5. The Serial Link Processor for the Fast TracKer (FTK) processor at ATLAS

    CERN Document Server

    Biesuz, Nicolo Vladi; The ATLAS collaboration; Luciano, Pierluigi; Magalotti, Daniel; Rossi, Enrico

    2015-01-01

    The Associative Memory (AM) system of the Fast Tracker (FTK) processor has been designed to perform pattern matching using the hit information of the ATLAS experiment silicon tracker. The AM is the heart of FTK and is mainly based on the use of ASICs (AM chips) designed on purpose to execute pattern matching with a high degree of parallelism. It finds track candidates at low resolution that are seeds for a full resolution track fitting. To solve the very challenging data traffic problems inside FTK, multiple board and chip designs have been performed. The currently proposed solution is named the “Serial Link Processor” and is based on an extremely powerful network of 2 Gb/s serial links. This paper reports on the design of the Serial Link Processor consisting of two types of boards, the Local Associative Memory Board (LAMB), a mezzanine where the AM chips are mounted, and the Associative Memory Board (AMB), a 9U VME board which holds and exercises four LAMBs. We report on the performance of the intermedia...

  6. The Serial Link Processor for the Fast TracKer (FTK) processor at ATLAS

    CERN Document Server

    Andreani, A; The ATLAS collaboration; Beccherle, R; Beretta, M; Cipriani, R; Citraro, S; Citterio, M; Colombo, A; Crescioli, F; Dimas, D; Donati, S; Giannetti, P; Kordas, K; Lanza, A; Liberali, V; Luciano, P; Magalotti, D; Neroutsos, P; Nikolaidis, S; Piendibene, M; Sakellariou, A; Shojaii, S; Sotiropoulou, C-L; Stabile, A

    2014-01-01

    The Associative Memory (AM) system of the FTK processor has been designed to perform pattern matching using the hit information of the ATLAS silicon tracker. The AM is the heart of the FTK and it finds track candidates at low resolution that are seeds for a full resolution track fitting. To solve the very challenging data traffic problems inside the FTK, multiple designs and tests have been performed. The currently proposed solution is named the “Serial Link Processor” and is based on an extremely powerful network of 2 Gb/s serial links. This paper reports on the design of the Serial Link Processor consisting of the AM chip, an ASIC designed and optimized to perform pattern matching, and two types of boards, the Local Associative Memory Board (LAMB), a mezzanine where the AM chips are mounted, and the Associative Memory Board (AMB), a 9U VME board which holds and exercises four LAMBs. Special relevance will be given to the AMchip design that includes two custom cells optimized for low consumption. We repo...

  7. The Serial Link Processor for the Fast TracKer (FTK) processor at ATLAS

    CERN Document Server

    Biesuz, Nicolo Vladi; The ATLAS collaboration; Luciano, Pierluigi; Magalotti, Daniel; Rossi, Enrico

    2015-01-01

    The Associative Memory (AM) system of the Fast Tracker (FTK) processor has been designed to perform pattern matching using the hit information of the ATLAS experiment silicon tracker. The AM is the heart of FTK and is mainly based on the use of ASICs (AM chips) designed to execute pattern matching with a high degree of parallelism. The AM system finds track candidates at low resolution that are seeds for a full resolution track fitting. To solve the very challenging data traffic problems inside FTK, multiple board and chip designs have been performed. The currently proposed solution is named the “Serial Link Processor” and is based on an extremely powerful network of 828 2 Gbit/s serial links for a total in/out bandwidth of 56 Gb/s. This paper reports on the design of the Serial Link Processor consisting of two types of boards, the Local Associative Memory Board (LAMB), a mezzanine where the AM chips are mounted, and the Associative Memory Board (AMB), a 9U VME board which holds and exercises four LAMBs. ...

  8. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  9. Reconfigurable signal processor designs for advanced digital array radar systems

    Science.gov (United States)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining

    2017-05-01

    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  10. PixonVision real-time video processor

    Science.gov (United States)

    Puetter, R. C.; Hier, R. G.

    2007-09-01

    PixonImaging LLC and DigiVision, Inc. have developed a real-time video processor, the PixonVision PV-200, based on the patented Pixon method for image deblurring and denoising, and DigiVision's spatially adaptive contrast enhancement processor, the DV1000. The PV-200 can process NTSC and PAL video in real time with a latency of 1 field (1/60 th of a second), remove the effects of aerosol scattering from haze, mist, smoke, and dust, improve spatial resolution by up to 2x, decrease noise by up to 6x, and increase local contrast by up to 8x. A newer version of the processor, the PV-300, is now in prototype form and can handle high definition video. Both the PV-200 and PV-300 are FPGA-based processors, which could be spun into ASICs if desired. Obvious applications of these processors include applications in the DOD (tanks, aircraft, and ships), homeland security, intelligence, surveillance, and law enforcement. If developed into an ASIC, these processors will be suitable for a variety of portable applications, including gun sights, night vision goggles, binoculars, and guided munitions. This paper presents a variety of examples of PV-200 processing, including examples appropriate to border security, battlefield applications, port security, and surveillance from unmanned aerial vehicles.

  11. Review of trigger and on-line processors at SLAC

    International Nuclear Information System (INIS)

    Lankford, A.J.

    1984-07-01

    The role of trigger and on-line processors in reducing data rates to manageable proportions in e + e - physics experiments is defined not by high physics or background rates, but by the large event sizes of the general-purpose detectors employed. The rate of e + e - annihilation is low, and backgrounds are not high; yet the number of physics processes which can be studied is vast and varied. This paper begins by briefly describing the role of trigger processors in the e + e - context. The usual flow of the trigger decision process is illustrated with selected examples of SLAC trigger processing. The features are mentioned of triggering at the SLC and the trigger processing plans of the two SLC detectors: The Mark II and the SLD. The most common on-line processors at SLAC, the BADC, the SLAC Scanner Processor, the SLAC FASTBUS Controller, and the VAX CAMAC Channel, are discussed. Uses of the 168/E, 3081/E, and FASTBUS VAX processors are mentioned. The manner in which these processors are interfaced and the function they serve on line is described. Finally, the accelerator control system for the SLC is outlined. This paper is a survey in nature, and hence, relies heavily upon references to previous publications for detailed description of work mentioned here. 27 references, 9 figures, 1 table

  12. High-Speed General Purpose Genetic Algorithm Processor.

    Science.gov (United States)

    Hoseini Alinodehi, Seyed Pourya; Moshfe, Sajjad; Saber Zaeimian, Masoumeh; Khoei, Abdollah; Hadidi, Khairollah

    2016-07-01

    In this paper, an ultrafast steady-state genetic algorithm processor (GAP) is presented. Due to the heavy computational load of genetic algorithms (GAs), they usually take a long time to find optimum solutions. Hardware implementation is a significant approach to overcome the problem by speeding up the GAs procedure. Hence, we designed a digital CMOS implementation of GA in [Formula: see text] process. The proposed processor is not bounded to a specific application. Indeed, it is a general-purpose processor, which is capable of performing optimization in any possible application. Utilizing speed-boosting techniques, such as pipeline scheme, parallel coarse-grained processing, parallel fitness computation, parallel selection of parents, dual-population scheme, and support for pipelined fitness computation, the proposed processor significantly reduces the processing time. Furthermore, by relying on a built-in discard operator the proposed hardware may be used in constrained problems that are very common in control applications. In the proposed design, a large search space is achievable through the bit string length extension of individuals in the genetic population by connecting the 32-bit GAPs. In addition, the proposed processor supports parallel processing, in which the GAs procedure can be run on several connected processors simultaneously.

  13. A UNIX-based prototype biomedical virtual image processor

    International Nuclear Information System (INIS)

    Fahy, J.B.; Kim, Y.

    1987-01-01

    The authors have developed a multiprocess virtual image processor for the IBM PC/AT, in order to maximize image processing software portability for biomedical applications. An interprocess communication scheme, based on two-way metacode exchange, has been developed and verified for this purpose. Application programs call a device-independent image processing library, which transfers commands over a shared data bridge to one or more Autonomous Virtual Image Processors (AVIP). Each AVIP runs as a separate process in the UNIX operating system, and implements the device-independent functions on the image processor to which it corresponds. Application programs can control multiple image processors at a time, change the image processor configuration used at any time, and are completely portable among image processors for which an AVIP has been implemented. Run-time speeds have been found to be acceptable for higher level functions, although rather slow for lower level functions, owing to the overhead associated with sending commands and data over the shared data bridge

  14. A digital retina-like low-level vision processor.

    Science.gov (United States)

    Mertoguno, S; Bourbakis, N G

    2003-01-01

    This correspondence presents the basic design and the simulation of a low level multilayer vision processor that emulates to some degree the functional behavior of a human retina. This retina-like multilayer processor is the lower part of an autonomous self-organized vision system, called Kydon, that could be used on visually impaired people with a damaged visual cerebral cortex. The Kydon vision system, however, is not presented in this paper. The retina-like processor consists of four major layers, where each of them is an array processor based on hexagonal, autonomous processing elements that perform a certain set of low level vision tasks, such as smoothing and light adaptation, edge detection, segmentation, line recognition and region-graph generation. At each layer, the array processor is a 2D array of k/spl times/m hexagonal identical autonomous cells that simultaneously execute certain low level vision tasks. Thus, the hardware design and the simulation at the transistor level of the processing elements (PEs) of the retina-like processor and its simulated functionality with illustrative examples are provided in this paper.

  15. Air-Lubricated Thermal Processor For Dry Silver Film

    Science.gov (United States)

    Siryj, B. W.

    1980-09-01

    Since dry silver film is processed by heat, it may be viewed on a light table only seconds after exposure. On the other hand, wet films require both bulky chemicals and substantial time before an image can be analyzed. Processing of dry silver film, although simple in concept, is not so simple when reduced to practice. The main concern is the effect of film temperature gradients on uniformity of optical film density. RCA has developed two thermal processors, different in implementation but based on the same philosophy. Pressurized air is directed to both sides of the film to support the film and to conduct the heat to the film. Porous graphite is used as the medium through which heat and air are introduced. The initial thermal processor was designed to process 9.5-inch-wide film moving at speeds ranging from 0.0034 to 0.008 inch per second. The processor configuration was curved to match the plane generated by the laser recording beam. The second thermal processor was configured to process 5-inch-wide film moving at a continuously variable rate ranging from 0.15 to 3.5 inches per second. Due to field flattening optics used in this laser recorder, the required film processing area was plane. In addition, this processor was sectioned in the direction of film motion, giving the processor the capability of varying both temperature and effective processing area.

