WorldWideScience

Sample records for water potential based

  1. Real-time Geographic Information System (GIS) for Monitoring the Area of Potential Water Level Using Rule Based System

    Science.gov (United States)

    Anugrah, Wirdah; Suryono; Suseno, Jatmiko Endro

    2018-02-01

    Management of water resources based on Geographic Information System can provide substantial benefits to water availability settings. Monitoring the potential water level is needed in the development sector, agriculture, energy and others. In this research is developed water resource information system using real-time Geographic Information System concept for monitoring the potential water level of web based area by applying rule based system method. GIS consists of hardware, software, and database. Based on the web-based GIS architecture, this study uses a set of computer that are connected to the network, run on the Apache web server and PHP programming language using MySQL database. The Ultrasound Wireless Sensor System is used as a water level data input. It also includes time and geographic location information. This GIS maps the five sensor locations. GIS is processed through a rule based system to determine the level of potential water level of the area. Water level monitoring information result can be displayed on thematic maps by overlaying more than one layer, and also generating information in the form of tables from the database, as well as graphs are based on the timing of events and the water level values.

  2. Potential of Nanotechnology based water treatment solutions for the improvement of drinking water supplies in developing countries

    Science.gov (United States)

    Dutta, Joydeep; Bhattacharya, Prosun; Bundschuh, Jochen

    2016-04-01

    Over the last decades explosive population growth in the world has led to water scarcity across the globe putting additional pressure already scarce ground water resources and is pushing scientists and researchers to come up with new alternatives to monitor and treat water for use by mankind and for food security. Nearly 4 billion people around the world are known to lack access to clean water supply. Systematic water quality data is important for the assessment of health risks as well as for developing appropriate and affordable technologies for waste and drinking water treatments, and long-term decision making policy against water quality management. Traditional water treatment technologies are generally chemical-intensive processes requiring extremely large infrastructural support thus limiting their effective applications in developing nations which creates an artificial barrier to the application of technological solutions for the provision of clean water. Nanotechnology-based systems are in retrospect, smaller, energy and resource efficient. Economic impact assessment of the implementation of nanotechnology in water treatment and studies on cost-effectiveness and environmental and social impacts is of key importance prior to its wide spread acceptance. Government agencies and inter-governmental bodies driving research and development activities need to measure the effective potential of nanotechnology as a solution to global water challenges in order to effectively engage in fiscal, economic and social issues at national and international levels for different types of source waters with new national and international initiatives on nanotechnology and water need to be launched. Environmental pollution and industrialization in global scale is further leading to pollution of available water sources and thus hygienically friendly purification technologies are the need of the hour. Thus cost-effective treatment of pollutants for the transformation of hazardous

  3. Water-Based Automobile Paints Potentially Reduce the Exposure of Refinish Painters to Toxic Metals

    Directory of Open Access Journals (Sweden)

    Der-Jen Hsu

    2018-05-01

    Full Text Available Exposure to lead-containing dusts is a global public health concern. This work addresses an important issue of whether eco-friendly water-based paints reduce the exposure potential of auto-repainting workers to metals. With this aim, metal levels in automobile paints and worker metal exposure were measured using both solvent- and water-based paints. The levels of metals, and particularly Pb, Cr (total, Fe, and Cu, in solvent-based paints varied greatly among colors and brands. Lead concentrations ranged from below the detection limit (~0.25 μg/g to 107,928 μg/g (dry film across all samples. In water-based paints, the concentrations of Pb and Cr (total were generally two to three orders of magnitude lower, but the concentrations of Al and Cu exceeded those in some solvent-based paints. The personal short-term exposure of workers who applied water-based paints of popular colors, such as black and white, were generally low, with Pb levels of less than <4 µg/m3 and Cr (total levels of less than 1 µg/m3. Conversely, mean short-term exposure to Pb during the painting of a yellow cab using solvent-based paints were 2028 µg/m3, which was ~14 times the Taiwan short-term permissible exposure limit, while the mean level of exposure to Cr (total was 290 µg/m3, which was well below the exposure limit. This study demonstrates that water-based paints reduce the exposure potential to lead, and highlights the importance of source control in limiting the toxic metals in paints.

  4. Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture

    Directory of Open Access Journals (Sweden)

    C. Demitri

    2013-01-01

    Full Text Available The present work deals with the development of a biodegradable superabsorbent hydrogel, based on cellulose derivatives, for the optimization of water resources in agriculture, horticulture and, more in general, for instilling a wiser and savvier approach to water consumption. The sorption capability of the proposed hydrogel was firstly assessed, with specific regard to two variables that might play a key role in the soil environment, that is, ionic strength and pH. Moreover, a preliminary evaluation of the hydrogel potential as water reservoir in agriculture was performed by using the hydrogel in experimental greenhouses, for the cultivation of tomatoes. The soil-water retention curve, in the presence of different hydrogel amounts, was also analysed. The preliminary results showed that the material allowed an efficient storage and sustained release of water to the soil and the plant roots. Although further investigations should be performed to completely characterize the interaction between the hydrogel and the soil, such findings suggest that the envisaged use of the hydrogel on a large scale might have a revolutionary impact on the optimization of water resources management in agriculture.

  5. MONITORING ON PLANT LEAF WATER POTENTIAL USING NIR SPECTROSCOPY FOR WATER STRESS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available The performance of the calibration model with temperature compensation for on-plant leaf water potential (LWP determination in tomato plants was evaluated. During a cycle of water stress, the on-plant LWP measurement was conducted. The result showed that the LWP values under water stress and recovery from water stress could be monitored well. It showed that a real time monitoring of the LWP values using NIR spectroscopy could be possible.   Keywords: water stress, real time monitoring of leaf water potential, NIR spectroscopy, plant response-based

  6. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  7. Water deficit and water surplus maps for Brazil, based on FAO Penman-Monteith potential evapotranspiration

    Directory of Open Access Journals (Sweden)

    Ronalton Evandro Machado

    2008-12-01

    Full Text Available The climatological water balance (CWB proposed by Thornthwaite and Mather (1957 is a useful tool for agricultural planning. This method requires the soil water holding capacity (SWHC, rainfall (R and potential evapotranspiration (PET data as input. Among the methods used to estimate PET, the one proposed by Thornthwaite (1948 is the simplest and the most used in Brazil, however it presents limitations of use, which is caused by its empirical relationships. When Thornthwaite PET method is used into the CWB, the errors associated to PET are transferred to the output variables, mainly water deficit (WD and water surplus (WS. As all maps of WD and WS for Brazil are based on Thornthwaite PET, the objective of this study was to produce new maps of these variables considering Penman-Monteith PET. For this purpose, monthly normal climate data base (1961-1990 from Brazilian Meteorological Service (INMET, with 219 locations in all country, was used. PET data were estimated by Thornthwaite (TH and FAO Penman-Monteith (PM methods. PET, from both methods, and R data were used to estimate the CWB for a SWHC of 100 mm, having as results actual ET (AET, WD and WS. Results obtained with PET from the two methods were compared by regression analysis. The results showed that TH method underestimated annual PM PET by 13% in 84% of the places. Such underestimation also led to AET and WD underestimations of 7% (in 69% of places and 40% (in 83% of places, respectively. For WS, the use of TH PET data in the CWB resulted in overestimations of about 80% in 78% of places. The differences observed in the CWB variables resulted in changes in the maps of WD and WS for Brazil. These new maps, based on PM PET, provide more accurate information, mainly for agricultural and hydrological planning and irrigation and drainage projects purposes.

  8. Development of EEM based silicon–water and silica–water wall potentials for non-reactive molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junghan; Iype, Eldhose; Frijns, Arjan J.H.; Nedea, Silvia V.; Steenhoven, Anton A. van

    2014-07-01

    Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele's potential has been used in studies of fluid–solid interface for a long time. In this work, the conceptual idea of Steele's potential was extended in order to simulate water–silicon and water–silica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a silicon–water contact angle of 129°, a quartz–water contact angle of 0°, and a cristobalite–water contact angle of 40°, which are in reasonable agreement with experimental values.

  9. Performance evaluation of TDT soil water content and watermark soil water potential sensors

    Science.gov (United States)

    This study evaluated the performance of digitized Time Domain Transmissometry (TDT) soil water content sensors (Acclima, Inc., Meridian, ID) and resistance-based soil water potential sensors (Watermark 200, Irrometer Company, Inc., Riverside, CA) in two soils. The evaluation was performed by compar...

  10. Measuring Soil Water Potential for Water Management in Agriculture: A Review

    Directory of Open Access Journals (Sweden)

    Marco Bittelli

    2010-05-01

    Full Text Available Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

  11. A Physically Based Analytical Model to Describe Effective Excess Charge for Streaming Potential Generation in Water Saturated Porous Media

    Science.gov (United States)

    Guarracino, L.; Jougnot, D.

    2018-01-01

    Among the different contributions generating self-potential, the streaming potential is of particular interest in hydrogeology for its sensitivity to water flow. Estimating water flux in porous media using streaming potential data relies on our capacity to understand, model, and upscale the electrokinetic coupling at the mineral-solution interface. Different approaches have been proposed to predict streaming potential generation in porous media. One of these approaches is the flux averaging which is based on determining the excess charge which is effectively dragged in the medium by water flow. In this study, we develop a physically based analytical model to predict the effective excess charge in saturated porous media using a flux-averaging approach in a bundle of capillary tubes with a fractal pore size distribution. The proposed model allows the determination of the effective excess charge as a function of pore water ionic concentration and hydrogeological parameters like porosity, permeability, and tortuosity. The new model has been successfully tested against different set of experimental data from the literature. One of the main findings of this study is the mechanistic explanation to the empirical dependence between the effective excess charge and the permeability that has been found by several researchers. The proposed model also highlights the link to other lithological properties, and it is able to reproduce the evolution of effective excess charge with electrolyte concentrations.

  12. Assessing of landscape potential for water management regarding its surface water (using the example of the micro-region Minčol

    Directory of Open Access Journals (Sweden)

    Kunáková Lucia

    2016-06-01

    Full Text Available The presence of water is one of the decisive factors of landscape’s natural potential. Water affects landscape’s predisposition for agricultural production, water supply available to the wide population and industry (the most important is the yield of water resources. Ponds, lakes and other water areas are zones of recreation and relaxation. Near sources mineral water, several world-famous spas were build. Waterways are also used to generate electricity. Geothermal underground water represents a very significant landscape potential. Determining hydrological potential of the area is important for the regional development. This paper assesses the landscape potential for water management regarding its surface waters in the micro-region Minčol. The micro-region was divided by a square grid, and for each square, we determined the appropriateness of this potential based on score points. The determining evaluation criteria were static reserves of surface water, waterway ranking and annual average discharge. First, we determined the significance (value of individual criteria (classification characteristics, and then we calculated the values of individual classifiers, which were then multiplied by the value of the individual classifier intervals. The summary of points in each square belongs to a particular degree of suitability for water management based on surface waters. The potential was divided into five degrees (intervals: very unfavourable potential, unfavourable potential, moderately favourable potential, favourable potential and very favourable potential.

  13. A model exploring whether the coupled effects of plant water supply and demand affect the interpretation of water potentials and irrigation management

    OpenAIRE

    Spinelli, GM; Shackel, KA; Gilbert, ME

    2017-01-01

    © 2017 Elsevier B.V. Water potential is a useful predictive tool in irrigation scheduling as it, or a component, is associated with physiological responses to water deficit. Increasing atmospheric demand for water increases transpiration and decreases water potential for the same stomatal conductance. However, based on supply by the soil-plant-atmosphere-continuum, decreasing soil water potential should decrease stomatal conductance and thus transpiration but also decrease water potential. Su...

  14. The dependence of water potential in shoots of Picea abies on air and soil water status

    Directory of Open Access Journals (Sweden)

    A. Sellin

    Full Text Available Where there is sufficient water storage in the soil the water potential (Ψx in shoots of Norway spruce [Picea abies (L. Karst.] is strongly governed by the vapour pressure deficit of the atmosphere, while the mean minimum values of Ψx usually do not drop below –1.5 MPa under meteorological conditions in Estonia. If the base water potential (Ψb is above –0.62 MPa, the principal factor causing water deficiency in shoots of P. abies may be either limited soil water reserves or atmospheric evaporative demand depending on the current level of the vapour pressure deficit. As the soil dries the stomatal control becomes more efficient in preventing water losses from the foliage, and the leaf water status, in turn, less sensitive to atmospheric demand. Under drought conditions, if Ψb falls below –0.62 MPa, the trees' water stress is mainly caused by low soil water availability. Further declines in the shoot water potential (below –1.5 MPa can be attributed primarily to further decreases in the soil water, i.e. to the static water stress.Key words. Hydrology (evapotranspiration · plant ecology · soil moisture.

  15. Corrosion and Scaling Potential in Drinking Water Distribution of Babol, Northern Iran Based on the Scaling and Corrosion Indices

    Directory of Open Access Journals (Sweden)

    Abdoliman Amouei

    2017-01-01

    Full Text Available Background & Aims of the Study: Corrosion and scaling play undesirable effects on transmission and distribution system of drinking water. The aim of this study was to assess the corrosion and scaling potential of drinking water resources in Babol city, Iran. Materials and Methods: Totally, 54 water samples were collected from 27 wells in spring and autumn. Calcium hardness, pH, total alkalinity, total dissolved solids, and temperature were measured, using standard methods. The Langelier, Rayzner, Puckhorius, Larson and aggressive indices were calculated and data were analyzed by SPSS 19. To compare the mean values of each index, the results were analyzed using t-test. Results: The range of temperature, pH, TDS, total alkalinity and calcium hardness were 16-24°c; 6.8-7.89; 445-1331 mg/l; 322.9-396 mg/l and 250.50-490 mg/l, respectively. The mean of Langelier and Ryznar indices in drinking water samples in spring and autumn was 0.14, 0.15; 7.28 and 7.35, respectively. The mean of Puckhorius and Larson indices in these seasons was 11.9, 11.95 and 0.95 and 0.93, respectively. The mean of aggressive index was 6.17 and 6.27, respectively. Overall, 82.2%, 100%, 94.6%, 100% and 85.7% of water samples were corrosive based on the Langelier, Ryznar, Puckhorius, Larson and aggressive indices, respectively. Conclusion: According to these results, drinking water of Babol city has corrosion potential. Therefore, the water quality should be controlled based on pH, alkalinity and hardness parameters, along with the use of corrosion resisting materials and pipes in drinking water distribution systems.

  16. Effects of water chemistry and potential distribution on electrochemical corrosion potential measurements in 553 K pure water

    International Nuclear Information System (INIS)

    Ishida, Kazushige; Wada, Yoichi; Tachibana, Masahiko; Ota, Nobuyuki; Aizawa, Motohiro

    2013-01-01

    The effects of water chemistry distribution on the potential of a reference electrode and of the potential distribution on the measured potential should be known qualitatively to obtain accurate electrochemical corrosion potential (ECP) data in BWRs. First, the effects of oxygen on a platinum reference electrode were studied in 553 K pure water containing dissolved hydrogen (DH) concentration of 26 - 10 5 μg kg -1 (ppb). The platinum electrode worked in the same way as the theoretical hydrogen electrode under the condition that the molar ratio of DH to dissolved oxygen (DO) was more than 10 and that DO was less than 100 ppb. Second, the effects of potential distribution on the measured potential were studied by using the ECP measurement part without platinum deposition on the surfaces connected to another ECP measurement part with platinum deposition on the surfaces in 553 K pure water containing 100 - 130 ppb of DH or 100 - 130 ppb of DH plus 400 ppb of hydrogen peroxide. Measured potentials for each ECP measurement part were in good agreement with literature data for each surface condition. The lead wire connecting point did not affect the measured potential. Potential should be measured at the nearest point from the reference electrode in which case it will be not affected by either the potential distribution or the connection point of the lead wire in pure water. (author)

  17. Cytogenotoxicity screening of source water, wastewater and treated water of drinking water treatment plants using two in vivo test systems: Allium cepa root based and Nile tilapia erythrocyte based tests.

    Science.gov (United States)

    Hemachandra, Chamini K; Pathiratne, Asoka

    2017-01-01

    Biological effect directed in vivo tests with model organisms are useful in assessing potential health risks associated with chemical contaminations in surface waters. This study examined the applicability of two in vivo test systems viz. plant, Allium cepa root based tests and fish, Oreochromis niloticus erythrocyte based tests for screening cytogenotoxic potential of raw source water, water treatment waste (effluents) and treated water of drinking water treatment plants (DWTPs) using two DWTPs associated with a major river in Sri Lanka. Measured physico-chemical parameters of the raw water, effluents and treated water samples complied with the respective Sri Lankan standards. In the in vivo tests, raw water induced statistically significant root growth retardation, mitodepression and chromosomal abnormalities in the root meristem of the plant and micronuclei/nuclear buds evolution and genetic damage (as reflected by comet scores) in the erythrocytes of the fish compared to the aged tap water controls signifying greater genotoxicity of the source water especially in the dry period. The effluents provoked relatively high cytogenotoxic effects on both test systems but the toxicity in most cases was considerably reduced to the raw water level with the effluent dilution (1:8). In vivo tests indicated reduction of cytogenotoxic potential in the tested drinking water samples. The results support the potential applications of practically feasible in vivo biological test systems such as A. cepa root based tests and the fish erythrocyte based tests as complementary tools for screening cytogenotoxicity potential of the source water and water treatment waste reaching downstream of aquatic ecosystems and for evaluating cytogenotoxicity eliminating efficacy of the DWTPs in different seasons in view of human and ecological safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Predictions of soil-water potentials in the north-western Sonoran Desert

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.R.; Nobel, P.S.

    1986-03-01

    A simple computer model was developed to predict soil-water potential at a Sonoran Desert site. The variability of precipitation there, coupled with the low water-holding capacity of the sandy soil, result in large temporal and spatial variations in soil-water potential. Predicted soil-water potentials for depths of 5, 10 and 20 cm were in close agreement with measured values as the soil dried after an application of water. Predicted values at a depth of 10 cm, the mean rooting depth of Agave deserti and other succulents common at the study site, also agreed with soil-water potentials measured in the field throughout 1 year. Both soil-water potential and evaporation from the soil surface were very sensitive to simulated changes in the hydraulic conductivity of the soil. The annual duration of soil moisture adequate for succulents was dependent on the rainfall as well as on the spacing and amount of individual rainfalls. The portion of annual precipitation evaporated from the soil surface varied from 73% in a dry year (77 mm precipitation) to 59% in a wet year (597 mm). Besides using the actual precipitation events, simulations were performed using the figures for total monthly precipitation. Based on the average number of rainfalls for a particular month, the rainfall was distributed throughout the month in the model. Predictions using both daily and monthly inputs were in close agreement, especially for the number of days during a year when the soil-water potential was sufficient for water absorption by the succulent plants (above -0.5 MPa).

  19. Plant water potential improves prediction of empirical stomatal models.

    Directory of Open Access Journals (Sweden)

    William R L Anderegg

    Full Text Available Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.

  20. Reviving the Ganges Water Machine: potential

    Science.gov (United States)

    Amarasinghe, Upali Ananda; Muthuwatta, Lal; Surinaidu, Lagudu; Anand, Sumit; Jain, Sharad Kumar

    2016-03-01

    The Ganges River basin faces severe water challenges related to a mismatch between supply and demand. Although the basin has abundant surface water and groundwater resources, the seasonal monsoon causes a mismatch between supply and demand as well as flooding. Water availability and flood potential is high during the 3-4 months (June-September) of the monsoon season. Yet, the highest demands occur during the 8-9 months (October-May) of the non-monsoon period. Addressing this mismatch, which is likely to increase with increasing demand, requires substantial additional storage for both flood reduction and improvements in water supply. Due to hydrogeological, environmental, and social constraints, expansion of surface storage in the Ganges River basin is problematic. A range of interventions that focus more on the use of subsurface storage (SSS), and on the acceleration of surface-subsurface water exchange, has long been known as the Ganges Water Machine (GWM). The approach of the GWM for providing such SSS is through additional pumping and depleting of the groundwater resources prior to the onset of the monsoon season and recharging the SSS through monsoon surface runoff. An important condition for creating such SSS is the degree of unmet water demand. The paper shows that the potential unmet water demand ranging from 59 to 124 Bm3 year-1 exists under two different irrigation water use scenarios: (i) to increase irrigation in the Rabi (November-March) and hot weather (April-May) seasons in India, and the Aman (July-November) and Boro (December-May) seasons in Bangladesh, to the entire irrigable area, and (ii) to provide irrigation to Rabi and the hot weather season in India and the Aman and Boro seasons in Bangladesh to the entire cropped area. However, the potential for realizing the unmet irrigation demand is high only in 7 sub-basins in the northern and eastern parts, is moderate to low in 11 sub-basins in the middle, and has little or no potential in 4 sub

  1. Assessment of Suitable Areas for Home Gardens for Irrigation Potential, Water Availability, and Water-Lifting Technologies

    Directory of Open Access Journals (Sweden)

    Tewodros Assefa

    2018-04-01

    Full Text Available The study was conducted in Lake Tana Basin of Ethiopia to assess potentially irrigable areas for home gardens, water availability, and feasibility of water-lifting technologies. A GIS-based Multi-Criteria Evaluation (MCE technique was applied to access the potential of surface and groundwater sources for irrigation. The factors affecting irrigation practice were identified and feasibility of water-lifting technologies was evaluated. Pairwise method and expert’s opinion were used to assign weights for each factor. The result showed that about 345,000 ha and 135,000 ha of land were found suitable for irrigation from the surface and groundwater sources, respectively. The rivers could address about 1–1.2% of the irrigable land during dry season without water storage structure whereas groundwater could address about 2.2–2.4% of the irrigable land, both using conventional irrigation techniques. If the seven major dams within the basin were considered, surface water potential would be increased and satisfy about 21% of the irrigable land. If rainwater harvesting techniques were used, about 76% of the basin would be suitable for irrigation. The potential of surface and groundwater was evaluated with respect to water requirements of dominant crops in the region. On the other hand, rope pump and deep well piston hand pump were found with relatively the most (26% and the least (9% applicable low-cost water-lifting technologies in the basin.

  2. Potential exposure and treatment efficiency of nanoparticles in water supplies based on wastewater reclamation

    DEFF Research Database (Denmark)

    Kirkegaard, Peter; Hansen, Steffen Foss; Rygaard, Martin

    2015-01-01

    Water scarcity brings an increased focus on wastewater reclamation for drinking water supply. Meanwhile, the production volume of nanoparticles (NPs) is rapidly increasing, but to date there has been little attention given to the fate of NPs in water systems based on wastewater reclamation. We have...... investigated the possible concentrations of silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO) nanoparticles in tap water for water supplies based on reclaimed wastewater. Tap water concentrations of the NPs were assessed by mass flow analyses of two typical wastewater reclamation concepts: 1) advanced...... studies are available on the removal efficiencies of NPs by advanced water treatment processes with a majority of the identified studies focusing on removal efficiencies in wastewater treatment plants and fate in surface waters. The NP removal efficiency of several treatment processes is unknown...

  3. Potential Impacts of Food Production on Freshwater Availability Considering Water Sources

    Directory of Open Access Journals (Sweden)

    Shinjiro Yano

    2016-04-01

    Full Text Available We quantify the potential impacts of global food production on freshwater availability (water scarcity footprint; WSF by applying the water unavailability factor (fwua as a characterization factor and a global water resource model based on life cycle impact assessment (LCIA. Each water source, including rainfall, surface water, and groundwater, has a distinct fwua that is estimated based on the renewability rate of each geographical water cycle. The aggregated consumptive water use level for food production (water footprint inventory; WI was found to be 4344 km3/year, and the calculated global total WSF was 18,031 km3 H2Oeq/year, when considering the difference in water sources. According to the fwua concept, which is based on the land area required to obtain a unit volume of water from each source, the calculated annual impact can also be represented as 98.5 × 106 km2. This value implies that current agricultural activities requires a land area that is over six times larger than global total cropland. We also present the net import of the WI and WSF, highlighting the importance of quantitative assessments for utilizing global water resources to achieve sustainable water use globally.

  4. A new water-based liquid scintillator and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, M., E-mail: yeh@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Hans, S.; Beriguete, W.; Rosero, R.; Hu, L.; Hahn, R.L. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Diwan, M.V.; Jaffe, D.E.; Kettell, S.H.; Littenberg, L. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-12-21

    In this paper we describe a new type of scintillating liquid based on water. We describe the concept, preparation, and properties of this liquid, and how it could be used for a very large, but economical detector. The applications of such a detector range from fundamental physics such as nucleon decay and neutrino physics to physics with broader application such as neutron detection. We briefly describe the scientific requirements of these applications, and how they can be satisfied by the new material.

  5. Assessment of economically optimal water management and geospatial potential for large-scale water storage

    Science.gov (United States)

    Weerasinghe, Harshi; Schneider, Uwe A.

    2010-05-01

    in GIS, potential water storage sites are identified for constructing regional reservoirs. Subsequently, sites are prioritized based on runoff generation potential (m3 per unit area), and geographical suitability for constructing storage structures. The results from the spatial analysis are used as input for the optimization model. Allocation of resources and appropriate dimension for dams and associated structures are identified using the optimization model. The model evaluates the capability of alternative reservoirs for cost-efficient water management. The Geographic Information System is used to store, analyze, and integrate spatially explicit and non-spatial attribute information whereas the algebraic modeling platform is used to develop the dynamic optimization model. The results of this methodology are validated over space against satellite remote sensing data and existing data on reservoir capacities and runoff. The method is suitable for application of on-farm water storage structures, water distribution networks, and moisture conservation structures in a global context.

  6. Solar Water Heating as a Potential Source for Inland Norway Energy Mix

    Directory of Open Access Journals (Sweden)

    Dejene Assefa Hagos

    2014-01-01

    Full Text Available The aim of this paper is to assess solar potential and investigate the possibility of using solar water heating for residential application in Inland Norway. Solar potential based on observation and satellite-derived data for four typical populous locations has been assessed and used to estimate energy yield using two types of solar collectors for a technoeconomic performance comparison. Based on the results, solar energy use for water heating is competitive and viable even in low solar potential areas. In this study it was shown that a typical tubular collector in Inland Norway could supply 62% of annual water heating energy demand for a single residential household, while glazed flat plates of the same size were able to supply 48%. For a given energy demand in Inland Norway, tubular collectors are preferred to flat plate collectors for performance and cost reasons. This was shown by break-even capital cost for a series of collector specifications. Deployment of solar water heating in all detached dwellings in Inland could have the potential to save 182 GWh of electrical energy, equivalent to a reduction of 15,690 tonnes of oil energy and 48.6 ktCO2 emissions, and contributes greatly to Norway 67.5% renewable share target by 2020.

  7. Water in micro- and nanofluidics systems described using the water potential

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    This Tutorial Review shows the behaviour of water in micro- and nanofluidic systems. The chemical potential of water (‘water potential’) conveniently describes the energy level of the water at different locations in and around the system, both in the liquid and gaseous state. Since water moves from

  8. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure.

    Science.gov (United States)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO 2 , thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO 2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO 2 could enhance plant water use efficiency up to about 10% at a leaf water potential of -2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO 2 concentration based on leaf gas exchange

  9. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision.

    Science.gov (United States)

    Gwenzi, Willis; Chaukura, Nhamo; Noubactep, Chicgoua; Mukome, Fungai N D

    2017-07-15

    Approximately 600 million people lack access to safe drinking water, hence achieving Sustainable Development Goal 6 (Ensure availability and sustainable management of water and sanitation for all by 2030) calls for rapid translation of recent research into practical and frugal solutions within the remaining 13 years. Biochars, with excellent capacity to remove several contaminants from aqueous solutions, constitute an untapped technology for drinking water treatment. Biochar water treatment has several potential merits compared to existing low-cost methods (i.e., sand filtration, boiling, solar disinfection, chlorination): (1) biochar is a low-cost and renewable adsorbent made using readily available biomaterials and skills, making it appropriate for low-income communities; (2) existing methods predominantly remove pathogens, but biochars remove chemical, biological and physical contaminants; (3) biochars maintain organoleptic properties of water, while existing methods generate carcinogenic by-products (e.g., chlorination) and/or increase concentrations of chemical contaminants (e.g., boiling). Biochars have co-benefits including provision of clean energy for household heating and cooking, and soil application of spent biochar improves soil quality and crop yields. Integrating biochar into the water and sanitation system transforms linear material flows into looped material cycles, consistent with terra preta sanitation. Lack of design information on biochar water treatment, and environmental and public health risks constrain the biochar technology. Seven hypotheses for future research are highlighted under three themes: (1) design and optimization of biochar water treatment; (2) ecotoxicology and human health risks associated with contaminant transfer along the biochar-soil-food-human pathway, and (3) life cycle analyses of carbon and energy footprints of biochar water treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Conservation potential of agricultural water conservation subsidies

    Science.gov (United States)

    Huffaker, Ray

    2008-07-01

    A current policy subsidizes farmers to invest in improved on-farm irrigation efficiency, expecting water to be conserved off farm. Contrary to expectation, water has been increasingly depleted in some regions after such improvements. This paper investigates the policy's failure to conserve water consistently by (1) formulating an economic model of irrigated crop production to determine a profit-maximizing irrigator's range of responses to a subsidy and (2) embedding these responses into hypothetical streamflow diagrams to ascertain their potential to conserve water under various hydrologic regimes. Testable hypotheses are developed to predict the conservation potential of a subsidy in real-world application.

  11. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph

    2012-12-28

    Water is a valuable resource throughout the world, especially in hot, dry climates and regions experiencing significant population growth. Supplies of fresh water are complicated by the economic and political conditions in many of these regions. Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a possible method to alleviate water scarcity issues. Using the results of a climate model that tested data collected from 2000 to 2010, we have identified areas in the world with the greatest collection potential. We gave special consideration to areas with known water scarcities, including the coastal regions of the Arabian Peninsula, Sub-Saharan Africa and South Asia. We found that the quality of the collected water is an important criterion in determining the potential uses for this water. Condensate water samples were collected from a few locations in Saudi Arabia and detailed characterizations were conducted to determine the quality of this water. We found that the quality of condensate water collected from various locations and types of air conditioners was very high with conductivities reaching as low as 18 μS/cm and turbidities of 0. 041 NTU. The quality of the collected condensate was close to that of distilled water and, with low-cost polishing treatments, such as ion exchange resins and electrochemical processes, the condensate quality could easily reach that of potable water. © 2012 Springer Science+Business Media Dordrecht.

  12. Water reuse potential in truck wash using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Eduardo Lucas Subtil

    2016-11-01

    Full Text Available This study evaluated the water reuse potential for truck washing using the effluent treated by a Rotating Biological Contactor (RBC operated in full scale. In order to evaluate the reuse potential, a mass balance was performed for the reuse system taking into account the concentration of Total Dissolved Solids as the critical contaminant. The treatment system produced an effluent with average concentration of color, turbidity, TDS and BOD5 of 45 ± 14 uC, 15 ± 6.0 NTU, 244 ± 99 mg TDS / L and 14 ± 7.3 mg O2 / L, respectively. Based on the mass balance, and considering the TDS concentration established in NBR 13.696, if the final rinse does not use clean water, the potential for effluent reuse can reach 40%. However, if clean water is used as 30% of the total rinsing volume, it would be possible to reuse 70% of the treated effluent without compromising truck washing performance. This water reuse approach would result in an operational cost reduction of R$ 2,590.75/month.

  13. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth

    Science.gov (United States)

    Momen, M.; Wood, J. D.; Novick, K. A.; Pockman, W.; Konings, A. G.

    2017-12-01

    Remotely-sensed microwave observations of vegetation optical depth (VOD) have been widely used to examine vegetation responses to climate. Such studies have alternately found that VOD is sensitive to both biomass and canopy water content. However, the relative impacts of changes in phenology or water stress on VOD have not been disentangled. In particular, understanding whether leaf water potential (LWP) affects VOD may permit the assimilation of satellite observations into new large-scale plant hydraulic models. Despite extensive validation of the relationship between satellite-derived VOD estimates and vegetation density, relatively few studies have explicitly sought to validate the sensitivity of VOD to canopy water status, and none have studied the effect of variations in LWP on VOD. In this work, we test the sensitivity of VOD to variations in LWP, and present a conceptual framework which relates VOD to a combination of leaf water potential and total biomass including leaves, whose dynamics can be measured through leaf area index, and woody biomass. We used in-situ measurements of LWP data to validate the conceptual model in mixed deciduous forests in Indiana and Missouri, as well as a pinion-juniper woodland in New Mexico. Observed X-band VOD from the AMSR-E and AMSR2 satellites showed dynamics similar to those reconstructed VOD signals based on the new conceptual model which employs in-situ LWP data (R2=0.60-0.80). Because LWP data are not available at global scales, we further estimated ecosystem LWP based on remotely sensed surface soil moisture to better understand the sensitivity of VOD across ecosystems. At the global scale, incorporating a combination of biomass and water potential in the reconstructed VOD signal increased correlations with VOD about 15% compared to biomass alone and about 30% compared to water potential alone. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water

  14. Modified Feddes type stress reduction function for modeling root water uptake: Accounting for limited aeration and low water potential

    Science.gov (United States)

    Peters, Andre; Durner, Wolfgang; Iden, Sascha C.

    2017-04-01

    Modeling water flow in the soil-plant-atmosphere continuum with the Richards equation requires a model for the sink term describing water uptake by plant roots. Despite recent progress in developing process-based models of water uptake by plant roots and water flow in aboveground parts of vegetation, effective models of root water uptake are widely applied and necessary for large-scale applications. Modeling root water uptake consists of three steps, (i) specification of the spatial distribution of potential uptake, (ii) reduction of uptake due to various stress sources, and (iii) enhancement of uptake in part of the simulation domain to describe compensation. We discuss the conceptual shortcomings of the frequently used root water uptake model of Feddes and suggest a simple but effective improvement of the model. The improved model parametrizes water stress in wet soil by a reduction scheme which is formulated as function of air content where water stress due to low soil water potential is described by the original approach of Feddes. The improved model is physically more consistent than Feddes' model because water uptake in wet soil is limited by aeration which is a function of water content. The suggested modification is particularly relevant for simulations in heterogeneous soils, because stress parameters are uniquely defined for the entire simulation domain, irrespective of soil texture. Numerical simulations of water flow and root water uptake in homogeneous and stochastic heterogeneous soils illustrate the effect of the new model on root water uptake and actual transpiration. For homogeneous fine-textured soils, root water uptake never achieves its potential rate. In stochastic heterogeneous soil, water uptake is more pronounced at the interfaces between fine and coarse regions which has potential implications for plant growth, nutrient uptake and depletion.

  15. Quantifying the potential effects of high-volume water extractions on water resources during natural gas development: Marcellus Shale, NY

    Directory of Open Access Journals (Sweden)

    Laura C. Best

    2014-07-01

    New hydrological insights for the region: The potential effects of the withdrawal scenarios on both the water table and stream discharge were quantified. Based on these impact results, locations in the aquifer and stream networks were identified, which demonstrate particular vulnerability to increased withdrawals and their distribution. These are the locations of importance for planners and regulators who oversee water permitting, to reach a sustainable management of the water resources under changing conditions of energy and corresponding water demand.

  16. Water Detection Based on Object Reflections

    Science.gov (United States)

    Rankin, Arturo L.; Matthies, Larry H.

    2012-01-01

    Water bodies are challenging terrain hazards for terrestrial unmanned ground vehicles (UGVs) for several reasons. Traversing through deep water bodies could cause costly damage to the electronics of UGVs. Additionally, a UGV that is either broken down due to water damage or becomes stuck in a water body during an autonomous operation will require rescue, potentially drawing critical resources away from the primary operation and increasing the operation cost. Thus, robust water detection is a critical perception requirement for UGV autonomous navigation. One of the properties useful for detecting still water bodies is that their surface acts as a horizontal mirror at high incidence angles. Still water bodies in wide-open areas can be detected by geometrically locating the exact pixels in the sky that are reflecting on candidate water pixels on the ground, predicting if ground pixels are water based on color similarity to the sky and local terrain features. But in cluttered areas where reflections of objects in the background dominate the appearance of the surface of still water bodies, detection based on sky reflections is of marginal value. Specifically, this software attempts to solve the problem of detecting still water bodies on cross-country terrain in cluttered areas at low cost.

  17. Measurement of water potential in low-level waste management

    International Nuclear Information System (INIS)

    Jones, T.L.; Gee, G.W.; Kirkham, R.R.; Gibson, D.D.

    1982-08-01

    The measurement of soil water is important to the shallow land burial of low-level waste. Soil water flow is the principle mechanism of radionuclide transport, allows the establishment of stabilizing vegetation and also governs the dissolution and release rates of the waste. This report focuses on the measurement of soil water potential and provides an evaluation of several field instruments that are available for use to monitor waste burial sites located in arid region soils. The theoretical concept of water potential is introduced and its relationship to water content and soil water flow is discussed. Next, four major areas of soils research are presented in terms of their dependence on the water potential concept. There are four basic types of sensors used to measure soil water potential. These are: (1) tensiometers; (2) soil psychrometers; (3) electrical resistance blocks; and (4) heat dissipation probes. Tensiometers are designed to measure the soil water potential directly by measuring the soil water pressure. Monitoring efforts at burial sites require measurements of soil water over long time periods. They also require measurements at key locations such as waste-soil interfaces and within any barrier system installed. Electrical resistance blocks are well suited for these types of measurements. The measurement of soil water potential can be a difficult task. There are several sensors commercially available; however, each has its own limitations. It is important to carefully select the appropriate sensor for the job. The accuracy, range, calibration, and stability of the sensor must be carefully considered. This study suggests that for waste management activities, the choice of sensor will be the tensiometer for precise soil characterization studies and the electrical resistance block for long term monitoring programs

  18. Numerical Simulation and Experimental Study of Deep Bed Corn Drying Based on Water Potential

    Directory of Open Access Journals (Sweden)

    Zhe Liu

    2015-01-01

    Full Text Available The concept and the model of water potential, which were widely used in agricultural field, have been proved to be beneficial in the application of vacuum drying model and have provided a new way to explore the grain drying model since being introduced to grain drying and storage fields. Aiming to overcome the shortcomings of traditional deep bed drying model, for instance, the application range of this method is narrow and such method does not apply to systems of which pressure would be an influential factor such as vacuum drying system in a way combining with water potential drying model. This study established a numerical simulation system of deep bed corn drying process which has been proved to be effective according to the results of numerical simulation and corresponding experimental investigation and has revealed that desorption and adsorption coexist in deep bed drying.

  19. Potential Energy Flexibility for a Hot-Water Based Heating System in Smart Buildings Via Economic Model Predictive Control

    DEFF Research Database (Denmark)

    Ahmed, Awadelrahman M. A.; Zong, Yi; Mihet-Popa, Lucian

    2017-01-01

    This paper studies the potential of shifting the heating energy consumption in a residential building to low price periods based on varying electricity price signals suing Economic Model Predictive Control strategy. The investigated heating system consists of a heat pump incorporated with a hot...... water tank as active thermal energy storage, where two optimization problems are integrated together to optimize both the heat pump electricity consumption and the building heating consumption. A sensitivity analysis for the system flexibility is examined. The results revealed that the proposed...

  20. Estimating the potential water reuse based on fuzzy reasoning

    OpenAIRE

    Almeida, Giovana; Vieira, J. M. Pereira; Marques, Alfeu Sá; Kiperstok, Asher; Cardoso, Alberto

    2013-01-01

    Studies worldwide suggest that the risk of water shortage in regions affected by climate change is growing. Decision support tools can help governments to identify future water supply problems in order to plan mitigation measures. Treated wastewater is considered a suitable alternative water resource and it is used for non-potable applications in many dry regions around the world. This work describes a decision support system (DSS) that was developed to identify current water reus...

  1. The potential of (waste)water as energy carrier

    International Nuclear Information System (INIS)

    Frijns, Jos; Hofman, Jan; Nederlof, Maarten

    2013-01-01

    Graphical abstract: Energy input and potential output of the Dutch communal water cycle. Highlights: ► Municipal wastewater is a large carrier of chemical and thermal energy. ► The recovery of chemical energy from wastewater can be maximised by digestion. ► The potential of thermal energy recovery from wastewater is huge. ► Underground thermal energy storage is a rapidly developing renewable energy source. - Abstract: Next to energy efficiency improvements in the water sector, there is a need for new concepts in which water is viewed as a carrier of energy. Municipal wastewater is a potential source of chemical energy, i.e. organic carbon that can be recovered as biogas in sludge digestion. The recovery of chemical energy can be maximised by up-concentration of organic carbon and maximised sludge digestion or by source separation and anaerobic treatment. Even more so, domestic wastewater is a source of thermal energy. Through warm water conservation and heat recovery, for example with shower heat exchangers, substantial amounts of energy can be saved and recovered from the water cycle. Water can also be an important renewable energy source, i.e. as underground thermal energy storage. These systems are developing rapidly in the Netherlands and their energy potential is large.

  2. Developing index maps of water-harvest potential in Africa

    Science.gov (United States)

    Senay, G.B.; Verdin, J.P.

    2004-01-01

    The food security problem in Africa is tied to the small farmer, whose subsistence farming relies heavily on rain-fed agriculture. A dry spell lasting two to three weeks can cause a significant yield reduction. A small-scale irrigation scheme from small-capacity ponds can alleviate this problem. This solution would require a water harvest mechanism at a farm level. In this study, we looked at the feasibility of implementing such a water harvest mechanism in drought prone parts of Africa. A water balance study was conducted at different watershed levels. Runoff (watershed yield) was estimated using the SCS curve number technique and satellite derived rainfall estimates (RFE). Watersheds were delineated from the Africa-wide HYDRO-1K digital elevation model (DEM) data set in a GIS environment. Annual runoff volumes that can potentially be stored in a pond during storm events were estimated as the product of the watershed area and runoff excess estimated from the SCS Curve Number method. Estimates were made for seepage and net evaporation losses. A series of water harvest index maps were developed based on a combination of factors that took into account the availability of runoff, evaporation losses, population density, and the required watershed size needed to fill a small storage reservoir that can be used to alleviate water stress during a crop growing season. This study presents Africa-wide water-harvest index maps that could be used for conducting feasibility studies at a regional scale in assessing the relative differences in runoff potential between regions for the possibility of using ponds as a water management tool. ?? 2004 American Society of Agricultural Engineers.

  3. Contamination of community water sources by potentially pathogenic vibrios following sea water inundation.

    Science.gov (United States)

    Kanungo, Reba; Shashikala; Karunasagar, I; Srinivasan, S; Sheela, Devi; Venkatesh, K; Anitha, P

    2007-12-01

    Potentially pathogenic members of the Vibrionaceae family including Vibrio cholerae and Vibrio parahemolyticus were isolated from domestic sources of drinking water in coastal villages following sea water inundation during the tsunami in Southern India. Phenotypic and genotypic studies were done to confirm the identity and detection of toxins. Vibrio-gyr (gyrase B gene) was detected in all sixteen vibrio isolates. Toxin regulating genes i.e.: ctx gene, tdh gene, and trh gene, however were not detected in any of the strains, thereby ruling out presence of toxins which could endanger human life. Other potentially pathogenic bacteria Aeromonas and Plesiomonas were also isolated from hand pumps and wells, in a few localities. There was no immediate danger in the form of an outbreak or sporadic gastroenteritis at the time of the study. Timely chlorination and restoration of potable water supply to the flood affected population by governmental and nongovernmental agencies averted waterborne gastroenteritis. Assessment of quality of water and detection of potential virulent organisms is an important public health activity following natural disasters. This work highlights the importance of screening water sources for potentially pathogenic microorganisms after natural disasters to avert outbreaks of gastroenteritis and other infectious diseases.

  4. Groundwater potential for water supply during droughts in Korea

    Science.gov (United States)

    Hyun, Y.; Cha, E.; Moon, H. J.

    2016-12-01

    Droughts have been receiving much attention in Korea because severe droughts occurred in recent years, causing significant social, economic and environmental damages in some regions. Residents in agricultural area, most of all, were most damaged by droughts with lack of available water supplies to meet crop water demands. In order to mitigate drought damages, we present a strategy to keep from agricultural droughts by using groundwater to meet water supply as a potential water resource in agricultural areas. In this study, we analyze drought severity and the groundwater potential to mitigate social and environmental damages caused by droughts in Korea. We evaluate drought severity by analyzing spatial and temporal meteorological and hydrological data such as rainfall, water supply and demand. For drought severity, we use effective drought index along with the standardized precipitation index (SPI) and standardized runoff index(SRI). Water deficit during the drought period is also quantified to consider social and environmental impact of droughts. Then we assess the feasibility of using groundwater as a potential source for groundwater impact mitigation. Results show that the agricultural areas are more vulnerable to droughts and use of groundwater as an emergency water resource is feasible in some regions. For a case study, we select Jeong-Sun area located in Kangwon providence having well-developed Karst aquifers and surrounded by mountains. For Jeong-Sun area, we quantify groundwater potential use, design the method of water supply by using groundwater, and assess its economic benefit. Results show that water supply system with groundwater abstraction can be a good strategy when droughts are severe for an emergency water supply in Jeong-Sun area, and groundwater can also be used not only for a dry season water supply resource, but for everyday water supply system. This case study results can further be applicable to some regions with no sufficient water

  5. [Determination of the redox potential of water saturated with hydrogen].

    Science.gov (United States)

    Piskarev, I M; Ushkanov, V A; Aristova, N A; Likhachev, P P; Myslivets, T C

    2010-01-01

    It has been shown that the redox potential of water saturated with hydrogen is -500--700 mV. The time of the establishment of the potential is 24 h. The potential somewhat increases with increasing volume of hydrogen introduced to a reservoir with water and practically does not depend on the presence of additions in water, provided these additions are not reduced by hydrogen. The pH value of water does not change after the addition of water. In a glass vessel with a metallic cover resting on the side, no decrease in potential during the 2.5-month storage was observed. In plastic bottles, the content of hydrogen decreased; on storage for more than two weeks, it disappeared almost completely, and as a result, the potential increased after storage for three to four weeks to a level near zero. In an open vessel, the potential remained negative for two days.

  6. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  7. The Potential of in situ Rain Water Harvesting for Water Resources ...

    African Journals Online (AJOL)

    The role of in situ rain water harvesting (RWH) in water resources conservation is well recognized in semiarid areas, such as the highlands of northern Ethiopia. However, in fringe areas of malaria endemicity, the potential impact of such schemes on vector populations and malaria transmission is not well documented.

  8. Renewable energy technologies for irrigation water pumping in India: A preliminary attempt towards potential estimation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Atul [Policy Analysis Division, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003 (India); Kandpal, Tara C. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2007-05-15

    Simple frameworks have been developed for estimating the utilization potential of: (a) solar photovoltaic (SPV) pumps; (b) windmill pumps; (c) producer gas based dual fuel engine pumps; and (d) biogas based dual fuel engine pumps for irrigation water pumping in India. The approach takes into account factors such as: solar radiation intensity, wind speed, availability of bovine dung and agri-residues, and their alternative uses, ground water requirements for irrigation and its availability, affordability, and propensity of the users to invest in renewable energy devices, etc. SPV pumps are estimated to have the maximum utilization potential in India, followed by windmill pumps. (author)

  9. Renewable energy technologies for irrigation water pumping in India: A preliminary attempt towards potential estimation

    International Nuclear Information System (INIS)

    Kumar, Atul; Kandpal, Tara C.

    2007-01-01

    Simple frameworks have been developed for estimating the utilization potential of: (a) solar photovoltaic (SPV) pumps; (b) windmill pumps; (c) producer gas based dual fuel engine pumps; and (d) biogas based dual fuel engine pumps for irrigation water pumping in India. The approach takes into account factors such as: solar radiation intensity, wind speed, availability of bovine dung and agri-residues, and their alternative uses, ground water requirements for irrigation and its availability, affordability, and propensity of the users to invest in renewable energy devices, etc. SPV pumps are estimated to have the maximum utilization potential in India, followed by windmill pumps

  10. Potential for solar water heating in Zimbabwe

    NARCIS (Netherlands)

    Batidzirai, B.; Lysen, E.H.; van Egmond, S.; van Sark, W.G.J.H.M.

    2009-01-01

    This paper discusses the economic, social and environmental benefits from using solar water heating (SWH) in Zimbabwe. By comparing different water heating technology usage in three sectors over a 25-year period, the potential of SWH is demonstrated in alleviating energy and economic problems that

  11. Separation, Characterization and Fouling Potential of Sludge Waters from Different Biological Wastewater Treatment Processes

    KAUST Repository

    Xue, Jinkai

    2011-07-01

    The major limitation, which hinders the wider application of membrane technology and increases the operating costs of membranes involved in wastewater treatment plants, is membrane fouling induced by organic matter. Extracellular polymeric products (EPS) and soluble microbial products (SMP) are the two most mentioned major foulants in publications, for which the debate on precise definitions seems to be endless. Therefore, a concept of sludge water, which conceptually covers both EPS and SMP, has been developed in this research. A standard procedure of sludge water separation, which is centrifugation at 4000g for 15 min followed by 1.2μm glass fiber filter filtration, was established based on separation experiments with membrane tank sludge from the KAUST MBR wastewater treatment plant. Afterwards, sludge waters from the KAUST MBR WWTP anoxic tank, aerobic tank and membrane tank as well as sludge waters from the Jeddah WWTP anoxic tank, aerobic tank and secondary effluent were produced through the previously developed standard procedure. The obtained sludge water samples were thereafter characterized with TOC/COD, LC-­‐OCD and F-­‐EEM, which showed that KAUST anoxic/ aerobic /membrane tank sludge waters had similar characteristics for all investigated parameters, yet the influent naturally had a higher DOC and biopolymer concentration. Moreover, lower TOC/COD, negligible biopolymers and low levels of humics were found in KAUST effluent. Compared with the KAUST MBR WWTP, the Jeddah WWTP’s sludge waters generally had higher DOC and biopolymer concentrations. To investigate sludge water fouling potential, the KAUST membrane tank sludge water as well as the Jeddah secondary effluent were filtrated through a membrane array consisting of an ultrafiltration (UF) Millipore RC10kDa at the first step followed by a nanofiltration (NF) KOCH Acid/Base stable NF200 at the second step. It was found that cake layer and standard blocking occurred simultaneously during both

  12. Estimating Leaf Water Potential of Giant Sequoia Trees from Airborne Hyperspectral Imagery

    Science.gov (United States)

    Francis, E. J.; Asner, G. P.

    2015-12-01

    Recent drought-induced forest dieback events have motivated research on the mechanisms of tree survival and mortality during drought. Leaf water potential, a measure of the force exerted by the evaporation of water from the leaf surface, is an indicator of plant water stress and can help predict tree mortality in response to drought. Scientists have traditionally measured water potentials on a tree-by-tree basis, but have not been able to produce maps of tree water potential at the scale of a whole forest, leaving forest managers unaware of forest drought stress patterns and their ecosystem-level consequences. Imaging spectroscopy, a technique for remote measurement of chemical properties, has been used to successfully estimate leaf water potentials in wheat and maize crops and pinyon-pine and juniper trees, but these estimates have never been scaled to the canopy level. We used hyperspectral reflectance data collected by the Carnegie Airborne Observatory (CAO) to map leaf water potentials of giant sequoia trees (Sequoiadendron giganteum) in an 800-hectare grove in Sequoia National Park. During the current severe drought in California, we measured predawn and midday leaf water potentials of 48 giant sequoia trees, using the pressure bomb method on treetop foliage samples collected with tree-climbing techniques. The CAO collected hyperspectral reflectance data at 1-meter resolution from the same grove within 1-2 weeks of the tree-level measurements. A partial least squares regression was used to correlate reflectance data extracted from the 48 focal trees with their water potentials, producing a model that predicts water potential of giant sequoia trees. Results show that giant sequoia trees can be mapped in the imagery with a classification accuracy of 0.94, and we predicted the water potential of the mapped trees to assess 1) similarities and differences between a leaf water potential map and a canopy water content map produced from airborne hyperspectral data, 2

  13. Determination of Germination Response to Temperature and Water Potential for a Wide Range of Cover Crop Species and Related Functional Groups.

    Science.gov (United States)

    Tribouillois, Hélène; Dürr, Carolyne; Demilly, Didier; Wagner, Marie-Hélène; Justes, Eric

    2016-01-01

    A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5-43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3-37.2°C, maximum temperatures at which the species could germinate varied from 27.7-43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop

  14. Treatability of a Highly-Impaired, Saline Surface Water for Potential Urban Water Use

    Directory of Open Access Journals (Sweden)

    Frederick Pontius

    2018-03-01

    Full Text Available As freshwater sources of drinking water become limited, cities and urban areas must consider higher-salinity waters as potential sources of drinking water. The Salton Sea in the Imperial Valley of California has a very high salinity (43 ppt, total dissolved solids (70,000 mg/L, and color (1440 CU. Future wetlands and habitat restoration will have significant ecological benefits, but salinity levels will remain elevated. High salinity eutrophic waters, such as the Salton Sea, are difficult to treat, yet more desirable sources of drinking water are limited. The treatability of Salton Sea water for potential urban water use was evaluated here. Coagulation-sedimentation using aluminum chlorohydrate, ferric chloride, and alum proved to be relatively ineffective for lowering turbidity, with no clear optimum dose for any of the coagulants tested. Alum was most effective for color removal (28 percent at a dose of 40 mg/L. Turbidity was removed effectively with 0.45 μm and 0.1 μm microfiltration. Bench tests of Salton Sea water using sea water reverse osmosis (SWRO achieved initial contaminant rejections of 99 percent salinity, 97.7 percent conductivity, 98.6 percent total dissolved solids, 98.7 percent chloride, 65 percent sulfate, and 99.3 percent turbidity.

  15. LEAKAGE CHARACTERISTICS OF BASE OF RIVERBANK BY SELF POTENTIAL METHOD AND EXAMINATION OF EFFECTIVENESS OF SELF POTENTIAL METHOD TO HEALTH MONITORING OF BASE OF RIVERBANK

    Science.gov (United States)

    Matsumoto, Kensaku; Okada, Takashi; Takeuchi, Atsuo; Yazawa, Masato; Uchibori, Sumio; Shimizu, Yoshihiko

    Field Measurement of Self Potential Method using Copper Sulfate Electrode was performed in base of riverbank in WATARASE River, where has leakage problem to examine leakage characteristics. Measurement results showed typical S-shape what indicates existence of flow groundwater. The results agreed with measurement results by Ministry of Land, Infrastructure and Transport with good accuracy. Results of 1m depth ground temperature detection and Chain-Array detection showed good agreement with results of the Self Potential Method. Correlation between Self Potential value and groundwater velocity was examined model experiment. The result showed apparent correlation. These results indicate that the Self Potential Method was effective method to examine the characteristics of ground water of base of riverbank in leakage problem.

  16. Ozone and sulphur dioxide effects on leaf water potential of Petunia

    Energy Technology Data Exchange (ETDEWEB)

    Elkiey, T.; Ormrod, D.P.

    1979-01-01

    Three cultivars of Petunia hydrida Vilm., of differing ozone visible injury sensitivity, were exposed to 40 parts per hundred million (pphm) ozone and/or 80 pphm SO/sub 2/ for 4 h to study the relationships of leaf water potential, pollutant exposure, and cultivar sensitivity. Ozone substantially decreased leaf water potential in cv White Cascade but not in cv Capri or White Magic. Sulphur dioxide did not affect leaf water potential but delayed ozone-induced changes. Cultivar sensitivity to ozone-induced changes in leaf water potential was not related to cultivar sensitivity to ozone-induced visible injury.

  17. Hydro power potentials of water distribution networks in public universities: A case study

    Directory of Open Access Journals (Sweden)

    Olufemi Adebola KOYA

    2017-06-01

    Full Text Available Public Universities in Southwestern Nigeria are densely populated student-resident campuses, so that provision of regular potable water and electricity are important, but power supply is not optimally available for all the necessary activities. This study assesses the hydropower potential of the water distribution networks in the Universities, with the view to augmenting the inadequate power supplies. The institutions with water distribution configuration capable of accommodating in-pipe turbine are identified; the hydropower parameters, such as the flow characteristics and the pipe geometry are determined to estimate the water power. Global positioning device is used in estimating the elevations of the distribution reservoirs and the nodal points. The hydropower potential of each location is computed incorporating Lucid® Lift-based spherical turbine in the pipeline. From the analysis, the lean and the peak water power are between 1.92 – 3.30 kW and 3.95 – 7.24 kW, respectively, for reservoir-fed distribution networks; while, a minimum of 0.72 kW is got for pipelines associated with borehole-fed overhead tanks. Possible applications of electricity generation from the water distribution networks of the public universities are recommended.

  18. Synthesis, characterization of novel chitosan based water dispersible polyurethanes and their potential deployment as antibacterial textile finish.

    Science.gov (United States)

    Arshad, Noureen; Zia, Khalid Mahmood; Jabeen, Farukh; Anjum, Muhammad Naveed; Akram, Nadia; Zuber, Mohammad

    2018-05-01

    Our current research work comprised of synthesis of a series of novel chitosan based water dispersible polyurethanes. The synthesis was carried out in three steps, in first step, the NCO end capped PU-prepolymer was formed through the reaction between Polyethylene glycol (PEG) (Mn = 600), Dimethylolpropionic acid (DMPA) and Isophorone diisocyanate (IPDI). In second step, the neutralization step was carried out by using Triethylamine (TEA) which resulted the formation of neutralized NCO terminated PU-prepolymer, after that the last step chain extension was performed by the addition of chitosan and followed the formation of dispersion by adding calculated amount of water. The proposed structure of CS-WDPUs was confirmed by using FTIR technique. The antimicrobial activities of the plain weave poly-cotton printed and dyed textile swatches after application of CS-WDPUs were also evaluated. The results showed that the chitosan incorporation in to PU backbone has markedly enhanced the antibacterial activity of WDPUs. These synthesized CS-WDPUs are eco-friendly antimicrobial finishes (using natural bioactive agents such as chitosan) with potential applications on polyester/cotton textiles. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Investigating aftergrowth potential of polymers in drinking water – the effect of water replacement and temperature

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    The aftergrowth potential of polymers used in drinking water distribution was investigated by a batch set-up, where test pieces were incubated in biostable, inorganic nutrient amended drinking water inoculated with surface water. Biomass production was measured as ATP and followed over 16 weeks...... difference on the biomass production of no replacement of the test water, replacement once a week or every second week. Periodical water replacement could nevertheless be considered beneficial, since a substantial NVOC migration occurred within the first six weeks of incubation, which potentially could...

  20. Zeta-potential and flotability of the scheelite mineral in different type of waters, Part 1: Zeta-potential

    Directory of Open Access Journals (Sweden)

    Milanović Dragan B.

    2009-01-01

    Full Text Available The aim of this work is the investigation of zeta-potential of the mineral scheelite from mine 'Rudnik', located in central Serbia. Electrophoresis measurements using zeta-meter were carried out on four different types of water, namely: tap water, distilled water, rain water and spring water. All types of water had different hardness and conductivity as well as natural pH values. It was found that the zeta-potential of mineral scheelite depends on the hardness and electro-conductivity of the chosen type of water as well as on Ca2+ content. The results obtained reveal the importance of proper choice of water as well as the type of reagents for flotation processes.

  1. Potential in hot and tepid waters in the department of Landes - Present and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Hauquin, J.P.; Godard, J.M.; Tronel, F.; Pouchan, P.

    1994-12-31

    This study of the geothermal waters potentialities in the Landes department has selectively reviewed the areas of interest in respect of geology and hydrogeology and gives a picture of their potential valorizations. In the Landes, the exploitation of geothermal fields outside of the use for spa bathing was mainly geared to conventional applications (flats heating, swimming pools). Today geothermal potentialities can be extended to balneotherapy, horticultural and market garden greenhouses, fish farming and wood drying. The study performed delivers a data base to be used by the investor to define and to accurately devise their projects of hot and tepid waters utilization. (Authors). 12 refs., 1 fig., 1 tab.

  2. Atomic-Scale Simulation of Electrochemical Processes at Electrode/Water Interfaces under Referenced Bias Potential.

    Science.gov (United States)

    Bouzid, Assil; Pasquarello, Alfredo

    2018-04-19

    Based on constant Fermi-level molecular dynamics and a proper alignment scheme, we perform simulations of the Pt(111)/water interface under variable bias potential referenced to the standard hydrogen electrode (SHE). Our scheme yields a potential of zero charge μ pzc of ∼0.22 eV relative to the SHE and a double layer capacitance C dl of ≃19 μF cm -2 , in excellent agreement with experimental measurements. In addition, we study the structural reorganization of the electrical double layer for bias potentials ranging from -0.92 eV to +0.44 eV and find that O down configurations, which are dominant at potentials above the pzc, reorient to favor H down configurations as the measured potential becomes negative. Our modeling scheme allows one to not only access atomic-scale processes at metal/water interfaces, but also to quantitatively estimate macroscopic electrochemical quantities.

