WorldWideScience

Sample records for water oxidation tracked

  1. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Güven, Olgun [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Zdorovets, Maxim V. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Taltenov, Abzal A. [The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan)

    2015-12-15

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H{sub 2}O{sub 2} under UV irradiation (H{sub 2}O{sub 2}/UV) and Fenton system under visible light (Fenton/H{sub 2}O{sub 2}/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H{sub 2}O{sub 2}/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H{sub 2}O{sub 2}/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  2. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    International Nuclear Information System (INIS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-01-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H 2 O 2 under UV irradiation (H 2 O 2 /UV) and Fenton system under visible light (Fenton/H 2 O 2 /Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H 2 O 2 /UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H 2 O 2 /Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  3. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Science.gov (United States)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-12-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H2O2 under UV irradiation (H2O2/UV) and Fenton system under visible light (Fenton/H2O2/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H2O2/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H2O2/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  4. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  5. Stem cell tracking using iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Bull E

    2014-03-01

    Full Text Available Elizabeth Bull,1 Seyed Yazdan Madani,1 Roosey Sheth,1 Amelia Seifalian,1 Mark Green,2 Alexander M Seifalian1,31UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, 2Department of Physics, King’s College London, Strand Campus, London, UK; 3Royal Free London National Health Service Foundation Trust Hospital, London, UKAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.Keywords: stem cells, nanoparticle, magnetic

  6. Water Reuse and Pathogen Tracking

    Science.gov (United States)

    Building product water. By designing our buildings to collect and treat water generated on-site, can be and reused for flushing our toilets and irrigating our landscaping. Several water sources are generated with-in a building including: rainwater, stormwater, graywater, blackwa...

  7. Iron Oxide as an MRI Contrast Agent for Cell Tracking

    Science.gov (United States)

    Korchinski, Daniel J.; Taha, May; Yang, Runze; Nathoo, Nabeela; Dunn, Jeff F.

    2015-01-01

    Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation. PMID:26483609

  8. Tracks FAQs: What Chemicals Are In My Drinking Water?

    Centers for Disease Control (CDC) Podcasts

    In this podcast, CDC Tracking experts discuss how you can use the Tracking Network to determine what chemicals are in your drinking water. Do you have a question for our Tracking experts? Please e-mail questions to trackingsupport@cdc.gov.

  9. ENGINEERING BULLETIN: SUPERCRITICAL WATER OXIDATION

    Science.gov (United States)

    This engineering bulletin presents a description and status of supercritical water oxidation technology, a summary of recent performance tests, and the current applicability of this emerging technology. This information is provided to assist remedial project managers, contractors...

  10. Production of the oxidation-resistant polypropylene track membranes

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Apel, P.Y.

    1999-01-01

    This paper describes results of the method of manufacturing the polypropylene track membranes produced by physicochemical treatment under irradiation of accelerated heavy ions of polymer films. The developed method allows to produce membranes 0.1 - 0.2 μm in diameter and more with an improved structural and physicochemical properties. Poly-propylene track membranes of a novel sample are characterized by high homogeneity of pore sizes in magnitude, considerable mechanical strength, advanced thermal stability and resistance to oxidation in aggressive media. It opens new fields for their usage

  11. Tracks FAQs: What Chemicals Are In My Drinking Water?

    Centers for Disease Control (CDC) Podcasts

    2011-08-10

    In this podcast, CDC Tracking experts discuss how you can use the Tracking Network to determine what chemicals are in your drinking water. Do you have a question for our Tracking experts? Please e-mail questions to trackingsupport@cdc.gov.  Created: 8/10/2011 by National Center for Environmental Health, Division of Environmental Hazards and Health Effects, Environmental Health Tracking Branch.   Date Released: 8/10/2011.

  12. Supercritical Water Oxidation Program (SCWOP)

    International Nuclear Information System (INIS)

    1994-02-01

    Purpose of SCWOP is to develop and demonstrate supercritical water oxidation as a viable technology for treating DOE hazardous and mixed wastes and to coordinate SCWO research, development, demonstration, testing, and evaluation activities. The process involves bringing together organic waste, water, and an oxidant (air, O 2 , etc.) to temperatures and pressures above water's critical point (374 C, 22.1 MPa); organic destruction is >99.99% efficient, and the resulting effluents (mostly water, CO 2 ) are relatively benign. Pilot-scale (300--500 gallons/day) SCWO units are to be constructed and demonstrated. Two phases will be conducted: hazardous waste pilot plant demonstration and mixed waste pilot demonstration. Contacts for further information and for getting involved are given

  13. Accelerated evaporation of water on graphene oxide.

    Science.gov (United States)

    Wan, Rongzheng; Shi, Guosheng

    2017-03-29

    Using molecular dynamics simulations, we show that the evaporation of nanoscale volumes of water on patterned graphene oxide is faster than that on homogeneous graphene oxide. The evaporation rate of water is insensitive to variation in the oxidation degree of the oxidized regions, so long as the water film is only distributed on the oxidized regions. The evaporation rate drops when the water film spreads onto the unoxidized regions. Further analysis showed that varying the oxidation degree observably changed the interaction between the outmost water molecules and the solid surface, but the total interaction for the outmost water molecules only changed a very limited amount due to the correspondingly regulated water-water interaction when the water film is only distributed on the oxidized regions. When the oxidation degree is too low and some unoxidized regions are also covered by the water film, the thickness of the water film decreases, which extends the lifetime of the hydrogen bonds for the outmost water molecules and lowers the evaporation rate of the water. The insensitivity of water evaporation to the oxidation degree indicates that we only need to control the scale of the unoxidized and oxidized regions for graphene oxide to regulate the evaporation of nanoscale volumes of water.

  14. Uranium oxidation: characterization of oxides formed by reaction with water

    International Nuclear Information System (INIS)

    Fuller, E.L. Jr.; Smyrl, N.R.; Condon, J.B.; Eager, M.H.

    1983-01-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. Results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. 27 figures

  15. Arctic water tracks retain phosphorus and transport ammonium

    Science.gov (United States)

    Harms, T.; Cook, C. L.; Wlostowski, A. N.; Godsey, S.; Gooseff, M. N.

    2017-12-01

    Hydrologic flowpaths propagate biogeochemical signals among adjacent ecosystems, but reactions may attenuate signals by retaining, removing, or transforming dissolved and suspended materials. The theory of nutrient spiraling describes these simultaneous reaction and transport processes, but its application has been limited to stream channels. We applied nutrient spiraling theory to water tracks, zero-order channels draining Arctic hillslopes that contain perennially saturated soils and flow at the surface either perennially or in response to precipitation. In the Arctic, experimental warming results in increased availability of nitrogen, the limiting nutrient for hillslope vegetation at the study site, which may be delivered to aquatic ecosystems by water tracks. Increased intensity of rain events, deeper snowpack, earlier snowmelt, and increasing thaw depth resulting from climate change might support increased transport of nutrients, but the reactive capacity of hillslope flowpaths, including sorption and uptake by plants and microbes, could counter transport to regulate solute flux. Characteristics of flowpaths might influence the opportunity for reaction, where slower flowpaths increase the contact time between solutes and soils or roots. We measured nitrogen and phosphorus uptake and transient storage of water tracks through the growing season and found that water tracks retain inorganic phosphorus, but transport ammonium. Nutrient uptake was unrelated to transient storage, suggesting high capacity for nutrient retention by shallow organic soils and vegetation. These observations indicate that increased availability of ammonium, the biogeochemical signal of warming tundra, is propagated by hillslope flowpaths, whereas water tracks attenuate delivery of phosphorus to aquatic ecosystems, where its availability typically limits production.

  16. Water effect on sensitivity and tracks regression on SSNTD

    Energy Technology Data Exchange (ETDEWEB)

    Benderac, R.; Glisovic, D.; Antanasijevic, R.; Vukovic, J.; Todorovic, Z.

    1986-01-01

    The detection characteristics for different kinds of cellulose nitrate as a function of water treatment between originate of latent alpha tracks and etching were determined. It has been shown that efficiency depends on their physico-chemical characteristics. Registration efficiency has been also determined for alpha particles for different kinds of cellulose nitrates as a function of uranium salts concentration.

  17. Application of graphene oxide in water treatment

    Science.gov (United States)

    Liu, Yongchen

    2017-11-01

    Graphene oxide has good hydrophilicity and has been tried to use it into thin films for water treatment in recent years. In this paper, the preparation methods of graphene oxide membrane are reviewed, including vacuum suction filtration, spray coating, spin coating, dip coating and the layer by layer method. Secondly, the mechanism of mass transfer of graphene membrane is introduced in detail. The application of the graphene oxide membrane, modified graphene oxide membrane and graphene hybrid membranes were discussed in RO, vaporization, nanofiltration and other aspects. Finally, the development and application of graphene membrane in water treatment were discussed.

  18. Zinc oxide nanoparticles for water disinfection

    Directory of Open Access Journals (Sweden)

    Emelita Asuncion S. Dimapilis

    2018-03-01

    Full Text Available The world faces a growing challenge for adequate clean water due to threats coming from increasing demand and decreasing supply. Although there are existing technologies for water disinfection, their limitations, particularly the formation of disinfection-by-products, have led to researches on alternative methods. Zinc oxide, an essential chemical in the rubber and pharmaceutical industries, has attracted interest as antimicrobial agent. In nanoscale, zinc oxide has shown antimicrobial properties which make its potential great for various applications. This review discusses the synthesis of zinc oxide with focus on precipitation method, its antimicrobial property and the factors affecting it, disinfection mechanisms, and the potential application to water disinfection.

  19. Successful treatment with supercritical water oxidation

    International Nuclear Information System (INIS)

    Jensen, R.

    1994-01-01

    Supercritical Water Oxidation (SCWO) operates in a totally enclosed system. It uses water at high temperatures and high pressure to chemically change wastes. Oily substances become soluble and complex hydrocarbons are converted into water and carbon dioxide. Research and development on SCWO is described

  20. Thallium isotopes track fluctuations in global manganese oxide burial during the Ediacaran Period

    Science.gov (United States)

    Ostrander, C. M.; Nielsen, S.; Owens, J. D.; Jiang, G.; Planavsky, N.; Sahoo, S. K.; Zhang, F.; Lyons, T. W.; Anbar, A. D.

    2017-12-01

    Complex marine ecosystems appear in the geologic record for the first time during the Ediacaran (635 - 541 Ma), after the Marinoan Glaciation but before the Cambrian Explosion. Much debate surrounds the redox-state of global oceans during this diversification, with some arguing for pervasive anoxic conditions and others for increased oxygenation, including the possibility of episodic oxygen increases. Here, we use thallium (Tl) isotopes preserved in organic-rich shales from a deep-water section at Wuhe, South China, to track large-scale perturbations in Mn oxide burial during the Ediacaran. Changes to the Tl isotope composition of seawater over geologic timescales are driven dominantly by fluctuations in global Mn oxide burial, which require persistent O2 at the sediment-water interface. Importantly, the suite of sedimentary rocks analyzed is thought to have been deposited beneath persistent localized euxinia, which is an environment shown to effectively capture the Tl isotope composition of seawater. Within samples previously suggested to host oceanic oxygenation episodes (OOEs) because of high redox-sensitive element (RSE) enrichments (Sahoo et al. 2016, Geobiology), we find Tl isotope values as light as -5 epsilon units, which are indicative of removal of heavy Tl by Mn oxides elsewhere in the Ediacaran ocean and in-line with the presence of deep-marine O2. Intriguingly, between these events, during periods previously viewed as dominantly anoxic, we find Tl isotope excursions to values that are even lighter than during the OOEs (less than -10 epsilon units). To first order, these results imply that an even larger Mn oxide sink was present between the OOEs, which would require pervasive oceanic oxygenation. This interpretation is in direct conflict with interpretations of low RSE enrichments in these same samples, which invoke reservoir drawdown due to widespread anoxia—as well as many other data that suggest dominantly anoxic deep marine conditions through the

  1. Iron Oxide as an Mri Contrast Agent for Cell Tracking: Supplementary Issue

    Directory of Open Access Journals (Sweden)

    Daniel J. Korchinski

    2015-01-01

    Full Text Available Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation.

  2. Water clustering on nanostructured iron oxide films

    DEFF Research Database (Denmark)

    Merte, Lindsay Richard; Bechstein, Ralf; Peng, G.

    2014-01-01

    , but it is not well-understood how these hydroxyl groups and their distribution on a surface affect the molecular-scale structure at the interface. Here we report a study of water clustering on a moire-structured iron oxide thin film with a controlled density of hydroxyl groups. While large amorphous monolayer...... islands form on the bare film, the hydroxylated iron oxide film acts as a hydrophilic nanotemplate, causing the formation of a regular array of ice-like hexameric nanoclusters. The formation of this ordered phase is localized at the nanometre scale; with increasing water coverage, ordered and amorphous...

  3. Superconductor made by electrolyzed and oxidized water

    OpenAIRE

    Liu, Chia-Jyi; Wu, Tsung-Hsien; Hsu, Lin-Li; Wang, Jung-Sheng; Chen, Shu-Yo; Chang, Wei Jen; Lin, Jiunn-Yuan

    2006-01-01

    By deintercalation of Na+ followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of gamma-Na0.7CoO2 undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na0.35(H2O)1.3CoO2-delta with the c-axis expanded from c = 10.9 anstrom to c = 19.6 anstrom. In this paper, we demonstrate that the superconducting phase of c = 19.6 anstrom can be directly obtained by simply immersing gamma-Na0.7CoO2 powders in electrolyzed/oxidized (EO) water, wh...

  4. Methane oxidation in anoxic lake waters

    Science.gov (United States)

    Su, Guangyi; Zopfi, Jakob; Niemann, Helge; Lehmann, Moritz

    2017-04-01

    Freshwater habitats such as lakes are important sources of methante (CH4), however, most studies in lacustrine environments so far provided evidence for aerobic methane oxidation only, and little is known about the importance of anaerobic oxidation of CH4 (AOM) in anoxic lake waters. In marine environments, sulfate reduction coupled to AOM by archaea has been recognized as important sinks of CH4. More recently, the discorvery of anaerobic methane oxidizing denitrifying bacteria represents a novel and possible alternative AOM pathway, involving reactive nitrogen species (e.g., nitrate and nitrite) as electron acceptors in the absence of oxygen. We investigate anaerobic methane oxidation in the water column of two hydrochemically contrasting sites in Lake Lugano, Switzerland. The South Basin displays seasonal stratification, the development of a benthic nepheloid layer and anoxia during summer and fall. The North Basin is permanently stratified with anoxic conditions below 115m water depth. Both Basins accumulate seasonally (South Basin) or permanently (North Basin) large amounts of CH4 in the water column below the chemocline, providing ideal conditions for methanotrophic microorganisms. Previous work revealed a high potential for aerobic methane oxidation within the anoxic water column, but no evidence for true AOM. Here, we show depth distribution data of dissolved CH4, methane oxidation rates and nutrients at both sites. In addition, we performed high resolution phylogenetic analyses of microbial community structures and conducted radio-label incubation experiments with concentrated biomass from anoxic waters and potential alternative electron acceptor additions (nitrate, nitrite and sulfate). First results from the unamended experiments revealed maximum activity of methane oxidation below the redoxcline in both basins. While the incubation experiments neither provided clear evidence for NOx- nor sulfate-dependent AOM, the phylogenetic analysis revealed the

  5. Water track distribution and effects on carbon dioxide flux in an eastern Siberian upland tundra landscape

    International Nuclear Information System (INIS)

    Curasi, Salvatore R; Loranty, Michael M; Natali, Susan M

    2016-01-01

    Shrub expansion in tundra ecosystems may act as a positive feedback to climate warming, the strength of which depends on its spatial extent. Recent studies have shown that shrub expansion is more likely to occur in areas with high soil moisture and nutrient availability, conditions typically found in sub-surface water channels known as water tracks. Water tracks are 5–15 m wide channels of subsurface water drainage in permafrost landscapes and are characterized by deeper seasonal thaw depth, warmer soil temperatures, and higher soil moisture and nutrient content relative to adjacent tundra. Consequently, enhanced vegetation productivity, and dominance by tall deciduous shrubs, are typical in water tracks. Quantifying the distribution of water tracks may inform investigations of the extent of shrub expansion and associated impacts on tundra ecosystem carbon cycling. Here, we quantify the distribution of water tracks and their contribution to growing season CO 2 dynamics for a Siberian tundra landscape using satellite observations, meteorological data, and field measurements. We find that water tracks occupy 7.4% of the 448 km 2 study area, and account for a slightly larger proportion of growing season carbon uptake relative to surrounding tundra. For areas inside water tracks dominated by shrubs, field observations revealed higher shrub biomass and higher ecosystem respiration and gross primary productivity relative to adjacent upland tundra. Conversely, a comparison of graminoid-dominated areas in water tracks and inter-track tundra revealed that water track locations dominated by graminoids had lower shrub biomass yet increased net uptake of CO 2 . Our results show water tracks are an important component of this landscape. Their distribution will influence ecosystem structural and functional responses to climate, and is therefore of importance for modeling. (letter)

  6. Electrosynthesis of Biomimetic Manganese-Calcium Oxides for Water Oxidation Catalysis--Atomic Structure and Functionality.