  16. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    126, No. 2, March 2014, pp. 341–351. c Indian Academy of Sciences. ... enhancement was realized by catalyst design, appropriate choice of reactor, better injection and .... Gas–liquid and liquid–solid transport processes in catalytic reactors.5.

  17. Methanol fuel processor and PEM fuel cell modeling for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Chrenko, Daniela [ISAT, University of Burgundy, Rue Mlle Bourgoise, 58000 Nevers (France); Gao, Fei; Blunier, Benjamin; Bouquain, David; Miraoui, Abdellatif [Transport and Systems Laboratory (SeT) - EA 3317/UTBM, Fuel cell Laboratory (FCLAB), University of Technology of Belfort-Montbeliard, Rue Thierry Mieg 90010, Belfort Cedex (France)

    2010-07-15

    The use of hydrocarbon fed fuel cell systems including a fuel processor can be an entry market for this emerging technology avoiding the problem of hydrogen infrastructure. This article presents a 1 kW low temperature PEM fuel cell system with fuel processor, the system is fueled by a mixture of methanol and water that is converted into hydrogen rich gas using a steam reformer. A complete system model including a fluidic fuel processor model containing evaporation, steam reformer, hydrogen filter, combustion, as well as a multi-domain fuel cell model is introduced. Experiments are performed with an IDATECH FCS1200 trademark fuel cell system. The results of modeling and experimentation show good results, namely with regard to fuel cell current and voltage as well as hydrogen production and pressure. The system is auto sufficient and shows an efficiency of 25.12%. The presented work is a step towards a complete system model, needed to develop a well adapted system control assuring optimized system efficiency. (author)

  18. An intercomparison of several diagnostic meteorological processors used in mesoscale air quality modeling

    Energy Technology Data Exchange (ETDEWEB)

    Vimont, J.C. [National Park Service, Lakewood, CO (United States); Scire, J.S. [Sigma Research Corp., Concord, MA (United States)

    1994-12-31

    A major component, and area of uncertainty, in mesoscale air quality modeling, is the specification of the meteorological fields which affect the transport and dispersion of pollutants. Various options are available for estimating the wind and mixing depth fields over a mesoscale domain. Estimates of the wind field can be obtained from spatial and temporal interpolation of available observations or from diagnostic meteorological models, which estimate a meteorological field from available data and adjust those fields based on parameterizations of physical processes. A major weakness of these processors is their dependence on spatially and temporally sparse input data, particularly upper air data. These problems are exacerbated in regions of complex terrain and along the shorelines of large bodies of water. Similarly, the estimation of mixing depth is also reliant upon sparse observations and the parameterization of the convective and mechanical processes. The meteorological processors examined in this analysis were developed to drive different Lagrangian puff models. This paper describes the algorithms these processors use to estimate the wind fields and mixing depth fields.

  19. High-speed special-purpose processor for event selection by number of direct tracks

    International Nuclear Information System (INIS)

    Kalinnikov, V.A.; Krastev, V.R.; Chudakov, E.A.

    1986-01-01

    A processor which uses data on events from five detector planes is described. To increase economy and speed in parallel processing, the processor converts the input data to superposition code and recognizes tracks by a generated search mask. The resolving time of the processor is ≤300 nsec. The processor is CAMAC-compatible and uses ECL integrated circuits

  20. Advanced Diesel Oil Fuel Processor Development

    Science.gov (United States)

    1986-06-01

    water exit 29 sample quencher: gas sample line inlet 30 sample quencher: gas sample line exit 31 sample quencher: cooling water inlet 32 desulfuriser ...exit line 33, 34 desulfurimer 35 heat exchanger: process gas exit (to desulfuriser ) 38 shift reactor inlet (top) 37 shift reactor: cooling air exit

  1. THOR Fields and Wave Processor - FWP

    Science.gov (United States)

    Soucek, Jan; Rothkaehl, Hanna; Ahlen, Lennart; Balikhin, Michael; Carr, Christopher; Dekkali, Moustapha; Khotyaintsev, Yuri; Lan, Radek; Magnes, Werner; Morawski, Marek; Nakamura, Rumi; Uhlir, Ludek; Yearby, Keith; Winkler, Marek; Zaslavsky, Arnaud

    2017-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first spacecraft mission dedicated to the study of plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all THOR fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer, and search-coil magnetometer (SCM), and perform signal digitization and on-board data processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The scientific value of highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation will further improve on this heritage. Large dynamic range of the instruments will be complemented by a thorough electromagnetic cleanliness program, which will prevent perturbation of field measurements by interference from payload and platform subsystems. Taking advantage of the capabilities of modern electronics and the large telemetry bandwidth of THOR, FWP will provide multi-component electromagnetic field waveforms and spectral data products at a high time resolution. Fully synchronized sampling of many signals will allow to resolve wave phase information and estimate wavelength via interferometric correlations between EFI probes. FWP will also implement a plasma resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will rapidly transmit information about magnetic field vector and spacecraft potential to the

  2. Performance of Artificial Intelligence Workloads on the Intel Core 2 Duo Series Desktop Processors

    OpenAIRE

    Abdul Kareem PARCHUR; Kuppangari Krishna RAO; Fazal NOORBASHA; Ram Asaray SINGH

    2010-01-01

    As the processor architecture becomes more advanced, Intel introduced its Intel Core 2 Duo series processors. Performance impact on Intel Core 2 Duo processors are analyzed using SPEC CPU INT 2006 performance numbers. This paper studied the behavior of Artificial Intelligence (AI) benchmarks on Intel Core 2 Duo series processors. Moreover, we estimated the task completion time (TCT) @1 GHz, @2 GHz and @3 GHz Intel Core 2 Duo series processors frequency. Our results show the performance scalab...

  3. Digital signal processor for silicon audio playback devices; Silicon audio saisei kikiyo digital signal processor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The digital audio signal processor (DSP) TC9446F series has been developed silicon audio playback devices with a memory medium of, e.g., flash memory, DVD players, and AV devices, e.g., TV sets. It corresponds to AAC (advanced audio coding) (2ch) and MP3 (MPEG1 Layer3), as the audio compressing techniques being used for transmitting music through an internet. It also corresponds to compressed types, e.g., Dolby Digital, DTS (digital theater system) and MPEG2 audio, being adopted for, e.g., DVDs. It can carry a built-in audio signal processing program, e.g., Dolby ProLogic, equalizer, sound field controlling, and 3D sound. TC9446XB has been lined up anew. It adopts an FBGA (fine pitch ball grid array) package for portable audio devices. (translated by NEDO)

  4. The tritium labeling of Butibufen by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    Santamaria, J.; Rebollo, D.

    1986-01-01

    The labeling of a new non-steroidal antiinflammatory agent, Butibufen (2-(4-isobutylphenyl) butyric acid) was studied. The method used was heterogeneous catalytic exchange between Butibufen and tritiated water, obtained in situ. Purification was accomplished through thin layer chromatography. Concentration, purity and specific activity of the labeled drug were determined by ultraviolet and liquid scintillation techniques. (Author) 7 refs

  5. Catalytic Synthesis of Ethyl Ester From Some Common Oils ...

    African Journals Online (AJOL)

    Catalytic conversion of ethanol to fatty acid ethyl esters (FAEE) was carried out by homogeneous and heterogeneous transesterification of melon seed, shea butter and neem seed oils using NaOH, KOH and 5wt%CaO/Al2O3 catalyst systems respectively. Oil content of the seeds from n-hexane or hot water extract ranged ...

  6. [Improving speech comprehension using a new cochlear implant speech processor].

    Science.gov (United States)

    Müller-Deile, J; Kortmann, T; Hoppe, U; Hessel, H; Morsnowski, A

    2009-06-01

    The aim of this multicenter clinical field study was to assess the benefits of the new Freedom 24 sound processor for cochlear implant (CI) users implanted with the Nucleus 24 cochlear implant system. The study included 48 postlingually profoundly deaf experienced CI users who demonstrated speech comprehension performance with their current speech processor on the Oldenburg sentence test (OLSA) in quiet conditions of at least 80% correct scores and who were able to perform adaptive speech threshold testing using the OLSA in noisy conditions. Following baseline measures of speech comprehension performance with their current speech processor, subjects were upgraded to the Freedom 24 speech processor. After a take-home trial period of at least 2 weeks, subject performance was evaluated by measuring the speech reception threshold with the Freiburg multisyllabic word test and speech intelligibility with the Freiburg monosyllabic word test at 50 dB and 70 dB in the sound field. The results demonstrated highly significant benefits for speech comprehension with the new speech processor. Significant benefits for speech comprehension were also demonstrated with the new speech processor when tested in competing background noise.In contrast, use of the Abbreviated Profile of Hearing Aid Benefit (APHAB) did not prove to be a suitably sensitive assessment tool for comparative subjective self-assessment of hearing benefits with each processor. Use of the preprocessing algorithm known as adaptive dynamic range optimization (ADRO) in the Freedom 24 led to additional improvements over the standard upgrade map for speech comprehension in quiet and showed equivalent performance in noise. Through use of the preprocessing beam-forming algorithm BEAM, subjects demonstrated a highly significant improved signal-to-noise ratio for speech comprehension thresholds (i.e., signal-to-noise ratio for 50% speech comprehension scores) when tested with an adaptive procedure using the Oldenburg

  7. A programmable systolic trigger processor for FERA bus data

    International Nuclear Information System (INIS)

    Appelquist, G.; Hovander, B.; Sellden, B.; Bohm, C.

    1992-09-01

    A generic CAMAC based trigger processor module for fast processing of large amounts of ADC data, has been designed. This module has been realised using complex programmable gate arrays (LCAs from XILINX). The gate arrays have been connected to memories and multipliers in such a way that different gate array configurations can cover a wide range of module applications. Using this module, it is possible to construct complex trigger processors. The module uses both the fast ECL FERA bus and the CAMAC bus for inputs and outputs. The latter, however, is primarily used for set-up and control but may also be used for data output. Large numbers of ADCs can be served by a hierarchical arrangement of trigger processor modules, processing ADC data with pipe-line arithmetics producing the final result at the apex of the pyramid. The trigger decision will be transmitted to the data acquisition system via a logic signal while numeric results may be extracted by the CAMAC controller. The trigger processor was originally developed for the proposed neutral particle search experiment at CERN, NUMASS. There it was designed to serve as a second level trigger processor. It was required to correct all ADC raw data for efficiency and pedestal, calculate the total calorimeter energy, obtain the optimal time of flight data and calculate the particle mass. A suitable mass cut would then deliver the trigger decision. More complex triggers were also considered. (au)

  8. Low voltage 80 KV to 125 KV electron processors

    International Nuclear Information System (INIS)

    Lauppi, U.V.