  3. The potential impacts of biomass feedstock production on water resource availability.

    Science.gov (United States)

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  4. Assimilation potential of water column biota: Mesocosm-based evaluations

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Ansari, Z.A.; Sadhasivan, A.; Naik, S.; Sawkar, K.

    , caused pollution, and degraded the environment. Indeed, industrialized man has intensified many envi ronmental problems that his agrarian predecessors created. In addition, newer ones such as air, water, and soil pollution, radioactive waste, and a host... of hazardous synthetic chemicals are modern man's 'creations. These problems are threatening people's well-being not only at local but also at regional and global levels. Water pollution is any physical and chemical change in surface and groundwater that can...

  5. Realizing the geothermal electricity potential-water use and consequences

    International Nuclear Information System (INIS)

    Mishra, Gouri Shankar; Yeh, Sonia; Glassley, William E

    2011-01-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh -1 ) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  6. Coal seam gas water: potential hazards and exposure pathways in Queensland.

    Science.gov (United States)

    Navi, Maryam; Skelly, Chris; Taulis, Mauricio; Nasiri, Shahram

    2015-01-01

    The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland's CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are (1) water used for municipal purposes; (2) recreational water activities in rivers; (3) occupational exposures; (4) water extracted from contaminated aquifers; and (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.

  7. Electrochemical corrosion potential and noise measurement in high temperature water

    International Nuclear Information System (INIS)

    Fong, Clinton; Chen, Yaw-Ming; Chu, Fang; Huang, Chia-Shen

    2000-01-01

    Hydrogen water chemistry (HWC) is one of the most important methods in boiling water reactor(BWR) system to mitigate and prevent stress corrosion cracking (SCC) problems of stainless steel components. Currently, the effectiveness of HWC in each BWR is mainly evaluated by the measurement of electrochemical corrosion potentials (ECP) and on-line monitoring of SCC behaviors of stainless steels. The objective of this work was to evaluate the characteristics and performance of commercially available high temperature reference electrodes. In addition, SCC monitoring technique based on electrochemical noise analysis (ECN) was also tested to examine its crack detection capability. The experimental work on electrochemical corrosion potential (ECP) measurements reveals that high temperature external Ag/AgCl reference electrode of highly dilute KCl electrolyte can adequately function in both NWC and HWC environments. The high dilution external Ag/AgCl electrode can work in conjunction with internal Ag/AgCl reference electrode, and Pt electrode to ensure the ECP measurement reliability. In simulated BWR environment, the electrochemical noise tests of SCC were carried out with both actively and passively loaded specimens of type 304 stainless steel with various electrode arrangements. From the coupling current and corrosion potential behaviors of the passive loading tests during immersion test, it is difficult to interpret the general state of stress corrosion cracking based on the analytical results of overall current and potential variations, local pulse patterns, statistical characteristics, or power spectral density of electrochemical noise signals. However, more positive SCC indication was observed in the power spectral density analysis. For aqueous environments of high solution impedance, successful application of electrochemical noise technique for SCC monitoring may require further improvement in specimen designs and analytical methods to enhance detection sensitivity

  8. Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting.

    Science.gov (United States)

    Bhat, Swetha S M; Jang, Ho Won

    2017-08-10

    In recent years, bismuth-based nanomaterials have drawn considerable interest as potential candidates for photoelectrochemical (PEC) water splitting owing to their narrow band gaps, nontoxicity, and low costs. The unique electronic structure of bismuth-based materials with a well-dispersed valence band comprising Bi 6s and O 2p orbitals offers a suitable band gap to harvest visible light. This Review presents significant advancements in exploiting bismuth-based nanomaterials for solar water splitting. An overview of the different strategies employed and the new ideas adopted to improve the PEC performance of bismuth-based nanomaterials are discussed. Morphology control, the construction of heterojunctions, doping, and co-catalyst loading are several approaches that are implemented to improve the efficiency of solar water splitting. Key issues are identified and guidelines are suggested to rationalize the design of efficient bismuth-based materials for sunlight-driven water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Tantalum-based semiconductors for solar water splitting.

    Science.gov (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  10. Potentiometric chip-based multipumping flow system for the simultaneous determination of fluoride, chloride, pH, and redox potential in water samples.

    Science.gov (United States)

    Chango, Gabriela; Palacio, Edwin; Cerdà, Víctor

    2018-08-15

    A simple potentiometric chip-based multipumping flow system (MPFS) has been developed for the simultaneous determination of fluoride, chloride, pH, and redox potential in water samples. The proposed system was developed by using a poly(methyl methacrylate) chip microfluidic-conductor using the advantages of flow techniques with potentiometric detection. For this purpose, an automatic system has been designed and built by optimizing the variables involved in the process, such as: pH, ionic strength, stirring and sample volume. This system was applied successfully to water samples getting a versatile system with an analysis frequency of 12 samples per hour. Good correlation between chloride and fluoride concentration measured with ISE and ionic chromatography technique suggests satisfactory reliability of the system. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Potential of Rainwater Harvesting and Greywater Reuse for Water Consumption Reduction and Wastewater Minimization

    Directory of Open Access Journals (Sweden)

    Miguel Ángel López Zavala

    2016-06-01

    Full Text Available Northeastern Mexico is a semiarid region with water scarcity and a strong pressure on water sources caused by the rapid increase of population and industrialization. In this region, rainwater harvesting alone is not enough to meet water supply demands due to the irregular distribution of rainfall in time and space. Thus, in this study the reliability of integrating rainwater harvesting with greywater reuse to reduce water consumption and minimize wastewater generation in the Tecnológico de Monterrey, Monterrey Campus, was assessed. Potable water consumption and greywater generation in main facilities of the campus were determined. Rainwater that can be potentially harvested in roofs and parking areas of the campus was estimated based on a statistical analysis of the rainfall. Based on these data, potential water savings and wastewater minimization were determined. Characterization of rainwater and greywater was carried out to determine the treatment necessities for each water source. Additionally, the capacity of water storage tanks was estimated. For the selected treatment systems, an economic assessment was conducted to determine the viability of the alternatives proposed. Results showed that water consumption can be reduced by 48% and wastewater generation can be minimized by 59%. Implementation of rainwater harvesting and greywater reuse systems in the Monterrey Campus will generate important economic benefits to the institution. Amortization of the investments will be achieved in only six years, where the net present value (NPV will be on the order of US $50,483.2, the internal rate of return (IRR of 4.6% and the benefits–investment ratio (B/I of 1.7. From the seventh year, the project will present an IRR greater than the minimum acceptable rate of return (MARR. In a decade, the IRR will be 14.4%, more than twice the MARR, the NPV of US $290,412.1 and the B/I of 3.1, denoting economic feasibility. Based on these results, it is clear that

  12. Mapping the Green Infrastructure potential - and it's water-energy impacts on New York City roof Tops

    Science.gov (United States)

    Engström, Rebecka; Destouni, Georgia; Howells, Mark

    2017-04-01

    Green Roofs have the potential to provide multiple services in cities. Besides acting as carbon sinks, providing noise reduction and decreasing air pollution - without requiring any additional "land-use" in a city (only roof-use), green roofs have a quantifiable potential to reduce direct and indirect energy and water use. They enhance the insulating capacity of a conventional residential roof and thereby decrease both cooling demands in summer and heating demands in winter. The former is further mitigated by the cooling effect of evapotranspiration from the roofs In New York City green roofs are additionally a valuable component of reducing "combined sewer overflows", as these roofs can retain storm water. This can improve water quality in the city's rivers as well as decrease the total volume of water treated in the city's wastewater treatment plants, thereby indirectly reduce energy demands. The impacts of green roofs on NYC's water-energy nexus has been initially studied (Engström et. al, forthcoming). The present study expands that work to more comprehensively investigate the potential of this type of nature-based solution in a dense city. By employing Geographical Information Systems analysis, the roof top area of New York City is analysed and roof space suitable for green roofs of varying types (ranging from extensive to intensive) are mapped and quantified. The total green roof area is then connected with estimates of potential water-energy benefits (and costs) of each type of green roof. The results indicate where green roofs can be beneficially installed throughout the city, and quantifies the related impacts on both water and energy use. These outputs can provide policy makers with valuable support when facing investment decisions in green infrastructure, in a city where there is great interest for these types of nature-based solutions.

  13. Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes

    Science.gov (United States)

    Steinberg, S. L.; Henninger, D. L.

    1997-01-01

    Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.

  14. Synthesis and optical properties of water-soluble biperylene-based dendrimers.

    Science.gov (United States)

    Shao, Pin; Jia, Ningyang; Zhang, Shaojuan; Bai, Mingfeng

    2014-05-30

    We report the synthesis and photophysical properties of three biperylene-based dendrimers, which show red fluorescence in water. A fluorescence microscopy study demonstrated uptake of biperylene-based dendrimers in living cells. Our results indicate that these biperylene-based dendrimers are promising candidates in fluorescence imaging applications with the potential as therapeutic carriers.

  15. Data gaps in evidence-based research on small water enterprises in developing countries.

    Science.gov (United States)

    Opryszko, Melissa C; Huang, Haiou; Soderlund, Kurt; Schwab, Kellogg J

    2009-12-01

    Small water enterprises (SWEs) are water delivery operations that predominantly provide water at the community level. SWEs operate beyond the reach of piped water systems, selling water to households throughout the world. Their ubiquity in the developing world and access to vulnerable populations suggests that these small-scale water vendors may prove valuable in improving potable water availability. This paper assesses the current literature on SWEs to evaluate previous studies and determine gaps in the evidence base. Piped systems and point-of-use products were not included in this assessment. Results indicate that SWES are active in urban, peri-urban and rural areas of Africa, Asia and Latin America. Benefits of SWEs include: no upfront connection fees; demand-driven and flexible to local conditions; and service to large populations without high costs of utility infrastructure. Disadvantages of SWEs include: higher charges for water per unit of volume compared with infrastructure-based utilities; lack of regulation; operation often outside legal structures; no water quality monitoring; increased potential for conflict with local utilities; and potential for extortion by local officials. No rigorous, evidence-based, peer-reviewed scientific studies that control for confounders examining the effectiveness of SWEs in providing potable water were identified.

  16. Electrochemical potential measurements in boiling water reactors; relation to water chemistry and stress corrosion

    International Nuclear Information System (INIS)

    Indig, M.E.; Cowan, R.L.

    1981-01-01

    Electrochemical potential measurements were performed in operating boiling water reactors to determine the range of corrosion potentials that exist from cold standby to full power operation and the relationship of these measurements to reactor water chemistry. Once the corrosion potentials were known, experiments were performed in the laboratory under electrochemical control to determine potentials and equivalent dissolved oxygen concentrations where intergranular stress corrosion cracking (IGSCC) would and would not occur on welded Type-304 stainless steel. At 274 0 C, cracking occurred at potentials that were equivalent to dissolved oxygen concentration > 40 to 50 ppb. With decreasing temperature, IGSCC became more difficult and only severely sensitized stainless steel would crack. Recent in-reactor experiments combined with the previous laboratory data, have shown that injection of small concentrations of hydrogen during reactor operation can cause a significant decrease in corrosion potential which should cause immunity to IGSCC. (author)

  17. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    Science.gov (United States)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel-based

  18. Water-based woody biorefinery.

    Science.gov (United States)

    Amidon, Thomas E; Liu, Shijie

    2009-01-01

    The conversion of biomass into chemicals and energy is essential in order to sustain our present way of life. Fossil fuels are currently the predominant energy source, but fossil deposits are limited and not renewable. Biomass is a reliable potential source of materials, chemicals and energy that can be replenished to keep pace with our needs. A biorefinery is a concept for the collection of processes used to convert biomass into materials, chemicals and energy. The biorefinery is a "catch and release" method for using carbon that is beneficial to both the environment and the economy. In this study, we discuss three elements of a wood-based biorefinery, as proposed by the SUNY College of Environmental Science and Forestry (ESF): hot-water extraction, hydrolysis, and membrane separation/concentration. Hemicelluloses are the most easily separable main component of woody biomass and thus form the bulk of the extracts obtained by hot-water extraction of woody biomass. Hot-water extraction is an important step in the processes of woody biomass and product generation, replacing alternative costly pre-treatment methods. The hydrolysis of hemicelluloses produces 5-carbon sugars (mainly xylose), 6-carbon sugars (mainly glucose and mannose), and acetic acid. The use of nano-filtration membranes is an efficient technology that can be employed to fractionate hot-water extracts and wood hydrolysate. The residual solid mass after hot-water extraction has a higher energy content and contains fewer easily degradable components. This allows for more efficient subsequent processing to convert cellulose and lignin into conventional products.

  19. Development of paper-based electrochemical sensors for water quality monitoring

    Science.gov (United States)

    Smith, Suzanne; Bezuidenhout, Petroné; Mbanjwa, Mesuli; Zheng, Haitao; Conning, Mariette; Palaniyandy, Nithyadharseni; Ozoemena, Kenneth; Land, Kevin

    2016-02-01

    We present a method for the development of paper-based electrochemical sensors for detection of heavy metals in water samples. Contaminated water leads to serious health problems and environmental issues. Paper is ideally suited for point-of-care testing, as it is low cost, disposable, and multi-functional. Initial sensor designs were manufactured on paper substrates using combinations of inkjet printing and screen printing technologies using silver and carbon inks. Bismuth onion-like carbon nanoparticle ink was manufactured and used as the active material of the sensor for both commercial and paper-based sensors, which were compared using standard electrochemical analysis techniques. The results highlight the potential of paper-based sensors to be used effectively for rapid water quality monitoring at the point-of-need.

  20. Potential Well Water Contaminants and Their Impacts

    Science.gov (United States)

    The first step to protect your health and the health of your family is learning about what may pollute your source of drinking water. Potential contamination may occur naturally, or as a result of human activity.

  1. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu

    2012-10-01

    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  2. Wave power potential in Malaysian territorial waters

    Science.gov (United States)

    Asmida Mohd Nasir, Nor; Maulud, Khairul Nizam Abdul

    2016-06-01

    Up until today, Malaysia has used renewable energy technology such as biomass, solar and hydro energy for power generation and co-generation in palm oil industries and also for the generation of electricity, yet, we are still far behind other countries which have started to optimize waves for similar production. Wave power is a renewable energy (RE) transported by ocean waves. It is very eco-friendly and is easily reachable. This paper presents an assessment of wave power potential in Malaysian territorial waters including waters of Sabah and Sarawak. In this research, data from Malaysia Meteorology Department (MetMalaysia) is used and is supported by a satellite imaginary obtained from National Aeronautics and Space Administration (NASA) and Malaysia Remote Sensing Agency (ARSM) within the time range of the year 1992 until 2007. There were two types of analyses conducted which were mask analysis and comparative analysis. Mask analysis of a research area is the analysis conducted to filter restricted and sensitive areas. Meanwhile, comparative analysis is an analysis conducted to determine the most potential area for wave power generation. Four comparative analyses which have been carried out were wave power analysis, comparative analysis of wave energy power with the sea topography, hot-spot area analysis and comparative analysis of wave energy with the wind speed. These four analyses underwent clipping processes using Geographic Information System (GIS) to obtain the final result. At the end of this research, the most suitable area to develop a wave energy converter was found, which is in the waters of Terengganu and Sarawak. Besides that, it was concluded that the average potential energy that can be generated in Malaysian territorial waters is between 2.8kW/m to 8.6kW/m.

  3. Chitosan-based water-propelled micromotors with strong antibacterial activity.

    Science.gov (United States)

    Delezuk, Jorge A M; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Wang, Joseph

    2017-02-09

    A rapid and efficient micromotor-based bacteria killing strategy is described. The new antibacterial approach couples the attractive antibacterial properties of chitosan with the efficient water-powered propulsion of magnesium (Mg) micromotors. These Janus micromotors consist of Mg microparticles coated with the biodegradable and biocompatible polymers poly(lactic-co-glycolic acid) (PLGA), alginate (Alg) and chitosan (Chi), with the latter responsible for the antibacterial properties of the micromotor. The distinct speed and efficiency advantages of the new micromotor-based environmentally friendly antibacterial approach have been demonstrated in various control experiments by treating drinking water contaminated with model Escherichia coli (E. coli) bacteria. The new dynamic antibacterial strategy offers dramatic improvements in the antibacterial efficiency, compared to static chitosan-coated microparticles (e.g., 27-fold enhancement), with a 96% killing efficiency within 10 min. Potential real-life applications of these chitosan-based micromotors for environmental remediation have been demonstrated by the efficient treatment of seawater and fresh water samples contaminated with unknown bacteria. Coupling the efficient water-driven propulsion of such biodegradable and biocompatible micromotors with the antibacterial properties of chitosan holds great considerable promise for advanced antimicrobial water treatment operation.

  4. Reuse potential of laundry greywater for irrigation based on growth, water and nutrient use of tomato

    Science.gov (United States)

    Misra, R. K.; Patel, J. H.; Baxi, V. R.

    2010-05-01

    SummaryGreywater is considered as a valuable resource with a high reuse potential for irrigation of household lawns and gardens. However, there are possibilities of surfactant and sodium accumulation in soil from reuse of greywater which may affect agricultural productivity and environmental sustainability adversely. We conducted a glasshouse experiment to examine variation in growth, water and nutrient use of tomato ( Lycopersicon esculentum Mill. cv. Grosse Lisse) using tap water (TW), laundry greywater (GW) and solutions of low and high concentration of a detergent surfactant (LC and HC, respectively) as irrigation treatments. Each treatment was replicated five times using a randomised block design. Measurements throughout the experiment showed greywater to be significantly more alkaline and saline than the other types of irrigation water. Although all plants received 16 irrigations over a period of 9 weeks until flowering, there were little or no significant effects of irrigation treatments on plant growth. Soil water retention following irrigation reduced significantly when plants were irrigated with GW or surfactant solutions on only three of 12 occasions. On one occasion, water use measured as evapotranspiration (ET) with GW irrigation was similar to TW, but it was significantly higher than the plants receiving HC irrigation. At harvest, various components of plant biomass and leaf area for GW irrigated plants were found to be similar or significantly higher than the TW irrigated plants with a common trend of GW ⩾ TW > LC ⩾ HC. Whole-plant concentration was measured for 12 essential plant nutrients (N, P, K, Ca, Mg, S, Fe, Cu, Mn, Zn, Mo and B) and Na (often considered as a beneficial nutrient). Irrigation treatments affected the concentration of four nutrients (P, Fe, Zn and Na) and uptake of seven nutrients (P, K, Ca, Mg, Na, Fe and B) significantly. Uptake of these seven nutrients by tomato was generally in the order GW ⩾ TW > HC ⩾ LC. GW

  5. Consequence of potential accidents in heavy water plants

    International Nuclear Information System (INIS)

    Croitoru, C.; Lazar, R.E.; Preda, I.A.; Dumitrescu, M.

    1998-01-01

    Heavy water plants realize the primary isotopic concentrations of water using H 2 O-H 2 S chemical exchange and they are chemical plants. As these plants are handling and spreading large quantities of hydrogen sulphide (high toxic, corrosive, flammable and explosive as) maintained in the process at relative high temperatures and pressures, it is required an assessing of risks associated with the potential accidents. The H 2 S released in atmosphere as a result of an accident will have negative consequences to property, population and environment. This paper presents a model of consequences quantitative assessment and its outcome for the most dangerous accident in heavy water plants. Several states of the art risk based methods were modified and linked together to form a proper model for this analyse. Five basic steps to identify the risks involved in operating the plants are followed: hazard identification, accident sequence development, H 2 S emissions calculus, dispersion analyses and consequences determination. A brief description of each step and some information of analysis results are provided. The accident proportions, the atmospheric conditions and the population density in the respective area were accounted for consequences calculus. The specific results of the consequences analysis allow to develop the plant's operating safety requirements so that the risk remain at an acceptable level. (authors)

  6. Lipid-based formulations for oral administration of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Mu, Huiling; Holm, René; Müllertz, Anette

    2013-01-01

    Lipid-based drug delivery systems have shown great potentials in oral delivery of poorly water-soluble drugs, primarily for lipophilic drugs, with several successfully marketed products. Pre-dissolving drugs in lipids, surfactants, or mixtures of lipids and surfactants omits the dissolving....../dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect...

  7. Evaluation of treated sewage reuse potential and membrane-based water reuse technology for the Bangkok Metropolitan area.

    Science.gov (United States)

    Chiemchaisri, Chart; Chiemchaisri, Wilai; Prasertkulsak, Sirilak; Hamjinda, Nutta Sangnarin; Kootatep, Thammarat; Itonaga, Takanori; Yamamoto, Kazuo

    2015-01-01

    Only 3.4% of total water use in the Bangkok Metropolitan area is reused treated sewage. This study anticipates that further treated-sewage reuse in industrial sectors, commercial buildings and public parks, in addition to present in-plant and street cleaning purposes, would increase total water reuse to about 10%. New water reuse technologies using membrane bioreactor (MBR) and microfiltration (MF) as tertiary treatment were implemented to assess their potential for their application in the Bangkok Metropolitan area. The MBR was applied to the treatment of raw sewage in a central treatment plant of the Bangkok Metropolitan area. The MF membrane was used for polishing the effluent of the treatment plant. The results show the quality of treated water from MBR and tertiary MF treatment could meet stringent water reuse quality standard in terms of biochemical oxygen demand, suspended solids and biological parameters. Constant permeate flux of the membrane was achieved over long-term operation, during which inorganic fouling was observed. This is due to the fact that incoming sewage contains a considerable amount of inorganic constituents contributed from storm water and street inlet in the combined sewerage systems. The total cost of the MBR for sewage treatment and production of reuse water is estimated to be about USD1.10/m3.

  8. SCS-CN and GIS-based approach for identifying potential water harvesting sites in the Kali Watershed, Mahi River Basin, India

    Science.gov (United States)

    Ramakrishnan, D.; Bandyopadhyay, A.; Kusuma, K. N.

    2009-08-01

    The Kali sub-watershed is situated in the semi-arid region of Gujarat, India and forms a part of the Mahi River Watershed. This watershed receives an average annual rainfall of 900mm mainly between July and September. Due to high runoff potential, evapo-transpiration and poor infiltration, drought like situation prevails in this area from December to June almost every year. In this paper, augmentation of water resource is proposed by construction of runoff harvesting structures like check dam, percolation pond, farm pond, well and subsurface dyke. The site suitability for different water harvesting structures is determined by considering spatially varying parameters like runoff potential, slope, fracture pattern and micro-watershed area. GIS is utilised as a tool to store, analyse and integrate spatial and attribute information pertaining to runoff, slope, drainage and fracture. The runoff derived by SCS-CN method is a function of runoff potential which can be expressed in terms of runoff coefficient (ratio between the runoff and rainfall) which can be classified into three classes, viz., high (>40%), moderate (20-40%) and low (<20%). In addition to IMSD, FAO specifications for water harvesting/recharging structures, parameters such as effective storage, rock mass permeability are herein considered to augment effective storage. Using the overlay and decision tree concepts in GIS, potential water harvesting sites are identified. The derived sites are field investigated for suitability and implementation. In all, the accuracy of the site selection at implementation level varies from 80-100%.

  9. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    Science.gov (United States)

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M

    2017-01-01

    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent

  10. GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran)

    Science.gov (United States)

    Haghizadeh, Ali; Moghaddam, Davoud Davoudi; Pourghasemi, Hamid Reza

    2017-12-01

    Groundwater potential analysis prepares better comprehension of hydrological settings of different regions. This study shows the potency of two GIS-based data driven bivariate techniques namely statistical index (SI) and Dempster-Shafer theory (DST) to analyze groundwater potential in Broujerd region of Iran. The research was done using 11 groundwater conditioning factors and 496 spring positions. Based on the ground water potential maps (GPMs) of SI and DST methods, 24.22% and 23.74% of the study area is covered by poor zone of groundwater potential, and 43.93% and 36.3% of Broujerd region is covered by good and very good potential zones, respectively. The validation of outcomes displayed that area under the curve (AUC) of SI and DST techniques are 81.23% and 79.41%, respectively, which shows SI method has slightly a better performance than the DST technique. Therefore, SI and DST methods are advantageous to analyze groundwater capacity and scrutinize the complicated relation between groundwater occurrence and groundwater conditioning factors, which permits investigation of both systemic and stochastic uncertainty. Finally, it can be realized that these techniques are very beneficial for groundwater potential analyzing and can be practical for water-resource management experts.

  11. Microbial speciation and biofouling potential of cooling water used by Ontario Hydro

    International Nuclear Information System (INIS)

    Sharpe, V.J.

    1985-02-01

    The cooling water composition and microbial components of biofilms attached to stainless steel wafers submerged in three lake water types were evaluated to determine whether their biofouling potential differed in a predictable manner. The composition of the lake waters was different which affected biofilm composition, where the predominance of specific microbial groups varied between test systems and with time. Some prediction of biofouling potential was possible, and it was concluded that the cooling water in the vicinity of Bruce NGS had the lowest biofouling potential whereas greater biofouling could be expected in the Pickering and Nanticoke stations

  12. Change in corrosion potential of SUS304 in natural river water

    International Nuclear Information System (INIS)

    Yamamoto, Masahiro; Satoh, Tomonori; Tsukada, Takashi; Katayama, Hideki

    2014-01-01

    In the Fukushima Dai-ichi nuclear power plant, seawater and natural river water were poured into the spent nuclear fuel pools (SFP) for emergency cooling. At the early stage of the accident, corrosion of SFP's materials was worried because of high chloride ion concentration from seawater. The chloride ion concentration of the present time was decreased by dechlorination operation of feeding water of SFPs. However, the water was not treated in the viewpoint of microbial breeding and SFPs were in contact with open atmosphere, so that many microbes could be alive in the cooling water. Some researchers have reported microbially induced corrosion (MIC) occurred in the natural seawater or river water. So, we attempted to examine the ability of MIC occurrence by using of corrosion potential analysis. Corrosion potential measurements were performed in test solutions using SUS304 simple plate, creviced and welded samples. Natural river water in Ibaraki prefecture was used as standard test solution, and some amounts of NaCl and nutrient broth (NB) were added to the other solutions. Temperatures of these solutions were kept in 303 K. Growth of microbes in the test solution was confirmed using test kit. Corrosion potentials of all samples rose to about 300 mV nobler than the initial values in the NB added solution. The potentials of the welded samples more easily rose than the simple plate. These potential changes are attributed to the biofilms formed on the sample surface. (author)

  13. Germination of Acacia harpophylla (Brigalow seeds in relation to soil water potential: implications for rehabilitation of a threatened ecosystem

    Directory of Open Access Journals (Sweden)

    Sven Arnold

    2014-02-01

    Full Text Available Initial soil water conditions play a critical role when seeding is the primary approach to revegetate post-mining areas. In some semi-arid climates, such as the Brigalow Belt Bioregion in eastern Australia, extensive areas are affected by open-cut mining. Together with erratic rainfall patterns and clayey soils, the Brigalow Belt denotes a unique biome which is representative of other water-limited ecosystems worldwide. Apart from other environmental stressors, germination is governed by the water potential of the surrounding soil material. While previous studies have confirmed the high tolerance of Brigalow (Acacia harpophylla seeds to a broad range of temperature and salinity, the question of how soil water potential triggers seed germination remains. In this study, we used three replicates of 50 seeds of Brigalow to investigate germination in relation to water potential as an environmental stressor. Solutions of Polyethylene Glycol (PEG 6000 were applied to expose seeds to nine osmotic water potentials ranging from soil water saturation (0 MPa and field capacity (−.01 to −.03 MPa to the permanent wilting point (−1.5 MPa. We measured germinability (number of germinated seeds relative to total number of seeds per lot and mean germination time (mean time required for maximum germination of a seed lot to quantify germination. Based on the empirical data of the germination we estimated the parameters of the hydrotime model which simulates timing and success of seed emergence. Our findings indicate that Brigalow seeds are remarkably tolerant to water stress, with germination being observed at a water potential as low as −1.5 MPa. Likewise, the average base water potential of a seed population (hydrotime model was very low and ranged between −1.533 and −1.451 MPa. In general, Brigalow seeds germinate opportunistically over a broad range of abiotic conditions related to temperature, salinity, and water availability. Direct seeding and

  14. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification.

    Science.gov (United States)

    Thombare, Nandkishore; Jha, Usha; Mishra, Sumit; Siddiqui, M Z

    2017-07-15

    With the aim to explore new adsorbents for water purification, guar gum based hydrogels were synthesized by cross-linking with borax at different percentage. The cross-linking was confirmed through characterization by FTIR spectroscopy, SEM morphology, thermal studies and water absorption capacity. To examine the adsorption/absorption performance of different grades of hydrogels, their flocculation efficiency was studied in kaolin suspension at different pH by standard jar test procedure. The flocculation efficiency of the test materials was compared with the commercially used coagulant, alum and also residues of Al and K left in the treated water were comparatively studied. The synthesized hydrogels were also tested for their efficiency of removing Aniline Blue dye by UV-vis spectrophotometer study. The best grade hydrogel outperformed alum, at extremely low concentration and also showed dye removing efficiency up to 94%. The single step synthesized green products thus exhibited great potential as water purifying agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. From oil-based mud to water-based mud

    International Nuclear Information System (INIS)

    Christiansen, C.

    1991-01-01

    Maersk Olie og Gas AS has used low toxic oil-based muds extensively since 1982 for drilling development wells and later in the development of horizontal well drilling techniques. However, in view of the strong drive towards a reduction in the amount of oil discharged to the North Sea from the oil industry, Maersk Olie og Gas AS initiated trials with new or improved types of water-based mud, first in deviated wells (1989) and then in horizontal wells (1990). The paper reviews Maersk Olie og Gas As experience with oil-based mud since the drilling of the first horizontal well in 1987, specifically with respect to cuttings washing equipment, oil retention on cuttings, and the procedure for monitoring of this parameter. It describes the circumstances leading to the decision to revert to water-based mud systems. Finally, it reviews the experience gained so far with the new improved types of water-based mud systems, mainly glycol and KCl/polymer mud systems. Comparison of operational data, such as rate of penetration, torque and drag, etc., is made between wells drilled with oil-based mud and water-based mud. The trials with the new improved types of water-based mud systems have been positive, i.e. horizontal wells can be drilled successfully with water-based mud. As a result, Maersk Olie og and Gas AS has decided to discontinue the use of low toxic oil-based muds in the Danish sector of the North Sea

  16. Water-Based Pressure Sensitive Paint

    Science.gov (United States)

    Oglesby, Donald M.; Ingram, JoAnne L.; Jordan, Jeffrey D.; Watkins, A. Neal; Leighty, Bradley D.

    2004-01-01

    Preparation and performance of a water-based pressure sensitive paint (PSP) is described. A water emulsion of an oxygen permeable polymer and a platinum porphyrin type luminescent compound were dispersed in a water matrix to produce a PSP that performs well without the use of volatile, toxic solvents. The primary advantages of this PSP are reduced contamination of wind tunnels in which it is used, lower health risk to its users, and easier cleanup and disposal. This also represents a cost reduction by eliminating the need for elaborate ventilation and user protection during application. The water-based PSP described has all the characteristics associated with water-based paints (low toxicity, very low volatile organic chemicals, and easy water cleanup) but also has high performance as a global pressure sensor for PSP measurements in wind tunnels. The use of a water-based PSP virtually eliminates the toxic fumes associated with the application of PSPs to a model in wind tunnels.

  17. Water-Based Pressure-Sensitive Paints

    Science.gov (United States)

    Jordan, Jeffrey D.; Watkins, A. Neal; Oglesby, Donald M.; Ingram, JoAnne L.

    2006-01-01

    Water-based pressure-sensitive paints (PSPs) have been invented as alternatives to conventional organic-solvent-based pressure-sensitive paints, which are used primarily for indicating distributions of air pressure on wind-tunnel models. Typically, PSPs are sprayed onto aerodynamic models after they have been mounted in wind tunnels. When conventional organic-solvent-based PSPs are used, this practice creates a problem of removing toxic fumes from inside the wind tunnels. The use of water-based PSPs eliminates this problem. The waterbased PSPs offer high performance as pressure indicators, plus all the advantages of common water-based paints (low toxicity, low concentrations of volatile organic compounds, and easy cleanup by use of water).

  18. Action Research’s Potential to Foster Institutional Change for Urban Water Management

    Directory of Open Access Journals (Sweden)

    Dimitrios Zikos

    2013-04-01

    Full Text Available The paper discusses the potential of action research to meet the challenges entailed in institutional design for urban water management. Our overall aim is to briefly present action research and discuss its methodological merits with regard to the challenges posed by the different conceptual bases for extrapolating the effects of institutional design on institutional change. Thus, our aim is to explore how Action Research meets the challenge of scoping the field in an open fashion for determining the appropriate mechanisms of institutional change and supporting the emerging of new water institutions. To accomplish this aim, we select the Water Framework Directive (WFD as an illustrative driving force requiring changes in water management practices and implying the need for the emergence of new institutions. We employ a case of urban water management in the Volos Metropolitan Area, part of the Thessaly region in Greece, where a Pilot River Basin Plan was implemented. By applying action research and being involved in a long process of interaction between stakeholders, we examine the emergence of new institutions dealing with urban water management under the general principles of the major driving force for change: the WFD.

  19. Potential uses of high gradient magnetic filtration for high-temperature water purification in boiling water reactors

    International Nuclear Information System (INIS)

    Elliott, H.H.; Holloway, J.H.; Abbott, D.G.

    1979-01-01

    Studies of various high-temperature filter devices indicate a potentially positive impact for high gradient magnetic filtration on boiling water reactor radiation level reduction. Test results on in-plant water composition and impurity crystallography are presented for several typical boiling water reactors (BWRs) on plant streams where high-temperature filtration may be particularly beneficial. An experimental model on the removal of red iron oxide (hematite) from simulated reactor water with a high gradient magnetic filter is presented, as well as the scale-up parameters used to predict the filtration efficiency on various high temperature, in-plant streams. Numerical examples are given to illustrate the crud removal potential of high gradient magnetic filters installed at alternative stream locations under typical, steady-state, plant operating conditions

  20. Local scale water-food nexus: Use of borehole-garden permaculture to realise the full potential of rural water supplies in Malawi.

    Science.gov (United States)

    Rivett, Michael O; Halcrow, Alistair W; Schmalfuss, Janine; Stark, John A; Truslove, Jonathan P; Kumwenda, Steve; Harawa, Kettie A; Nhlema, Muthi; Songola, Chrispine; Wanangwa, Gift J; Miller, Alexandra V M; Kalin, Robert M

    2018-03-01

    Local-scale opportunities to address challenges of the water-food nexus in the developing world need to be embraced. Borehole-garden permaculture is advocated as one such opportunity that involves the sustainable use of groundwater spilt at hand-pump operated borehole supplies that is otherwise wasted. Spilt water may also pose health risks when accumulating as a stagnant pond. Rural village community use of this grey-water in permaculture projects to irrigate borehole gardens is proposed to primarily provide economic benefit whereby garden-produce revenue helps fund borehole water-point maintenance. Water-supply sustainability, increased food/nutrition security, health protection from malaria, and business opportunity benefits may also arise. Our goal has been to develop an, experience-based, framework for delivery of sustainable borehole-garden permaculture and associated benefits. This is based upon data collection and permaculture implementation across the rural Chikwawa District of Malawi during 2009-17. We use, stakeholder interviews to identify issues influencing uptake, gathering of stagnant pond occurrence data to estimate amelioration opportunity, quantification of permaculture profitability to validate economic potential, and critical assessment of recent permaculture uptake to identify continuing problems. Permaculture was implemented at 123 sites representing 6% of District water points, rising to 26% local area coverage. Most implementations were at, or near, newly drilled community-supply boreholes; hence, amelioration of prevalent stagnant ponds elsewhere remains a concern. The envisaged benefits of permaculture were manifest and early data affirm projected garden profitability and spin-off benefits of water-point banking and community micro-loan access. However, a diversity of technical, economic, social and governance issues were found to influence uptake and performance. Example issues include greater need for improved bespoke garden design input

  1. Potential of Water Hyacinth ( Eichhornia crassipes (Mart.) Solms) for ...

    African Journals Online (AJOL)

    The objective of the present study was to evaluate the potential use of water hyacinth for the removal of chromium (Cr) from tannery wastewater. This experiment was performed using healthy, young and acclimatized water hyacinth collected from unpolluted Awash River. Cr concentrations of 3, 5, 7, 10 and 20 mg/L were ...

  2. Distribution of genes associated with yield potential and water ...

    Indian Academy of Sciences (India)

    Supplementary data: Distribution of genes associated with yield potential and water-saving in. Chinese Zone II wheat detected by developed functional markers. Zhenxian Gao, Zhanliang Shi, Aimin Zhang and Jinkao Guo. J. Genet. 94, 35–42. Table 1. Functional markers for high-yield or water-saving genes in wheat and ...

  3. Potential energy landscape of TIP4P/2005 water

    Science.gov (United States)

    Handle, Philip H.; Sciortino, Francesco

    2018-04-01

    We report a numerical study of the statistical properties of the potential energy landscape of TIP4P/2005, one of the most accurate rigid water models. We show that, in the region where equilibrated configurations can be generated, a Gaussian landscape description is able to properly describe the model properties. We also find that the volume dependence of the landscape properties is consistent with the existence of a locus of density maxima in the phase diagram. The landscape-based equation of state accurately reproduces the TIP4P/2005 pressure-vs-volume curves, providing a sound extrapolation of the free-energy at low T. A positive-pressure liquid-liquid critical point is predicted by the resulting free-energy.

  4. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Coconut-based biosorbents for water treatment--a review of the recent literature.

    Science.gov (United States)

    Bhatnagar, Amit; Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2010-10-15

    Biosorption is an emerging technique for water treatment utilizing abundantly available biomaterials (especially agricultural wastes). Among several agricultural wastes studied as biosorbents for water treatment, coconut has been of great importance as various parts of this tree (e.g. coir, shell, etc.) have been extensively studied as biosorbents for the removal of diverse type of pollutants from water. Coconut-based agricultural wastes have gained wide attention as effective biosorbents due to low-cost and significant adsorption potential for the removal of various aquatic pollutants. In this review, an extensive list of coconut-based biosorbents from vast literature has been compiled and their adsorption capacities for various aquatic pollutants as available in the literature are presented. Available abundantly, high biosorption capacity, cost-effectiveness and renewability are the important factors making these materials as economical alternatives for water treatment and waste remediation. This paper presents a state of the art review of coconut-based biosorbents used for water pollution control, highlighting and discussing key advancement on the preparation of novel adsorbents utilizing coconut wastes, its major challenges together with the future prospective. It is evident from the literature survey that coconut-based biosorbents have shown good potential for the removal of various aquatic pollutants. However, still there is a need to find out the practical utility of such developed adsorbents on commercial scale, leading to the superior improvement of pollution control and environmental preservation. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Evaluation of Surface Water Harvesting Potential in Aq Emam Watershed System in the Golestan Province

    Directory of Open Access Journals (Sweden)

    s. nazaryan

    2016-02-01

    Full Text Available Introduction : Given its low and sparse precipitation both in spatial and temporal scales, Iran is nestled in an arid and semiarid part of the world. On the other hand, because of population growth, urbanization and the development of agriculture and industry sector is frequently encountered with increasing water demand. The increasing trend of water demand will widen the gap between water supply and demand in the future. This, in turn, necessitates urgent attention to the fundamentals of economic planning and allocation of water resources. Considering the limited resources and the declining water table and salinization of groundwater, especially in semi-arid areas forces us to exploit surface waters. When we evaluate the various methods of collecting rainwater, surface water that is the outcome of rainfall-runoff responses in a basin, is found to be a potential source of water and it can be useful to meet some of our water demand if managed properly. Water shortages in arid areas are critical, serious and persistent. Thus, water harvesting is an effective and economic goal. The most important step in the implementation of rain water harvesting systems is proper site selection that could cause significant savings in time and cost. In this study the potential of surface waters in the Aq Emam catchment in the east Golestan province was evaluated. The purpose of this study is to provide a framework for locating areas with water harvesting potential. Materials and Methods: For spatial evaluation of potential runoff, first, the amount of runoff is calculated using curve number and runoff potential maps were prepared with three classes: namely, the potential for low, medium and high levels. Finally, to identify suitable areas for rain water harvesting, rainfall maps, soil texture, slope and land use were weighted and multiplied based on their importance in order to determine the appropriate areas to collect runoff Results and Discussion : The results

  7. Ground Field-Based Hyperspectral Imaging: A Preliminary Study to Assess the Potential of Established Vegetation Indices to Infer Variation in Water-Use Efficiency.

    Science.gov (United States)

    Pelech, E. A.; McGrath, J.; Pederson, T.; Bernacchi, C.

    2017-12-01

    Increases in the global average temperature will consequently induce a higher occurrence of severe environmental conditions such as drought on arable land. To mitigate these threats, crops for fuel and food must be bred for higher water-use efficiencies (WUE). Defining genomic variation through high-throughput phenotypic analysis in field conditions has the potential to relieve the major bottleneck in linking desirable genetic traits to the associated phenotypic response. This can subsequently enable breeders to create new agricultural germplasm that supports the need for higher water-use efficient crops. From satellites to field-based aerial and ground sensors, the reflectance properties of vegetation measured by hyperspectral imaging is becoming a rapid high-throughput phenotyping technique. A variety of physiological traits can be inferred by regression analysis with leaf reflectance which is controlled by the properties and abundance of water, carbon, nitrogen and pigments. Although, given that the current established vegetation indices are designed to accentuate these properties from spectral reflectance, it becomes a challenge to infer relative measurements of WUE at a crop canopy scale without ground-truth data collection. This study aims to correlate established biomass and canopy-water-content indices with ground-truth data. Five bioenergy sorghum genotypes (Sorghum bicolor L. Moench) that have differences in WUE and wild-type Tobacco (Nicotiana tabacum var. Samsun) under irrigated and rainfed field conditions were examined. A linear regression analysis was conducted to determine if variation in canopy water content and biomass, driven by natural genotypic and artificial treatment influences, can be inferred using established vegetation indices. The results from this study will elucidate the ability of ground field-based hyperspectral imaging to assess variation in water content, biomass and water-use efficiency. This can lead to improved opportunities to

  8. Diel patterns of water potential components for the crassulacean acid metabolism plant Opuntia ficus-indica when well-watered or droughted

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, G.; Ortega, J.K.E.; Nerd, A.; Nobel, P.S. (Univ. of California, Los Angeles (United States))

    1991-01-01

    Under well-watered conditions, chlorenchyma acidity in cladodes of Opuntia ficus-indica increased substantially at night, fully accounting for the 0.26-megapascal nocturnal increase in osmotic pressure in the outer 2 millimeters. Osmotic pressure in the inner part of the chlorenchyma and in the water-storage parenchyma did not change significantly over 24-hour periods. Three months of drought decreased nocturnal acid accumulation by 73% and essentially abolished transpiration; also, 27% of the chlorenchyma water and 61% of the parenchyma water was lost during such drought, but the average tissue osmotic pressure was little affected. Turgor pressure was maintained in the chlorenchyma after 3 months of drought, although it decreased sevenfold in the water-storage parenchyma compared with the well-watered condition. Moreover, the nocturnal increases in turgor pressure of about 0.08 megapascal in the outer part of the chlorenchyma was also unchanged by such drought. The water potential magnitudes favored water movement from the parenchyma to the chlorenchyma at the end of the night and in the reverse direction during the late afternoon. Experiments with tritiated water support this pattern of water movement, which is also in agreement with predictions based on electric-circuit analog models for Crassulacean acid metabolism plants.

  9. Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential

    Science.gov (United States)

    HUbbell, Joel M.

    2014-08-19

    The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision. The present invention relates to a new laboratory apparatus for measuring the unsaturated hydraulic conductivity at a single water potential. One or more embodiments of the invented apparatus can be used over a wide range of water potential values within the tensiometric range, requires minimal laboratory preparation, and operates unattended for extended periods with minimal supervision.

  10. Effect of different soil water potential on leaf transpiration and on stomatal conductance in poinsettia

    Directory of Open Access Journals (Sweden)

    Jacek S. Nowak

    2013-12-01

    Full Text Available Euphorbia pulcherrima Wild.'Lilo' was grown in containers in 60% peat, 30% perlite and 10% clay (v/v mixture, with different irrigation treatments based on soil water potential. Plants were watered at two levels of drought stress: -50kPa or wilting. The treatments were applied at different stages of plant development for a month or soil was brought to the moisture stress only twice. Additionally, some plants were watered at -50 kPa during the entire cultivation period while the control plants were watered at -5kPa. Plants were also kept at maximum possible moisture level (watering at -0,5kPa or close to it (-1.OkPa through the entire growing period. Soil water potential was measured with tensiometer. Drought stress applied during entire cultivation period or during the flushing stage caused significant reduction in transpiration and conductance of leaves. Stress applied during bract coloration stage had not as great effect on the stomatal conductance and transpiration of leaves as the similar stress applied during the flushing stage. High soil moisture increased stomatal conductance and transpiration rate, respectively by 130% and 52% (flushing stage, and 72% and 150% (bract coloration stage at maximum, compared to the control.

  11. Electronic Polarizability and the Effective Pair Potentials of Water

    Science.gov (United States)

    Leontyev, I. V.; Stuchebrukhov, A. A.

    2014-01-01

    Employing the continuum dielectric model for electronic polarizability, we have developed a new consistent procedure for parameterization of the effective nonpolarizable potential of liquid water. The model explains the striking difference between the value of water dipole moment μ~3D reported in recent ab initio and experimental studies with the value μeff~2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the consistency of the parameterization scheme can be achieved if the magnitude of the effective dipole of water is understood as a scaled value μeff=μ∕εel, where εel =1.78 is the electronic (high-frequency) dielectric constant of water, and a new electronic polarization energy term, missing in the previous theories, is included. The new term is evaluated by using Kirkwood - Onsager theory. The new scheme is fully consistent with experimental data on enthalpy of vaporization, density, diffusion coefficient, and static dielectric constant. The new theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes. PMID:25383062

  12. Bioavailability of the Nano-Unit 14C-Agrochemicals Under Various Water Potential.

    Science.gov (United States)

    Jung, S C; Kim, H G; Kuk, Y I; Ahn, H G; Senseman, S A; Lee, D J

    2015-08-01

    The study was conducted to investigate the effects of water potential on bioavailability of the nano-unit 14C-cafenstrole, 14C-pretilachlor, 14C-benfuresate, 14C-simetryn and 14C-oxyfluorfen applied with or without dimepiperate or daimuron under various water potential conditions. The highest bioavailable concentration in soil solution (BCSS) was found at 60% soil moisture, while the lowest occurred at 50% soil moisture for soil-applied alone or in combination. All water potential conditions differed significantly from each other with variations in total bioavailable amount in soil solution (TBSS) when either dimepiperate or daimuron were added to the soil, and changes were directly proportional to variations in water potential. Across all treatments, TBSS at 80% soil moisture was three to four times greater than that at 50% soil moisture when applied alone or in combination with dimepiperate or daimuron. Cafenstrole and simetryn had distribution coefficient (Kd) values <64 ml g-1 and a TBSS ranging from 10 to 44 ng g-1 soil, regardless of water potential conditions applied alone or in combination. Pretilachlor and benfuresate had Kd values <15 ml g-1 and a TBSS range of 38 to 255 ng g-1 soil when applied with or without dimepiperate or daimuron.

  13. Estrogenic activity, selected plasticizers and potential health risks associated with bottled water in South Africa.

    Science.gov (United States)

    Aneck-Hahn, Natalie H; Van Zijl, Magdalena C; Swart, Pieter; Truebody, Barry; Genthe, Bettina; Charmier, Jessica; Jager, Christiaan De

    2018-04-01

    Potential endocrine disrupting chemicals (EDCs) are present in bottled water from various countries. In South Africa (SA), increased bottled water consumption and concomitant increases in plastic packaging create important consequences for public health. This study aimed to screen SA bottled water for estrogenic activity, selected target chemicals and assessing potential health risks. Ten bottled water brands were exposed to 20 °C and 40 °C over 10 days. Estrogenic activity was assessed using the recombinant yeast estrogen screen (YES) and the T47D-KBluc reporter gene assay. Solid phase extracts of samples were analyzed for bis(2-ethylhexyl) adipate (DEHA), selected phthalates, bisphenol-A (BPA), 4-nonylphenol (4-NP), 17β-estradiol (E 2 ), estrone (E 1 ), and ethynylestradiol (EE 2 ) using gas chromatography-mass spectrophotometry. Using a scenario-based health risk assessment, human health risks associated with bottled water consumption were evaluated. Estrogenic activity was detected at 20 °C (n = 2) and at 40 °C (n = 8). Estradiol equivalent (EEq) values ranged from 0.001 to 0.003 ng/L. BPA concentrations ranged from 0.9 ng/L to 10.06 ng/L. Although EEqs and BPA concentrations were higher in bottled water stored at 40 °C compared to 20 °C, samples posed an acceptable risk for a lifetime of exposure. Irrespective of temperature, bottled water from SA contained chemicals with acceptable health risks.

  14. SARAL/Altika for inland water: current and potential applications

    Science.gov (United States)

    Tarpanelli, Angelica; Brocca, Luca; Barbetta, Silvia; Moramarco, Tommaso; Santos da Silva, Joécila; Calmant, Stephane

    2015-04-01

    Although representing less than 1% of the total amount of water on Earth the freshwater is essential for terrestrial life and human needs. Over one third of the world's population is not served by adequate supplies of clean water and for this reason freshwater wars are becoming one of the most pressing environmental issues exacerbating the already difficult tensions between the riparian nations. Notwithstanding the foregoing, we have surprisingly poor knowledge of the spatial and temporal dynamics of surface discharge. In-situ gauging networks quantify the instantaneous water volume in the main river channels but provide few information about the spatial dynamics of surface water extent, such as floodplain flows and the dynamics of wetlands. The growing reduction of hydrometric monitoring networks over the world, along with the inaccessibility of many remote areas and the difficulties for data sharing among developing countries feed the need to develop new procedures for river discharge estimation based on remote sensing technology. The major challenge in this case is the possibility of using Earth Observation data without ground measurements. Radar altimeters are a valuable tool to retrieve hydrological information from space such as water level of inland water. More than a decade of research on the application of radar altimetry has demonstrated its advantages also for monitoring continental water, providing global coverage and regular temporal sampling. The high accuracy of altimetry data provided by the latest spatial missions and the convincing results obtained in the previous applications suggest that these data may be employed for hydraulic/hydrological applications as well. If used in synergy with the modeling, the potential benefits of the altimetry measurements can grow significantly. The new SARAL French-Indian mission, providing improvements in terms of vertical accuracy and spatial resolution of the onboard altimeter Altika, can offer a great

  15. Methodology for estimation of potential for solar water heating in a target area

    International Nuclear Information System (INIS)

    Pillai, Indu R.; Banerjee, Rangan

    2007-01-01

    Proper estimation of potential of any renewable energy technology is essential for planning and promotion of the technology. The methods reported in literature for estimation of potential of solar water heating in a target area are aggregate in nature. A methodology for potential estimation (technical, economic and market potential) of solar water heating in a target area is proposed in this paper. This methodology links the micro-level factors and macro-level market effects affecting the diffusion or adoption of solar water heating systems. Different sectors with end uses of low temperature hot water are considered for potential estimation. Potential is estimated at each end use point by simulation using TRNSYS taking micro-level factors. The methodology is illustrated for a synthetic area in India with an area of 2 sq. km and population of 10,000. The end use sectors considered are residential, hospitals, nursing homes and hotels. The estimated technical potential and market potential are 1700 m 2 and 350 m 2 of collector area, respectively. The annual energy savings for the technical potential in the area is estimated as 110 kW h/capita and 0.55 million-kW h/sq. km. area, with an annual average peak saving of 1 MW. The annual savings is 650-kW h per m 2 of collector area and accounts for approximately 3% of the total electricity consumption of the target area. Some of the salient features of the model are the factors considered for potential estimation; estimation of electrical usage pattern for typical day, amount of electricity savings and savings during the peak load. The framework is general and enables accurate estimation of potential of solar water heating for a city, block. Energy planners and policy makers can use this framework for tracking and promotion of diffusion of solar water heating systems. (author)

  16. Towards Plasma-Based Water Purification: Challenges and Prospects for the Future

    Science.gov (United States)

    Foster, John

    2016-10-01

    Freshwater scarcity derived from climate change, pollution, and over-development has led to serious consideration for water reuse. Advanced water treatment technologies will be required to process wastewater slated for reuse. One new and emerging technology that could potentially address the removal micropollutants in both drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates reactive species that attack and ultimately mineralize organic contaminants in solution. This interaction takes place in a boundary layer centered at the plasma-liquid interface. An understanding of the physical processes taking place at this interface, though poorly understood, is key to the optimization of plasma water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role that these processes play in water purification. The development of diagnostics usable in this multiphase environment along modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. NSF CBET 1336375 and DOE DE-SC0001939.

  17. Reactions of plutonium and uranium with water: Kinetics and potential hazards

    International Nuclear Information System (INIS)

    Haschke, J.M.

    1995-12-01

    The chemistry and kinetics of reactions between water and the metals and hydrides of plutonium and uranium are described in an effort to consolidate information for assessing potential hazards associated with handling and storage. New experimental results and data from literature sources are presented. Kinetic dependencies on pH, salt concentration, temperature and other parameters are reviewed. Corrosion reactions of the metals in near-neutral solutions produce a fine hydridic powder plus hydrogen. The corrosion rate for plutonium in sea water is a thousand-fold faster than for the metal in distilled water and more than a thousand-fold faster than for uranium in sea water. Reaction rates for immersed hydrides of plutonium and uranium are comparable and slower than the corrosion rates for the respective metals. However, uranium trihydride is reported to react violently if a quantity greater than twenty-five grams is rapidly immersed in water. The possibility of a similar autothermic reaction for large quantities of plutonium hydride cannot be excluded. In addition to producing hydrogen, corrosion reactions convert the massive metals into material forms that are readily suspended in water and that are aerosolizable and potentially pyrophoric when dry. Potential hazards associated with criticality, environmental dispersal, spontaneous ignition and explosive gas mixtures are outlined

  18. Pesticide and Water management alternatives to mitigate potential ground-water contamination for selected counties in Utah

    OpenAIRE

    Ehteshami, Majid; Requena, Antonio M.; Peralta, R. C.; Deer, Howard M.; Hill, Robert W.; Ranjha, Ahmad Yar

    1990-01-01

    Production of adequate supplies of food and fiber currently requires that pesticides be used to limit crop losses from insects, pathogens, weeds and other pests. Although pesticides are necessary in today's agriculture, they can be a serious problem if they reach and contaminate ground water, especially in places where drinking water needs are supplied from ground water. The relative reduction of potential ground-water contamination due to agricultural use of pesticides was analyzed for parti...

  19. Augmentation of Water Resources Potential and Cropping Intensification Through Watershed Programs.

    Science.gov (United States)

    Mondal, Biswajit; Singh, Alka; Singh, S D; Kalra, B S; Samal, P; Sinha, M K; Ramajayam, D; Kumar, Suresh

    2018-02-01

      This paper presents the biophysical impact of various interventions made under watershed development programs, in terms of the creation of additional water resources, and resultant changes in land use and cropping patterns in the Bundelkhand region of Madhya Pradesh State, India. Both primary and secondary data gathered from randomly selected watersheds and their corresponding control villages were used in this study. Analysis revealed that emphasis was given primarily to the creation of water resources potential during implementation of the programs, which led to augmentation of surface and groundwater availability for both irrigation and non-agricultural purposes. In addition, other land based interventions for soil and moisture conservation, plantation activities, and so forth, were taken up on both arable and nonarable land, which helped to improve land slope and land use, cropping pattern, agricultural productivity, and vegetation cover.

  20. Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption

    NARCIS (Netherlands)

    Boulay, Anne Marie; Bare, Jane; Camillis, De Camillo; Döll, Petra; Gassert, Francis; Gerten, Dieter; Humbert, Sebastien; Inaba, Atsushi; Itsubo, Norihiro; Lemoine, Yann; Margni, Manuele; Motoshita, Masaharu; Núñez, Montse; Pastor, A.V.; Ridoutt, Brad; Schencker, Urs; Shirakawa, Naoki; Vionnet, Samuel; Worbe, Sebastien; Yoshikawa, Sayaka; Pfister, Stephan

    2015-01-01

    Purpose: The WULCA group, active since 2007 on Water Use in LCA, commenced the development of consensus-based indicators in January 2014. This activity is planned to last 2 years and covers human health, ecosystem quality, and a stress-based indicator. This latter encompasses potential

  1. Examining the Potential of Forest Residue-Based Amendments for Post-Wildfire Rehabilitation in Colorado, USA

    Directory of Open Access Journals (Sweden)

    Charles C. Rhoades

    2017-01-01

    Full Text Available Wildfire is a natural disturbance, though elemental losses and changes that occur during combustion and post-fire erosion can have long-term impacts on soil properties, ecosystem productivity, and watershed condition. Here we evaluate the potential of forest residue-based materials to rehabilitate burned soils. We compare soil nutrient and water availability, and plant recovery after application of 37 t ha−1 of wood mulch, 20 t ha−1 of biochar, and the combination of the two amendments with untreated, burned soils. We also conducted a greenhouse trial to examine how biochar influenced soil nutrient and water content under two wetting regimes. The effects of wood mulch on plant-available soil N and water content were significant and seasonally consistent during the three-year field study. Biochar applied alone had few effects under field conditions, but significantly increased soil pH, Ca, P, and water in the greenhouse. The mulched biochar treatment had the greatest effects on soil N and water availability and increased cover of the most abundant native plant. We found that rehabilitation treatments consisting of forest residue-based products have potential to enhance soil N and water dynamics and plant recovery following severe wildfire and may be justified where erosion risk or water supply protection are crucial.

  2. Potential and Pitfalls of Frugal Innovation in the Water Sector: Insights from Tanzania to Global Value Chains

    Directory of Open Access Journals (Sweden)

    Anne Hyvärinen

    2016-09-01

    Full Text Available Water is perhaps the most intertwined, and basic, resource on our planet. Nevertheless, billions face water-related challenges, varying from lack of water and sanitation services to hindrances on livelihoods and socio-economic activities. The Sustainable Development Goals (SDGs recognize the broad role that water has for development, and also call for the private sector to participate in solving these numerous development challenges. This study looks into the potential of frugal innovations as a means for the private sector to engage in water-related development challenges. Our findings, based on a case study and literature review, indicate that frugal innovations have potential in this front due to their focus on affordable, no-frills solutions. However, we also recognize pitfalls related to frugal innovations in the water sector. Although the innovations would, in principle, be sustainable, deficiencies related to scale and institutional structures may emerge. These deficiencies are linked to the importance of water in a variety of processes, both natural and manmade, as well as to the complexity of global production-consumption value chains. Increasing the innovations’ sustainability impact requires broader acknowledgement of the underlying value chains and their diverse links with water. A holistic view on water can mitigate water-related business risks while increasing wellbeing on an individual level.

  3. Evaluating the potential of improving residential water balance at building scale.

    Science.gov (United States)

    Agudelo-Vera, Claudia M; Keesman, Karel J; Mels, Adriaan R; Rijnaarts, Huub H M

    2013-12-15

    Earlier results indicated that, for an average household, self-sufficiency in water supply can be achieved by following the Urban harvest Approach (UHA), in a combination of demand minimization, cascading and multi-sourcing. To achieve these results, it was assumed that all available local resources can be harvested. In reality, however, temporal, spatial and location-bound factors pose limitations to this harvest and, thus, to self-sufficiency. This article investigates potential spatial and temporal limitations to harvest local water resources at building level for the Netherlands, with a focus on indoor demand. Two building types were studied, a free standing house (one four-people household) and a mid-rise apartment flat (28 two-person households). To be able to model yearly water balances, daily patterns considering household occupancy and presence of water using appliances were defined per building type. Three strategies were defined. The strategies include demand minimization, light grey water (LGW) recycling, and rainwater harvesting (multi-sourcing). Recycling and multi-sourcing cater for toilet flushing and laundry machine. Results showed that water saving devices may reduce 30% of the conventional demand. Recycling of LGW can supply 100% of second quality water (DQ2) which represents 36% of the conventional demand or up to 20% of the minimized demand. Rainwater harvesting may supply approximately 80% of the minimized demand in case of the apartment flat and 60% in case of the free standing house. To harvest these potentials, different system specifications, related to the household type, are required. Two constraints to recycle and multi-source were identified, namely i) limitations in the grey water production and available rainfall; and ii) the potential to harvest water as determined by the temporal pattern in water availability, water use, and storage and treatment capacities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Bioremediation potential of the Sava river water polluted by oil refinery wastewater

    International Nuclear Information System (INIS)

    Jaksic, B.; Matavulj, M.; Vukic, Lj.; Radnovic, D.