    Science.gov (United States)

    González-Flores, Diego; Zaharieva, Ivelina; Heidkamp, Jonathan; Chernev, Petko; Martínez-Moreno, Elías; Pasquini, Chiara; Mohammadi, Mohammad Reza; Klingan, Katharina; Gernet, Ulrich; Fischer, Anna; Dau, Holger

    2016-02-19

    Water-oxidizing calcium-manganese oxides, which mimic the inorganic core of the biological catalyst, were synthesized and structurally characterized by X-ray absorption spectroscopy at the manganese and calcium K edges. The amorphous, birnesite-type oxides are obtained through a simple protocol that involves electrodeposition followed by active-site creation through annealing at moderate temperatures. Calcium ions are inessential, but tune the electrocatalytic properties. For increasing calcium/manganese molar ratios, both Tafel slopes and exchange current densities decrease gradually, resulting in optimal catalytic performance at calcium/manganese molar ratios of close to 10 %. Tracking UV/Vis absorption changes during electrochemical operation suggests that inactive oxides reach their highest, all-Mn(IV) oxidation state at comparably low electrode potentials. The ability to undergo redox transitions and the presence of a minor fraction of Mn(III) ions at catalytic potentials is identified as a prerequisite for catalytic activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Supercritical water oxidation treatment of textile sludge.

    Science.gov (United States)

    Zhang, Jie; Wang, Shuzhong; Li, Yanhui; Lu, Jinling; Chen, Senlin; Luo, XingQi

    2017-08-01

    In this work, we studied the supercritical water oxidation (SCWO) of the textile sludge, the hydrothermal conversion of typical textile compounds and the corrosion properties of stainless steel 316. Moreover, the influence mechanisms of NaOH during these related processes were explored. The results show that decomposition efficiency for organic matter in liquid phase of the textile sludge was improved with the increment of reaction temperature or oxidation coefficient. However, the organic substance in solid phase can be oxidized completely in supercritical water. Serious coking occurred during the high pressure water at 250-450°C for the Reactive Orange 7, while at 300 and 350°C for the polyvinyl alcohol. The addition of NaOH not only accelerated the destruction of organic contaminants in the SCWO reactor, but effectively inhibited the dehydration conversion of textile compounds during the preheating process, which was favorable for the treatment system of textile sludge. The corrosion experiment results indicate that the stainless steel 316 could be competent for the body materials of the reactor and the heat exchangers. Furthermore, there was prominent enhancement of sodium hydroxide for the corrosion resistance of 316 in subcritical water. On the contrary the effect was almost none during SCWO.

  8. Supercritical Water Oxidation Total Organic Carbon (TOC) Analysis

    Science.gov (United States)

    The work presented here is the evaluation of the modified wet‐oxidation method described as Supercritical Water Oxidation (SCWO) for the analysis of total organic carbon (TOC) in very difficult oil/gas produced water sample matrices.

  9. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    Density functional theory calculations are used as the basis for an analysis of the electrochemical process, where by water is split to form molecular oxygen and hydrogen. We develop a method for obtaining the thermochemistry of the electrochemical water splitting process as a function of the bias...... directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...

  10. Developing a particle tracking surrogate model to improve inversion of ground water - Surface water models

    Science.gov (United States)

    Cousquer, Yohann; Pryet, Alexandre; Atteia, Olivier; Ferré, Ty P. A.; Delbart, Célestine; Valois, Rémi; Dupuy, Alain

    2018-03-01

    The inverse problem of groundwater models is often ill-posed and model parameters are likely to be poorly constrained. Identifiability is improved if diverse data types are used for parameter estimation. However, some models, including detailed solute transport models, are further limited by prohibitive computation times. This often precludes the use of concentration data for parameter estimation, even if those data are available. In the case of surface water-groundwater (SW-GW) models, concentration data can provide SW-GW mixing ratios, which efficiently constrain the estimate of exchange flow, but are rarely used. We propose to reduce computational limits by simulating SW-GW exchange at a sink (well or drain) based on particle tracking under steady state flow conditions. Particle tracking is used to simulate advective transport. A comparison between the particle tracking surrogate model and an advective-dispersive model shows that dispersion can often be neglected when the mixing ratio is computed for a sink, allowing for use of the particle tracking surrogate model. The surrogate model was implemented to solve the inverse problem for a real SW-GW transport problem with heads and concentrations combined in a weighted hybrid objective function. The resulting inversion showed markedly reduced uncertainty in the transmissivity field compared to calibration on head data alone.

  11. Supercritical water oxidation benchscale testing metallurgical analysis report

    International Nuclear Information System (INIS)

    Norby, B.C.

    1993-02-01

    This report describes metallurgical evaluation of witness wires from a series of tests using supercritical water oxidation (SCWO) to process cutting oil containing a simulated radionuclide. The goal of the tests was to evaluate the technology's ability to process a highly chlorinated waste representative of many mixed waste streams generated in the DOE complex. The testing was conducted with a bench-scale SCWO system developed by the Modell Development Corporation. Significant test objectives included process optimization for adequate destruction efficiency, tracking the radionuclide simulant and certain metals in the effluent streams, and assessment of reactor material degradation resulting from processing a highly chlorinated waste. The metallurgical evaluation described herein includes results of metallographic analysis and Scanning Electron Microscopy analysis of witness wires exposed to the SCWO environment for one test series

  12. Oxidation of oily sludge in supercritical water

    International Nuclear Information System (INIS)

    Cui Baochen; Cui Fuyi; Jing Guolin; Xu Shengli; Huo Weijing; Liu Shuzhi

    2009-01-01

    The oxidation of oily sludge in supercritical water is performed in a batch reactor at reaction temperatures between 663 and 723 K, the reaction times between 1 and 10 min and pressure between 23 and 27 MPa. Effect of reaction parameters such as reaction time, temperature, pressure, O 2 excess and initial COD on oxidation of oily sludge is investigated. The results indicate that chemical oxygen demand (COD) removal rate of 92% can be reached in 10 min. COD removal rate increases as the reaction time, temperature and initial COD increase. Pressure and O 2 excess have no remarkable affect on reaction. By taking into account the dependence of reaction rate on COD concentration, a global power-law rate expression was regressed from experimental data. The resulting pre-exponential factor was 8.99 x 10 14 (mol L -1 ) -0.405 s -1 ; the activation energy was 213.13 ± 1.33 kJ/mol; and the reaction order for oily sludge (based on COD) is 1.405. It was concluded that supercritical water oxidation (SCWO) is a rapidly emerging oily sludge processing technology.

  13. An engineered polypeptide around nano-sized manganese-calcium oxide: copying plants for water oxidation.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Sarvi, Bahram; Haghighi, Behzad

    2015-09-14

    Synthesis of new efficient catalysts inspired by Nature is a key goal in the production of clean fuel. Different compounds based on manganese oxide have been investigated in order to find their water-oxidation activity. Herein, we introduce a novel engineered polypeptide containing tyrosine around nano-sized manganese-calcium oxide, which was shown to be a highly active catalyst toward water oxidation at low overpotential (240 mV), with high turnover frequency of 1.5 × 10(-2) s(-1) at pH = 6.3 in the Mn(III)/Mn(IV) oxidation range. The compound is a novel structural and efficient functional model for the water-oxidizing complex in Photosystem II. A new proposed clever strategy used by Nature in water oxidation is also discussed. The new model of the water-oxidizing complex opens a new perspective for synthesis of efficient water-oxidation catalysts.

  14. Data needs for the track structure of alpha particles and electrons in water

    International Nuclear Information System (INIS)

    Pagnamenta, A.

    1983-01-01

    We have made calculations of the ionization spectra for alpha particle and electron tracks in water. We have also computed the number of ions created per micrometre of track length, the energy distribution of the secondaries, and the energy expended per ion pair created. Our aim is less toward theoretical derivations than to obtain a numerically accurate description of the track structure at all energies in a form suitable for biomedical applications. 13 references

  15. Uranium oxidation: Characterization of oxides formed by reaction with water by infrared and sorption analyses

    Science.gov (United States)

    Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.

    1984-04-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.

  16. Stereoscopic Feature Tracking System for Retrieving Velocity of Surface Waters

    Science.gov (United States)

    Zuniga Zamalloa, C. C.; Landry, B. J.

    2017-12-01

    The present work is concerned with the surface velocity retrieval of flows using a stereoscopic setup and finding the correspondence in the images via feature tracking (FT). The feature tracking provides a key benefit of substantially reducing the level of user input. In contrast to other commonly used methods (e.g., normalized cross-correlation), FT does not require the user to prescribe interrogation window sizes and removes the need for masking when specularities are present. The results of the current FT methodology are comparable to those obtained via Large Scale Particle Image Velocimetry while requiring little to no user input which allowed for rapid, automated processing of imagery.

  17. Tracking Water-Use in Colorado's Energy Exploration and Development

    Science.gov (United States)

    Halamka, T. A.; Ge, S.

    2017-12-01

    By the year 2050 Colorado's population is projected to nearly double, posing many important questions about the stresses that Colorado's water resources will experience. Growing in tandem with Colorado's population is the state's energy exploration and development industry. As water demands increase across the state, the energy exploration and development industry must adapt to and prepare for future difficulties surrounding the legal acquisition of water. The goal of this study is to map out the potential sources of water within the state of Colorado that are being purchased, or will be eligible for purchase, for unconventional subsurface energy extraction. The background of this study includes an overview of the intertwined relationship between water, the energy industry, and the Colorado economy. The project also aims to determine the original purpose of legally appropriated water that is used in Colorado's energy exploration and development. Is the water primarily being purchased or leased from the agricultural sector? Is the water mostly surface water or groundwater? In order to answer these questions, we accessed data from numerous water reporting agencies and examined legal methods of acquisition of water for use in the energy industry. Using these data, we assess the future water quantity available to the energy industry. Knowledge and foresight on the origins of the water used by the energy industry will allow for better and strategic planning of water resources and how the industry will respond to statewide water-related stresses.

  18. Application of an automatic cloud tracking technique to Meteosat water vapor and infrared observations

    Science.gov (United States)

    Endlich, R. M.; Wolf, D. E.

    1980-01-01

    The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).

  19. Boosting water oxidation layer-by-layer.

    Science.gov (United States)

    Hidalgo-Acosta, Jonnathan C; Scanlon, Micheál D; Méndez, Manuel A; Amstutz, Véronique; Vrubel, Heron; Opallo, Marcin; Girault, Hubert H

    2016-04-07

    Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(III)/Ir(IV) and Ir(IV)-Ir(IV)/Ir(IV)-Ir(V) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology.

  20. Tracking Solid Oxide Cell Microstructure Evolution by High Resolution 3D Nano-Tomography

    DEFF Research Database (Denmark)

    De Angelis, Salvatore

    . The degradation processes are mainly attributed to morphological changes occurring within the electrodes microstructure. Therefore, precise tracking of 3D microstructural evolution during operation is considered crucial to understanding the complex relationship between microstructure and performance. In this work......, X-ray ptychographic tomography is applied to SOC materials, demonstrating unprecedented spatial resolution and data quality. The eect of a complete redox cycle on the same Ni-YSZ microstructure is visualized ex-situ in 3D, showing major rearrangement of the nickel network after reduction......, the formation of cracks in the YSZ, and void formation in nickel oxide after oxidation. Capitalizing on the high resolution of ptychography, the eect of nickel coarsening on the Ni-YSZ microstructure evolution is studied ex-situ in three dimensions, while the sample is repeatedly scanned and treated at high...

  1. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  2. Uranium analysis in water flowing by the nuclear track detection method on solid dielectric materials

    International Nuclear Information System (INIS)

    Arambula, H.

    1981-01-01

    The objective of this experiment was threefold: to study the content of uranium in tap and spring water, to establish a technique for the quantitative analysis for the presence of uranium in liquids, and to test the qualities as detector fission fragments of three solid insulator materials using the nuclear tracks register method. The latter allows for the measurement of concentrations of fissile elements up to 10 -12 gr/gm employing (n, f.f.) reactions. The test samples were of tap water and of water from six fresh water springs located in San Luis Potosi and Guanajuato. Glass, lexan polycarbonate and muscovite mica were the detector materials used. The technique consisted in evaporating the water from the test samples, which had been previously placed upon the detector materials, and in doing the same for the standard control sample solutions having known concentrations of uranium. All the samples were then irradiated with thermal neutrons, and the 235 U, present in the samples, fissioned. The fission fragments produced permanent damage on the detectors, known as latent tracks. A specific corroding chemical was then applied to each detector which caused the latent tracks to dissolve into grooves. Known as etching tracks, these grooves were microscopically visible and could be measured for track density (tracks/mm 2 ). The concentrations of uranium present in the test samples were measured by comparing the track densities of the test samples with those of the standard control samples. The concentration of uranium found in the spring water samples ranged from 0.09 to 0.89 μqr.U/1, and those of tap water, from 0.18 to 0.19 μqr U/1. Lexan polycarbonate and muscovite mica proved to be better, as detectors, than glass. Glass for quantitative analysis, we found not recommendable as a detector material because of its alterable composition in the presence of uranium. (author)

  3. Contribution of macrophages in the contrast loss in iron oxide-based MRI cancer cell tracking studies

    Science.gov (United States)

    Danhier, Pierre; Deumer, Gladys; Joudiou, Nicolas; Bouzin, Caroline; Levêque, Philippe; Haufroid, Vincent; Jordan, Bénédicte F.; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard

    2017-01-01

    Magnetic resonance imaging (MRI) cell tracking of cancer cells labeled with superparamagnetic iron oxides (SPIO) allows visualizing metastatic cells in preclinical models. However, previous works showed that the signal void induced by SPIO on T2(*)-weighted images decreased over time. Here, we aim at characterizing the fate of iron oxide nanoparticles used in cell tracking studies and the role of macrophages in SPIO metabolism. In vivo MRI cell tracking of SPIO positive 4T1 breast cancer cells revealed a quick loss of T2* contrast after injection. We next took advantage of electron paramagnetic resonance (EPR) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) for characterizing the evolution of superparamagnetic and non-superparamagnetic iron pools in 4T1 breast cancer cells and J774 macrophages after SPIO labeling. These in vitro experiments and histology studies performed on 4T1 tumors highlighted the quick degradation of iron oxides by macrophages in SPIO-based cell tracking experiments. In conclusion, the release of SPIO by dying cancer cells and the subsequent uptake of iron oxides by tumor macrophages are limiting factors in MRI cell tracking experiments that plead for the use of (MR) reporter-gene based imaging methods for the long-term tracking of metastatic cells. PMID:28467814

  4. Thorium determination in water and biological materials by fission track

    International Nuclear Information System (INIS)

    Melo Ferreira, A.C. de.

    1989-01-01

    As a segment of a research programme on the study of bioaccumulation of radionuclides, in animals and vegetables from Morro do Ferro, Pocos de Caldas, MG, a fission track method for the determination of low levels of thorium in environmental samples was developed as an alternative for alpha spectroscopy. The study was carried out in early alpha spectroscopy samples, containing high levels of 228 Th activity, which makes difficult the 232 Th determination. A dry way method for thorium evaluation was developed. Pieces of membrane filters, containing La F 3 (Th), coupled to Makrofol detectors, were irradiated in the core of a research reactor, IEA-R1 (IPEN). (author)

  5. Tracking nitrogen oxides, nitrous acid, and nitric acid from biomass burning

    Science.gov (United States)

    Chai, J.; Miller, D. J.; Scheuer, E. M.; Dibb, J. E.; Hastings, M. G.