    1999-01-01

    The classic electron beam technology made use of accelerating energies in the voltage range of 300 to 800 kV. The first EB processors - built for the curing of coatings - operated at 300 kV. The products to be treated were thicker than a simple layer of coating with thicknesses up to 100g and more. It was only in the beginning of the 1970's that industrial EB processors with accelerating voltages below 300 kV appeared on the market. Our company developed the first commercial electron accelerator without a beam scanner. The new EB machine featured a linear cathode, emitting a shower or 'curtain' of electrons over the full width of the product. These units were much smaller than anv previous EB processors and dedicated to the curing of coatings and other thin layers. ESI's first EB units operated with accelerating voltages between 150 and 200 kV. In 1993 ESI announced the introduction of a new generation of Electrocure. EB processors operating at 120 kV, and in 1998, at the RadTech North America '98 Conference in Chicago, the introduction of an 80 kV electron beam processor under the designation Microbeam LV

  9. Design of RISC Processor Using VHDL and Cadence

    Science.gov (United States)

    Moslehpour, Saeid; Puliroju, Chandrasekhar; Abu-Aisheh, Akram

    The project deals about development of a basic RISC processor. The processor is designed with basic architecture consisting of internal modules like clock generator, memory, program counter, instruction register, accumulator, arithmetic and logic unit and decoder. This processor is mainly used for simple general purpose like arithmetic operations and which can be further developed for general purpose processor by increasing the size of the instruction register. The processor is designed in VHDL by using Xilinx 8.1i version. The present project also serves as an application of the knowledge gained from past studies of the PSPICE program. The study will show how PSPICE can be used to simplify massive complex circuits designed in VHDL Synthesis. The purpose of the project is to explore the designed RISC model piece by piece, examine and understand the Input/ Output pins, and to show how the VHDL synthesis code can be converted to a simplified PSPICE model. The project will also serve as a collection of various research materials about the pieces of the circuit.

  10. High-speed BWR power plant simulations on the special-purpose peripheral processor AD10

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.

    1985-01-01

    A newly developed technique is described for fast, on-line simulations of normal and accidental transients in nuclear power plants. The technique is based on the utilization of the special-purpose peripheral processor AD10, which is specifically designed for high-speed systems simulations through integration of large systems of nonlinear ordinary differential equations. The Peach Bottom-II Boiling Water Reactor power plant has been simulated and results are presented. It is shown that the new technique not only advances safety analyses but also supports plant monitoring, failure diagnosis and accident mitigation, as well as the training of nuclear power plant operators. (author)

  11. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  12. Post-treatment of refinery wastewater effluent using a combination of AOPs (H2O2 photolysis and catalytic wet peroxide oxidation) for possible water reuse. Comparison of low and medium pressure lamp performance.

    Science.gov (United States)

    Rueda-Márquez, J J; Levchuk, I; Salcedo, I; Acevedo-Merino, A; Manzano, M A

    2016-03-15

    The main aim of this work was to study the feasibility of multi-barrier treatment (MBT) consisting of filtration, hydrogen peroxide photolysis (H2O2/UVC) and catalytic wet peroxide oxidation (CWPO) for post-treatment of petroleum refinery effluent. Also the possibility of water reuse or safe discharge was considered. The performance of MBT using medium (MP) and low (LP) pressure lamps was compared as well as operation and maintenance (O&M) cost. Decomposition of organic compounds was followed by means of gas chromatography-mass spectrometry (GC-MS), total organic carbon (TOC) and chemical oxygen demand (COD) analysis. After filtration step (25 μm) turbidity and concentration of suspended solids decreased by 92% and 80%, respectively. During H2O2/UVC process with LP lamp at optimal conditions (H2O2:TOC ratio 8 and UVC dose received by water 5.28 WUVC s cm(-2)) removal of phenolic compounds, TOC and COD was 100%, 52.3% and 84.3%, respectively. Complete elimination of phenolic compounds, 47.6% of TOC and 91% of COD was achieved during H2O2/UVC process with MP lamp at optimal conditions (H2O2:TOC ratio 5, UVC dose received by water 6.57 WUVC s cm(-2)). In order to compare performance of H2O2/UVC treatment with different experimental set up, the UVC dose required for removal of mg L(-1) of COD was suggested as a parameter and successfully applied. The hydrophilicity of H2O2/UVC effluent significantly increased which in turn enhanced the oxidation of organic compounds during CWPO step. After H2O2/UVC treatment with LP and MP lamps residual H2O2 concentration was 160 mg L(-1) and 96.5 mg L(-1), respectively. Remaining H2O2 was fully consumed during subsequent CWPO step (6 and 3.5 min of contact time for LP and MP, respectively). Total TOC and COD removal after MBT was 94.7% and 92.2% (using LP lamp) and 89.6% and 95%, (using MP lamp), respectively. The O&M cost for MBT with LP lamp was estimated to be 0.44 € m(-3) while with MP lamp it was nearly five

  13. Low and medium heating value coal gas catalytic combustor characterization

    Science.gov (United States)

    Schwab, J. A.

    1982-01-01

    Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.

  14. Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance.

    Science.gov (United States)

    Mourdikoudis, Stefanos; Altantzis, Thomas; Liz-Marzán, Luis M; Bals, Sara; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2016-05-21

    Water-soluble Pt nanoflowers (NFs) were prepared by diethylene glycol-mediated reduction of Pt acetylacetonate (Pt(acac) 2 ) in the presence of polyethylenimine. Advanced electron microscopy analysis showed that the NFs consist of multiple branches with a truncated cubic morphology and different crystallographic orientations. We demonstrate that the nature of the solvent strongly influences the resulting morphology. The catalytic performance of the Pt NFs in 4-nitrophenol reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, the Pt NFs display good catalytic reusability with no loss of activity after five consecutive cycles.

  15. An intercomparison of Canadian external dosimetry processors for radiation protection

    International Nuclear Information System (INIS)

    1989-10-01

    The five Canadian external dosimetry processors have participated in a two-stage intercomparison. The first stage involved dosimeters to known radiation fields under controlled laboratory conditions. The second stage involved exposing dosimeters to radiation fields in power reactor working environments. The results for each stage indicated the dose reported by each processor relative to an independently determined dose and relative to the others. The results of the intercomparisons confirm the original supposition: namely that the average differences in reported dose among five processors are much less than the uncertainty limits recommended by the ICRP. This report provides a description of the experimental methods as well as a discussion of the results for each stage. The report also includes a set of recommendations

  16. First Results of an “Artificial Retina” Processor Prototype

    International Nuclear Information System (INIS)

    Cenci, Riccardo; Bedeschi, Franco; Marino, Pietro; Morello, Michael J.; Ninci, Daniele; Piucci, Alessio; Punzi, Giovanni; Ristori, Luciano; Spinella, Franco; Stracka, Simone; Tonelli, Diego; Walsh, John

    2016-01-01

    We report on the performance of a specialized processor capable of reconstructing charged particle tracks in a realistic LHC silicon tracker detector, at the same speed of the readout and with sub-microsecond latency. The processor is based on an innovative pattern-recognition algorithm, called “artificial retina algorithm”, inspired from the vision system of mammals. A prototype of the processor has been designed, simulated, and implemented on Tel62 boards equipped with high-bandwidth Altera Stratix III FPGA devices. The prototype is the first step towards a real-time track reconstruction device aimed at processing complex events of high-luminosity LHC experiments at 40 MHz crossing rate

  17. Modal Processor Effects Inspired by Hammond Tonewheel Organs

    Directory of Open Access Journals (Sweden)

    Kurt James Werner

    2016-06-01

    Full Text Available In this design study, we introduce a novel class of digital audio effects that extend the recently introduced modal processor approach to artificial reverberation and effects processing. These pitch and distortion processing effects mimic the design and sonics of a classic additive-synthesis-based electromechanical musical instrument, the Hammond tonewheel organ. As a reverb effect, the modal processor simulates a room response as the sum of resonant filter responses. This architecture provides precise, interactive control over the frequency, damping, and complex amplitude of each mode. Into this framework, we introduce two types of processing effects: pitch effects inspired by the Hammond organ’s equal tempered “tonewheels”, “drawbar” tone controls, vibrato/chorus circuit, and distortion effects inspired by the pseudo-sinusoidal shape of its tonewheels and electromagnetic pickup distortion. The result is an effects processor that imprints the Hammond organ’s sonics onto any audio input.

  18. Safety-critical Java on a time-predictable processor

    DEFF Research Database (Denmark)

    Korsholm, Stephan E.; Schoeberl, Martin; Puffitsch, Wolfgang

    2015-01-01

    For real-time systems the whole execution stack needs to be time-predictable and analyzable for the worst-case execution time (WCET). This paper presents a time-predictable platform for safety-critical Java. The platform consists of (1) the Patmos processor, which is a time-predictable processor......; (2) a C compiler for Patmos with support for WCET analysis; (3) the HVM, which is a Java-to-C compiler; (4) the HVM-SCJ implementation which supports SCJ Level 0, 1, and 2 (for both single and multicore platforms); and (5) a WCET analysis tool. We show that real-time Java programs translated to C...... and compiled to a Patmos binary can be analyzed by the AbsInt aiT WCET analysis tool. To the best of our knowledge the presented system is the second WCET analyzable real-time Java system; and the first one on top of a RISC processor....

  19. Token-Aware Completion Functions for Elastic Processor Verification

    Directory of Open Access Journals (Sweden)

    Sudarshan K. Srinivasan

    2009-01-01

    Full Text Available We develop a formal verification procedure to check that elastic pipelined processor designs correctly implement their instruction set architecture (ISA specifications. The notion of correctness we use is based on refinement. Refinement proofs are based on refinement maps, which—in the context of this problem—are functions that map elastic processor states to states of the ISA specification model. Data flow in elastic architectures is complicated by the insertion of any number of buffers in any place in the design, making it hard to construct refinement maps for elastic systems in a systematic manner. We introduce token-aware completion functions, which incorporate a mechanism to track the flow of data in elastic pipelines, as a highly automated and systematic approach to construct refinement maps. We demonstrate the efficiency of the overall verification procedure based on token-aware completion functions using six elastic pipelined processor models based on the DLX architecture.

  20. A Bayesian sequential processor approach to spectroscopic portal system decisions

    Energy Technology Data Exchange (ETDEWEB)

    Sale, K; Candy, J; Breitfeller, E; Guidry, B; Manatt, D; Gosnell, T; Chambers, D

    2007-07-31

    The development of faster more reliable techniques to detect radioactive contraband in a portal type scenario is an extremely important problem especially in this era of constant terrorist threats. Towards this goal the development of a model-based, Bayesian sequential data processor for the detection problem is discussed. In the sequential processor each datum (detector energy deposit and pulse arrival time) is used to update the posterior probability distribution over the space of model parameters. The nature of the sequential processor approach is that a detection is produced as soon as it is statistically justified by the data rather than waiting for a fixed counting interval before any analysis is performed. In this paper the Bayesian model-based approach, physics and signal processing models and decision functions are discussed along with the first results of our research.