    2002-01-01

    Microbial enumeration is a screening-level tool which can be used to evaluate in-situ response of water microorganisms to petroleum hydrocarbon contamination as well as for evaluating enhanced bioremediation potential of petroleum hydrocarbon contamination. In this investigations the increase between 17- and 44-fold of number of heterotrophs in hydrocarbon contaminated the Sava River water when compared with the no contaminated river water have been recorded. The significant increase of number of facultative oligotrophs in the river Sava water downstream of wastewater discharge (between 70- and almost 100-fold higher number) direct to the conclusion that oligotrophic bacteria (adapted to the environments with low amount of easy-to-degrade nutrients, oligocarbophilic microorganisms) could be better indicator of water bioremediation potential than number of heterotrophic (THR) bacteria. Quantitative composition of heterotrophic, facultative oligotrophic, crude oil degrading, and other physiological groups of bacteria, being, as a rule, higher in samples taken downstream of the waste-water discharge, testify about high biodegradative potential of the River Sava microbial community, if the oil refinery wastewater is taken into consideration. (author)

  5. Potential Release Site Sediment Concentrations Correlated to Storm Water Station Runoff through GIS Modeling

    International Nuclear Information System (INIS)

    McLean, C.T.

    2005-01-01

    This research examined the relationship between sediment sample data taken at Potential Release Sites (PRSs) and storm water samples taken at selected sites in and around Los Alamos National Laboratory (LANL). The PRSs had been evaluated for erosion potential and a matrix scoring system implemented. It was assumed that there would be a stronger relationship between the high erosion PRSs and the storm water samples. To establish the relationship, the research was broken into two areas. The first area was raster-based modeling, and the second area was data analysis utilizing the raster based modeling results and the sediment and storm water sample results. Two geodatabases were created utilizing raster modeling functions and the Arc Hydro program. The geodatabase created using only Arc Hydro functions contains very fine catchment drainage areas in association with the geometric network and can be used for future contaminant tracking. The second geodatabase contains sub-watersheds for all storm water stations used in the study along with a geometric network. The second area of the study focused on data analysis. The analytical sediment data table was joined to the PRSs spatial data in ArcMap. All PRSs and PRSs with high erosion potential were joined separately to create two datasets for each of 14 analytes. Only the PRSs above the background value were retained. The storm water station spatial data were joined to the table of analyte values that were either greater than the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP) benchmark value, or the Department of Energy (DOE) Drinking Water Defined Contribution Guideline (DWDCG). Only the storm water stations were retained that had sample values greater than the NPDES MSGP benchmark value or the DOE DWDCG. Separate maps were created for each analyte showing the sub-watersheds, the PRSs over background, and the storm water stations greater than the NPDES MSGP benchmark value or the

  6. Spatial Analysis for Potential Water Catchment Areas using GIS: Weighted Overlay Technique

    Science.gov (United States)

    Awanda, Disyacitta; Anugrah Nurul, H.; Musfiroh, Zahrotul; Dinda Dwi, N. P.

    2017-12-01

    The development of applied GIS is growing rapidly and has been widely applied in various fields. Preparation of a model to obtain information is one of the benefits of GIS. Obtaining information for water resources such as water catchment areas is one part of GIS modelling. Water catchment model can be utilized to see the distribution of potential and ability of a region in water absorbing. The use of overlay techniques with the weighting obtained from the literature from previous research is used to build the model. Model builder parameters are obtained through remote sensing interpretation techniques such as land use, landforms, and soil texture. Secondary data such as rock type maps are also used as water catchment model parameters. The location of this research is in the upstream part of the Opak river basin. The purpose of this research is to get information about potential distribution of water catchment area with overlay technique. The results of this study indicate the potential of water catchment areas with excellent category, good, medium, poor and very poor. These results may indicate that the Upper river basin is either good or in bad condition, so it can be used for better water resources management policy determination.

  7. Zoning of Isfahan Drinking Water Distribution Network Corrosion Potential in Summer and Autumn of 2011 Using Geographic Information System (GIS

    Directory of Open Access Journals (Sweden)

    Fatemeh Setayesh

    2014-07-01

    Full Text Available This cross-sectional study has been conducted to determine the corrosion potential of water in Isfahan drinking water distribution system in 2011. Eighty samples during summer and fall 2011(40 samples for each season were collected from different parts of the Isfahan drinking water distribution system. The temperature, calcium hardness, alkalinity, total dissolved solids, and pH were measured. Values of Langelier, Ryznar, Corrosiveness, and Puckorius indexes were calculated. Zoning maps were prepared using ArcGIS 9.3 software. The calculated mean values of Langelier, Ryznar, Corrosiveness, and Puckorius indexes in the summer and fall were (-0.52, 8.83, 10.37, 10.84 and (-0.71, 9.27, 10.94, 10.88, respectively. These results indicated that the Isfahan drinking water based on Langelier, Ryznar, and Puckorius indexes had a corrosive tendency and based on aggressiveness index had a moderate corrosivity potential. The corrosiveness of water may be as a basis for gradual deterioration of water distribution and transmission pipeline systems or as a route for contaminant entrance and finally can cause unhealthy impacts. Therefore, remedial measures are necessary to corrosion control of Isfahan drinking water

  8. Temporal variation of VOC emission from solvent and water based wood stains

    Science.gov (United States)

    de Gennaro, Gianluigi; Loiotile, Annamaria Demarinis; Fracchiolla, Roberta; Palmisani, Jolanda; Saracino, Maria Rosaria; Tutino, Maria

    2015-08-01

    Solvent- and water-based wood stains were monitored using a small test emission chamber in order to characterize their emission profiles in terms of Total and individual VOCs. The study of concentration-time profiles of individual VOCs enabled to identify the compounds emitted at higher concentration for each type of stain, to examine their decay curve and finally to estimate the concentration in a reference room. The solvent-based wood stain was characterized by the highest Total VOCs emission level (5.7 mg/m3) that decreased over time more slowly than those related to water-based ones. The same finding was observed for the main detected compounds: Benzene, Toluene, Ethylbenzene, Xylenes, Styrene, alpha-Pinene and Camphene. On the other hand, the highest level of Limonene was emitted by a water-based wood stain. However, the concentration-time profile showed that water-based product was characterized by a remarkable reduction of the time of maximum and minimum emission: Limonene concentration reached the minimum concentration in about half the time compared to the solvent-based product. According to AgBB evaluation scheme, only one of the investigated water-based wood stains can be classified as a low-emitting product whose use may not determine any potential adverse effect on human health.

  9. Predictive Power of Machine Learning for Optimizing Solar Water Heater Performance: The Potential Application of High-Throughput Screening

    Directory of Open Access Journals (Sweden)

    Hao Li

    2017-01-01

    Full Text Available Predicting the performance of solar water heater (SWH is challenging due to the complexity of the system. Fortunately, knowledge-based machine learning can provide a fast and precise prediction method for SWH performance. With the predictive power of machine learning models, we can further solve a more challenging question: how to cost-effectively design a high-performance SWH? Here, we summarize our recent studies and propose a general framework of SWH design using a machine learning-based high-throughput screening (HTS method. Design of water-in-glass evacuated tube solar water heater (WGET-SWH is selected as a case study to show the potential application of machine learning-based HTS to the design and optimization of solar energy systems.

  10. Potential application of solar thermal systems for hot water production in Hong Kong

    International Nuclear Information System (INIS)

    Li Hong; Yang Hongxing

    2009-01-01

    This paper presents the evaluation results of conventional solar water heater (SWH) systems and solar assisted heat pump (SAHP) systems for hot water production in Hong Kong. An economic comparison and global warming impact analysis are conducted among the two kinds of solar thermal systems and traditional water heating systems (i.e. electric water heaters and towngas water heaters). The economic comparison results show that solar thermal systems have greater economic benefits than traditional water heating systems. In addition, conventional SWH systems are comparable with the SAHP systems when solar fractions are above 50%. Besides, analysis on the sensitivity of the total equivalent warming impact (TEWI) indicates that the towngas boosted SWH system has the greatest potential in greenhouse gas emission reduction with various solar collector areas and the electricity boosted SWH system has the comparative TEWI with the SAHP systems if its solar fraction is above 50%. As for SAHP systems, the solar assisted air source heat pump (SA-ASHP) system has the least global warming impact. Based on all investigation results, suggestions are given on the selection of solar thermal systems for applications in Hong Kong

  11. Using self-potential housing technique to model water seepage at the UNHAS housing Antang area

    Science.gov (United States)

    Syahruddin, Muhammad Hamzah

    2017-01-01

    The earth's surface has an electric potential that is known as self-potentiall (SP). One of the causes of the electrical potential at the earth's surface is water seepage into the ground. Electrical potential caused by water velocity seepage into the ground known as streaming potential. How to model water seepage into the ground at the housing Unhas Antang? This study was conducted to answer these questions. The self-potential measurements performed using a simple digital voltmeter Sanwa brand PC500 with a precision of 0.01 mV. While the coordinates of measurements points are self-potential using Global Positioning System. Mmeasurements results thus obtained are plotted using surfer image distribution self-potential housing Unhas Antang. The self-potential data housing Unhas Antang processed by Forward Modeling methods to get a model of water infiltration into the soil. Housing Unhas Antang self-potential has a value of 5 to 23 mV. Self-potential measurements carried out in the rainy season so it can be assumed that the measurement results caused by the velocity water seepage into the ground. The results of modeling the velocity water seepage from the surface to a depth of 3 meters was 2.4 cm/s to 0.2 cm /s. Modeling results showed that the velocity water seepage of the smaller with depth.

  12. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  13. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    Science.gov (United States)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  14. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland.

    Science.gov (United States)

    Hu, Xiao Wen; Fan, Yan; Baskin, Carol C; Baskin, Jerry M; Wang, Yan Rong

    2015-05-01

    Temperature and water potential for germination based on the thermal and hydrotime models have been successfully applied in predicting germination requirements of physiologically dormant seeds as well as nondormant seeds. However, comparative studies of the germination requirements of physically dormant seeds from different ecosystems have not been done. Germination of scarified seeds of four legume species collected from the Qing-Tibetan Plateau and of four collected in the Alax Desert in China was compared over a range of temperatures and water potentials based on thermal time and hydrotime models. Seeds of species from the Qing-Tibetan Plateau had a lower base temperature (T b) and optimal temperature (T o) for germination than those from the Alax Desert. Seeds of the four species from the Qing-Tibetan Plateau germinated to high percentages at 5°C, whereas none of the four desert species did so. Seeds of species from the Alax Desert germinated to a high percentage at 35°C or 40°C, while no seeds of species from the Qing-Tibetan Plateau germinated at 35°C or 40°C. The base median water potential [Ψ b(50)] differed among species but not between the two habitats. The thermal time and hydrotime models accurately predicted the germination time course of scarified seeds of most of the eight species in response to temperature and water potential; thus, they can be useful tools in comparative studies on germination of seeds with physical dormancy. Habitat temperatures but not rainfall is closely related to germination requirements of these species. © 2015 Botanical Society of America, Inc.

  15. Potential climate change impacts on water availability and cooling water demand in the Lusatian Lignite Mining Region, Central Europe

    Science.gov (United States)

    Pohle, Ina; Koch, Hagen; Gädeke, Anne; Grünewald, Uwe; Kaltofen, Michael; Redetzky, Michael

    2014-05-01

    In the catchments of the rivers Schwarze Elster, Spree and Lusatian Neisse, hydrologic and socioeconomic systems are coupled via a complex water management system in which water users, reservoirs and water transfers are included. Lignite mining and electricity production are major water users in the region: To allow for open pit lignite mining, ground water is depleted and released into the river system while cooling water is used in the thermal power plants. In order to assess potential climate change impacts on water availability in the catchments as well as on the water demand of the thermal power plants, a climate change impact assessment was performed using the hydrological model SWIM and the long term water management model WBalMo. The potential impacts of climate change were considered by using three regional climate change scenarios of the statistical regional climate model STAR assuming a further temperature increase of 0, 2 or 3 K by the year 2050 in the region respectively. Furthermore, scenarios assuming decreasing mining activities in terms of a decreasing groundwater depression cone, lower mining water discharges, and reduced cooling water demand of the thermal power plants are considered. In the standard version of the WBalMo model cooling water demand is considered as static with regard to climate variables. However, changes in the future cooling water demand over time according to the plans of the local mining and power plant operator are considered. In order to account for climate change impacts on the cooling water demand of the thermal power plants, a dynamical approach for calculating water demand was implemented in WBalMo. As this approach is based on air temperature and air humidity, the projected air temperature and air humidity of the climate scenarios at the locations of the power plants are included in the calculation. Due to increasing temperature and decreasing precipitation declining natural and managed discharges, and hence a lower

  16. Identifying potential effects of climate change on the development of water resources in Pinios River Basin, Central Greece

    Science.gov (United States)

    Arampatzis, G.; Panagopoulos, A.; Pisinaras, V.; Tziritis, E.; Wendland, F.

    2018-05-01

    The aim of the present study is to assess the future spatial and temporal distribution of precipitation and temperature, and relate the corresponding change to water resources' quantitative status in Pinios River Basin (PRB), Thessaly, Greece. For this purpose, data from four Regional Climate Models (RCMs) for the periods 2021-2100 driven by several General Circulation Models (GCMs) were collected and bias-correction was performed based on linear scaling method. The bias-correction was made based on monthly precipitation and temperature data collected for the period 1981-2000 from 57 meteorological stations in total. The results indicate a general trend according to which precipitation is decreasing whilst temperature is increasing to an extent that varies depending on each particular RCM-GCM output. On the average, annual precipitation change for the period 2021-2100 was about - 80 mm, ranging between - 149 and + 35 mm, while the corresponding change for temperature was 2.81 °C, ranging between 1.48 and 3.72 °C. The investigation of potential impacts to the water resources demonstrates that water availability is expected to be significantly decreased in the already water-stressed PRB. The water stresses identified are related to the potential decreasing trend in groundwater recharge and the increasing trend in irrigation demand, which constitutes the major water consumer in PRB.

  17. Analysis of the Water Resources Potential and Useful Life of the ...

    African Journals Online (AJOL)

    Full Length R ... Keywords: Shiroro dam reservoir, water resources potential, useful life, hydropower, ... Water balance analysis is a highly effective tool that .... from operation each time the reservoir capacity ..... validity of this research work. iii.

  18. Detecting fluid leakage of a reservoir dam based on streaming self-potential measurements

    Science.gov (United States)

    Song, Seo Young; Kim, Bitnarae; Nam, Myung Jin; Lim, Sung Keun

    2015-04-01

    Between many reservoir dams for agriculture in suburban area of South Korea, water leakage has been reported several times. The dam under consideration in this study, which is located in Gyeong-buk, in the south-east of the Korean Peninsula, was reported to have a large leakage at the right foot of downstream side of the reservoir dam. For the detection of the leakage, not only geological survey but also geophysical explorations have been made for precision safety diagnosis, since the leakage can lead to dam failure. Geophysical exploration includes both electrical-resistivity and self-potential surveys, while geological surveys water permeability test, standard penetration test, and sampling for undisturbed sample during the course of the drilling investigation. The geophysical explorations were made not only along the top of dam but also transverse the heel of dam. The leakage of water installations can change the known-heterogeneous structure of the dam body but also cause streaming spontaneous (self) potential (SP) anomaly, which can be detected by electrical resistivity and SP measurements, respectively. For the interpretation of streaming SP, we used trial-and-error method by comparing synthetic SP data with field SP data for model update. For the computation, we first invert the resistivity data to obtain the distorted resistivity structure of the dam levee then make three-dimensional electrical-resistivity modeling for the streaming potential distribution of the dam levee. Our simulation algorithm of streaming SP distribution based on the integrated finite difference scheme computes two-dimensional (2D) SP distribution based on the distribution of calculated flow velocities of fluid for a given permeability structure together with physical properties. This permeability is repeatedly updated based on error between synthetic and field SP data, until the synthetic data match the field data. Through this trial-and-error-based SP interpretation, we locate the

  19. Estimations of the extent of migration of surficially applied water for various surface conditions near the potential repository perimeter

    International Nuclear Information System (INIS)

    Sobolik, S.R.; Fewell, M.E.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to support the design of site characterization activities so to have minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. Two examples of site characterization activities are the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and surface-based testing activities, which may require borehole drilling, excavation of test pits, and road watering for dust control. The information in this report pertains to two-dimensional numerical calculations modeling the movement of surficially applied water and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing recommendations for two Yucca Mountain Site Characterization Project documents: Appendix I of the Exploratory Studies Facility Design Requirements document, and the Surface-Based Testing Field Requirements Document

  20. Managing water resources in Malaysia: the use of isotope technique and its potential

    International Nuclear Information System (INIS)

    Keizrul Abdullah

    2006-01-01

    This keynote address discusses the following subjects; state of Malaysia water resources, water related problem i.e floods, water shortage (droughts), water quality, river sedimentation, water resources management and the ongoing and potential application of isotope techniques in river management

  1. Biomass production and potential water stress increase with ...

    African Journals Online (AJOL)

    The choice of planting density and tree genotype are basic decisions when establishing a forest stand. Understanding the interaction between planting density and genotype, and their relationship with biomass production and potential water stress, is crucial as forest managers are faced with a changing climate. However ...

  2. Leaf water potential, gas exchange and chlorophyll a fluorescence in acariquara seedlings (Minquartia guianensis Aubl.) under water stress and recovery

    OpenAIRE

    Liberato, Maria Astrid Rocha; Gonçalves, José Francisco de Carvalho; Chevreuil, Larissa Ramos; Nina Junior, Adamir da Rocha; Fernandes, Andreia Varmes; Santos Junior, Ulysses Moreira dos

    2006-01-01

    The physiological performance of acariquara (Minquartia guianensis) seedlings submitted to water deficit and the recovery of physiological parameters during rehydration were investigated in a greenhouse experiment. The analyzed parameters were: leaf water potential, gas exchange and chlorophyll a fluorescence. After thirty-five days, non-irrigated plants exhibited a leaf water potential 70 % lower compared to control plants (irrigated daily) and the stomatal conductance reached values close t...

  3. Daytime Water Detection Based on Sky Reflections

    Science.gov (United States)

    Rankin, Arturo; Matthies, Larry; Bellutta, Paolo

    2011-01-01

    A water body s surface can be modeled as a horizontal mirror. Water detection based on sky reflections and color variation are complementary. A reflection coefficient model suggests sky reflections dominate the color of water at ranges > 12 meters. Water detection based on sky reflections: (1) geometrically locates the pixel in the sky that is reflecting on a candidate water pixel on the ground (2) predicts if the ground pixel is water based on color similarity and local terrain features. Water detection has been integrated on XUVs.

  4. Water-related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil-Shale Development in the Uinta Basin, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Michael Vanden; Anderson, Paul; Wallace, Janae; Morgan, Craig; Carney, Stephanie

    2012-04-30

    Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbon production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary

  5. Present municipal water treatment and potential removal methods

    International Nuclear Information System (INIS)

    Lee, S.Y.; White, S.K.; Bondietti, E.A.

    1982-01-01

    Uranium analyses of raw water, intermediate stage, and treated water samples from 20 municipal water treatment plants indicated that the present treatment practices were not effective in removing uranium from raw waters when the influent concentration was in the range of 0.1 to 16 μg/L uranium. Laboratory batch tests revealed that the water softening and coagulant chemicals commonly used were able to remove more than 90% of the dissolved uranium ( < 100 μg/L) in waters if an optimum pH and dosage were provided. Absorbents, titanium oxide and activated charcoal, were also effective in uranium removal under specific conditions. Strong base anion exchange resin was the most efficient uranium adsorbent, and an anion exchange column is a recommended option for the treatment of private well waters containing uranium at higher than desirable levels

  6. Tree water potentials supporting an explanation for the occurrence of Vachellia erioloba in the Namib Desert (Namibia

    Directory of Open Access Journals (Sweden)

    Joachim H. A. Krug

    2017-09-01

    Full Text Available Background Site-vegetation relations of Vachellia erioloba, Faidherbia albida, Euclea pseudebenus and Tamarix usneoides in two contrasting locations in the Namib Desert (Namibia were evaluated with the goal to relate soil water availability to the occurrence of trees under hyper-arid conditions. Methods Plant water potentials were measured using a pressure chamber in the field. Pre-dawn water potentials were assessed to reflect the soil water potential of the rhizosphere. Midday water potentials were measured to assess the strongest negative water potential applied by the sample trees. Results Pre-dawn water potentials and midday water potentials indicated access to soil water in the rhizosphere and by this, provide an explanation for an occurrence of V. erioloba within the extreme environmental conditions of sand dunes in the Namib Desert. Diurnal ranges seem to reflect more and less suitable stands, in terms of soil water availability, within the sampling sites. While the impact of the ephemeral Kuiseb river on soil water availability was assessed through the four species’ plant-internal water relations, comparable pre-dawn water potentials of V. erioloba at both sites indicate soil water availability also in the dunes of Namibrand. The extreme midday water potentials of the dune plants possibly show the upper limit of tolerance for V. erioloba. Conclusions The preliminary data provide an explanation of the occurrence and distribution of the investigated species in beds of ephemeral rivers and on dunes under the hyper-arid climatic conditions of the Namib Desert and qualify suitability within the assessed sites. Understanding the plant-physiological processes and assessing the plant-internal water potential provides a valuable tool to evaluate soil water availability within the rhizosphere and to describe an adaptation potential of investigated species. The comparability of pre-dawn water potentials at both sites indicates unexpected soil

  7. Consequences of potential accidents in heavy water plants

    International Nuclear Information System (INIS)

    Croitoru, C.; Lazar, R.E.; Preda, I.A.; Dumitrescu, M.

    2002-01-01

    Heavy water plants achieve the primary isotopic concentration by H 2 O-H 2 S chemical exchange. In these plants are stored large quantities of hydrogen sulphide (high toxic, corrosive, flammable and explosive) maintained in process at relative high temperatures and pressures. It is required an assessment of risks associated with the potential accidents. The paper presents adopted model for quantitative consequences assessment in heavy water plants. Following five basic steps are used to identify the risks involved in plants operation: hazard identification, accident sequences development, H 2 S emissions calculus, dispersion analyses and consequences determination. A brief description of each step and some information from risk assessment for our heavy water pilot plant are provided. Accident magnitude, atmospheric conditions and population density in studied area were accounted for consequences calculus. (author)

  8. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications

    KAUST Repository

    Xia, Chuan; Jiang, Qiu; Zhao, Chao; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max­imum current density of 97.5 mA cm−2 at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec−1 are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.

  9. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications

    KAUST Repository

    Xia, Chuan

    2015-11-05

    Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max­imum current density of 97.5 mA cm−2 at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec−1 are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.

  10. Potential Study of Water Extraction from Selected Plants

    Directory of Open Access Journals (Sweden)

    Musa S.

    2017-01-01

    Full Text Available Water is absorbed by the roots of a plant and transported subsequently as a liquid to all parts of the plant before being released into the atmosphere as transpiration. In this study, seven(7selected plant species collected from urban, rural and forested areas were studied and characterized. The water was collected using transparent plastic bag that being tied to the tree branches. Then, the vapouris water trapped inside the plastic bag and through the condensation process, it become water droplets. Water quality parameters such as temperature, pH value, DO, turbidity, colour, magnesium, calcium, nitrate and chloride were analyzed. The analysis was compared to drinking water quality standard set by the Ministry of Health Malaysia. Based on the results, it shows that banana leaf has a higher rate of water extraction compared to others. Thus, the plant can be categorised as a helpful guide for emergency use of water or as an alternative source to survival.

  11. SCS-CN and GIS-based approach for identifying potential water ...

    Indian Academy of Sciences (India)

    economic and social development. Human popu- lation of the ... or by making changes in land management. Micro- ... and socio-economic conditions. However ... tial Global Position System (DGPS). A second ..... soil moisture accounting procedure; Water Resources ... ISPRS Journal of Photogrammetry & Remote Sensing.

  12. Risk analysis of emergent water pollution accidents based on a Bayesian Network.

    Science.gov (United States)

    Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie

    2016-01-01

    To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Water-based vs. non-water-based physiotherapy for rehabilitation of postural deformities in Parkinson's disease: a randomized controlled pilot study.

    Science.gov (United States)

    Volpe, Daniele; Giantin, Maria Giulia; Manuela, Pilleri; Filippetto, Consuelo; Pelosin, Elisa; Abbruzzese, Giovanni; Antonini, Angelo

    2017-08-01

    To compare the efficacy of two physiotherapy protocols (water-based vs. non-water-based) on postural deformities of patients with Parkinson's disease. A single blind, randomized controlled pilot study. Inpatient (Rehabilitative Department). A total of 30 patients with idiopathic Parkinson's disease. Participants were randomly assigned to one of two eight-week treatment groups: Water-based ( n = 15) or non-water-based physiotherapy exercises ( n = 15). Changes in the degree of cervical and dorsal flexion and in the angle of lateral inclination of the trunk (evaluated by means of a posturographic system) were used as primary outcomes. Unified Parkinson Disease Rating Scale section III, Time Up and Go Test, Berg Balance Scale, Activities-specific Balance Confidence, Falls Efficacy Scale and the Parkinson's disease quality of life questionnaire (39 items) were the secondary outcomes. All outcomes were assessed at baseline, at the end of training and eight weeks after treatment. Patients were always tested at the time of their optimal antiparkinsonian medication ('on' phase). After the treatment, only Parkinson's disease subjects randomized to water-based treatment showed a significant improvement of trunk posture with a significant reduction of cervical flexion (water-based group: -65.2°; non-water-based group: +1.7°) and dorsal flexion (water-based group: -22.5°; non-water-based group: -6.5°) and lateral inclination of the trunk (water-based group: -2.3°; non-water-based group: +0.3°). Both groups presented significant improvements in the secondary clinical outcomes without between-group differences. Our results show that water-based physiotherapy was effective for improving postural deformities in patients with Parkinson's disease.

  14. Energy-efficiency potential of water dispensers; Energieeffizienzpotenzial bei Wasser-Dispensern

    Energy Technology Data Exchange (ETDEWEB)

    Grieder, T.

    2003-07-01

    This final report for the Swiss Federal Office of Energy presents the results of study carried out to assess the energy-savings potential available in the operation of water dispensers often found in banks, stores and offices. The energy consumption of three types of dispenser is examined and compared with American 'EnergyStar'-guidelines. The results of measurements made for day and night-time operation are presented and the energy-savings potentials offered by more appropriate operating scenarios are discussed. Recommendations are made to all parties involved, from the dispenser's manufacturer, water-supplier and service organisation through to the end user. For each category, a catalogue of measures that can be taken is presented, including modifications to the dispensers themselves and the installation of timers. Also, the energy consumption of dispensers is compared with that of using traditional mineral water bottles and a small conventional refrigerator.

  15. Predicting hydrocarbon potential of an earth formation underlying water

    International Nuclear Information System (INIS)

    Damaison, G.J.; Kaplan, I.R.

    1981-01-01

    A method for the on-site collection and examination of small concentrations of a carbonaceous gas, e.g. methane, dissolved in a body of water overlying an earth formation to predict hydrocarbon potential of the earth formation under the body of water, the formation being a source of carbonaceous gas, comprises at a known geographic location sampling the water at a selected flow rate and at a selected depth; continuously vacuum separating the water into liquid and gas phases; separating a selected carbonaceous gas from interfering gas species in the presence of an air carrier vented to atmosphere at a known flow rate; and quantitatively oxidizing the selected gas and then cryogenically trapping an oxidant thereof in the presence of said air carrier to provide for an accurate isotopic examination. (author)

  16. Hydrology, water quality, and water-supply potential of ponds at Hunter Army Airfield, Chatham County, Georgia, November 2008-July 2009

    Science.gov (United States)

    Clarke, John S.; Painter, Jaime A.

    2010-01-01

    The hydrology, water quality, and water-supply potential of four ponds constructed to capture stormwater runoff at Hunter Army Airfield, Chatham County, Georgia, were evaluated as potential sources of supplemental irrigation supply. The ponds are, Oglethorpe Lake, Halstrum Pond, Wilson Gate Pond, and golf course pond. During the dry season, when irrigation demand is highest, ponds maintain water levels primarily from groundwater seepage. The availability of water from ponds during dry periods is controlled by the permeability of surficial deposits, precipitation and evaporation, and the volume of water stored in the pond. Net groundwater seepage (Gnet) was estimated using a water-budget approach that used onsite and nearby climatic and hydrologic data collected during November-December 2008 including precipitation, evaporation, pond stage, and discharge. Gnet was estimated at three of the four sites?Oglethorpe Lake, Halstrum Pond, and Wilson Gate Pond?during November-December 2008. Pond storage volume in the three ponds ranged from 5.34 to 12.8 million gallons. During November-December 2008, cumulative Gnet ranged from -5.74 gallons per minute (gal/min), indicating a net loss in pond volume, to 19 gal/min, indicating a net gain in pond volume. During several periods of stage recovery, daily Gnet rates were higher than the 2-month cumulative amount, with the highest rates of 178 to 424 gal/min following major rainfall events during limited periods. These high rates may include some contribution from stormwater runoff; more typical recovery rates were from 23 to 223 gal/min. A conservative estimate of the volume of water available for irrigation supply from three of the ponds was provided by computing the rate of depletion of pond volume for a variety of withdrawal rates based on long-term average July precipitation and evaporation and the lowest estimated Gnet rate at each pond. Withdrawal rates of 1,000, 500, and 250 gal/min were applied during an 8-hour daily

  17. Exploring deep potential aquifer in water scarce crystalline rocks

    Indian Academy of Sciences (India)

    out to explore deep groundwater potential zone in a water scarce granitic area. As existing field condi- ... Decision support tool developed in granitic ter- .... cially in terms of fracture system, the aquifer char- acteristics ... Methodologies used.

  18. Passive water collection with the integument: mechanisms and their biomimetic potential.

    Science.gov (United States)

    Comanns, Philipp

    2018-05-22

    Several mechanisms of water acquisition have evolved in animals living in arid habitats to cope with limited water supply. They enable access to water sources such as rain, dew, thermally facilitated condensation on the skin, fog, or moisture from a damp substrate. This Review describes how a significant number of animals - in excess of 39 species from 24 genera - have acquired the ability to passively collect water with their integument. This ability results from chemical and structural properties of the integument, which, in each species, facilitate one or more of six basic mechanisms: increased surface wettability, increased spreading area, transport of water over relatively large distances, accumulation and storage of collected water, condensation, and utilization of gravity. Details are described for each basic mechanism. The potential for bio-inspired improvement of technical applications has been demonstrated in many cases, in particular for several wetting phenomena, fog collection and passive, directional transport of liquids. Also considered here are potential applications in the fields of water supply, lubrication, heat exchangers, microfluidics and hygiene products. These present opportunities for innovations, not only in product functionality, but also for fabrication processes, where resources and environmental impact can be reduced. © 2018. Published by The Company of Biologists Ltd.

  19. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    Science.gov (United States)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    Sustainability of irrigation practices is an important objective which should be pursued in many countries, especially in areas where water scarcity causes strong conflicts among the different water uses. The efficient use of water is a key factor in coping with the food demand of an increasing world population and with the negative effects of the climate change on water resources availability in many areas. In this complex context, it is important that farmers adopt instruments and practices that enable a better management of water at the field scale, whatever the irrigation method they adopt. This work presents the hardware structure and the functioning of an open-hardware microstation based on the Arduino technology, called Irrig-OH, which allows the continuous and low-cost monitoring of the soil water potential (SWP) in the root zone for supporting the irrigation scheduling at the field scale. In order to test the microstation, an experiment was carried out during the agricultural season 2014 at Lodi (Italy), with the purpose of comparing the farmers' traditional management of irrigation of a peach variety and the scheduling based on the SWP measurements provided by the microstation. Additional measurements of leaf water potential (LWP), stomatal resistance, transpiration (T), crop water stress index (CWSI) and fruit size evolution were performed respectively on leafs and fruits for verifying the plant physiological responses on different SWP levels in soil. At the harvesting time, the peach production in term of quantity and quality (sucrose content was measured by a rifractometer over a sample of one hundred fruits) of the two rows were compared. Irrigation criteria was changed with respect to three macro-periods: up to the endocarp hardening phase (begin of May) soil was kept well watered fixing the SWP threshold in the first 35 cm of the soil profile at -20 kPa, during the pit hardening period (about the entire month of May) the allowed SWP threshold was

  20. Self-potential monitoring of water flux at the HOBE agricultural site, Voulund, Denmark

    Science.gov (United States)

    Jougnot, D.; Linde, N.; Looms, M. C.

    2013-12-01

    The self-potential (SP) method is of interest in hydrology and environmental sciences because of its non-invasive nature and its sensitivity to flow and transport processes in the subsurface. The contribution to the SP signal by water flux is referred to as the streaming potential and is due to the presence of an electrical double layer at the mineral-pore water interface. When water flows through the pore, it gives rise to a streaming current and a resulting measurable electrical voltage between non-polarizable electrodes placed at different locations. This electrokinetic behavior is well understood in water saturated porous media, but the best way to model streaming currents under partial saturation is still under discussion. To better understand SP data within the vadose zone, we conducted field-based monitoring of the vertical distribution of the SP signal following different hydrologic events. The investigations were carried out at the Voulund agricultural test site that is part of the Danish hydrological observatory, HOBE, located in the Skjern river catchment (Denmark) in the middle of a cultivated area. It has been instrumented since 2010 to monitor suction, water content and temperature down to a depth of 3 m, together with meteorological variables and repeated geophysical campaigns (cross borehole electrical resistivity tomography and ground penetrating radar). In July 2011, we installed 15 non-polarizable electrodes at 10 depths within the vadose zone (from 0.25 to 3.10 m) and a reference electrode below the water table (7.30 m). More than 2 years of data acquired at a measurement period of 5 minutes are now available with periods indicative of various hydrologic events, such as natural infiltration, water table rises and a high salinity tracer test. We performed wavelet-based signal analysis and investigated the wavelet coherency of the SP data with other measurement variables. The wavelet coherency analysis displays an anti-correlation between SP and

  1. Development of bacteria-based bioassays for arsenic detection in natural waters.

    Science.gov (United States)

    Diesel, Elizabeth; Schreiber, Madeline; van der Meer, Jan Roelof

    2009-06-01

    Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor-reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor-reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clams.

  2. Development of bacteria-based bioassays for arsenic detection in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Diesel, Elizabeth; Schreiber, Madeline [Virginia Tech, Department of Geosciences, Blacksburg, VA (United States); Meer, Jan Roelof van der [University of Lausanne, Department of Fundamental Microbiology, Lausanne (Switzerland)

    2009-06-15

    Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor-reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor-reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clams. (orig.)

  3. Novel nonlinear knowledge-based mean force potentials based on machine learning.

    Science.gov (United States)

    Dong, Qiwen; Zhou, Shuigeng

    2011-01-01

    The prediction of 3D structures of proteins from amino acid sequences is one of the most challenging problems in molecular biology. An essential task for solving this problem with coarse-grained models is to deduce effective interaction potentials. The development and evaluation of new energy functions is critical to accurately modeling the properties of biological macromolecules. Knowledge-based mean force potentials are derived from statistical analysis of proteins of known structures. Current knowledge-based potentials are almost in the form of weighted linear sum of interaction pairs. In this study, a class of novel nonlinear knowledge-based mean force potentials is presented. The potential parameters are obtained by nonlinear classifiers, instead of relative frequencies of interaction pairs against a reference state or linear classifiers. The support vector machine is used to derive the potential parameters on data sets that contain both native structures and decoy structures. Five knowledge-based mean force Boltzmann-based or linear potentials are introduced and their corresponding nonlinear potentials are implemented. They are the DIH potential (single-body residue-level Boltzmann-based potential), the DFIRE-SCM potential (two-body residue-level Boltzmann-based potential), the FS potential (two-body atom-level Boltzmann-based potential), the HR potential (two-body residue-level linear potential), and the T32S3 potential (two-body atom-level linear potential). Experiments are performed on well-established decoy sets, including the LKF data set, the CASP7 data set, and the Decoys “R”Us data set. The evaluation metrics include the energy Z score and the ability of each potential to discriminate native structures from a set of decoy structures. Experimental results show that all nonlinear potentials significantly outperform the corresponding Boltzmann-based or linear potentials, and the proposed discriminative framework is effective in developing knowledge-based

  4. N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation.

    Science.gov (United States)

    Park, Sang Hyuck; Padhye, Lokesh P; Wang, Pei; Cho, Min; Kim, Jae-Hong; Huang, Ching-Hua

    2015-01-23

    Recent studies show that cationic amine-based water treatment polymers may be important precursors that contribute to formation of the probable human carcinogen N-nitrosodimethylamine (NDMA) during water treatment and disinfection. To better understand how water treatment parameters affect NDMA formation from the polymers, the effects of in situ chloramination, breakpoint chlorination, and pre-oxidation on the NDMA formation from the polymers were investigated. NDMA formation potential (NDMA-FP) as well as dimethylamine (DMA) residual concentration were measured from poly(epichlorohydrin dimethylamine) (polyamine) and poly(diallyldimethylammonium chloride) (polyDADMAC) solutions upon reactions with oxidants including free chlorine, chlorine dioxide, ozone, and monochloramine under different treatment conditions. The results supported that dichloramine (NHCl2) formation was the critical factor affecting NDMA formation from the polymers during in situ chloramination. The highest NDMA formation from the polymers occurred near the breakpoint of chlorination. Polymer chain breakdown and transformation of the released DMA and other intermediates were important factors affecting NDMA formation from the polymers in pre-oxidation followed by post-chloramination. Pre-oxidation generally reduced NDMA-FP of the polymers; however, the treatments involving pre-ozonation increased polyDADMAC's NDMA-FP and DMA release. The strategies for reducing NDMA formation from the polymers may include the avoidance of the conditions favorable to NHCl2 formation and the avoidance of polymer exposure to strong oxidants such as ozone. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Forward Modeling and validation of a new formulation to compute self-potential signals associated with ground water flow

    Directory of Open Access Journals (Sweden)

    A. Bolève

    2007-10-01

    Full Text Available The classical formulation of the coupled hydroelectrical flow in porous media is based on a linear formulation of two coupled constitutive equations for the electrical current density and the seepage velocity of the water phase and obeying Onsager's reciprocity. This formulation shows that the streaming current density is controlled by the gradient of the fluid pressure of the water phase and a streaming current coupling coefficient that depends on the so-called zeta potential. Recently a new formulation has been introduced in which the streaming current density is directly connected to the seepage velocity of the water phase and to the excess of electrical charge per unit pore volume in the porous material. The advantages of this formulation are numerous. First this new formulation is more intuitive not only in terms of establishing a constitutive equation for the generalized Ohm's law but also in specifying boundary conditions for the influence of the flow field upon the streaming potential. With the new formulation, the streaming potential coupling coefficient shows a decrease of its magnitude with permeability in agreement with published results. The new formulation has been extended in the inertial laminar flow regime and to unsaturated conditions with applications to the vadose zone. This formulation is suitable to model self-potential signals in the field. We investigate infiltration of water from an agricultural ditch, vertical infiltration of water into a sinkhole, and preferential horizontal flow of ground water in a paleochannel. For the three cases reported in the present study, a good match is obtained between finite element simulations performed and field observations. Thus, this formulation could be useful for the inverse mapping of the geometry of groundwater flow from self-potential field measurements.

  6. Pump-stopping water hammer simulation based on RELAP5

    International Nuclear Information System (INIS)

    Yi, W S; Jiang, J; Li, D D; Lan, G; Zhao, Z

    2013-01-01

    RELAP5 was originally designed to analyze complex thermal-hydraulic interactions that occur during either postulated large or small loss-of-coolant accidents in PWRs. However, as development continued, the code was expanded to include many of the transient scenarios that might occur in thermal-hydraulic systems. The fast deceleration of the liquid results in high pressure surges, thus the kinetic energy is transformed into the potential energy, which leads to the temporary pressure increase. This phenomenon is called water hammer. Generally water hammer can occur in any thermal-hydraulic systems and it is extremely dangerous for the system when the pressure surges become considerably high. If this happens and when the pressure exceeds the critical pressure that the pipe or the fittings along the pipeline can burden, it will result in the failure of the whole pipeline integrity. The purpose of this article is to introduce the RELAP5 to the simulation and analysis of water hammer situations. Based on the knowledge of the RELAP5 code manuals and some relative documents, the authors utilize RELAP5 to set up an example of water-supply system via an impeller pump to simulate the phenomena of the pump-stopping water hammer. By the simulation of the sample case and the subsequent analysis of the results that the code has provided, we can have a better understand of the knowledge of water hammer as well as the quality of the RELAP5 code when it's used in the water-hammer fields. In the meantime, By comparing the results of the RELAP5 based model with that of other fluid-transient analysis software say, PIPENET. The authors make some conclusions about the peculiarity of RELAP5 when transplanted into water-hammer research and offer several modelling tips when use the code to simulate a water-hammer related case

  7. Pump-stopping water hammer simulation based on RELAP5

    Science.gov (United States)

    Yi, W. S.; Jiang, J.; Li, D. D.; Lan, G.; Zhao, Z.

    2013-12-01

    RELAP5 was originally designed to analyze complex thermal-hydraulic interactions that occur during either postulated large or small loss-of-coolant accidents in PWRs. However, as development continued, the code was expanded to include many of the transient scenarios that might occur in thermal-hydraulic systems. The fast deceleration of the liquid results in high pressure surges, thus the kinetic energy is transformed into the potential energy, which leads to the temporary pressure increase. This phenomenon is called water hammer. Generally water hammer can occur in any thermal-hydraulic systems and it is extremely dangerous for the system when the pressure surges become considerably high. If this happens and when the pressure exceeds the critical pressure that the pipe or the fittings along the pipeline can burden, it will result in the failure of the whole pipeline integrity. The purpose of this article is to introduce the RELAP5 to the simulation and analysis of water hammer situations. Based on the knowledge of the RELAP5 code manuals and some relative documents, the authors utilize RELAP5 to set up an example of water-supply system via an impeller pump to simulate the phenomena of the pump-stopping water hammer. By the simulation of the sample case and the subsequent analysis of the results that the code has provided, we can have a better understand of the knowledge of water hammer as well as the quality of the RELAP5 code when it's used in the water-hammer fields. In the meantime, By comparing the results of the RELAP5 based model with that of other fluid-transient analysis software say, PIPENET. The authors make some conclusions about the peculiarity of RELAP5 when transplanted into water-hammer research and offer several modelling tips when use the code to simulate a water-hammer related case.

  8. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles.

    Science.gov (United States)

    Charra-Vaskou, Katline; Badel, Eric; Charrier, Guillaume; Ponomarenko, Alexandre; Bonhomme, Marc; Foucat, Loïc; Mayr, Stefan; Améglio, Thierry

    2016-02-01

    Freeze-thaw cycles induce major hydraulic changes due to liquid-to-ice transition within tree stems. The very low water potential at the ice-liquid interface is crucial as it may cause lysis of living cells as well as water fluxes and embolism in sap conduits, which impacts whole tree-water relations. We investigated water fluxes induced by ice formation during freeze-thaw cycles in Juglans regia L. stems using four non-invasive and complementary approaches: a microdendrometer, magnetic resonance imaging, X-ray microtomography, and ultrasonic acoustic emissions analysis. When the temperature dropped, ice nucleation occurred, probably in the cambium or pith areas, inducing high water potential gradients within the stem. The water was therefore redistributed within the stem toward the ice front. We could thus observe dehydration of the bark's living cells leading to drastic shrinkage of this tissue, as well as high tension within wood conduits reaching the cavitation threshold in sap vessels. Ultrasonic emissions, which were strictly emitted only during freezing, indicated cavitation events (i.e. bubble formation) following ice formation in the xylem sap. However, embolism formation (i.e. bubble expansion) in stems was observed only on thawing via X-ray microtomography for the first time on the same sample. Ultrasonic emissions were detected during freezing and were not directly related to embolism formation. These results provide new insights into the complex process and dynamics of water movements and ice formation during freeze-thaw cycles in tree stems. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Irrigation ponds: Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    DONG Bin; MAO Zhi; BROWN Larry; CHEN XiuHong; PENG LiYuan; WANG JianZhang

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and un-recycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China.With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious.Traditional ir-rigation and drainage systems only focus on issues concerning water quantity, i.e.the capacity of irri-gation in drought and drainage in waterlogging period, yet have no requirement on water quality im-provement, how to clean the water quality of farmland drainage through remodeling the existing irriga-tion and drainage systems has a very important realistic meaning.Pond is an important irrigation facil-ity in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use.Such water storage features of pond provide the possibility and potential capacity for drainage water treat-ment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system.To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site.The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water.Other issues, e.g.how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  10. Irrigation ponds:Possibility and potentials for the treatment of drainage water from paddy fields in Zhanghe Irrigation System

    Institute of Scientific and Technical Information of China (English)

    BROWN; Larry

    2009-01-01

    Excessive application of fertilizers and pesticides as well as discharge of undecontaminated and unrecycled waste of livestock and poultry into farmland has caused serious non-point source pollution (NSP) of farmland in China. With the traditional mode of irrigation and drainage in rice-based irrigation systems, the pollution of farmland drainage water has become more and more serious. Traditional irrigation and drainage systems only focus on issues concerning water quantity, i.e. the capacity of irrigation in drought and drainage in waterlogging period, yet have no requirement on water quality improvement. how to clean the water quality of farmland drainage through remodeling the existing irrigation and drainage systems has a very important realistic meaning. Pond is an important irrigation facility in rice-based irrigation systems in southern China, which has the functions of not only a storage of water from canals but also collections of surface runoffs and farmland drainage for recycling use. Such water storage features of pond provide the possibility and potential capacity for drainage water treatment by managing such features as treatment basins as the growth of aquatic plants as well as living of fishes, batrachia and microorganisms in pond forms a soil-plant-microorganism ecological system. To explore the potential capacity of pond for drainage water nutrient reduction, the Zhanghe Irrigation System of Hubei, a typical "melon-on-the-vine" system in southern China is selected as the research site. The results of pond survey and field experiments demonstrate that plenty of ponds are suitable for collecting and cleaning paddy field drainage, and the ponds are favorable in reducing N, P nutrients in the drainage water. Other issues, e.g. how to maximize such capacity and what strategies should be sought to make existing treatment basins hydraulically more efficient, are also discussed.

  11. Tunable Water-based Microwave Metasurface

    DEFF Research Database (Denmark)

    Kapitanova, Polina; Odit, Mikhail; Dobrykh, Dmitry

    2017-01-01

    A water-based dynamically tunable microwave metasurface is developed and experimentally investigated. A simple approach to tune the metasurface properties by changing the shape of water-based unit cells by gravitation force is proposed. The transmission spectra of the metasurface for linear...... angle. The proposed approach can be used to design cheap metasurfaces for electromagnetic wave control in the microwave frequency range....

  12. Characterizing water-metal interfaces and machine learning potential energy surfaces

    Science.gov (United States)

    Ryczko, Kevin

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  13. Potential of Waste Water Use for Jatropha Cultivation in Arid Environments

    Directory of Open Access Journals (Sweden)

    Folkard Asch

    2012-12-01

    Full Text Available Water is crucial for socio-economic development and healthy ecosystems. With the actual population growth and in view of future water scarcity, development calls for improved sectorial allocation of groundwater and surface water for domestic, agricultural and industrial use. Instead of intensifying the pressure on water resources, leading to conflicts among users and excessive pressure on the environment, sewage effluents, after pre-treatment, provide an alternative nutrient-rich water source for agriculture in the vicinity of cities. Water scarcity often occurs in arid and semiarid regions affected by droughts and large climate variability and where the choice of crop to be grown is limited by the environmental factors. Jatropha has been introduced as a potential renewable energy resource since it is claimed to be drought resistant and can be grown on marginal sites. Sewage effluents provide a source for water and nutrients for cultivating jatropha, a combined plant production/effluent treatment system. Nevertheless, use of sewage effluents for irrigation in arid climates carries the risk of salinization. Thus, potential irrigation with sewage effluents needs to consider both the water requirement of the crop and those needed for controlling salinity build-up in the top soil. Using data from a case study in Southern Morocco, irrigation requirements were calculated using CROPWAT 8.0. We present here crop evapotranspiration during the growing period, required irrigation, the resulting nutrient input and the related risk of salinization from the irrigation of jatropha with sewage effluent.

  14. Manganese-based Materials Inspired by Photosynthesis for Water-Splitting

    Directory of Open Access Journals (Sweden)

    Harvey J.M. Hou

    2011-09-01

    Full Text Available In nature, the water-splitting reaction via photosynthesis driven by sunlight in plants, algae, and cyanobacteria stores the vast solar energy and provides vital oxygen to life on earth. The recent advances in elucidating the structures and functions of natural photosynthesis has provided firm framework and solid foundation in applying the knowledge to transform the carbon-based energy to renewable solar energy into our energy systems. In this review, inspired by photosynthesis robust photo water-splitting systems using manganese-containing materials including Mn-terpy dimer/titanium oxide, Mn-oxo tetramer/Nafion, and Mn-terpy oligomer/tungsten oxide, in solar fuel production are summarized and evaluated. Potential problems and future endeavors are also discussed.

  15. Multi-Model Assessment of Global Hydropower and Cooling Water Discharge Potential Under Climate Change

    Science.gov (United States)

    van Vliet, M. T. H.; van Beek, L. P. H.; Eisener, S.; Wada, Y.; Bierkens, M. F. P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971-2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18-33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11-14% (for RCP2.6 and the shared socioeconomic

  16. Effect of nitrogen and water deficit type on the yield gap between the potential and attainable wheat yield

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    2015-12-01

    Full Text Available Water deficit and N fertilizer are the two primary limiting factors for wheat yield in the North China plain, the most important winter wheat (Triticum aestivum L. production area in China. Analyzing the yield gap between the potential yield and the attainable yield can quantify the potential for increasing wheat production and exploring the limiting factors to yield gap in the high-yielding farming region of North China Plain. The Decision Support System for Agrotechnology Transfer (DSSAT model was used to identify methods to increase the grain yield and decrease the gap. In order to explore the impact of N and cultivars on wheat yield in the different drought types, the climate conditions during 1981 to 2011 growing seasons was categorized into low, moderate, and severe water deficit classes according to the anomaly percentage of the water deficit rate during the entire wheat growing season. There are differences (P < 0.0001 in the variations of the potential yields among three cultivars over 30 yr. For all three water deficit types, the more recent cultivars Jimai22 and Shijiazhuang8 had higher yields compared to the older 'Jinan17'. As the N fertilizer rate increased, the yield gap decreased more substantially during the low water deficit years because of the significant increase in attainable yield. Overall, the yield gaps were smaller with less water stress. Replacement of cultivars and appropriate N fertilizer application based on the forecasted drought types can narrow the yield gap effectively.

  17. Enteric virus removal from water by coal-based sorbents: development of low-cost water filters

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, M.; Sattar, S.A.

    1986-01-01

    Using poliovirus type 1 (Sabin) and dechlorinated tap water, several coal-based sorbents were tested for their capacity to remove viruses from water. The sorbents included bituminous coal from Giridih, India, pretreated/impregnated with either alum, ferric hydroxide, lime or manganese dioxide. Filtrasorb-400, commercially available active carbon, was used as a reference. In batch tests, with input virus concentration of 2.34-2.83x10/sup 6/ PFU/1 and sorbent concentration of 10 g/l, alum pretreated coal removed about 96% of the virus when pH of the water was between 6.3 and 8.9. Virus sorption was rapid and a plateau was reached in 30 min. Compared with the active carbon, alum pretreated coal exhibited greater sorption energy and about one log higher limiting poliovirus sorption capacity. Downflow column study indicated the potential of alum pretreated coal as a filter media for removing enteric viruses from water. A previous study showed this sorbent to be capable of removing enteric bacteria as well. Water filters prepared from such low-cost material may prove useful for domestic use in rural areas of India and other developing countries. 19 refs.

  18. Scenario-based Water Resources Management Using the Water Value Concept

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard

    2013-04-01

    The Saskatchewan River is the key water resource for the 3 prairie provinces of Alberta, Saskatchewan and Manitoba in Western Canada, and thus it is necessary to pursue long-term regional and watershed-based planning for the river basin. The water resources system is complex because it includes multiple components, representing various demand sectors, including the environment, which impose conflicting objectives, and multiple jurisdictions. The biophysical complexity is exacerbated by the socioeconomic dimensions associated for example with impacts of land and water management, value systems including environmental flows, and policy and governance dimensions.. We focus on the South Saskatchewan River Basin (SSRB) in Alberta and Saskatchewan, which is already fully allocated in southern Alberta and is subject to increasing demand due to rapid economic development and a growing population. Multiple sectors and water uses include agricultural, municipal, industrial, mining, hydropower, and environmental flow requirements. The significant spatial variability in the level of development and future needs for water places different values on water across the basin. Water resources planning and decision making must take these complexities into consideration, yet also deal with a new dimension—climate change and its possible future impacts on water resources systems. There is a pressing need to deal with water in terms of its value, rather than a mere commodity subject to traditional quantitative optimization. In this research, a value-based water resources system (VWRS) model is proposed to couple the hydrological and the societal aspects of water resources in one integrated modeling tool for the SSRB. The objective of this work is to develop the VWRS model as a negotiation, planning, and management tool that allows for the assessment of the availability, as well as the allocation scenarios, of water resources for competing users under varying conditions. The proposed

  19. Assessment of refinery effluents and receiving waters using biologically-based effect methods

    International Nuclear Information System (INIS)

    2012-01-01

    Within the EU it is apparent that the regulatory focus on the use of biologically-based effects methods in the assessment of refinery effluents and receiving waters has increased in the past decade. This has been reflected in a recent refinery survey which revealed an increased use of such methods for assessing the quality of refinery effluents and their receiving waters. This report provides an overview of recent techniques used for this purpose. Several case studies provided by CONCAWE member companies describe the application of biological methods to effluent discharge assessment and surface water monitoring. The case studies show that when biological methods are applied to refinery effluents and receiving waters they raise different questions compared with those obtained using physical and chemical methods. Although direct measurement of the toxicity of effluent and receiving to aquatic organisms is the most cited technique, more recent efforts include tests that also address the persistence of effluent toxicity once discharged into the receiving water. Similarly, ecological monitoring of receiving waters can identify effects of effluent inputs arising from species interactions and other secondary effects that would not always be apparent from the results of biological tests conducted on single aquatic organisms. In light of recent and proposed regulatory developments the objectives of this report are therefore to: Discuss the application of biologically-based effects methods (including ecological monitoring) to refinery discharges and receiving waters; Assess the implications of such methods for future regulation of refinery discharges; and Provide guidance on good practice that can be used by refineries and the downstream oil industry to carry out and interpret data obtained using biologically-based effects methods. While the emphasis is on the toxic effects of effluents, other properties will also be covered because of their interdependency in determining

  20. Assessment of refinery effluents and receiving waters using biologically-based effect methods

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    Within the EU it is apparent that the regulatory focus on the use of biologically-based effects methods in the assessment of refinery effluents and receiving waters has increased in the past decade. This has been reflected in a recent refinery survey which revealed an increased use of such methods for assessing the quality of refinery effluents and their receiving waters. This report provides an overview of recent techniques used for this purpose. Several case studies provided by CONCAWE member companies describe the application of biological methods to effluent discharge assessment and surface water monitoring. The case studies show that when biological methods are applied to refinery effluents and receiving waters they raise different questions compared with those obtained using physical and chemical methods. Although direct measurement of the toxicity of effluent and receiving to aquatic organisms is the most cited technique, more recent efforts include tests that also address the persistence of effluent toxicity once discharged into the receiving water. Similarly, ecological monitoring of receiving waters can identify effects of effluent inputs arising from species interactions and other secondary effects that would not always be apparent from the results of biological tests conducted on single aquatic organisms. In light of recent and proposed regulatory developments the objectives of this report are therefore to: Discuss the application of biologically-based effects methods (including ecological monitoring) to refinery discharges and receiving waters; Assess the implications of such methods for future regulation of refinery discharges; and Provide guidance on good practice that can be used by refineries and the downstream oil industry to carry out and interpret data obtained using biologically-based effects methods. While the emphasis is on the toxic effects of effluents, other properties will also be covered because of their interdependency in determining

  1. Emerging and potentially emerging viruses in water environments

    Directory of Open Access Journals (Sweden)

    Giuseppina La Rosa

    2012-12-01

    Full Text Available Among microorganisms, viruses are best fit to become emerging pathogens since they are able to adapt not only by mutation but also through recombination and reassortment and can thus become able to infect new hosts and to adjust to new environments. Enteric viruses are among the commonest and most hazardous waterborne pathogens, causing both sporadic and outbreak-related illness. The main health effect associated with enteric viruses is gastrointestinal illness, but they can also cause respiratory symptoms, conjunctivitis, hepatitis, central nervous system infections, and chronic diseases. Non-enteric viruses, such as respiratory and epitheliotrophic viruses are not considered waterborne, as they are not readily transmitted to water sources from infected individuals. The present review will focus on viral pathogens shown to be transmitted through water. It will also provide an overview of viruses that had not been a concern for waterborne transmission in the past, but that may represent potentially emerging waterborne pathogens due to their occurrence and persistence in water environments.

  2. Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst

    Directory of Open Access Journals (Sweden)

    Tae Hyung Lee

    2016-10-01

    Full Text Available A century after its first synthesis in 1914, black phosphorus has been attracting significant attention as a promising two-dimensional material in recent years due to its unique properties. Nowadays, with the development of its exfoliation method, there are extensive applications of black phosphorus in transistors, batteries and optoelectronics. Though, because of its hardship in mass production and stability problems, the potential of the black phosphorus in various fields is left unexplored. Here, we provide a comprehensive review of crystal structure, electronic, optical properties and synthesis of black phosphorus. Recent research works about the applications of black phosphorus is summarized. Among them, the possibility of black phosphorous as a solar water splitting photocatalyst is mainly discussed and the feasible novel structure of photocatalysts based on black phosphorous is proposed.

  3. EnviroAtlas - Portland, OR - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  4. EnviroAtlas - Cleveland, OH - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  5. EnviroAtlas - Portland, ME - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  6. EnviroAtlas - Austin, TX - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  7. EnviroAtlas - Pittsburgh, PA - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  8. EnviroAtlas - Paterson, NJ - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  9. EnviroAtlas - Fresno, CA - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  10. EnviroAtlas - Memphis, TN - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  11. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    Science.gov (United States)

    Chivenge, Pauline; Mabhaudhi, Tafadzwanashe; Modi, Albert T.; Mafongoya, Paramu

    2015-01-01

    Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i) what can grow under water-scarce conditions, (ii) water requirements, and (iii) water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture. PMID:26016431

  12. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Pauline Chivenge

    2015-05-01

    Full Text Available Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS. The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA, and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i what can grow under water-scarce conditions, (ii water requirements, and (iii water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture.

  13. Interaction of Water with Cement Based Repository Materials - Application of Neutron Imaging

    International Nuclear Information System (INIS)

    Mcglinn, P.J.; Brew, D.R.M.; Beer, F.C. De; Radebe, M.J.; Nshimirimana, R.

    2013-01-01

    Cementitious materials are conventionally used in conditioning intermediate and low level radioactive waste. In this study, a candidate cement-based wasteform and a series of barrier materials have been investigated using neutron imaging to: 1) characterise the wasteform for disposal in a repository for radioactive materials, and 2) characterise the compositon of the barrier materials in assessing their potential to transmit water. Imaging showed both the pore size distribution and the extent of the cracking that had occurred in the wasteform samples. The rate of the water penetration measured both by conventional sorptivity measurements and neutron imaging was greater than in pastes made from Ordinary Portland Cement. The ability of the cracks to distribute the water through the sample in a very short time was also evident. Macro-pore volume distributions of barrier samples, also acquired using neutron tomography, are shown to relate to water/cement ratio, composition and sorptivity data. The study highlights the significant potential of neutron imaging in the investigation of cementitious materials. The technique has the advantage of visualising and measuring, non-destructively, material distribution within macroscopic samples and is particularly useful in defining movement of water through the cementitious materials. (author)

  14. Hierarchical prediction of industrial water demand based on refined Laspeyres decomposition analysis.

    Science.gov (United States)

    Shang, Yizi; Lu, Shibao; Gong, Jiaguo; Shang, Ling; Li, Xiaofei; Wei, Yongping; Shi, Hongwang

    2017-12-01

    A recent study decomposed the changes in industrial water use into three hierarchies (output, technology, and structure) using a refined Laspeyres decomposition model, and found monotonous and exclusive trends in the output and technology hierarchies. Based on that research, this study proposes a hierarchical prediction approach to forecast future industrial water demand. Three water demand scenarios (high, medium, and low) were then established based on potential future industrial structural adjustments, and used to predict water demand for the structural hierarchy. The predictive results of this approach were compared with results from a grey prediction model (GPM (1, 1)). The comparison shows that the results of the two approaches were basically identical, differing by less than 10%. Taking Tianjin, China, as a case, and using data from 2003-2012, this study predicts that industrial water demand will continuously increase, reaching 580 million m 3 , 776.4 million m 3 , and approximately 1.09 billion m 3 by the years 2015, 2020 and 2025 respectively. It is concluded that Tianjin will soon face another water crisis if no immediate measures are taken. This study recommends that Tianjin adjust its industrial structure with water savings as the main objective, and actively seek new sources of water to increase its supply.