    2017-12-01

    Biomass burning emissions are an important source of atmospheric nitrogen oxides (NOx = NO + NO2) and nitrous acid (HONO), which play important roles in atmosphere oxidation capacity (hydroxyl radical and ozone formation) and have severe impacts on air quality and climate in the presence of sunlight and volatile organic compounds. However, tracking NOx and HONO and their chemistry in the atmosphere based on concentration alone is challenging. Isotopic analysis provides a potential tracking tool. In this study, we measured the nitrogen isotopic composition (δ15N) of NOx (NO + NO2) and HONO, and soluble HONO and HNO3 during the Fire Influence on Regional and Global Environments Experiment (FIREX) laboratory experiments at the Missoula Fire Laboratory. Our newly developed and validated annular denuder system (ADS) enabled us to effectively trap HONO prior to a NOx collection system in series for isotopic analysis. In total we investigated 25 "stack" fires of various biomass materials where the emissions were measured within a few seconds of production by the fire. HONO concentration was measured in parallel using mist chamber/ion chromatography (MC/IC). The recovered mean HONO concentrations from ADS during the burn of each fire agree well with that measured via MC/IC. δ15N-NOx ranged from -4.3 ‰ to + 7.0 ‰ with a median of 0.7 ‰. Combined with a similar, recent study by our group [Fibiger et al., ES&T, 2017] the δ15N-NOx follows a linear relationship with δ15N-biomass (δ15N-NOx =0.94 x δ15N-biomass +1.98; R2=0.72). δ15N-HONO ranged from -5.3 to +8.3 ‰ with a median of 1.4 ‰. While both HONO and NOx are sourced from N in the biomass fuel, the secondary formation of HONO likely induces fractionation of the N that leads to the difference between δ15N-NOx and δ15N-HONO. We found a correlation of δ15N-HONO= 0.86 x δ15N-NOx + 0.52 (R2=0.55), which can potentially be used to track the chemistry of HONO formation following fire emissions. The methods

  6. Etching of fission tracks in silicate glasses by means of deionized water

    International Nuclear Information System (INIS)

    Dran, J.C.; Petit, J.C.

    1985-09-01

    Fission tracks have been revealed in silicate glasses with deionized water. Their sharp conical shape implies a marked enhancement of the dissolution rate along their core and consequently a cone angle and an etching efficiency (close to 100%) much higher than previously reported for glasses. We show that etching of fission tracks in natural environments has generally very limited geochemical implications except in specific cases such as that found in the Oklo uranium ores

  7. Water-Column Stratification Observed along an AUV-Tracked Isotherm

    Science.gov (United States)

    Zhang, Y.; Messié, M.; Ryan, J. P.; Kieft, B.; Stanway, M. J.; Hobson, B.; O'Reilly, T. C.; Raanan, B. Y.; Smith, J. M.; Chavez, F.

    2016-02-01

    Studies of marine physical, chemical and microbiological processes benefit from observing in a Lagrangian frame of reference, i.e. drifting with ambient water. Because these processes can be organized relative to specific density or temperature ranges, maintaining observing platforms within targeted environmental ranges is an important observing strategy. We have developed a novel method to enable a Tethys-class long-range autonomous underwater vehicle (AUV) (which has a propeller and a buoyancy engine) to track a target isotherm in buoyancy-controlled drift mode. In this mode, the vehicle shuts off its propeller and autonomously detects the isotherm and stays with it by actively controlling the vehicle's buoyancy. In the June 2015 CANON (Controlled, Agile, and Novel Observing Network) Experiment in Monterey Bay, California, AUV Makai tracked a target isotherm for 13 hours to study the coastal upwelling system. The tracked isotherm started from 33 m depth, shoaled to 10 m, and then deepened to 29 m. The thickness of the tracked isotherm layer (within 0.3°C error from the target temperature) increased over this duration, reflecting weakened stratification around the isotherm. During Makai's isotherm tracking, another long-range AUV, Daphne, acoustically tracked Makai on a circular yo-yo trajectory, measuring water-column profiles in Makai's vicinity. A wave glider also acoustically tracked Makai, providing sea surface measurements on the track. The presented method is a new approach for studying water-column stratification, but requires careful analysis of the temporal and spatial variations mingled in the vehicles' measurements. We will present a synthesis of the water column's stratification in relation to the upwelling conditions, based on the in situ measurements by the mobile platforms, as well as remote sensing and mooring data.

  8. Tracking persistent pharmaceutical residues from municipal sewage to drinking water

    Science.gov (United States)

    Heberer, Thomas

    2002-09-01

    In urban areas such as Berlin (Germany) with high municipal sewage water discharges and low surface water flows there is a potential risk of drinking water contamination by polar organic compounds when groundwater recharge is used in drinking water production. Thus, some pharmaceutically active compounds (PhACs) are not eliminated completely in the municipal sewage treatment plants (STPs) and they are discharged as contaminants into the receiving waters. In terms of several monitoring studies carried out in Berlin between 1996 and 2000, PhACs such as clofibric acid, diclofenac, ibuprofen, propyphenazone, primidone and carbamazepine were detected at individual concentrations up to the μg/l-level in influent and effluent samples from STPs and in all surface water samples collected downstream from the STPs. Under recharge conditions, several compounds were also found at individual concentrations up to 7.3 μg/l in samples collected from groundwater aquifers near to contaminated water courses. A few of the PhACs were also identified at the ng/l-level in Berlin tap water samples.

  9. Semiconductor photocatalysts for water oxidation: current status and challenges.

    Science.gov (United States)

    Yang, Lingling; Zhou, Han; Fan, Tongxiang; Zhang, Di

    2014-04-21

    Artificial photosynthesis is a highly-promising strategy to convert solar energy into hydrogen energy for the relief of the global energy crisis. Water oxidation is the bottleneck for its kinetic and energetic complexity in the further enhancement of the overall efficiency of the artificial photosystem. Developing efficient and cost-effective photocatalysts for water oxidation is a growing desire, and semiconductor photocatalysts have recently attracted more attention due to their stability and simplicity. This article reviews the recent advancement of semiconductor photocatalysts with a focus on the relationship between material optimization and water oxidation efficiency. A brief introduction to artificial photosynthesis and water oxidation is given first, followed by an explanation of the basic rules and mechanisms of semiconductor particulate photocatalysts for water oxidation as theoretical references for discussions of componential, surface structure, and crystal structure modification. O2-evolving photocatalysts in Z-scheme systems are also introduced to demonstrate practical applications of water oxidation photocatalysts in artificial photosystems. The final part proposes some challenges based on the dynamics and energetics of photoholes which are fundamental to the enhancement of water oxidation efficiency, as well as on the simulation of natural water oxidation that will be a trend in future research.

  10. Supramolecular water oxidation with Ru-bda-based catalysts.

    Science.gov (United States)

    Richmond, Craig J; Matheu, Roc; Poater, Albert; Falivene, Laura; Benet-Buchholz, Jordi; Sala, Xavier; Cavallo, Luigi; Llobet, Antoni

    2014-12-22

    Extremely slow and extremely fast new water oxidation catalysts based on the Ru-bda (bda=2,2'-bipyridine-6,6'-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s(-1) , respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Supramolecular water oxidation with rubda-based catalysts

    KAUST Repository

    Richmond, Craig J.

    2014-11-05

    Extremely slow and extremely fast new water oxidation catalysts based on the Rubda (bda = 2,2′-bipyri-dine-6,6′-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycless"1, respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system p-stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts.

  12. The role of water tracks in altering biotic and abiotic soil properties and processes in a polar desert in Antarctica

    Science.gov (United States)

    Ball, Becky A.; Levy, Joseph

    2015-02-01

    Groundwater discharge via water tracks is a largely unexplored passageway routing salts and moisture from high elevations to valley floors in the McMurdo Dry Valleys (MDV) of Antarctica. Given the influence that water tracks have on the distribution of liquid water in seasonally thawed Antarctic soils, it is surprising how little is known about their role in structuring biotic and abiotic processes this cold desert ecosystem. Particularly, it is unclear how soil biota will respond to the activation of new water tracks resulting from enhanced active layer thickening or enhanced regional snowmelt. In the MDV, water tracks are both wetter and more saline than the surrounding soils, constituting a change in soil habitat suitability for soil biology and therefore the ecological processes they carry out. To investigate the net impact that water tracks have on Dry Valley soil biology, and therefore the ecosystem processes for which they are responsible, we analyzed microbial biomass and activity in soils inside and outside of three water tracks and relate this to the physical soil characteristics. Overall, our results suggest that water tracks can significantly influence soil properties, which can further impact biological biovolume and both biotic and abiotic fluxes of CO2. However, the nature of its impact differs with water track, further suggesting that not all water tracks can be regarded the same.

  13. A Quick Review on Steam Generator Water Level Tracking Methods and Its Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Moon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    The tracking of the SG water level is important for maintaining the heat removal of the reactor and the power plant safety. In addition, the SG water level is important for the reactor trip and the actuation of SG back-up feedwater system as well. The SG water level is mainly controlled by the Feed Water Control System (FWCS) during either normal operation or transients therefore, the selection of the FWCS control parameters is also important. In this paper, methods of SG water level calculation are first reviewed and future works to perform sensitivity study of the SG water level calculation with a system analysis code will be identified. This is partially shown from Loss-of-feedwater experiments carried out in PACTEL and the LOF-10 experiment. The experiment was chosen to test the modeling capabilities of TRACE code for VVER SG. The experiment measured the water level with the pressure differential and the code calculated the water level directly from the code results. In this paper, three previously suggested parameters which can be used as an indicator of the SG water level are briefly introduced: (1) downcomer collapsed water level, (2) water mass inventory and (3) pressure differential. From the review of previous works, it was identified that most of the system analysis code calculates the SG water level directly by using the downcomer collapsed level. In contrast, the pressure difference is measured as used for the SG water level tracking in a real nuclear power plant or experiment.

  14. Water oxidation catalysts and methods of use thereof

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Craig L.; Gueletii, Yurii V.; Musaev, Djamaladdin G.; Yin, Qiushi; Botar, Bogdan

    2017-12-05

    Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.

  15. Muon-track studies in a water Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Etchegoyen, A. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina)]. E-mail: etchegoy@tandar.cnea.gov.ar; Bauleo, P. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Bertou, X. [Enrico Fermfi Institute, University of Chicago, 5640 S. Ellis, Chicago, IL 60637 (United States); Bonifazi, C.B. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Filevich, A. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Medina, M.C. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Melo, D.G. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Rovero, A.C. [Instituto de Astronomia y Fisica del Espacio, CC 67, Suc. 28 (1428) Buenos Aires (Argentina); Supanitsky, A.D. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina); Tamashiro, A. [Departamento de Fisica, Comision Nacional de Energia Atomica, Avenida del Libertador 8250 (1429) Buenos Aires (Argentina)

    2005-06-21

    Background muons may be used in cosmic ray experiments to understand the response of a given detector system and to lay the basis for the further theoretical and simulation work needed in the analysis of air showers. Experiments were performed using a water Cherenkov detector at the Tandar Laboratory. Monte Carlo and semi-analytical calculations were compared to the data.

  16. Method of producing deuterium-oxide-enriched water

    International Nuclear Information System (INIS)

    Mandel, H.

    1976-01-01

    A method and apparatus for producing deuterium-oxide-enriched water (e.g., as a source of deuterium-rich gas mixtures) are disclosed wherein the multiplicity of individual cooling cycles of a power plant are connected in replenishment cascade so that fresh feed water with a naturally occurring level of deuterium oxide is supplied to replace the vaporization losses, sludge losses and withdrawn portion of water in a first cooling cycle, the withdrawn water being fed as the feed water to the subsequent cooling cycle or stage and serving as the sole feed-water input to the latter. At the end of the replenishment-cascade system, the withdrawn water has a high concentration of deuterium oxide and may serve as a source of water for the production of heavy water or deuterium-enriched gas by conventional methods of removing deuterium oxide or deuterium from the deuterium-oxide-enriched water. Each cooling cycle may form part of a thermal or nuclear power plant in which a turbine is driven by part of the energy and air-cooling of the water takes place in the atmosphere, e.g., in a cooling tower

  17. Fecal indicator organism modeling and microbial source tracking in environmental waters: Chapter 3.4.6

    Science.gov (United States)

    Nevers, Meredith; Byappanahalli, Muruleedhara; Phanikumar, Mantha S.; Whitman, Richard L.

    2016-01-01

    Mathematical models have been widely applied to surface waters to estimate rates of settling, resuspension, flow, dispersion, and advection in order to calculate movement of particles that influence water quality. Of particular interest are the movement, survival, and persistence of microbial pathogens or their surrogates, which may contaminate recreational water, drinking water, or shellfish. Most models devoted to microbial water quality have been focused on fecal indicator organisms (FIO), which act as a surrogate for pathogens and viruses. Process-based modeling and statistical modeling have been used to track contamination events to source and to predict future events. The use of these two types of models require different levels of expertise and input; process-based models rely on theoretical physical constructs to explain present conditions and biological distribution while data-based, statistical models use extant paired data to do the same. The selection of the appropriate model and interpretation of results is critical to proper use of these tools in microbial source tracking. Integration of the modeling approaches could provide insight for tracking and predicting contamination events in real time. A review of modeling efforts reveals that process-based modeling has great promise for microbial source tracking efforts; further, combining the understanding of physical processes influencing FIO contamination developed with process-based models and molecular characterization of the population by gene-based (i.e., biological) or chemical markers may be an effective approach for locating sources and remediating contamination in order to protect human health better.

  18. Tracking Oxidation During Transport of Trace Gases in Air from the Northern to Southern Hemisphere

    Science.gov (United States)

    Montzka, S. A.; Moore, F. L.; Atlas, E. L.; Parrish, D. D.; Miller, B. R.; Sweeney, C.; McKain, K.; Hall, B. D.; Siso, C.; Crotwell, M.; Hintsa, E. J.; Elkins, J. W.; Blake, D. R.; Barletta, B.; Meinardi, S.; Claxton, T.; Hossaini, R.

    2017-12-01

    Trace gas mole fractions contain the imprint of recent influences on an air mass such as sources, transport, and oxidation. Covariations among the many gases measured from flasks during ATom and HIPPO, and from the ongoing NOAA cooperative air sampling program enable recent influences to be identified from a wide range of sources including industrial activity, biomass burning, emissions from wetlands, and uptake by terrestrial ecosystems. In this work we explore the evolution of trace gas concentrations owing to atmospheric oxidation as air masses pass through the tropics, the atmospheric region with the highest concentrations of the hydroxyl radical. Variations in C2-C5 hydrocarbon concentrations downwind of source regions provide a measure of photochemical ageing in an air mass since emission, but they become less useful when tracking photochemical ageing as air is transported from the NH into the SH owing to their low mixing ratios, lifetimes that are very short relative to transport times, non-industrial sources in the tropics (e.g., biomass burning), and southern hemispheric sources. Instead, we consider a range of trace gases and trace gas pairs that provide a measure of photochemical processing as air transits the tropics. To be useful in this analysis, these trace gases would have lifetimes comparable to interhemispheric transport times, emissions arising from only the NH at constant relative magnitudes, and concentrations sufficient to allow precise and accurate measurements in both hemispheres. Some anthropogenically-emitted chlorinated hydrocarbons meet these requirements and have been measured during ATom, HIPPO, and from NOAA's ongoing surface sampling efforts. Consideration of these results and their implications for tracking photochemical processing in air as it is transported across the tropics will be presented.

  19. Determination of trace U in beverages and mineral water using SSNTD (solid state nuclear track detector)

    International Nuclear Information System (INIS)

    Lin Junying; Zheng Liping; Cheng Yulin; Hao Xiuhong

    1991-01-01

    Trace U in beverages and mineral water has been estimated using the fission track analysis technique. The U contents in beverages vary from 0.26 ± 0.03 to 1.65 ± 0.07 ppb, with an average of 0.93 ± 0.05 ppb. The mean U content in mineral water is 9.20 ± 0.16 ppb, which is 10 times higher than that in other beverages

  20. Tracking air and water: Technology drives oil patch environmental monitoring

    International Nuclear Information System (INIS)

    Budd, G.