  1. Processor farming in two-level analysis of historical bridge

    Science.gov (United States)

    Krejčí, T.; Kruis, J.; Koudelka, T.; Šejnoha, M.

    2017-11-01

    This contribution presents a processor farming method in connection with a multi-scale analysis. In this method, each macro-scopic integration point or each finite element is connected with a certain meso-scopic problem represented by an appropriate representative volume element (RVE). The solution of a meso-scale problem provides then effective parameters needed on the macro-scale. Such an analysis is suitable for parallel computing because the meso-scale problems can be distributed among many processors. The application of the processor farming method to a real world masonry structure is illustrated by an analysis of Charles bridge in Prague. The three-dimensional numerical model simulates the coupled heat and moisture transfer of one half of arch No. 3. and it is a part of a complex hygro-thermo-mechanical analysis which has been developed to determine the influence of climatic loading on the current state of the bridge.

  2. A single chip pulse processor for nuclear spectroscopy

    International Nuclear Information System (INIS)

    Hilsenrath, F.; Bakke, J.C.; Voss, H.D.

    1985-01-01

    A high performance digital pulse processor, integrated into a single gate array microcircuit, has been developed for spaceflight applications. The new approach takes advantage of the latest CMOS high speed A/D flash converters and low-power gated logic arrays. The pulse processor measures pulse height, pulse area and the required timing information (e.g. multi detector coincidence and pulse pile-up detection). The pulse processor features high throughput rate (e.g. 0.5 Mhz for 2 usec gausssian pulses) and improved differential linearity (e.g. + or - 0.2 LSB for a + or - 1 LSB A/D). Because of the parallel digital architecture of the device, the interface is microprocessor bus compatible. A satellite flight application of this module is presented for use in the X-ray imager and high energy particle spectrometers of the PEM experiment on the Upper Atmospheric Research Satellite

  3. The ATLAS Level-1 Central Trigger Processor (CTP)

    CERN Document Server

    Spiwoks, Ralf; Ellis, Nick; Farthouat, P; Gällnö, P; Haller, J; Krasznahorkay, A; Maeno, T; Pauly, T; Pessoa-Lima, H; Resurreccion-Arcas, I; Schuler, G; De Seixas, J M; Torga-Teixeira, R; Wengler, T

    2005-01-01

    The ATLAS Level-1 Central Trigger Processor (CTP) combines information from calorimeter and muon trigger processors and makes the final Level-1 Accept (L1A) decision on the basis of lists of selection criteria (trigger menus). In addition to the event-selection decision, the CTP also provides trigger summary information to the Level-2 trigger and the data acquisition system. It further provides accumulated and bunch-by-bunch scaler data for monitoring of the trigger, detector and beam conditions. The CTP is presented and results are shown from tests with the calorimeter adn muon trigger processors connected to detectors in a particle beam, as well as from stand-alone full-system tests in the laboratory which were used to validate the CTP.

  4. Stepping motor control processor reference manual. Volume I

    International Nuclear Information System (INIS)

    Holloway, F.W.; VanArsdall, P.J.; Suski, G.J.; Gant, R.G.; Rash, M.

    1980-01-01

    This manual is intended to serve several purposes. The first goal is to describe the capabilities and operation of the SMC processor package from an operator or user point of view. Secondly, the manual will describe in some detail the basic hardware elements and how they can be used effectively to implement a step motor control system. Practical information on the use, installation and checkout of the hardware set is presented in the following sections along with programming suggestions. Available related system software is described in this manual for reference and as an aid in understanding the system architecture. Section two presents an overview and operations manual of the SMC processor describing its composition and functional capabilities. Section three contains hardware descriptions in some detail for the LLL-designed hardware used in the SMC processor. Basic theory of operation and important features are explained

  5. Embedded Processor Based Automatic Temperature Control of VLSI Chips

    Directory of Open Access Journals (Sweden)

    Narasimha Murthy Yayavaram

    2009-01-01

    Full Text Available This paper presents embedded processor based automatic temperature control of VLSI chips, using temperature sensor LM35 and ARM processor LPC2378. Due to the very high packing density, VLSI chips get heated very soon and if not cooled properly, the performance is very much affected. In the present work, the sensor which is kept very near proximity to the IC will sense the temperature and the speed of the fan arranged near to the IC is controlled based on the PWM signal generated by the ARM processor. A buzzer is also provided with the hardware, to indicate either the failure of the fan or overheating of the IC. The entire process is achieved by developing a suitable embedded C program.

  6. A Processor-Sharing Scheduling Strategy for NFV Nodes

    Directory of Open Access Journals (Sweden)

    Giuseppe Faraci

    2016-01-01

    Full Text Available The introduction of the two paradigms SDN and NFV to “softwarize” the current Internet is making management and resource allocation two key challenges in the evolution towards the Future Internet. In this context, this paper proposes Network-Aware Round Robin (NARR, a processor-sharing strategy, to reduce delays in traversing SDN/NFV nodes. The application of NARR alleviates the job of the Orchestrator by automatically working at the intranode level, dynamically assigning the processor slices to the virtual network functions (VNFs according to the state of the queues associated with the output links of the network interface cards (NICs. An extensive simulation set is presented to show the improvements achieved with respect to two more processor-sharing strategies chosen as reference.

  7. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  8. Satellite on-board real-time SAR processor prototype

    Science.gov (United States)

    Bergeron, Alain; Doucet, Michel; Harnisch, Bernd; Suess, Martin; Marchese, Linda; Bourqui, Pascal; Desnoyers, Nicholas; Legros, Mathieu; Guillot, Ludovic; Mercier, Luc; Châteauneuf, François

    2017-11-01

    A Compact Real-Time Optronic SAR Processor has been successfully developed and tested up to a Technology Readiness Level of 4 (TRL4), the breadboard validation in a laboratory environment. SAR, or Synthetic Aperture Radar, is an active system allowing day and night imaging independent of the cloud coverage of the planet. The SAR raw data is a set of complex data for range and azimuth, which cannot be compressed. Specifically, for planetary missions and unmanned aerial vehicle (UAV) systems with limited communication data rates this is a clear disadvantage. SAR images are typically processed electronically applying dedicated Fourier transformations. This, however, can also be performed optically in real-time. Originally the first SAR images were optically processed. The optical Fourier processor architecture provides inherent parallel computing capabilities allowing real-time SAR data processing and thus the ability for compression and strongly reduced communication bandwidth requirements for the satellite. SAR signal return data are in general complex data. Both amplitude and phase must be combined optically in the SAR processor for each range and azimuth pixel. Amplitude and phase are generated by dedicated spatial light modulators and superimposed by an optical relay set-up. The spatial light modulators display the full complex raw data information over a two-dimensional format, one for the azimuth and one for the range. Since the entire signal history is displayed at once, the processor operates in parallel yielding real-time performances, i.e. without resulting bottleneck. Processing of both azimuth and range information is performed in a single pass. This paper focuses on the onboard capabilities of the compact optical SAR processor prototype that allows in-orbit processing of SAR images. Examples of processed ENVISAT ASAR images are presented. Various SAR processor parameters such as processing capabilities, image quality (point target analysis), weight and

  9. Benchmarking NWP Kernels on Multi- and Many-core Processors

    Science.gov (United States)

    Michalakes, J.; Vachharajani, M.

    2008-12-01

    Increased computing power for weather, climate, and atmospheric science has provided direct benefits for defense, agriculture, the economy, the environment, and public welfare and convenience. Today, very large clusters with many thousands of processors are allowing scientists to move forward with simulations of unprecedented size. But time-critical applications such as real-time forecasting or climate prediction need strong scaling: faster nodes and processors, not more of them. Moreover, the need for good cost- performance has never been greater, both in terms of performance per watt and per dollar. For these reasons, the new generations of multi- and many-core processors being mass produced for commercial IT and "graphical computing" (video games) are being scrutinized for their ability to exploit the abundant fine- grain parallelism in atmospheric models. We present results of our work to date identifying key computational kernels within the dynamics and physics of a large community NWP model, the Weather Research and Forecast (WRF) model. We benchmark and optimize these kernels on several different multi- and many-core processors. The goals are to (1) characterize and model performance of the kernels in terms of computational intensity, data parallelism, memory bandwidth pressure, memory footprint, etc. (2) enumerate and classify effective strategies for coding and optimizing for these new processors, (3) assess difficulties and opportunities for tool or higher-level language support, and (4) establish a continuing set of kernel benchmarks that can be used to measure and compare effectiveness of current and future designs of multi- and many-core processors for weather and climate applications.

  10. Heat dissipation for the Intel Core i5 processor using multiwalled carbon-nanotube-based ethylene glycol

    International Nuclear Information System (INIS)

    Thang, Bui Hung; Trinh, Pham Van; Quang, Le Dinh; Khoi, Phan Hong; Minh, Phan Ngoc; Huong, Nguyen Thi

    2014-01-01

    Carbon nanotubes (CNTs) are some of the most valuable materials with high thermal conductivity. The thermal conductivity of individual multiwalled carbon nanotubes (MWCNTs) grown by using chemical vapor deposition is 600 ± 100 Wm -1 K -1 compared with the thermal conductivity 419 Wm -1 K -1 of Ag. Carbon-nanotube-based liquids - a new class of nanomaterials, have shown many interesting properties and distinctive features offering potential in heat dissipation applications for electronic devices, such as computer microprocessor, high power LED, etc. In this work, a multiwalled carbon-nanotube-based liquid was made of well-dispersed hydroxyl-functional multiwalled carbon nanotubes (MWCNT-OH) in ethylene glycol (EG)/distilled water (DW) solutions by using Tween-80 surfactant and an ultrasonication method. The concentration of MWCNT-OH in EG/DW solutions ranged from 0.1 to 1.2 gram/liter. The dispersion of the MWCNT-OH-based EG/DW solutions was evaluated by using a Zeta-Sizer analyzer. The MWCNT-OH-based EG/DW solutions were used as coolants in the liquid cooling system for the Intel Core i5 processor. The thermal dissipation efficiency and the thermal response of the system were evaluated by directly measuring the temperature of the micro-processor using the Core Temp software and the temperature sensors built inside the micro-processor. The results confirmed the advantages of CNTs in thermal dissipation systems for computer processors and other high-power electronic devices.