  15. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    Science.gov (United States)

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.

  16. Sequence-based analysis of the microbial composition of water kefir from multiple sources.

    Science.gov (United States)

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2013-11-01

    Water kefir is a water-sucrose-based beverage, fermented by a symbiosis of bacteria and yeast to produce a final product that is lightly carbonated, acidic and that has a low alcohol percentage. The microorganisms present in water kefir are introduced via water kefir grains, which consist of a polysaccharide matrix in which the microorganisms are embedded. We aimed to provide a comprehensive sequencing-based analysis of the bacterial population of water kefir beverages and grains, while providing an initial insight into the corresponding fungal population. To facilitate this objective, four water kefirs were sourced from the UK, Canada and the United States. Culture-independent, high-throughput, sequencing-based analyses revealed that the bacterial fraction of each water kefir and grain was dominated by Zymomonas, an ethanol-producing bacterium, which has not previously been detected at such a scale. The other genera detected were representatives of the lactic acid bacteria and acetic acid bacteria. Our analysis of the fungal component established that it was comprised of the genera Dekkera, Hanseniaspora, Saccharomyces, Zygosaccharomyces, Torulaspora and Lachancea. This information will assist in the ultimate identification of the microorganisms responsible for the potentially health-promoting attributes of these beverages. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  17. Mobile and static sensors in a citizen-based observatory of water

    Science.gov (United States)

    Brauchli, Tristan; Weijs, Steven V.; Lehning, Michael; Huwald, Hendrik

    2014-05-01

    Understanding and forecasting water resources and components of the water cycle require spatially and temporally resolved observations of numerous water-related variables. Such observations are often obtained from wireless networks of automated weather stations. The "WeSenseIt" project develops a citizen- and community-based observatory of water to improve the water and risk management at the catchment scale and to support decision-making of stakeholders. It is implemented in three case studies addressing various questions related to flood, drought, water resource management, water quality and pollution. Citizens become potential observers and may transmit water-related measurements and information. Combining the use of recent technologies (wireless communication, internet, smartphone) with the development of innovative low cost sensors enables the implementation of heterogeneous observatories, which (a) empower citizens and (b) expand and complement traditional operational sensing networks. With the goal of increasing spatial coverage of observations and decreasing cost for sensors, this study presents the examples of measuring (a) flow velocity in streams using smartphones and (b) sensible heat flux using simple sensors at the nodes of wireless sensor networks.

  18. Online Monitoring of Water-Quality Anomaly in Water Distribution Systems Based on Probabilistic Principal Component Analysis by UV-Vis Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dibo Hou

    2014-01-01

    Full Text Available This study proposes a probabilistic principal component analysis- (PPCA- based method for online monitoring of water-quality contaminant events by UV-Vis (ultraviolet-visible spectroscopy. The purpose of this method is to achieve fast and sound protection against accidental and intentional contaminate injection into the water distribution system. The method is achieved first by properly imposing a sliding window onto simultaneously updated online monitoring data collected by the automated spectrometer. The PPCA algorithm is then executed to simplify the large amount of spectrum data while maintaining the necessary spectral information to the largest extent. Finally, a monitoring chart extensively employed in fault diagnosis field methods is used here to search for potential anomaly events and to determine whether the current water-quality is normal or abnormal. A small-scale water-pipe distribution network is tested to detect water contamination events. The tests demonstrate that the PPCA-based online monitoring model can achieve satisfactory results under the ROC curve, which denotes a low false alarm rate and high probability of detecting water contamination events.

  19. Water potential changes in faecal matter and Escherichia coli survival.

    Science.gov (United States)

    Garfield, L M; Walker, M J

    2008-10-01

    This study investigated the influence of a range of evaporation rates (2.0, 5.3 and 7.4 mm day(-1)) on degradation of E. coli (ATCC Strain 25922) inoculated in canine faeces. Experiments were carried out in an environmental chamber and a first order exponential decay function (Chick's Law) was used to estimate degradation rates. We estimated die-off coefficients using linear regression. Die-off rates were -0.07, -0.22 and -0.23 h(-1), respectively, for evaporation rates of 2.0, 5.3 and 7.4 mm day(-1) (P = 0.000+, for each model). Nearly complete die-off was found within 15-60 h (7.4-2.0 mm day(-1) evaporation rates), which corresponds with a water potential of approximately -22.4 MPa. This study indicates that canine faeces need not be desiccated to achieve complete loss of indicator organisms. Water potential, which is a combination of osmotic and matric potential, is a key stress that increases as evaporation removes water from the faecal matrix and increases concentration of the remaining faecal solution. Evaporation may remove populations of indicator organisms in faeces relatively quickly, even though faeces are not completely dehydrated. This research may be used as the foundation for studies more closely resembling real-world evaporation conditions including diurnal fluctuations, rewetting and freezing.

  20. Water flow in carbon-based nanoporous membranes impacted by interactions between hydrated ions and aromatic rings.

    Science.gov (United States)

    Liu, Jian; Shi, Guosheng; Fang, Haiping

    2017-02-24

    Carbon-based nanoporous membranes, such as carbon nanotubes (CNTs), graphene/graphene oxide and graphyne, have shown great potential in water desalination and purification, gas and ion separation, biosensors, and lithium-based batteries, etc. A deep understanding of the interaction between hydrated ions in an aqueous solution and the graphitic surface in systems composed of water, ions and a graphitic surface is essential for applications with carbon-based nanoporous membrane platforms. In this review, we describe the recent progress of the interaction between hydrated ions and aromatic ring structures on the carbon-based surface and its applications in the water flow in a carbon nanotube. We expect that these works can be extended to the understanding of water flow in other nanoporous membranes, such as nanoporous graphene, graphyne and stacked sheets of graphene oxide.

  1. Potential of Solar-driven CDI Technology for Water Desalination in Egypt

    Directory of Open Access Journals (Sweden)

    Ashraf Seleym

    2017-12-01

    Full Text Available Freshwater scarcity is one of the most challenging problems facing the world today. Rivers, lakes, and surface ice represent only 1.2% of the fresh water sources on earth, while ground water represent over 30% of the potential fresh water. The Egyptian quota from the Nile River is limited to 55 billion m3/yr, and expected to decrease due to increasing demand of water by other Nile basin countries. According to an Egyptian government report, the total population of Egypt increased from 22 million in 1950 to around 85 million in 2010. This increase in population growth will continue for decades and it is likely to increase to between 120-150 million by 2050. Egypt has reached a state where the quantity of water available is imposing limits on its national economic development.  As indication of water scarcity, Egypt passed the international threshold value of 1000 m3/capita/year in the nineties, and it is expected to cross the threshold of absolute water scarcity of 500 m3/capita/yr by 2025. Capacitive de-ionization (CDI is a relatively new technology that was developed as recently as the late 1960s. In CDI systems, saline water is made to pass between a pair of electrodes connected to a voltage source. Ions are stored inside the pores of electrodes in CDI via the applied electric field strength. CDI is a membrane less technology, and the problems of membrane fouling in the Reverse Osmosis technology is not present in CDI. It has the potential to be energy efficient compared with other related techniques, robust technology for water desalination. This paper explores low cost and efficient desalination technologies for brackish water for irrigation and drinking purposes using the abundant solar energy in Egypt.

  2. Potential of Solar-driven CDI Technology for Water Desalination in Egypt

    Directory of Open Access Journals (Sweden)

    Moustafa El Shafei

    2017-12-01

    Full Text Available Freshwater scarcity is one of the most challenging problems facing the world today. Rivers, lakes, and surface ice represent only 1.2% of the fresh water sources on earth, while ground water represents over 30% of the potential fresh water. The Egyptian quota from the River Nile is limited to 55 billion m/yr, and expected to decrease due to increasing demand of water by other Nile basin countries. According to an Egyptian government report, the total population of Egypt increased from 22 million in 1950 to around 85 million in 2010. This increase in population will continue for decades and it is likely to increase to between 120-150 million by 2050. Egypt has reached a state where the quantity of water available is imposing limits on its national economic development. As indication of water scarcity, Egypt passed the international threshold value of 1000 m3/capita/year in the nineties, and it is expected to cross the threshold of absolute water scarcity of 500 m3/capita/yr by 2025. Capacitive deionization (CDI is a relatively new technology that was developed as recently as the late 1960s. In CDI systems, saline water is made to pass between a pair of electrodes connected to a voltage source. Ions are stored inside the pores of electrodes in CDI via the applied electric field strength. CDI is a membrane less technology and the problems of membrane fouling in the Reverse Osmosis technology are not present in CDI. It has the potential to be energy efficient compared with other related techniques and robust technology for water desalination. This paper explores low cost and efficient desalination technologies for brackish water for irrigation and drinking purposes using the abundant solar energy in Egypt.

  3. The impact of global change on the hydropower potential of Europe: a model-based analysis

    International Nuclear Information System (INIS)

    Lehner, Bernhard; Czisch, Gregor; Vassolo, Sara

    2005-01-01

    This study presents a model-based approach for analyzing the possible effects of global change on Europe's hydropower potential at a country scale. By comparing current conditions of climate and water use with future scenarios, an overview is provided of today's potential for hydroelectricity generation and its mid- and long-term prospects. The application of the global water model WaterGAP for discharge calculations allows for an integrated assessment, taking both climate and socioeconomic changes into account. This study comprises two key parts: First, the 'gross' hydropower potential is analyzed, in order to outline the general distribution and trends in hydropower capabilities across Europe. Then, the assessment focuses on the 'developed' hydropower potential of existing hydropower plants, in order to allow for a more realistic picture of present and future electricity production. For the second part, a new data set has been developed which geo-references 5991 European hydropower stations and distinguishes them into run-of-river and reservoir stations. The results of this study present strong indications that, following moderate climate and global change scenario assumptions, severe future alterations in discharge regimes have to be expected, leading to unstable regional trends in hydropower potentials with reductions of 25% and more for southern and southeastern European countries

  4. Predicting hydrocarbon potential of an earth formation underlying a body of water

    International Nuclear Information System (INIS)

    Kaplan, I.R.; Demaison, G.J.

    1983-01-01

    A method for the on-site collection and examination of small concentrations of methane dissolved in water so as to predict hydrocarbon potential of an earth formation underlying a body of water, said formation being a source of said methane, comprises: (i) sampling the water; (ii) continuously vacuum separating said water into liquid and gas phases; (iii) quantitatively separating interfering gas species from methane; (iv) quantitatively oxidising said methane; (v) cryogenically trapping the resulting gaseous carbon dioxide and water vapor at a trapping station, and (vi) isotopically examining said trapped carbon dioxide and water vapour for carbon and deuterium distribution. (author)

  5. Potencial da água na folha como um indicador de déficit hídrico em milho Leaf water potential as an indicator of water deficit in maize

    Directory of Open Access Journals (Sweden)

    JOÃO ITO BERGONCI

    2000-08-01

    Full Text Available Este trabalho foi desenvolvido na Estação Experimental Agronômica da Universidade Federal do Rio Grande do Sul, localizada no município de Eldorado do Sul, nos anos agrícolas de 1993/94 e 1994/95. O objetivo foi avaliar o potencial da água na folha como indicador do déficit hídrico, em milho (Zea mays L., relacionando-o ao potencial da água no solo. O experimento constou de três níveis de irrigação, desde a capacidade de campo até a ausência de irrigação. Os valores do potencial mínimo da água na folha foram desde -1,2 a -1,5 MPa em plantas irrigadas (na capacidade de campo e de -1,6 a -2,0 MPa em plantas não irrigadas. O potencial mínimo da água na folha correlacionou-se com o potencial matricial da água no solo a 45 cm de profundidade (r² = 0,73, e mostrou ser um indicador adequado de déficit hídrico. O potencial da água na folha ao entardecer mostrou relação com o potencial mínimo da água na folha, indicando, assim, que pode ser utilizado como indicador de déficit hídrico. O potencial foliar de base apresentou diferenças evidentes entre os tratamentos extremos, mas não teve relação consistente com o potencial mínimo da água na folha.This study was carried out at the Agronomic Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, RS, Brazil, during the agricultural seasons of 1993/94 and 1994/95. The objective was to evaluate the leaf water potential as an indicator of the water deficit in maize (Zea mays L., and its relation with the soil water potential. The experiment comprised three levels of irrigation, from field capacity to absence of irrigation. The values of the minimum leaf water potential ranged from -1.2 to -1.5 MPa in irrigated plants (field capacity and from -1.6 to -2.0 MPa in nonirrigated plants. The minimum leaf water potential was well correlated to the matric water potential measured at 45 cm deep (r² = 0.73. The sunset leaf water potential showed

  6. Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters.

    Science.gov (United States)

    Balea, Ana; Monte, M Concepción; de la Fuente, Elena; Negro, Carlos; Blanco, Ángeles

    2017-02-01

    Water-based or flexographic inks in paper and plastic industries are more environmentally favourable than organic solvent-based inks. However, their use also creates new challenges because they remain dissolved in water and alter the recycling process. Conventional deinking technologies such as flotation processes do not effectively remove them. Adsorption, coagulation/flocculation, biological and membrane processes are either expensive or have negative health impacts, making the development of alternative methods necessary. Cellulose nanofibers (CNF) are biodegradable, and their structural and mechanical properties are useful for wastewater treatment. TEMPO-oxidised CNF have been evaluated for the decolourisation of wastewaters that contained copper phthalocyanine blue, carbon black and diarlyide yellow pigments. CNF in combination with a cationic polyacrylamide (cPAM) has also been tested. Jar-test methodology was used to evaluate the efficiency of the different treatments and cationic/anionic demand, turbidity and ink concentration in waters were measured. Results show that dual-component system for ink removal has a high potential as an alternative bio-based adsorbent for the removal of water-based inks. In addition, experiments varying CNF and cPAM concentrations were performed to optimise the ink-removal process. Ink concentration reductions of 100%, 87.5% and 83.3% were achieved for copper phthalocyanine blue, carbon black and diarlyide yellow pigments, respectively. Flocculation studies carried out show the decolourisation mechanism during the dual-component treatment of wastewaters containing water-based inks.

  7. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  8. Technology transfer potential of an automated water monitoring system. [market research

    Science.gov (United States)

    Jamieson, W. M.; Hillman, M. E. D.; Eischen, M. A.; Stilwell, J. M.

    1976-01-01

    The nature and characteristics of the potential economic need (markets) for a highly integrated water quality monitoring system were investigated. The technological, institutional and marketing factors that would influence the transfer and adoption of an automated system were studied for application to public and private water supply, public and private wastewater treatment and environmental monitoring of rivers and lakes.

  9. Solar based water treatment technologies

    International Nuclear Information System (INIS)

    Ahmad, I.; Hyder, M.J.

    2000-01-01

    In developing countries, the quality of drinking water is so poor that reports of 80% diseases from water-related causes is no surprise (Tebbet, 90). Frequently, there are reports in press of outbreak of epidemics in cities due to the unhygienic drinking-water. The state of affairs in the rural areas can be well imagined, where majority of the people live with no piped water. This paper describes the solar-based methods of removing organic pollutants from waste-water (also called Advanced Oxidation Technologies) and solar desalination. Experimental results of a simple solar water-sterilization technique have been discussed, along with suggestions to enhance the performance of this technique. (author)

  10. The potential importance of water pathways for spent fuel transportation accident risk

    International Nuclear Information System (INIS)

    Ostmeyer, R.M.

    1986-01-01

    This paper analyzes the potential importance of water pathway contamination for spent fuel transportation accident risk using a ''worst-case'' water contamination scenario. The scenario used for the analysis involves an accident release that occurs near a reservoir. Water pathway doses are compared to doses for accident releases in urban or agricultural areas. The results of the analysis indicate that water pathways are not important for assessing the risk of transporting spent reactor fuel by truck or by rail

  11. Potential for saturated ground-water system contamination at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Stone, R.; Ruggieri, M.R.; Rogers, L.L.; Emerson, D.O.; Buddemeier, R.W.

    1982-01-01

    A program of hydrogeologic investigation has been carried out to determine the likelihood of contaminant movement to the saturated zone from near the ground surface at Lawrence Livermore National Laboratory (LLNL). A companion survey of potential contaminant sources was also conducted at the LLNL. Water samples from selected LLNL wells were analyzed to test the water quality in the uppermost part of the saturated zone, which is from 14 to 48 m (45 to 158 ft) beneath the surface. Only nitrate and tritium were found in concentrations above natural background. In one well, the nitrate was slightly more concentrated than the drinking water limit. The nitrate source has not been found. The tritium in all ground-water samples from wells was found far less concentrated than the drinking water limit. The extent of infiltration of surface water was traced with environmental tritium. The thickness and stratigraphy of the unsaturated zone beneath the LLNL, and nearby area, was determined with specially constructed wells and boreholes. Well hydrograph analysis indicated where infiltration of surface water reached the saturated ground-water system. The investigation indicates that water infiltrating from the surface, through alluvial deposits, reaches the saturated zone along the course of Arroyo Seco, Arroyo Las Positas, and from the depression near the center of the site where seasonal water accumulates. Several potential contaminant sources were identified, and it is likely that contaminants could move from near the ground surface to the saturated zone beneath LLNL. Additional ground-water sampling and analysis will be performed and ongoing investigations will provide estimates of the speed with which potential contaminants can flow laterally in the saturated zone beneath LLNL. 34 references, 61 figures, 16 tables

  12. Supercritical water corrosion of high Cr steels and Ni-base alloys

    International Nuclear Information System (INIS)

    Jang, Jin Sung; Han, Chang Hee; Hwang, Seong Sik

    2004-01-01

    High Cr steels (9 to 12% Cr) have been widely used for high temperature high pressure components in fossil power plants. Recently the concept of SCWR (supercritical water-cooled reactor) has aroused a keen interest as one of the next generation (Generation IV) reactors. Consequently Ni-base (or high Ni) alloys as well as high Cr steels that have already many experiences in the field are among the potential candidate alloys for the cladding or reactor internals. Tentative inlet and outlet temperatures of the anticipated SCWR are 280 and 510 .deg. C respectively. Among many candidate alloys there are austenitic stainless steels, Ni base alloys, ODS alloys as well as high Cr steels. In this study the corrosion behavior of the high Cr steels and Ni base (or high Ni) alloys in the supercritical water were investigated. The corrosion behavior of the unirradiated base metals could be used in the near future as a guideline for the out-of-pile or in-pile corrosion evaluation tests

  13. Ground state analytical ab initio intermolecular potential for the Cl2-water system

    International Nuclear Information System (INIS)

    Hormain, Laureline; Monnerville, Maurice; Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón

    2015-01-01

    The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl 2 molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl 2 − H 2 O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl 2 interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl 2 on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results

  14. Mineralization of hormones in breeder and broiler litters at different water potentials and temperatures.

    Science.gov (United States)

    Hemmings, Sarah N J; Hartel, Peter G

    2006-01-01

    When poultry litter is landspread, steroidal hormones present in the litter may reach surface waters, where they may have undesirable biological effects. In a laboratory study, we determined the mineralization of [4-14C]-labeled 17beta-estradiol, estrone, and testosterone in breeder litter at three different water potentials (-56, -24, and -12 MPa) and temperatures (25, 35, and 45 degrees C), and in broiler litter at two different water potentials (-24 and -12 MPa) and temperatures (25 and 35 degrees C). Mineralization was similar in both litters and generally increased with increasing water content and decreasing temperature. After 23 wk at -24 MPa, an average of 27, 11, and litter was mineralized to 14CO2 at 25, 35, and 45 degrees C, respectively. In contrast, mineralization of the radiolabeled estradiol and estrone was mineralized. The minimal mineralization suggests that the litters may still be potential sources of hormones to surface and subsurface waters.

  15. Potential Effects of a Water Market on Enhancing Water Productivity and Reducing Water-Related Conflicts in Fars Province, Iran

    Directory of Open Access Journals (Sweden)

    Mansour Zibaei

    2017-03-01

    Full Text Available The growing demand for water and the declining trend in renewable water resources in most regions has led to serious limitations on water availability calling for the sustainable management of the harvestable resources. This has, in turn, encouraged most planners in the water sector to focus on demand management. A number of tools are already available for realizing water demand management goals; one such tool is establishing a water market. The present study is designed and implemented in two stages to investigate the role of a water market in water resources management. In the first stage, the creation of a water market at the farm and basin levels is simulated using a mathematical planning model. The second stage involves the investigation of the combined effects of the water market and water extraction rationing policies. It is found that rationing policies lead to reduced extractions from groundwater resources. The two-stage random cluster sampling method is used to collect the required data. Pilot villages are selected based on the data obtained from the first sampling stage. Pilot farms are then selected in the second stage based on water availability in each place. The input-output data, quantities of available water, and any other data required are finally collected through interviews with local farmers. Results reveal that the volume of exchanged water accounts for 9.5% of the total water consumed and the average improvement gained in farmers’ income ranges from 15 to as high as 42%. This clearly provides enough incentives for the farmers to enter the water market. Like all other water saving policies and measures, establishing a water market might increase consumption, contrary to the national objectives, in the absence of proper supplementary preventive measures. Thus, a second scenario is designed to investigate the combined effects of both water extraction rationing and water marketing. According to this scenario, the total

  16. Effects of heated water-based exercise on blood pressure: a systematic review

    Directory of Open Access Journals (Sweden)

    Awassi Yuphiwa Ngomane

    2018-06-01

    Full Text Available Abstract Introduction: Systemic arterial hypertension is one of the main cardiovascular risk factors affecting several population. In this context, heated water-based exercise has emerged as a potential alternative to land- based physical exercise to reduce blood pressure (BP in hypertensive patients. Objective: To systematically synthesize evidence for the lowering effects of heated water-based exercise on BP in a non-specific population. Methods: Scielo, Pubmed and Scopus electronic databases were searched for studies from 2005 to 2016, with the following descriptors in English: “blood pressure, exercise, immersion, blood pressure and hydrotherapy”. A total of 10,461 articles were found and, after applying the inclusion and exclusion criteria, 13 articles were selected and included in the final analysis. All included articles evaluated individuals from different populations and age groups, submitted to a heated water-based exercise session and/or program. Results: The results suggest that both an acute single session and chronic training period (12 to 24 weeks of heated water-based exercise may reduce BP in different populations (normotensive, hypertensive, postmenopausal women, and heart transplant populations. The magnitude and duration of acute and chronic hypotensive effect of exercise ranged substantially, which was probably due to the variety of exercise frequency, duration and intensity, as well as due to the studied population. Conclusion: These results suggest that heated water-based exercise may promote acute and chronic hypotensive effects in different populations. However, there is no homogeneity in the protocols used, which may have led to the heterogeneity in magnitude and duration of BP reductions.

  17. Study of Ground water Groundwater Potentiality and Sea Water Intrusion Along along the Coastal Plain, Wadi Thuwal, KSA- A Case Study Based on DC Resistivity

    Directory of Open Access Journals (Sweden)

    Mansour A. Al-Garni

    2010-12-01

    Full Text Available The present study mainly aims to outline zones that have groundwater potentiality with good quality and those which are affected by sea water intrusion. The electrical resistivity data were acquired over an area of about 170 km2 of a coastal plain, Wadi Thuwal, which is bounded by the Red Sea in the west and the volcanic hills in the east.  In such an area, resistivity measurements, using n-layering model, reveal generally reveal a wide range of resistivity values which do not reflect the reality. Hence, the statistical analysis has to be involved to overcome this problem and to make the final interpretation reliable.  In our case, the n-layer models were modified to another statistical geoelectric models (SLM, consisting of  a number of layers equivalent to the stratigraphic layering beneath each VES site. The modified models were used to outline the depth to the bed rock, groundwater accumulation zones and  water table as well as to define the effect of sea water intrusion through the study area. Check alignment above

  18. Successful survival, growth, and reproductive potential of quagga mussels in low calcium lake water: is there uncertainty of establishment risk?

    Directory of Open Access Journals (Sweden)

    Clinton J. Davis

    2015-11-01

    Full Text Available The risk of quagga mussel (Dreissena rostriformis bugensis Andrusov 1897 establishment into water-bodies of the western US has expanded the geographic concern regarding the ecological and economic impacts this species will have in aquatic ecosystems. Thresholds based on calcium concentrations, an element critical for mussel growth and physiology, have been used as a primary predictor of quagga mussel establishment success to aid management decisions. We evaluated the invasion potential of quagga mussels in low calcium waters using laboratory experiments to compare the survival, growth and reproductive potential of adult mussels held for 90 days at low (9 and 12 ppm, moderate (15 to 32 ppm and high (72 ppm calcium water concentrations. In conjunction with adult experiments, veliger stage survival, growth and settlement were evaluated under similar low, moderate, and high calcium water treatments. Adult mussels survived, grew and showed reproductive potential in low calcium water (12 ppm. Veligers were also able to survive, grow and settle in low calcium water. Higher levels of natural seston biomass appeared to improve adult mussel life history performance in low calcium water. Survival curve analysis predicted that 99% adult mortality could occur in 15 ppm could have adults surviving more than a year. The results from these bioassays provide further evidence that quagga mussels have higher risk of establishment in low calcium lakes if habitats exist that have slightly elevated calcium. These results should help emphasize the vulnerability of water-body in the 12 to 15 ppm calcium range that could potentially be at risk of establishing sustainable quagga mussel populations. Furthermore, these results provide insights into the uncertainty of using a single parameter in assigning establishment risk given the complexity of variables in specific water-bodies that influence life history performance of introduced species.

  19. Successful survival, growth, and reproductive potential of quagga mussels in low calcium lake water: is there uncertainty of establishment risk?

    Science.gov (United States)

    Davis, Clinton J; Ruhmann, Emma K; Acharya, Kumud; Chandra, Sudeep; Jerde, Christopher L

    2015-01-01

    The risk of quagga mussel (Dreissena rostriformis bugensis Andrusov 1897) establishment into water-bodies of the western US has expanded the geographic concern regarding the ecological and economic impacts this species will have in aquatic ecosystems. Thresholds based on calcium concentrations, an element critical for mussel growth and physiology, have been used as a primary predictor of quagga mussel establishment success to aid management decisions. We evaluated the invasion potential of quagga mussels in low calcium waters using laboratory experiments to compare the survival, growth and reproductive potential of adult mussels held for 90 days at low (9 and 12 ppm), moderate (15 to 32 ppm) and high (72 ppm) calcium water concentrations. In conjunction with adult experiments, veliger stage survival, growth and settlement were evaluated under similar low, moderate, and high calcium water treatments. Adult mussels survived, grew and showed reproductive potential in low calcium water (12 ppm). Veligers were also able to survive, grow and settle in low calcium water. Higher levels of natural seston biomass appeared to improve adult mussel life history performance in low calcium water. Survival curve analysis predicted that 99% adult mortality could occur in 15 ppm could have adults surviving more than a year. The results from these bioassays provide further evidence that quagga mussels have higher risk of establishment in low calcium lakes if habitats exist that have slightly elevated calcium. These results should help emphasize the vulnerability of water-body in the 12 to 15 ppm calcium range that could potentially be at risk of establishing sustainable quagga mussel populations. Furthermore, these results provide insights into the uncertainty of using a single parameter in assigning establishment risk given the complexity of variables in specific water-bodies that influence life history performance of introduced species.

  20. [Seasonal variation of Tamarix ramosissima and Populus euphratica water potentials in southern fringe of Taklamakan Desert].

    Science.gov (United States)

    Zeng, Fanjiang; Zhang, Ximing; Li, Xiangyi; Foetzki, Andrea; Runge, Michael

    2005-08-01

    The measurement of the seasonal and diurnal variations of Tamarix ramosissima and Populus euphratica water potentials in the southern fringe of Taklamakan Desert indicated that there was no apparent water stress for the two species during their growth period, with little change of predawn water potential and some extent decrease of midday water potential. Irrigation once or thinning had no significant effects on the water status of the plants, while groundwater appeared to be a prerequisite for the survival and growth of these species. It is very important to ensure a stable groundwater table for the restoration of Tamarix ramosissima and Populus euphratica in this area.

  1. Germination response of Hylocereus setaceus (Salm-Dyck ex DC: ) Ralf Bauer (Cactaceae) seeds to temperature and reduced water potentials.

    Science.gov (United States)

    Simão, E; Takaki, M; Cardoso, V J M

    2010-02-01

    The germination response of Hylocereus setaceus seeds to isothermic incubation at different water potentials was analysed by using the thermal time and hydrotime models, aiming to describe some germination parameters of the population and to test the validity of the models to describe the response of the seeds to temperature and water potential. Hylocereus setaceus seeds germinated relatively well in a wide range of temperatures and the germination was rate limited from 11 to 20 degrees C interval and beyond 30 degrees C until 40 degrees C, in which the germination rate respectively shifts positively and negatively with temperature. The minimum or base temperature (T(b)) for the germination of H. setaceus was 7 degrees C, and the ceiling temperature varied nearly from 43.5 to 59 degrees C depending on the percent fraction, with median set on 49.8 degrees C. The number of degrees day necessary for 50% of the seeds to germinate in the infra-optimum temperature range was 39.3 degrees C day, whereas at the supra-optimum interval the value of theta = 77 was assumed to be constant throughout. Germination was sensitive to decreasing values of psi in the medium, and both the germinability and the germination rate shift negatively with the reduction of psi, but the rate of reduction changed with temperature. The values of base water potential (psi(b)) shift to zero with increasing temperatures and such variation reflects in the relatively greater effect of low psi on germination in supra optimum range of T. In general, the model described better the germination time courses at lower than at higher water potentials. The analysis also suggest that Tb may not be independent of psi and that psi(b(g)) may change as a function of temperature at the infra-otimum temperature range.

  2. shoot water content and reference evapotranspiration

    African Journals Online (AJOL)

    ACSS

    measurement affects irrigation amount, while in the atmospheric-based methods, the soil water content affects evapotranspiration. Most ... stem water potential, leaf water potential, and .... cells. No tillage plots were weeded by hand pulling of weeds; whereas hoes were used in ..... based on soil electrical conductivity and.

  3. Mapping the environmental risk potential on surface water of pesticide contamination in the Prosecco's vineyard terraced landscape

    Science.gov (United States)

    Pizarro, Patricia; Ferrarese, Francesco; Loddo, Donato; Eugenio Pappalardo, Salvatore; Varotto, Mauro

    2016-04-01

    Detection and Ranging (LiDAR) have been used to map vineyards and to evaluate slope and drainage systems. All the data and statistics analyses have been performed in GIS environment. The areas of surface water located within a buffer zone of 20 linear meters from vineyard perimeter were considered at risk of pesticide contamination, according to European guidelines and on-site experimental results about the pesticide drift effect. Preliminary results show that 26 ha of the total vineyards within the river basin can potentially affect surface water bodies, highlighting that 19,410 m of perimeter is within 20 m from water courses. Moreover, vineyard classification based on proximity analysis indicates that 6.8 ha are at very high potential risk (10 m).

  4. Potential impacts of climate change on water quality in a shallow reservoir in China.

    Science.gov (United States)

    Zhang, Chen; Lai, Shiyu; Gao, Xueping; Xu, Liping

    2015-10-01

    To study the potential effects of climate change on water quality in a shallow reservoir in China, the field data analysis method is applied to data collected over a given monitoring period. Nine water quality parameters (water temperature, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, total nitrogen, total phosphorus, chemical oxygen demand, biochemical oxygen demand and dissolved oxygen) and three climate indicators for 20 years (1992-2011) are considered. The annual trends exhibit significant trends with respect to certain water quality and climate parameters. Five parameters exhibit significant seasonality differences in the monthly means between the two decades (1992-2001 and 2002-2011) of the monitoring period. Non-parametric regression of the statistical analyses is performed to explore potential key climate drivers of water quality in the reservoir. The results indicate that seasonal changes in temperature and rainfall may have positive impacts on water quality. However, an extremely cold spring and high wind speed are likely to affect the self-stabilising equilibrium states of the reservoir, which requires attention in the future. The results suggest that land use changes have important impact on nitrogen load. This study provides useful information regarding the potential effects of climate change on water quality in developing countries.

  5. Potential Effects of Organic Carbon Production on Ecosystems and Drinking Water Quality

    Directory of Open Access Journals (Sweden)

    Larry R. Brown

    2003-10-01

    Full Text Available Restoration of tidal wetlands in the Sacramento-San Joaquin Delta (Delta is an important component of the Ecosystem Restoration Program of the CALFED Bay-Delta Program (CALFED. CALFED is a collaborative effort among state and federal agencies to restore the ecological health and improve water management of the Delta and San Francisco Bay (Bay. Tidal wetland restoration is intended to provide valuable habitat for organisms and to improve ecosystem productivity through export of various forms of organic carbon, including both algae and plant detritus. However, the Delta also provides all or part of the drinking water for over 22 million Californians. In this context, increasing sources of organic carbon may be a problem because of the potential increase in the production of trihalomethanes and other disinfection by-products created during the process of water disinfection. This paper reviews the existing information about the roles of organic carbon in ecosystem function and drinking water quality in the Bay-Delta system, evaluates the potential for interaction, and considers major uncertainties and potential actions to reduce uncertainty. In the last 10 years, substantial progress has been made on the role of various forms of organic carbon in both ecosystem function and drinking water quality; however, interactions between the two have not been directly addressed. Several ongoing studies are beginning to address these interactions, and the results from these studies should reduce uncertainty and provide focus for further research.

  6. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat.

    Science.gov (United States)

    Khataar, Mahnaz; Mohhamadi, Mohammad Hossien; Shabani, Farzin

    2018-02-08

    We studied the effects of soil matric potential and salinity on the water use (WU), water use efficiency (WUE) and yield response factor (Ky), for wheat (Triticum aestivum cv. Mahdavi) and bean (Phaseoulus vulgaris cv. COS16) in sandy loam and clay loam soils under greenhouse conditions. Results showed that aeration porosity is the predominant factor controlling WU, WUE, Ky and shoot biomass (Bs) at high soil water potentials. As matric potential was decreased, soil aeration improved, with Bs, WU and Ky reaching maximum value at -6 to -10 kPa, under all salinities. Wheat WUE remained almost unchanged by reduction of matric potential under low salinities (EC ≤ 8 dSm -1 ), but increased under higher salinities (EC ≥ 8 dSm -1 ), as did bean WUE at all salinities, as matric potential decreased to -33 kPa. Wheat WUE exceeds that of bean in both sandy loam and clay loam soils. WUE of both plants increased with higher shoot/root ratio and a high correlation coefficient exists between them. Results showed that salinity decreases all parameters, particularly at high potentials (h = -2 kPa), and amplifies the effects of waterlogging. Further, we observed a strong relationship between transpiration (T) and root respiration (Rr) for all experiments.

  7. Market-based instruments for water policy: the market for water rights in Chile

    International Nuclear Information System (INIS)

    Redaelli, C.

    2008-01-01

    Market instruments have been often proposed with the aim of improving the efficient allocation of use rights over natural resources. This article analyzes the potential of market mechanisms in the field of water resources and focuses attention on the experience of Chile, one of the few cases in which water markets have been implemented on a wide scale. Evidence from the Chilean case is discussed in order to verify theoretical hypotheses and to outline the potential benefits but also the many drawbacks of these instruments. [it

  8. Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops

    Science.gov (United States)

    The WULCA group, active since 2007 on Water Use in LCA, commenced the development of consensus-based indicators in January 2014. This activity is planned to last 2 years and covers human health, ecosystem quality, and a stress-based indicator. This latter encompasses potential de...

  9. Calculation of surface potentials at the silica–water interface using molecular dynamics: Challenges and opportunities

    Science.gov (United States)

    Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.; Shibuta, Yasushi; Sakata, Toshiya

    2018-04-01

    Continuum-based methods are important in calculating electrostatic properties of interfacial systems such as the electric field and surface potential but are incapable of providing sufficient insight into a range of fundamentally and technologically important phenomena which occur at atomistic length-scales. In this work a molecular dynamics methodology is presented for interfacial electric field and potential calculations. The silica–water interface was chosen as an example system, which is highly relevant for understanding the response of field-effect transistors sensors (FET sensors). Detailed validation work is presented, followed by the simulated surface charge/surface potential relationship. This showed good agreement with experiment at low surface charge density but at high surface charge density the results highlighted challenges presented by an atomistic definition of the surface potential. This methodology will be used to investigate the effect of surface morphology and biomolecule addition; both factors which are challenging using conventional continuum models.

  10. Nanotechnology-based water treatment strategies.

    Science.gov (United States)

    Kumar, Sandeep; Ahlawat, Wandit; Bhanjana, Gaurav; Heydarifard, Solmaz; Nazhad, Mousa M; Dilbaghi, Neeraj

    2014-02-01

    The most important component for living beings on the earth is access to clean and safe drinking water. Globally, water scarcity is pervasive even in water-rich areas as immense pressure has been created by the burgeoning human population, industrialization, civilization, environmental changes and agricultural activities. The problem of access to safe water is inevitable and requires tremendous research to devise new, cheaper technologies for purification of water, while taking into account energy requirements and environmental impact. This review highlights nanotechnology-based water treatment technologies being developed and used to improve desalination of sea and brackish water, safe reuse of wastewater, disinfection and decontamination of water, i.e., biosorption and nanoadsorption for contaminant removal, nanophotocatalysis for chemical degradation of contaminants, nanosensors for contaminant detection, different membrane technologies including reverse osmosis, nanofiltration, ultrafiltration, electro-dialysis etc. This review also deals with the fate and transport of engineered nanomaterials in water and wastewater treatment systems along with the risks associated with nanomaterials.

  11. A risk-based framework to assess long-term effects of policy and water supply changes on water resources systems

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia

    2015-04-01

    Climate uncertainty can affect water resources availability and management decisions. Sustainable water resources management therefore requires evaluation of policy and management decisions under a wide range of possible future water supply conditions. This study proposes a risk-based framework to integrate water supply uncertainty into a forward-looking decision making context. To apply this framework, a stochastic reconstruction scheme is used to generate a large ensemble of flow series. For the Rocky Mountain basins considered here, two key characteristics of the annual hydrograph are its annual flow volume and the timing of the seasonal flood peak. These are perturbed to represent natural randomness and potential changes due to future climate. 30-year series of perturbed flows are used as input to the SWAMP model - an integrated water resources model that simulates regional water supply-demand system and estimates economic productivity of water and other sustainability indicators, including system vulnerability and resilience. The simulation results are used to construct 2D-maps of net revenue of a particular water sector; e.g., hydropower, or for all sectors combined. Each map cell represents a risk scenario of net revenue based on a particular annual flow volume, timing of the peak flow, and 200 stochastic realizations of flow series. This framework is demonstrated for a water resources system in the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. Critical historical drought sequences, derived from tree-ring reconstructions of several hundred years of annual river flows, are used to evaluate the system's performance (net revenue risk) under extremely low flow conditions and also to locate them on the previously produced 2D risk maps. This simulation and analysis framework is repeated under various reservoir operation strategies (e.g., maximizing flood protection or maximizing water supply security); development proposals, such as irrigation

  12. Marine Bacteria from Eastern Indonesia Waters and Their Potential Use in Biotechnology

    Directory of Open Access Journals (Sweden)

    Yosmina H Tapilatu

    2016-05-01

    Full Text Available Indonesian vast marine waters, which constitute 81% of the country’s total area, have a great potential in terms of marine bacteria biodiversity. However, marine bacteria are still under-explored in Indonesia, especially in its eastern area. Known as one of the biodiversity hotspots worldwide, this area surely harbors various marine bacteria of particular interest. Despite the growing number of oceanic expeditions carried out in this area, only little attention has been attributed to marine bacteria. Limited literatures exist on the isolation of marine bacteria producing compounds with potential biotechnological applications from the aforementioned waters. There are two main causes of this problem, namely lack of infrastructures and limited competent human resources. In this paper, I will highlight the preliminary results of isolation and bioprospecting attempts on this group of bacteria during the last fifteen years. These results indicate that research activities on marine bacteria in this area need to be intensified, to uncover their potential applications in various biotechnological fields. Keywords: marine bacteria, eastern Indonesian waters, biotechnological application

  13. Anaerobia Treatments of the domestic residual waters. Limitations potentialities

    International Nuclear Information System (INIS)

    Giraldo Gomez, Eugenio

    1993-01-01

    The quick growth of the Latin American cities has prevented that an appropriate covering of public services is achieved for the whole population, One of the undesirable consequences of this situation is the indiscriminate discharge from the domestic and industrial residual waters to the nearest bodies of water with its consequent deterioration and with disastrous consequences about the ecology and the public health. The developed countries have controlled this situation using systems of purification of the residual waters previously to their discharge in the receptor source. The same as the technology of the evacuation of the served waters, they have become numerous efforts for the application of the purification systems used in the countries developed to the socioeconomic, climatic and cultural conditions of our means. One of the results obtained in these efforts is the economic inability of the municipalities to pay the high investment costs and of operation of the traditional systems for the treatment of the residual waters. Contrary to another type of public services, the treatment of the residual waters needs of appropriate technological solutions for the Climatic and socioeconomic means of the developing countries, One of the technological alternatives for the purification of the residual waters that has had a great development in the last decades has been that of the biological treatments in t anaerobia ambient. The objective of this contribution is to present, to author's trial, the limitations and potentialities of this technology type with special emphasis in the case of the domestic residual waters

  14. KINETIC CONTROL OF OXIDATION STATE AT THERMODYNAMICALLY BUFFERED POTENTIALS IN SUBSURFACE WATERS

    Science.gov (United States)

    Dissolved oxygen (DO) and organic carbon (Corg) are among the highest- and lowest-potential reactants, respectively, of redox couples in natural waters. When DO and Corg are present in subsurface settings, other couples are drawn toward potentials imposed by them, generating a b...

  15. Potential Impacts of Climate Change on Stream Water Temperatures Across the United States

    Science.gov (United States)

    Ehsani, N.; Knouft, J.; Ficklin, D. L.

    2017-12-01

    Analyses of long-term observation data have revealed significant changes in several components of climate and the hydrological cycle over the contiguous United States during the twentieth and early twenty-first century. Mean surface air temperatures have significantly increased in most areas of the country. In addition, water temperatures are increasing in many watersheds across the United States. While there are numerous studies assessing the impact of climate change on air temperatures at regional and global scales, fewer studies have investigated the impacts of climate change on stream water temperatures. Projecting increases in water temperature are particularly important to the conservation of freshwater ecosystems. To achieve better insights into attributes regulating population and community dynamics of aquatic biota at large spatial and temporal scales, we need to establish relationships between environmental heterogeneity and critical biological processes of stream ecosystems at these scales. Increases in stream temperatures caused by the doubling of atmospheric carbon dioxide may result in a significant loss of fish habitat in the United States. Utilization of physically based hydrological-water temperature models is computationally demanding and can be onerous to many researchers who specialize in other disciplines. Using statistical techniques to analyze observational data from 1760 USGS stream temperature gages, our goal is to develop a simple yet accurate method to quantify the impacts of climate warming on stream water temperatures in a way that is practical for aquatic biologists, water and environmental management purposes, and conservation practitioners and policy-makers. Using an ensemble of five global climate models (GCMs), we estimate the potential impacts of climate change on stream temperatures within the contiguous United States based on recent trends. Stream temperatures are projected to increase across the US, but the magnitude of the

  16. Spent fuel data base: commercial light water reactors

    International Nuclear Information System (INIS)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel

  17. Molecular tools for bathing water assessment in Europe: Balancing social science research with a rapidly developing environmental science evidence-base.

    Science.gov (United States)

    Oliver, David M; Hanley, Nick D; van Niekerk, Melanie; Kay, David; Heathwaite, A Louise; Rabinovici, Sharyl J M; Kinzelman, Julie L; Fleming, Lora E; Porter, Jonathan; Shaikh, Sabina; Fish, Rob; Chilton, Sue; Hewitt, Julie; Connolly, Elaine; Cummins, Andy; Glenk, Klaus; McPhail, Calum; McRory, Eric; McVittie, Alistair; Giles, Amanna; Roberts, Suzanne; Simpson, Katherine; Tinch, Dugald; Thairs, Ted; Avery, Lisa M; Vinten, Andy J A; Watts, Bill D; Quilliam, Richard S

    2016-02-01

    The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.

  18. Water potential in soil and Atriplex nummularia (phytoremediator halophyte) under drought and salt stresses.

    Science.gov (United States)

    de Melo, Hidelblandi Farias; de Souza, Edivan Rodrigues; de Almeida, Brivaldo Gomes; Mulas, Maurizio

    2018-02-23

    Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl 2 and CaCl 2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m -1 . After 100 days, total water (Ψ w, plant ) and osmotic (Ψ o, plant ) potentials at predawn and midday and Ψ o, soil , matric potential (Ψ m, soil ) and Ψ w, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψ o component was the largest contributor to Ψ w, soil . Atriplex is surviving ECs close to 40 dS m -1 due to the decrease in the Ψ w . The plants reached a Ψ w of approximately -8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.

  19. A physically-based analytical model to describe effective excess charge for streaming potential generation in saturated porous media

    Science.gov (United States)

    Jougnot, D.; Guarracino, L.

    2016-12-01

    The self-potential (SP) method is considered by most researchers the only geophysical method that is directly sensitive to groundwater flow. One source of SP signals, the so-called streaming potential, results from the presence of an electrical double layer at the mineral-pore water interface. When water flows through the pore space, it gives rise to a streaming current and a resulting measurable electrical voltage. Different approaches have been proposed to predict streaming potentials in porous media. One approach is based on the excess charge which is effectively dragged in the medium by the water flow. Following a recent theoretical framework, we developed a physically-based analytical model to predict the effective excess charge in saturated porous media. In this study, the porous media is described by a bundle of capillary tubes with a fractal pore-size distribution. First, an analytical relationship is derived to determine the effective excess charge for a single capillary tube as a function of the pore water salinity. Then, this relationship is used to obtain both exact and approximated expressions for the effective excess charge at the Representative Elementary Volume (REV) scale. The resulting analytical relationship allows the determination of the effective excess charge as a function of pore water salinity, fractal dimension and hydraulic parameters like porosity and permeability, which are also obtained at the REV scale. This new model has been successfully tested against data from the literature of different sources. One of the main finding of this study is that it provides a mechanistic explanation to the empirical dependence between the effective excess charge and the permeability that has been found by various researchers. The proposed petrophysical relationship also contributes to understand the role of porosity and water salinity on effective excess charge and will help to push further the use of streaming potential to monitor groundwater flow.

  20. Relevance of octanol-water distribution measurements to the potential ecological uptake of multi-walled carbon nanotubes.

    Science.gov (United States)

    Petersen, Elijah J; Huang, Qingguo; Weber, Walter J

    2010-05-01

    Many potential applications of carbon nanotubes (CNTs) require various physicochemical modifications prior to use, suggesting that nanotubes having varied properties may pose risks in ecosystems. A means for estimating bioaccumulation potentials of variously modified CNTs for incorporation in predictive fate models would be highly valuable. An approach commonly used for sparingly soluble organic contaminants, and previously suggested for use as well with carbonaceous nanomaterials, involves measurement of their octanol-water partitioning coefficient (KOW) values. To test the applicability of this approach, a methodology was developed to measure apparent octanol-water distribution behaviors for purified multi-walled carbon nanotubes and those acid treated. Substantial differences in apparent distribution coefficients between the two types of CNTs were observed, but these differences did not influence accumulation by either earthworms (Eisenia foetida) or oligochaetes (Lumbriculus variegatus), both of which showed minimal nanotube uptake for both types of nanotubes. The results suggest that traditional distribution behavior-based KOW approaches are likely not appropriate for predicting CNT bioaccumulation. Copyright (c) 2010 SETAC.

  1. Nucleic acids-based tools for ballast water surveillance, monitoring, and research

    Science.gov (United States)

    Darling, John A.; Frederick, Raymond M.

    2018-03-01

    Understanding the risks of biological invasion posed by ballast water-whether in the context of compliance testing, routine monitoring, or basic research-is fundamentally an exercise in biodiversity assessment, and as such should take advantage of the best tools available for tackling that problem. The past several decades have seen growing application of genetic methods for the study of biodiversity, driven in large part by dramatic technological advances in nucleic acids analysis. Monitoring approaches based on such methods have the potential to increase dramatically sampling throughput for biodiversity assessments, and to improve on the sensitivity, specificity, and taxonomic accuracy of traditional approaches. The application of targeted detection tools (largely focused on PCR but increasingly incorporating novel probe-based methodologies) has led to a paradigm shift in rare species monitoring, and such tools have already been applied for early detection in the context of ballast water surveillance. Rapid improvements in community profiling approaches based on high throughput sequencing (HTS) could similarly impact broader efforts to catalogue biodiversity present in ballast tanks, and could provide novel opportunities to better understand the risks of biotic exchange posed by ballast water transport-and the effectiveness of attempts to mitigate those risks. These various approaches still face considerable challenges to effective implementation, depending on particular management or research needs. Compliance testing, for instance, remains dependent on accurate quantification of viable target organisms; while tools based on RNA detection show promise in this context, the demands of such testing require considerable additional investment in methods development. In general surveillance and research contexts, both targeted and community-based approaches are still limited by various factors: quantification remains a challenge (especially for taxa in larger size

  2. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    An environmental investigation of ground water conditions has been undertaken at Wright-Patterson Air Force Base (WPAFB), Ohio to obtain data to assist in the evaluation of a potential removal action to prevent, to the extent practicable, migration of the contaminated ground water across Base boundaries. Field investigations were limited to the central section of the southwestern boundary of Area C and the Springfield Pike boundary of Area B. Further, the study was limited to a maximum depth of 150 feet below grade. Three primary activities of the field investigation were: (1) installation of 22 monitoring wells, (2) collection and analysis of ground water from 71 locations, (3) measurement of ground water elevations at 69 locations. Volatile organic compounds including trichloroethylene, perchloroethylene, and/or vinyl chloride were detected in concentrations exceeding Maximum Contaminant Levels (MCL) at three locations within the Area C investigation area. Ground water at the Springfield Pike boundary of Area B occurs in two primary units, separated by a thicker-than-expected clay layers. One well within Area B was determined to exceed the MCL for trichloroethylene.

  3. Evidence on dynamic effects in the water content – water potential relation of building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2008-01-01

    static and dynamic moisture storage data and the more pronounced was the corresponding dynamic hysteresis. The paper thus provides clear experimental evidence on dynamic effects in the water content – water potential relation of building materials. By that, data published by previous authors as Topp et......Hygrothermal simulation has become a widely applied tool for the design and assessment of building structures under possible indoor and outdoor climatic conditions. One of the most important prerequisites of such simulations is reliable material data. Different approaches exist here to derive...... the required material functions, i.e. the moisture storage characteristic and the liquid water conductivity, from measured basic properties. The current state of the art in material modelling as well as the corresponding transport theory implies that the moisture transport function is unique...

  4. Water footprint of European cars: potential impacts of water consumption along automobile life cycles.

    Science.gov (United States)

    Berger, Markus; Warsen, Jens; Krinke, Stephan; Bach, Vanessa; Finkbeiner, Matthias

    2012-04-03

    Due to global increase of freshwater scarcity, knowledge about water consumption in product life cycles is important. This study analyzes water consumption and the resulting impacts of Volkswagen's car models Polo, Golf, and Passat and represents the first application of impact-oriented water footprint methods on complex industrial products. Freshwater consumption throughout the cars' life cycles is allocated to material groups and assigned to countries according to import mix shares or location of production sites. Based on these regionalized water inventories, consequences for human health, ecosystems, and resources are determined by using recently developed impact assessment methods. Water consumption along the life cycles of the three cars ranges from 52 to 83 m(3)/car, of which more than 95% is consumed in the production phase, mainly resulting from producing iron, steel, precious metals, and polymers. Results show that water consumption takes place in 43 countries worldwide and that only 10% is consumed directly at Volkswagen's production sites. Although impacts on health tend to be dominated by water consumption in South Africa and Mozambique, resulting from the production of precious metals and aluminum, consequences for ecosystems and resources are mainly caused by water consumption of material production in Europe.

  5. High Efficiency Water Heating Technology Development Final Report, Part II: CO2 and Absorption-Based Residential Heat Pump Water Heater Development

    Energy Technology Data Exchange (ETDEWEB)

    Gluesenkamp, Kyle R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Patel, Viral K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mandel, Bracha T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); de Almeida, Valmor F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The two objectives of this project were to 1.demonstrate an affordable path to an ENERGY STAR qualified electric heat pump water heater (HPWH) based on low-global warming potential (GWP) CO2 refrigerant, and 2.demonstrate an affordable path to a gas-fired absorption-based heat pump water heater with a gas energy factor (EF) greater than 1.0. The first objective has been met, and the project has identified a promising low-cost option capable of meeting the second objective. This report documents the process followed and results obtained in addressing these objectives.

  6. EnviroAtlas - New Bedford, MA - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  7. EnviroAtlas - Des Moines, IA - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  8. EnviroAtlas - Green Bay, WI - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  9. EnviroAtlas - New York, NY - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  10. Solar water heating systems feasibility for domestic requests in Tunisia: Thermal potential and economic analysis

    International Nuclear Information System (INIS)

    Hazami, Majdi; Naili, Nabiha; Attar, Issam; Farhat, Abdelhamid

    2013-01-01

    Highlights: • The present work studies the potential of using Domestic Solar Water Heating systems. • The payback period is between 8 and 7.5 years. • The annual savings in electrical energy is between 1316 and 1459 kW h/year. • The savings by using the solar systems is about 3969–4400.34 $. • The annual GHG emission per house is reduced by 27,800 tCO 2 . - Abstract: The main goal of the present work is to study the energetic and the economic potential of the deployment of Domestic Solar Water Heating systems (DSWHs) instead of using electric/gas/town gas water heaters. A case study related to Tunisian scenario was performed according to a typical Tunisian households composed of 4–5 persons. In this scenario we evaluated the performance and the life cycle perspective of the two most popular DSWHs over the recent years (i.e. DSWH with flat-plate solar collector, FPC, and DSWHs with evacuated-tube solar collector, ETC). The dynamic behavior of DSWHs according to Tunisian data weather was achieved by means of TRNSYS simulation. The Results showed that the FPC and ETC provide about 8118 and 12032 kW h/year of thermal energy. The economic potential of DSWHs in saving electricity and reducing carbon dioxide emissions was also investigated. Results showed that the annual savings in electrical energy relatively to the FPC and ETC are about 1316 and 1459 kW h/year, with a payback period of around 8 and 10 years, respectively. Based on gas/town gas water heater, the FPC and ETC save about 306 m 3 and 410 m 3 of gas/town gas with a payback period about 6 and 7.5 years, respectively. We found that the life cycle savings by installing the solar system instead of buying electricity to satisfy hot water needs are about $3969 (FPC) and $4400 (ETC). We establish also that the use of the DSWHs instead of installing gas/town gas water heaters save about $1518 (FPC) and $2035 (ETC). From an environmental point of view the annual GHG emission per house is reduced by 27800

  11. SFG study on potential-dependent structure of water at Pt electrode/electrolyte solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hidenori; Okada, Tsubasa; Uosaki, Kohei [Physical Chemistry Laboratory, Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)

    2008-10-01

    Structure of water at Pt/electrolyte solution interface was investigated by sum frequency generation (SFG) spectroscopy. Two broad peaks were observed in OH stretching region at ca. 3200 cm{sup -1} and ca. 3400 cm{sup -1}, which are known to be due to the symmetric OH stretching (U{sub 1}) of tetrahedrally coordinated, i.e., strongly hydrogen bonded 'ice-like' water, and the asymmetric OH stretching (U{sub 3}) of water molecules in a more random arrangement, i.e., weakly hydrogen bonded 'liquid-like' water, respectively. The SFG intensity strongly depended on electrode potential. Several possibilities are suggested for the potential dependence of the SFG intensity. (author)

  12. Gas Exchanges and Stem Water Potential Define Stress Thresholds for Efficient Irrigation Management in Olive (Olea europea L.

    Directory of Open Access Journals (Sweden)

    Giulia Marino

    2018-03-01

    Full Text Available With climate change and decreased water supplies, interest in irrigation scheduling based on plant water status is increasing. Stem water potential (ΨSWP thresholds for irrigation scheduling in olive have been proposed, however, a physiologically-based evaluation of their reliability is needed. A large dataset collected at variable environmental conditions, growing systems, and genotypes was used to characterize the relation between ΨSWP and gas exchanges for olive. Based on the effect of drought stress on the ecophysiological parameters monitored, we described three levels of stress: no stress (ΨSWP above about −2 MPa, where the high variability of stomatal conductance (gs suggests a tight stomatal control of water loss that limit ΨSWP drop, irrigation volumes applied to overcome this threshold had no effect on assimilation but reduced intrinsic water use efficiency (iWUE; moderate-stress (ΨSWP between about −2.0 and −3.5 MPa, where iWUE can be increased without damage to the photosynthetic apparatus of leaves; and high-stress (ΨSWP below about −3.5 MPa, where gs dropped below 150 mmol m−2 s−1 and the intercellular CO2 concentration increased proportionally, suggesting non-stomatal limitation to photosynthesis was operative. This study confirmed that olive ΨSWP should be maintained between −2 and −3.5 MPa for optimal irrigation efficiency and to avoid harmful water stress levels.

  13. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Directory of Open Access Journals (Sweden)

    Mugisidi Dan

    2018-01-01

    Full Text Available Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3, chloride, sodium, sulphate, and (KMnO4. In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  14. Sea Water Characterization at Ujung Kulon Coastal Depth as Raw Water Source for Desalination and Potential Energy

    Science.gov (United States)

    Mugisidi, Dan; Heriyani, Okatrina

    2018-02-01

    Fresh water is basic need for life while the source is limited. Therefore, sea water is used as fresh water through desalination process. Sea water has different physical and chemical properties ranging from the surface to the seabed. The energy potential that can be obtained from the hydrostatic pressure also changes according to the depth. As part of the research of the utilization of sea water into fresh water, the aim of this study is to know the characteristics of sea water in the depth that can be utilized as source of fresh water. The sea water samples were taken at 11km from Ujung Kulon beach with depth of 0m, 20m, 40m, 60m, 80m, and 100m under the surface. The results showed that the physical properties at every depth were below the maximum allowable drinking water except for the amount of dissolved solids. Chemical characteristics at any depth above allowable level were fluoride, hardness (CaCo3), chloride, sodium, sulphate, and (KMnO4). In addition to the properties, pressure is one of the considerations in this study to determine the depth of sea water as sources for desalination. Pressure increased by 36.11% as the depth of the sea increased.

  15. Potential microbial risk factors related to soil amendments and irrigation water of potato crops.

    Science.gov (United States)

    Selma, M V; Allende, A; López-Gálvez, F; Elizaquível, P; Aznar, R; Gil, M I

    2007-12-01

    This study assesses the potential microbial risk factors related to the use of soil amendments and irrigation water on potato crops, cultivated in one traditional and two intensive farms during two harvest seasons. The natural microbiota and potentially pathogenic micro-organisms were evaluated in the soil amendment, irrigation water, soil and produce. Uncomposted amendments and residual and creek water samples showed the highest microbial counts. The microbial load of potatoes harvested in spring was similar among the tested farms despite the diverse microbial levels of Listeria spp. and faecal coliforms in the potential risk sources. However, differences in total coliform load of potato were found between farms cultivated in the autumn. Immunochromatographic rapid tests and the BAM's reference method (Bacteriological Analytical Manual; AOAC International) were used to detect Escherichia coli O157:H7 from the potential risk sources and produce. Confirmation of the positive results by polymerase chain reaction procedures showed that the immunochromatographic assay was not reliable as it led to false-positive results. The potentially pathogenic micro-organisms of soil amendment, irrigation water and soil samples changed with the harvest seasons and the use of different agricultural practices. However, the microbial load of the produce was not always influenced by these risk sources. Improvements in environmental sample preparation are needed to avoid interferences in the use of immunochromatographic rapid tests. The potential microbial risk sources of fresh produce should be regularly controlled using reliable detection methods to guarantee their microbial safety.

  16. Detection of microbial contaminations in drinking water using ATP measurements – evaluating potential for online monitoring

    DEFF Research Database (Denmark)

    Vang, Óluva Karin; Corfitzen, Charlotte B.; Albrechtsen, Hans-Jørgen

    2011-01-01

    There is an increasing call for fast and reliable methods for continuous monitoring of microbial drinking water quality in order to protect public health. The potential for Adenosine triphosphate (ATP) measurements as a real-time analysis for continuous monitoring of microbial drinking water...... quality was investigated through simulation of two contamination scenarios, i.e. drinking water contaminated with waste water and surface water at various concentrations. With ATP measurements it was possible to detect waste water diluted 1000-10,000 times in drinking water depending on sensitivity...... of reagent kit. Surface water diluted 100-1000 times was detected in drinking water with ATP measurements. ATP has the potential as an early warning tool, especially in the period when the contamination concentration is high. 2011 © American Water Works Association AWWA WQTC Conference Proceedings All Rights...