    2003-01-01

    Instrumentation used in monitoring air and water quality in the oilpatch is discussed. One of these instruments is the oscillating micro-balance, a tool that enables continuous real-time measurement of potentially harmful particulates from gas plants. Similarly, testing for hydrogen sulfides is also done electronically: gas passes by an ultra violet light chamber which uses a calibrated filter to measure wavelengths of light that are specific to hydrogen sulfide. Fourier Transfer Infrared Spectroscopy (FTIR), one of the recent technologies to hit the market, enables the identification of a range of gases with one instrument. It also permits measurement from a distance. Still other instruments involve sensors that are fitted with chemical chambers whose contents react with hydrogen sulfide to produce a micro-volt of electricity. Data from this is digitized, and a reading of hydrogen sulfide, measured in parts per million, is obtained from a laptop computer

  1. Source Tracking of Nitrous Oxide using A Quantum Cascade Laser System in the Field and Laboratory Environments

    Science.gov (United States)

    Nitrous oxide is an important greenhouse gas and ozone depleting substance. Nitrification and denitrification are two major biological pathways that are responsible for soil emissions of N2O. However, source tracking of in-situ or laboratory N2O production is still challenging to...

  2. Chemical oxidation of unsymmetrical dimethylhydrazine transformation products in water

    NARCIS (Netherlands)

    Abilev, M.; Kenessov, B.N.; Batyrbekova, S.; Grotenhuis, J.T.C.

    2015-01-01

    Oxidation of unsymmetrical dimethylhydrazine (UDMH) during a water treatment has several disadvantages including formation of stable toxic byproducts. Effectiveness of treatment methods in relation to UDMH transformation products is currently poorly studied. This work considers the effectiveness of

  3. Anodic oxidation as a new practical procedure for water disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Kirmaier, N; Schoeberl, M

    1980-05-01

    The anodic oxidation could be developed for practical purposes by extensive scientific investigations and engineering optimization. Its safe bactericide, virucide, fungicide and bacteriostatic effect combined with engineering advantages makes it an essential component for water processing.

  4. Electrochemical Water-Splitting Based on Hypochlorite Oxidation

    Czech Academy of Sciences Publication Activity Database

    Minhová Macounová, Kateřina; Simic, N.; Ahlberg, E.; Krtil, Petr

    2015-01-01

    Roč. 137, č. 23 (2015), s. 7262-7265 ISSN 0002-7863 Institutional support: RVO:61388955 Keywords : electrochemistry * hypochlorite oxidation * water-splitting Subject RIV: CG - Electrochemistry Impact factor: 13.038, year: 2015

  5. Photoanodic Hybrid Semiconductor–Molecular Heterojunction for Solar Water Oxidation

    KAUST Repository

    Joya, Khurram Saleem; Takanabe, Kazuhiro

    2015-01-01

    Inorganic photo-responsive semiconducting materials have been employed in photoelectrochemical(PEC) water oxidation devicesin pursuit of solar to fuel conversion.[1]The reaction kinetics in semiconductors is limited by poor contact at the interfaces

  6. Supercritical water oxidation data acquisition testing. Final report, Volume I

    International Nuclear Information System (INIS)

    1996-11-01

    This report discusses the phase one testing of a data acquisition system for a supercritical water waste oxidation system. The system is designed to destroy a wide range of organic materials in mixed wastes. The design and testing of the MODAR Oxidizer is discussed. An analysis of the optimized runs is included

  7. Photocatalytic Water Oxidation on ZnO: A Review

    Directory of Open Access Journals (Sweden)

    Sharifah Bee Abdul Hamid

    2017-03-01

    Full Text Available The investigation of the water oxidation mechanism on photocatalytic semiconductor surfaces has gained much attention for its potential to unlock the technological limitations of producing H2 from carbon-free sources, i.e., H2O. This review seeks to highlight the available scientific and fundamental understanding towards the water oxidation mechanism on ZnO surfaces, as well as present a summary on the modification strategies carried out to increase the photocatalytic response of ZnO.

  8. Study of Advanced Oxidation System for Water Treatment

    International Nuclear Information System (INIS)

    Widdi Usada; Bambang Siswanto; Suryadi; Agus Purwadi; Isyuniarto

    2007-01-01

    Hygiene water is still a big problem globally as well as energy and food, especially in Indonesia where more than 70 % lived in Java island. One of the efforts in treating hygiene water is to recycle the used water. In this case it is needed clean water technology. Many methods have been done, this paper describes the advanced oxidation technology system based on ozone, titania and plasma discharge. (author)

  9. Atomic origins of water-vapour-promoted alloy oxidation.

    Science.gov (United States)

    Luo, Langli; Su, Mao; Yan, Pengfei; Zou, Lianfeng; Schreiber, Daniel K; Baer, Donald R; Zhu, Zihua; Zhou, Guangwen; Wang, Yanting; Bruemmer, Stephen M; Xu, Zhijie; Wang, Chongmin

    2018-05-07

    The presence of water vapour, intentional or unavoidable, is crucial to many materials applications, such as in steam generators, turbine engines, fuel cells, catalysts and corrosion 1-4 . Phenomenologically, water vapour has been noted to accelerate oxidation of metals and alloys 5,6 . However, the atomistic mechanisms behind such oxidation remain elusive. Through direct in situ atomic-scale transmission electron microscopy observations and density functional theory calculations, we reveal that water-vapour-enhanced oxidation of a nickel-chromium alloy is associated with proton-dissolution-promoted formation, migration, and clustering of both cation and anion vacancies. Protons derived from water dissociation can occupy interstitial positions in the oxide lattice, consequently lowering vacancy formation energy and decreasing the diffusion barrier of both cations and anions, which leads to enhanced oxidation in moist environments at elevated temperatures. This work provides insights into water-vapour-enhanced alloy oxidation and has significant implications in other material and chemical processes involving water vapour, such as corrosion, heterogeneous catalysis and ionic conduction.

  10. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation

    DEFF Research Database (Denmark)

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Nørskov, Jens K.

    2015-01-01

    evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates...... sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively....

  11. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    Science.gov (United States)

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  12. Anodic oxidation of InP in pure water

    International Nuclear Information System (INIS)

    Robach, Y.; Joseph, J.; Bergignat, E.; Hollinger, G.

    1989-01-01

    It is shown that thin InP native oxide films can be grown by anodization of InP in pure water. An interfacial phosphorus-rich In(PO 3 ) 3 -like condensed phosphate is obtained this way. This condensed phosphate has good passivating properties and can be used in electronic device technology. The chemical composition of these native oxides was found similar to that of an anodic oxide grown in an anodization in glycol and water (AGW) electrolyte. From the similarity between the two depth profiles observed in pure water and AGW electrolyte, they can conclude that dissolution phenomena do not seem to play a major role. The oxide growth seems to be controlled by the drift of ionic species under the electric field

  13. Uranium content measurement in drinking water samples using track etch technique

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Kumar, Ajay; Singh, Surinder; Mahajan, R.K.; Walia, T.P.S.

    2003-01-01

    The concentration of uranium has been assessed in drinking water samples collected from different locations in Bathinda district, Punjab, India. The water samples are taken from hand pumps and tube wells. Uranium is determined using fission track technique. Uranium concentration in the water samples varies from 1.65±0.06 to 74.98±0.38 μg/l. These values are compared with safe limit values recommended for drinking water. Most of the water samples are found to have uranium concentration above the safe limit. Analysis of some heavy metals (Zn, Cd, Pb and Cu) in water is also done in order to see if some correlation exists between the concentration of uranium and these heavy metals. A weak positive correlation has been observed between the concentration of uranium and heavy metals of Pb, Cd and Cu

  14. Oxidation and photo-oxidation of water on TiO2 surface

    DEFF Research Database (Denmark)

    Valdes, A.; Qu, Z.W.; Kroes, G.J.

    2008-01-01

    The oxidation and photo-oxidation of water on the rutile TiO2(110) surface is investigated using density functional theory (DFT) calculations. We investigate the relative stability of different surface terminations of TiO2 interacting with H2O and analyze the overpotential needed for the electrol...

  15. Seasonal characteristics of water exchange in Beibu Gulf based on a particle tracking model

    Science.gov (United States)

    Wang, L.; Pan, W.; Yan, X.

    2016-12-01

    A lagrangian particle tracking model coupled with a three-dimensional Marine Environmental Committee Ocean Model (MEC) is used to study the transport and seasonal characteristics of water exchange in Beibu Gulf. The hydrodynamic model (MEC), which is forced with the daily surface and lateral boundary fluxes, as well as tidal harmonics and monthly climatological river discharges, is applied to simulate the flow field in the gulf during 2014. Using these results, particle tracking method which includes tidal advection and random walk in the horizontal is used to determine the residence times of sub regions within the gulf in response of winter and summer wind forcing. The result shows water exchange processes in the gulf have a similar tendency with seasonal circulation structure. During the sourthwestly prevailing wind in summer, water particles are traped within the gulf that considerably increases the residence time of each sub region. On the contrary, the presence of strong northeastly prevailing wind in winter drives particles to move cyclonicly leading to shorter residence times and rather active water exchanges among sub regions. Similarly, particle tracking is applied to investigate the water transport in Beibu Gulf. As Qiongzhou Strait and the wide opening in the south of the gulf are two significant channels connecting with the open ocean, continuous particle releases are simulated to quantify the influence range and the pathways of these sources water flowing into Beibu Gulf. The results show that water particles originated from Qiongzhou Strait are moving westward due to the year-round strong westward flow transportation. Influencing range in the north of the Beibu Gulf is enlarged by winter northeastly wind, however, it is blocked to the Leizhou Peninsula coastal region by summer westly wind. In the south opening, water particles are transported northward into the gulf along Hainan Island and flushed from Vietnam coastal region to the ocean rapidly by

  16. A Fast Track approach to deal with the temporal dimension of crop water footprint

    Science.gov (United States)

    Tuninetti, Marta; Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2017-07-01

    Population growth, socio-economic development and climate changes are placing increasing pressure on water resources. Crop water footprint is a key indicator in the quantification of such pressure. It is determined by crop evapotranspiration and crop yield, which can be highly variable in space and time. While the spatial variability of crop water footprint has been the objective of several investigations, the temporal variability remains poorly studied. In particular, some studies approached this issue by associating the time variability of crop water footprint only to yield changes, while considering evapotranspiration patterns as marginal. Validation of this Fast Track approach has yet to be provided. In this Letter we demonstrate its feasibility through a comprehensive validation, an assessment of its uncertainty, and an example of application. Our results show that the water footprint changes are mainly driven by yield trends, while evapotranspiration plays a minor role. The error due to considering constant evapotranspiration is three times smaller than the uncertainty of the model used to compute the crop water footprint. These results confirm the suitability of the Fast Track approach and enable a simple, yet appropriate, evaluation of time-varying crop water footprint.

  17. Water-soluble highly fluorinated graphite oxide

    Czech Academy of Sciences Publication Activity Database

    Jankovský, O.; Šimek, P.; Sedmidubský, D.; Matějková, Stanislava; Janoušek, Zbyněk; Šembera, Filip; Pumera, M.; Sofer, Z.

    2014-01-01

    Roč. 4, č. 3 (2014), s. 1378-1387 ISSN 2046-2069 Institutional support: RVO:61388963 Keywords : graphene oxide * electronic- properties * monolayer graphene * raman-spectroscopy Subject RIV: CC - Organic Chemistry Impact factor: 3.840, year: 2014

  18. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    Science.gov (United States)

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1oxidizing agent. Photocatalytic water oxidation in the presence of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine) as a sensitizer and peroxodisulfate as an electron acceptor was carried out for all three manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Application of fission track technique for estimation of uranium concentration in drinking waters of Punjab

    International Nuclear Information System (INIS)

    Prabhu, S.P.; Sawant, P.D.; Raj, S.S.; Kumar, A.; Sarkar, P.K.; Tripathi, R.M.

    2012-01-01

    Drinking water samples were collected from four different districts, namely Bhatinda, Mansa, Faridkot and Firozpur, of Punjab for ascertaining the U(nat.) concentrations. All samples were preserved, processed and analyzed by laser fluorimetry (LF). To ensure accuracy of the data obtained by LF, few samples (10 nos) from each district were analyzed by alpha spectrometry as well as by fission track analysis (FTA) technique. For FTA technique few μl of water sample was transferred to polythene tube, lexan detector was immersed in it and the other end of the tube was also heat-sealed. Two samples and one uranium standard were irradiated in DHRUVA reactor. Irradiated detectors were chemically etched and tracks counted using an optical microscope. Uranium concentrations in samples ranged from 3.2 to 60.5 ppb and were comparable with those observed by LF. (author)

  20. Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model.

    Science.gov (United States)

    Toll, Velle; Christensen, Matthew; Gassó, Santiago; Bellouin, Nicolas

    2017-12-28

    Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative forcing of Earth's climate, and aerosol-induced cloud water changes are particularly poorly constrained in climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we compile a unique observational dataset and confirm that liquid water path (LWP) responses to aerosols are bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover, the meteorological parameters controlling the LWP responses are strikingly similar between the volcano and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would decrease by 45%.

  1. Time-integrated radon measurements in spring and well waters by track technique

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, G.; Lenart, L.

    1986-01-01

    The radon content dissolved in natural waters seems to be a very sensitive indicator of potential uranium deposits. We have developed different track methods to perform time-integrated, ''in-situ'' measurements of radon in different natural waters (spring, lake, well) and their neighbouring soil gas. One of our main purposes was to study the seasonal variation of radon content and its possible correlation with certain water (yield, flow rate) and environmental (depth, temperature) parameters. Simultaneous radon measurements have been carried out in lake and spring waters in a cave, in thermal and cold water springs of a public bath and in a deep drilled well. The radon profiles obtained in the deep well lend support to the idea that the environmental radon can travel large distances in microbubbles of a ''carrier geogas''.

  2. Time-integrated radon measurements in spring and well waters by track technique

    International Nuclear Information System (INIS)

    Somogyi, G.

    1986-01-01

    The radon content dissolved in natural waters seems to be a very sensitive indicator of potential uranium deposits. We have developed different track methods to perform time-integrated, ''in-situ'' measurements of radon in different natural waters (spring, lake, well) and their neighbouring soil gas. One of our main purposes was to study the seasonal variation of radon content and its possible correlation with certain water (yield, flow rate) and environmental (depth, temperature) parameters. Simultaneous radon measurements have been carried out in lake and spring waters in a cave, in thermal and cold water springs of a public bath and in a deep drilled well. The radon profiles obtained in the deep well lend support to the idea that the environmental radon can travel large distances in microbubbles of a ''carrier geogas''. (author)

  3. Source tracking swine fecal waste in surface water proximal to swine concentrated animal feeding operations.

    Science.gov (United States)

    Heaney, Christopher D; Myers, Kevin; Wing, Steve; Hall, Devon; Baron, Dothula; Stewart, Jill R

    2015-04-01

    Swine farming has gone through many changes in the last few decades, resulting in operations with a high animal density known as confined animal feeding operations (CAFOs). These operations produce a large quantity of fecal waste whose environmental impacts are not well understood. The purpose of this study was to investigate microbial water quality in surface waters proximal to swine CAFOs including microbial source tracking of fecal microbes specific to swine. For one year, surface water samples at up- and downstream sites proximal to swine CAFO lagoon waste land application sites were tested for fecal indicator bacteria (fecal coliforms, Escherichia coli and Enterococcus) and candidate swine-specific microbial source-tracking (MST) markers (Bacteroidales Pig-1-Bac, Pig-2-Bac, and Pig-Bac-2, and methanogen P23-2). Testing of 187 samples showed high fecal indicator bacteria concentrations at both up- and downstream sites. Overall, 40%, 23%, and 61% of samples exceeded state and federal recreational water quality guidelines for fecal coliforms, E. coli, and Enterococcus, respectively. Pig-1-Bac and Pig-2-Bac showed the highest specificity to swine fecal wastes and were 2.47 (95% confidence interval [CI]=1.03, 5.94) and 2.30 times (95% CI=0.90, 5.88) as prevalent proximal down- than proximal upstream of swine CAFOs, respectively. Pig-1-Bac and Pig-2-Bac were also 2.87 (95% CI=1.21, 6.80) and 3.36 (95% CI=1.34, 8.41) times as prevalent when 48 hour antecedent rainfall was greater than versus less than the mean, respectively. Results suggest diffuse and overall poor sanitary quality of surface waters where swine CAFO density is high. Pig-1-Bac and Pig-2-Bac are useful for tracking off-site conveyance of swine fecal wastes into surface waters proximal to and downstream of swine CAFOs and during rain events. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Electrochemical Oxidation of PAHs in Water from Harbor Sediment Purification

    DEFF Research Database (Denmark)

    Muff, Jens; Søgaard, Erik Gydesen

    2010-01-01

    generated oxidant solution with a free chlorine concentration of 2 gL-1. Both strategies resulted in a successful degradation of 5 PAHs to fulfil the discharge limit on 0.010 µgL-1. The intermixing-with-oxidant approach can also be applied as a method to address the actual sediment matrix....... of the discharge water addressing primarily polycyclic aromatic hydrocarbons (PAHs). PAHs are by-products of incomplete combustion of organic materials with recalcitrant and strong mutagenic/carcinogenic properties, due to their benzene analogue structures. PAHs are hydrophobic compounds and their persistence...... evidence for the importance of the indirect oxidation mechanism in the degradation of the PAHs. The proof-of-concept study was conducted both by a direct treatment approach and an intermixing-with-oxidant approach, where the contaminated water was intermixed in different ratios with an electrochemically...