  11. Nonlinear Wave Simulation on the Xeon Phi Knights Landing Processor

    OpenAIRE

    Hristov Ivan; Goranov Goran; Hristova Radoslava

    2018-01-01

    We consider an interesting from computational point of view standing wave simulation by solving coupled 2D perturbed Sine-Gordon equations. We make an OpenMP realization which explores both thread and SIMD levels of parallelism. We test the OpenMP program on two different energy equivalent Intel architectures: 2× Xeon E5-2695 v2 processors, (code-named “Ivy Bridge-EP”) in the Hybrilit cluster, and Xeon Phi 7250 processor (code-named “Knights Landing” (KNL). The results show 2 times better per...

  12. The Danish real-time SAR processor: first results

    DEFF Research Database (Denmark)

    Dall, Jørgen; Jørgensen, Jørn Hjelm; Netterstrøm, Anders

    1993-01-01

    A real-time processor (RTP) for the Danish airborne Synthetic Aperture Radar (SAR) has been designed and constructed at the Electromagnetics Institute. The implementation was completed in mid 1992, and since then the RTP has been operated successfully on several test and demonstration flights....... The processor is capable of focusing the entire swath of the raw SAR data into full resolution, and depending on the choice made by the on-board operator, either a high resolution one-look zoom image or a spatially multilooked overview image is displayed. After a brief design review, the paper addresses various...

  13. Matrix preconditioning: a robust operation for optical linear algebra processors.

    Science.gov (United States)

    Ghosh, A; Paparao, P

    1987-07-15

    Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.

  14. UNIBUS processor interface for a FASTBUS data acquisition system

    International Nuclear Information System (INIS)

    Larwill, M.; Lagerlund, T.D.; Barsotti, E.; Taff, L.M.; Franzen, J.

    1981-01-01

    Current work on a FASTBUS data acquisition system at Fermilab is described. The system will consist of three pieces of FASTBUS hardware: a UNIBUS processor interface (UPI), a dual-ported bulk memory, and a FASTBUS ''event builder'' (i.e., data acquisition processor). Primary efforts have been on specifying and constructing a UPI. The present specification includes capability for all basic FASTBUS operations, including list processing of consecutive FASTBUS operations. Some possible FASTBUS data acquisition system architectures employing the UPI are discussed along with some detailed specifications of the UPI itself

  15. Ring-array processor distribution topology for optical interconnects

    Science.gov (United States)

    Li, Yao; Ha, Berlin; Wang, Ting; Wang, Sunyu; Katz, A.; Lu, X. J.; Kanterakis, E.

    1992-01-01

    The existing linear and rectangular processor distribution topologies for optical interconnects, although promising in many respects, cannot solve problems such as clock skews, the lack of supporting elements for efficient optical implementation, etc. The use of a ring-array processor distribution topology, however, can overcome these problems. Here, a study of the ring-array topology is conducted with an aim of implementing various fast clock rate, high-performance, compact optical networks for digital electronic multiprocessor computers. Practical design issues are addressed. Some proof-of-principle experimental results are included.

  16. Global synchronization of parallel processors using clock pulse width modulation

    Science.gov (United States)

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  17. Post-silicon and runtime verification for modern processors

    CERN Document Server

    Wagner, Ilya

    2010-01-01

    The purpose of this book is to survey the state of the art and evolving directions in post-silicon and runtime verification. The authors start by giving an overview of the state of the art in verification, particularly current post-silicon methodologies in use in the industry, both for the domain of processor pipeline design and for memory subsystems. They then dive into the presentation of several new post-silicon verification solutions aimed at boosting the verification coverage of modern processors, dedicating several chapters to this topic. The presentation of runtime verification solution

  18. A VAX-FPS Loosely-Coupled Array of Processors

    International Nuclear Information System (INIS)

    Grosdidier, G.

    1987-03-01

    The main features of a VAX-FPS Loosely-Coupled Array of Processors (LCAP) set-up and the implementation of a High Energy Physics tracking program for off-line purposes will be described. This LCAP consists of a VAX 11/750 host and two FPS 64 bit attached processors. Before analyzing the performances of this LCAP, its characteristics will be outlined, especially from a user's point of vue, and will be briefly compared to those of the IBM-FPS LCAP

  19. Parallel Processor for 3D Recovery from Optical Flow

    Directory of Open Access Journals (Sweden)

    Jose Hugo Barron-Zambrano

    2009-01-01

    Full Text Available 3D recovery from motion has received a major effort in computer vision systems in the recent years. The main problem lies in the number of operations and memory accesses to be performed by the majority of the existing techniques when translated to hardware or software implementations. This paper proposes a parallel processor for 3D recovery from optical flow. Its main feature is the maximum reuse of data and the low number of clock cycles to calculate the optical flow, along with the precision with which 3D recovery is achieved. The results of the proposed architecture as well as those from processor synthesis are presented.

  20. FASTBUS Standard Routines implementation for Fermilab embedded processor boards

    International Nuclear Information System (INIS)

    Pangburn, J.; Patrick, J.; Kent, S.; Oleynik, G.; Pordes, R.; Votava, M.; Heyes, G.; Watson, W.A. III

    1992-10-01

    In collaboration with CEBAF, Fermilab's Online Support Department and the CDF experiment have produced a new implementation of the IEEE FASTBUS Standard Routines for two embedded processor FASTBUS boards: the Fermilab Smart Crate Controller (FSCC) and the FASTBUS Readout Controller (FRC). Features of this implementation include: portability (to other embedded processor boards), remote source-level debugging, high speed, optional generation of very high-speed code for readout applications, and built-in Sun RPC support for execution of FASTBUS transactions and lists over the network

  1. The associative memory system for the FTK processor at ATLAS

    CERN Document Server

    Magalotti, D; The ATLAS collaboration; Donati, S; Luciano, P; Piendibene, M; Giannetti, P; Lanza, A; Verzellesi, G; Sakellariou, Andreas; Billereau, W; Combe, J M

    2014-01-01

    In high energy physics experiments, the most interesting processes are very rare and hidden in an extremely large level of background. As the experiment complexity, accelerator backgrounds, and instantaneous luminosity increase, more effective and accurate data selection techniques are needed. The Fast TracKer processor (FTK) is a real time tracking processor designed for the ATLAS trigger upgrade. The FTK core is the Associative Memory system. It provides massive computing power to minimize the processing time of complex tracking algorithms executed online. This paper reports on the results and performance of a new prototype of Associative Memory system.

  2. Graphics processor efficiency for realization of rapid tabular computations

    International Nuclear Information System (INIS)

    Dudnik, V.A.; Kudryavtsev, V.I.; Us, S.A.; Shestakov, M.V.

    2016-01-01

    Capabilities of graphics processing units (GPU) and central processing units (CPU) have been investigated for realization of fast-calculation algorithms with the use of tabulated functions. The realization of tabulated functions is exemplified by the GPU/CPU architecture-based processors. Comparison is made between the operating efficiencies of GPU and CPU, employed for tabular calculations at different conditions of use. Recommendations are formulated for the use of graphical and central processors to speed up scientific and engineering computations through the use of tabulated functions

  3. Wavelength-encoded OCDMA system using opto-VLSI processors.

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  4. A fast processor for di-lepton triggers

    CERN Document Server

    Kostarakis, P; Barsotti, E; Conetti, S; Cox, B; Enagonio, J; Haldeman, M; Haynes, W; Katsanevas, S; Kerns, C; Lebrun, P; Smith, H; Soszyniski, T; Stoffel, J; Treptow, K; Turkot, F; Wagner, R

    1981-01-01

    As a new application of the Fermilab ECL-CAMAC logic modules a fast trigger processor was developed for Fermilab experiment E-537, aiming to measure the higher mass di-muon production by antiprotons. The processor matches the hit information received from drift chambers and scintillation counters, to find candidate muon tracks and determine their directions and momenta. The tracks are then paired to compute an invariant mass: when the computed mass falls within the desired range, the event is accepted. The process is accomplished in times of 5 to 10 microseconds, while achieving a trigger rate reduction of up to a factor of ten. (5 refs).

  5. ARM Processor Based Embedded System for Remote Data Acquisition

    OpenAIRE

    Raj Kumar Tiwari; Santosh Kumar Agrahari

    2014-01-01

    The embedded systems are widely used for the data acquisition. The data acquired may be used for monitoring various activity of the system or it can be used to control the parts of the system. Accessing various signals with remote location has greater advantage for multisite operation or unmanned systems. The remote data acquisition used in this paper is based on ARM processor. The Cortex M3 processor used in this system has in-built Ethernet controller which facilitate to acquire the remote ...

  6. Digital control card based on digital signal processor

    International Nuclear Information System (INIS)

    Hou Shigang; Yin Zhiguo; Xia Le

    2008-01-01

    A digital control card based on digital signal processor was developed. Two Freescale DSP-56303 processors were utilized to achieve 3 channels proportional- integral-differential regulations. The card offers high flexibility for 100 MeV cyclotron RF system development. It was used as feedback controller in low level radio frequency control prototype, with the feedback gain parameters continuously adjustable. By using high precision analog to digital converter with 500 kHz sampling rate, a regulation bandwidth of 20 kHz was achieved. (authors)

  7. OLYMPUS system and development of its pre-processor

    International Nuclear Information System (INIS)

    Okamoto, Masao; Takeda, Tatsuoki; Tanaka, Masatoshi; Asai, Kiyoshi; Nakano, Koh.

    1977-08-01

    The OLYMPUS SYSTEM developed by K. V. Roverts et al. was converted and introduced in computer system FACOM 230/75 of the JAERI Computing Center. A pre-processor was also developed for the OLYMPUS SYSTEM. The OLYMPUS SYSTEM is very useful for development, standardization and exchange of programs in thermonuclear fusion research and plasma physics. The pre-processor developed by the present authors is not only essential for the JAERI OLYMPUS SYSTEM, but also useful in manipulation, creation and correction of program files. (auth.)

  8. Wavelength-encoded OCDMA system using opto-VLSI processors

    Science.gov (United States)

    Aljada, Muhsen; Alameh, Kamal

    2007-07-01

    We propose and experimentally demonstrate a 2.5 Gbits/sper user wavelength-encoded optical code-division multiple-access encoder-decoder structure based on opto-VLSI processing. Each encoder and decoder is constructed using a single 1D opto-very-large-scale-integrated (VLSI) processor in conjunction with a fiber Bragg grating (FBG) array of different Bragg wavelengths. The FBG array spectrally and temporally slices the broadband input pulse into several components and the opto-VLSI processor generates codewords using digital phase holograms. System performance is measured in terms of the autocorrelation and cross-correlation functions as well as the eye diagram.

  9. Reconfigurable lattice mesh designs for programmable photonic processors.

    Science.gov (United States)

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A

    2016-05-30

    We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.