  17. The Potential Benefits of Earth Observations for the Water-Energy-Food Nexus and Beyond

    Science.gov (United States)

    Lawford, R. G.

    2016-12-01

    Earth Observations have been shown to have the potential to play an important role in the management of the Water-Energy-Food (W-E-F) Nexus. To date, their primary application has come through support to decisions related to the better use of water in the production of food and in the extraction of energy. However, to be fully effective, the uses of Earth observations should be coordinated across the sectors and appropriately applied at multiple levels of the governance process. This observation argues for a new approach to governance and management of the W-E-F Nexus that implements collaborative planning based on broader usage of Earth observations. The Future Earth W-E-F Nexus Cluster project has documented a number of ways in which Earth observations can support decision-making that benefits the management of these sectors and has identified gaps in the data and information systems needed for this purpose. This presentation will summarize those findings and discuss how the role of Earth observations could be strengthened and expanded to the Sustainable Development Goals and Integrated Water Resources Management.

  18. A design for a reusable water-based spacecraft known as the spacecoach

    CERN Document Server

    McConnell, Brian

    2016-01-01

     Based on components already in existence, this manual details a reference design for an interplanetary spacecraft that is simple, durable, fully reusable and comprised mostly of water. Using such an accessible material leads to a spacecraft architecture that is radically simpler, safer and cheaper than conventional capsule based designs. If developed, the potential affordability of the design will substantially open all of the inner solar system to human exploration. A spacecraft that is comprised mostly of water will be much more like a living cell or a terrarium than a conventional rocket and capsule design. It will use water for many purposes before it is superheated in electric engines for propulsion, purposes which include radiation shielding, heat management, basic life support, crew consumption and comfort. The authors coined the term "spacecoaches" to describe them, as an allusion to the Prairie Schooners of the Old West, which were simple, rugged, and could live off the land.

  19. Water vapor movement in freezing aggregate base materials.

    Science.gov (United States)

    2014-06-01

    The objectives of this research were to 1) measure the extent to which water vapor movement results in : water accumulation in freezing base materials; 2) evaluate the effect of soil stabilization on water vapor movement : in freezing base materials;...

  20. An efficient soil water balance model based on hybrid numerical and statistical methods

    Science.gov (United States)

    Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei

    2018-04-01

    Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new

  1. Water Detection Based on Color Variation

    Science.gov (United States)

    Rankin, Arturo L.

    2012-01-01

    This software has been designed to detect water bodies that are out in the open on cross-country terrain at close range (out to 30 meters), using imagery acquired from a stereo pair of color cameras mounted on a terrestrial, unmanned ground vehicle (UGV). This detector exploits the fact that the color variation across water bodies is generally larger and more uniform than that of other naturally occurring types of terrain, such as soil and vegetation. Non-traversable water bodies, such as large puddles, ponds, and lakes, are detected based on color variation, image intensity variance, image intensity gradient, size, and shape. At ranges beyond 20 meters, water bodies out in the open can be indirectly detected by detecting reflections of the sky below the horizon in color imagery. But at closer range, the color coming out of a water body dominates sky reflections, and the water cue from sky reflections is of marginal use. Since there may be times during UGV autonomous navigation when a water body does not come into a perception system s field of view until it is at close range, the ability to detect water bodies at close range is critical. Factors that influence the perceived color of a water body at close range are the amount and type of sediment in the water, the water s depth, and the angle of incidence to the water body. Developing a single model of the mixture ratio of light reflected off the water surface (to the camera) to light coming out of the water body (to the camera) for all water bodies would be fairly difficult. Instead, this software detects close water bodies based on local terrain features and the natural, uniform change in color that occurs across the surface from the leading edge to the trailing edge.

  2. CLIMATE CHANGE AND WATER POTENTIAL OF THE PAMIR MOUNTAINS

    Directory of Open Access Journals (Sweden)

    Alexander F. Finaev

    2016-01-01

    Full Text Available The Pamir region supplies water for most countries of the Central Asia. Discussions and arguments with regard to reduction of water resources related to climate change are popular today among various governmental and international institutions being a greatconcern for modern society. Probable decrease of the Pamirs runoff will affect downstreamcountries that can face water deficiency. However, there is no scientific rationale behindsuch disputes. The Pamir region is a remote, high-mountainous and hard-to-access area with scarce observation network and no reliable data. It is not sufficiently investigated in order to perform any assessment of climate change. This article represents results of study of climate parameters change (such as temperature, precipitation and river discharge in the Pamirs. The study area covers all countries included in this mountain region (Tajikistan, China, Afghanistan and Kyrgyzstan. Observation records, remote sensing data and GIS modeling were used in the present work. Chronological data series were divided into two equal time intervals and were treated as climatic periods. Further analysis of climate change helped to estimate its influence on change of water potential in the Pamirs. The paper considers issues of liquid and solid precipitation change in the study area.

  3. Soaking grapevine cuttings in water: a potential source of cross contamination by micro-organisms

    Directory of Open Access Journals (Sweden)

    Helen WAITE

    2013-09-01

    Full Text Available Grapevine nurseries soak cuttings in water during propagation to compensate for dehydration and promote root initiation. However, trunk disease pathogens have been isolated from soaking water, indicating cross contamination. Cuttings of Vitis vinifera cv. Sunmuscat and V. berlandieri x V. rupestris rootstock cv. 140 Ruggeri were immersed in sterilized, deionised water for 1, 2, 4, 8 and 16 h. The soaking water was cultured (25°C for 3 days on non-specific and specific media for fungi and bacteria. The base of each cutting was debarked and trimmed and three 3 mm thick, contiguous, transverse slices of wood cultured at 25°C for 3 days. The soaking water for both cultivars became contaminated with microorganisms within the first hour. Numbers of fungi iso-lated from the wood slices soaked for one hour were significantly greater than those from non-soaked cuttings. The number of bacterial colonies growing from the wood slices increased after soaking for 2‒4 h in Sunmuscat. In a second experiment Shiraz cuttings were soaked for 1, 2, 4, 8 and 24 h. The soaking water became contaminated within the first hour but only the bacterial count increased significantly over time. Microorganisms also established on the container surfaces within the first hour although there were no significant increases over 24 h. These results confirm that soaking cuttings is a potential cause of cross contamination and demonstrate contamination of cuttings occurs after relatively short periods of soaking. Avoiding exposing cuttings to water will reduce the transmission of trunk diseases in propagation.

  4. Potential for HEPA filter damage from water spray systems in filter plenums

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W. [Lawrence Livermore National Lab., CA (United States); Fretthold, J.K. [Rocky Flats Safe Sites of Colorado, Golden, CO (United States); Slawski, J.W. [Department of Energy, Germantown, MD (United States)

    1997-08-01

    The water spray systems in high efficiency particulate air (HEPA) filter plenums that are used in nearly all Department of Energy (DOE) facilities for protection against fire was designed under the assumption that the HEPA filters would not be damaged by the water sprays. The most likely scenario for filter damage involves filter plugging by the water spray, followed by the fan blowing out the filter medium. A number of controlled laboratory tests that were previously conducted in the late 1980s are reviewed in this paper to provide a technical basis for the potential HEPA filter damage by the water spray system in HEPA filter plenums. In addition to the laboratory tests, the scenario for BEPA filter damage during fires has also occurred in the field. A fire in a four-stage, BEPA filter plenum at Rocky Flats in 1980 caused the first three stages of BEPA filters to blow out of their housing and the fourth stage to severely bow. Details of this recently declassified fire are presented in this paper. Although these previous findings suggest serious potential problems exist with the current water spray system in filter plenums, additional studies are required to confirm unequivocally that DOE`s critical facilities are at risk. 22 refs., 15 figs.

  5. Leaf and stem water potential as vine water status indicators, in Tempranillo grapevine, under different water regimes in the Duero valley

    Directory of Open Access Journals (Sweden)

    Jesús Yuste

    2004-03-01

    The measurement of water potential of the leaf has been easier to take, because it is not necessary to cover the leaves prior to taking the measurement (except in the measurement before dawn, in which case one must be in the vineyard at an unpleasant hour. However, using the potential of the xylem it has been possible to make better observations of the differences between treatments, when these differences are not very important.

  6. Impacts of water stress, environment and rootstock on the diurnal behaviour of stem water potential and leaf conductance in pistachio (Pistacia vera L.)

    International Nuclear Information System (INIS)

    Memmi, H.; Couceiro, J.F.; Gijón, C.; Pérez-López, D.

    2016-01-01

    Little information is available on the diurnal behaviour of water potential and leaf conductance on pistachio trees despite their relevance to fine tune irrigation strategies. Mature pistachio trees were subject to simultaneous measurements of stem water potential (Ψx) and leaf conductance (gl) during the day, at three important periods of the irrigation season. Trees were grown on three different rootstocks and water regimes. An initial baseline relating Ψx to air vapor pressure deficit (VPD) is presented for irrigation scheduling in pistachio. Ψx was closely correlated with VPD but with a different fit according to the degree of water stress. No evidence of the variation of Ψx in relation to the phenology of the tree was observed. Furthermore, midday Ψx showed more accuracy to indicate a situation of water stress than predawn water potential. Under well irrigated conditions, gl was positively correlated with VPD during stage II of growth reaching its peak when VPD reached its maximum value (around 4 kPa). This behaviour changed during stage III of fruit growth suggesting a reliance of stomatal behaviour to the phenological stage independently to the tree water status. The levels of water stress reached were translated in a slow recovery of tree water status and leaf conductance (more than 40 days). Regarding rootstocks, P. integerrima showed little adaptation to water shortage compared to the two other rootstocks under the studied conditions. (Author)

  7. Impacts of water stress, environment and rootstock on the diurnal behaviour of stem water potential and leaf conductance in pistachio (Pistacia vera L.

    Directory of Open Access Journals (Sweden)

    Houssem Memmi

    2016-06-01

    Full Text Available Little information is available on the diurnal behaviour of water potential and leaf conductance on pistachio trees despite their relevance to fine tune irrigation strategies. Mature pistachio trees were subject to simultaneous measurements of stem water potential (Ψx and leaf conductance (gl during the day, at three important periods of the irrigation season. Trees were grown on three different rootstocks and water regimes. An initial baseline relating Ψx to air vapor pressure deficit (VPD is presented for irrigation scheduling in pistachio. Ψx was closely correlated with VPD but with a different fit according to the degree of water stress. No evidence of the variation of Ψx in relation to the phenology of the tree was observed. Furthermore, midday Ψx showed more accuracy to indicate a situation of water stress than predawn water potential. Under well irrigated conditions, gl was positively correlated with VPD during stage II of growth reaching its peak when VPD reached its maximum value (around 4 kPa. This behaviour changed during stage III of fruit growth suggesting a reliance of stomatal behaviour to the phenological stage independently to the tree water status. The levels of water stress reached were translated in a slow recovery of tree water status and leaf conductance (more than 40 days. Regarding rootstocks, P. integerrima showed little adaptation to water shortage compared to the two other rootstocks under the studied conditions.

  8. Impacts of water stress, environment and rootstock on the diurnal behaviour of stem water potential and leaf conductance in pistachio (Pistacia vera L.)

    Energy Technology Data Exchange (ETDEWEB)

    Memmi, H.; Couceiro, J.F.; Gijón, C.; Pérez-López, D.

    2016-11-01

    Little information is available on the diurnal behaviour of water potential and leaf conductance on pistachio trees despite their relevance to fine tune irrigation strategies. Mature pistachio trees were subject to simultaneous measurements of stem water potential (Ψx) and leaf conductance (gl) during the day, at three important periods of the irrigation season. Trees were grown on three different rootstocks and water regimes. An initial baseline relating Ψx to air vapor pressure deficit (VPD) is presented for irrigation scheduling in pistachio. Ψx was closely correlated with VPD but with a different fit according to the degree of water stress. No evidence of the variation of Ψx in relation to the phenology of the tree was observed. Furthermore, midday Ψx showed more accuracy to indicate a situation of water stress than predawn water potential. Under well irrigated conditions, gl was positively correlated with VPD during stage II of growth reaching its peak when VPD reached its maximum value (around 4 kPa). This behaviour changed during stage III of fruit growth suggesting a reliance of stomatal behaviour to the phenological stage independently to the tree water status. The levels of water stress reached were translated in a slow recovery of tree water status and leaf conductance (more than 40 days). Regarding rootstocks, P. integerrima showed little adaptation to water shortage compared to the two other rootstocks under the studied conditions. (Author)

  9. Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice

    Directory of Open Access Journals (Sweden)

    Hen-Yu Liu

    2013-01-01

    Full Text Available The aim of this study is to examine the therapeutic potential of deep sea water (DSW on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8 and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP. Deep sea water at hardness (HD 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3 by MTT assay. For in vivo animal study, bone mineral density (BMD was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM.

  10. Evaluation of the environmental potential of the resources, soil, water, mineral and forests in the Cardique jurisdiction

    International Nuclear Information System (INIS)

    Velasquez Monsalve, Elkin; Viana Rios, Ricardo; Perez Ceron, Rosalbina

    1999-01-01

    The general objective of the study is to obtain a global vision of the potential of the soils, of the water, of the forests, of the construction materials and of the recharge areas of aquifer, as well as of the existent forests in the territory understood inside the Cardique jurisdiction to scale 1:100.000 with base in the existent secondary information and a general revision of field. The potential of the soils was determined to produce cultivations and to characterize this resource like basic element in the ecosystems operation. The hydrological and climatologically characterization was elaborated. It was determined with base in properties like the primary and secondary porosity of the rocks, the areas with potential of recharge of the aquifers. They were characterized and they evaluated the present forests in the Cardique jurisdiction, and some aspects of the structure and flora composition and their relationship were known with some physiographic elements; finally the areas were determined with possibility of use of construction materials

  11. Model potentials in liquid water ionization by fast electron impact

    International Nuclear Information System (INIS)

    De Sanctis, M L; Stia, C R; Fojón, O A; Politis, M-F; Vuilleumier, R

    2015-01-01

    We study the ionization of water molecules in liquid phase by fast electron impact. We use our previous first-order model within an independent electron approximation that allows the reduction of the multielectronic problem into a monoelectronic one. The initial molecular states of the liquid water are represented in a realistic way through a Wannier orbital formalism. We complete our previous study by taking into account approximately the influence of the passive electrons of the target by means of different model potentials. We compute multiple differential cross sections for the most external orbital 1B 1 and compare them with other results

  12. Delineating Potential Karst Water-Bearing Structures based on Resistivity Anomalies and Microtremor Analyses-A Case Study in Yunnan Province, China

    Science.gov (United States)

    Gan, F.; Su, C.; Liu, W.; Zhao, W.

    2016-12-01

    Heterogeneity, anisotropy and rugged landforms become challenges for geophysicists to locate drilling site by water-bearing structure profiling in Karst region. If only one geophysical method is used to achieve this objective, low resistivity anomalies deduced to be water-rich zones could actually be zones rich in marl and shale. In this study, integrated geophysical methods were used to locate a favorable drilling position for the provision of karst water to Juede village, which had been experiencing severe water shortages over a prolonged period. According to site conditions and hydrogeological data, appropriate geophysical profiles were conducted, approximately perpendicular to the direction of groundwater flow. In general, significant changes in resistivity occur between water-filled caves/ fractures and competent rocks. Thus, electrical and electromagnetic methods have been widely applied to search for karst groundwater indirectly. First, electrical resistivity tomography was carried out to discern shallow resistivity distributions within the profile where the low resistivity anomalies were of most interest. Second, one short profile of audio-frequency magnetotelluric survey was used to ascertain the vertical and horizontal extent of these low resistivity anomalies. Third, the microtremor H/V spectral ratio method was applied to identify potential water-bearing structures from low resistivity anomalies and to differentiate these from the interference of marl and shale with low resistivity. Finally, anomalous depths were estimated by interpreting Schlumberger sounding data to determine an optimal drilling site. The study shows that karst hydrogeology and geophysical methods can be effectively integrated for the purposes of karst groundwater exploration.

  13. Potential water-quality effects of coal-bed methane production water discharged along the upper Tongue River, Wyoming and Montana

    Science.gov (United States)

    Kinsey, Stacy M.; Nimick, David A.

    2011-01-01

    Water quality in the upper Tongue River from Monarch, Wyoming, downstream to just upstream from the Tongue River Reservoir in Montana potentially could be affected by discharge of coal-bed methane (CBM) production water (hereinafter referred to as CBM discharge). CBM discharge typically contains high concentrations of sodium and other ions that could increase dissolved-solids (salt) concentrations, specific conductance (SC), and sodium-adsorption ratio (SAR) in the river. Increased inputs of sodium and other ions have the potential to alter the river's suitability for agricultural irrigation and aquatic ecosystems. Data from two large tributaries, Goose Creek and Prairie Dog Creek, indicate that these tributaries were large contributors to the increase in SC and SAR in the Tongue River. However, water-quality data were not available for most of the smaller inflows, such as small tributaries, irrigation-return flows, and CBM discharges. Thus, effects of these inflows on the water quality of the Tongue River were not well documented. Effects of these small inflows might be subtle and difficult to determine without more extensive data collection to describe spatial patterns. Therefore, synoptic water-quality sampling trips were conducted in September 2005 and April 2006 to provide a spatially detailed profile of the downstream changes in water quality in this reach of the Tongue River. The purpose of this report is to describe these downstream changes in water quality and to estimate the potential water-quality effects of CBM discharge in the upper Tongue River. Specific conductance of the Tongue River through the study reach increased from 420 to 625 microsiemens per centimeter (.μS/cm; or 49 percent) in the downstream direction in September 2005 and from 373 to 543 .μS/cm (46 percent) in April 2006. Large increases (12 to 24 percent) were measured immediately downstream from Goose Creek and Prairie Dog Creek during both sampling trips. Increases attributed to

  14. Managing the potential risks of using bacteria-laden water in mineral processing to protect freshwater.

    Science.gov (United States)

    Liu, Wenying; Moran, Chris J; Vink, Sue

    2013-06-18

    The minerals industry is being driven to access multiple water sources and increase water reuse to minimize freshwater withdrawal. Bacteria-laden water, such as treated effluent, has been increasingly used as an alternative to freshwater for mineral processing, in particular flotation, where conditions are favorable for bacterial growth. However, the risk posed by bacteria to flotation efficiency is poorly understood. This could be a barrier to the ongoing use of this water source. This study tested the potential of a previously published risk-based approach as a management tool to both assist mine sites in quantifying the risk from bacteria, and finding system-wide cost-effective solutions for risk mitigation. The result shows that the solution of adjusting the flotation chemical regime could only partly control the risk. The second solution of using tailings as an absorbent was shown to be effective in the laboratory in reducing bacterial concentration and thus removing the threat to flotation recovery. The best solution is likely to combine internal and external approaches, that is, inside and outside processing plants. Findings in this study contribute possible methods applicable to managing the risk from water-borne bacteria to plant operations that choose to use bacteria-containing water, when attempting to minimize freshwater use, and avoiding the undesirable consequences of increasing its use.

  15. Potential for Potable Water Savings in Buildings by Using Stormwater Harvested from Porous Pavements

    Directory of Open Access Journals (Sweden)

    Lucas Niehuns Antunes

    2016-03-01

    Full Text Available There is a growing concern about the scarcity of water resources due to population growth and increased demand for potable water. Thus, the rational use of water has become necessary for the conservation of such resources. The objective of this study is to estimate the potential for potable water savings in buildings of different sectors—residential, public and commercial—in the city of Florianópolis, southern Brazil, by using stormwater harvested from porous pavements. Models were constructed to assess infiltration and rainwater quality; samples of stormwater from a local road were collected to evaluate its quality; and computer simulation was performed to assess the potential for potable water savings and rainwater tank sizing. Draining asphalt concrete slabs with two types of modifiers were used, i.e., tire rubber and SBS polymer—styrene-butadiene-styrene. The Netuno computer programme was used to simulate the potential for potable water savings considering the use of rainwater for non-potable uses such as flushing toilets and urinals, cleaning external areas, and garden watering. Average stormwater infiltration was 85.4%. It was observed that stormwater is not completely pure. From the models, the pH was 5.4 and the concentrations of ammonia, phosphorus, nitrite, and dissolved oxygen were 0.41, 0.14, 0.002, and 9.0 mg/L, respectively. The results for the stormwater runoff of a paved road were 0.23, 0.11, 0.12, 0.08, 1.41, 2.11, 0.02, and 9.0 mg/L for the parameters aluminium, ammonia, copper, chromium, iron, phosphorus, nitrite, and dissolved oxygen, respectively; and the pH was 6.7. In the city of Florianópolis, which has a surface area of paved roads of approximately 11,044,216 m², the potential for potable water savings ranged from 1.2% to 19.4% in the residential sector, 2.1% to 75.7% in the public sector and 6.5% to 70.0% in the commercial sector.

  16. a New Technique Based on Mini-Uas for Estimating Water and Bottom Radiance Contributions in Optically Shallow Waters

    Science.gov (United States)

    Montes-Hugo, M. A.; Barrado, C.; Pastor, E.

    2015-08-01

    The mapping of nearshore bathymetry based on spaceborne radiometers is commonly used for QC ocean colour products in littoral waters. However, the accuracy of these estimates is relatively poor with respect to those derived from Lidar systems due in part to the large uncertainties of bottom depth retrievals caused by changes on bottom reflectivity. Here, we present a method based on mini unmanned aerial vehicles (UAS) images for discriminating bottom-reflected and water radiance components by taking advantage of shadows created by different structures sitting on the bottom boundary. Aerial surveys were done with a drone Draganfly X4P during October 1 2013 in optically shallow waters of the Saint Lawrence Estuary, and during low tide. Colour images with a spatial resolution of 3 mm were obtained with an Olympus EPM-1 camera at 10 m height. Preliminary results showed an increase of the relative difference between bright and dark pixels (dP) toward the red wavelengths of the camera's receiver. This is suggesting that dP values can be potentially used as a quantitative proxy of bottom reflectivity after removing artefacts related to Fresnel reflection and bottom adjacency effects.

  17. Evaluation of trace organic contaminants in ultra-pure water production processes by measuring total organic halogen formation potential

    International Nuclear Information System (INIS)

    Urano, Kohei; Iwase, Yoko

    1984-01-01

    A new procedure for the determination of organic substances in water with high accuracy and high sensitivity was proposed, in which a hypochlorite is added to water, and the resultant total amount of organic halogen compounds (TOX formation potential) was measured, and it was applied to the evaluation of trace organic contaminants in ultra-pure water production process. In this investigation, the TOX formation potential of the raw water which was to be used for the ultra-pure water production process, intermediately treated water and ultra-pure water was measured to clarify the behavior of organic substances in the ultra-pure water production process and to demonstrate the usefulness of this procedure to evaluate trace organic contaminants in water. The measurement of TOX formation potential requires no specific technical skill, and only a short time, and gives accurate results, therefore, it is expected that the water quality control in the ultra-pure water production process can be performed more exactly by applying this procedure. (Yoshitake, I.)

  18. Small drinking water systems under spatiotemporal water quality variability: a risk-based performance benchmarking framework.

    Science.gov (United States)

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-23

    Traditional approaches for benchmarking drinking water systems are binary, based solely on the compliance and/or non-compliance of one or more water quality performance indicators against defined regulatory guidelines/standards. The consequence of water quality failure is dependent on location within a water supply system as well as time of the year (i.e., season) with varying levels of water consumption. Conventional approaches used for water quality comparison purposes fail to incorporate spatiotemporal variability and degrees of compliance and/or non-compliance. This can lead to misleading or inaccurate performance assessment data used in the performance benchmarking process. In this research, a hierarchical risk-based water quality performance benchmarking framework is proposed to evaluate small drinking water systems (SDWSs) through cross-comparison amongst similar systems. The proposed framework (R WQI framework) is designed to quantify consequence associated with seasonal and location-specific water quality issues in a given drinking water supply system to facilitate more efficient decision-making for SDWSs striving for continuous performance improvement. Fuzzy rule-based modelling is used to address imprecision associated with measuring performance based on singular water quality guidelines/standards and the uncertainties present in SDWS operations and monitoring. This proposed R WQI framework has been demonstrated using data collected from 16 SDWSs in Newfoundland and Labrador and Quebec, Canada, and compared to the Canadian Council of Ministers of the Environment WQI, a traditional, guidelines/standard-based approach. The study found that the R WQI framework provides an in-depth state of water quality and benchmarks SDWSs more rationally based on the frequency of occurrence and consequence of failure events.

  19. Characterization of the glass transition of water predicted by molecular dynamics simulations using nonpolarizable intermolecular potentials.

    Science.gov (United States)

    Kreck, Cara A; Mancera, Ricardo L

    2014-02-20

    Molecular dynamics simulations allow detailed study of the experimentally inaccessible liquid state of supercooled water below its homogeneous nucleation temperature and the characterization of the glass transition. Simple, nonpolarizable intermolecular potentials are commonly used in classical molecular dynamics simulations of water and aqueous systems due to their lower computational cost and their ability to reproduce a wide range of properties. Because the quality of these predictions varies between the potentials, the predicted glass transition of water is likely to be influenced by the choice of potential. We have thus conducted an extensive comparative investigation of various three-, four-, five-, and six-point water potentials in both the NPT and NVT ensembles. The T(g) predicted from NPT simulations is strongly correlated with the temperature of minimum density, whereas the maximum in the heat capacity plot corresponds to the minimum in the thermal expansion coefficient. In the NVT ensemble, these points are instead related to the maximum in the internal pressure and the minimum of its derivative, respectively. A detailed analysis of the hydrogen-bonding properties at the glass transition reveals that the extent of hydrogen-bonds lost upon the melting of the glassy state is related to the height of the heat capacity peak and varies between water potentials.

  20. Evaluating the potential of multi-purpose nature based solutions in peri-urban landscapes - a preliminary assessment

    Science.gov (United States)

    Geris, Josie; Wilkinson, Mark; Stutter, Marc; Guenther, Daniel; Soulsby, Chris

    2016-04-01

    Many communities across the world face the increasing challenge of balancing water quantity and quality protection and improvement with accommodating new growth and urban development. Urbanisation is typically associated with detrimental changes in water quality, sediment delivery, and effects on water storage and flow pathways (e.g. increases in flooding). Current mitigation solutions are typically based on isolated design strategies used at specific small scale sites and for storm water only. More holistic catchment scale approaches are urgently required to effectively manage the amount of water flows and protect the raw water quality in peri-urban landscapes. This project aims to provide a better understanding of the connectivity between natural and managed flow pathways, storage, and biogeochemical processes in the peri-urban landscape to eventually aid a more integrated water quantity and quality control design. For an actively urbanising catchment in NE Scotland we seek to understand the spatio-temporal character of the natural flow pathways and associated water quality, and how these may be used to support the design of nature based solutions during urbanisation. We present preliminary findings from a dense and multiscale monitoring network that includes hydrometric, tracer (stable water isotopes) and water quality (turbidity (sediment), nitrate, phosphate) data during a range of contrasting hydroclimatological conditions and at different stages of the development of urban infrastructure. These demonstrate a highly variable nature, both temporally and spatially, with water quality dynamics out of sync with storm responses and depending on management practices. This highlights potential difficulties for managing water quantity and quality simultaneously at the catchment scale, and suggests that a treatment train approach may be required. Well-designed nature based solutions that tackle both water quantity and quality issues will require adaptability and a

  1. The potential for reusing grey water and its generation rates for sustainable potable water security in Kuwait

    Directory of Open Access Journals (Sweden)

    RAWA AL-JARALLAH

    2013-06-01

    Full Text Available This study was conducted to achieve the following objectives: (1 to investigate the water consumption patterns of Kuwaiti households, (2 to determine the per use water consumption rate for plumbing fixtures and their frequency of daily use and (3 to estimate the amount of grey water generated per person per day to explore the potential for reusing grey water in Kuwait. To achieve these objectives, a preliminary study was conducted to determine the per use water consumption rate for each plumbing fixture. An intensive study was then conducted using data from 53 households in different districts in Kuwait. The average daily freshwater consumption rate per person was found to be 283 L, half of which was converted to grey water. Reuse of grey water could reduce the freshwater consumption and hence wastewater treatment by 72.73 million imperial gallons per day (MIGD, which could lead to a savings of KD 87.6 (US $318.55 million from the annual freshwater production budget and between KD 15.93 (US $57.92 and KD 27.08 (US $98.46 million from the annual wastewater treatment budget.

  2. Climate and water resource change impacts and adaptation potential for US power supply

    Science.gov (United States)

    Miara, Ariel; Macknick, Jordan E.; Vörösmarty, Charles J.; Tidwell, Vincent C.; Newmark, Robin; Fekete, Balazs

    2017-11-01

    Power plants that require cooling currently (2015) provide 85% of electricity generation in the United States. These facilities need large volumes of water and sufficiently cool temperatures for optimal operations, and projected climate conditions may lower their potential power output and affect reliability. We evaluate the performance of 1,080 thermoelectric plants across the contiguous US under future climates (2035-2064) and their collective performance at 19 North American Electric Reliability Corporation (NERC) sub-regions. Joint consideration of engineering interactions with climate, hydrology and environmental regulations reveals the region-specific performance of energy systems and the need for regional energy security and climate-water adaptation strategies. Despite climate-water constraints on individual plants, the current power supply infrastructure shows potential for adaptation to future climates by capitalizing on the size of regional power systems, grid configuration and improvements in thermal efficiencies. Without placing climate-water impacts on individual plants in a broader power systems context, vulnerability assessments that aim to support adaptation and resilience strategies misgauge the extent to which regional energy systems are vulnerable. Climate-water impacts can lower thermoelectric reserve margins, a measure of systems-level reliability, highlighting the need to integrate climate-water constraints on thermoelectric power supply into energy planning, risk assessments, and system reliability management.

  3. First principles molecular dynamics of metal/water interfaces under bias potential

    Science.gov (United States)

    Pedroza, Luana; Brandimarte, Pedro; Rocha, Alexandre; Fernandez-Serra, Marivi

    2014-03-01

    Understanding the interaction of the water-metal system at an atomic level is extremely important in electrocatalysts for fuel cells, photocatalysis among other systems. The question of the interface energetics involves a detailed study of the nature of the interactions between water-water and water-substrate. A first principles description of all components of the system is the most appropriate methodology in order to advance understanding of electrochemically processes. In this work we describe, using first principles molecular dynamics simulations, the dynamics of a combined surface(Au and Pd)/water system both in the presence and absence of an external bias potential applied to the electrodes, as one would come across in electrochemistry. This is accomplished using a combination of density functional theory (DFT) and non-equilibrium Green's functions methods (NEGF), thus accounting for the fact that one is dealing with an out-of-equilibrium open system, with and without van der Waals interactions. DOE Early Career Award No. DE-SC0003871.

  4. Potential for mine water reuse in an abandoned coal mine in northern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Marques, A.; Garcia-Ordiales, E.; Loredo, J. [Oviedo Univ., Asturias (Spain)

    2010-07-01

    This paper investigated the potential re-utilization of mine water in industrial activities. Mine water characterization studies were conducted to evaluate mine waters from the abandoned La Camocha Mine in northwestern Spain. Hydrochemical studies have indicated that the water is bicarbonated with a low sulphate and iron content, and a neutral pH. The concentrations of trace metals are below water legislation for human consumption levels. The water can economically be transported for use in the irrigation of a botanical garden and sports centre located in the same region as the mine. Use of the water will help to preserve rivers and other waterways in the region, and may also minimize the environmental impacts of pumping activities at the mine. Fluid properties for various water samples were provided. 6 refs., 1 tab., 3 figs.

  5. Invertebrate-Based Water Quality Impairments and Associated Stressors Identified through the US Clean Water Act

    Science.gov (United States)

    Govenor, Heather; Krometis, Leigh Anne H.; Hession, W. Cully

    2017-10-01

    Macroinvertebrate community assessment is used in most US states to evaluate stream health under the Clean Water Act. While water quality assessment and impairment determinations are reported to the US Environmental Protection Agency, there is no national summary of biological assessment findings. The objective of this work was to determine the national extent of invertebrate-based impairments and to identify pollutants primarily responsible for those impairments. Evaluation of state data in the US Environmental Protection Agency's Assessment and Total Maximum Daily Load Tracking and Implementation System database revealed considerable differences in reporting approaches and terminologies including differences in if and how states report specific biological assessment findings. Only 15% of waters impaired for aquatic life could be identified as having impairments determined by biological assessments (e.g., invertebrates, fish, periphyton); approximately one-third of these were associated with macroinvertebrate bioassessment. Nearly 650 invertebrate-impaired waters were identified nationwide, and sediment was the most common pollutant in bedded (63%) and suspended (9%) forms. This finding is not unexpected, given previous work on the negative impacts of sediment on aquatic life, and highlights the need to more specifically identify the mechanisms driving sediment impairments in order to design effective remediation plans. It also reinforces the importance of efforts to derive sediment-specific biological indices and numerical sediment quality guidelines. Standardization of state reporting approaches and terminology would significantly increase the potential application of water quality assessment data, reveal national trends, and encourage sharing of best practices to facilitate the attainment of water quality goals.

  6. Linking flow, water quality and potential effects on aquatic biota ...

    African Journals Online (AJOL)

    Linking the potential effects of altered water quality on aquatic biota, that may result from a change in the flow (discharge) regime, is an essential step in the maintenance of riverine ecological functioning. Determination of the environmental flow requirement of a river (as well as other activities, such as classifying the ...

  7. Two-Region Model for Soil Water Repellency as a Function of Matric Potential and Water Content

    DEFF Research Database (Denmark)

    Karunarathna, Anurudda Kumara; Møldrup, Per; Kawamoto, Ken

    2010-01-01

    by the so-called Dexter index) is useful for predicting if soils are likely to exhibit WR. Expression of soil water repellency depends on soil water content; however, only a limited amount of predictive description is available to date. In this study, based on experimental data, a simple two-region model...

  8. Mobilization of radionuclides from sediments. Potential sources to Arctic waters

    International Nuclear Information System (INIS)

    Oughton, D.H.; Boerretzen, P.; Mathisen, B.; Salbu, B.; Tronstad, E.

    1995-01-01

    Contaminated soils and sediments can act as secondary sources of radionuclides to Arctic waters. In cases where the original source of contamination has ceased or been greatly reduced (e.g., weapons' testing, waste discharges from Mayak and Sellafield) remobilization of radionuclides from preciously contaminated sediments increases in importance. With respect to Arctic waters, potential secondary sources include sediments contaminated by weapons' testing, by discharges from nuclear installations to seawater, e.g., the Irish Sea, or by leakages from dumped waste containers. The major land-based source is run-off from soils and transport from sediments in the catchment areas of the Ob and Yenisey rivers, including those contaminated by Mayak discharges. Remobilization of radionuclides is often described as a secondary source of contamination. Whereas primary sources of man-made radionuclides tend to be point sources, secondary sources are usually more diffuse. Experiments were carried out on marine (Kara Sea, Irish Sea, Stepovogo and Abrosimov Fjords), estuarine (Ob-Yenisey) and dirty ice sediments. Total 137 Cs and 90 Sr concentrations were determined using standard radiochemical techniques. Tracer studies using 134 Cs and 85 Sr were used to investigate the kinetics of radionuclide adsorption and desorption. It is concluded that 90 Sr is much less strongly bound to marine sediments than 137 Cs, and can be chemically mobilized through ion exchange with elements is seawater. Radiocaesium is strongly and rapidly fixed to sediments. Discharges of 137 Cs to surface sediments (i.e., from dumped containers) would be expected to be retained in sediments to a greater extent than discharges to sea-waters. Physical mobilization of sediments, for example resuspension, may be of more importance for transport of 137 Cs than for 90 Sr. 7 refs., 4 figs

  9. Networked Water Citizen Organisations in Spain: Potential for Transformation of Existing Power Structures in Water Management

    Directory of Open Access Journals (Sweden)

    Nuria Hernández-Mora

    2015-06-01

    Full Text Available The shift from hierarchical-administrative water management toward more transparent, multi-level and participated governance approaches has brought about a shifting geography of players, scales of action, and means of influencing decisions and outcomes. In Spain, where the hydraulic paradigm has dominated since the early 1920s, participation in decisions over water has traditionally been limited to a closed water policy community, made up of economic water users, primarily irrigator associations and hydropower generators, civil engineering corps and large public works companies. The river basin planning process under the Water Framework Directive of the European Union presented a promise of transformation, giving access to non-economic water users, environmental concerns and the wider public to water-related information on planning and decision-making. This process coincided with the consolidation of the use of Information and Communication Technologies (ICTs by the water administration, with the associated potential for information and data generation and dissemination. ICTs are also increasingly used by citizen groups and other interested parties as a way to communicate, network and challenge existing paradigms and official discourses over water, in the broader context of the emergence of 'technopolitics'. This paper investigates if and in what way ICTs may be providing new avenues for participated water resources management and contributing to alter the dominating power balance. We critically analyse several examples where networking possibilities provided by ICTs have enabled the articulation of interest groups and social agents that have, with different degrees of success, questioned the existing hegemonic view over water. The critical review of these cases sheds light on the opportunities and limitations of ICTs, and their relation with traditional modes of social mobilisation in creating new means of societal involvement in water

  10. EnviroAtlas - Durham, NC - Residents with Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  11. EnviroAtlas - Woodbine, IA - Residents with Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  12. EnviroAtlas - Phoenix, AZ - Residents with Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  13. EnviroAtlas - Milwaukee, WI - Residents with Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  14. EnviroAtlas - Minneapolis/St. Paul, MN - Potential Window Views of Water by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the block group population and the percentage of the block group population that has potential views of water bodies. A potential...

  15. The effects of water potential on some microbial populations and ...

    African Journals Online (AJOL)

    The effects of water potential on some microbial populations and decrease kinetic of organic carbon in soil treated with cow manure under laboratory conditions. ... Fourth irrigation treatment was drying-rewetting cycle (D-W) between -0.3 to -15 bars. After 0, 10, 20, 40, 60 and 90 days of incubation, soils were sampled for ...

  16. Lake Victoria's Water Budget and the Potential Effects of Climate ...

    African Journals Online (AJOL)

    This paper presents the Lake Victoria water budget for the period 1950-2004 and findings of a study on potential climate change impact on the lake's Hydrology through the 21st Century. The mass balance components are computed from measured and simulated data. A2 and B2 emission scenarios of the Special Report ...

  17. Community-specific hydraulic conductance potential of soil water decomposed for two Alpine grasslands by small-scale lysimetry

    Science.gov (United States)

    Frenck, Georg; Leitinger, Georg; Obojes, Nikolaus; Hofmann, Magdalena; Newesely, Christian; Deutschmann, Mario; Tappeiner, Ulrike; Tasser, Erich

    2018-02-01

    For central Europe in addition to rising temperatures an increasing variability in precipitation is predicted. This will increase the probability of drought periods in the Alps, where water supply has been sufficient in most areas so far. For Alpine grasslands, community-specific imprints on drought responses are poorly analyzed so far due to the sufficient natural water supply. In a replicated mesocosm experiment we compared evapotranspiration (ET) and biomass productivity of two differently drought-adapted Alpine grassland communities during two artificial drought periods divided by extreme precipitation events using high-precision small lysimeters. The drought-adapted vegetation type showed a high potential to utilize even scarce water resources. This is combined with a low potential to translate atmospheric deficits into higher water conductance and a lower biomass production as those measured for the non-drought-adapted type. The non-drought-adapted type, in contrast, showed high water conductance potential and a strong increase in ET rates when environmental conditions became less constraining. With high rates even at dry conditions, this community appears not to be optimized to save water and might experience drought effects earlier and probably more strongly. As a result, the water use efficiency of the drought-adapted plant community is with 2.6 gDW kg-1 of water much higher than that of the non-drought-adapted plant community (0.16 gDW kg-1). In summary, the vegetation's reaction to two covarying gradients of potential evapotranspiration and soil water content revealed a clear difference in vegetation development and between water-saving and water-spending strategies regarding evapotranspiration.

  18. The occurrence and potential ecological risk assessment of bauxite mine-impacted water and sediments in Kuantan, Pahang,Malaysia.

    Science.gov (United States)

    Kusin, Faradiella Mohd; Rahman, Muhammad Syazwan Abd; Madzin, Zafira; Jusop, Shamshuddin; Mohamat-Yusuff, Ferdaus; Ariffin, Mariani; Z, Mohd Syakirin Md

    2017-01-01

    Recent bauxite mining activities in the vicinity of Kuantan, Pahang, have been associated with apparent environmental quality degradation and have raised environmental concerns among the public. This study was carried out to evaluate the overall ecological impacts on water and sediment quality from the bauxite mining activities. Water and sediment samples were collected at seven sampling locations within the bauxite mining areas between June and December 2015. The water samples were analyzed for water quality index (WQI) and distribution of major and trace element geochemistry. Sediment samples were evaluated based on geochemical indices, i.e., the enrichment factor (EF) and geoaccumulation index (I geo ). Potential ecological risk index was estimated to assess the degree to which sediments of the mine-impacted areas have been contaminated with heavy metals. The results showed that WQIs of some locations were classified as slightly polluted and contained metal contents exceeding the recommended guideline values. The EFs indicated minimal to moderate enrichment of metals (Pb, Cu, Zn, Mn, As, Cd, Cr, Ni, Co, and Sr) in the sediments. I geo showed slightly to partially polluted sediments with respect to As at some locations. The potential ecological risk index (RI) showed that As posed the highest potential ecological risk with RI of 52.35-60.92 at two locations, while other locations indicated low risk. The findings from this study have demonstrated the impact of recent bauxite mining activities, which might be of importance to the local communities and relevant authorities to initiate immediate rehabilitation phase of the impacted area.

  19. Modelling reveals endogenous osmotic adaptation of storage tissue water potential as an important driver determining different stem diameter variation patterns in the mangrove species Avicennia marina and Rhizophora stylosa.

    Science.gov (United States)

    Vandegehuchte, Maurits W; Guyot, Adrien; Hubeau, Michiel; De Swaef, Tom; Lockington, David A; Steppe, Kathy

    2014-09-01

    Stem diameter variations are mainly determined by the radial water transport between xylem and storage tissues. This radial transport results from the water potential difference between these tissues, which is influenced by both hydraulic and carbon related processes. Measurements have shown that when subjected to the same environmental conditions, the co-occurring mangrove species Avicennia marina and Rhizophora stylosa unexpectedly show a totally different pattern in daily stem diameter variation. Using in situ measurements of stem diameter variation, stem water potential and sap flow, a mechanistic flow and storage model based on the cohesion-tension theory was applied to assess the differences in osmotic storage water potential between Avicennia marina and Rhizophora stylosa. Both species, subjected to the same environmental conditions, showed a resembling daily pattern in simulated osmotic storage water potential. However, the osmotic storage water potential of R. stylosa started to decrease slightly after that of A. marina in the morning and increased again slightly later in the evening. This small shift in osmotic storage water potential likely underlaid the marked differences in daily stem diameter variation pattern between the two species. The results show that in addition to environmental dynamics, endogenous changes in the osmotic storage water potential must be taken into account in order to accurately predict stem diameter variations, and hence growth.

  20. Anticancer drugs in Portuguese surface waters - Estimation of concentrations and identification of potentially priority drugs.

    Science.gov (United States)

    Santos, Mónica S F; Franquet-Griell, Helena; Lacorte, Silvia; Madeira, Luis M; Alves, Arminda

    2017-10-01

    Anticancer drugs, used in chemotherapy, have emerged as new water contaminants due to their increasing consumption trends and poor elimination efficiency in conventional water treatment processes. As a result, anticancer drugs have been reported in surface and even drinking waters, posing the environment and human health at risk. However, the occurrence and distribution of anticancer drugs depend on the area studied and the hydrological dynamics, which determine the risk towards the environment. The main objective of the present study was to evaluate the risk of anticancer drugs in Portugal. This work includes an extensive analysis of the consumption trends of 171 anticancer drugs, sold or dispensed in Portugal between 2007 and 2015. The consumption data was processed aiming at the estimation of predicted environmental loads of anticancer drugs and 11 compounds were identified as potentially priority drugs based on an exposure-based approach (PEC b > 10 ng L -1 and/or PEC c > 1 ng L -1 ). In a national perspective, mycophenolic acid and mycophenolate mofetil are suspected to pose high risk to aquatic biota. Moderate and low risk was also associated to cyclophosphamide and bicalutamide exposition, respectively. Although no evidences of risk exist yet for the other anticancer drugs, concerns may be associated with long term effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Anomalous self potential (sp) log signatures observed in a water ...

    African Journals Online (AJOL)

    Geophysical logging was done after drilling had been completed in a water well at Okwudor, South Eastern Nigeria. Three electric logs were run viz: Self Potential (SP), Resistivity N16″ and N64″ logs. An anomaly was observed in the SP log. The SP results from this well show some deviation from the standard norm.

  2. A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach

    Directory of Open Access Journals (Sweden)

    V. Couvreur

    2012-08-01

    Full Text Available Many hydrological models including root water uptake (RWU do not consider the dimension of root system hydraulic architecture (HA because explicitly solving water flow in such a complex system is too time consuming. However, they might lack process understanding when basing RWU and plant water stress predictions on functions of variables such as the root length density distribution. On the basis of analytical solutions of water flow in a simple HA, we developed an "implicit" model of the root system HA for simulation of RWU distribution (sink term of Richards' equation and plant water stress in three-dimensional soil water flow models. The new model has three macroscopic parameters defined at the soil element scale, or at the plant scale, rather than for each segment of the root system architecture: the standard sink fraction distribution SSF, the root system equivalent conductance Krs and the compensatory RWU conductance Kcomp. It clearly decouples the process of water stress from compensatory RWU, and its structure is appropriate for hydraulic lift simulation. As compared to a model explicitly solving water flow in a realistic maize root system HA, the implicit model showed to be accurate for predicting RWU distribution and plant collar water potential, with one single set of parameters, in dissimilar water dynamics scenarios. For these scenarios, the computing time of the implicit model was a factor 28 to 214 shorter than that of the explicit one. We also provide a new expression for the effective soil water potential sensed by plants in soils with a heterogeneous water potential distribution, which emerged from the implicit model equations. With the proposed implicit model of the root system HA, new concepts are brought which open avenues towards simple and mechanistic RWU models and water stress functions operational for field scale water dynamics simulation.

  3. Vibrational spectroscopic study of pH dependent solvation at a Ge(100)-water interface during an electrode potential triggered surface termination transition

    Science.gov (United States)

    Niu, Fang; Rabe, Martin; Nayak, Simantini; Erbe, Andreas

    2018-06-01

    The charge-dependent structure of interfacial water at the n-Ge(100)-aqueous perchlorate interface was studied by controlling the electrode potential. Specifically, a joint attenuated total reflection infrared spectroscopy and electrochemical experiment was used in 0.1M NaClO4 at pH ≈ 1-10. The germanium surface transformation to an H-terminated surface followed the thermodynamic Nernstian pH dependence and was observed throughout the entire pH range. A singular value decomposition-based spectra deconvolution technique coupled to a sigmoidal transition model for the potential dependence of the main components in the spectra shows the surface transformation to be a two-stage process. The first stage was observed together with the first appearance of Ge-H stretching modes in the spectra and is attributed to the formation of a mixed surface termination. This transition was reversible. The second stage occurs at potentials ≈0.1-0.3 V negative of the first one, shows a hysteresis in potential, and is attributed to the formation of a surface with maximum Ge-H coverage. During the surface transformation, the surface becomes hydrophobic, and an effective desolvation layer, a "hydrophobic gap," developed with a thickness ≈1-3 Å. The largest thickness was observed near neutral pH. Interfacial water IR spectra show a loss of strongly hydrogen-bound water molecules compared to bulk water after the surface transformation, and the appearance of "free," non-hydrogen bound OH groups, throughout the entire pH range. Near neutral pH at negative electrode potentials, large changes at wavenumbers below 1000 cm-1 were observed. Librational modes of water contribute to the observed changes, indicating large changes in the water structure.

  4. Polyhydroxyalkanoate Production on Waste Water Treatment Plants: Process Scheme, Operating Conditions and Potential Analysis for German and European Municipal Waste Water Treatment Plants

    Directory of Open Access Journals (Sweden)

    Timo Pittmann

    2017-06-01

    Full Text Available This work describes the production of polyhydroxyalkanoates (PHA as a side stream process on a municipal waste water treatment plant (WWTP and a subsequent analysis of the production potential in Germany and the European Union (EU. Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT and withdrawal (WD in order to find suitable settings for a high and stable VFA production. In a second step, various tests regarding a high PHA production and stable PHA composition to determine the influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were conducted. Experiments with a semi-continuous reactor operation showed that a short RT of 4 days and a small WD of 25% at pH = 6 and around 30 °C is preferable for a high VFA production rate (PR of 1913 mgVFA/(L×d and a stable VFA composition. A high PHA production up to 28.4% of cell dry weight (CDW was reached at lower substrate concentration, 20 °C, neutral pH-value and a 24 h cycle time. A final step a potential analysis, based on the results and detailed data from German waste water treatment plants, showed that the theoretically possible production of biopolymers in Germany amounts to more than 19% of the 2016 worldwide biopolymer production. In addition, a profound estimation regarding the EU showed that in theory about 120% of the worldwide biopolymer production (in 2016 could be produced on European waste water treatment plants.

  5. Development of iron-based nanoparticles for Cr(VI removal from drinking water

    Directory of Open Access Journals (Sweden)

    Vourlias G.

    2013-01-01

    Full Text Available A great deal of research over recent decades has been motivated by the requirement to lower the concentration of chromium in drinking water. This study has been conducted to determine the feasibility of iron-based nanoparticles for chromium removal from contaminated water. Single Fe, Fe3O4 and binary Fe/Fe3O4 nanoparticles were grown at the 45-80 nm size range using the solar physical vapor deposition technique and tested as potential hexavalent chromium removing agents from aqueous solutions. Due to their higher electron donation ability compared to the Fe3O4 ones, single Fe nanoparticles exhibited the highest Cr(VI removal capacity of more than 3 µg/mg while maintaining a residual concentration 50 µg/L, equal to the regulation limit for drinking water. In combination to their facile and fast magnetic separation, the applicability of the studied particles in water treatment facilities should be considered.

  6. The Potential for the Treatment of Antimony-Containing Wastewater by Iron-Based Adsorbents

    Directory of Open Access Journals (Sweden)

    Ren-Jian Deng

    2017-10-01

    Full Text Available Antimony (Sb and its compounds are considered as global priority pollutants. Elevated concentrations of antimony in natural and industrial process wastewater are of global concern, particularly given interest in the potential toxicity and harm to the environment from aquatic exposure. Iron-based materials for treatment by adsorption are widely regarded to have potential merit for the removal of trace contaminants from water and especially in the search for efficient and low-cost techniques. In this paper, we review the application of iron-based materials in the sorption treatment of antimony contaminated water. The interaction of Sb is discussed in relation to adsorption performance, influencing factors, mechanism, modelling of adsorption (isotherm, kinetic and thermodynamic models, advantages, drawbacks and the recent achievements in the field. Although iron-based adsorbents show promise, the following three aspects are in need of further study. Firstly, a select number of iron based binary metal oxide adsorbents should be further explored as they show superior performance compared to other systems. Secondly, the possibility of redox reactions and conversion between Sb(III and Sb(V during the adsorption process is unclear and requires further investigation. Thirdly, in order to achieve optimized control of preferential adsorption sites and functional groups, the mechanism of antimony removal has to be qualitatively and quantitatively resolved by combining the advantages of advanced characterization techniques such as Fourier transform infrared spectroscopy(FTIR, X-ray photoelectron spectroscopy (XPS, Atomic force microscope(AFM, X-ray absorption near edge structure(XANES, and other spectroscopic methods. We provide details on the achievements and limitations of each of these stages and point to the need for further research.

  7. The Potential for Snow to Supply Human Water Demand in the Present and Future

    Science.gov (United States)

    Mankin, Justin S.; Viviroli, Daniel; Singh, Deepti; Hoekstra, Arjen Y.; Diffenbaugh, Noah S.

    2015-01-01

    Runoff from snowmelt is regarded as a vital water source for people and ecosystems throughout the Northern Hemisphere (NH). Numerous studies point to the threat global warming poses to the timing and magnitude of snow accumulation and melt. But analyses focused on snow supply do not show where changes to snowmelt runoff are likely to present the most pressing adaptation challenges, given sub-annual patterns of human water consumption and water availability from rainfall. We identify the NH basins where present spring and summer snowmelt has the greatest potential to supply the human water demand that would otherwise be unmet by instantaneous rainfall runoff. Using a multi-model ensemble of climate change projections, we find that these basins - which together have a present population of approx. 2 billion people - are exposed to a 67% risk of decreased snow supply this coming century. Further, in the multi-model mean, 68 basins (with a present population of more than 300 million people) transition from having sufficient rainfall runoff to meet all present human water demand to having insufficient rainfall runoff. However, internal climate variability creates irreducible uncertainty in the projected future trends in snow resource potential, with about 90% of snow-sensitive basins showing potential for either increases or decreases over the near-term decades. Our results emphasize the importance of snow for fulfilling human water demand in many NH basins, and highlight the need to account for the full range of internal climate variability in developing robust climate risk management decisions.

  8. Predicting Fish Growth Potential and Identifying Water Quality Constraints: A Spatially-Explicit Bioenergetics Approach

    Science.gov (United States)

    Budy, Phaedra; Baker, Matthew; Dahle, Samuel K.

    2011-10-01

    Anthropogenic impairment of water bodies represents a global environmental concern, yet few attempts have successfully linked fish performance to thermal habitat suitability and fewer have distinguished co-varying water quality constraints. We interfaced fish bioenergetics, field measurements, and Thermal Remote Imaging to generate a spatially-explicit, high-resolution surface of fish growth potential, and next employed a structured hypothesis to detect relationships among measures of fish performance and co-varying water quality constraints. Our thermal surface of fish performance captured the amount and spatial-temporal arrangement of thermally-suitable habitat for three focal species in an extremely heterogeneous reservoir, but interpretation of this pattern was initially confounded by seasonal covariation of water residence time and water quality. Subsequent path analysis revealed that in terms of seasonal patterns in growth potential, catfish and walleye responded to temperature, positively and negatively, respectively; crappie and walleye responded to eutrophy (negatively). At the high eutrophy levels observed in this system, some desired fishes appear to suffer from excessive cultural eutrophication within the context of elevated temperatures whereas others appear to be largely unaffected or even enhanced. Our overall findings do not lead to the conclusion that this system is degraded by pollution; however, they do highlight the need to use a sensitive focal species in the process of determining allowable nutrient loading and as integrators of habitat suitability across multiple spatial and temporal scales. We provide an integrated approach useful for quantifying fish growth potential and identifying water quality constraints on fish performance at spatial scales appropriate for whole-system management.

  9. Relation between Streaming Potential and Streaming Electrification Generated by Streaming of Water through a Sandwich-type Cell

    OpenAIRE

    Maruyama, Kazunori; Nikaido, Mitsuru; Hara, Yoshinori; Tanizaki, Yoshie

    2012-01-01

    Both streaming potential and accumulated charge of water flowed out were measured simultaneously using a sandwich-type cell. The voltages generated in divided sections along flow direction satisfied additivity. The sign of streaming potential agreed with that of streaming electrification. The relation between streaming potential and streaming electrification was explained from a viewpoint of electrical double layer in glass-water interface.

  10. Bridging the climate-induced water gap in the twenty-first century: adaptation support based on water supply, demand, adaptation and financing.

    Science.gov (United States)

    Straatsma, Menno; Droogers, Peter; Brandsma, Jaïrus; Buytaert, Wouter; Karssenberg, Derek; Van Beek, Rens; Wada, Yoshihide; Sutanudjaja, Edwin; Vitolo, Claudia; Schmitz, Oliver; Meijer, Karen; Van Aalst, Maaike; Bierkens, Marc

    2014-05-01

    Water scarcity affects large parts of the world. Over the course of the twenty-first century, water demand is likely to increase due to population growth and associated food production, and increased economic activity, while water supply is projected to decrease in many regions due to climate change. Despite recent studies that analyze the effect of climate change on water scarcity, e.g. using climate projections under representative concentration pathways (RCP) of the fifth assessment report of the IPCC (AR5), decision support for closing the water gap between now and 2100 does not exist at a meaningful scale and with a global coverage. In this study, we aimed (i) to assess the joint impact of climatic and socio-economic change on water scarcity, (ii) to integrate impact and potential adaptation in one workflow, (iii) to prioritize adaptation options to counteract water scarcity based on their financial, regional socio-economic and environmental implications, and (iv) to deliver all this information in an integrated user-friendly web-based service. To enable the combination of global coverage with local relevance, we aggregated all results for 1604 water provinces (food producing units) delineated in this study, which is five times smaller than previous food producing units. Water supply was computed using the PCR-GLOBWB hydrological and water resources model, parameterized at 5 arcminutes for the whole globe, excluding Antarctica and Greenland. We ran PCR-GLOBWB with a daily forcing derived from five different GCM models from the CMIP5 (GFDL-ESM2M, Hadgem2-ES, IPSL-CMA5-LR, MIROC-ESM-CHEM, NorESM1-M) that were bias corrected using observation-based WATCH data between 1960-1999. For each of the models all four RCPs (RCP 2.6, 4.5, 6.0, and 8.5) were run, producing the ensemble of 20 future projections. The blue water supply was aggregated per month and per water province. Industrial, domestic and irrigation water demands were computed for a limited number of

  11. Raman Spectroscopy for In-Line Water Quality Monitoring—Instrumentation and Potential

    Directory of Open Access Journals (Sweden)

    Zhiyun Li

    2014-09-01

    Full Text Available Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.

  12. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  13. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  14. Liposomes as vehicles for water insoluble platinum-based potential drug

    DEFF Research Database (Denmark)

    Kaluđerović, Goran N; Dietrich, Andrea; Kommera, Harish

    2012-01-01

    -flow fractionation indicating size of around 120 nm. Stability study showed that LipoTHP-C11 was stable at 4 °C for more than two months. To test suitability of chosen formulation, LipoTHP-C11 was investigated against several tumor cell lines: H12.1, 1411HP, 518A2, A549, HT-29, MCF-7 and SW1736. Furthermore......Formulation of liposome delivery system loaded with water insoluble 2-(4-(tetrahydro-2H-pyran-2-yloxy)-undecyl)-propane-1,3-diamminedichloroplatinum(II), LipoTHP-C11 was carried out. The particle size distributions were determined by dynamic light scattering and asymmetrical flow field......, toxicity against normal fibroblasts was examined. LipoTHP-C11 may be used as an attractive candidate for further assessment in vivo as antitumor agent....

  15. Distinct germination response of endangered and common arable weeds to reduced water potential.

    Science.gov (United States)

    Rühl, A T; Eckstein, R L; Otte, A; Donath, T W

    2016-01-01

    Arable weeds are one of the most endangered species groups in Europe. Modern agriculture and intensive land-use management are the main causes of their dramatic decline. However, besides the changes in land use, climate change may further challenge the adaptability of arable weeds. Therefore, we investigated the response pattern of arable weeds to different water potential and temperature regimes during the phase of germination. We expected that endangered arable weeds would be more sensitive to differences in water availability and temperature than common arable weeds. To this end, we set up a climate chamber experiment where we exposed seeds of five familial pairs of common and endangered arable weed species to different temperatures (5/15, 10/20 °C) and water potentials (0.0 to -1.2 MPa). The results revealed a significant relationship between the reaction of arable weed species to water availability and their Red List status. The effects of reduced water availability on total germination, mean germination time and synchrony were significantly stronger in endangered than in common arable weeds. Therefore, global climate change may present a further threat to the survival of endangered arable weed species. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges.

    Science.gov (United States)

    Moussa, Dina T; El-Naas, Muftah H; Nasser, Mustafa; Al-Marri, Mohammed J

    2017-01-15

    Electrocoagulation is an effective electrochemical approach for the treatment of different types of contaminated water and has received considerable attention in recent years due its high efficiency in dealing with numerous stubborn pollutants. It has been successful in dealing with organic and inorganic contaminants with negligible or almost no generation of by-product wastes. During the past decade, vast amount of research has been devoted to utilizing electrocoagulation for the treatment of several types of wastewater, ranging from polluted groundwater to highly contaminated refinery wastewater. This paper offers a comprehensive review of recent literature that has been dedicated to utilizing electrocoagulation for water treatment, focusing on current successes on specific applications in water and wastewater treatment, as well as potentials for future applications. The paper examines such aspects as theory, potential applications, current challenges, recent developments as well as economical concerns associated with the technology. Most of the recent EC research has been focusing on pollutant-specific evaluation without paying attention to cell design, process modeling or industrial applications. This review attempts to highlight the main achievements in the area and outlines the major shortcomings with recommendations for promising research options that can enhance the technology and broaden its range of applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Study of hybrid power system potential to power agricultural water pump in mountain area

    Energy Technology Data Exchange (ETDEWEB)

    Syuhada, Ahmad, E-mail: syuhada-mech@yahoo.com; Mubarak, Amir Zaki, E-mail: amir-zaki-mubarak@yahoo.com; Maulana, M. Ilham, E-mail: mil2ana@yahoo.com [Mechanical Engineering Department, Engineering Faculty, Syiah Kuala University Jl. Syech Abdul Rauf No.7 Darussalam Banda Aceh 23111 (Indonesia)

    2016-03-29

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  18. Study of hybrid power system potential to power agricultural water pump in mountain area

    International Nuclear Information System (INIS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-01-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US$ 14,938.