  5. Mechanism of water oxidation by trivalent ruthenium trisdipyridyl complex

    International Nuclear Information System (INIS)

    Moravskij, A.P.; Khannanov, N.K.; Khramov, A.V.; Shafirovich, V.Ya.

    1983-01-01

    Results of kinetic investigation of water oxidation reaction with photogenerated single-electron oxidizer-trisdipyridyl complex of Ru(3) are presented. CoCl 2 x6H 2 O within the concentration range of [Co 2+ ] 0 =5x10 -7 - 5x10 -5 M was used as a reaction catalyst. The method of stopped flow with spectrophotometric recording was used in order to control the reaction kinetics

  6. Effect of Magnesium Oxide Nanoparticles on Water Glass Structure

    Directory of Open Access Journals (Sweden)

    Bobrowski A.

    2012-09-01

    Full Text Available An attempt has been made to determine the effect of an addition of colloidal suspensions of the nanoparticles of magnesium oxide on the structure of water glass, which is a binder for moulding and core sands. Nanoparticles of magnesium oxide MgO in propanol and ethanol were introduced in the same mass content (5wt.% and structural changes were determined by measurement of the FT-IR absorption spectra.

  7. Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury

    DEFF Research Database (Denmark)

    Owen, Michael C; Kulig, Waldemar; Rog, Tomasz

    2018-01-01

    In an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC...... in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also...... resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does...

  8. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    Science.gov (United States)

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  9. Separation of radionuclides from water by magnesium oxide adsorption

    International Nuclear Information System (INIS)

    Tseng, Chia-Lian; Lo, Jem-Mau; Yeh, Si-Jung

    1987-01-01

    Adsorption by magnesium oxide of more than forty radionuclides in respective ionic species in water was observed. Generally, the radionuclides in di-valent and/or multi-valent cations are favorably adsorbed by magnesium oxide; but not for the those in mono-valent cations. In addition, the adsorption by magnesium oxide was not effective to most of the radionuclides in negative ionic species. From the observations, the adsorption mechanism is more prominently by the ion exchange of the di- or multi-valent cation species with the hydrous magnesium oxide. Separation of the radionuclides related to the corrosion products possibly produced in a nuclear power plant from natural seawater was attempted by the magnesium oxide adsorption method. It should be emphasized that the adsorption method was found to be practical for separating radionuclides from a large quantity of natural seawater with high recovery and high reproducibility. (author)

  10. Water formation via HCl oxidation on Cu(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Suleiman, Ibrahim A., E-mail: isuleman@taibahu.edu.sa [College of Engineering, Taibah University, Yanbu 41911 (Saudi Arabia); Radny, Marian W. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Institute of Physics, Poznan University of Technology, 62-956 Poznan (Poland); Gladys, Michael J.; Smith, Phillip V. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Mackie, John C. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); School of Chemistry, The University of Sydney (Australia); Stockenhuber, Michael; Kennedy, Eric M. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Dlugogorski, Bogdan Z. [School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); School of Engineering and Information Technology, Murdoch University, Perth (Australia)

    2014-04-01

    Graphical abstract: This work investigates water formation on the Cu(1 0 0) surface via HCl oxidation using density functional theory and periodic slabs. We show that there are two different pathways for water formation on the surface depending on the temperature and oxygen coverage. - Highlights: • Pre-adsorbed chlorine increases the stability of water on Cu(1 0 0). • Two different pathways describe water formation on Cu(1 0 0) via HCl oxidation. • The mechanism of H{sub 2}O formation depends on the temperature and oxygen coverage. - Abstract: Using density functional theory and periodic slabs, we have studied water formation via HCl oxidation on the Cu(1 0 0) surface. We show that while adsorbed chlorine increases the stability of water on the Cu(1 0 0) surface, water molecules dissociate immediately when located next to an oxygen atom. We also show that these competing interactions, when arising from HCl reacting with oxygen on Cu(1 0 0), lead to water formation according to two different pathways depending on the temperature and oxygen coverage.

  11. Radiation induced oxidation for water remediation

    International Nuclear Information System (INIS)

    Gehringer, P.

    1997-01-01

    The action of ionizing radiation on halogenated hydrocarbons, in the presence and absence of ozone, was studied in water and wastewater. The combined ozone/electron-beam irradiation process was found especially suited for remediation of low-level contaminated groundwater. This combined treatment was often more effective than irradiation alone for wastewater decontamination. It reduced the COD without a simultaneous increase of BOD. Introduction of gaseous ozone directly into the irradiation chamber improved the water-flow turbulence, allowing treatment in layers thicker than the penetration range of the electrons, with increased decontamination efficiency. (author)

  12. Flow analysis in a supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Oh, C.H.; Kochan, R.J.; Beller, J.M.

    1996-01-01

    Supercritical water oxidation (SCWO), also known as hydrothermal oxidation (HTO), involves the oxidation of hazardous waste at conditions of elevated temperature and pressure (e.g., 500 C--600 C and 234.4 bar) in the presence of approximately 90% of water and a 10% to 20% excess amount of oxidant over the stoichiometric requirement. Under these conditions, organic compounds are completely miscible with supercritical water, oxygen and nitrogen, and are rapidly oxidized to carbon dioxide and water. The essential part of the process is the reactor. Many reactor designs such as tubular, vertical vessel, and transpiring wall type have been proposed, patented, and tested at both bench and pilot scales. These designs and performances need to be scaled up to a waste throughput 10--100 times that currently being tested. Scaling of this magnitude will be done by creating a numerical thermal-hydraulic model of the smaller reactor for which test data is available, validating the model against the available data, and then using the validated model to investigate the larger reactor performance. This paper presents a flow analysis of the MODAR bench scale reactor (vertical vessel type). These results will help in the design of the reactor in an efficient manner because the flow mixing coupled with chemical kinetics eventually affects the process destruction efficiency

  13. Trace uranium determination in beverages and mineral water using fission track techniques

    International Nuclear Information System (INIS)

    Cheng, Y.L.; Lin, J.Y.; Hao, X.H.

    1993-01-01

    The uranium contents of beverages and mineral water have been estimated using the technique of fission track analysis with polycarbonate detector. The U contents in beverages have been found to vary from 0.26 ± 0.03 to 1.65 ± 0.07 ppb, the average value is 0.93 ± 0.05 ppb. The mean U content in mineral water is 9.20 ± 0.16 ppb, which is ∼ 10 times higher than the mean U content of beverages. The present study shows the high U content in mineral water, indicating need for further investigation of U content in mineral water for the studies of radiation health hazards. (Author)

  14. Synthesis and characterization of scandium oxide microspheres for their application in radioactive particle tracking experiments

    International Nuclear Information System (INIS)

    Goswami, Sunil; Biswal, Jayashree; Pant, H.J.; Pillai, K.T.; Bamankar, Y.R.

    2012-01-01

    Radioactive particle tracking (RPT) technique, proposed by Lin et al., is a noble technique for understanding mixing mechanisms of fluids and; evaluation and improvement of design of multiphase flow systems. In RPT technique the motion of a single radioactive particle is tracked in a flow system using an array of strategically mounted NaI(Tl) scintillation detectors around the system. The gamma emitting radioactive tracer particle being tracked is designed to be hydrodynamically similar to that of the phase being traced

  15. Composite metal oxide semiconductor based photodiodes for solar panel tracking applications

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, Ahmed A., E-mail: aghamdi90@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Dere, A. [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Tataroğlu, A. [Department of Physics, Faculty of Science, Gazi University, Ankara (Turkey); Arif, Bilal [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Yakuphanoglu, F. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Farooq, W.A. [Physics and Astronomy Department, College of Science, King Saud University, Riyadh (Saudi Arabia)

    2015-11-25

    The Zn{sub 1−x}Al{sub x}O:Cu{sub 2}O composite films were synthesized by the sol gel method to fabricate photodiodes. The transparent metal oxide Zn{sub 1−x}Al{sub x}O:Cu{sub 2}O thin films were grown on p-Si substrates by spin coating technique. Electrical characterization of the p-Si/AZO:Cu{sub 2}O photodiodes was performed by current–voltage and capacitance–conductance–voltage characteristics under dark and various illumination conditions. The transient photocurrent of the diodes increases with increase in illumination intensity. The photoconducting mechanism of the diodes is controlled by the continuous distribution of trap levels. The photocapacitance and photoconductivity of the diodes are decreased with increasing Cu{sub 2}O content. The series resistance–voltage behavior confirms the presence of the interface states in the interface of the diodes. The photoresponse properties of the diodes indicate that the p-Si/Zn{sub 1−x}Al{sub x}O–Cu{sub 2}O diodes can be used as a photosensor in solar panel tracking applications. - Highlights: • Zn{sub 1−x}Al{sub x}O:Cu{sub 2}O composite films were synthesized by the sol gel method. • p-Si/Zn{sub 1−x}Al{sub x}O–Cu{sub 2}O diodes were fabricated. • p-Si/Zn{sub 1−x}Al{sub x}O–Cu{sub 2}O diodes can be used in the optoelectronic applications.

  16. Kinetics and mechanism of methane oxidation in supercritical water

    International Nuclear Information System (INIS)

    Rofer, C.K.; Streit, G.E.

    1988-10-01

    This project, is a Hazardous Waste Remedial Actions Program (HAZWRAP) Research and Development task being carried out by the Los Alamos National Laboratory. Its objective is to achieve an understanding of the technology for use in scaling up and applying oxidation in supercritical water as a viable process for treating a variety of Department of Energy Defense Programs (DOE-DP) waste streams. This report presents experimental results for the kinetics of the oxidation of methane and methanol in supercritical water and computer modeling results for the oxidation of carbonmonoxide and methane in supercritical water. The experimental and modeling results obtained to date on these one-carbon model compounds indicate that the mechanism of oxidation in supercritical water can be represented by free-radical reactions with appropriate modifications for high pressure and the high water concentration. If these current trends are sustained, a large body of existing literature data on the kinetics of elementary reactions can be utilized to predict the behavior of other compounds and their mixtures. 7 refs., 4 figs., 3 tabs

  17. Oxidation behavior of steels and Alloy 800 in supercritical water

    International Nuclear Information System (INIS)

    Olmedo, A.M.; Bordoni, R.; Dominguez, G.; Alvarez, M.G.

    2011-01-01

    The oxidation behavior of a ferritic-martensitic steel T91 and a martensitic steel AISI 403 up to 750 h, and of AISI 316L and Alloy 800 up to 336 h in deaerated supercritical water, 450ºC-25 MPa, was investigated in this paper. After exposure up to 750 h, the weight gain data, for steels T91 and AISI 403, was fitted by ∆W=k t n , were n are similar for both steels and k is a little higher for T91. The oxide films grown in the steels were characterized using gravimetry, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction. The films were adherent and exhibited a low porosity. For this low oxygen content supercritical water exposure, the oxide scale exhibited a typical duplex structure, in which the scale is composed of an outer iron oxide layer of magnetite (Fe 3 O 4 ) and an inner iron/chromium oxide layer of a non-stoichiometric iron chromite (Fe,Cr) 3 O 4 . Preliminary results, with AISI 316L and Alloy 800, for two exposure periods (168 and 336 h), are also reported. The morphology shown for the oxide films grown on both materials up to 336 h of oxidation in supercritical water, resembles that of a duplex layer film like that shown by stainless steels and Alloy 800 oxide films grown in a in a high temperature and pressure (220-350ºC) of a primary or secondary coolant of a plant. (author) [es

  18. Strongly oxidizing perylene-3,4-dicarboximides for use in water oxidation photoelectrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, Rebecca J.; Phelan, Brian T.; Reynal, Anna; Margulies, Eric A.; Shoer, Leah E.; Durrant, James R.; Wasielewski, Michael R.

    2016-01-01

    Perylene-3,4-dicarboximide (PMI) based chromophores have demonstrated the ability to inject electrons into TiO2 for dye-sensitized solar cell applications and to accept electrons from metal complexes relevant to water oxidation, but they are nearly unexplored for use in photoelectrochemical cells (PECs) for solar fuels generation. A series of related PMIs with high oxidation potentials and carboxylate binding groups was synthesized and investigated for this purpose. Charge injection and recombination dynamics were measured using transient absorption (TA) spectroscopy on the picosecond to second timescales. The dynamics and electron injection yields were correlated with the PMI energetics and structures. Injection began in less than 1 ps for the dye with the best performance and a significant charge-separated state yield remained at long times. Finally, this chromophore was used to oxidize a covalently bound water oxidation precatalyst following electron injection into TiO2 to demonstrate the utility of the dyes for use in PECs.

  19. Research on water permeability of poly(ethylene) terephthalate track membranes modified with plasma

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Sleptsov, V.V.; Elinson, V.M.; Potryasay, V.V.

    2001-01-01

    The properties of poly(ethylene) terephthalate track membranes subjected to effect of plasma of the RF-discharge in air have been investigated. The influence conditions of a plasma treatment on the surface properties and hydrodynamic characteristics of the membranes has been studied. It has been found that the effect of the air plasma on the researched membranes results in a formation of asymmetric track membranes with a higher flow rate, the structure and chemical composition of their superficial layer are changed. It was shown that the availability of the modified layer on the membrane surface caused changing in their hydrodynamic characteristics - the water permeability of the membranes, processed in plasma, in a greater degree depends upon pH of a filtered solution. (author)

  20. Effect of metal oxide nanoparticles on Godavari river water treatment

    Science.gov (United States)

    Goud, Ravi Kumar; Ajay Kumar, V.; Reddy, T. Rakesh; Vinod, B.; Shravani, S.

    2018-05-01

    Nowadays there is a continuously increasing worldwide concern for the development of water treatment technologies. In the area of water purification, nanotechnology offers the possibility of an efficient removal of pollutants and germs. Nanomaterials reveal good results than other techniques used in water treatment because of its high surface area to volume ratio. In the present work, iron oxide and copper oxide nanoparticles were synthesized by simple heating method. The synthesized nanoparticles were used to purify Godavari river water. The effect of nanoparticles at 70°C temperature, 12 centimeter of sand bed height and pH of 8 shows good results as compared to simple sand bed filter. The attained values of BOD5, COD and Turbidity were in permissible limit of world health organization.

  1. Review of iron oxides for water treatment

    International Nuclear Information System (INIS)

    Navratil, J. D.

    2001-01-01

    Many processes have utilized iron oxides for the treatment of liquid wastes containing radioactive and hazardous metals. These processes have included adsorption, precipitation and other chemical and physical techniques. For example, a radioactive wastewater precipitation process includes addition of a ferric hydroxide floc to scavenge radioactive contaminants, such as americium, plutonium and uranium. Some adsorption processes for wastewater treatment have utilized ferrites and a variety of iron containing minerals. Various ferrites and natural magnetite were used in batch modes for actinide and heavy metal removal from wastewater. Supported magnetite was also used in a column mode, and in the presence of an external magnetic field, enhanced capacity was found for removal of plutonium and americium from wastewater. These observations were explained by a nano-level high gradient magnetic separation effect, as americium, plutonium and other hydrolytic metals are known to form colloidal particles at elevated pHs. Recent modeling work supports this assumption and shows that the smaller the magnetite particle the larger the induced magnetic field around the particle from the external field. Other recent studies have demonstrated the magnetic enhanced removal of arsenic, cobalt and iron from simulated groundwater. (author)

  2. Debris Flows and Water Tracks in Continental Antarctica: Water as a geomorphic agent in a hyperarid polar desert

    Science.gov (United States)

    Hauber, E.; Sassenroth, C.; De Vera, J.-P.; Schmitz, N.; Reiss, D.; Hiesinger, H.; Johnsson, A.