  10. Hardware Synchronization for Embedded Multi-Core Processors

    DEFF Research Database (Denmark)

    Stoif, Christian; Schoeberl, Martin; Liccardi, Benito

    2011-01-01

    Multi-core processors are about to conquer embedded systems — it is not the question of whether they are coming but how the architectures of the microcontrollers should look with respect to the strict requirements in the field. We present the step from one to multiple cores in this paper, establi......Multi-core processors are about to conquer embedded systems — it is not the question of whether they are coming but how the architectures of the microcontrollers should look with respect to the strict requirements in the field. We present the step from one to multiple cores in this paper...

  11. New Developments in the SCIAMACHY L2 Ground Processor

    Science.gov (United States)

    Gretschany, Sergei; Lichtenberg, Günter; Meringer, Markus; Theys, Nicolas; Lerot, Christophe; Liebing, Patricia; Noel, Stefan; Dehn, Angelika; Fehr, Thorsten

    2016-04-01

    SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric ChartographY) aboard ESA's environmental satellite ENVISAT observed the Earth's atmosphere in limb, nadir, and solar/lunar occultation geometries covering the UV-Visible to NIR spectral range. It is a joint project of Germany, the Netherlands and Belgium and was launched in February 2002. SCIAMACHY doubled its originally planned in-orbit lifetime of five years before the communication to ENVISAT was severed in April 2012, and the mission entered its post-operational phase. In order to preserve the best quality of the outstanding data recorded by SCIAMACHY, data processors are still being updated. This presentation will highlight three new developments that are currently being incorporated into the forthcoming Version 7 of ESA's operational Level 2 processor: 1. Tropospheric BrO, a new retrieval based on the scientific algorithm of (Theys et al., 2011). This algorithm had been originally developed for the GOME-2 sensor and later adapted for SCIAMACHY. The main principle of the new algorithm is to utilize BrO total columns (already an operational product) and split them into stratospheric VCDstrat and tropospheric VCDtrop fractions. BrO VCDstrat is determined from a climatological approach, driven by SCIAMACHY O3 and NO2 observations. VCDtrop is then determined simply as a difference: VCDtrop = VCDtotal - VCDstrat. 2. Improved cloud flagging using limb measurements (Liebing, 2015). Limb cloud flags are already part of the SCIAMACHY L2 product. They are currently calculated employing the scientific algorithm developed by (Eichmann et al., 2015). Clouds are categorized into four types: water, ice, polar stratospheric and noctilucent clouds. High atmospheric aerosol loadings, however, often lead to spurious cloud flags, when aerosols had been misidentified as clouds. The new algorithm will better discriminate between aerosol and clouds. It will also have a higher sensitivity w.r.t. thin clouds. 3. A new

  12. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    Science.gov (United States)

    Downie, John D.; Goodman, Joseph W.

    1989-10-01

    The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.

  13. The Trigger Processor and Trigger Processor Algorithms for the ATLAS New Small Wheel Upgrade

    CERN Document Server

    Lazovich, Tomo; The ATLAS collaboration

    2015-01-01

    The ATLAS New Small Wheel (NSW) is an upgrade to the ATLAS muon endcap detectors that will be installed during the next long shutdown of the LHC. Comprising both MicroMegas (MMs) and small-strip Thin Gap Chambers (sTGCs), this system will drastically improve the performance of the muon system in a high cavern background environment. The NSW trigger, in particular, will significantly reduce the rate of fake triggers coming from track segments in the endcap not originating from the interaction point. We will present an overview of the trigger, the proposed sTGC and MM trigger algorithms, and the hardware implementation of the trigger. In particular, we will discuss both the heart of the trigger, an ATCA system with FPGA-based trigger processors (using the same hardware platform for both MM and sTGC triggers), as well as the full trigger electronics chain, including dedicated cards for transmission of data via GBT optical links. Finally, we will detail the challenges of ensuring that the trigger electronics can ...

  14. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    Tanabe, K.; Iizuka, T.

    1983-04-01

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author) [pt

  15. Catalytic Decoupling of Quantum Information

    DEFF Research Database (Denmark)

    Majenz, Christian; Berta, Mario; Dupuis, Frédéric

    2017-01-01

    The decoupling technique is a fundamental tool in quantum information theory with applications ranging from quantum thermodynamics to quantum many body physics to the study of black hole radiation. In this work we introduce the notion of catalytic decoupling, that is, decoupling in the presence...... and quantum state merging, and leads to a resource theory of decoupling....

  16. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    were characterized by infrared, electronic, electron paramagnetic resonance ... The catalytic oxidation property of ruthenium(III) complexes were also ... cies at room temperature. ..... aldehyde part of Schiff base ligands, catalytic activ- ity of new ...

  17. Study of catalytic phenomena in radiation chemistry

    International Nuclear Information System (INIS)

    Dran, J.C.

    1965-01-01

    Two phenomena have been studied: the action of γ rays from radio-cobalt on the adsorption and catalytic properties of ZnO and NiO in. relationship with the heterogeneous oxidation of CO, and the homogeneous catalysis by OsO 4 of the oxidation of various aqueous phase solutes by the same radiation. The prior irradiation of ZnO and of NiO does not modify their catalytic activity but generally increases the adsorption energy of -the gases CO and O 2 . The influence of the radiations appears to be connected with the presence of traces of water on ZnO and of an excess of oxygen on NiO. Osmium tetroxide which is not degraded by irradiation in acid solution, accelerates the radiolytic oxidation of certain compounds (Te IV , Pt 11 , As 111 ) in the presence of oxygen, as a result of its sensitizing effect on the oxidation by H 2 O 2 . In the case of phosphites on the other hand, OsO 4 has a protecting action under certain conditions of acidity and may suppress entirely the chain reaction which characterizes the oxidation of this solute byγ rays. A general mechanism is proposed for these phenomena. The rate constant for the OsO 4 + HO 2 reaction is calculated to be 5.7 x 10 5 l.mol -1 . sec -1 . (author) [fr

  18. A Software Implementation of a Satellite Interface Message Processor.

    Science.gov (United States)

    Eastwood, Margaret A.; Eastwood, Lester F., Jr.

    A design for network control software for a computer network is described in which some nodes are linked by a communications satellite channel. It is assumed that the network has an ARPANET-like configuration; that is, that specialized processors at each node are responsible for message switching and network control. The purpose of the control…

  19. Optical linear algebra processors - Noise and error-source modeling

    Science.gov (United States)

    Casasent, D.; Ghosh, A.

    1985-01-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  20. Optical linear algebra processors: noise and error-source modeling.

    Science.gov (United States)

    Casasent, D; Ghosh, A

    1985-06-01

    The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.

  1. A post-processor for the PEST code

    International Nuclear Information System (INIS)

    Priesche, S.; Manickam, J.; Johnson, J.L.

    1992-01-01

    A new post-processor has been developed for use with output from the PEST tokamak stability code. It allows us to use quantities calculated by PEST and take better advantage of the physical picture of the plasma instability which they can provide. This will improve comparison with experimentally measured quantities as well as facilitate understanding of theoretical studies

  2. The Operational Semantics of a Java Secure Processor

    NARCIS (Netherlands)

    Hartel, Pieter H.; Butler, M.J.; Levy, M.; Alves-Foss, J.

    1999-01-01

    A formal specification of a Java Secure Processor is presented, which is mechanically checked for type consistency, well formedness and operational conservativity. The specification is executable and it is used to animate and study the behaviour of sample Java programs. The purpose of the semantics

  3. Analytic processor model for fast design-space exploration

    NARCIS (Netherlands)

    Jongerius, R.; Mariani, G.; Anghel, A.; Dittmann, G.; Vermij, E.; Corporaal, H.

    2015-01-01

    In this paper, we propose an analytic model that takes as inputs a) a parametric microarchitecture-independent characterization of the target workload, and b) a hardware configuration of the core and the memory hierarchy, and returns as output an estimation of processor-core performance. To validate

  4. Interactive high-resolution isosurface ray casting on multicore processors.

    Science.gov (United States)

    Wang, Qin; JaJa, Joseph

    2008-01-01

    We present a new method for the interactive rendering of isosurfaces using ray casting on multi-core processors. This method consists of a combination of an object-order traversal that coarsely identifies possible candidate 3D data blocks for each small set of contiguous pixels, and an isosurface ray casting strategy tailored for the resulting limited-size lists of candidate 3D data blocks. While static screen partitioning is widely used in the literature, our scheme performs dynamic allocation of groups of ray casting tasks to ensure almost equal loads among the different threads running on multi-cores while maintaining spatial locality. We also make careful use of memory management environment commonly present in multi-core processors. We test our system on a two-processor Clovertown platform, each consisting of a Quad-Core 1.86-GHz Intel Xeon Processor, for a number of widely different benchmarks. The detailed experimental results show that our system is efficient and scalable, and achieves high cache performance and excellent load balancing, resulting in an overall performance that is superior to any of the previous algorithms. In fact, we achieve an interactive isosurface rendering on a 1024(2) screen for all the datasets tested up to the maximum size of the main memory of our platform.

  5. Real-time trajectory optimization on parallel processors

    Science.gov (United States)

    Psiaki, Mark L.

    1993-01-01

    A parallel algorithm has been developed for rapidly solving trajectory optimization problems. The goal of the work has been to develop an algorithm that is suitable to do real-time, on-line optimal guidance through repeated solution of a trajectory optimization problem. The algorithm has been developed on an INTEL iPSC/860 message passing parallel processor. It uses a zero-order-hold discretization of a continuous-time problem and solves the resulting nonlinear programming problem using a custom-designed augmented Lagrangian nonlinear programming algorithm. The algorithm achieves parallelism of function, derivative, and search direction calculations through the principle of domain decomposition applied along the time axis. It has been encoded and tested on 3 example problems, the Goddard problem, the acceleration-limited, planar minimum-time to the origin problem, and a National Aerospace Plane minimum-fuel ascent guidance problem. Execution times as fast as 118 sec of wall clock time have been achieved for a 128-stage Goddard problem solved on 32 processors. A 32-stage minimum-time problem has been solved in 151 sec on 32 processors. A 32-stage National Aerospace Plane problem required 2 hours when solved on 32 processors. A speed-up factor of 7.2 has been achieved by using 32-nodes instead of 1-node to solve a 64-stage Goddard problem.

  6. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures

    Science.gov (United States)

    Manolakos, Elias S.

    2015-01-01

    Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub. PMID:26605332

  7. Dynamic overset grid communication on distributed memory parallel processors

    Science.gov (United States)

    Barszcz, Eric; Weeratunga, Sisira K.; Meakin, Robert L.