  19. Evolutionary Agent-based Models to design distributed water management strategies

    Science.gov (United States)

    Giuliani, M.; Castelletti, A.; Reed, P. M.

    2012-12-01

    There is growing awareness in the scientific community that the traditional centralized approach to water resources management, as described in much of the water resources literature, provides an ideal optimal solution, which is certainly useful to quantify the best physically achievable performance, but is generally inapplicable. Most real world water resources management problems are indeed characterized by the presence of multiple, distributed and institutionally-independent decision-makers. Multi-Agent Systems provide a potentially more realistic alternative framework to model multiple and self-interested decision-makers in a credible context. Each decision-maker can be represented by an agent who, being self-interested, acts according to local objective functions and produces negative externalities on system level objectives. Different levels of coordination can potentially be included in the framework by designing coordination mechanisms to drive the current decision-making structure toward the global system efficiency. Yet, the identification of effective coordination strategies can be particularly complex in modern institutional contexts and current practice is dependent on largely ad-hoc coordination strategies. In this work we propose a novel Evolutionary Agent-based Modeling (EAM) framework that enables a mapping of fully uncoordinated and centrally coordinated solutions into their relative "many-objective" tradeoffs using multiobjective evolutionary algorithms. Then, by analysing the conflicts between local individual agent and global system level objectives it is possible to more fully understand the causes, consequences, and potential solution strategies for coordination failures. Game-theoretic criteria have value for identifying the most interesting alternatives from a policy making point of view as well as the coordination mechanisms that can be applied to obtain these interesting solutions. The proposed approach is numerically tested on a

  20. Comparative cytotoxic and genotoxic potential of 13 drinking water disinfection by-products using a microplate-based cytotoxicity assay and a developed SOS/umu assay.

    Science.gov (United States)

    Zhang, Shao-Hui; Miao, Dong-Yue; Tan, Li; Liu, Ai-Lin; Lu, Wen-Qing

    2016-01-01

    The implications of disinfection by-products (DBPs) present in drinking water are of public health concern because of their potential mutagenic, carcinogenic and other toxic effects on humans. In this study, we selected 13 main DBPs found in drinking water to quantitatively analyse their cytotoxicity and genotoxicity using a microplate-based cytotoxicity assay and a developed SOS/umu assay in Salmonella typhimurium TA1535/pSK1002. With the developed SOS/umu test, eight DBPs: 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-fura3-chloro-4-(dichloromethyl)-5-hydroxy-2-[5H]-furanone (MX), dibromoacetonitrile (DBN), iodoacetic acid (IA), bromochloroacetonitrile (BCN), bromoacetic acid (BA), trichloroacetonitrile (TCN), dibromoacetic acid (DBA) and dichloroacetic acid (DCA) were significantly genotoxic to S. typhimurium. Three DBPs: chloroacetic acid (CA), trichloroacetic acid (TCA) and dichloroacetonitrile (DCN) were weakly genotoxic, whereas the remaining DBPs: chloroacetonitrile (CN) and chloral hydrate (CH) were negative. The rank order in decreasing genotoxicity was as follows: MX > DBN > IA > BCN > BA > TCN > DBA > DCA > CA, TCA, DCN > CN, CH. MX was approximately 370 000 times more genotoxic than DCA. In the microplate-based cytotoxicity assay, cytotoxic potencies of the 13 DBPs were compared and ranked in decreasing order as follows: MX > IA > DBN > BCN > BA > TCN > DCN > CA > DCA > DBA > CN > TCA > CH. MX was approximately 19 200 times more cytotoxic than CH. A statistically significant correlation was found between cytotoxicity and genotoxicity of the 13 DBPs in S. typhimurium. Results suggest that microplate-based cytotoxicity assay and the developed SOS/umu assay are feasible tools for analysing the cytotoxicity and genotoxicity of DBPs, particularly for comparing their toxic intensities quantitatively. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e

  1. Supramolecular water oxidation with rubda-based catalysts

    KAUST Repository

    Richmond, Craig J.

    2014-11-05

    Extremely slow and extremely fast new water oxidation catalysts based on the Rubda (bda = 2,2′-bipyri-dine-6,6′-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycless"1, respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system p-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts.

  2. Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan mine, China

    International Nuclear Information System (INIS)

    Zhou, Jianwei; Nyirenda, Mathews T.; Xie, Lina; Li, Yi; Zhou, Baolong; Zhu, Yue; Liu, Huilin

    2017-01-01

    The Xikuangshan (XKS) mine in China has vast quantities of waste material and reported antimony (Sb) and arsenic (As) contamination of water in the mine area. This study estimated the potential of acid mine drainage (AMD) generation by waste material at XKS mine by using paste pH, acid base accounting and net acid generation geochemical static tests. Distribution of Sb and As in surface and groundwater in relation to mine waste AMD producing potential was also investigated. Thirty four (34) water samples and representative samples of three mine wastes from different periods (fresh, 10 and 50 years) were collected for this study: waste rock, smelting slag and tailings. The AMD prediction shows that waste rock (from 10 year period) is acid producing while the fresh mine waste had alkaline paste pH indicating the presence of reactive carbonates. Hence AMD generation may have occurred after a long time due to dissolution of carbonates. Water analysis found Sb with higher concentration than As with means of 3.74 mg/L and 0.19 mg/L respectively. Highest Sb and As concentrations were observed in the North mine along the water flow path from waste heaps and tailing pond; Mine water in the South mine also had elevated Sb and As concentrations. Mining activities at the XKS mine have accelerated Sb and As releases because of the disturbed natural equilibrium. Proper mine waste management and collection and treatment of outflow from the waste rock heaps and tailing ponds seem to be a promising mitigation options. - Highlights: • High levels of Sb and As were detected in alkaline water at Xikuangshan mine. • Static test showed that mine waste aged over 10 years was acid generating. • Mine waste influenced the high concentration of Sb and As in water. • The Sb/As ratios in water favored Sb because of high Sb content in the ore body.

  3. Getting the Right Answers for the Right Reasons: Toward Predictive Molecular Simulations of Water with Many-Body Potential Energy Functions.

    Science.gov (United States)

    Paesani, Francesco

    2016-09-20

    The central role played by water in fundamental processes relevant to different disciplines, including chemistry, physics, biology, materials science, geology, and climate research, cannot be overemphasized. It is thus not surprising that, since the pioneering work by Stillinger and Rahman, many theoretical and computational studies have attempted to develop a microscopic description of the unique properties of water under different thermodynamic conditions. Consequently, numerous molecular models based on either molecular mechanics or ab initio approaches have been proposed over the years. However, despite continued progress, the correct prediction of the properties of water from small gas-phase clusters to the liquid phase and ice through a single molecular model remains challenging. To large extent, this is due to the difficulties encountered in the accurate modeling of the underlying hydrogen-bond network in which both number and strength of the hydrogen bonds vary continuously as a result of a subtle interplay between energetic, entropic, and nuclear quantum effects. In the past decade, the development of efficient algorithms for correlated electronic structure calculations of small molecular complexes, accompanied by tremendous progress in the analytical representation of multidimensional potential energy surfaces, opened the doors to the design of highly accurate potential energy functions built upon rigorous representations of the many-body expansion (MBE) of the interaction energies. This Account provides a critical overview of the performance of the MB-pol many-body potential energy function through a systematic analysis of energetic, structural, thermodynamic, and dynamical properties as well as of vibrational spectra of water from the gas to the condensed phase. It is shown that MB-pol achieves unprecedented accuracy across all phases of water through a quantitative description of each individual term of the MBE, with a physically correct representation

  4. Potential for Sulfide Mineral Deposits in Australian Waters

    Science.gov (United States)

    McConachy, Timothy F.

    The world is witnessing a paradigm shift in relation to marine mineral resources. High-value seafloor massive sulfides at active convergent plate boundaries are attracting serious commercial attention. Under the United Nations Convention on the Law of the Sea, maritime jurisdictional zones will increase by extending over continental margins and ocean basins. For Australia, this means a possible additional 3.37 million km2 of seabed. Australia's sovereign responsibility includes, amongst other roles, the management of the exploitation of nonliving resources and sea-bed mining. What, therefore, is the potential in Australia's marine jurisdiction for similar deposits to those currently attracting commercial attention in neighboring nations and for other types/styles of sulfide deposits? A preliminary review of opportunities suggests the following: (i) volcanogenic copper—lead—zinc—silver—gold mineralization in fossil arcs and back arcs in eastern waters Norfolk Ridge and the Three Kings Ridge; (ii) Mississippi Valley-type lead—zinc—silver mineralization in the NW Shelf area; (iii) ophiolite-hosted copper mineralization in the Macquarie Ridge Complex in the Southern Ocean; and (iv) submerged extensions of prospective land-based terranes, one example being offshore Gawler Craton for iron oxide—copper—gold deposits. These areas would benefit from pre-competitive surveys of detailed swath bathymetry mapping, geophysical surveys, and sampling to help build a strategic inventory of future seafloor mineral resources for Australia.

  5. Fisk-based criteria to support validation of detection methods for drinking water and air.

    Energy Technology Data Exchange (ETDEWEB)

    MacDonell, M.; Bhattacharyya, M.; Finster, M.; Williams, M.; Picel, K.; Chang, Y.-S.; Peterson, J.; Adeshina, F.; Sonich-Mullin, C.; Environmental Science Division; EPA

    2009-02-18

    This report was prepared to support the validation of analytical methods for threat contaminants under the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC) program. It is designed to serve as a resource for certain applications of benchmark and fate information for homeland security threat contaminants. The report identifies risk-based criteria from existing health benchmarks for drinking water and air for potential use as validation targets. The focus is on benchmarks for chronic public exposures. The priority sources are standard EPA concentration limits for drinking water and air, along with oral and inhalation toxicity values. Many contaminants identified as homeland security threats to drinking water or air would convert to other chemicals within minutes to hours of being released. For this reason, a fate analysis has been performed to identify potential transformation products and removal half-lives in air and water so appropriate forms can be targeted for detection over time. The risk-based criteria presented in this report to frame method validation are expected to be lower than actual operational targets based on realistic exposures following a release. Note that many target criteria provided in this report are taken from available benchmarks without assessing the underlying toxicological details. That is, although the relevance of the chemical form and analogues are evaluated, the toxicological interpretations and extrapolations conducted by the authoring organizations are not. It is also important to emphasize that such targets in the current analysis are not health-based advisory levels to guide homeland security responses. This integrated evaluation of chronic public benchmarks and contaminant fate has identified more than 200 risk-based criteria as method validation targets across numerous contaminants and fate products in drinking water and air combined. The gap in directly applicable values is

  6. Quantifying potential yield and water-limited yield of summer maize in the North China Plain

    Science.gov (United States)

    Jiang, Mingnuo; Liu, Chaoshun; Chen, Maosi

    2017-09-01

    The North China Plain is a major food producing region in China, and climate change could pose a threat to food production in the region. Based on China Meteorological Forcing Dataset, simulating the growth of summer maize in North China Plain from 1979 to 2015 with the regional implementation of crop growth model WOFOST. The results showed that the model can reflect the potential yield and water-limited yield of Summer Maize in North China Plain through the calibration and validation of WOFOST model. After the regional implementation of model, combined with the reanalysis data, the model can better reproduce the regional history of summer maize yield in the North China Plain. The yield gap in Southeastern Beijing, southern Tianjin, southern Hebei province, Northwestern Shandong province is significant, these means the water condition is the main factor to summer maize yield in these regions.

  7. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    de Hamer, W.; Love, D.; Owen, R.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2008-01-01

    Groundwater use by accessing alluvial aquifers of non-perennial rivers can be an important additional water resource in the semi-arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper-Mnyabezi catchment under current conditions

  8. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    NARCIS (Netherlands)

    de Hamer, W.; Love, D.; Owen, R.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2007-01-01

    Groundwater use by accessing alluvial aquifers of non‐perennial rivers can be an important additional water resource in the semi‐arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper‐Mnyabezi catchment under current conditions

  9. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    Science.gov (United States)

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  10. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    Science.gov (United States)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  11. The interaction between nitrobenzene and Microcystis aeruginosa and its potential to impact water quality.

    Science.gov (United States)

    Liu, Zhiquan; Cui, Fuyi; Ma, Hua; Fan, Zhenqiang; Zhao, Zhiwei; Hou, Zhenling; Liu, Dongmei; Jia, Xuebin

    2013-08-01

    The potential water quality problems caused by the interaction between nitrobezene (NB) and Microcystis aeruginosa was investigated by studying the growth inhibition, the haloacetic acids formation potential (HAAFP) and the secretion of microcystin-LR (MC-LR). The results showed that NB can inhibit the growth of M. aeruginosa, and the value of EC50 increased with the increase of initial algal density. Although NB can hardly react with chlorine to form HAAs, the presence of NB can enhance the HAAFP productivity. The secretion of the intracellular MC-LR is constant under the steady experimental conditions. However, the presence of NB can reduce the MC-LR productivity of M. aeruginosa. Overall, the increased disinfection risk caused by the interaction has more important effect on the safety of drinking water quality than the benefit of the decreased MC-LR productivity, and should be serious considered when the water contained NB and M. aeruginosa is used as drinking water source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Water reuse potential in truck wash using a Rotating Biological Contactor

    OpenAIRE

    Eduardo Lucas Subtil; José Carlos Mierzwa; Ivanildo Hespanhol; Raphael Rodrigues

    2016-01-01

    This study evaluated the water reuse potential for truck washing using the effluent treated by a Rotating Biological Contactor (RBC) operated in full scale. In order to evaluate the reuse potential, a mass balance was performed for the reuse system taking into account the concentration of Total Dissolved Solids as the critical contaminant. The treatment system produced an effluent with average concentration of color, turbidity, TDS and BOD5 of 45 ± 14 uC, 15 ± 6.0 NTU, 244 ± 99 mg TDS / L and...

  13. Water based fluidic radio frequency metamaterials

    Science.gov (United States)

    Cai, Xiaobing; Zhao, Shaolin; Hu, Mingjun; Xiao, Junfeng; Zhang, Naibo; Yang, Jun

    2017-11-01

    Electromagnetic metamaterials offer great flexibility for wave manipulation and enable exceptional functionality design, ranging from negative refraction, anomalous reflection, super-resolution imaging, transformation optics to cloaking, etc. However, demonstration of metamaterials with unprecedented functionalities is still challenging and costly due to the structural complexity or special material properties. Here, we demonstrate for the first time the versatile fluidic radio frequency metamaterials with negative refraction using a water-embedded and metal-coated 3D architecture. Effective medium analysis confirms that metallic frames create an evanescent environment while simultaneously water cylinders produce negative permeability under Mie resonance. The water-metal coupled 3D architectures and the accessory devices for measurement are fabricated by 3D printing with post electroless deposition. Our study also reveals the great potential of fluidic metamaterials and versatility of the 3D printing process in rapid prototyping of customized metamaterials.

  14. Potential Health Benefits of Deep Sea Water: A Review

    Directory of Open Access Journals (Sweden)

    Samihah Zura Mohd Nani

    2016-01-01

    Full Text Available Deep sea water (DSW commonly refers to a body of seawater that is pumped up from a depth of over 200 m. It is usually associated with the following characteristics: low temperature, high purity, and being rich with nutrients, namely, beneficial elements, which include magnesium, calcium, potassium, chromium, selenium, zinc, and vanadium. Less photosynthesis of plant planktons, consumption of nutrients, and organic decomposition have caused lots of nutrients to remain there. Due to this, DSW has potential to become a good source for health. Research has proven that DSW can help overcome health problems especially related to lifestyle-associated diseases such as cardiovascular disease, diabetes, obesity, cancer, and skin problems. This paper reviews the potential health benefits of DSW by referring to the findings from previous researches.

  15. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.

    Science.gov (United States)

    Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng

    2017-02-08

    Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.

  16. Food, Fracking, and Freshwater: The Potential for Markets and Cross-Sectoral Investments to Enable Water Conservation

    Directory of Open Access Journals (Sweden)

    Margaret Cook

    2016-01-01

    Full Text Available Hydraulic fracturing—the injection of pressurized fluid, often water, to increase recovery of oil or gas—has become increasingly popular in combination with horizontal drilling. Hydraulic fracturing improves production from a well, but requires a significant amount of water to do so and could put pressure on existing water resources, especially in water-stressed areas. To supply water needs, some water rights holders sell or lease their water resources to oil and gas producers in an informal water market. These transactions enable the opportunity for cross-sectoral investments, by which the energy sector either directly or indirectly provides the capital for water efficiency improvements in the agricultural sector as a mechanism to increase water availability for other purposes, including oil and gas production. In this analysis, we employ an original water and cost model to evaluate the water market in Texas and the potential for cross-sectoral collaboration on water efficiency improvements through a case study of the Lower Rio Grande Valley in Texas. We find that, if irrigation efficiency management practices were fully implemented, between 420 and 800 million m3 of water could be spared per year over a ten year period, potentially enabling freshwater use in oil and gas production for up to 26,000 wells, while maintaining agricultural productivity and possibly improving water flows to the ecosystem.

  17. The Effect of Temperature and Water Potential on Seed Germination of Asian spiderflower (Cleome viscose L.: As Invasive Weed in Soybean Fields in Golestan Province

    Directory of Open Access Journals (Sweden)

    M. Shirdel

    2016-09-01

    potential data showed a sigmoid trend and a three-parameter logistic model was fitted to data (Equation 1. Y=Gmax/ [1+(X/X50b] where, G is the total germination (% at concentration x, Gmax is the maximum germination (%, x50 is the osmotic potential required for 50% inhibition of the maximum germination and Grate indicates the slope of the curve in x50. Statistical Analysis System (SAS was used for analyzing the data. Results and Discussion: Results showed temperature, water potential and interaction between them significantly affected germination percentage and germination rate, the time required to reach 5% (D05, 10% (D10, 50% (D50, 90%(D90 and 95% (D95 seed germination of Asian spiderflower. The results showed that by increasing the temperature to 30 °c, seed percentage and germination rate increased and then decreased. Water potential reductions declined seed germination percentage and germination rate. Comparing different models to determine seed germination cardinal temperatures, indicated that the segmented model described germination rate changes to temperature better that the others. Based on the output of this model, germination base, optimum and ceiling temperatures of the plant were 15.46, 33.21 and 39.64 0C, respectively. The result revealed that increasing the PEG concentration, increased the base temperature and decreased optimum and ceiling temperatures. The Logistic model fitted with germination percentage of seeds in different water potentials to different temperatures. Parameters of the model showed the maximum seed germination percentage occurred in the 25 to 35 0C. Highest and lowest X50 parameter (potential required for 50% inhibition of the maximum germination observed at 30 and 38 0C, respectively. The results showed that the germination ability of Asian spiderflower occurred at less potentials water in the optimum temperature range. Conclusion: The results showed that high temperatures were required for seed germination of Asian spider flower

  18. Evaluating the impacts of farmers' behaviors on a hypothetical agricultural water market based on double auction

    Science.gov (United States)

    Du, Erhu; Cai, Ximing; Brozović, Nicholas; Minsker, Barbara

    2017-05-01

    Agricultural water markets are considered effective instruments to mitigate the impacts of water scarcity and to increase crop production. However, previous studies have limited understanding of how farmers' behaviors affect the performance of water markets. This study develops an agent-based model to explicitly incorporate farmers' behaviors, namely irrigation behavior (represented by farmers' sensitivity to soil water deficit λ) and bidding behavior (represented by farmers' rent seeking μ and learning rate β), in a hypothetical water market based on a double auction. The model is applied to the Guadalupe River Basin in Texas to simulate a hypothetical agricultural water market under various hydrological conditions. It is found that the joint impacts of the behavioral parameters on the water market are strong and complex. In particular, among the three behavioral parameters, λ affects the water market potential and its impacts on the performance of the water market are significant under most scenarios. The impacts of μ or β on the performance of the water market depend on the other two parameters. The water market could significantly increase crop production only when the following conditions are satisfied: (1) λ is small and (2) μ is small and/or β is large. The first condition requires efficient irrigation scheduling, and the second requires well-developed water market institutions that provide incentives to bid true valuation of water permits.

  19. Characterization of PEDOT-Quinone Conducting Redox Polymers for Water Based Secondary Batteries

    International Nuclear Information System (INIS)

    Sterby, Mia; Emanuelsson, Rikard; Huang, Xiao; Gogoll, Adolf; Strømme, Maria; Sjödin, Martin

    2017-01-01

    Lithium-ion technologies show great promise to meet the demands that the transition towards renewable energy sources and the electrification of the transport sector put forward. However, concerns regarding lithium-ion batteries, including limited material resources, high energy consumption during production, and flammable electrolytes, necessitate research on alternative technologies for electrochemical energy storage. Organic materials derived from abundant building blocks and with tunable properties, together with water based electrolytes, could provide safe, inexpensive and sustainable alternatives. In this study, two conducting redox polymers based on poly(3,4-ethylenedioxythiophene) (PEDOT) and a hydroquinone pendant group have been synthesized and characterized in an acidic aqueous electrolyte. The polymers were characterized with regards to kinetics, pH dependence, and mass changes during oxidation and reduction, as well as their conductance. Both polymers show redox matching, i.e. the quinone redox reaction occurs within the potential region where the polymer is conducting, and fast redox conversion that involves proton cycling during pendant group redox conversion. These properties make the presented materials promising candidates as electrode materials for water based all-organic batteries.

  20. Variations in water balance and recharge potential at three western desert sites

    International Nuclear Information System (INIS)

    Gee, G.W.; Fayer, M.J.; Rockhold, M.L.; Wierenga, P.J.; Young, M.H.; Andraski, B.J.

    1994-01-01

    Radioactive and hazardous waste landfills exist at numerous desert locations in the USA. At these locations, annual precipitation is low and soils are generally dry, yet little is known about recharge of water and transport of contaminants to the water table. Recent water balance measurements made at three desert locations, Las Cruces, NM, Beatty, NV, and the U.S. Department of Energy's Hanford Site in the state of Washington, provide information on recharge potential under three distinctly different climate and soil conditions. All three sites show water storage increases with time when soils are coarse textured and plants are removed from the surface, the rate of increase being influenced by climatic variables such as precipitation, radiation, temperature, and wind. Lysimeter data from Hanford and Las Cruces indicate that deep drainage (recharge) from bare, sandy soils can range from 10 to > 50% of the annual precipitation. At Hanford, when desert plants are present on sandy or gravelly surface soils, deep drainage is reduced but not eliminated. When surface soils are silt loams, deep drainage is eliminated whether plants are present or not. At Las Cruces and Beatty, the presence of plants eliminated deep drainage at the measurement sites. Differences in water balance between sites are attributed to precipitation quantity and distribution and to soil and vegetation types. The implication of waste management at desert locations is that surface soil properties and plant characteristics must be considered in waste site design in order to minimize recharge potential. 39 refs., 9 figs., 3 tabs

  1. Relationship Between Redox Potential, Disinfectant, and pH in Drinking Water

    Science.gov (United States)

    This work will examine the effects of pH and oxidant type (chlorine [Cl2], oxygen [O2], hydrogen peroxide [H2O2], monochloramine [MCA], and potassium permanganate [KMnO4]) and concentration (mg/L) on the redox potential of buffered test water. Also, the effects of incrementing ir...

  2. Leaf gas exchange performance and the lethal water potential of five European species during drought.

    Science.gov (United States)

    Li, Shan; Feifel, Marion; Karimi, Zohreh; Schuldt, Bernhard; Choat, Brendan; Jansen, Steven

    2016-02-01

    Establishing physiological thresholds to drought-induced mortality in a range of plant species is crucial in understanding how plants respond to severe drought. Here, five common European tree species were selected (Acer campestre L., Acer pseudoplatanus L., Carpinus betulus L., Corylus avellana L. and Fraxinus excelsior L.) to study their hydraulic thresholds to mortality. Photosynthetic parameters during desiccation and the recovery of leaf gas exchange after rewatering were measured. Stem vulnerability curves and leaf pressure-volume curves were investigated to understand the hydraulic coordination of stem and leaf tissue traits. Stem and root samples from well-watered and severely drought-stressed plants of two species were observed using transmission electron microscopy to visualize mortality of cambial cells. The lethal water potential (ψlethal) correlated with stem P99 (i.e., the xylem water potential at 99% loss of hydraulic conductivity, PLC). However, several plants that were stressed beyond the water potential at 100% PLC showed complete recovery during the next spring, which suggests that the ψlethal values were underestimated. Moreover, we observed a 1 : 1 relationship between the xylem water potential at the onset of embolism and stomatal closure, confirming hydraulic coordination between leaf and stem tissues. Finally, ultrastructural changes in the cytoplasm of cambium tissue and mortality of cambial cells are proposed to provide an alternative approach to investigate the point of no return associated with plant death. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The control of potential health risks related to drinking water in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Dick, T A

    1981-04-01

    In the United Kingdom, potable water put into supply is required to be 'wholesome'. The term 'wholesome' is interpreted as clear, palatable and safe to drink. About 99% of potable supplies are provided by Regional Water Authorities and Water Companies (for England and Wales), Regional Councils and Island Councils (for Scotland) and the Department of the Environment (NI) (for Northern Ireland). These water authorities draw their raw water from upland surface waters, lowland surface waters (including lakes and rivers) and underground waters. Although each source provides approximately one-third of supply, the proportion varies considerably in different parts of the UK. Consequently the control of potential health risks related to drinking water also varies according to the source of supply. The paper describes briefly the treatment practice for the various sources, including disinfection practice. More specifically the paper describes current UK practice or developments in the control or investigation of plumbosolvency, fluoridation, nitrate, trihalomethanes, other organic micropollutants, sodium, asbestos and tar linings in pipes. The possibilities for the surveillance of the 1% of private supplies are also discussed.

  4. ESTIMATING WATER FOOTPRINT AND MANAGING BIOREFINERY WASTEWATER IN THE PRODUCTION OF BIO-BASED RENEWABLE DIESEL BLENDSTOCK

    Energy Technology Data Exchange (ETDEWEB)

    Wu, May M. [Argonne National Lab. (ANL), Argonne, IL (United States); Sawyer, Bernard M [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    This analysis covers the entire biorefinery operation. The study focuses on net water consumed for the production of a unit of biofuel: blue, green, and grey water footprint. Blue water is defined as the water consumed in the biorefinery that is withdrawn from surface and ground water. Blue water footprint includes enzyme cultivation, pretreatment, hydrolysis, bioreactor, cooling system, boiler, fuel upgrading, combustor track, and on-site WWT. Grey water is defined as wastewater generated from the biorefinery and was evaluated based on the wastewater treatment plant design. Green water, defined as rainwater consumed for the production, is not required in the RDB process. Approximately 7–15 gal of water are required to produce a gallon of RDB when corn stover or non-irrigated perennial grasses, switchgrass and Miscanthus x giganteus (Miscanthus), serve as the feedstock in the contiguous United States. Bioelectricity generation from the biorefinery resulted in a net water credit, which reduced the water footprint. The life cycle grey water footprint for nitrogen is primarily from nitrogen in the feedstock production stage because no wastewater is discharged into the environment in the RDB process. Perennial grasses-based RDB production shows a promising grey water footprint, while corn stover-based RDB production has a relatively low green water footprint. Results from the study can help improve our understanding of the water sustainability of advanced biofuel technology under development. Make-up water for cooling and boiling remains a major demand in the biorefinery. The work revealed a key issue or trade-off between achieving zero liquid discharge to maximize water resource use and potentially increasing cost of fuel production. Solid waste disposal was identified as a management issue, and its inverse relationship with wastewater management could affect economic sustainability.

  5. Community-based Monitoring of Water Resources in Remote Mountain Regions

    Science.gov (United States)

    Buytaert, W.; Hannah, D. M.; Dewulf, A.; Clark, J.; Zulkafli, Z. D.; Karpouzoglou, T.; Mao, F.; Ochoa-Tocachi, B. F.

    2016-12-01

    Remote mountain regions are often represented by pockets of poverty combined with accelerated environmental change. The combination of harsh climatic and topographical conditions with limited infrastructure puts severe pressures on local livelihoods, many of which rely strongly on local ecosystem services (ESS) such as agricultural production and water supply. It is therefore paramount to optimise the management of ESS for the benefit of local people. This is hindered by a scarcity of quantitative data about physical processes such as precipitation and river flow as well as qualitative data concerning the management of water and land. National and conventional scientific monitoring networks tend to be insufficient to cover adequately the spatial and temporal gradients. Additionally, the data that are being collected often fail to be converted into locally relevant and actionable knowledge for ESS management. In such conditions, community-based monitoring of natural resources may be an effective way to reduce this knowledge gap. The participatory nature of such monitoring also enhances knowledge co-production and integration in locally-based decision-making processes. Here, we present the results of a 4-year consortium project on the use of citizen science technologies for ecosystem services management (Mountain-EVO). The project analyzed ecosystem service dynamics and decision-making processes and implemented a comparative analysis of experiments with community-based monitoring of water resources in 4 remote mountain regions, i.e. Peru, Nepal, Kyrgyzstan, and Ethiopia. We find that community-based monitoring can have a transformative impact on local ESS management, because of its potential to be more inclusive, polycentric, and context-driven as compared to conventional monitoring. However, the results and effectiveness of community-based approaches depend strongly on the natural and socio-economic boundary conditions. As such, this requires a tailored and bottom

  6. A blue/green water-based accounting framework for assessment of water security

    Science.gov (United States)

    Rodrigues, Dulce B. B.; Gupta, Hoshin V.; Mendiondo, Eduardo M.

    2014-09-01

    A comprehensive assessment of water security can incorporate several water-related concepts, while accounting for Blue and Green Water (BW and GW) types defined in accordance with the hydrological processes involved. Here we demonstrate how a quantitative analysis of provision probability and use of BW and GW can be conducted, so as to provide indicators of water scarcity and vulnerability at the basin level. To illustrate the approach, we use the Soil and Water Assessment Tool (SWAT) to model the hydrology of an agricultural basin (291 km2) within the Cantareira Water Supply System in Brazil. To provide a more comprehensive basis for decision making, we analyze the BW and GW-Footprint components against probabilistic levels (50th and 30th percentile) of freshwater availability for human activities, during a 23 year period. Several contrasting situations of BW provision are distinguished, using different hydrological-based methodologies for specifying monthly Environmental Flow Requirements (EFRs), and the risk of natural EFR violation is evaluated by use of a freshwater provision index. Our results reveal clear spatial and temporal patterns of water scarcity and vulnerability levels within the basin. Taking into account conservation targets for the basin, it appears that the more restrictive EFR methods are more appropriate than the method currently employed at the study basin. The blue/green water-based accounting framework developed here provides a useful integration of hydrologic, ecosystem and human needs information on a monthly basis, thereby improving our understanding of how and where water-related threats to human and aquatic ecosystem security can arise.

  7. Detection of potential mosquito breeding sites based on community sourced geotagged images

    Science.gov (United States)

    Agarwal, Ankit; Chaudhuri, Usashi; Chaudhuri, Subhasis; Seetharaman, Guna

    2014-06-01

    Various initiatives have been taken all over the world to involve the citizens in the collection and reporting of data to make better and informed data-driven decisions. Our work shows how the geotagged images collected through the general population can be used to combat Malaria and Dengue by identifying and visualizing localities that contain potential mosquito breeding sites. Our method first employs image quality assessment on the client side to reject the images with distortions like blur and artifacts. Each geotagged image received on the server is converted into a feature vector using the bag of visual words model. We train an SVM classifier on a histogram-based feature vector obtained after the vector quantization of SIFT features to discriminate images containing either a small stagnant water body like puddle, or open containers and tires, bushes etc. from those that contain flowing water, manicured lawns, tires attached to a vehicle etc. A geographical heat map is generated by assigning a specific location a probability value of it being a potential mosquito breeding ground of mosquito using feature level fusion or the max approach presented in the paper. The heat map thus generated can be used by concerned health authorities to take appropriate action and to promote civic awareness.

  8. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  9. Applicability of market-based instruments for safeguarding water quality in coastal waterways: Case study for Darwin Harbour, Australia

    Science.gov (United States)

    Greiner, Romy

    2014-02-01

    Water pollution of coastal waterways is a complex problem due to the cocktail of pollutants and multiplicity of polluters involved and pollution characteristics. Pollution control therefore requires a combination of policy instruments. This paper examines the applicability of market-based instruments to achieve effective and efficient water quality management in Darwin Harbour, Northern Territory, Australia. Potential applicability of instruments is examined in the context of biophysical and economic pollution characteristics, and experience with instruments elsewhere. The paper concludes that there is potential for inclusion of market-based instruments as part of an instrument mix to safeguard water quality in Darwin Harbour. It recommends, in particular, expanding the existing licencing system to include quantitative pollution limits for all significant point polluters; comprehensive and independent pollution monitoring across Darwin Harbour; public disclosure of water quality and emissions data; positive incentives for landholders in the Darwin Harbour catchment to improve land management practices; a stormwater offset program for greenfield urban developments; adoption of performance bonds for developments and operations which pose a substantial risk to water quality, including port expansion and dredging; and detailed consideration of a bubble licensing scheme for nutrient pollution. The paper offers an analytical framework for policy makers and resource managers tasked with water quality management in coastal waterways elsewhere in Australia and globally, and helps to scan for MBIs suitable in any given environmental management situation.

  10. Effect of attractive interactions on the water-like anomalies of a core-softened model potential.

    Science.gov (United States)

    Pant, Shashank; Gera, Tarun; Choudhury, Niharendu

    2013-12-28

    It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.

  11. Water in the Mendoza, Argentina, food processing industry: water requirements and reuse potential of industrial effluents in agriculture

    Directory of Open Access Journals (Sweden)

    Alicia Elena Duek

    2016-04-01

    Full Text Available This paper estimates the volume of water used by the Mendoza food processing industry considering different water efficiency scenarios. The potential for using food processing industry effluents for irrigation is also assessed. The methodology relies upon information collected from interviews with qualified informants from different organizations and food-processing plants in Mendoza selected from a targeted sample. Scenarios were developed using local and international secondary information sources. The results show that food processing plants in Mendoza use 19.65 hm3 of water per year; efficient water management practices would make it possible to reduce water use by 64%, i.e., to 7.11 hm3. At present, 70% of the water is used by the fruit and vegetable processing industry, 16% by wineries, 8% by mineral water bottling plants, and the remaining 6% by olive oil, beer and soft drink plants. The volume of effluents from the food processing plants in Mendoza has been estimated at 16.27 hm3 per year. Despite the seasonal variations of these effluents, and the high sodium concentration and electrical conductivity of some of them, it is possible to use them for irrigation purposes. However, because of these variables and their environmental impact, land treatment is required.

  12. Comparing the Life Cycle Energy Consumption, Global Warming and Eutrophication Potentials of Several Water and Waste Service Options

    Directory of Open Access Journals (Sweden)

    Xiaobo Xue

    2016-04-01

    Full Text Available Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energy- and carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability and sensitivity were evaluated, the carbon intensity of the local electricity grid and the efficiency of electricity production by the co-digestion with the energy recovery process were the most important for determining the relative global warming potential results.

  13. Phase behaviour and microstructure of the micro-emulsions composed of cholinium-based ionic liquid, Triton X-100 and water

    International Nuclear Information System (INIS)

    Pei, Yuanchao; Huang, Yanjie; Li, Lin; Wang, Jianji

    2014-01-01

    Highlights: • The microemulsions composed of cholinium-based ionic liquid, Triton X-100 and water have been prepared and characterised. • Ternary phase diagrams of the microemulsions have been established at T = 298.15 K. • The microemulsions exhibit IL-in-water, bicontinuous and water-in-IL microstructures. • Droplets with the size smaller than 20 nm are formed in these IL-based microemulsions. - Abstract: In this paper, micro-emulsions composed of cholinium-based ionic liquids (ILs), octylphenol ethoxylate (Triton X-100) and water were prepared. These ternary systems were found to be stable over 12 months at room temperature. Their phase behaviour was investigated by using cloud titrations, and their microstructures were characterised by means of cyclic voltammetry and electrical conductance measurements at T = 298.15 K. It was shown that the micro-emulsions exhibited IL-in-water, bi-continuous and water-in-IL microstructures. Dynamic light scattering data suggest that Triton X-100 forms micelles in water, which were swelled by the ILs added. Droplets with the size about 20 nm were formed in these IL-based micro-emulsions, and the droplet size increased with the increase of the IL concentrations. These IL-based micro-emulsions may have potential in drug delivery, chemical reactions and nanomaterial preparation as a new type of nanoreactors

  14. Seasonal variation and potential sources of Cryptosporidium contamination in surface waters of Chao Phraya River and Bang Pu Nature Reserve pier, Thailand.

    Science.gov (United States)

    Koompapong, Khuanchai; Sukthana, Yaowalark

    2012-07-01

    Using molecular techniques, a longitudinal study was conducted with the aims at identifying the seasonal difference of Cryptosporidium contamination in surface water as well as analyzing the potential sources based on species information. One hundred forty-four water samples were collected, 72 samples from the Chao Phraya River, Thailand, collected in the summer, rainy and cool seasons and 72 samples from sea water at Bang Pu Nature Reserve pier, collected before, during and after the presence of migratory seagulls. Total prevalence of Cryptosporidium contamination in river and sea water locations was 11% and 6%, respectively. The highest prevalence was observed at the end of rainy season continuing into the cool season in river water (29%) and in sea water (12%). During the rainy season, prevalence of Cryptosporidium was 4% in river and sea water samples, but none in summer season. All positive samples from the river was C. parvum, while C. meleagridis (1), and C. serpentis (1) were obtained from sea water. To the best of our knowledge, this is the first genetic study in Thailand of Cryptosporidium spp contamination in river and sea water locations and the first report of C. serpentis, suggesting that humans, household pets, farm animals, wildlife and migratory birds may be the potential sources of the parasites. The findings are of use for implementing preventive measures to reduce the transmission of cryptosporidiosis to both humans and animals.

  15. Study of acid-base properties in various water-salt and water-organic solvent mixtures

    International Nuclear Information System (INIS)

    Lucas, M.

    1969-01-01

    Acid-base reactions have been studied in water-salt mixtures and water organic solvent-mixtures. It has been possible to find some relations between the displacement of the equilibria and the numerical value of water activity in the mixture. First have been studied some equilibria H + + B ↔ HB + in salt-water mixtures and found a relation between the pK A value, the solubility of the base and water activity. The reaction HO - + H + ↔ H 2 O has been investigated and a relation been found between pK i values, water activity and the molar concentration of the salt in the mixture. This relation is the same for every mixture. Then the same reactions have been studied in organic solvent-water mixtures and a relation found in the first part of the work have been used with success. So it has been possible to explain easily some properties of organic water-mixture as the shape of the curves of the Hammett acidity function Ho. (authors) [fr

  16. Source Water Assessment for the Las Vegas Valley Surface Waters

    Science.gov (United States)

    Albuquerque, S. P.; Piechota, T. C.

    2003-12-01

    The 1996 amendment to the Safe Drinking Water Act of 1974 created the Source Water Assessment Program (SWAP) with an objective to evaluate potential sources of contamination to drinking water intakes. The development of a Source Water Assessment Plan for Las Vegas Valley surface water runoff into Lake Mead is important since it will guide future work on source water protection of the main source of water. The first step was the identification of the watershed boundary and source water protection area. Two protection zones were delineated. Zone A extends 500 ft around water bodies, and Zone B extends 3000 ft from the boundaries of Zone A. These Zones extend upstream to the limits of dry weather flows in the storm channels within the Las Vegas Valley. After the protection areas were identified, the potential sources of contamination in the protection area were inventoried. Field work was conducted to identify possible sources of contamination. A GIS coverage obtained from local data sources was used to identify the septic tank locations. Finally, the National Pollutant Discharge Elimination System (NPDES) Permits were obtained from the State of Nevada, and included in the inventory. After the inventory was completed, a level of risk was assigned to each potential contaminating activity (PCA). The contaminants of concern were grouped into five categories: volatile organic compounds (VOCs), synthetic organic compounds (SOCs), inorganic compounds (IOCs), microbiological, and radionuclides. The vulnerability of the water intake to each of the PCAs was assigned based on these five categories, and also on three other factors: the physical barrier effectiveness, the risk potential, and the time of travel. The vulnerability analysis shows that the PCAs with the highest vulnerability rating include septic systems, golf courses/parks, storm channels, gas stations, auto repair shops, construction, and the wastewater treatment plant discharges. Based on the current water quality

  17. Water-supply potential from an asphalt-lined catchment near Holualoa Kona, Hawaii

    Science.gov (United States)

    Chinn, Salwyn S.W.

    1965-01-01

    The Jenkins-Whitesburg area includes approximately 250 square miles In Letcher and Pike Counties in the southeastern part of the Eastern Coal Field. In this area ground water is the principal source of water for nearly all rural families, most public supplies, several coal mines and coal processing plants, and one bottling plant. The major aquifers in the Jenkins-Whitesburg area are the Breathitt and Lee Formations of Pennsylvanian age. Other aquifers range in age from Devonian to Quaternary but are not important in this area because they occur at great depth or yield little or no water. The Breathitt Formation occurs throughout the area except along the crest and slopes of Pine Mountain and where it is covered by unconsolidated material of Quaternary age. The Breathitt Formation consists of shale, sandstone, and lesser amounts of coal and associated underclay. The yield of wells penetrating the Breathitt Formation ranges from less than 1 to 330 gallons per minute. Well yield is controlled by the type and depth of well, character of the aquifer, and topography of the well site. Generally, deep wells drilled in valleys of perennial streams offer the best potential for high yields. Although enough water for a minimum domestic supply (more than 100 gallons per day) may be obtained from shale, all high-yielding wells probably obtain water from vertical joints and from bedding planes which are best developed in sandstone. About 13 percent of the wells inventoried in the Breathitt Formation failed to supply enough water for a minimum domestic supply. Most of these are shallow dug wells or drilled wells on hillsides or hilltops. Abandoned coal mines are utilized as large infiltration galleries and furnish part of the water for several public supplies. The chemical quality of water from the Breathitt Formation varies considerably from place to place, but the water generally is acceptable for most domestic and industrial uses. Most water is a calcium magnesium bicarbonate

  18. Solvent effects and potential of mean force study of the SN2 reaction of CH3+CN‑ in water

    Science.gov (United States)

    Li, Chen; Liu, Peng; Li, Yongfang; Wang, Dunyou

    2018-03-01

    We used a combined quantum mechanics and molecular mechanics (QM/MM) method to investigate the solvent effects and potential of mean force of the CH3F+CN‑ reaction in water. Comparing to gas phase, the water solution substantially affects the structures of the stationary points along the reaction path. We quantitatively obtained the solvent effects’ contributions to the reaction: 1.7 kcal/mol to the activation barrier and ‑26.0 kcal/mol to the reaction free energy. The potential mean of force calculated with the density functional theory/MM theory has a barrier height at 19.7 kcal/mol, consistent with the experimental result at 23.0 kcal/mol; the calculated reaction free energy at ‑43.5 kcal/mol is also consistent with the one estimated based on the gas-phase data at ‑39.7 kcal/mol. Project supported by the National Natural Science Foundation of China (Grant No. 11774206) and Taishan Scholarship Fund from Shandong Province, China.

  19. Gravitropic reaction of primary seminal roots of Zea mays L. influenced by temperature and soil water potential.

    Science.gov (United States)

    Nakamoto, T

    1995-03-01

    The growth of the primary seminal root of maize (Zea mays L.) is characterized by an initial negative gravitropic reaction and a later positive one that attains a plagiotropic liminal angle. The effects of temperature and water potential of the surrounding soil on these gravitropic reactions were studied. Temperatures of 32, 25, and 18C and soil water potentials of -5, -38, and -67 kPa were imposed and the direction of growth was measured for every 1 cm length of the root. The initial negative gravitropic reaction extended to a distance of about 10 cm from the grain. Higher temperatures reduced the initial negative gravitropic reaction. Lower soil water potential induced a downward growth at root emergence. A mathematical model, in which it was assumed that the rate of the directional change of root growth was a sum of a time-dependent negative gravitropic reaction and an establishment of the liminal angle, adequately fitted the distance-angle relations. It was suggested that higher temperatures and/or a lower water potential accelerated the diminution of the initial negative gravitropic reaction.

  20. Developing an automated water emitting-sensing system, based on integral tensiometers placed in homogenous environment.

    Science.gov (United States)

    Dabach, Sharon; Shani, Uri

    2010-05-01

    As the population grows, irrigated agriculture is using more water and fertilizers to supply the growing food demand. However, the uptake by various plants is only 30 to 50% of the water applied. The remaining water flows to surface water and groundwater and causes their contamination by fertilizers or other toxins such as herbicides or pesticides. To improve the water use efficiency of crops and decrease the drainage below the root zone, irrigation water should be applied according to the plant demand. The aim of this work is to develop an automated irrigation system based on real-time feedback from an inexpensive and reliable integrated sensing system. This system will supply water to plants according to their demand, without any user interference during the entire growth season. To achieve this goal a sensor (Geo-Tensiometer) was designed and tested. This sensor has better contact with the surrounding soil, is more reliable and much cheaper than the ceramic cup tensiometer. A lysimeter experiment was conducted to evaluate a subsurface drip irrigation regime based on the Geo-Tensiometer and compare it to a daily irrigation regime. All of the drippers were wrapped in Geo-textile. By integrating the Geo-Tensiometer within the Geo-textile which surrounds the drippers, we created a homogenous media in the entire lysimeter in which the reading of the matric potential takes place. This media, the properties of which are set and known to us, encourages root growth therein. Root density in this media is very high; therefore most of the plant water uptake is from this area. The irrigation system in treatment A irrigated when the matric potential reached a threshold which was set every morning automatically by the system. The daily treatment included a single irrigation each morning that was set to return 120% of the evapotranspiration of the previous day. All Geo-Tensiometers were connected to an automated washing system, that flushed air trapped in the Geo

  1. Assessment of underground water potential zones using modern geomatics technologies in Jhansi district, Uttar Pradesh, India.

    Science.gov (United States)

    Pandey, N. K.; Shukla, A. K.; Shukla, S.; Pandey, M.

    2014-11-01

    Ground water is a distinguished component of the hydrologic cycle. Surface water storage and ground water withdrawal are traditional engineering approaches which will continue to be followed in the future. The uncertainty about the occurrence, distribution and quality aspect of the ground water and the energy requirement for its withdrawal impose restriction on exploitation of ground water. The main objective of the study is assessment of underground water potential zones of Jhansi city and surrounding area, by preparing underground water potential zone map using Geographical Information System (GIS), remote sensing, and validation by underground water inventory mapping using GPS field survey done along the parts of National Highway 25 and 26 and some state highway passing through the study area. Study area covers an area of 1401 km2 and its perimeter is approximate 425 km. For this study Landsat TM (0.76-0.90 um) band data were acquired from GLCF website. Sensor spatial resolution is 30 m. Satellite image has become a standard tool aiding in the study of underground water. Extraction of different thematic layers like Land Use Land Cover (LULC), settlement, etc. can be done through unsupervised classification. The modern geometics technologies viz. remote sensing and GIS are used to produce the map that classifies the groundwater potential zone to a number of qualitative zone such as very high, high, moderate, low or very low. Thematic maps are prepared by visual interpretation of Survey of India topo-sheets and linearly enhanced Landsat TM satellite image on 1 : 50,000 scale using AutoCAD, ArcGIS 10.1 and ERDAS 11 software packages.

  2. DNA-based asymmetric organometallic catalysis in water

    NARCIS (Netherlands)

    Oelerich, Jens; Roelfes, Gerard

    2013-01-01

    Here, the first examples of DNA-based organometallic catalysis in water that give rise to high enantioselectivities are described. Copper complexes of strongly intercalating ligands were found to enable the asymmetric intramolecular cyclopropanation of alpha-diazo-beta-keto sulfones in water. Up to

  3. Water-soluble resorcin[4]arene based cavitands

    NARCIS (Netherlands)

    Grote gansey, M.H.B.; Grote Gansey, Marcel H.B.; Bakker, Frank K.G.; Feiters, Martinus C.; Geurts, Hubertus P.M.; Verboom, Willem; Reinhoudt, David

    1998-01-01

    Water-soluble resorcin[4]arene based cavitands were obtained in good yields by reaction of bromomethylcavitands with pyridine. Their solubility was determined by conductometry. The behaviour in water depends on the alkyl chain length; the methylcavitand does not aggregate, whereas the pentyl- and

  4. A global water scarcity assessment under Shared Socio-economic Pathways – Part 1: Water use

    Directory of Open Access Journals (Sweden)

    N. Hanasaki

    2013-07-01

    Full Text Available A novel global water scarcity assessment for the 21st century is presented in a two-part paper. In this first paper, water use scenarios are presented for the latest global hydrological models. The scenarios are compatible with the socio-economic scenarios of the Shared Socio-economic Pathways (SSPs, which are a part of the latest set of scenarios on global change developed by the integrated assessment, the IAV (climate change impact, adaptation, and vulnerability assessment, and the climate modeling community. The SSPs depict five global situations based on substantially different socio-economic conditions during the 21st century. Water use scenarios were developed to reflect not only quantitative socio-economic factors, such as population and electricity production, but also key qualitative concepts such as the degree of technological change and overall environmental consciousness. Each scenario consists of five factors: irrigated area, crop intensity, irrigation efficiency, and withdrawal-based potential industrial and municipal water demands. The first three factors are used to estimate the potential irrigation water demand. All factors were developed using simple models based on a literature review and analysis of historical records. The factors are grid-based at a spatial resolution of 0.5° × 0.5° and cover the whole 21st century in five-year intervals. Each factor shows wide variation among the different global situations depicted: the irrigated area in 2085 varies between 2.7 × 106 and 4.5 × 106 km2, withdrawal-based potential industrial water demand between 246 and 1714 km3 yr−1, and municipal water between 573 and 1280 km3 yr−1. The water use scenarios can be used for global water scarcity assessments that identify the regions vulnerable to water scarcity and analyze the timing and magnitude of scarcity conditions.

  5. Nanocellulose-Based Materials for Water Purification.

    Science.gov (United States)

    Voisin, Hugo; Bergström, Lennart; Liu, Peng; Mathew, Aji P

    2017-03-05

    Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present-in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  6. Landsat-based monitoring of crop water demand in the San Joaquin Valley

    Science.gov (United States)

    Johnson, L.; Trout, T.; Wang, D.; Melton, F. S.

    2010-12-01

    Fresh water resources are becoming increasingly scarce in California due to urbanization, environmental regulation, and groundwater depletion. The strain is projected to worsen under various climate change scenarios and is exacerbated by declining water delivery infrastructure. It is estimated that irrigated agriculture currently commands more than 70% of the state’s water supply, and many growers are striving to improve water use efficiency in order to help maintain the state’s rich agricultural heritage. Remote sensing technology offers the potential to monitor cropland evapotranspiration (ET) regionally, while making farm-based irrigation scheduling more practical, convenient, and possibly more accurate. Landsat5-TM imagery was used in this study to monitor basal crop evapotranspiration (ETcb), which is primarily related to plant transpiration, for several San Joaquin Valley fields throughout the 2008 growing season. A ground-based digital camera was used to measure fractional cover of 48 study fields planted to 18 different crop types (row crops, grains, orchard, and vineyard) of varying maturity over 12 dates coinciding with Landsat overpasses. Landsat L1T terrain-corrected images were atmospherically corrected to surface reflectance by an implementation of the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS), then converted to normalized difference vegetation index (NDVI) on a per-pixel basis. A strong linear relationship between NDVI and fractional cover was observed (r2=0.96), and a resulting conversion equation was used to transform all imagery to fractional cover. Conversion equations previously developed by use of weighting lysimeters were then used to transform fractional cover to basal crop coefficient (Kcb; ratio of crop transpiration plus a small diffusive soil evaporation component to reference ET). Finally, measurements of grass reference ET (ETo) from the California Irrigation Management Information System were used to

  7. Mechanism of high-temperature resistant water-base mud

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P

    1981-01-01

    Based on experiments, the causes and laws governing the changes in the performance of water-base mud under high temperature are analyzed, and the requisites and mechanism of treating agents resisting high temperature are discussed. Ways and means are sought for inhibiting, delaying and making use of the effect of high temperature on the performance of mud, while new ideas and systematic views have been expressed on the preparation of treating agents and set-up of a high temperature resistant water-base mud system. High temperature dispersion and high temperature surface inactivation of clay in the mud, as well as their effect and method of utilization are reviewed. Subjects also touched upon include degradation and cross-linking of the high-temperature resistant treating agents, their use and effect. Based on the above, the preparation of a water-base and system capable of resisting 180 to 250/sup 0/C is recommended.

  8. A water stress index based on water balance modelling for discrimination of grapevine quality and yield

    Directory of Open Access Journals (Sweden)

    Rémi Gaudin

    2014-01-01

    Significance and impact of the study: This water stress index is a valuable tool for explaining the variations in grape yield and quality among various locations and years because it reflects the vineyard water stress history in relation to rainfall regime and soil conditions. Improvement would come from the simulation of FTSW during winter, notably for soils of high Total Transpirable Soil Water. One potential application is the quantification of water stress change brought by irrigation in Mediterranean vineyards, and its relation to grapevine production.

  9. Potential of using plant extracts for purification of shallow well water in Malawi

    Science.gov (United States)

    Pritchard, M.; Mkandawire, T.; Edmondson, A.; O'Neill, J. G.; Kululanga, G.

    There has been very little scientific research work into the use of plant extracts to purify groundwater. Research studies on the purification of groundwater have mainly been carried out in developed countries and have focused on water purification systems using aluminium sulphate (a coagulant) and chlorine (a disinfectant). Such systems are expensive and not viable for rural communities due to abject poverty. Shallow well water, which is commonly available throughout Africa, is often grossly contaminated and usually consumed untreated. As a result, water-related diseases kill more than 5 million people every year worldwide. This research was aimed at examining natural plant extracts in order to develop inexpensive ways for rural communities to purify their groundwater. The study involved creating an inventory of plant extracts that have been used for water and wastewater purification. A prioritisation system was derived to select the most suitable extracts, which took into account criteria such as availability, purification potential, yield and cost of extraction. Laboratory trials were undertaken on the most promising plant extracts, namely: Moringa oleifera, Jatropha curcas and Guar gum. The extracts were added to water samples obtained from five shallow wells in Malawi. The trials consisted of jar tests to assess the coagulation potential and the resulting effect on physico-chemical and microbiological parameters such as temperature, pH, turbidity and coliforms. The results showed that the addition of M. oleifera, J. curcas and Guar gum can considerably improve the quality of shallow well water. Turbidity reduction was higher for more turbid water. A reduction efficiency exceeding 90% was achieved by all three extracts on shallow well water that had a turbidity of 49 NTU. A reduction in coliforms was about 80% for all extracts. The pH of the water samples increased with dosage, but remained within acceptable levels for drinking water for all the extracts

  10. Solar water heating system for a lunar base

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  11. Monitoring and modeling crop health and water use via in-situ, airborne and space-based platforms

    KAUST Repository

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  12. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    Science.gov (United States)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  13. Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations

    Directory of Open Access Journals (Sweden)

    R. Feistel

    2010-07-01

    Full Text Available A new seawater standard referred to as the International Thermodynamic Equation of Seawater 2010 (TEOS-10 was adopted in June 2009 by UNESCO/IOC on its 25th General Assembly in Paris, as recommended by the SCOR/IAPSO Working Group 127 (WG127 on Thermodynamics and Equation of State of Seawater. To support the adoption process, WG127 has developed a comprehensive source code library for the thermodynamic properties of liquid water, water vapour, ice, seawater and humid air, referred to as the Sea-Ice-Air (SIA library. Here we present the background information and equations required for the determination of the properties of single phases and components as well as of phase transitions and composite systems as implemented in the library. All results are based on rigorous mathematical methods applied to the Primary Standards of the constituents, formulated as empirical thermodynamic potential functions and, except for humid air, endorsed as Releases of the International Association for the Properties of Water and Steam (IAPWS. Details of the implementation in the TEOS-10 SIA library are given in a companion paper.

  14. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  15. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water

    Directory of Open Access Journals (Sweden)

    Guoo-Shyng Wang Hsu

    2017-10-01

    Full Text Available Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW. DOW was electrolyzed in a glass electrolyzing cell equipped with platinum–plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be.

  16. Flow Injection Analysis with Electrochemical Detection for Rapid Identification of Platinum-Based Cytostatics and Platinum Chlorides in Water

    Directory of Open Access Journals (Sweden)

    Marketa Kominkova

    2014-02-01

    Full Text Available Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED. Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer and potential changes (1,000, 1,100 and 1,200 mV offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments.

  17. Implications of an assessment of potential organic contamination of ground water at an inactive uranium mill

    International Nuclear Information System (INIS)

    Price, J.B.

    1986-01-01

    Laws and regulations concerning remedial actions at inactive uranium mills explicitly recognize radiological and nonradiological hazards and may implicitly recognize the potential presence of hazardous wastes at these mill sites. Ground-water studies at the sites have placed an increasing emphasis on screening for priority pollutants. The Grand Junction, Colorado, mill site was deemed to have a high potential for the presence of organic compounds in ground water, and was chosen as a prototype for assessing the presence of organic compounds in ground water at inactive sites. Lessons learned from the assessment of organics at the Grand Junction site were used to develop a screening procedure for other inactive mill sites

  18. Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential

    Science.gov (United States)

    Li, Zhiyun; Deen, M. Jamal; Kumar, Shiva; Selvaganapathy, P. Ravi

    2014-01-01

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring. PMID:25230309

  19. Solar-Based Fuzzy Intelligent Water Sprinkle System

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2012-03-01

    Full Text Available A solar-based intelligent water sprinkler system project that has been developed to ensure the effectiveness in watering the plant is improved by making the system automated. The control system consists of an electrical capacitance soil moisture sensor installed into the ground which is interfaced to a controller unit of Motorola 68HC11 Handy board microcontroller. The microcontroller was programmed based on the decision rules made using fuzzy logic approach on when to water the lawn. The whole system is powered up by the solar energy which is then interfaced to a particular type of irrigation timer for plant fertilizing schedule and rain detector through a simple design of rain dual-collector tipping bucket. The controller unit automatically disrupted voltage signals sent to the control valves whenever irrigation was not needed. Using this system we combined the logic implementation in the area of irrigation and weather sensing equipment, and more efficient water delivery can be made possible. 

  20. Drinking Water Contamination Due To Lead-based Solder

    Science.gov (United States)

    Garcia, N.; Bartelt, E.; Cuff, K. E.

    2004-12-01

    The presence of lead in drinking water creates many health hazards. Exposure to lead-contaminated water can affect the brain, the central nervous system, blood cells, and kidneys, causing such problems as mental retardation, kidney disease, heart disease, stroke, and death. One way in which lead can contaminate our water supply is through the use of lead solder to join pipes. Lead solder was widely used in the past because of its ease of application as well as its low cost. Lead contamination in residential areas has previously been found to be a particularly serious problem in first-draw samples, of water that has sat stagnant in pipes overnight. To investigate the time-dependence of drinking water lead contamination, we analyzed samples taken hourly of water exposed to lead solder. While our preliminary data was insufficient to show more than a rough correlation between time of exposure and lead concentration over short periods (1-3 hours), we were able to confirm that overnight exposure of water to lead-based solder results in the presence high levels of lead. We also investigated other, external factors that previous research has indicated contribute to increased concentrations of lead. Our analysis of samples of lead-exposed water at various pH and temperatures suggests that these factors can be equally significant in terms of their contribution to elevated lead concentration levels. In particular, water that is slightly corrosive appears to severely impact the solubility of lead. As this type of water is common in much of the Northeast United States, the presence of lead-based solder in residential areas there is especially problematic. Although lead-based solder has been banned since the 1980s, it remains a serious concern, and a practical solution still requires further research.

  1. Hanford Ground-Water Data Base management guide

    International Nuclear Information System (INIS)

    Rieger, J.T.; Mitchell, P.J.; Muffett, D.M.; Fruland, R.M.; Moore, S.B.; Marshall, S.M.