    2017-09-01

    Most studies using Antarctica as a Mars analogue have focused on the McMurdo Dry Valleys, which are among the coldest and driest places on Earth. However, other ice-free areas in continental Antarctica also display landforms that can inform the study of the possible geomorphic impact of water in a polar desert. Here we present a new analogue site in the interior of the Transantarctic Mountains in Northern Victoria Land. Gullies show unambiguous evidence for debris flows, and water tracks act as shallow subsurface pathways of water on top of the permafrost tale. Both processes are driven by meltwater from glacier ice and snow in an environ-ment which never experiences rainfall and in which the air temperatures probably never exceed 0°C.

  3. On the effect of interaction of molybdenum trioxide and magnesium oxide in water

    International Nuclear Information System (INIS)

    Bunin, V.M.; Karelin, A.I.; Solov'eva, L.N.

    1992-01-01

    Interaction of molybdenum trioxide and magnesium oxide in water was studied. It is shown that molybdenum trioxide forms consecutively magnesium molybdate, dimolybdate and magnesium polymolybdates with magnesium oxide

  4. Well-to-Wheels Water Consumption: Tracking the Virtual Flow of Water into Transportation

    Science.gov (United States)

    Lampert, D. J.; Elgowainy, A.; Hao, C.

    2015-12-01

    Water and energy resources are fundamental to life on Earth and essential for the production of consumer goods and services in the economy. Energy and water resources are heavily interdependent—energy production consumes water, while water treatment and distribution consume energy. One example of this so-called energy-water nexus is the consumption of water associated with the production of transportation fuels. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can be used to compare the environmental impacts of different transportation fuels on a consistent basis. In this presentation, the expansion of GREET to perform life cycle water accounting or the "virtual flow" of water into transportation and other energy sectors and the associated implications will be discussed. The results indicate that increased usage of alternative fuels may increase freshwater resource consumption. The increased water consumption must be weighed against the benefits of decreased greenhouse gas and fossil energy consumption. Our analysis highlights the importance of regionality, co-product allocation, and consistent system boundaries when comparing the water intensity of alternative transportation fuel production pathways such as ethanol, biodiesel, compressed natural gas, hydrogen, and electricity with conventional petroleum-based fuels such as diesel and gasoline.

  5. Fate and transformation of graphene oxide in marine waters

    Science.gov (United States)

    One common use of graphene family nanomaterials (GFNs) is as functional and/or antifouling coatings, which may ultimately lead to their release into the natural environment. The fate of graphene oxide (GO), a common type of GFN, in natural waters is currently not well understood....

  6. Water vapour and carbon dioxide decrease nitric oxide readings

    NARCIS (Netherlands)

    vanderMark, TW; Kort, E; Meijer, RJ; Postma, DS; Koeter, GH

    Measurement of nitric oxide levels in exhaled ah-is commonly performed using a chemiluminescence detector. However, water vapour and carbon dioxide affect the chemiluminescence process, The influence of these gases at the concentrations present in exhaled air has not vet been studied. For this in

  7. Supramolecular water oxidation with rubda-based catalysts

    KAUST Repository

    Richmond, Craig J.; Matheu, Roc; Poater, Albert; Falivene, Laura; Benet-Buchholz, Jordi; Sala, Xavier; Cavallo, Luigi; Llobet, Antoni A.

    2014-01-01

    Extremely slow and extremely fast new water oxidation catalysts based on the Rubda (bda = 2,2′-bipyri-dine-6,6′-dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycless"1, respectively. Detailed analyses

  8. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Daria L. [Department of Chemistry, Yale University, 225; Beltrán-Suito, Rodrigo [Department of Chemistry, Yale University, 225; Thomsen, Julianne M. [Department of Chemistry, Yale University, 225; Hashmi, Sara M. [Department of Chemical and Environmental; Materna, Kelly L. [Department of Chemistry, Yale University, 225; Sheehan, Stafford W. [Catalytic Innovations LLC, 70 Crandall; Mercado, Brandon Q. [Department of Chemistry, Yale University, 225; Brudvig, Gary W. [Department of Chemistry, Yale University, 225; Crabtree, Robert H. [Department of Chemistry, Yale University, 225

    2016-02-05

    This paper introduces IrI(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*IrIII(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue IrIV species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting IrIV species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By 1H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.

  9. Destruction of energetic materials by supercritical water oxidation

    International Nuclear Information System (INIS)

    Beulow, S.J.; Dyer, R.B.; Harradine, D.M.; Robinson, J.M.; Oldenborg, R.C.; Funk, K.A.; McInroy, R.E.; Sanchez, J.A.; Spontarelli, T.

    1993-01-01

    Supercritical water oxidation is a relatively low-temperature process that can give high destruction efficiencies for a variety of hazardous chemical wastes. Results are presented examining the destruction of high explosives and propellants in supercritical water and the use of low temperature, low pressure hydrolysis as a pretreatment process. Reactions of cyclotrimethylene trinitramine (RDX), cyclotetramethylene tetranitramine (HMX), nitroguanidine (NQ), pentaerythritol tetranitrate (PETN), and 2,4,6-trinitrotoluene (TNT) are examined in a flow reactor operated at temperatures between 400 degrees C and 650 degrees C. Explosives are introduced into the reactor at concentrations below the solubility limits. For each of the compounds, over 99.9% is destroyed in less than 30 seconds at temperatures above 600 degrees C. The reactions produce primarily N 2 , N 2 O,CO 2 , and some nitrate and nitrite ions. The distribution of reaction products depends on reactor pressure, temperature, and oxidizer concentration. Kinetics studies of the reactions of nitrate and nitrite ions with various reducing reagents in supercritical water show that they can be rapidly and completely destroyed at temperatures above 525 degrees C. The use of slurries and hydrolysis to introduce high concentrations of explosives into a supercritical water reactor is examined. For some compounds the rate of reaction depends on particle size. The hydrolysis of explosives at low temperatures (<100 degrees C) and low pressures (<1 atm) under basic conditions produces water soluble, non-explosive products which are easily destroyed by supercritical water oxidation. Large pieces of explosives (13 cm diameter) have been successfully hydrolyzed. The rate, extent, and products of the hydrolysis depend on the type and concentration of base. Results from the base hydrolysis of triple base propellant M31A1E1 and the subsequent supercritical water oxidation of the hydrolysis products are presented

  10. Developing a program to identify and track corrosion in nuclear plant raw water systems

    International Nuclear Information System (INIS)

    Spires PE, G.V.; Pickles PE, S.B.

    2001-01-01

    Findings derived from a comprehensive plant performance survey at Ontario Power Generation's (OPG) nuclear units convinced management that it would be prudent to expand the ongoing power piping Flow Accelerated Corrosion (FAC) induced wall thinning base-lining and tracking program to encompass the raw cooling water systems as well. Such systems are subject to a distinctly different class of pipe wall thinning (PWT) mechanisms than the FAC that degrades high-energy power piping. This paper describes the PWT corrosion assessment and tracking program that has been developed and is currently being implemented by OPG for the raw cooling water (i.e., Service Water) systems within it's nuclear generating stations. Interim databases are used prior to initial inspection rounds to catalogue the prospective locations. For each piping system being surveyed, these interim databases include physical coordinates for the candidate locations, the type and wall thickness of the components comprising each location, ranking indications and recommended NDE methodologies as a function of the anticipated corrosion mechanisms. Rationales for assessing corrosion susceptibility and ranking prospective inspection sites are expounded by way of notations built into the database. (authors)

  11. Tracking agricultural soil nitric oxide emission variations with novel isotopic measurements

    Science.gov (United States)

    Miller, D. J.; Chai, J.; Guo, F.; Overby, S.; Dell, C. J.; Karsten, H.; Hastings, M. G.

    2016-12-01

    Agricultural production systems impact the reactive nitrogen cycle via atmospheric nitrogen emissions including nitric oxide, denoted as total nitrogen oxides (NOx). NOx serve as precursors to ozone and nitrate aerosols, influencing air quality, radiative forcing, and ecosystem health. With recent declines in fuel combustion sources, soil emissions are an increasing contributor to NOx budgets. However, spatially heterogeneous, episodic soil NOx pulses are challenging to constrain and remain highly uncertain. Using a novel hourly resolution soil flux chamber-based NOx collection method, we investigate fertilizer management and climatic controls on cropland soil NOx flux and nitrogen isotopic composition (δ15N-NOx) natural abundance variations with field-based and laboratory measurements. No-till, rain-fed corn plots were sampled daily (triplicate isotope samples per treatment per day) following broadcast and shallow-disk injected dairy manure applications as part of a sustainable dairy cropping study in State College, PA (Penn State University; USDA-ARS). Injected manure plots exhibited median fluxes two times higher with larger spatial variations than that for broadcast manure. Soil emission δ15N-NOx signatures of -45 to -20 ‰ were correlated with flux magnitudes across both treatments. Median δ15N-NOx signatures for injected manure were lower with larger spatial variations (-32 ± 9 ‰) than that for broadcast manure (-24 ± 1.5 ‰). These differences are likely linked with higher NH4+ availability for nitrification with injected manure in contrast with higher NH3 volatilization and higher soil δ15N-NH4+ for broadcast manure. Although NOx fluxes were suppressed 1-2 days after heavy rainfall (>35 % water-filled pore space), δ15N-NOx remained consistent. Controlled laboratory incubation studies will also be presented quantifying links with inorganic substrate and fertilizer δ15N. Our observations suggest that agricultural soil δ15N-NOx signatures are

  12. A model for oxidizing species concentrations in boiling water reactors

    International Nuclear Information System (INIS)

    Sun, B.; Chexal, B.; Pathania, R.; Chun, J.; Ballinger, R.; Abdollahian, D.

    1993-01-01

    To evaluate and control the intergranular stress corrosion cracking of boiling water reactor (BWR) vessel internal components requires knowledge of the concentration of oxidizing species that affects the electrochemical potentials in various regions of a BWR. In a BWR flow circuit, as water flows through the radiation field, the radiolysis process and chemical reactions lead to the production of species such as oxygen, hydrogen, and hydrogen peroxide. Since chemistry measurements are difficult inside BWRs, analytical tools have been developed by Ruiz and Lin, Ibe and Uchida and Chun and Ballinger for estimating the concentration of species that provide the necessary input for water chemistry control and material protection

  13. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; Hale, William G.; Wang, Hsinping; Zhou, Xinghao; Plymale, Noah T.; Omelchenko, Stefan T.; He, Jr-Hau; Papadantonakis, Kimberly M.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide

  14. Silicon Isotopes of Marine Pore Water: Tracking the Destiny of Marine Biogenic Opal

    Science.gov (United States)

    Cassarino, L.; Hendry, K. R.

    2017-12-01

    Silicon isotopes (δ30Si) are a powerful tool for the studying of the past and present silicon cycles, which is closely linked to the carbon cycle. Siliceous phytoplankton, such as diatoms, as one of the major conveyors of carbon to marine sediments. δ30Si from fossil diatoms has been shown to represent past silicic acid (DSi) utilization in the photic zone, since the lighter isotope is preferentially incorporated in their skeleton, the frustule. This assumes that species in the sediments depict past blooms and that frustules are preserved in their initial state during burial. Here we present new silicon isotopes data of sea water and pore water of deep marine sediments from two contrasted environments, the Equatorial Atlantic and West Antarctic Peninsula. δ30Si and DSi concentration, of both sea water and pore water, are negatively correlated. Marine biogenic opal dissolution can be tracked using δ30Si signature of pore water as lighter signals and high DSi concentrations are associated with the biogenic silica. Our data enhances post depositional and diagenesis processes during burial with a clear highlight on the sediment water interface exchanges.

  15. Cell tracking using iron oxide fails to distinguish dead from living transplanted cells in the infarcted heart.

    Science.gov (United States)

    Winter, E M; Hogers, B; van der Graaf, L M; Gittenberger-de Groot, A C; Poelmann, R E; van der Weerd, L

    2010-03-01

    Recently, debate has arisen about the usefulness of cell tracking using iron oxide-labeled cells. Two important issues in determining the usefulness of cell tracking with MRI are generally overlooked; first, the effect of graft rejection in immunocompetent models, and second, the necessity for careful histological confirmation of the fate of the labeled cells in the presence of iron oxide. Therefore, both iron oxide-labeled living as well as dead epicardium-derived cells (EPDCs) were investigated in ischemic myocardium of immunodeficient non-obese diabetic (NOD)/acid: non-obese diabetic severe combined immunodeficient (NOD/scid) mice with 9.4T MRI until 6 weeks after surgery, at which time immunohistochemical analysis was performed. In both groups, voids on MRI scans were observed that did not change in number, size, or localization over time. Based on MRI, no distinction could be made between living and dead injected cells. Prussian blue staining confirmed that the hypointense spots on MRI corresponded to iron-loaded cells. However, in the dead-EPDC recipients, all iron-positive cells appeared to be macrophages, while the living-EPDC recipients also contained engrafted iron-loaded EPDCs. Iron labeling is inadequate for determining the fate of transplanted cells in the immunodeficient host, since dead cells produce an MRI signal indistinguishable from incorporated living cells. (c) 2010 Wiley-Liss, Inc.

  16. On the Design of Oxide Films, Nanomaterials, and Heterostructures for Solar Water Oxidation Photoanodes

    Science.gov (United States)

    Kronawitter, Coleman Xaver

    Photoelectrochemistry and its associated technologies show unique potential to facilitate the large-scale production of solar fuels—those energy-rich chemicals obtained through conversion processes driven by solar energy, mimicking the photosynthetic process of green plants. The critical component of photoelectrochemical devices designed for this purpose is the semiconductor photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with respect to the redox couple of the electrolyte to drive the relevant electrochemical reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient and stable conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions. The unique range of functional properties of oxides, and especially the oxides of transition metals, relates to their associated diversity of cation oxidation states, cation electronic configurations, and crystal structures. In this dissertation, the use of metal oxide films, nanomaterials, and heterostructures in photoelectrodes enabling the solar-driven oxidation of water and generation of hydrogen fuel is examined. A range of transition- and post-transition-metal oxide material systems and nanoscale architectures is presented. The first chapters present results related to electrodes based on alpha-phase iron(III) oxide, a promising visible-light-active material widely investigated for this application. Studies of porous films fabricated by physical vapor deposition reveal the importance of structural quality, as determined by the deposition substrate temperature, on photoelectrochemical performance. Heterostructures with nanoscale feature dimensionality are explored and reviewed in a later chapter

  17. Solid-state track recorder neutron dosimetry in light water reactor pressure vessel surveillance mockups

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.; Preston, C.C.

    1984-09-01

    Solid-State Track Recorder (SSTR) measurements of neutron-induced fission rates have been made in several pressure vessel mockup facilities as part of the US Nuclear Regulatory Commission's (NRC) Light Water Reactor Pressure Vessel Surveillance Dosimetry Improvement Program (LWR-PV-SDIP). The results of extensive physics-dosimetry measurements made at the Pool Critical Assembly (PCA) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN are summarized. Included are 235 U, 238 U, 237 Np and 232 Th fission rates in the PCA 12/13, 8/7, and 4/12 SSC configurations. Additional low power measurements have been made in an engineering mockup at the VENUS critical assembly at CEN-SCK, Mol, Belgium. 237 Np and 238 U fission rates were made at selected locations in the VENUS mockup, which models the in-core and near-core regions of a pressurized water reactor (PWR). Absolute core power measurements were made at VENUS by exposing solid-state track recorders (SSTRs) to polished fuel pellets within in-core fuel pins. 8 references, 4 figures, 10 tables

  18. Determination of the uranium concentration in water samples by the technique of fission track recording

    International Nuclear Information System (INIS)

    Geraldo, L.P.