    1993-01-01

    A parallel distributed memory implementation of intergrid communication for dynamic overset grids is presented. Included are discussions of various options considered during development. Results are presented comparing an Intel iPSC/860 to a single processor Cray Y-MP. Results for grids in relative motion show the iPSC/860 implementation to be faster than the Cray implementation.

  8. Low-power analogue processor for Bonner sphere spectrometers

    International Nuclear Information System (INIS)

    Ciobanu, M.I.; Alevra, A.V.

    1998-01-01

    The electronic system proposed is compact, small-size (the dimensions of the prototype are 107 x 105 x 58 mm) and battery-powered. The whole detection system is portable and independent of the mains supply and is well shielded against external disturbances. Technical details of the analog processor are given. (M.D.)

  9. Fast Parallel Computation of Polynomials Using Few Processors

    DEFF Research Database (Denmark)

    Valiant, Leslie G.; Skyum, Sven; Berkowitz, S.

    1983-01-01

    It is shown that any multivariate polynomial of degree $d$ that can be computed sequentially in $C$ steps can be computed in parallel in $O((\\log d)(\\log C + \\log d))$ steps using only $(Cd)^{O(1)} $ processors....

  10. 50 CFR 648.6 - Dealer/processor permits.

    Science.gov (United States)

    2010-10-01

    ... of incorporation if the business is a corporation, and a copy of the partnership agreement and the names and addresses of all partners, if the business is a partnership, name of at-sea processor vessel... the fishing year to an applicant, unless the applicant fails to submit a completed application. An...

  11. The study of image processing of parallel digital signal processor

    International Nuclear Information System (INIS)

    Liu Jie

    2000-01-01

    The author analyzes the basic characteristic of parallel DSP (digital signal processor) TMS320C80 and proposes related optimized image algorithm and the parallel processing method based on parallel DSP. The realtime for many image processing can be achieved in this way

  12. An implementation of the SANE Virtual Processor using POSIX threads

    NARCIS (Netherlands)

    van Tol, M.W.; Jesshope, C.R.; Lankamp, M.; Polstra, S.

    2009-01-01

    The SANE Virtual Processor (SVP) is an abstract concurrent programming model that is both deadlock free and supports efficient implementation. It is captured by the μTC programming language. The work presented in this paper covers a portable implementation of this model as a C++ library on top of

  13. A design of a computer complex including vector processors

    International Nuclear Information System (INIS)

    Asai, Kiyoshi

    1982-12-01

    We, members of the Computing Center, Japan Atomic Energy Research Institute have been engaged for these six years in the research of adaptability of vector processing to large-scale nuclear codes. The research has been done in collaboration with researchers and engineers of JAERI and a computer manufacturer. In this research, forty large-scale nuclear codes were investigated from the viewpoint of vectorization. Among them, twenty-six codes were actually vectorized and executed. As the results of the investigation, it is now estimated that about seventy percents of nuclear codes and seventy percents of our total amount of CPU time of JAERI are highly vectorizable. Based on the data obtained by the investigation, (1)currently vectorizable CPU time, (2)necessary number of vector processors, (3)necessary manpower for vectorization of nuclear codes, (4)computing speed, memory size, number of parallel 1/0 paths, size and speed of 1/0 buffer of vector processor suitable for our applications, (5)necessary software and operational policy for use of vector processors are discussed, and finally (6)a computer complex including vector processors is presented in this report. (author)

  14. Sojourn time asymptotics in processor-sharing queues

    NARCIS (Netherlands)

    Borst, S.C.; Núñez Queija, R.; Zwart, B.

    2006-01-01

    Over the past few decades, the Processor-Sharing (PS) discipline has attracted a great deal of attention in the queueing literature. While the PS paradigm emerged in the sixties as an idealization of round-robin scheduling in time-shared computer systems, it has recently captured renewed interest as

  15. The impact of reneging in processor sharing queues

    NARCIS (Netherlands)

    Gromoll, H.C.; Robert, Ph.; Zwart, B.; Bakker, R.F.

    2006-01-01

    We investigate an overloaded processor sharing queue with renewal arrivals and generally distributed service times. Impatient customers may abandon the queue, or renege, before completing service. The random time representing a customer’s patience has a general distribution and may be dependent on

  16. Efficient Multicriteria Protein Structure Comparison on Modern Processor Architectures.

    Science.gov (United States)

    Sharma, Anuj; Manolakos, Elias S

    2015-01-01

    Fast increasing computational demand for all-to-all protein structures comparison (PSC) is a result of three confounding factors: rapidly expanding structural proteomics databases, high computational complexity of pairwise protein comparison algorithms, and the trend in the domain towards using multiple criteria for protein structures comparison (MCPSC) and combining results. We have developed a software framework that exploits many-core and multicore CPUs to implement efficient parallel MCPSC in modern processors based on three popular PSC methods, namely, TMalign, CE, and USM. We evaluate and compare the performance and efficiency of the two parallel MCPSC implementations using Intel's experimental many-core Single-Chip Cloud Computer (SCC) as well as Intel's Core i7 multicore processor. We show that the 48-core SCC is more efficient than the latest generation Core i7, achieving a speedup factor of 42 (efficiency of 0.9), making many-core processors an exciting emerging technology for large-scale structural proteomics. We compare and contrast the performance of the two processors on several datasets and also show that MCPSC outperforms its component methods in grouping related domains, achieving a high F-measure of 0.91 on the benchmark CK34 dataset. The software implementation for protein structure comparison using the three methods and combined MCPSC, along with the developed underlying rckskel algorithmic skeletons library, is available via GitHub.

  17. Sojourn times in finite-capacity processor-sharing queues

    NARCIS (Netherlands)

    Borst, S.C.; Boxma, O.J.; Hegde, N.

    2005-01-01

    Motivated by the need to develop simple parsimonious models for evaluating the performance of wireless data systems, we consider finite-capacity processor-sharing systems. For such systems, we analyze the sojourn time distribution, which presents a useful measure for the transfer delay of documents

  18. Scientific programming on massively parallel processor CP-PACS

    International Nuclear Information System (INIS)

    Boku, Taisuke

    1998-01-01

    The massively parallel processor CP-PACS takes various problems of calculation physics as the object, and it has been designed so that its architecture has been devised to do various numerical processings. In this report, the outline of the CP-PACS and the example of programming in the Kernel CG benchmark in NAS Parallel Benchmarks, version 1, are shown, and the pseudo vector processing mechanism and the parallel processing tuning of scientific and technical computation utilizing the three-dimensional hyper crossbar net, which are two great features of the architecture of the CP-PACS are described. As for the CP-PACS, the PUs based on RISC processor and added with pseudo vector processor are used. Pseudo vector processing is realized as the loop processing by scalar command. The features of the connection net of PUs are explained. The algorithm of the NPB version 1 Kernel CG is shown. The part that takes the time for processing most in the main loop is the product of matrix and vector (matvec), and the parallel processing of the matvec is explained. The time for the computation by the CPU is determined. As the evaluation of the performance, the evaluation of the time for execution, the short vector processing of pseudo vector processor based on slide window, and the comparison with other parallel computers are reported. (K.I.)

  19. Word Processors: A Look at Four Popular Programs.

    Science.gov (United States)

    Press, Larry

    1980-01-01

    Described are types of programs used for processing text (editors, print formatters, and word processors), followed by the comparison of four word-processing packages: Auto Scribe, Electric Pencil, Magic Want and Word Star. With the exception of Auto Scribe, all programs reviewed are CP/M versions. (KC)

  20. The hardware track finder processor in CMS at CERN

    CERN Document Server

    Kluge, A

    1997-01-01

    The work covers the design of the Track Finder Processor in the high energy experiment CMS (Compact Muon Solenoid, planned for 2005) at CERN/Geneva. The task of this processor is to identify muons and measure their transverse momentum. The track finder processor makes it possible to determine the physical relevance of each high energetic collision and to forward only interesting data to the data an alysis units. Data of more than two hundred thousand detector cells are used to determine the location of muons and measure their transverse momentum. Each 25 ns a new data set is generated. Measurem ent of location and transverse momentum of the muons can be terminated within 350 ns by using an ASIC (Application Specific Integrated Circuit). A pipeline architecture processes new data sets with th e required data rate of 40 MHz to ensure dead time free operation. In the framework of this study specifications and the overall concept of the track finder processor were worked out in detail. Simul ations were performed...

  1. 21 CFR 864.3875 - Automated tissue processor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated tissue processor. 864.3875 Section 864.3875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories § 864.3875...

  2. High performance graphics processors for medical imaging applications

    International Nuclear Information System (INIS)

    Goldwasser, S.M.; Reynolds, R.A.; Talton, D.A.; Walsh, E.S.

    1989-01-01

    This paper describes a family of high- performance graphics processors with special hardware for interactive visualization of 3D human anatomy. The basic architecture expands to multiple parallel processors, each processor using pipelined arithmetic and logical units for high-speed rendering of Computed Tomography (CT), Magnetic Resonance (MR) and Positron Emission Tomography (PET) data. User-selectable display alternatives include multiple 2D axial slices, reformatted images in sagittal or coronal planes and shaded 3D views. Special facilities support applications requiring color-coded display of multiple datasets (such as radiation therapy planning), or dynamic replay of time- varying volumetric data (such as cine-CT or gated MR studies of the beating heart). The current implementation is a single processor system which generates reformatted images in true real time (30 frames per second), and shaded 3D views in a few seconds per frame. It accepts full scale medical datasets in their native formats, so that minimal preprocessing delay exists between data acquisition and display

  3. Single particle irradiation effect of digital signal processor

    International Nuclear Information System (INIS)

    Fan Si'an; Chen Kenan

    2010-01-01

    The single particle irradiation effect of high energy neutron on digital signal processor TMS320P25 in dynamic working condition has been studied. The influence of the single particle on the device has been explored through the acquired waveform and working current of TMS320P25. Analysis results, test data and test methods have also been presented. (authors)

  4. Evaluation of the Intel Westmere-EP server processor

    CERN Document Server

    Jarp, S; Leduc, J; Nowak, A; CERN. Geneva. IT Department

    2010-01-01

    In this paper we report on a set of benchmark results recently obtained by CERN openlab when comparing the 6-core “Westmere-EP” processor with Intel’s previous generation of the same microarchitecture, the “Nehalem-EP”. The former is produced in a new 32nm process, the latter in 45nm. Both platforms are dual-socket servers. Multiple benchmarks were used to get a good understanding of the performance of the new processor. We used both industry-standard benchmarks, such as SPEC2006, and specific High Energy Physics benchmarks, representing both simulation of physics detectors and data analysis of physics events. Before summarizing the results we must stress the fact that benchmarking of modern processors is a very complex affair. One has to control (at least) the following features: processor frequency, overclocking via Turbo mode, the number of physical cores in use, the use of logical cores via Simultaneous Multi-Threading (SMT), the cache sizes available, the memory configuration installed, as well...