    1990-02-01

    This guide describes the Hanford Ground-Water Data Base (HGWDB), a computerized data base used to store hydraulic head, sample analytical, temperature, geologic, and well-structure information for ground-water monitoring wells on the Hanford Site. These data are stored for the purpose of data retrieval for report generation and also for historical purposes. This guide is intended as an aid to the data base manager and the various staff authorized to enter and verify data, maintain the data base, and maintain the supporting software. This guide focuses on the structure of the HGWDB, providing a fairly detailed description of the programs, files, and parameters. Data-retrieval instructions for the general user of the HGWDB will be found in the HGWDB User's Manual. 6 figs

  2. Ageing and Water-Based Processing of LiFeMnPO4 Secondary Agglomerates and Its Effects on Electrochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Benjamin Starke

    2017-12-01

    Full Text Available LiFeMnPO4 secondary agglomerates have been aged under different temperature and moisture conditions. The aged and pristine powder samples were then processed to water- and solvent-based cathodes. Structural studies by means of neutron and X-ray diffraction revealed that neither ageing nor water-based processing significantly modified the crystal structure of LiFeMnPO4 secondary agglomerates. Electrochemical characterization was carried out with full-cells. It was found that long-term cycling is similar independent of the solvent used for slurry preparation. Full-cells assembled with water-based cathodes show a better C-rate capability due to a more homogeneous distribution of cathode constituents compared to solvent-based ones. In no case was any negative effect of initial active material ageing on the electrochemical performance found. During ageing and processing, LiFeMnPO4 is effectively protected by carbon coating and water can be completely removed by drying since it is only reversibly bound. This contribution shows that LiFeMnPO4 secondary agglomerates allow simplified active material handling and have a high potential for sustainable water-based electrode manufacturing.

  3. X-Pol Potential: An Electronic Structure-Based Force Field for Molecular Dynamics Simulation of a Solvated Protein in Water.

    Science.gov (United States)

    Xie, Wangshen; Orozco, Modesto; Truhlar, Donald G; Gao, Jiali

    2009-02-17

    A recently proposed electronic structure-based force field called the explicit polarization (X-Pol) potential is used to study many-body electronic polarization effects in a protein, in particular by carrying out a molecular dynamics (MD) simulation of bovine pancreatic trypsin inhibitor (BPTI) in water with periodic boundary conditions. The primary unit cell is cubic with dimensions ~54 × 54 × 54 Å(3), and the total number of atoms in this cell is 14281. An approximate electronic wave function, consisting of 29026 basis functions for the entire system, is variationally optimized to give the minimum Born-Oppenheimer energy at every MD step; this allows the efficient evaluation of the required analytic forces for the dynamics. Intramolecular and intermolecular polarization and intramolecular charge transfer effects are examined and are found to be significant; for example, 17 out of 58 backbone carbonyls differ from neutrality on average by more than 0.1 electron, and the average charge on the six alanines varies from -0.05 to +0.09. The instantaneous excess charges vary even more widely; the backbone carbonyls have standard deviations in their fluctuating net charges from 0.03 to 0.05, and more than half of the residues have excess charges whose standard deviation exceeds 0.05. We conclude that the new-generation X-Pol force field permits the inclusion of time-dependent quantum mechanical polarization and charge transfer effects in much larger systems than was previously possible.

  4. Facile modification of nanodiamonds with hyperbranched polymers based on supramolecular chemistry and their potential for drug delivery.

    Science.gov (United States)

    Huang, Hongye; Liu, Meiying; Jiang, Ruming; Chen, Junyu; Mao, Liucheng; Wen, Yuanqing; Tian, Jianwen; Zhou, Naigen; Zhang, Xiaoyong; Wei, Yen

    2018-03-01

    Due to their excellent chemical stability and remarkable biocompatibility, nanodiamonds (NDs) have received widespread research attention by the biomedical field. The excellent water dispersibility of NDs has significant importance for biomedical applications. Therefore, surface modification of NDs with hydrophilic polymers has been extensively investigated over the past few decades. In this study, we synthesize β-CD containing hyperbranched polymer functionalized ND (ND-β-CD-HPG) composites with high water dispersibility via supramolecular chemistry based on the host-guest interactions between β-Cyclodextrin (β-CD) and adamantine (Ad). The hydroxyl groups of NDs first reacted with 1, 1-adamantanecarbonyl chloride to obtain ND-Ad, which was further functionalized with β-CD containing hyperbranched polymers to form the final ND-β-CD-HPG composites. The successful preparation of ND-β-CD-HPG composites was confirmed by several characterization techniques. Furthermore, the loading and release of the anticancer agent doxorubicin hydrochloride (DOX) on ND-β-CD-HPG composites was also examined to explore its potential in drug delivery. When compared with traditional methods of surface modification of NDs, this method was convenient, fast and efficient. We demonstrated that ND-β-CD-HPG composites have great water dispersibility, low toxicity, high drug-loading capacity and controlled drug-release behavior. Based on these characteristics, ND-β-CD-HPG composites are expected to have high potential for biomedical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids.

    Science.gov (United States)

    Sadri, Rad; Hosseini, Maryam; Kazi, S N; Bagheri, Samira; Zubir, Nashrul; Solangi, K H; Zaharinie, Tuan; Badarudin, A

    2017-10-15

    In this study, we propose an innovative, bio-based, environmentally friendly approach for the covalent functionalization of multi-walled carbon nanotubes using clove buds. This approach is innovative because we do not use toxic and hazardous acids which are typically used in common carbon nanomaterial functionalization procedures. The MWCNTs are functionalized in one pot using a free radical grafting reaction. The clove-functionalized MWCNTs (CMWCNTs) are then dispersed in distilled water (DI water), producing a highly stable CMWCNT aqueous suspension. The CMWCNTs are characterized using Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The electrostatic interactions between the CMWCNT colloidal particles in DI water are verified via zeta potential measurements. UV-vis spectroscopy is also used to examine the stability of the CMWCNTs in the base fluid. The thermo-physical properties of the CMWCNT nano-fluids are examined experimentally and indeed, this nano-fluid shows remarkably improved thermo-physical properties, indicating its superb potential for various thermal applications. Copyright © 2017. Published by Elsevier Inc.

  6. Potential groundwater recharge for the State of Minnesota using the Soil-Water-Balance model, 1996-2010

    Science.gov (United States)

    Smith, Erik A.; Westenbroek, Stephen M.

    2015-01-01

    Groundwater recharge is one of the most difficult components of a water budget to ascertain, yet is an important boundary condition necessary for the quantification of water resources. In Minnesota, improved estimates of recharge are necessary because approximately 75 percent of drinking water and 90 percent of agricultural irrigation water in Minnesota are supplied from groundwater. The water that is withdrawn must be supplied by some combination of (1) increased recharge, (2) decreased discharge to streams, lakes, and other surface-water bodies, and (3) removal of water that was stored in the system. Recent pressure on groundwater resources has highlighted the need to provide more accurate recharge estimates for various tools that can assess the sustainability of long-term water use. As part of this effort, the U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, used the Soil-Water-Balance model to calculate gridded estimates of potential groundwater recharge across Minnesota for 1996‒2010 at a 1-kilometer (0.621-mile) resolution. The potential groundwater recharge estimates calculated for Minnesota from the Soil-Water Balance model included gridded values (1-kilometer resolution) of annual mean estimates (that is, the means for individual years from 1996 through 2010) and mean annual estimates (that is, the mean for the 15-year period 1996−2010).

  7. Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States

    Science.gov (United States)

    Rowe, B.L.; Toccalino, P.L.; Moran, M.J.; Zogorski, J.S.; Price, C.V.

    2011-01-01

    BACKGROUND: As the population and demand for safe drinking water from domestic wells increase, it is important to examine water quality and contaminant occurrence. A national assessment in 2006 by the U.S. Geological Survey reported findings for 55 volatile organic compounds (VOCs) based on 2,401 domestic wells sampled during 1985-2002. OBJECTIVES: We examined the occurrence of individual and multiple VOCs and assessed the potential human-health relevance of VOC concentrations. We also identified hydrogeologic and anthropogenic variables that influence the probability of VOC occurrence. METHODS: The domestic well samples were collected at the wellhead before treatment of water and analyzed for 55 VOCs. Results were used to examine VOC occurrence and identify associations of multiple explanatory variables using logistic regression analyses. We used a screening-level assessment to compare VOC concentrations to U.S. Environmental Protection Agency maximum contaminant levels (MCLs) and health-based screening levels. RESULTS: We detected VOCs in 65% of the samples; about one-half of these samples contained VOC mixtures. Frequently detected VOCs included chloroform, toluene, 1,2,4-trimethylbenzene, and perchloroethene. VOC concentrations generally were < 1 ??g/L. One or more VOC concentrations were greater than MCLs in 1.2% of samples, including dibromochloropropane, 1,2-dichloropropane, and ethylene dibromide (fumigants); perchloroethene and trichloroethene (solvents); and 1,1-dichloroethene (organic synthesis compound). CONCLUSIONS: Drinking water supplied by domestic wells is vulnerable to low-level VOC contamination. About 1% of samples had concentrations of potential human-health concern. Identifying factors associated with VOC occurrence may aid in understanding the sources, transport, and fate of VOCs in groundwater.

  8. Nanocellulose-Based Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Hugo Voisin

    2017-03-01

    Full Text Available Nanocellulose is a renewable material that combines a high surface area with high strength, chemical inertness, and versatile surface chemistry. In this review, we will briefly describe how nanocellulose is produced, and present—in particular, how nanocellulose and its surface modified versions affects the adsorption behavior of important water pollutants, e.g., heavy metal species, dyes, microbes, and organic molecules. The processing of nanocellulose-based membranes and filters for water purification will be described in detail, and the uptake capacity, selectivity, and removal efficiency will also be discussed. The processing and performance of nanocellulose-based membranes, which combine a high removal efficiency with anti-fouling properties, will be highlighted.

  9. The case for regime-based water quality standards

    Science.gov (United States)

    G.C. Poole; J.B. Dunham; D.M. Keenan; S.T. Sauter; D.A. McCullough; C. Mebane; J.C. Lockwood; D.A. Essig; M.P. Hicks; D.J. Sturdevant; E.J. Materna; S.A. Spalding; J. Risley; M. Deppman

    2004-01-01

    Conventional water quality standards have been successful in reducing the concentration of toxic substances in US waters. However, conventional standards are based on simple thresholds and are therefore poorly structured to address human-caused imbalances in dynamic, natural water quality parameters, such as nutrients, sediment, and temperature. A more applicable type...

  10. Water-based exercise for adults with asthma.

    Science.gov (United States)

    Grande, Antonio Jose; Silva, Valter; Andriolo, Brenda N G; Riera, Rachel; Parra, Sergio A; Peccin, Maria S

    2014-07-17

    Asthma is a common condition characterised by airway inflammation and airway narrowing, which can result in intermittent symptoms of wheezing, coughing and chest tightness, possibly limiting activities of daily life. Water-based exercise is believed to offer benefits for people with asthma through pollen-free air, humidity and effects of exercise on physical function. To evaluate the effectiveness and safety of water-based exercise for adults with asthma. We searched the Cochrane Airways Group Specialised Register of Trials (CAGR), the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, the Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Allied and Complementary Medicine Database (AMED), PsycINFO, the Latin American and Caribbean Health Science Information Database (LILACS), the Physiotherapy Evidence Database (PEDro), the System for Information on Grey Literature in Europe (SIGLE) and Google Scholar on 13 May 2014. We handsearched ongoing clinical trial registers and meeting abstracts of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the British Thoracic Society (BTS). We included all randomised controlled trials (RCTs) of adults with asthma comparing a water-based exercise group versus one or more of the following groups: usual care, land-based exercise, non-exercise. Two review authors (AJG, VS) independently extracted data from the primary studies using a standard form developed for this purpose, which includes methods, participants, interventions and outcomes. We contacted trial authors to request additional data. Data were input by one review author and were double-checked by a second review author. In this systematic review, we provide a narrative synthesis of available evidence from three small studies including 136 adult participants. The studies were at high risk of bias. No meta-analysis was possible because of methodological and interventional heterogeneity between included

  11. The Potential of in situ Rain Water Harvesting for Water Resources ...

    African Journals Online (AJOL)

    Key words: In situ Rain water harvesting, Malaria, Anopheles arabiensis, Tigray, Ethiopia. 1. INTRODUCTION .... heating the water in the vials to be preserved in 70% alcohol after draining the excess water. The immature ..... (eds.). Integrated water and land management research and capacity building priorities for Ethiopia.

  12. Potential Application of Nanomaterials to treat and detect the contaminated water

    Science.gov (United States)

    Singh, R. P.

    2011-12-01

    An ecosystem is very immense to maintain global environmental balance but an imbalance of water alters the function of ecosystems that affects all life on our planet Earth. The destruction of agricultural land, lakes, ponds, rivers, and oceans locally and globally creates environmental imbalances so that catastrophically damage to be appeared widely. The water cycle continually circulates evaporated water into the atmosphere and returns it as precipitation in balance form. If variety of toxins, heavy metals, oils and agricultural chemicals such as pesticides and fertilizers, all get absorbed into soil and groundwater. Then an imbalance appeared for example runoff carries these pollutants into lakes, rivers and oceanic water, as a result, all forms of water evaporated as part of the water cycle and return to the earth as acid rain, which causes worldwide environmental imbalances by killing our ecosystems. Deforestation, urbanization, and industrialization create environmental imbalances in many ways. Soil erosion in the form of dust from wind causes human infectious diseases, including anthrax and tuberculosis. An environmental imbalance occurs due to greenhouse gases, which accumulate in the atmosphere and trap excessive amounts of heat causes global warming, that is purportedly responsible for environmental disasters such as, rising sea levels, floods and the melting of polar ice caps. Our problem is "all talk, no action" and "jack of all trades, master of none". Our efforts in this hot topic are to make balance of water rather than imbalance of water by using positive potential of naomaterials utility and applications to eliminate toxicants/pollutants/adulterants/carcinogens from all forms of imbalance water to save our local and global ecosystems as a balance and healthy wealthy. Several natural, engineered, and non-engineered nanomaterials have strong antimicrobial properties (e.g. TiO2, ZnO, AgNPs, CNTs, fullerene, graphene), used as antimicrobial agents as

  13. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water.

    Science.gov (United States)

    Hsu, Guoo-Shyng Wang; Lu, Yi-Fa; Hsu, Shun-Yao

    2017-10-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW). DOW was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be. Copyright © 2016. Published by Elsevier B.V.

  14. A case study for INPRO methodology based on Indian advanced heavy water reactor

    International Nuclear Information System (INIS)

    Anantharaman, K.; Saha, D.; Sinha, R.K.

    2004-01-01

    Under Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) a methodology (INPRO methodology) has been developed which can be used to evaluate a given energy system or a component of such a system on a national and/or global basis. The INPRO study can be used for assessing the potential of the innovative reactor in terms of economics, sustainability and environment, safety, waste management, proliferation resistance and cross cutting issues. India, a participant in INPRO program, is engaged in a case study applying INPRO methodology based on Advanced Heavy Water Reactor (AHWR). AHWR is a 300 MWe, boiling light water cooled, heavy water moderated and vertical pressure tube type reactor. Thorium utilization is very essential for Indian nuclear power program considering the indigenous resource availability. The AHWR is designed to produce most of its power from thorium, aided by a small input of plutonium-based fuel. The features of AHWR are described in the paper. The case study covers the fuel cycle, to be followed in the near future, for AHWR. The paper deals with initial observations of the case study with regard to fuel cycle issues. (authors)

  15. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    International Nuclear Information System (INIS)

    Mangmeechai, Aweewan; Pavasant, Prasert

    2013-01-01

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510–1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300–2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs

  16. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Mangmeechai, Aweewan, E-mail: aweewan.m@nida.ac.th [National Institute of Development Administration, International College (Major in Public Policy and Management) (Thailand); Pavasant, Prasert [Chulalongkorn University, Department of Chemical Engineering, Faculty of Engineering (Thailand)

    2013-12-15

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510-1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300-2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs.

  17. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant.

    Science.gov (United States)

    Kumar, Vinod; Chopra, A K

    2018-01-01

    Phytoremediation experiments were carried out to assess the phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater collected from the activated sludge process- (ASP) based municipal wastewater treatment plant. The results revealed that T. natans significantly (P ≤ .05/P ≤ .01/P ≤ .001) reduced the contents of total dissolved solids (TDS), electrical conductivity (EC), biochemical oxygen demand (BOD 5 ), chemical oxygen demand, total Kjeldahl nitrogen, phosphate ([Formula: see text]), sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), standard plate count, and most probable number of the municipal wastewater after phytoremediation experiments. The maximum removal of these parameters was obtained at 60 days of the phytoremediation experiments, but the removal rate of these parameters was gradually increased from 15 to 45 days and it was slightly decreased at 60 days. Most contents of Cd, Cu, Fe, Mn and Zn were translocated in the leaves of T. natans, whereas most contents of Cr and Pb were accumulated in the root of T. natans after phytoremediation experiments. The contents of different biochemical components were recorded in the order of total sugar > crude protein > total ash > crude fiber > total fat in T. natans after phytoremediation of municipal wastewater. Therefore, T. natans was found to be effective for the removal of different parameters of municipal wastewater and can be used effectively to reduce the pollution load of municipal wastewater drained from the ASP-based treatment plants.

  18. Some Strategic Considerations Related to the Potential Use of Water Resource Deposits on Mars by Future Human Explorers

    Science.gov (United States)

    Beaty, D.W.; Mueller, R.P.; Bussey, D.B.; Davis, R.M.; Hays, L.E.; Hoffman, S.J.

    2016-01-01

    A long-term base on Mars, at the center of an "Exploration Zone", would require substantial quantities of in-situ resources. Although water is not the only resource on Mars of potential interest, it stands out as the one that most dominates long-lead strategic planning. It is needed for multiple purposes for various human activities (including our own survival!), and in significant quantities. The absence of viable deposits could make a surface "field station" logistically unsustainable. Therefore, identification of deposits, and development of the technology needed to make use of these deposits, are an important priority in the period leading up to a human mission to Mars. Given our present understanding of Mars, ice and hydrated minerals appear to be the best potential sources for the quantity of water expected to be needed. The methods for their extraction would be different for these two classes of deposits, and at the present time it is unknown which would ultimately be an optimal solution. The deposits themselves would also ultimately have to be judged by certain economics that take into account information about geologic and engineering attributes and the "cost" of obtaining this information. Ultimately much of this information would need to come from precursor missions, which would be essential if utilization of martian is situ water resources is to become a part of human exploration of Mars.

  19. Preparation of Polysaccharide-Based Microspheres by a Water-in-Oil Emulsion Solvent Diffusion Method for Drug Carriers

    Directory of Open Access Journals (Sweden)

    Yodthong Baimark

    2013-01-01

    Full Text Available Polysaccharide-based microspheres of chitosan, starch, and alginate were prepared by the water-in-oil emulsion solvent diffusion method for use as drug carriers. Blue dextran was used as a water-soluble biomacromolecular drug model. Scanning electron microscopy showed sizes of the resultant microspheres that were approximately 100 μm or less. They were spherical in shape with a rough surface and good dispersibility. Microsphere matrices were shown as a sponge. Drug loading efficiencies of all the microspheres were higher than 80%, which suggested that this method has potential to prepare polysaccharide-based microspheres containing a biomacromolecular drug model for drug delivery applications.

  20. Evaluation method for regional water cycle health based on nature-society water cycle theory

    Science.gov (United States)

    Zhang, Shanghong; Fan, Weiwei; Yi, Yujun; Zhao, Yong; Liu, Jiahong

    2017-08-01

    Regional water cycles increasingly reflect the dual influences of natural and social processes, and are affected by global climate change and expanding human activities. Understanding how to maintain a healthy state of the water cycle has become an important proposition for sustainable development of human society. In this paper, natural-social attributes of the water cycle are synthesized and 19 evaluation indices are selected from four dimensions, i.e., water-based ecosystem integrity, water quality, water resource abundance and water resource use. A hierarchical water-cycle health evaluation system is established. An analytic hierarchy process is used to set the weight of the criteria layer and index layer, and the health threshold for each index is defined. Finally, a water-cycle health composite-index assessment model and fuzzy recognition model are constructed based on the comprehensive index method and fuzzy mathematics theory. The model is used to evaluate the state of health of the water cycle in Beijing during 2010-2014 and in the planning year (late 2014), considering the transfer of 1 billion m3 of water by the South-to-North Water Diversion Project (SNWDP). The results show health scores for Beijing of 2.87, 3.10, 3.38, 3.11 and 3.02 during 2010-2014. The results of fuzzy recognition show that the sub-healthy grade accounted for 54%, 49%, 61% and 49% of the total score, and all years had a sub-healthy state. Results of the criteria layer analysis show that water ecosystem function, water quality and water use were all at the sub-healthy level and that water abundance was at the lowest, or sick, level. With the water transfer from the SNWDP, the health score of the water cycle in Beijing reached 4.04. The healthy grade accounted for 60% of the total score, and the water cycle system was generally in a healthy state. Beijing's water cycle health level is expected to further improve with increasing water diversion from the SNWDP and industrial

  1. An ongoing investigation on modeling the strength properties of water-entrained cement-based materials

    DEFF Research Database (Denmark)

    Esteves, L.P.

    2012-01-01

    Water-entrained cement based materials by superabsorbent polymers is a concept that was introduced in the research agenda about a decade ago. However, a recent application in the production of high performance concrete revealed potential weaknesses when the proportioning of this intelligent......-based materials. Beyond the discussion of whether or not the introduction of superabsorbent polymers leads to a strength reduction, this paper uses both experimental and theoretical background to separate the effect of SAP in both pore structure and internal relative humidity and the effect from the active...

  2. Bread Water Content Measurement Based on Hyperspectral Imaging

    DEFF Research Database (Denmark)

    Liu, Zhi; Møller, Flemming

    2011-01-01

    Water content is one of the most important properties of the bread for tasting assesment or store monitoring. Traditional bread water content measurement methods mostly are processed manually, which is destructive and time consuming. This paper proposes an automated water content measurement...... for bread quality based on near-infrared hyperspectral imaging against the conventional manual loss-in-weight method. For this purpose, the hyperspectral components unmixing technology is used for measuring the water content quantitatively. And the definition on bread water content index is presented...

  3. Development of a shower exposure model for benzene : background work for potential recommended update to the recently derived drinking water guidelines

    International Nuclear Information System (INIS)

    Knafla, A.L.; Carey, J.

    2009-01-01

    Chloroform exposure was first identified in showers. Shower exposures were then examined for other volatile substances. This presentation discussed the development of a shower exposure model for benzene and included background work for potential recommended updates to the recently derived drinking water guidelines. Specifically, the presentation addressed the relevance for oil and gas sites and the influence on the drinking water guideline. Issues and limitation with Health Canada's Khrisnan model were identified. The advantages of an alternate model development were also presented. Model structure was examined with particular reference to how model exposures are modelled and the risk associated with taking showers with impacted water. Two general types of models were discussed, notably the simple model used to estimate exposures and the integrated physiologically-based pharmacokinetic model. The relevance of the drinking water guideline revision to the petroleum industry was addressed. It was concluded that future water quality guidelines will likely incorporate shower exposures. tabs., figs.

  4. Methods of removing uranium from drinking water. 1. A literature survey. 2. Present municipal water treatment and potential removal methods

    International Nuclear Information System (INIS)

    Drury, J.S.; Michelson, D.; Ensminger, J.T.; Lee, S.Y.; White, S.K.

    1982-12-01

    Literature was searched for methods of removing uranium from drinking water. U.S. manufacturers and users of water-treatment equipment and products were also contacted regarding methods of removing uranium from potable water. Based on the results of these surveys, it was recommended that untreated, partially treated, and finished water samples from municipal water-treatment facilities be analyzed to determine the extent of removal of uranium by presently used procedures, and that additional laboratory studies be performed to determine what changes are needed to maximize the effectiveness of treatments that are already in use in existing water-treatment plants

  5. Optimizing a Water Simulation based on Wavefront Parameter Optimization

    OpenAIRE

    Lundgren, Martin

    2017-01-01

    DICE, a Swedish game company, wanted a more realistic water simulation. Currently, most large scale water simulations used in games are based upon ocean simulation technology. These techniques falter when used in other scenarios, such as coastlines. In order to produce a more realistic simulation, a new one was created based upon the water simulation technique "Wavefront Parameter Interpolation". This technique involves a rather extensive preprocess that enables ocean simulations to have inte...

  6. radio frequency based radio frequency based water level monitor

    African Journals Online (AJOL)

    eobe

    ABSTRACT. This paper elucidates a radio frequency (RF) based transmission and reception system used to remotely monitor and .... range the wireless can cover but in this prototype, it ... power supply to the system, the sensed water level is.

  7. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    Science.gov (United States)

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  8. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery.

    Science.gov (United States)

    Chen, Ying; Liu, Yong; Yao, Yongchao; Zhang, Shiyong; Gu, Zhongwei

    2017-04-11

    With special confined water pools, reverse micelles (RMs) have shown potential for a wide range of applications. However, the inherent water-insolubility of RMs hinders their further application prospects, especially for applications related to biology. We recently reported the first successful transfer of RMs from organic media to an aqueous phase without changing the smart water pools by the hydrolysis of an arm-cleavable interfacial cross-linked reverse micelles. Herein, we employed another elaborate amphiphile 1 to construct new acrylamide-based cross-linked water-soluble nanoparticles (ACW-NPs) under much gentler conditions. The special property of the water pools of the ACW-NPs was confirmed by both the Förster resonance energy transfer (FRET) between 5-((2-aminoethyl)amino)naphthalene-1-sulfonic acid (1,5-EDANS) and benzoic acid, 4-[2-[4-(dimethylamino)phenyl]diazenyl] (DABCYL) and satisfactory colloidal stability in 10% fetal bovine serum. Importantly, featured by the gentle synthetic strategy, confined water pool, and carboxylic acid-functionalized surface, the new ACW-NPs are well suitable for biological applications. As an example, the fluorescent reagent 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) was encapsulated in the core and simultaneously, the anticancer drug gemcitabine (Gem) was covalently conjugated onto the surface exterior. As expected, the resulting multifunctional ACW-NPs@HPTS@Gem exhibits a high imaging effect and anticancer activity for non-small lung cancer cells.

  9. Environmental aspect of oil and water-based drilling muds and ...

    African Journals Online (AJOL)

    Administrator

    2010-03-19

    Mar 19, 2010 ... both oil based and water-based drilling wastes collected from the same depth were analyzed for metals. (iron, copper ... include well cuttings, drilling muds, formation water, cement slurry ..... in the drill wastes (2.38 mg/kg) (Figure 3d). The water .... Organization, International Programme on Chemical Safety.

  10. Genotoxicity of water from the Songhua River, China, in 1994-1995 and 2002-2003: Potential risks for human health

    International Nuclear Information System (INIS)

    Liu Jiaren; Dong Hongwei; Tang Xuanle; Sun Xiangrong; Han Xiaohui; Chen Bingqing; Sun Changhao; Yang Baofeng

    2009-01-01

    A previous study showed that the cancer mortalities are higher for residents who lived nearby the Songhua River heavily polluted by organic contamination. It is important to determine its risk of carcinogenic potential. Short-term genotoxic bio-assays using Salmonella, Sister Chromatid Exchange (SCE), and Micronuclei (MN) assays were employed to examine the genotoxic activity of ether extracts of water samples taken from the Songhua River. The results of the Salmonella bioassay indicated that there were indirect frame-shift mutagens in the water samples. A dose-response relationship for the SCE and MN assays was obtained. These results showed that organic extracts of water samples have genotoxic activity and the risk of carcinogenic potential to human health. The mutagenesis of water samples had changed compared to the results in 1994-1995. An increasing trend of risk of carcinogenic potential in the Songhua River after ten years should be noted and needs to be studied further. - Organic extracts of water samples taken from the Songhua River have genotoxic activity and the risk of carcinogenic potential to human health

  11. A decision tree approach to screen drinking water contaminants for multiroute exposure potential in developing guideline values.

    Science.gov (United States)

    Krishnan, Kannan; Carrier, Richard

    2017-07-03

    The consideration of inhalation and dermal routes of exposures in developing guideline values for drinking water contaminants is important. However, there is no guidance for determining the eligibility of a drinking water contaminant for its multiroute exposure potential. The objective of the present study was to develop a 4-step framework to screen chemicals for their dermal and inhalation exposure potential in the process of developing guideline values. The proposed framework emphasizes the importance of considering basic physicochemical properties prior to detailed assessment of dermal and inhalation routes of exposure to drinking water contaminants in setting guideline values.

  12. Supramolecular water oxidation with Ru-bda-based catalysts.

    Science.gov (United States)

    Richmond, Craig J; Matheu, Roc; Poater, Albert; Falivene, Laura; Benet-Buchholz, Jordi; Sala, Xavier; Cavallo, Luigi; Llobet, Antoni

    2014-12-22

    Extremely slow and extremely fast new water oxidation catalysts based on the Ru-bda (bda=2,2'-bipyridine-6,6'-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s(-1) , respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The scientific base of heating water by microwave

    Energy Technology Data Exchange (ETDEWEB)

    Akdoğan, Ender, E-mail: ender.akdogan@tpe.gov.tr [Department of Physics Engineering, Ankara University, Dögol St. Tandoğan Ankara 06560 Türkiye (Turkey); Çiftçi, Muharrem, E-mail: muharrem-ciftci@windowslive.com [Author" 1 Department of Physics, Ankara University, Dögol St. Tandoğan Ankara 06560 Türkiye (Turkey)

    2016-03-25

    This article is based on the master thesis [4] related to our invention which was published in World Intellectual Property Organization (WO/2011/048506) as a microwave water heater. In the project, a prototype was produced to use microwave in industrial heating. In order to produce the prototype, the most appropriate material kind for microwave-water experiments was determined by a new energy loss rate calculation technique. This new energy loss calculation is a determinative factor for material permeability at microwave frequency band (1-100 GHz). This experimental series aim to investigate the rationality of using microwave in heating industry. Theoretically, heating water by microwave (with steady frequency 2.45 GHz) is analyzed from sub-molecular to Classical Mechanic results of heating. In the study, we examined Quantum Mechanical base of heating water by microwave experiments. As a result, we derived a Semi-Quantum Mechanical equation for microwave-water interactions and thus, Wien displacement law can be derived to verify experimental observations by this equation.

  14. Photo-Electrochemical Effect of Zinc Addition on the Electrochemical Corrosion Potentials of Stainless Steels and Nickel Alloys in High Temperature Water

    International Nuclear Information System (INIS)

    Lee, Yi-Ching; Fong, Clinton; Fang-Chu, Charles; Chang, Ching

    2012-09-01

    Hydrogen water chemistry (HWC) is one of the main mitigating methods for stress corrosion cracking problem of reactor core stainless steel and nickel based alloy components. Zinc is added to minimize the radiation increase associated with HWC. However, the subsequently formed zinc-containing surface oxides may exhibit p-type semiconducting characteristics. Upon the irradiation of Cherenkov and Gamma ray in the reactor core, the ECP of stainless steels and nickel based alloys may shift in the anodic direction, possibly offsetting the beneficial effect of HWC. This study will evaluate the photo-electrochemical effect of Zinc Water Chemistry on SS304 stainless steel and Alloy 182 nickel based weld metal under simulated irradiated BWR water environments with UV illumination. The experimental results reveal that Alloy 182 nickel-based alloy generally possesses n-type semiconductor characteristics in both oxidizing NWC and reducing HWC conditions with zinc addition. Upon UV irradiation, the ECP of Alloy 182 will shift in the cathodic direction. In most conditions, SS304 will also exhibit n-type semiconducting properties. Only under hydrogen water chemistry, a weak p-type property may emerge. Only a slight upward shift in the anodic direction is detected when SS304 is illuminated with UV light. The potential influence of p-type semiconductor of zinc containing surface oxides is weak and the mitigation effect of HWC on the stress corrosion cracking is not adversely affected. (authors)

  15. Semiconductor Metal Oxide Sensors in Water and Water Based Biological Systems

    Directory of Open Access Journals (Sweden)

    Marina V. Strobkova

    2003-10-01

    Full Text Available The results of implementation of In2O3-based semiconductor sensors for oxygen concentration evaluation in water and the LB-nutrient media (15.5 g/l Luria Broth Base, Miller (Sigma, Lot-1900 and NaCl without bacteria and with E.coli bacteria before and after UV-irradiation are presented.

  16. Quantifying the potential for reservoirs to secure future surface water yields in the world’s largest river basins

    Science.gov (United States)

    Liu, Lu; Parkinson, Simon; Gidden, Matthew; Byers, Edward; Satoh, Yusuke; Riahi, Keywan; Forman, Barton

    2018-04-01

    Surface water reservoirs provide us with reliable water supply, hydropower generation, flood control and recreation services. Yet reservoirs also cause flow fragmentation in rivers and lead to flooding of upstream areas, thereby displacing existing land-use activities and ecosystems. Anticipated population growth and development coupled with climate change in many regions of the globe suggests a critical need to assess the potential for future reservoir capacity to help balance rising water demands with long-term water availability. Here, we assess the potential of large-scale reservoirs to provide reliable surface water yields while also considering environmental flows within 235 of the world’s largest river basins. Maps of existing cropland and habitat conservation zones are integrated with spatially-explicit population and urbanization projections from the Shared Socioeconomic Pathways to identify regions unsuitable for increasing water supply by exploiting new reservoir storage. Results show that even when maximizing the global reservoir storage to its potential limit (∼4.3–4.8 times the current capacity), firm yields would only increase by about 50% over current levels. However, there exist large disparities across different basins. The majority of river basins in North America are found to gain relatively little firm yield by increasing storage capacity, whereas basins in Southeast Asia display greater potential for expansion as well as proportional gains in firm yield under multiple uncertainties. Parts of Europe, the United States and South America show relatively low reliability of maintaining current firm yields under future climate change, whereas most of Asia and higher latitude regions display comparatively high reliability. Findings from this study highlight the importance of incorporating different factors, including human development, land-use activities, and climate change, over a time span of multiple decades and across a range of different

  17. Investigation of the potential influence of production treatment chemicals on produced water toxicity

    International Nuclear Information System (INIS)

    Stine, E.R.; Gala, W.R.; Henry, L.R.

    1993-01-01

    Production treatment chemicals represent a diverse collection of chemical classes, added at various points from the wellhead to the final flotation cell, to prevent operational upsets and enhance the separation of oil from water. Information in the literature indicates that while many treatment chemicals are thought to partition into oil and not into the produced water, there are cases where a sufficiently water soluble treatment chemical is added at high enough concentrations to suggest that the treatment chemical may add to the aquatic toxicity of the produced water. A study was conducted to evaluate the potential effect of production treatment chemicals on the toxicity of produced waters using the US EPA Seven-day Mysidopsis bahia Survival, Growth and Fecundity Test. Samples of produced water were collected and tested for toxicity from three platforms under normal operating conditions, followed by repeated sampling and testing after a 72-hour period in which treatment chemical usage was discontinued, to the degree possible. Significant reductions in produced water toxicity were observed for two of the three platforms tested following either cessation of treatment chemical usage, or by comparing the toxicity of samples collected upstream and downstream of the point of treatment chemical addition

  18. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M. [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  19. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    International Nuclear Information System (INIS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-01-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H 2 O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm −1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band

  20. Probiotic potentials of cereal-based beverages.

    Science.gov (United States)

    Enujiugha, Victor N; Badejo, Adebanjo A

    2017-03-04

    Probiotics offer remarkable potential for the prevention and management of various infective and noninfective disorders. They are reported to play key roles in the suppression of gastrointestinal infections, antimicrobial activity, improvement in lactose metabolism, reduction in serum cholesterol, immune system stimulation, antimutagenic properties, anticarcinogenic properties, anti-diarrheal properties, and improvement in inflammatory bowel disease. Although probiotic foods are classically confined to beverages and cheese, containing live organisms of the lactic acid bacteria family, such health-promoting foods are traditionally dairy-based, comprising milk and its fermented products. However, recent research focuses on the probiotic potentials of fermented cereal-based beverages which are especially consumed in developing countries characterized by low nutritional security and high incidence of gut pathogen infections. Moreover, lactose intolerance and cholesterol content associated with dairy products, coupled with the vegetarian tendencies of diverse populations in the third world, tend to enforce the recent recourse to nondairy beverages. Probiotic microorganisms are mostly of human or animal origin; however, strains recognized as probiotics are also found in nondairy fermented substrates. This review examines the potentials of some traditional cereal-based beverages to serve as probiotic foods, their microbial and functional properties, as well as their process optimization and storage for enhanced utilization.

  1. METHODOLOGY TO EVALUATE THE POTENTIAL FOR GROUND WATER CONTAMINATION FROM GEOTHERMAL FLUID RELEASES

    Science.gov (United States)

    This report provides analytical methods and graphical techniques to predict potential ground water contamination from geothermal energy development. Overflows and leaks from ponds, pipe leaks, well blowouts, leaks from well casing, and migration from injection zones can be handle...

  2. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode.

    Science.gov (United States)

    Ma, Yuanyuan; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2018-03-05

    Hydrogen production through water splitting is considered a promising approach for solar energy harvesting. However, the variable and intermittent nature of solar energy and the co-production of H 2 and O 2 significantly reduce the flexibility of this approach, increasing the costs of its use in practical applications. Herein, using the reversible n-type doping/de-doping reaction of the solid-state polytriphenylamine-based battery electrode, we decouple the H 2 and O 2 production in acid water electrolysis. In this architecture, the H 2 and O 2 production occur at different times, which eliminates the issue of gas mixing and adapts to the variable and intermittent nature of solar energy, facilitating the conversion of solar energy to hydrogen (STH). Furthermore, for the first time, we demonstrate a membrane-free solar water splitting through commercial photovoltaics and the decoupled acid water electrolysis, which potentially paves the way for a new approach for solar water splitting. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential.

    Science.gov (United States)

    Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David

    2017-07-01

    Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Evaluation and proposed study of potential ground-water supplies, Gallup area, New Mexico

    Science.gov (United States)

    Hiss, William L.

    1975-01-01

    The ground-water potential of 5 areas in central-western New Mexico within 85 miles (135 km) of Gallup, N. Mex. was evaluated by reviewing the published literature, inspecting aerial and space photographs, and interviewing ranchers and personnel employed by well-drilling and mineral-exploration companies by telephone. The San Andres Limestone and underlying Glorieta Sandstone of Permian age are the oldest aquifers capable of yielding water of a quality suitable for municipal use. Extreme local variations in hydraulic conductivity and water quality reflect a karstic topography developed on the San Andres Limestone prior to burial by Upper Triassic sediments. The San Andres Limestone and Glorieta Sandstone form an important aquifer in the Grants-Bluewater area where yields of as much as 2,200 gallons per minute (140 l/s) have been obtained. Yields from wells completed in the San Andres-Glorieta aquifer on the Chaco slope and in the Gallup sag-Mogollon slope on the northeast and southeast flanks, respectively, of the Zuni uplift will be much less than those prevailing in the Grants-Bluewater area. Water quality in the San Andres Limestone and Glorieta Sandstone deteriorates with distance away from the axis of the Zuni uplift. Sandstones of Triassic, Jurassic, and Cretaceous age are potential aquifers wherever they are present. Yields to wells tapping these aquifers are generally less than 200 gallons per minute (13 l/s) due to the relatively low hydraulic conductivity. Wells tapping alluvium of Late Cenozoic age along the Rio San Jose and Puerco River and interbedded volcanics and alluvium elsewhere in the area generally yield less than 100 gallons per minute (6 l/s) of water. Tributaries ,of the Rio San Jose that have eroded canyons into Paleozoic and Mesozoic rocks east of the Continental Divide and south of the eastern part of the Zuni uplift have been repeatedly displaced and (or) covered by Quaternary volcanic rocks. The exact location, extent, and depth of

  5. Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment.

    Science.gov (United States)

    Miller, Sarah M; Fugate, Ezekiel J; Craver, Vinka Oyanedel; Smith, James A; Zimmerman, Julie B

    2008-06-15

    Historically, there is evidence to suggest that communities in the developing world have used plant-based materials as one strategy for purifying drinking water. In this study, the coagulant properties of Opuntia spp., a species of cactus, are quantitatively evaluated for the first time. Opuntia spp. was evaluated for turbidity removal from synthetic water samples, and steps were made toward elucidating the underlying coagulation mechanism. In model turbid water using kaolin clay particles at pH 10, Opuntia spp. reduced turbidity by 98% for a range of initial turbidities. This is similar to the observed coagulation activities previously described for Moringa oleifera, a widely studied natural coagulant. Although it has been reported that Moringa oleifera predominantly operates through charge neutralization, comparison of zeta potential measurements and transmission electron microscopy images of flocs formed by Opuntia spp. suggest that these natural coagulants operate through different mechanisms. It is suggested that Opuntia spp. operates predominantly through a bridging coagulation mechanism. Once optimized, application of these readily available plants as a part of point-of-use water treatment technology may offer a practical, inexpensive, and appropriate solution for producing potable water in some developing communities.

  6. Simple physics-based models of compensatory plant water uptake: concepts and eco-hydrological consequences

    Directory of Open Access Journals (Sweden)

    N. J. Jarvis

    2011-11-01

    Full Text Available Many land surface schemes and simulation models of plant growth designed for practical use employ simple empirical sub-models of root water uptake that cannot adequately reflect the critical role water uptake from sparsely rooted deep subsoil plays in meeting atmospheric transpiration demand in water-limited environments, especially in the presence of shallow groundwater. A failure to account for this so-called "compensatory" water uptake may have serious consequences for both local and global modeling of water and energy fluxes, carbon balances and climate. Some purely empirical compensatory root water uptake models have been proposed, but they are of limited use in global modeling exercises since their parameters cannot be related to measurable soil and vegetation properties. A parsimonious physics-based model of uptake compensation has been developed that requires no more parameters than empirical approaches. This model is described and some aspects of its behavior are illustrated with the help of example simulations. These analyses demonstrate that hydraulic lift can be considered as an extreme form of compensation and that the degree of compensation is principally a function of soil capillarity and the ratio of total effective root length to potential transpiration. Thus, uptake compensation increases as root to leaf area ratios increase, since potential transpiration depends on leaf area. Results of "scenario" simulations for two case studies, one at the local scale (riparian vegetation growing above shallow water tables in seasonally dry or arid climates and one at a global scale (water balances across an aridity gradient in the continental USA, are presented to illustrate biases in model predictions that arise when water uptake compensation is neglected. In the first case, it is shown that only a compensated model can match the strong relationships between water table depth and leaf area and transpiration observed in riparian forest

  7. Modeling seasonal water balance based on catchments' hedging strategy on evapotranspiration for climate seasonality

    Science.gov (United States)

    Wu, S.; Zhao, J.; Wang, H.

    2017-12-01

    This paper develops a seasonal water balance model based on the hypothesis that natural catchments utilize hedging strategy on evapotranspiration for climate seasonality. According to the monthly aridity index, one year is split into wet season and dry season. A seasonal water balance model is developed by analogy to a two-stage reservoir operation model, in which seasonal rainfall infiltration, evapotranspiration and saturation-excess runoff is corresponding to the inflow, release and surplus of the catchment system. Then the optimal hedging between wet season and dry season evapotranspiration is analytically derived with marginal benefit principle. Water budget data sets of 320 catchments in the United States covering the period from 1980 to 2010 are used to evaluate the performance of this model. The Nash-Sutcliffe Efficiency coefficient for evapotranspiration is higher than 0.5 in 84% of the study catchments; while the runoff is 87%. This paper validates catchments' hedging strategy on evapotranspiration for climate seasonality and shows its potential application for seasonal water balance, which is valuable for water resources planning and management.

  8. Water Stress from High-Volume Hydraulic Fracturing Potentially Threatens Aquatic Biodiversity and Ecosystem Services in Arkansas, United States.

    Science.gov (United States)

    Entrekin, Sally; Trainor, Anne; Saiers, James; Patterson, Lauren; Maloney, Kelly; Fargione, Joseph; Kiesecker, Joseph; Baruch-Mordo, Sharon; Konschnik, Katherine; Wiseman, Hannah; Nicot, Jean-Philippe; Ryan, Joseph N

    2018-02-20

    Demand for high-volume, short duration water withdrawals could create water stress to aquatic organisms in Fayetteville Shale streams sourced for hydraulic fracturing fluids. We estimated potential water stress using permitted water withdrawal volumes and actual water withdrawals compared to monthly median, low, and high streamflows. Risk for biological stress was considered at 20% of long-term median and 10% of high- and low-flow thresholds. Future well build-out projections estimated potential for continued stress. Most water was permitted from small, free-flowing streams and "frack" ponds (dammed streams). Permitted 12-h pumping volumes exceeded median streamflow at 50% of withdrawal sites in June, when flows were low. Daily water usage, from operator disclosures, compared to median streamflow showed possible water stress in 7-51% of catchments from June-November, respectively. If 100% of produced water was recycled, per-well water use declined by 25%, reducing threshold exceedance by 10%. Future water stress was predicted to occur in fewer catchments important for drinking water and species of conservation concern due to the decline in new well installations and increased use of recycled water. Accessible and precise withdrawal and streamflow data are critical moving forward to assess and mitigate water stress in streams that experience high-volume withdrawals.

  9. Water stress from high-volume hydraulic fracturing potentially threatens aquatic biodiversity and ecosystem services in Arkansas, United States

    Science.gov (United States)

    Entrekin, Sally; Trainor, Anne; Saiers, James; Patterson, Lauren; Maloney, Kelly O.; Fargione, Joseph; Kiesecker, Joseph M.; Baruch-Mordo, Sharon; Konschnik, Katherine E.; Wiseman, Hannah; Nicot, Jean-Philippe; Ryan, Joseph N.

    2018-01-01

    Demand for high-volume, short duration water withdrawals could create water stress to aquatic organisms in Fayetteville Shale streams sourced for hydraulic fracturing fluids. We estimated potential water stress using permitted water withdrawal volumes and actual water withdrawals compared to monthly median, low, and high streamflows. Risk for biological stress was considered at 20% of long-term median and 10% of high- and low-flow thresholds. Future well build-out projections estimated potential for continued stress. Most water was permitted from small, free-flowing streams and “frack” ponds (dammed streams). Permitted 12-h pumping volumes exceeded median streamflow at 50% of withdrawal sites in June, when flows were low. Daily water usage, from operator disclosures, compared to median streamflow showed possible water stress in 7–51% of catchments from June–November, respectively. If 100% of produced water was recycled, per-well water use declined by 25%, reducing threshold exceedance by 10%. Future water stress was predicted to occur in fewer catchments important for drinking water and species of conservation concern due to the decline in new well installations and increased use of recycled water. Accessible and precise withdrawal and streamflow data are critical moving forward to assess and mitigate water stress in streams that experience high-volume withdrawals.

  10. The potential for the recovery and reuse of cooling water in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    You, Shu-Hai; Tseng, Dyi-Hwa; Guo, Gia-Luen; Yang, Jyh-Jian [Graduate Institute of Environmental Engineering, National Central University, Chungli (Taiwan, Province of China)

    1999-04-01

    The cooling water is the major part of industrial water use in Taiwan, either from the view of demand priority or supply volume. In order to save water, the loading of supply system can be reduced if the cooling water can be recovered and reused. For this reason, exploration of the recent operation status of the cooling water system has become essential in Taiwan. This study was initially focused on the current applications and reuse trends of cooling water in oil refineries, chemical industry, steel mills, food industry, electronics works, textile plants and power stations. According to the statistical analysis, the portable water and groundwater are the primary sources of makeup water for cooling systems. The multiple-chemicals method and makeup treatment are increasingly accepted for the reclamation of cooling water. On the other hand, sidestream treatment and blowdown reuse are not popular in Taiwan. The recovery rate of blowdown is only 26.8%. The fact of higher cost is the major reason to depress the willingness of recovery. Some representative plants had been selected for case study. However, most cooling water systems are only operated by operator`s experience according to field investigation. In each case, the water quality indexes were used to evaluate the operational condition of cooling water systems. There was no case plant found to be operated at appropriate cycles of concentration. This paper also presented the bottlenecks of conservation technologies of cooling water in Taiwan. These bottlenecks include increasing the cycles of concentration, the reuse of wastewater, and the blowdown treatment for reuse. This paper also demonstrates that the recovery and reuse of cooling water has great potential and is feasible for the available technologies in present Taiwan, but the industries are still unwilling to upgrade because of initial cost. Finally, some approaches associated with technology, economics, environment and policy are proposed to be a

  11. Potential Effectiveness of Point-of-Use Filtration to Address Risks to Drinking Water in the United States.

    Science.gov (United States)

    Brown, Kathleen Ward; Gessesse, Bemnet; Butler, Lindsey J; MacIntosh, David L

    2017-01-01

    Numerous contemporary incidents demonstrate that conventional control strategies for municipal tap water have limited ability to mitigate exposures to chemicals whose sources are within distribution systems, such as lead, and chemicals that are not removed by standard treatment technologies, such as perfluorooctanoic acid (PFOA)/perfluorooctanesulfonic acid (PFOS). In these situations, point-of-use (POU) controls may be effective in mitigating exposures and managing health risks of chemicals in drinking water, but their potential utility has not been extensively examined. As an initial effort to fill this information gap, we conducted a critical review and analysis of the existing literature and data on the effectiveness of POU drinking water treatment technologies for reducing chemical contaminants commonly found in tap water in the United States. We found that many types of water treatment devices available to consumers in the United States have undergone laboratory testing and often certification for removal of chemical contaminants in tap water, but in most cases their efficacy in actual use has yet to be well characterized. In addition, the few studies of POU devices while "in use" focus on traditional contaminants regulated under the Safe Drinking Water Act, but do not generally consider nontraditional contaminants of concern, such as certain novel human carcinogens, industrial chemicals, pesticides, pharmaceuticals, personal care products, and flame retardants. Nevertheless, the limited information available at present suggests that POU devices can be highly effective when used prophylactically and when deployed in response to contamination incidents. Based on these findings, we identify future areas of research for assessing the ability of POU filters to reduce health-related chemical contaminants distributed through public water systems and private wells.

  12. The variability of the potential radiation exposure to man arising from radionuclides released to the ground water

    International Nuclear Information System (INIS)

    Proehl, G.; Mueller, H.

    1994-12-01

    The variability of the potential radiation exposure of the population is estimated if radionuclides (Np-237, Tc-99, I-129, Cs-135, Ra-226, U-238) are released to the ground water which is used by man as drinking water for humans and animals, for irrigation of food and feed crops, and for the production of fish in freshwater bodies. Annual effective dose equivalents are calculated assuming a normalized activity concentration in the water of 1 Bq/l for each radionuclide considered. An important aim is the estimation of the uncertainty of the exposure due to the uncertainty and the variability of the input parameters. The estimated frequency distributions of the input parameters were used as a model input and processed with Latin Hypercube Sampling and a Monte-Carlo technique. This estimation is based on an exposure scenario which reflects the present conditions. The critical group for the exposure due to the use of contaminated ground water are for most radionuclides the children of 1 year, although the activity intake of children is much lower than for adults. However the ingestion dose factors for infants are higher; in many cases the differences are higher than a factor of 5. (orig./HP)

  13. Exploring links between water quality and E. coli O157:H7 survival potential in well waters from a rural area of southern Changchun City, China.

    Science.gov (United States)

    Ding, Meiyue; Li, Jiahang; Liu, Xiaodan; Li, Huiru; Zhang, Rui; Ma, Jincai

    2018-04-01

    Waterborne infectious disease outbreak associated with well water contamination is a worldwide public health issue, especially for rural areas in developing countries. In the current study, we characterized 20 well water samples collected from a rural area of southern Changchun city, China, and investigated the survival potential of Escherichia coli O157:H7 in those water samples. The results showed that nitrate and ammonia concentrations in some well water samples exceed the corresponding China drinking water standards, indicating potential contamination by local agricultural farms. Our results also revealed that the average survival time (ttd) of E. coli O157:H7 in all well water samples was 30.09 days, with shortest and longest ttd being 17.95 and 58.10 days, respectively. The ttds were significantly correlated with pH and the ratio of total nitrogen to total phosphorus. In addition, it was found that the shape parameter (p) and first decimal reduction parameter (δ) were negatively (P well water, suggesting that this pathogen could constitute a great public health risk.

  14. An operational weather radar-based Quantitative Precipitation Estimation and its application in catchment water resources modeling

    DEFF Research Database (Denmark)

    He, Xin; Vejen, Flemming; Stisen, Simon

    2011-01-01

    of precipitation compared with rain-gauge-based methods, thus providing the basis for better water resources assessments. The radar QPE algorithm called ARNE is a distance-dependent areal estimation method that merges radar data with ground surface observations. The method was applied to the Skjern River catchment...... in western Denmark where alternative precipitation estimates were also used as input to an integrated hydrologic model. The hydrologic responses from the model were analyzed by comparing radar- and ground-based precipitation input scenarios. Results showed that radar QPE products are able to generate...... reliable simulations of stream flow and water balance. The potential of using radar-based precipitation was found to be especially high at a smaller scale, where the impact of spatial resolution was evident from the stream discharge results. Also, groundwater recharge was shown to be sensitive...

  15. Evaluating Water Demand Using Agent-Based Modeling

    Science.gov (United States)

    Lowry, T. S.

    2004-12-01

    The supply and demand of water resources are functions of complex, inter-related systems including hydrology, climate, demographics, economics, and policy. To assess the safety and sustainability of water resources, planners often rely on complex numerical models that relate some or all of these systems using mathematical abstractions. The accuracy of these models relies on how well the abstractions capture the true nature of the systems interactions. Typically, these abstractions are based on analyses of observations and/or experiments that account only for the statistical mean behavior of each system. This limits the approach in two important ways: 1) It cannot capture cross-system disruptive events, such as major drought, significant policy change, or terrorist attack, and 2) it cannot resolve sub-system level responses. To overcome these limitations, we are developing an agent-based water resources model that includes the systems of hydrology, climate, demographics, economics, and policy, to examine water demand during normal and extraordinary conditions. Agent-based modeling (ABM) develops functional relationships between systems by modeling the interaction between individuals (agents), who behave according to a probabilistic set of rules. ABM is a "bottom-up" modeling approach in that it defines macro-system behavior by modeling the micro-behavior of individual agents. While each agent's behavior is often simple and predictable, the aggregate behavior of all agents in each system can be complex, unpredictable, and different than behaviors observed in mean-behavior models. Furthermore, the ABM approach creates a virtual laboratory where the effects of policy changes and/or extraordinary events can be simulated. Our model, which is based on the demographics and hydrology of the Middle Rio Grande Basin in the state of New Mexico, includes agent groups of residential, agricultural, and industrial users. Each agent within each group determines its water usage

  16. Nitrogen transformations in a waterhyacinth-based water treatment system

    International Nuclear Information System (INIS)

    Moorhead, K.K.; Reddy, K.R.; Graetz, D.A.

    1988-01-01

    Fate of added 15 NH 4 -N and 15 NO 3 -N in waterhyacinth [Eichhornia crassipes (Mart.) Solms]-based water treatment system was evaluated under controlled conditions. Labeled 15 NH 4 -N uptake by waterhyacinth exceeded 15 NO 3 -N uptake. Total 15 N recovery by waterhyacinth ranged from 57 to 72% for added 15 NO 3 -N and 70 to 89% for added 15 NH 4 -N. Both sediment and detritus were potential sources of N for waterhyacinths. Waterhyacinths cultured in sewage effluent removed 55% of the added 15 NH 4 -N and 14% of the added 15 NO 3 -N, respectively. Three to 44% of the added 15 NH 4 -N was lost through nitrification in the water column and subsequent denitrification in the underlying sediments, whereas 24 to 86% of the added 15 NO 3 -N was lost through denitrification. In a system without plants, 13 to 89% of the added 15 NH 4 -N and 48 to 96% of the added 15 NO 3 -N were lost from the system through a combination of nitrification/denitrification and NH 3 volatilization

  17. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions

    Science.gov (United States)

    Allende, Ana; Monaghan, James

    2015-01-01

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks. PMID:26151764

  18. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions

    Directory of Open Access Journals (Sweden)

    Ana Allende

    2015-07-01

    Full Text Available There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.

  19. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions.

    Science.gov (United States)

    Allende, Ana; Monaghan, James

    2015-07-03

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.

  20. An Improved Unmixing-Based Fusion Method: Potential Application to Remote Monitoring of Inland Waters

    Directory of Open Access Journals (Sweden)

    Yulong Guo

    2015-02-01

    Full Text Available Although remote sensing technology has been widely used to monitor inland water bodies; the lack of suitable data with high spatial and spectral resolution has severely obstructed its practical development. The objective of this study is to improve the unmixing-based fusion (UBF method to produce fused images that maintain both spectral and spatial information from the original images. Images from Environmental Satellite 1 (HJ1 and Medium Resolution Imaging Spectrometer (MERIS were used in this study to validate the method. An improved UBF (IUBF algorithm is established by selecting a proper HJ1-CCD image band for each MERIS band and thereafter applying an unsupervised classification method in each sliding window. Viewing in the visual sense—the radiance and the spectrum—the results show that the improved method effectively yields images with the spatial resolution of the HJ1-CCD image and the spectrum resolution of the MERIS image. When validated using two datasets; the ERGAS index (Relative Dimensionless Global Error indicates that IUBF is more robust than UBF. Finally, the fused data were applied to evaluate the chlorophyll a concentrations (Cchla in Taihu Lake. The result shows that the Cchla map obtained by IUBF fusion captures more detailed information than that of MERIS.

  1. Health Benefits of Water-based Exercise

    Science.gov (United States)

    ... Pools Operating Public Hot Tubs/Spas Recommendations for Hydrotherapy Tanks Preventing Pool Chemical-Associated Health Events Chloramines & ... arthritis have more health improvements after participating in hydrotherapy than with other activities 8 . Water-based exercise ...

  2. Surface-water, water-quality, and meteorological data for the Cambridge, Massachusetts, drinking-water source area, water years 2007-08

    Science.gov (United States)

    Smith, Kirk P.

    2011-01-01

    Records of water quantity, water quality, and meteorological parameters were continuously collected from three reservoirs, two primary streams, and five subbasin tributaries in the Cambridge, Massachusetts, drinking-water source area during water years 2007-08 (October 2006 through September 2008). Water samples were collected during base-flow conditions and storms in the Cambridge Reservoir and Stony Brook Reservoir drainage areas and analyzed for dissolved calcium, sodium, chloride, and sulfate; total nitrogen and phosphorus; and polar pesticides and metabolites. Composite samples of stormwater also were analyzed for concentrations of total petroleum hydrocarbons and suspended sediment in one subbasin in the Stony Brook Reservoir drainage basin. These data were collected to assist watershed administrators in managing the drinking-water source area and to identify potential sources of contaminants and trends in contaminant loading to the water supply.

  3. The Temporal Variation of Leaf Water Potential in Pistachio under Irrigated and Non-Irrigated Conditions

    Directory of Open Access Journals (Sweden)

    Yusuf AYDIN

    2014-09-01

    Full Text Available The present study was carried out in the experimental field of Pistachio Research Institute on pistachio trees which has uzun variety that was 30 years old. The aim of this research was to determine the Leaf Water Potential (LWP of Pistacia vera L. under irrigated and non-irrigated conditions. In the study, the leaf water potential of pistachio was investigated under fully irrigated and non irrigated conditions. The leaf water potential values were measured one day before and after irrigation by using pressure chamber technique at the beginning, mid and end of irrigation season. According to the results obtained from measurements, the LWP value at the beginning of the irrigation season was -3.7 MPa at noon time due to relatively high temperature for both treatments. At the time of pre-dawn and sunset, this value increased and reached to - 1.6 MPa due to relatively low temperature. In general, the LWP values during the mid of irrigation season, in the irrigated treatments, reached to almost -2.5 MPa in the non-irrigated treatment and the value was measured as -3.68 MPa.

  4. Amphiphilic copolymers based on PEG-acrylate as surface active water viscosifiers : Towards new potential systems for enhanced oil recovery

    NARCIS (Netherlands)

    Raffa, Patrizio; Broekhuis, Antonius A.; Picchioni, Francesco

    2016-01-01

    With the purpose of investigating new potential candidates for enhanced oil recovery (EOR), amphiphilic copolymers based on Poly(ethylene glycol) methyl ether acrylate (PEGA) have been prepared by Atom Transfer Radical Polymerization (ATRP). A P(PEGA) homopolymer, a block copolymer with styrene

  5. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification.

    Science.gov (United States)

    Rajapaksha, Anushka Upamali; Chen, Season S; Tsang, Daniel C W; Zhang, Ming; Vithanage, Meththika; Mandal, Sanchita; Gao, Bin; Bolan, Nanthi S; Ok, Yong Sik

    2016-04-01

    The use of biochar has been suggested as a means of remediating contaminated soil and water. The practical applications of conventional biochar for contaminant immobilization and removal however need further improvements. Hence, recent attention has focused on modification of biochar with novel structures and surface properties in order to improve its remediation efficacy and environmental benefits. Engineered/designer biochars are commonly used terms to indicate application-oriented, outcome-based biochar modification or synthesis. In recent years, biochar modifications involving various methods such as, acid treatment, base treatment, amination, surfactant modification, impregnation of mineral sorbents, steam activation and magnetic modification have been widely studied. This review summarizes and evaluates biochar modification methods, corresponding mechanisms, and their benefits for contaminant management in soil and water. Applicability and performance of modification methods depend on the type of contaminants (i.e., inorganic/organic, anionic/cationic, hydrophilic/hydrophobic, polar/non-polar), environmental conditions, remediation goals, and land use purpose. In general, modification to produce engineered/designer biochar is likely to enhance the sorption capacity of biochar and its potential applications for environmental remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Phycoremediation as a potential water decontamination method

    International Nuclear Information System (INIS)

    Tatarova, D.; Galanda, D.; Kuruc, J.