    1979-01-01

    The technique of fission track register was developed for the determination of micrograms of uranium. The Makrofol KG, a synthetic plastic made by Bayer, was used as the detector and the wet method was utilized. The detector calibration curve allows the determination of the uranium concentration in a sample within an interval from 8.0 to 0.4μgU/L, the total error ranging from 3.3% to 29.0% respectively. The method was used in the determination of the uranium content in various water samples, obtained from various sources like rivers, sea etc. in the state of Sao Paulo, Brazil. Results were compared with those obtained by other authors using different methods. The average concentration found in sea waters (3.27 +- 9.12μgU/l) by this method is compatible with the international average accepted value of 3.3μgU/l, irrespective of site and depth. The determination of the uranium content by fission track counting has proved to be very convenient. (Author) [pt

  19. Photosynthetic water oxidation: binding and activation of substrate waters for O-O bond formation.

    Science.gov (United States)

    Vinyard, David J; Khan, Sahr; Brudvig, Gary W

    2015-01-01

    Photosynthetic water oxidation occurs at the oxygen-evolving complex (OEC) of Photosystem II (PSII). The OEC, which contains a Mn4CaO5 inorganic cluster ligated by oxides, waters and amino-acid residues, cycles through five redox intermediates known as S(i) states (i = 0-4). The electronic and structural properties of the transient S4 intermediate that forms the O-O bond are not well understood. In order to gain insight into how water is activated for O-O bond formation in the S4 intermediate, we have performed a detailed analysis of S-state dependent substrate water binding kinetics taking into consideration data from Mn coordination complexes. This analysis supports a model in which the substrate waters are both bound as terminal ligands and react via a water-nucleophile attack mechanism.

  20. Tracking and forecasting the Nation’s water quality - Priorities and strategies for 2013-2023

    Science.gov (United States)

    Rowe, Gary L.; Gilliom, Robert J.; Woodside, Michael D.

    2013-01-01

    Water-quality issues facing the Nation are growing in number and complexity, and solutions are becoming more challenging and costly. Key factors that affect the quality of our drinking water supplies and ecosystem health include contaminants of human and natural origin in streams and groundwater; excess nutrients and sediment; alteration of natural streamflow; eutrophication of lakes, reservoirs, and coastal estuaries; and changes in surface and groundwater quality associated with changes in climate, land and water use, and management practices. Tracking and forecasting the Nation's water quality in the face of these and other pressing water-quality issues are important goals for 2013-2023, the third decade of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. In consultation with stakeholders and the National Research Council, a new strategic Science Plan has been developed that describes a strategy for building upon and enhancing assessment of the Nation's freshwater quality and aquatic ecosystems. The plan continues strategies that have been central to the NAWQA program's long-term success, but it also makes adjustments to the monitoring and modeling approaches NAWQA will use to address critical data and science information needs identified by stakeholders. This fact sheet describes surface-water and groundwater monitoring and modeling activities that will start in fiscal year 2013. It also provides examples of the types of data and information products planned for the next decade, including (1) restored monitoring for reliable and timely status and trend assessments, (2) maps and models that show the distribution of selected contaminants (such as atrazine, nitrate, and arsenic) in streams and aquifers, and (3) Web-based modeling tools that allow managers to evaluate how water quality may change in response to different scenarios of population growth, climate change, or land-use management.

  1. Water Sorption and Gamma Radiolysis Studies for Uranium Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Icenhour, A.S.

    2002-02-27

    During the development of a standard for the safe, long-term storage of {sup 233}U-containing materials, several areas were identified that needed additional experimental studies. These studies were related to the perceived potential for the radiolytic generation of large pressures or explosive concentrations of gases in storage containers. This report documents the results of studies on the sorption of water by various uranium oxides and on the gamma radiolysis of uranium oxides containing various amounts of sorbed moisture. In all of the experiments, {sup 238}U was used as a surrogate for the {sup 233}U. For the water sorption experiments, uranium oxide samples were prepared and exposed to known levels of humidity to establish the water uptake rate. Subsequently, the amount of water removed was studied by heating samples in a oven at fixed temperatures and by thermogravimetric analysis (TGA)/differential thermal analysis (DTA). It was demonstrated that heating at 650 C adequately removes all moisture from the samples. Uranium-238 oxides were irradiated in a {sup 60}Co source and in the high-gamma-radiation fields provided by spent nuclear fuel elements of the High Flux Isotope Reactor. For hydrated samples of UO{sub 3}, H{sub 2} was the primary gas produced; but the total gas pressure increase reached steady value of about 10 psi. This production appears to be a function of the dose and the amount of water present. Oxygen in the hydrated UO{sub 3} sample atmosphere was typically depleted, and no significant pressure rise was observed. Heat treatment of the UO{sub 3} {center_dot} xH{sub 2}O at 650 C would result in conversion to U{sub 3}O{sub 8} and eliminate the H{sub 2} production. For all of the U{sub 3}O{sub 8} samples loaded in air and irradiated with gamma radiation, a pressure decrease was seen and little, if any, H{sub 2} was produced--even for samples with up to 9 wt % moisture content. Hence, these results demonstrated that the efforts to remove trace

  2. Structure of electron tracks in water. 2. Distribution of primary ionizations and excitations in water radiolysis

    International Nuclear Information System (INIS)

    Pimblott, S.M.; Mozumder, A.

    1991-01-01

    A procedure for the calculation of entity-specific ionization and excitation probabilities for water radiolysis at low linear energy transfer (LET) has been developed. The technique pays due attention to the effects of the ionization threshold and the energy dependence of the ionization efficiency. The numbers of primary ionizations and excitations are not directly proportional to the spur energy. At a given spur energy, ionization follows a binomial distribution subject to an energetically possible maximum. The excitation distribution for a spur of given energy and with a given number of ionizations is given by a geometric series. The occurrence probabilities depend upon the cross sections of ionization, excitation, and other inferior processes. Following the low-LET radiolysis of liquid water the most probable spurs contain one ionization, two ionizations, or one ionization and one excitation, while in water vapor they contain either one ionization or one excitation. In liquid water the most probable outcomes for spurs corresponding to the most probable energy loss (22 eV) and to the mean energy loss (38 eV) are one ionization and one excitation, and two ionizations and one excitation, respectively. In the vapor, the most probable energy loss is 14 eV which results in one ionization or one excitation and the mean energy loss is 34 eV for which the spur of maximum probability contains one ionization and two excitations. The total calculated primary yields for low-LET radiolysis are in approximate agreement with experiment in both phases

  3. Water-oxidation catalysis by synthetic manganese oxides--systematic variations of the calcium birnessite theme.

    Science.gov (United States)

    Frey, Carolin E; Wiechen, Mathias; Kurz, Philipp

    2014-03-21

    Layered manganese oxides from the birnessite mineral family have been identified as promising heterogeneous compounds for water-oxidation catalysis (WOC), a key reaction for the conversion of renewable energy into storable fuels. High catalytic rates were especially observed for birnessites which contain calcium as part of their structures. With the aim to systematically improve the catalytic performance of such oxide materials, we used a flexible synthetic route to prepare three series of calcium birnessites, where we varied the calcium concentrations, the ripening times of the original precipitates and the temperature of the heat treatment following the initial synthetic steps (tempering) during the preparation process. The products were carefully analysed by a number of analytical techniques and then probed for WOC activity using the Ce(4+)-system. We find that our set of twenty closely related manganese oxides shows large, but somewhat systematic alterations in catalytic rates, indicating the importance of synthesis parameters for maximum catalytic performance. The catalyst of the series for which the highest water-oxidation rate was found is a birnessite of medium calcium content (Ca : Mn ratio 0.2 : 1) that had been subjected to a tempering temperature of 400 °C. On the basis of the detailed analysis of the results, a WOC reaction scheme for birnessites is proposed to explain the observed trends in reactivity.

  4. Adsorption of dodecylamine hydrochloride on graphene oxide in water

    Directory of Open Access Journals (Sweden)

    Peng Chen

    Full Text Available Cationic surfactants in water are difficult to be degraded, leading to serious water pollution. In this work, graphene oxide (GO was used as an adsorbent for removing Dodecylamine Hydrochloride (DACl, a representative cationic surfactant. X-ray diffraction (XRD, FT-IR spectroscopy and atomic force microscope (AFM were used to characterize the prepared GO. The adsorption of DACl on GO have been investigated through measurements of adsorption capacity, zeta potential, FTIR, and X-ray photoelectron spectroscopy (XPS. The experimental results have shown that the adsorption kinetics could be described as a rate-limiting pseudo second-order process, and the adsorption isotherm agreed well with the Freundlich model. GO was a good adsorbent for DACl removal, compared with coal fly ash and powdered activated carbon. The adsorption process was endothermic, and could be attributed to electrostatic interaction and hydrogen bonding between DACl and GO. Keywords: Graphene oxide, Dodecylamine hydrochloride, Adsorption isotherm, Adsorption mechanisms

  5. Supercritical water oxidation data acquisition testing. Final report, Volume II

    International Nuclear Information System (INIS)

    1996-11-01

    Supercritical Water Oxidation (SCWO) technology holds great promise for treating mixed wastes, in an environmentally safe and efficient manner. In the spring of 1994 the US Department of Energy (DOE), Idaho Operations Office awarded Stone ampersand Webster Engineering Corporation, of Boston Massachusetts and its sub-contractor MODAR, Inc. of Natick Massachusetts a Supercritical Water Oxidation Data Acquisition Testing (SCWODAT) program. The SCWODAT program was contracted through a Cooperative Agreement that was co-funded by the US Department of Energy and the Strategic Environmental Research and Development Program. The SCWODAT testing scope outlined by the DOE in the original Cooperative Agreement and amendments thereto was initiated in June 1994 and successfully completed in December 1995. The SCWODAT program provided further information and operational data on the effectiveness of treating both simulated mixed waste and typical Navy hazardous waste using the MODAR SCWO technology

  6. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Ohno, H.; Yoshida, H.; Katsuta, H.; Naruse, Y.

    1986-01-01

    The decomposition of tritiated water vapor by means of solid oxide electrolysis cells has been proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in an argon carrier was performed using a tube-type stabilized zirconia cell with porous platinum electrodes over the temperature range 500-950 0 C. High conversion ratios from water to hydrogen, of up to 99.9%, were achieved. The characteristics of the cell were deduced from the Nernst equation and the conversion ratios expressed as a function of the IR-free voltage. Experimental results agreed with the equation. The isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. The obtained separation factor was slightly higher than the theoretical value. (author)

  7. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Katsuta, H.; Naruse, Y.; Ohno, H.; Yoshida, H.

    1984-01-01

    The decomposition of tritiated water vapor with solid oxide electrolysis cell was proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in argon carrier was performed using tube-type stabilized zirconia cell with porous platinum electrodes in the temperature range of 500 0 C to 950 0 C. High conversion ratio from water to hydrogen up to 99.9% was achieved. The characteristics of the cell is deduced from the Nernst's equation and conversion ratio is described as the function of the open circuit voltage. Experimental results agreed with the equation. Isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. Obtained separation factor was slightly higher than the theoretical value

  8. The oxidation of PET track-etched membranes by hydrogen peroxide as an effective method to increase efficiency of UV-induced graft polymerization

    OpenAIRE

    Il'ya Korolkov; Abzal Taltenov; Anastassiya Mashentseva; Olgun Guven

    2015-01-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first im...

  9. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications

    KAUST Repository

    Xia, Chuan

    2015-11-05

    Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max­imum current density of 97.5 mA cm−2 at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec−1 are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.

  10. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications

    KAUST Repository

    Xia, Chuan; Jiang, Qiu; Zhao, Chao; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max­imum current density of 97.5 mA cm−2 at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec−1 are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.

  11. Determinants of Nitrous Oxide Emission from Agricultural Drainage Waters

    International Nuclear Information System (INIS)

    Reay, D. S.; Edwards, A. C.; Smith, K. A.

    2004-01-01

    Emissions of the powerful greenhouse gas nitrous oxide (N 2 O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N 2 O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N 2 O from the surface of a fertilised barley field with measurement of dissolved N 2 O and nitrate (NO 3 ) concentrations in the same field's drainage waters. Dissolved N 2 O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N 2 O flux from the field surface. The range in N 2 O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N 2 O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N 2 O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N 2 O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF 5 -g) for NO 3 in drainage waters

  12. Determinants of nitrous oxide emission from agricultural drainage waters

    International Nuclear Information System (INIS)

    Reay, D. S.; Edwards, A. C.; Smith, K. A.

    2005-01-01

    Emissions of the powerful greenhouse gas nitrous oxide (N 2 O) from agricultural drainage waters are poorly quantified and its determinants are not fully understood. Nitrous oxide formation in agricultural soils is known to increase in response to N fertiliser application, but the response of N 2 O in field drainage waters is unknown. This investigation combined an intensive study of the direct flux of N 2 O from the surface of a fertilised barley field with measurement of dissolved N 2 O and nitrate (NO 3 ) concentrations in the same field's drainage waters. Dissolved N 2 O in drainage waters showed a clear response to field N fertilisation, following an identical pattern to direct N 2 O flux from the field surface. The range in N 2 O concentrations between individual field drains sampled on the same day was large, indicating considerable spatial variability exists at the farm scale. A consistent pattern of very rapid outgassing of the dissolved N 2 O in open drainage ditches was accentuated at a weir, where increased turbulence led to a clear drop in dissolved N 2 O concentration. This study underlines the need for carefully planned sampling campaigns wherever whole farm or catchment N 2 O emission budgets are attempted. It adds weight to the argument for the downward revision of the IPCC emission factor (EF 5 -g) for NO 3 in drainage waters

  13. Nonstoichiometric Titanium Oxides via Pulsed Laser Ablation in Water

    Directory of Open Access Journals (Sweden)

    Chen Shuei-Yuan

    2010-01-01

    Full Text Available Abstract Titanium oxide compounds TiO,Ti2O3, and TiO2 with a considerable extent of nonstoichiometry were fabricated by pulsed laser ablation in water and characterized by X-ray/electron diffraction, X-ray photoelectron spectroscopy and electron energy loss spectroscopy. The titanium oxides were found to occur as nanoparticle aggregates with a predominant 3+ charge and amorphous microtubes when fabricated under an average power density of ca. 1 × 108W/cm2 and 1011W/cm2, respectively followed by dwelling in water. The crystalline colloidal particles have a relatively high content of Ti2+ and hence a lower minimum band gap of 3.4 eV in comparison with 5.2 eV for the amorphous state. The protonation on both crystalline and amorphous phase caused defects, mainly titanium rather than oxygen vacancies and charge and/or volume-compensating defects. The hydrophilic nature and presumably varied extent of undercoordination at the free surface of the amorphous lamellae accounts for their rolling as tubes at water/air and water/glass interfaces. The nonstoichiometric titania thus fabricated have potential optoelectronic and catalytic applications in UV–visible range and shed light on the Ti charge and phase behavior of titania-water binary in natural shock occurrence.

  14. Transformation of a Cp*-iridium(III) precatalyst for water oxidation when exposed to oxidative stress.

    Science.gov (United States)

    Zuccaccia, Cristiano; Bellachioma, Gianfranco; Bortolini, Olga; Bucci, Alberto; Savini, Arianna; Macchioni, Alceo

    2014-03-17

    The reaction of [Cp*Ir(bzpy)NO3 ] (1; bzpy=2-benzoylpyridine, Cp*=pentamethylcyclopentadienyl anion), a competent water-oxidation catalyst, with several oxidants (H2 O2 , NaIO4 , cerium ammonium nitrate (CAN)) was studied to intercept and characterize possible intermediates of the oxidative transformation. NMR spectroscopy and ESI-MS techniques provided evidence for the formation of many species that all had the intact Ir-bzpy moiety and a gradually more oxidized Cp* ligand. Initially, an oxygen atom is trapped in between two carbon atoms of Cp* and iridium, which gives an oxygen-Ir coordinated epoxide, whereas the remaining three carbon atoms of Cp* are involved in a η(3) interaction with iridium (2 a). Formal addition of H2 O to 2 a or H2 O2 to 1 leads to 2 b, in which a double MeCOH functionalization of Cp* is present with one MeCOH engaged in an interaction with iridium. The structure of 2 b was unambiguously determined in the solid state and in solution by X-ray single-crystal diffractometry and advanced NMR spectroscopic techniques, respectively. Further oxidation led to the opening of Cp* and transformation of the diol into a diketone with one carbonyl coordinated at the metal (2 c). A η(3) interaction between the three non-oxygenated carbons of "ex-Cp*" and iridium is also present in both 2 b and 2 c. Isolated 2 b and mixtures of 2 a-c species were tested in water-oxidation catalysis by using CAN as sacrificial oxidant. They showed substantially the same activity than 1 (turnover frequency values ranged from 9 to 14 min(-1) ). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Photoanodic Hybrid Semiconductor–Molecular Heterojunction for Solar Water Oxidation

    KAUST Repository

    Joya, Khurram Saleem

    2015-06-29

    Inorganic photo-responsive semiconducting materials have been employed in photoelectrochemical(PEC) water oxidation devicesin pursuit of solar to fuel conversion.[1]The reaction kinetics in semiconductors is limited by poor contact at the interfaces, and charge transfer is impeded by surface defects and the grain boundaries.[2]It has shown that successful surface functionalization of the photo-responsive semiconducting materials with co-catalysts can maximize the charge separation, hole delivery and its effective consumption, and enhances the efficiency and performane of the PEC based water oxidation assembly.[3]We present here unique modification of photoanodic hematite (α-Fe2O3) and bismuth vanadate (BiVO4) with molecular co-catalysts for enhanced photoelectrochemical water oxidation (Figure 1). These hybrid inorganic–organometallic heterojunctions manifest impressive cathodic shifts in the onset potentials, and the photocurrent densities have been enhanced by > 90% at all potentials relative to uncatalyzed α-Fe2O3 or BiVO4, and other catalyst-semiconductor based heterojunctions.This is a novel development in the solar to fuel conversion field, and is crucially important for designing a tandem device where light interfere very little with the catalyst layer on top of semiconducting light absorber.