  5. Evaluation of the Intel Nehalem-EX server processor

    CERN Document Server

    Jarp, S; Leduc, J; Nowak, A; CERN. Geneva. IT Department

    2010-01-01

    In this paper we report on a set of benchmark results recently obtained by the CERN openlab by comparing the 4-socket, 32-core Intel Xeon X7560 server with the previous generation 4-socket server, based on the Xeon X7460 processor. The Xeon X7560 processor represents a major change in many respects, especially the memory sub-system, so it was important to make multiple comparisons. In most benchmarks the two 4-socket servers were compared. It should be underlined that both servers represent the “top of the line” in terms of frequency. However, in some cases, it was important to compare systems that integrated the latest processor features, such as QPI links, Symmetric multithreading and over-clocking via Turbo mode, and in such situations the X7560 server was compared to a dual socket L5520 based system with an identical frequency of 2.26 GHz. Before summarizing the results we must stress the fact that benchmarking of modern processors is a very complex affair. One has to control (at least) the following ...

  6. Elementary function calculation programs for the central processor-6

    International Nuclear Information System (INIS)

    Dobrolyubov, L.V.; Ovcharenko, G.A.; Potapova, V.A.

    1976-01-01

    Subprograms of elementary functions calculations are given for the central processor (CP AS-6). A procedure is described to obtain calculated formulae which represent the elementary functions as a polynomial. Standard programs for random numbers are considered. All the programs described are based upon the algorithms of respective programs for BESM computer

  7. Digital signal array processor for NSLS booster power supply upgrade

    International Nuclear Information System (INIS)

    Olsen, R.; Dabrowski, J.; Murray, J.

    1993-01-01

    The booster at the NSLS is being upgraded from 0.75 to 2 pulses per second. To accomplish this, new power supplied for the dipole, quadrupole, and sextupole have been installed. This paper will outline the design and function of the digital signal processor used as the primary control element in the power supply control system

  8. Optimization of Particle-in-Cell Codes on RISC Processors

    Science.gov (United States)

    Decyk, Viktor K.; Karmesin, Steve Roy; Boer, Aeint de; Liewer, Paulette C.

    1996-01-01

    General strategies are developed to optimize particle-cell-codes written in Fortran for RISC processors which are commonly used on massively parallel computers. These strategies include data reorganization to improve cache utilization and code reorganization to improve efficiency of arithmetic pipelines.

  9. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  10. Air Stripping Designs and Reactive Water Purification Processes for the Lunar Surface

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin; Conger, Bruce; Anderson, Molly

    2010-01-01

    Air stripping designs are considered to reduce the presence of volatile organic compounds in the purified water. Components of the wastewater streams are ranked by Henry's Law Constant and the suitability of air stripping in the purification of wastewater in terms of component removal is evaluated. Distillation processes are modeled in tandem with air stripping to demonstrate the potential effectiveness and utility of these methods in recycling wastewater on the Moon. Scaling factors for distillation and air stripping columns are presented to account for the difference in the lunar gravitation environment. Commercially available distillation and air stripping units which are considered suitable for Exploration Life Support are presented. The advantages to the various designs are summarized with respect to water purity levels, power consumption, and processing rates. An evaluation of reactive distillation and air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  11. HTGR core seismic analysis using an array processor

    International Nuclear Information System (INIS)

    Shatoff, H.; Charman, C.M.

    1983-01-01

    A Floating Point Systems array processor performs nonlinear dynamic analysis of the high-temperature gas-cooled reactor (HTGR) core with significant time and cost savings. The graphite HTGR core consists of approximately 8000 blocks of various shapes which are subject to motion and impact during a seismic event. Two-dimensional computer programs (CRUNCH2D, MCOCO) can perform explicit step-by-step dynamic analyses of up to 600 blocks for time-history motions. However, use of two-dimensional codes was limited by the large cost and run times required. Three-dimensional analysis of the entire core, or even a large part of it, had been considered totally impractical. Because of the needs of the HTGR core seismic program, a Floating Point Systems array processor was used to enhance computer performance of the two-dimensional core seismic computer programs, MCOCO and CRUNCH2D. This effort began by converting the computational algorithms used in the codes to a form which takes maximum advantage of the parallel and pipeline processors offered by the architecture of the Floating Point Systems array processor. The subsequent conversion of the vectorized FORTRAN coding to the array processor required a significant programming effort to make the system work on the General Atomic (GA) UNIVAC 1100/82 host. These efforts were quite rewarding, however, since the cost of running the codes has been reduced approximately 50-fold and the time threefold. The core seismic analysis with large two-dimensional models has now become routine and extension to three-dimensional analysis is feasible. These codes simulate the one-fifth-scale full-array HTGR core model. This paper compares the analysis with the test results for sine-sweep motion

  12. Catalytic hydrodeoxygenation of dibenzofuran

    Energy Technology Data Exchange (ETDEWEB)

    La Vopa, V.; Satterfield, C.N.

    The hydrodeoxygenation of dibenzofuran (DBF) on a sulfided NiMo/Al/sub 2/O/sub 3/ catalyst was studied at 350-390 C and 7.0 MPa. The major products isolated were single-ring hydrocarbons, cyclohexane predominating; the remainder were double-ring hydrocarbons, cyclohexylbenzene predominating. No oxygen-containing species other than water were isolated in any significant amount. The initial reactions in the hydrodeoxygenation of DBF are rate-limiting. The non-sulfided (oxide) catalyst is much less active, and double-ring products predominate over single-ring products. From studies of possible intermediates it appears that on a sulfided catalyst two pathways operate in parallel for the hydrodeoxygenation of dibenzofuran: (1) hydrogenation of DBF to hexahydro DBF, which reacts via 2-cyclohexylphenol to form signle-ring hydrocarbons; (2) direct hydrogenolysis via 2-phenylphenol, without prior ring hydrogenation, to form biphenyl and cyclohexylbenzene (a minor route). On this catalyst the overall reaction is first order with respect to hydrogen and to DBF and exhibits an apparent activation energy of 67 kJ/mol. 26 refs., 16 figs., 3 tabs.

  13. Soft-core dataflow processor architecture optimised for radar signal processing: Article

    CSIR Research Space (South Africa)

    Broich, R

    2014-10-01

    Full Text Available Current radar signal processors lack either performance or flexibility. Custom soft-core processors exhibit potential in high-performance signal processing applications, yet remain relatively unexplored in research literature. In this paper, we use...

  14. New system applying image processor to automatically separate cation exchange resin and anion exchange resin for condensate demineralizer

    International Nuclear Information System (INIS)

    Adachi, Tsuneyasu; Nagao, Nobuaki; Yoshimori, Yasuhide; Inoue, Takashi; Yoda, Shuji

    2014-01-01

    In PWR plant, condensate demineralizer is equipped to remove corrosive ion in condensate water. Mixed bed packing cation exchange resin (CER) and anion exchange resin (AER) is generally applied, and these are regenerated after separation to each layer periodically. Since the AER particle is slightly lighter than the CER particle, the AER layer is brought up onto the CER layer by feeding water upward from the bottom of column (backwashing). The separation performance is affected by flow rate and temperature of water for backwashing, so normally operators set the proper condition parameters regarding separation manually every time for regeneration. The authors have developed the new separation system applying CCD camera and image processor. The system is comprised of CCD camera, LED lamp, image processor, controller, flow control valves and background color panel. Blue color of the panel, which is corresponding to the complementary color against both ivory color of AER and brown color of CER, is key to secure the system precision. At first the color image of the CER via the CCD camera is digitized and memorized by the image processor. The color of CER in the field of vision of the camera is scanned by the image processor, and the position where the maximum difference of digitized color index is indicated is judged as the interface. The detected interface is able to make the accordance with the set point by adjusting the flow rate of backwashing. By adopting the blue background panel, it is also possible to draw the AER out of the column since detecting the interface of the CER clearly. The system has provided the reduction of instability factor concerning separation of resin during regeneration process. The system has been adopted in two PWR plants in Japan, it has been demonstrating its stable and precise performance. (author)

  15. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  16. An updated program-controlled analog processor, model AP-006, for semiconductor detector spectrometers

    International Nuclear Information System (INIS)

    Shkola, N.F.; Shevchenko, Yu.A.

    1989-01-01

    An analog processor, model AP-006, is reported. The processor is a development of a series of spectrometric units based on a shaper of the type 'DL dif +TVS+gated ideal integrator'. Structural and circuits design features are described. The results of testing the processor in a setup with a Si(Li) detecting unit over an input count-rate range of up to 5x10 5 cps are presented. Processor applications are illustrated. (orig.)

  17. Catalytic process for tritium exchange reaction

    International Nuclear Information System (INIS)

    Hansoo Lee; Kang, H.S.; Paek, S.W.; Hongsuk Chung; Yang Geun Chung; Sook Kyung Lee

    2001-01-01

    The catalytic activities for a hydrogen isotope exchange were measured through the reaction of a vapor and gas mixture. The catalytic activity showed to be comparable with the published data. Since the gas velocity is relatively low, the deactivation was not found clearly during the 5-hour experiment. Hydrogen isotope transfer experiments were also conducted through the liquid phase catalytic exchange reaction column that consisted of a catalytic bed and a hydrophilic bed. The efficiencies of both the catalytic and hydrophilic beds were higher than 0.9, implying that the column performance was excellent. (author)

  18. A prediction method for job runtimes on shared processors: Survey, statistical analysis and new avenues

    NARCIS (Netherlands)

    Dobber, A.M.; van der Mei, R.D.; Koole, G.M.

    2007-01-01

    Grid computing is an emerging technology by which huge numbers of processors over the world create a global source of processing power. Their collaboration makes it possible to perform computations that are too extensive to perform on a single processor. On a grid, processors may connect and

  19. 77 FR 124 - Biological Processors of Alabama; Decatur, Morgan County, AL; Notice of Settlement

    Science.gov (United States)

    2012-01-03

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9612-9] Biological Processors of Alabama; Decatur, Morgan... reimbursement of past response costs concerning the Biological Processors of Alabama Superfund Site located in... Ms. Paula V. Painter. Submit your comments by Site name Biological Processors of Alabama Superfund...

  20. M7--a high speed digital processor for second level trigger selections

    International Nuclear Information System (INIS)

    Droege, T.F.; Gaines, I.; Turner, K.J.

    1978-01-01

    A digital processor is described which reconstructs mass and momentum as a second-level trigger selection. The processor is a five-address, microprogramed, pipelined, ECL machine with simultaneous memory access to four operands which load two parallel multipliers and an ALU. Source data modules are extensions of the processor