    2017-01-01

    In experiments, we focused on the determination of the phycoremediation potential of Chlamydomonas reinhardtii and Scenedesmus obliquus in targeted contaminated aqueous solutions containing radioisotopes 137 Cs and 6 0Co. Microalgae were selected based on their high bioremediation capability. Phycoremediation potential was determined by monitoring the effect of different pH values between pH 2 to pH 9 as well as by monitoring the decrease in activity of the solution over time. Cultivation of microalgae took place in 12 h/12 h light/dark light mode in blue and red light, which promotes plant growth at room temperature. In order to determine the micro-sorption capacity, a method was used to determine the concentration of microns using a Buerker cell in parallel with the spectrophotometric method. (authors)

  7. Hanford ground-water data base management guide and user's manual

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Argo, R.S.; Bradymire, S.L.; Newbill, C.A.

    1985-05-01

    This management guide and user's manual is a working document for the computerized Hanford Ground-water Data Base maintained by the Geosciences Research and Engineering Department at Pacific Northwest Laboratory for the Hanford Ground-Water Surveillance Program. The program is managed by the Occupational and Environmental Protection Department for the US Department of Energy. The data base is maintained to provide rapid access to data that are rountinely collected from ground-water monitoring wells at the Hanford site. The data include water levels, sample analyses, geologic descriptions and well construction information of over 3000 existing or destroyed wells. These data are used to monitor water quality and for the evaluation of ground-water flow and pollutant transport problems. The management guide gives instructions for maintenance of the data base on the Digital Equipment Corporation PDP 11/70 Computer using the CIRMIS (Comprehensive Information Retrieval and Model Input Sequence) data base management software developed at Pacific Northwest Laboratory. Maintenance activities include inserting, modifying and deleting data, making back-up copies of the data base, and generating tables for annual monitoring reports. The user's guide includes instructions for running programs to retrieve the data in the form of listings of graphical plots. 3 refs

  8. Energy-switching potential energy surface for the water molecule revisited: A highly accurate singled-sheeted form.

    Science.gov (United States)

    Galvão, B R L; Rodrigues, S P J; Varandas, A J C

    2008-07-28

    A global ab initio potential energy surface is proposed for the water molecule by energy-switching/merging a highly accurate isotope-dependent local potential function reported by Polyansky et al. [Science 299, 539 (2003)] with a global form of the many-body expansion type suitably adapted to account explicitly for the dynamical correlation and parametrized from extensive accurate multireference configuration interaction energies extrapolated to the complete basis set limit. The new function mimics also the complicated Sigma/Pi crossing that arises at linear geometries of the water molecule.

  9. Great Lakes waters: radiation dose commitments, potential health effects, and cost-benefit considerations

    International Nuclear Information System (INIS)

    Ainsworth, E.J.

    1977-07-01

    In 1972, a Great Lakes Water Quality Agreement was signed by the United States and Canadian Governments. It was stipulated that the operation and effectiveness of the agreement were to be reviewed comprehensively in 1977. Aspects of the agreement concern nondegradation of Great Lakes waters and maintenance of levels of radioactivity or other potential pollutants at levels considered as low as practicable. A refined radioactivity objective of one millirem is proposed in the Water Quality Agreement. The implications of adoption of this objective are not known fully. The Division of Environmental Impact Studies was commissioned by ERDA's Division of Technology Overview to summarize the information available on the current levels of radioactivity in Great Lakes waters, compute radiation-dose commitment (integrated dose over 50 years after consumption of 2.2 liters of water of one year), and to comment on the feasibility and cost-benefit considerations associated with the refined one-millirem objective. Current levels of radioactivity in the waters of Lakes Michigan, Ontario, Erie, and Huron result in dose commitments in excess of 1 mrem for whole body and 6 mrem for bone. Future projections of isotope concentrations in Great lakes water indicate similar dose commitments for drinking water in the year 2050. Reduction of the levels of radioactivity in Great Lakes waters is not feasible, but cost-benefit considerations support removal of 226 Ra and 90 Sr through interceptive technology before water consumption. Adoption of the one-millirem objective is not propitious

  10. The potential of Vachellia kosiensis (Acacia kosiensis) as a dryland forestry species in terms of its water use, growth rates and resultant water-use efficiency

    CSIR Research Space (South Africa)

    Gush, Mark B

    2017-01-01

    Full Text Available , their correspondingly low water-use rates indicated that the indigenous trees had similar biophysical water-use efficiency values compared with genetically improved introduced tree species and highlighted their potential as an attractive land-use option in appropriate...

  11. Description of gas hydrates equilibria in sediments using experimental data of soil water potential

    Energy Technology Data Exchange (ETDEWEB)

    Istomin, V. [NOVATEK, Moscow (Russian Federation); Chuvilin, E. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology; Makhonina, N.; Kvon, V. [VNIIGAZ, Moscow (Russian Federation); Safonov, S. [Schlumberger Moscow Research, Moscow (Russian Federation)

    2008-07-01

    Analytical relationships have been developed between hydrate dissociation pressure and vapor pressure above the pore water surface. In addition, experiments have been discussed in numerous publications on the effect of narrow interconnected throats between pores on clathrate dissociation conditions in porous media. This paper presented an approach that improved upon the available thermodynamic methods for calculation of hydrate phase equilibria. The approach took into account the properties of pore water in natural sediments including three-phase equilibrium of gas-pore water-gas hydrate in a similar way as for unfrozen water in geocryology science. The purpose of the paper was to apply and adapt geocryology and soil physics method to the thermodynamic calculation of non-clathrated water content in sediments. It answered the question of how to estimate the non-clathrated water content if pore water potential was known. The paper explained the thermodynamics of water phase in porous media including the thermodynamic properties of supercooled water, the thermodynamic properties of pore water and pore ice in sediments, and the phase equilibria of pore water. The paper also discussed the quantitative techniques that were utilized for determination of unfrozen water content in sediments and its dependence on temperature variation. These included contact-saturation, calorimetric, dielectric, nuclear magnetic resonance, and others. The thermodynamic calculations of pore water phase equilibria were also presented. 30 refs., 5 tabs., 8 figs.

  12. Electrochemically Generated cis-Carboxylato-Coordinated Iron(IV) Oxo Acid-Base Congeners as Promiscuous Oxidants of Water Pollutants

    DEFF Research Database (Denmark)

    de Sousa, David P; Miller, Christopher J; Chang, Yingyue

    2017-01-01

    The nonheme iron(IV) oxo complex [FeIV(O)(tpenaH)]2+ and its conjugate base [FeIV(O)(tpena)]+ [tpena- = N,N,N'-tris(2-pyridylmethyl)ethylenediamine-N'-acetate] have been prepared electrochemically in water by bulk electrolysis of solutions prepared from [FeIII2(μ-O)(tpenaH)2](ClO4)4 at potentials...... of the electrochemically generated iron(IV) oxo complexes, in terms of the broad range of substrates examined, represents an important step toward the goal of cost-effective electrocatalytic water purification....

  13. Impact of Potentially Contaminated River Water on Agricultural Irrigated Soils in an Equatorial Climate

    Directory of Open Access Journals (Sweden)

    Juan M. Trujillo-González

    2017-06-01

    Full Text Available Globally, it is estimated that 20 million hectares of arable land are irrigated with water that contains residual contributions from domestic liquids. This potentially poses risks to public health and ecosystems, especially due to heavy metals, which are considered dangerous because of their potential toxicity and persistence in the environment. The Villavicencio region (Colombia is an equatorial area where rainfall (near 3000 mm/year and temperature (average 25.6 °C are high. Soil processes in tropical conditions are fast and react quickly to changing conditions. Soil properties from agricultural fields irrigated with river water polluted by a variety of sources were analysed and compared to non-irrigated control soils. In this study, no physico-chemical alterations were found that gave evidence of a change due to the constant use of river water that contained wastes. This fact may be associated with the climatic factors (temperature and precipitation, which contribute to fast degradation of organic matter and nutrient and contaminants (such as heavy metals leaching, or to dilution of wastes by the river.

  14. Evaluation on the Presence of Nano Silver Particle in Improving a Conventional Water-based Drilling Fluid

    Science.gov (United States)

    Husin, H.; Ahmad, N.; Jamil, N.; Chyuan, O. H.; Roslan, A.

    2018-05-01

    Worldwide demand in oil and gas energy consumption has been driving many of oil and gas companies to explore new oil and gas resource field in an ultra-deep water environment. As deeper well is drilled, more problems and challenges are expected. The successful of drilling operation is highly dependent on properties of drilling fluids. As a way to operate drilling in challenging and extreme surroundings, nanotechnology with their unique properties is employed. Due to unique physicochemical, electrical, thermal, hydrodynamic properties and exceptional interaction potential of nanomaterials, nanoparticles are considered to be the most promising material of choice for smart fluid design for oil and gas field application. Throughout this paper, the effect of nano silver particle in improving a conventional water based drilling fluid was evaluated. Results showed that nano silver gave a significant improvement to the conventional water based drilling fluid in terms of its rheological properties and filtration test performance.

  15. A low-cost electronic tensiometer system for continuous monitoring of soil water potential

    Directory of Open Access Journals (Sweden)

    Martin Thalheimer

    2013-12-01

    Full Text Available A low cost system for measuring soil water potential and data logging was developed on the basis of an Arduino microcontroller board, electronic pressure transducers and water-filled tensiometers. The assembly of this system requires only minimal soldering, limited to the wiring of the power supply and the pressure sensors to the microcontroller board. The system presented here is, therefore, not only inexpensive, but also suited for easy reproduction by users with only basic technical skills. The utility and reliability of the system was tested in a commercial apple orchard.

  16. Water-based Tourism and Leisure Product Audit 2006

    OpenAIRE

    Huskyes, E.; O Connor, K.

    2006-01-01

    In consultation with key agencies and stakeholders, the Marine Institute is drafting a Development Strategy for the marine/water-based tourism and leisure sector for the period 2007-2013. Preparation and research for this has involved the completion of a Water-based Tourism and Leisure Product Audit. The Institute worked in collaboration with Royal Haskoning, spatial planning consultants, and Kevin O’Connor, Donegal County Council, to complete the audit. The objective of the audit is to syste...

  17. A Web-Based GIS for Reporting Water Usage in the High Plains Underground Water Conservation District

    Science.gov (United States)

    Jia, M.; Deeds, N.; Winckler, M.

    2012-12-01

    The High Plains Underground Water Conservation District (HPWD) is the largest and oldest of the Texas water conservation districts, and oversees approximately 1.7 million irrigated acres. Recent rule changes have motivated HPWD to develop a more automated system to allow owners and operators to report well locations, meter locations, meter readings, the association between meters and wells, and contiguous acres. INTERA, Inc. has developed a web-based interactive system for HPWD water users to report water usage and for the district to better manage its water resources. The HPWD web management system utilizes state-of-the-art GIS techniques, including cloud-based Amazon EC2 virtual machine, ArcGIS Server, ArcSDE and ArcGIS Viewer for Flex, to support web-based water use management. The system enables users to navigate to their area of interest using a well-established base-map and perform a variety of operations and inquiries against their spatial features. The application currently has six components: user privilege management, property management, water meter registration, area registration, meter-well association and water use report. The system is composed of two main databases: spatial database and non-spatial database. With the help of Adobe Flex application at the front end and ArcGIS Server as the middle-ware, the spatial feature geometry and attributes update will be reflected immediately in the back end. As a result, property owners, along with the HPWD staff, collaborate together to weave the fabric of the spatial database. Interactions between the spatial and non-spatial databases are established by Windows Communication Foundation (WCF) services to record water-use report, user-property associations, owner-area associations, as well as meter-well associations. Mobile capabilities will be enabled in the near future for field workers to collect data and synchronize them to the spatial database. The entire solution is built on a highly scalable cloud

  18. Water-supply potential of major streams and the Upper Floridan Aquifer in the vicinity of Savannah, Georgia

    Science.gov (United States)

    Garza, Reggina; Krause, Richard E.

    1997-01-01

    Surface- and ground-water resources in the Savannah, Georgia, area were evaluated for potential water-supply development. Stream-discharge and water-quality data were analyzed for two major streams considered to be viable water-supply sources. A ground-water flow model was developed to be used in conjunction with other previously calibrated models to simulate the effects of additional pumpage on water levels near areas of saltwater intrusion at Brunswick and seawater encroachment at Hilton Head Island. Hypothetical scenarios also were simulated involving redistributions and small increases, and decreases in pumpage.

  19. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph; Farooq, Aamir; Ghaffour, NorEddine

    2012-01-01

    . Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a

  20. Estrogenic potential of the Venice, Italy, lagoon waters.

    Science.gov (United States)

    Pojana, Giulio; Bonfà, Angela; Busetti, Francesco; Collarin, Anna; Marcomini, Antonio

    2004-08-01

    The exposure of the Venice lagoon (Italy) to endocrine-disrupting compounds (EDCs) from different sources was investigated. Spatial and time distribution of EDC concentrations were determined in four sampling sessions (December 2001-May 2002) by solid phase extraction followed by high-performance liquid chromatography separation coupled with mass spectrometry detection via electrospray interface (SPE-HPLC-ESI-MS), which allowed identification of natural (estradiol, estrone) and synthetic estrogenic compounds, both steroidal (ethinylestradiol, mestranol) and nonsteroidal (benzophenone, bisphenol-A, nonylphenol, nonylphenol monoethoxylate carboxylate). No significant differences in the EDC distribution were observed between stations located near selected sources (raw sewage from the historical center of Venice, treated municipal and industrial effluents from sewage treatment plants, and areas undergoing the inflow of rivers). While synthetic nonsteroidal analytes were recorded in the 1 to 1040 ng/L range (average concentration: 34 ng/L), steroidal EDC (estradiol, ethinylestradiol) concentrations were lower (1-125 ng/L; average concentration: 8 ng/L). The estrogenic activity of lagoon waters was estimated in terms of estradiol equivalent concentration (EEQ) by applying the estradiol equivalency factors (EEFs). Steroidal EDCs (estradiol, ethinylestradiol) contributed >97% to the total potential estrogenicity of the waters, which accounted for 4 to 172 ng/L (average: 25 ng/L), as total EEQs. These levels are likely to pose adverse effects on the Venice lagoon aquatic organisms.

  1. The potential water buffering capacity of urban green infrastructure in an arid environment

    Science.gov (United States)

    Wang, Z.; Yang, J.

    2017-12-01

    Urban green infrastructure offers arid cities an attractive means of mitigation/adaptation to environmental challenges of elevated thermal stress, but imposes the requirement of outdoor irrigation that aggravates the stress of water resource management. Future development of cities is inevitably constrained by the limited availability of water resources, under challenges of emergent climate change and continuous population growth. This study used the Weather Research and Forecasting model with urban dynamics to assess the potential water buffering capacity of urban green infrastructure in arid environments and its implications for sustainable urban planning. The Phoenix metropolitan area, Arizona, United States, is adopted as a testbed with two hypothetical cases, viz. the water-saving and the fully-greening scenarios investigated. Modifications of the existing green infrastructure and irrigation practices are found to significantly influence the thermal environment of Phoenix. In addition, water saving by xeriscaping (0.77 ± 0.05 × 10^8 m^3) allows the region to support 19.8% of the annual water consumption by the projected 2.62 million population growth by 2050, at a cost of an increase in urban ambient temperature of about 1 o^C.

  2. Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water.

    Science.gov (United States)

    Agunbiade, Foluso O; Olu-Owolabi, Bamidele I; Adebowale, Kayode O

    2009-10-01

    The potential of Eichornia crassipes to serve as a phytoremediation plant in the cleaning up of metals from contaminated coastal areas was evaluated in this study. Ten metals, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, V and Zn were assessed in water and the plant roots and shoots from the coastal area of Ondo State, Nigeria and the values were used to evaluate the enrichment factor (EF) and translocation factor (TF) in the plant. The critical concentrations of the metals were lower than those specified for hyperaccumulators thus classifying the plant as an accumulator but the EF and TF revealed that the plant accumulated toxic metals such as Cr, Cd, Pb and As both at the root and at the shoot in high degree, which indicates that the plant that forms a large biomass on the water surface and is not fed upon by animals can serve as a plant for both phytoextraction and rhizofiltration in phytoremediation technology.

  3. Evaluation of potential impacts of climate change and water management on streamflow in the Rovuma River, Mozambique and Tanzania

    Science.gov (United States)

    Minihane, M.; Lettenmaier, D. P.

    2012-12-01

    Economic development and public health are tied to water resources development in many parts of the world. Effective use of water management infrastructure investments requires projections of future climatic and water use conditions. This is particularly true in developing countries. We explore in this work water resource availability in the Rovuma River, which lies in a sparsely-populated region of southeastern Africa, on the border of Mozambique and Tanzania. While there are only limited documented observations of flow of the Rovuma River and it's tributaries, particularly in recent years, there is widespread interest in development of the water resources of the region. The national governments are interested in hydropower potential while private companies, many of them large multinational organizations, have started irrigation programs to increase agricultural output. While the Mozambique and Tanzania governments have a joint agreement over the river development, there is a need to assess both current and potential future water resource conditions in the basin. The sustainability of these developments, however, may be affected by climate change. Here we quantify potential changes in streamflow in the Rovuma River under dry and wet climate projection scenarios using the delta method and the Variable Infiltration Capacity (VIC) macro-scale hydrology model. We then evaluate streamflow changes relative to water withdrawals required for a range of irrigated agriculture scenarios. Our analysis is intended to be a starting point for planners to consider potential impacts of both streamflow withdrawal permits (for irrigated agriculture) and future uncertain climate conditions.

  4. Taking water-based mud to extremes : new ultra-high temperature water-based mud development and applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Conn, L.; Cullum, D.; Ray, R.; Marinescu, P. [Mi SWACO, Calgary, AB (Canada)

    2008-07-01

    The design, development and field applications of an ultra-high temperature water-based mud used for drilling very deep and hot wells in continental Europe was described. Basin-centred gas production from unconventional tight sands represents a significant resources that may revive exploration and gas production. However, these accumulations lie deep down from normal-pressure reservoirs and the bottom hole static temperatures are greater than 200 degrees C. In addition, they host acid gases such as carbon dioxide and hydrogen sulfide. As such, there are severe limitations on the design and choice of drilling fluids. This paper also described the extensive laboratory work that is needed to optimize the formulation of drilling fluids for high densities and extreme high temperatures. The lessons learned were described with reference to critical engineering guidelines for running a water-based system in such harsh conditions. The effectiveness of new fluids in delivering optimum drilling in extreme high temperature high pressure (HTHP) conditions were demonstrated using a unique software program that predicted the rheological behaviour, pressure losses, equivalent circulating density and equivalent static density. The new water-based system proved to be effective in drilling HTHP wells in areas where invert emulsion drilling fluid systems are not allowed.

  5. A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously.

    Science.gov (United States)

    Li, Daikun; Li, Qing; Mao, Daoyong; Bai, Ningning; Dong, Hongzhou

    2017-12-01

    Developing versatile materials for effective water purification is significant for environment and water source protection. Herein, a versatile bio-based material (CH-PAA-T) was reported by simple thermal cross-linking chitosan and polyacrylic acid which exhibits excellent performances for removing insoluble oil, soluble toxic dyes and heavy metal ions from water, simultaneously. The adsorption capacities are 990.1mgg -1 for methylene blue (MB) and 135.9mgg -1 for Cu 2+ , which are higher than most of present advanced absorbents. The adsorption towards organic dyes possesses high selectivity which makes CH-PAA-T be able to efficiently separate dye mixtures. The stable superoleophobicity under water endows CH-PAA-T good performance to separate toluene-in-water emulsion stabilized by Tween 80. Moreover, CH-PAA-T can be recycled for 10 times with negligible reduction of efficiency. Such versatile bio-based material is a potential candidate for water purification. Copyright © 2017. Published by Elsevier Ltd.

  6. Potential Coastal Pumped Hydroelectric Energy Storage Locations Identified using GIS-based Topographic Analysis

    Science.gov (United States)

    Parsons, R.; Barnhart, C. J.; Benson, S. M.

    2013-12-01

    Large-scale electrical energy storage could accommodate variable, weather dependent energy resources such as wind and solar. Pumped hydroelectric energy storage (PHS) and compressed energy storage area (CAES) have life cycle energy and financial costs that are an order of magnitude lower than conventional electrochemical storage technologies. However PHS and CAES storage technologies require specific geologic conditions. Conventional PHS requires an upper and lower reservoir separated by at least 100 m of head, but no more than 10 km in horizontal distance. Conventional PHS also impacts fresh water supplies, riparian ecosystems, and hydrologic environments. A PHS facility that uses the ocean as the lower reservoir benefits from a smaller footprint, minimal freshwater impact, and the potential to be located near off shore wind resources and population centers. Although technologically nascent, today one coastal PHS facility exists. The storage potential for coastal PHS is unknown. Can coastal PHS play a significant role in augmenting future power grids with a high faction of renewable energy supply? In this study we employ GIS-based topographic analysis to quantify the coastal PHS potential of several geographic locations, including California, Chile and Peru. We developed automated techniques that seek local topographic minima in 90 m spatial resolution shuttle radar topography mission (SRTM) digital elevation models (DEM) that satisfy the following criteria conducive to PHS: within 10 km from the sea; minimum elevation 150 m; maximum elevation 1000 m. Preliminary results suggest the global potential for coastal PHS could be very significant. For example, in northern Chile we have identified over 60 locations that satisfy the above criteria. Two of these locations could store over 10 million cubic meters of water or several GWh of energy. We plan to report a global database of candidate coastal PHS locations and to estimate their energy storage capacity.

  7. Geochemical Tracing of Potential Hydraulic Connections between Groundwater and Run-Off Water in Northeastern Kansas, USA

    Directory of Open Access Journals (Sweden)

    Norbert Clauer

    2017-11-01

    Full Text Available This study is focused on establishing the extent of potential hydraulic connections of local lowland aquifers with the run-off waters of a nearby creek and two major rivers in and around Fort Riley in northeastern Kansas, USA. It is based on collective evidence by combining the contents of several major and trace elements of the waters with their oxygen, hydrogen and Sr isotopic compositions. The area of investigation is located a few miles to the west of the Kansas Konza Prairie, which is a United States designated site for regular monitoring of ecological and environmental configurations. The δ18O and δD of the run-off waters from the two rivers and the creek, and of the ground waters from local aquifers are almost identical. Relative to the General Meteoric Water Line, the δ18O-δD data have a tendency to deviate towards relatively lower δ18O values, as do generally the sub-surface waters of intra-continental basins. The observed stable isotope compositions for these waters preclude any significant impact by either an evapo-transpiration process by the vegetation, or an interaction with immediate mineral-rock matrices. The 87Sr/86Sr ratios of the aquifer waters collected from wells close to the Kansas River were markedly different from those of the river waters, confirming a lack of hydraulic interactions between the aquifers and the river. On the contrary, ground waters from wells at a relative distance from the Kansas River have 87Sr/86Sr ratios, Sr contents and Sr/Ca ratios that are similar to those of the river water, suggesting a hydraulic connection between these aquifers and the river, as well as a lack of any impact of the vegetation. An underground water supply from nearby Summer Hill located to the north of the study area has also been detected, except for its western border where no interactions occurred apparently between the aquifer waters and the reservoir rocks, or with the creek and river waters. The 87Sr/86Sr signatures

  8. Gibbs Free Energy of Hydrolytic Water Molecule in Acyl-Enzyme Intermediates of a Serine Protease: A Potential Application for Computer-Aided Discovery of Mechanism-Based Reversible Covalent Inhibitors.

    Science.gov (United States)

    Masuda, Yosuke; Yamaotsu, Noriyuki; Hirono, Shuichi

    2017-01-01

    In order to predict the potencies of mechanism-based reversible covalent inhibitors, the relationships between calculated Gibbs free energy of hydrolytic water molecule in acyl-trypsin intermediates and experimentally measured catalytic rate constants (k cat ) were investigated. After obtaining representative solution structures by molecular dynamics (MD) simulations, hydration thermodynamics analyses using WaterMap™ were conducted. Consequently, we found for the first time that when Gibbs free energy of the hydrolytic water molecule was lower, logarithms of k cat were also lower. The hydrolytic water molecule with favorable Gibbs free energy may hydrolyze acylated serine slowly. Gibbs free energy of hydrolytic water molecule might be a useful descriptor for computer-aided discovery of mechanism-based reversible covalent inhibitors of hydrolytic enzymes.

  9. Emergy evaluation of water utilization benefits in water-ecological-economic system based on water cycle process

    Science.gov (United States)

    Guo, X.; Wu, Z.; Lv, C.

    2017-12-01

    The water utilization benefits are formed by the material flow, energy flow, information flow and value stream in the whole water cycle process, and reflected along with the material circulation of inner system. But most of traditional water utilization benefits evaluation are based on the macro level, only consider the whole material input and output and energy conversion relation, and lack the characterization of water utilization benefits accompanying with water cycle process from the formation mechanism. In addition, most studies are from the perspective of economics, only pay attention to the whole economic output and sewage treatment economic investment, but neglect the ecological function benefits of water cycle, Therefore, from the perspective of internal material circulation in the whole system, taking water cycle process as the process of material circulation and energy flow, the circulation and flow process of water and other ecological environment, social economic elements were described, and the composition of water utilization positive and negative benefits in water-ecological-economic system was explored, and the performance of each benefit was analyzed. On this basis, the emergy calculation method of each benefit was proposed by emergy quantitative analysis technique, which can realize the unified measurement and evaluation of water utilization benefits in water-ecological-economic system. Then, taking Zhengzhou city as an example, the corresponding benefits of different water cycle links were calculated quantitatively by emergy method, and the results showed that the emergy evaluation method of water utilization benefits can unify the ecosystem and the economic system, achieve uniform quantitative analysis, and measure the true value of natural resources and human economic activities comprehensively.

  10. Using a Water Balance Model to Bound Potential Irrigation Development in the Upper Blue Nile Basin

    Science.gov (United States)

    Jain Figueroa, A.; McLaughlin, D.

    2016-12-01

    The Grand Ethiopian Renaissance Dam (GERD), on the Blue Nile is an example of water resource management underpinning food, water and energy security. Downstream countries have long expressed concern about water projects in Ethiopia because of possible diversions to agricultural uses that could reduce flow in the Nile. Such diversions are attractive to Ethiopia as a partial solution to its food security problems but they could also conflict with hydropower revenue from GERD. This research estimates an upper bound on diversions above the GERD project by considering the potential for irrigated agriculture expansion and, in particular, the availability of water and land resources for crop production. Although many studies have aimed to simulate downstream flows for various Nile basin management plans, few have taken the perspective of bounding the likely impacts of upstream agricultural development. The approach is to construct an optimization model to establish a bound on Upper Blue Nile (UBN) agricultural development, paying particular attention to soil suitability and seasonal variability in climate. The results show that land and climate constraints impose significant limitations on crop production. Only 25% of the land area is suitable for irrigation due to the soil, slope and temperature constraints. When precipitation is also considered only 11% of current land area could be used in a way that increases water consumption. The results suggest that Ethiopia could consume an additional 3.75 billion cubic meters (bcm) of water per year, through changes in land use and storage capacity. By exploiting this irrigation potential, Ethiopia could potentially decrease the annual flow downstream of the UBN by 8 percent from the current 46 bcm/y to the modeled 42 bcm/y.

  11. Preparation of affordable and multifunctional clay-based ceramic filter matrix for treatment of drinking water.

    Science.gov (United States)

    Shivaraju, H Puttaiah; Egumbo, Henok; Madhusudan, P; Anil Kumar, K M; Midhun, G

    2018-02-01

    Affordable clay-based ceramic filters with multifunctional properties were prepared using low-cost and active ingredients. The characterization results clearly revealed well crystallinity, structural elucidation, extensive porosity, higher surface area, higher stability, and durability which apparently enhance the treatment efficiency. The filtration rates of ceramic filter were evaluated under gravity and the results obtained were compared with a typical gravity slow sand filter (GSSF). All ceramic filters showed significant filtration rates of about 50-180 m/h, which is comparatively higher than the typical GSSF. Further, purification efficiency of clay-based ceramic filters was evaluated by considering important drinking water parameters and contaminants. A significant removal potential was achieved by the clay-based ceramic filter with 25% and 30% activated carbon along with active agents. Desired drinking water quality parameters were achieved by potential removal of nitrite (98.5%), nitrate (80.5%), total dissolved solids (62%), total hardness (55%), total organic pollutants (89%), and pathogenic microorganisms (100%) using ceramic filters within a short duration. The remarkable purification and disinfection efficiencies were attributed to the extensive porosity (0.202 cm 3  g -1 ), surface area (124.61 m 2  g -1 ), stability, and presence of active nanoparticles such as Cu, TiO 2 , and Ag within the porous matrix of the ceramic filter.

  12. Selenium Adsorption To Aluminum-Based Water Treatment Residuals

    Science.gov (United States)

    Aluminum-based water treatment residuals (WTR) can adsorb water-and soil-borne P, As(V), As(III), and perchlorate, and may be able to adsorb excess environmental selenium. WTR, clay minerals, and amorphous aluminum hydroxide were shaken for 24 hours in selenate or selenite solut...

  13. Interacting Effects of Leaf Water Potential and Biomass on Vegetation Optical Depth: Effects of LWP and Biomass on VOD

    Energy Technology Data Exchange (ETDEWEB)

    Momen, Mostafa [Department of Earth System Science, Stanford University, Stanford CA USA; Wood, Jeffrey D. [School of Natural Resources, University of Missouri, Columbia MO USA; Novick, Kimberly A. [School of Public and Environmental Affairs, Indiana University-Bloomington, Bloomington IN USA; Pangle, Robert [Department of Biology, University of New Mexico, Albuquerque NM USA; Pockman, William T. [Department of Biology, University of New Mexico, Albuquerque NM USA; McDowell, Nate G. [Pacific Northwest National Laboratory, Richland WA USA; Konings, Alexandra G. [Department of Earth System Science, Stanford University, Stanford CA USA

    2017-11-01

    Remotely sensed microwave observations of vegetation optical depth (VOD) have been widely used for examining vegetation responses to climate. Nevertheless, the relative impacts of phenological changes in leaf biomass and water stress on VOD have not been explicitly disentangled. In particular, determining whether leaf water potential (ψL) affects VOD may allow these data sets as a constraint for plant hydraulic models. Here we test the sensitivity of VOD to variations in ψL and present a conceptual framework that relates VOD to ψL and total biomass including leaves, whose dynamics are measured through leaf area index, and woody components. We used measurements of ψL from three sites across the US—a mixed deciduous forests in Indiana and Missouri and a piñon-juniper woodland in New Mexico—to validate the conceptual model. The temporal dynamics of X-band VOD were similar to those of the VOD signal estimated from the new conceptual model with observed ψL (R2 = 0.6–0.8). At the global scale, accounting for a combination of biomass and estimated ψL (based on satellite surface soil moisture data) increased correlations with VOD by ~ 15% and 30% compared to biomass and water potential, respectively. In wetter regions with denser and taller canopy heights, VOD has a higher correlation with leaf area index than with water stress and vice versa in drier regions. Our results demonstrate that variations in both phenology and ψL must be considered to accurately interpret the dynamics of VOD observations for ecological applications.

  14. Electrooxidation of organics in waste water

    Science.gov (United States)

    Hitchens, G. D.; Murphy, Oliver J.; Kaba, Lamine; Verostko, Charles E.

    1990-01-01

    Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA is currently being pursued to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space-habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water-reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of an electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel-cell technology is presented.

  15. Gelatin-hydroxypropyl methylcellulose water-in-water emulsions as a new bio-based packaging material.

    Science.gov (United States)

    Esteghlal, Sara; Niakosari, Mehrdad; Hosseini, Seyed Mohammad Hashem; Mesbahi, Gholam Reza; Yousefi, Gholam Hossein

    2016-05-01

    Gelatin and hydroxypropyl methylcellulose (HPMC) are two incompatible and immiscible biopolymers which cannot form homogeneous composite films using usual methods. In this study, to prevent phase separation, gelatin-HPMC water-in-water (W/W) emulsion was utilized to from transparent composite films by entrapment the HPMC dispersed droplets in gelatin continuous network. The physicochemical and mechanical properties of emulsion-based films containing different amounts (5-30%) of dispersed phase were determined and compared with those of individual polymer-based films. Incorporating HPMC into W/W emulsion-based films had no significant effect on the tensile strength. The flexibility of composite films decreased at HPMC concentrations below 20%. The depletion layer at the droplets interface reduced the diffusion of water vapor molecules because of its hydrophobic nature, so the water vapor permeability remained constant. Increasing the HPMC content in the emulsion films increased the swelling and decreased the transparency. The entrapment of HPMC in continuous gelatin phase decreased its solubility. Therefore, W/W emulsions are capable of holding two incompatible polymers alongside each other within a homogeneous film network without weakening the physical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. An Agent-based Modeling of Water-Food Nexus towards Sustainable Management of Urban Water Resources

    Science.gov (United States)

    Esmaeili, N.; Kanta, L.

    2017-12-01

    Growing population, urbanization, and climate change have put tremendous stress on water systems in many regions. A shortage in water system not only affects water users of a municipality but also that of food system. About 70% of global water is withdrawn for agriculture; livestock and dairy productions are also dependent on water availability. Although researchers and policy makers have identified and emphasized the water-food (WF) nexus in recent decade, most existing WF models offer strategies to reduce trade-offs and to generate benefits without considering feedback loops and adaptations between those systems. Feedback loops between water and food system can help understand long-term behavioral trends between water users of the integrated WF system which, in turn, can help manage water resources sustainably. An Agent-based modeling approach is applied here to develop a conceptual framework of WF systems. All water users in this system are modeled as agents, who are capable of making decisions and can adapt new behavior based on inputs from other agents in a shared environment through a set of logical and mathematical rules. Residential and commercial/industrial consumers are represented as municipal agents; crop, livestock, and dairy farmers are represented as food agents; and water management officials are represented as policy agent. During the period of water shortage, policy agent will propose/impose various water conservation measures, such as adapting water-efficient technologies, banning outdoor irrigation, implementing supplemental irrigation, using recycled water for livestock/dairy production, among others. Municipal and food agents may adapt conservation strategies and will update their demand accordingly. Emergent properties of the WF nexus will arise through dynamic interactions between various actors of water and food system. This model will be implemented to a case study for resource allocation and future policy development.

  17. Reconciling IWRM and water delivery in Ghana - The potential and the challenges

    Science.gov (United States)

    Anokye, Nana Amma; Gupta, Joyeeta

    The key elements of integrated water resources management include a holistic integrated approach and the main principles of public participation, the role of gender and the notion of recognising the economic value of water. This paper investigates how these notions play out in the context of providing water to the rural communities in the Densu basin in Ghana. This investigation is based on a content analysis of the relevant policy documents and interviews with state agencies and local stakeholders. The paper concludes that there is a conflict between the IWRM goal of integrating all water uses and sectors in the management of water resources and focusing on the prioritisation of water delivery services. However, three of the IWRM principles can be used in implementing water delivery. While Ghana has adopted IWRM, it clearly prioritises water delivery. At basin level, the IWRM planning process does not take water delivery into account and water delivery is conducted independent of the IWRM process. Although the participatory and gender approaches are being implemented relatively successfully, if slowly, the ‘water as an economic good’ principle is given less priority than the notion of the human right to water as local communities pay only 5% of the capital costs of water delivery services. The impact of the rural water delivery services has been positive in the Densu basin in seven different ways; and if this helps the rural community out of the poverty trap, it may lead to economically viable water facilities in the long-term.

  18. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    Science.gov (United States)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  19. Identification of nitrate sources in groundwater and potential impact on drinking water reservoir (Goczałkowice reservoir, Poland)

    Science.gov (United States)

    Czekaj, Joanna; Jakóbczyk-Karpierz, Sabina; Rubin, Hanna; Sitek, Sławomir; Witkowski, Andrzej J.

    2016-08-01

    Goczałkowice dammed reservoir (area - 26 km2) is a strategic object for flood control in the Upper Vistula River catchment and one of the most important source of drinking water in the Upper Silesian Industrial Region (Southern Poland). Main aims of the investigation were identification of sources of nitrate and assessment of their significance in potential risk to groundwater quality. In the catchment area monitoring network of 22 piezometers, included 14 nested, have been installed. The significant spatial and seasonal differences in chemical composition between northern and southern part of the catchment were indicated based on the groundwater sampling conducted twice - in autumn 2011 and spring 2012. Maximum observed concentrations of nitrate were identified in northern part of the study area 255 mg/L as a results of inappropriate sewage management and agriculture activity. Results, based on the combines multi-scale hydrogeological and hydrochemical field studies, groundwater flow and transport modelling, dual stable isotope approach and geochemical modelling indicate mainly agriculture and inappropriate sewage water management as a sources of NO3- contamination of groundwater which moreover is affected by geochemical processes. In general, contaminated groundwater does not impact surface water quality. However, due to high concentration of nitrate in northern part a continues measurements of nitrogen compounds should be continued and used for reducing uncertainty of the predictive scenarios of the mass transport modelling in the study area.

  20. Graphene-based solid-phase extraction disk for fast separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples.

    Science.gov (United States)

    Wang, Zonghua; Han, Qiang; Xia, Jianfei; Xia, Linhua; Ding, Mingyu; Tang, Jie

    2013-06-01

    Graphene has great potentials for the use in sample preparation due to its ultra high specific surface area, superior chemical stability, and excellent thermal stability. In our work, a novel graphene-based SPE disk was developed for separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples. Based on the strong π-π stacking interaction between the analytes and graphene, the analytes extracted by graphene were eluted by cyclohexane and then determined by GC-MS. Under the optimized conditions, high flow rate (30 mL/min) and sensitivity (0.84-13 ng/L) were achieved. The proposed method was successfully applied to the analysis of real environmental water samples with recoveries ranging from 72.8 to 106.2%. Furthermore, the property of anticlogging and reusability was also improved. This work reveals great potentials of graphene-based SPE disk in environmental analytical. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 5, Field Investigation report

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    An environmental investigation of ground water conditions has been undertaken at Wright-Patterson Air Force Base (WPAFB), Ohio to obtain data to assist in the evaluation of a potential removal action to prevent, to the extent practicable, migration of the contaminated ground water across Base boundaries. Field investigations were limited to the central section of the southwestern boundary of Area C and the Springfield Pike boundary of Area B. Further, the study was limited to a maximum depth of 150 feet below grade. Three primary activities of the field investigation were: (1) installation of 22 monitoring wells, (2) collection and analysis of ground water from 71 locations, (3) measurement of ground water elevations at 69 locations. Volatile organic compounds including trichloroethylene, perchloroethylene, and/or vinyl chloride were detected in concentrations exceeding Maximum Contaminant Levels (MCL) at three locations within the Area C investigation area. Ground water at the Springfield Pike boundary of Area B occurs in two primary units, separated by a thicker-than-expected clay layers. One well within Area B was determined to exceed the MCL for trichloroethylene.

  2. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    Science.gov (United States)

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  3. Potential use of an ultrasound antifouling technology as a ballast water treatment system

    Science.gov (United States)

    Estévez-Calvar, Noelia; Gambardella, Chiara; Miraglia, Francesco; Pavanello, Giovanni; Greco, Giuliano; Faimali, Marco; Garaventa, Francesca

    2018-03-01

    The aim of this study was to investigate, at a laboratory scale, the potentialities of an ultrasound-based treatment initially designed to eliminate fouling, as a ballast water treatment system. Therefore, early life stages of three different zooplanktonic species (Amphibalanus amphitrite, Brachionus plicatilis and Artemia salina) were exposed to ultrasound waves (20-22 kHz). The experimental set up included static assays with variations of time exposure (30 s, 60 s and 30 s on/60 s off/30 s on), material of tanks (stainless steel, galvanized steel and plastic) and position of the ultrasound source. Results showed that the treatment efficacy increased from 30 to 60 s and no differences were registered between 60 s-continuous exposure and pulse exposure. The highest efficacy was observed in Experiment I (metal-to-metal contact assay) with a mortality value of 93-95% for B. plicatilis and A. salina. It consisted of organisms located inside stainless steel tubes that were located in direct contact with the ultrasound source and treated for 60 s. Further, we found that, generally, A. amphitrite and B. plicatilis were the most resistant species to the ultrasound treatment whereas A. salina was the most sensitive. We further discuss that US may unlikely be used for commercial vessels, but may be used to treat ballast water in smaller ballast tanks as on board of mega yachts.

  4. Techniques for assessing water resource potentials in the developing countries: with emphasis on streamflow, erosion and sediment transport, water movement in unsaturated soils, ground water, and remote sensing in hydrologic applications

    Science.gov (United States)

    Taylor, George C.

    1971-01-01

    Hydrologic instrumentation and methodology for assessing water-resource potentials have originated largely in the developed countries of the temperature zone. The developing countries lie largely in the tropic zone, which contains the full gamut of the earth's climatic environments, including most of those of the temperate zone. For this reason, most hydrologic techniques have world-wide applicability. Techniques for assessing water-resource potentials for the high priority goals of economic growth are well established in the developing countries--but much more are well established in the developing countries--but much more so in some than in other. Conventional techniques for measurement and evaluation of basic hydrologic parameters are now well-understood in the developing countries and are generally adequate for their current needs and those of the immediate future. Institutional and economic constraints, however, inhibit growth of sustained programs of hydrologic data collection and application of the data to problems in engineering technology. Computer-based technology, including processing of hydrologic data and mathematical modelling of hydrologic parameters i also well-begun in many developing countries and has much wider potential application. In some developing counties, however, there is a tendency to look on the computer as a panacea for deficiencies in basic hydrologic data collection programs. This fallacy must be discouraged, as the computer is a tool and not a "magic box." There is no real substitute for sound programs of basic data collection. Nuclear and isotopic techniques are being used increasingly in the developed countries in the measurement and evaluation of virtually all hydrologic parameter in which conventional techniques have been used traditionally. Even in the developed countries, however, many hydrologists are not using nuclear techniques, simply because they lack knowledge of the principles involved and of the potential benefits

  5. Fuel utilization potential in light water reactors with once-through fuel irradiation (AWBA Development Program)

    International Nuclear Information System (INIS)

    Rampolla, D.S.; Conley, G.H.; Candelore, N.R.; Cowell, G.K.; Estes, G.P.; Flanery, B.K.; Duncombe, E.; Dunyak, J.; Satterwhite, D.G.

    1979-07-01

    Current commercial light water reactor cores operate without recylce of fuel, on a once-through fuel cycle. To help conserve the limited nuclear fuel resources, there is interest in increasing the energy yield and, hence, fuel utilization from once-through fuel irradiation. This report evaluates the potential increase in fuel utilization of light water reactor cores operating on a once-through cycle assuming 0.2% enrichment plant tails assay. This evaluation is based on a large number of survey calculations using techniques which were verified by more detailed calculations of several core concepts. It is concluded that the maximum fuel utilization which could be achieved by practical once-through pressurized light water reactor cores with either uranium or thorium is about 17 MWYth/ST U 3 O 8 (Megawatt Years Thermal per Short Ton of U 3 O 8 ). This is about 50% higher than that of current commercial light water reactor cores. Achievement of this increased fuel utilization would require average fuel burnup beyond 50,000 MWD/MT and incorporation of the following design features to reduce parasitic losses of neutrons: reflector blankets to utilize neutrons that would otherwise leak out of the core; fuel management practices in which a smaller fraction of the core is replaced at each refueling; and neutron economic reactivity control, such as movable fuel control rather than soluble boron control. For a hypothetical situation in which all neutron leakage and parasitic losses are eliminated and fuel depletion is not limited by design considerations, a maximum fuel utilization of about 20 MWYth/ST U 3 O 8 is calculated for either uranium or thorium. It is concluded that fuel utilization for comparable reactor designs is better with uranium fuel than with thorium fuel for average fuel depletions of 30,000 to 35,000 MWD/MT which are characteristic of present light water reactor cores

  6. Potential future changes in water limitations of the terrestrial biosphere

    International Nuclear Information System (INIS)

    Gerten, D.; Schaphoff, S.; Lucht, W.

    2007-01-01

    This study explores the effects of atmospheric CO2 enrichment and climate change on soil moisture (W r ) and biome-level water limitation (L TA ), using a dynamic global vegetation and water balance model forced by five different scenarios of change in temperature, precipitation, radiation, and atmospheric CO2 concentration, all based on the same IS92a emission scenario. L TA is defined as an index that quantifies the degree to which transpiration and photosynthesis are co-limited by soil water shortage (high values indicate low water limitation). Soil moisture decreases in many regions by 2071-2100 compared to 1961-1990, though the regional pattern of change differs substantially among the scenarios due primarily to differences in GCM-specific precipitation changes. In terms of L TA , ecosystems in northern temperate latitudes are at greatest risk of increasing water limitation, while in most other latitudes L TA tends to increase (but again varies the regional pattern of change among the scenarios). The frequently opposite direction of change in W r and L TA suggests that decreases in W r are not necessarily felt by actual vegetation, which is attributable mainly to the physiological vegetation response to elevated CO2. Without this beneficial effect, the sign of change in L TA would be reversed from predominantly positive to predominantly negative

  7. Potential future changes in water limitations of the terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Gerten, D.; Schaphoff, S.; Lucht, W. [Potsdam Institute for Climate Impact Research, P.O. Box 601203, D-14412 Potsdam (Germany)

    2007-02-15

    This study explores the effects of atmospheric CO2 enrichment and climate change on soil moisture (W{sub r} ) and biome-level water limitation (L{sub TA}), using a dynamic global vegetation and water balance model forced by five different scenarios of change in temperature, precipitation, radiation, and atmospheric CO2 concentration, all based on the same IS92a emission scenario. L{sub TA} is defined as an index that quantifies the degree to which transpiration and photosynthesis are co-limited by soil water shortage (high values indicate low water limitation). Soil moisture decreases in many regions by 2071-2100 compared to 1961-1990, though the regional pattern of change differs substantially among the scenarios due primarily to differences in GCM-specific precipitation changes. In terms of L{sub TA}, ecosystems in northern temperate latitudes are at greatest risk of increasing water limitation, while in most other latitudes L{sub TA} tends to increase (but again varies the regional pattern of change among the scenarios). The frequently opposite direction of change in W r and L{sub TA} suggests that decreases in W r are not necessarily felt by actual vegetation, which is attributable mainly to the physiological vegetation response to elevated CO2. Without this beneficial effect, the sign of change in L{sub TA} would be reversed from predominantly positive to predominantly negative.

  8. Quantifying human behavior uncertainties in a coupled agent-based model for water resources management

    Science.gov (United States)

    Hyun, J. Y.; Yang, Y. C. E.; Tidwell, V. C.; Macknick, J.

    2017-12-01

    Modeling human behaviors and decisions in water resources management is a challenging issue due to its complexity and uncertain characteristics that affected by both internal (such as stakeholder's beliefs on any external information) and external factors (such as future policies and weather/climate forecast). Stakeholders' decision regarding how much water they need is usually not entirely rational in the real-world cases, so it is not quite suitable to model their decisions with a centralized (top-down) approach that assume everyone in a watershed follow the same order or pursue the same objective. Agent-based modeling (ABM) uses a decentralized approach (bottom-up) that allow each stakeholder to make his/her own decision based on his/her own objective and the belief of information acquired. In this study, we develop an ABM which incorporates the psychological human decision process by the theory of risk perception. The theory of risk perception quantifies human behaviors and decisions uncertainties using two sequential methodologies: the Bayesian Inference and the Cost-Loss Problem. The developed ABM is coupled with a regulation-based water system model: Riverware (RW) to evaluate different human decision uncertainties in water resources management. The San Juan River Basin in New Mexico (Figure 1) is chosen as a case study area, while we define 19 major irrigation districts as water use agents and their primary decision is to decide the irrigated area on an annual basis. This decision will be affected by three external factors: 1) upstream precipitation forecast (potential amount of water availability), 2) violation of the downstream minimum flow (required to support ecosystems), and 3) enforcement of a shortage sharing plan (a policy that is currently undertaken in the region for drought years). Three beliefs (as internal factors) that correspond to these three external factors will also be considered in the modeling framework. The objective of this study is

  9. [New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis].

    Science.gov (United States)

    Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo

    2012-07-01

    With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.

  10. An Agent Based Model of Household Water Use

    Directory of Open Access Journals (Sweden)

    Clinton J. Andrews

    2013-07-01

    Full Text Available Households consume a significant fraction of total potable water production. Strategies to improve the efficiency of water use tend to emphasize technological interventions to reduce or shift water demand. Behavioral water use reduction strategies can also play an important role, but a flexible framework for exploring the “what-ifs” has not been available. This paper introduces such a framework, presenting an agent-based model of household water-consuming behavior. The model simulates hourly water-using activities of household members within a rich technological and behavioral context, calibrated with appropriate data. Illustrative experiments compare the resulting water usage of U.S. and Dutch households and their associated water-using technologies, different household types (singles, families with children, and retired couples, different water metering regimes, and educational campaigns. All else equal, Dutch and metered households use less water. Retired households use more water because they are more often at home. Water-saving educational campaigns are effective for the part of the population that is receptive. Important interactions among these factors, both technological and behavioral, highlight the value of this framework for integrated analysis of the human-technology-water system.

  11. TURBIDITY REMOVAL FROM SURFACE WATER USING ...

    African Journals Online (AJOL)

    User

    2016-06-01

    Jun 1, 2016 ... Plant-based coagulants are potential alternatives to chemical coagulants used in drinking water treatment. ... Conventional water treatment systems involve the use of synthetic ..... Thesis, Royal Institute of Technology (KTH),.

  12. Gis-based procedures for hydropower potential spotting

    Energy Technology Data Exchange (ETDEWEB)

    Larentis, Dante G.; Collischonn, Walter; Tucci, Carlos E.M. [Instituto de Pesquisas Hidraulicas da UFRGS, Av. Bento Goncalves, 9500, CEP 91501-970, Caixa Postal 15029, Porto Alegre, RS (Brazil); Olivera, Francisco (Texas A and M University, Zachry Department of Civil Engineering 3136 TAMU, College Station, TX 77843-3136, US)

    2010-10-15

    The increasing demand for energy, especially from renewable and sustainable sources, spurs the development of small hydropower plants and encourages investment in new survey studies. Preliminary hydropower survey studies usually carry huge uncertainties about the technical, economic and environmental feasibility of the undeveloped potential. This paper presents a methodology for large-scale survey of hydropower potential sites to be applied in the inception phase of hydroelectric development planning. The sequence of procedures to identify hydropower sites is based on remote sensing and regional streamflow data and was automated within a GIS-based computational program: Hydrospot. The program allows spotting more potential sites along the drainage network than it would be possible in a traditional survey study, providing different types of dam-powerhouse layouts and two types (operating modes) of projects: run-of-the-river and storage projects. Preliminary results from its applications in a hydropower-developed basin in Brazil have shown Hydrospot's limitations and potentialities in giving support to the mid-to-long-term planning of the electricity sector. (author)

  13. Implementation options for DNA-based identification into ecological status assessment under the European Water Framework Directive.

    Science.gov (United States)

    Hering, Daniel; Borja, Angel; Jones, J Iwan; Pont, Didier; Boets, Pieter; Bouchez, Agnes; Bruce, Kat; Drakare, Stina; Hänfling, Bernd; Kahlert, Maria; Leese, Florian; Meissner, Kristian; Mergen, Patricia; Reyjol, Yorick; Segurado, Pedro; Vogler, Alfried; Kelly, Martyn

    2018-07-01

    Assessment of ecological status for the European Water Framework Directive (WFD) is based on "Biological Quality Elements" (BQEs), namely phytoplankton, benthic flora, benthic invertebrates and fish. Morphological identification of these organisms is a time-consuming and expensive procedure. Here, we assess the options for complementing and, perhaps, replacing morphological identification with procedures using eDNA, metabarcoding or similar approaches. We rate the applicability of DNA-based identification for the individual BQEs and water categories (rivers, lakes, transitional and coastal waters) against eleven criteria, summarised under the headlines representativeness (for example suitability of current sampling methods for DNA-based identification, errors from DNA-based species detection), sensitivity (for example capability to detect sensitive taxa, unassigned reads), precision of DNA-based identification (knowledge about uncertainty), comparability with conventional approaches (for example sensitivity of metrics to differences in DNA-based identification), cost effectiveness and environmental impact. Overall, suitability of DNA-based identification is particularly high for fish, as eDNA is a well-suited sampling approach which can replace expensive and potentially harmful methods such as gill-netting, trawling or electrofishing. Furthermore, there are attempts to replace absolute by relative abundance in metric calculations. For invertebrates and phytobenthos, the main challenges include the modification of indices and completing barcode libraries. For phytoplankton, the barcode libraries are even more problematic, due to the high taxonomic diversity in plankton samples. If current assessment concepts are kept, DNA-based identification is least appropriate for macrophytes (rivers, lakes) and angiosperms/macroalgae (transitional and coastal waters), which are surveyed rather than sampled. We discuss general implications of implementing DNA-based identification

  14. Water-saving analysis on an effective water reuse system in biodiesel feedstock production based on Chlorella zofingiensis fed-batch cultivation.

    Science.gov (United States)

    Yang, Kang; Qin, Lei; Wang, Zhongming; Feng, Wei; Feng, Pingzhong; Zhu, Shunni; Xu, Jingliang; Yuan, Zhenhong

    2015-01-01

    The micralgae-based biofuel obtained from dairy wastewater (DWW) is considered a promising source of energy. However, this process consumes water due to the concentration of wastewater being normally too high for some micoralgae cultivation, and dilution is always needed. In this work, the cultivation of microalgae has been examined in non-recirculated water (NR) and recirculated water systems (R). The growth of Chlorella zofingiensis and the nutrient removal of DWW have been recorded. The comparison indicates the R had a little more advantage in biomass and lipid output (1.55, 0.22 g, respectively) than the NR (1.51, 0.20 g, respectively). However, the total chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and total phosphorus (TP) removals of the R were lower than those of the NR system during the culture. The highest removal of total COD, TKN, and TP were 85.05%, 93.64%, and 98.45%, respectively. Furthermore, no significant difference has been observed in the higher heating value and lipid content of the biomass of the R and NR. The results show the R can save 30% of the total water input during the culture. All above results indicate the R system has great potential in industry.

  15. A Synthesis of Sierran Forest Biomass Management Studies and Potential Effects on Water Quality

    Directory of Open Access Journals (Sweden)

    Peter J. Weisberg

    2010-09-01

    Full Text Available The Lake Tahoe basin, located along the California and Nevada border between the Carson and Sierra Nevada mountain ranges, represents a complex forested ecosystem consisting of numerous sub-watersheds and tributaries that discharge directly to Lake Tahoe. This synthesis focuses on historical and current nutrient pools and the effects of biomass management in watersheds of the basin relative to their potential impacts on nutrient (N, P related discharge water quality. An accumulating forest floor as a result of fire suppression has resulted in the build-up of large nutrient pools that now provide a “natural” source of long term nutrient availability to surface waters. As a consequence, stand and forest floor replacing wildfire may cause a large magnitude nutrient mobilization impact on runoff water quality. Hence, mechanical harvest and controlled burning have become popular management strategies. The most ecologically significant long-term effects of controlled fire appear to be the loss of C and N from the forest floor. Although the application of controlled fire may have some initial impact on overland/litter interflow nutrient loading, controlled burning in conjunction with mechanical harvest has the potential to improve runoff water quality by reducing N and P discharge and improving the overall health of forest ecosystems without the danger of a high intensity wildfire.

  16. Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes.

    Science.gov (United States)

    Gutierrez, Mario; Reynolds, Matthew P; Klatt, Arthur R

    2010-07-01

    Spectral reflectance indices can be used to estimate the water status of plants in a rapid, non-destructive manner. Water spectral indices were measured on wheat under a range of water-deficit conditions in field-based yield trials to establish their relationship with water relations parameters as well as available volumetric soil water (AVSW) to indicate soil water extraction patterns. Three types of wheat germplasm were studied which showed a range of drought adaptation; near-isomorphic sister lines from an elite/elite cross, advanced breeding lines, and lines derived from interspecific hybridization with wild relatives (synthetic derivative lines). Five water spectral indices (one water index and four normalized water indices) based on near infrared wavelengths were determined under field conditions between the booting and grain-filling stages of crop development. Among all water spectral indices, one in particular, which was denominated as NWI-3, showed the most consistent associations with water relations parameters and demonstrated the strongest associations in all three germplasm sets. NWI-3 showed a strong linear relationship (r(2) >0.6-0.8) with leaf water potential (psi(leaf)) across a broad range of values (-2.0 to -4.0 MPa) that were determined by natural variation in the environment associated with intra- and inter-seasonal affects. Association observed between NWI-3 and canopy temperature (CT) was consistent with the idea that genotypes with a better hydration status have a larger water flux (increased stomatal conductance) during the day. NWI-3 was also related to soil water potential (psi(soil)) and AVSW, indicating that drought-adapted lines could extract more water from deeper soil profiles to maintain favourable water relations. NWI-3 was sufficiently sensitive to detect genotypic differences (indicated by phenotypic and genetic correlations) in water status at the canopy and soil levels indicating its potential application in precision

  17. Characterization of Yersinia enterocolitica strains potentially virulent for humans and animals in river water.

    Science.gov (United States)

    Terech-Majewska, E; Pajdak, J; Platt-Samoraj, A; Szczerba-Turek, A; Bancerz-Kisiel, A; Grabowska, K

    2016-08-01

    The aim of this study was to isolate and identify potentially pathogenic strains of Yersinia enterocolitica in water samples collected from the upstream section of the Drwęca River in Poland. Thirty-nine water samples were collected. Strains were isolated, identified with the use of the API(®) 20E test kit (Biomerieux, Marcy l'Etoile, France) at 37°C, serotyped and subjected to a molecular analysis. Multiplex PCR was carried out to amplify three virulence genes: ail, ystA and ystB. Fragments of ail and ystA genes were not identified in the genetic material of the analysed strains. The ystB gene was identified in four strains. Yersinia enterocolitica strains of biotype 1A, which contain the ystB gene, may cause gastrointestinal problems. In our study, Y. enterocolitica strains of biotype 1A/ystB with serotypes 0 : 3, 0 : 5 and 0 : 8 were identified in samples collected from the Drwęca River which flows through the areas protected by Natura 2000, one of the largest networks of nature conservation areas in the European Union. The presence of Y. enterocolitica in the Drwęca River indicates that the analysed bacteria colonize natural water bodies. Most research focuses on food or sewage as a source of Y. enterocolitica infections. Little is known about the occurrence of this pathogen in natural waters. Our results show that natural waters are also a potential threat to human and animal health. © 2016 The Society for Applied Microbiology.

  18. Boundary lubrication of bearing steel in water-based lubricants with functional additives

    NARCIS (Netherlands)

    Wu, Y.

    2017-01-01

    This thesis focuses on the effect of additives on boundary lubrication of bearing steel for water-based lubrication systems. The oil-in-water (O/W) emulsion and the water-glycol based liquid were selected as the base fluids for research. Sulfur compounds, nitrogen heterocycles and graphene

  19. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    Science.gov (United States)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  20. Influence of surface topology and electrostatic potential on water/electrode systems

    Science.gov (United States)

    Siepmann, J. Ilja; Sprik, Michiel

    1995-01-01

    We have used the classical molecular dynamics technique to simulate the ordering of a water film adsorbed on an atomic model of a tip of a scanning tunneling microscope approaching a planar metal surface. For this purpose, we have developed a classical model for the water-substrate interactions that solely depends on the coordinates of the particles and does not require the definition of geometrically smooth boundary surfaces or image planes. The model includes both an electrostatic induction for the metal atoms (determined by means of an extended Lagrangian technique) and a site-specific treatment of the water-metal chemisorption. As a validation of the model we have investigated the structure of water monolayers on metal substrates of various topology [the (111), (110), and (100) crystallographic faces] and composition (Pt, Ag, Cu, and Ni), and compared the results to experiments. The modeling of the electrostatic induction is compatible with a finite external potential imposed on the metal. This feature is used to investigate the structural rearrangements of the water bilayer between the pair of scanning tunneling microscope electrodes in response to an applied external voltage difference. We find significant asymmetry in the dependence on the sign of the applied voltage. Another result of the calculation is an estimate of the perturbation to the work function caused by the wetting film. For the conditions typical for operation of a scanning tunneling microscope probe, the change in the work function is found to be comparable to the applied voltage (a few hundred millivolts).