  16. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    Science.gov (United States)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A.

    2015-12-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  17. Etched ion tracks in silicon oxide and silicon oxynitride as charge injection or extraction channels for novel electronic structures

    International Nuclear Information System (INIS)

    Fink, D.; Petrov, A.V.; Hoppe, K.; Fahrner, W.R.; Papaleo, R.M.; Berdinsky, A.S.; Chandra, A.; Chemseddine, A.; Zrineh, A.; Biswas, A.; Faupel, F.; Chadderton, L.T.

    2004-01-01

    The impact of swift heavy ions onto silicon oxide and silicon oxynitride on silicon creates etchable tracks in these insulators. After their etching and filling-up with highly resistive matter, these nanometric pores can be used as charge extraction or injection paths towards the conducting channel in the underlying silicon. In this way, a novel family of electronic structures has been realized. The basic characteristics of these 'TEMPOS' (=tunable electronic material with pores in oxide on silicon) structures are summarized. Their functionality is determined by the type of insulator, the etch track diameters and lengths, their areal densities, the type of conducting matter embedded therein, and of course by the underlying semiconductor and the contact geometry. Depending on the TEMPOS preparation recipe and working point, the structures may resemble gatable resistors, condensors, diodes, transistors, photocells, or sensors, and they are therefore rather universally applicable in electronics. TEMPOS structures are often sensitive to temperature, light, humidity and organic gases. Also light-emitting TEMPOS structures have been produced. About 37 TEMPOS-based circuits such as thermosensors, photosensors, humidity and alcohol sensors, amplifiers, frequency multipliers, amplitude modulators, oscillators, flip-flops and many others have already been designed and successfully tested. Sometimes TEMPOS-based circuits are more compact than conventional electronics

  18. Advanced oxidation processes of decomposing dichloroacetic acid and trichloroacetic acid in water

    Institute of Scientific and Technical Information of China (English)

    WANG Kun-ping; GUO Jin-song; YANG Min; JUNJI Hirotsuji; DENG Rong-sen; LIU Wei

    2008-01-01

    We studied the decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), in water by single oxidants ozone (O3) and ultraviolet radiation (UV) and the advanced oxidation processes (AOPs) constituted by the combinations of O3/UV, H2O2/UV, O3 /H2O2, and O3/H2O2/UV. The concentrations of HAAs were analyzed at specified time intervals to track their decomposition. Except for O3 and UV, the four combined oxidation processes remarkably enhance the decomposition of DCAA and TCAA owing to the generated very reactive hydroxyl radicals. The fastest decomposition process is O3/H2O2/UV, closely followed by O3/UV. DCAA is much easier to decompose than TCAA. The kinetics of HAA decomposition by O3/UV can be described well by a pseudo first-order reaction model under a constant initial dissolved O3 concentration and fixed UV radiation. Humic acids and HCO3- in the reaction system both decrease the decomposition rate constants for DCAA and TCAA. The amount of H2O2 accumulates in the presence of humic acids in the O3/UV process.

  19. USE OF COMPOSITE DATA SETS FOR SOURCE-TRACKING ENTEROCCOCCI IN THE WATER COLUMN AND SHORELINE INTERSTITIAL WATERS ON PENSACOLA BEACH, FL

    Science.gov (United States)

    Genthner, Fred J., Joseph B. James, Diane F. Yates and Stephanie D. Friedman. Submitted. Use of Composite Data Sets for Source-Tracking Enterococci in the Water Column and Shoreline Interstitial Waters on Pensacola Beach Florida. Mar. Pollut. Bull. 33 p. (ERL,GB 1212). So...

  20. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.

    Science.gov (United States)

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-09-07

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.

  1. Calcium manganese(IV) oxides: biomimetic and efficient catalysts for water oxidation.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Pashaei, Babak; Nayeri, Sara

    2012-04-28

    CaMnO(3) and Ca(2)Mn(3)O(8) were synthesized and characterized by SEM, XRD, FTIR and BET. Both oxides showed oxygen evolution activity in the presence of oxone, cerium(IV) ammonium nitrate and H(2)O(2). Oxygen evolution from water during irradiation with visible light (λ > 400 nm) was also observed upon adding these manganese oxides to an aqueous solution containing tris(2,2'-bipyridyl) ruthenium(II), as photosensitizer, and chloro pentaammine cobalt(III) chloride, as electron acceptor, in an acetate buffer. The amounts of dissolved manganese and calcium from CaMnO(3) and Ca(2)Mn(3)O(8) in the oxygen evolving reactions were reported and compared with other (calcium) manganese oxides. Proposed mechanisms of oxygen evolution and proposed roles for the calcium ions are also considered. This journal is © The Royal Society of Chemistry 2012

  2. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  3. Application of fission track technique for estimation of uranium concentration in drinking waters of Punjab

    International Nuclear Information System (INIS)

    Prabhu, S.P.; Raj, Sanu S.; Sawant, P.D.; Kumar, Ajay; Sarkar, P.K.; Tripathi, R.M.

    2010-01-01

    Full text: Drinking water samples were collected from four different districts, namely Bhatinda, Mansa, Faridkot and Firozpur, of Punjab for ascertaining the U(nat.) concentrations. The samples were collected from bore wells, hand pumps, tube wells and treated municipal water supply. All these samples (235 nos.) collected were preserved and processed by following the international standard protocol and analyzed by Laser Fluorimetry. Results of analysis by laser fluorimetry have been already reported. To ensure accuracy of the data obtained by laser fluorimetry, few samples (10 nos) from each district were analyzed by alpha spectrometry as well as by fission track analysis (FTA) technique. FTA in solution media for uranium has been already standardized in Bioassay laboratory of Health Physics Division. Few of drinking water sample was directly transferred to polythene tube sealed at one end. Lexan detector with proper identification mark was immersed in the samples and the other open end of the tube was also heat-sealed. Two tubes containing samples and one containing uranium standard (80 ppb) were irradiated in the Pneumatic Carrier Facility (PCF) of DHRUVA reactor. The Lexan detectors were then chemically etched and tracks were counted under an optical microscope at 400X magnification. Concentration of uranium in sample was determined by comparison technique. Quality assurance was carried out by replicate analysis and by analysis of standard reference materials. Uranium concentration in these samples ranged from 3.2 to 60.5 ppb with an average of 28.8 ppb. A t-test analysis for paired data was done to compare the results obtained by FTA and those obtained by laser fluorimeter. The calculated value for t is -1.19, which is greater than the tabulated value of t for 40 observations (-2.02 at 95% confidence level). This shows that the results of the measurements carried out by the FTA and laser fluorimetry are not significantly different. The preliminary studies

  4. Chemical oxidation of unsymmetrical dimethylhydrazine transformation products in water

    Directory of Open Access Journals (Sweden)

    Madi Abilev

    2015-03-01

    Full Text Available Oxidation of unsymmetrical dimethylhydrazine (UDMH during a water treatment has several disadvantages including formation of stable toxic byproducts. Effectiveness of treatment methods in relation to UDMH transformation products is currently poorly studied. This work considers the effectiveness of chemical oxidants in respect to main metabolites of UDMH – 1-formyl-2,2-dimethylhydrazine, dimethylaminoacetontrile, N-nitrosodimethylamine and 1-methyl-1H-1,2,4-triazole. Experiments on chemical oxidation by Fenton's reagent, potassium permanganate and sodium nitrite were conducted. Quantitative determination was performed by HPLC. Oxidation products were identified by gas chromatography-mass spectrometry in combination with solid-phase microextraction. 1-Formyl-2,2-dimethylhydrazine was completely oxidized by Fenton's reagent with formation of formaldehyde N-formyl-N-methyl-hydrazone, 1,4-dihydro-1,4-dimethyl-5H-tetrazol-5-one by the action of potassium permanganate and N-methyl-N-nitro-methanamine in the presence of sodium nitrite. Oxidation of 1-formyl-2,2-dimethylhydrazine also resulted in formation of N-nitrosodimethylamine. Oxidation of dimethylaminoacetontrile proceeded with formation of hydroxyacetonitrile, dimethylformamide and 1,2,5-trimethylpyrrole. After 30 days, dimethylaminoacetontrile was not detected in the presence of Fenton’s reagent and potassium permanganate, but it’s concentration in samples with sodium nitrite was 77.3 mg/L. In the presence of Fenton’s reagent, potassium permanganate and sodium nitrite after 30 days, N-nitrosodimethylamine concentration decreased by 85, 80 and 50%, respectively. In control sample, N-nitrosodimethylamine concentration decreased by 50%, indicating that sodium nitrite has no effect of on N-nitrosodimethylamine concentration. Only Fenton's reagent allowed to reduce the concentration of 1-methyl-1H-1,2,4-triazole to 50% in 30 days. In the presence of other oxidants, 1-methyl-1H-1,2,4-triazole

  5. High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert.

    Science.gov (United States)

    Steven, Blaire; Lionard, Marie; Kuske, Cheryl R; Vincent, Warwick F

    2013-01-01

    In this study we report the bacterial diversity of biological soil crusts (biocrusts) inhabiting polar desert soils at the northern land limit of the Arctic polar region (83° 05 N). Employing pyrosequencing of bacterial 16S rRNA genes this study demonstrated that these biocrusts harbor diverse bacterial communities, often as diverse as temperate latitude communities. The effect of wetting pulses on the composition of communities was also determined by collecting samples from soils outside and inside of permafrost water tracks, hill slope flow paths that drain permafrost-affected soils. The intermittent flow regime in the water tracks was correlated with altered relative abundance of phylum level taxonomic bins in the bacterial communities, but the alterations varied between individual sampling sites. Bacteria related to the Cyanobacteria and Acidobacteria demonstrated shifts in relative abundance based on their location either inside or outside of the water tracks. Among cyanobacterial sequences, the proportion of sequences belonging to the family Oscillatoriales consistently increased in relative abundance in the samples from inside the water tracks compared to those outside. Acidobacteria showed responses to wetting pulses in the water tracks, increasing in abundance at one site and decreasing at the other two sites. Subdivision 4 acidobacterial sequences tended to follow the trends in the total Acidobacteria relative abundance, suggesting these organisms were largely responsible for the changes observed in the Acidobacteria. Taken together, these data suggest that the bacterial communities of these high latitude polar biocrusts are diverse but do not show a consensus response to intermittent flow in water tracks over high Arctic permafrost.

  6. Separation of tritiated water using graphene oxide membrane

    Energy Technology Data Exchange (ETDEWEB)

    Sevigny, Gary J. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Motkuri, Radha K. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Gotthold, David W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Frost, Anthony P. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Bratton, Wesley [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2015-06-28

    In future nuclear fuel reprocessing plants and possibly for nuclear power plants, the cleanup of tritiated water will be needed for hundreds of thousands of gallons of water with low activities of tritium. This cleanup concept utilizes graphene oxide laminar membranes (GOx) for the separation of low-concentration (10-3-10 µCi/g) tritiated water to create water that can be released to the environment and a much smaller waste stream with higher tritium concentrations. Graphene oxide membranes consist of hierarchically stacked, overlapping molecular layers and represent a new class of materials. A permeation rate test was performed with a 2-µm-thick cast Asbury membrane using mixed gas permeability testing with zero air (highly purified atmosphere) and with air humidified with either H2O or D2O to a nominal 50% relative humidity. The membrane permeability for both H2O and D2O was high with N2 and O2 at the system measurement limit. The membrane water permeation rate was compared to a Nafion® membrane and the GOx permeation was approximately twice as high at room temperature. The H2O vapor permeation rate was 5.9 × 102 cc/m2/min (1.2 × 10-6 g/min-cm2), which is typical for graphene oxide membranes. To demonstrate the feasibility of such isotopic water separation through GOX laminar membranes, an experimental setup was constructed to use pressure-driven separation by heating the isotopic water mixture at one side of the membrane to create steam while cooling the other side. Several membranes were tested and were prepared using different starting materials and by different pretreatment methods. The average separation result was 0.8 for deuterium and 0.6 for tritium. Higher or lower temperatures may also improve separation efficiency but neither has been tested yet. A rough estimate of cost compared to current technology was also included as an indication of potential viability of the process. The relative process costs were based on the rough size of facility to

  7. Method and apparatus for waste destruction using supercritical water oxidation

    Science.gov (United States)

    Haroldsen, Brent Lowell; Wu, Benjamin Chiau-pin

    2000-01-01

    The invention relates to an improved apparatus and method for initiating and sustaining an oxidation reaction. A hazardous waste, is introduced into a reaction zone within a pressurized containment vessel. An oxidizer, preferably hydrogen peroxide, is mixed with a carrier fluid, preferably water, and the mixture is heated until the fluid achieves supercritical conditions of temperature and pressure. The heating means comprise cartridge heaters placed in closed-end tubes extending into the center region of the pressure vessel along the reactor longitudinal axis. A cooling jacket surrounds the pressure vessel to remove excess heat at the walls. Heating and cooling the fluid mixture in this manner creates a limited reaction zone near the center of the pressure vessel by establishing a steady state density gradient in the fluid mixture which gradually forces the fluid to circulate internally. This circulation allows the fluid mixture to oscillate between supercritical and subcritical states as it is heated and cooled.

  8. Zirconium metal-water oxidation kinetics. I. Thermometry

    International Nuclear Information System (INIS)

    Cathcart, J.V.; McElroy, D.L.; Pawel, R.E.; Perkins, R.A.; Williams, R.K.; Yurek, G.J.

    1976-02-01

    A description is given of the thermometry techniques used in the Zirconium Metal--Water Oxidation Kinetics Program. Temperature measurements in the range 900 to 1500 0 C are made in three experimental systems: two oxidation apparatuses and the annealing furnace used in a corollary study of the diffusion of oxygen in β-Zircaloy. Carefully calibrated Pt vs Pt--10 percent Rh thermocouples are employed in all three apparatuses, while a Pt--6 percent Rh vs Pt-- 30 percent Rh thermocouple and an optical pyrometer are used in addition in the annealing furnace. Features of the experimental systems pertaining to thermocouple installation, temperature control, emf measurements, etc. are described, and potential temperature-measurement error sources are discussed in detail. The accuracy of the temperature measurements is analyzed

  9. Numerical evaluation of fluid mixing phenomena in boiling water reactor using advanced interface tracking method

    International Nuclear Information System (INIS)

    Yoshida, Hiroyuki; Takase, Kazuyuki

    2008-01-01

    Thermal-hydraulic design of the current boiling water reactor (BWR) is performed with the subchannel analysis codes which incorporated the correlations based on empirical results including actual-size tests. Then, for the Innovative Water Reactor for Flexible Fuel Cycle (FLWR) core, an actual size test of an embodiment of its design is required to confirm or modify such correlations. In this situation, development of a method that enables the thermal-hydraulic design of nuclear reactors without these actual size tests is desired, because these tests take a long time and entail great cost. For this reason, we developed an advanced thermal-hydraulic design method for FLWRs using innovative two-phase flow simulation technology. In this study, a detailed Two-Phase Flow simulation code using advanced Interface Tracking method: TPFIT is developed to calculate the detailed information of the two-phase flow. In this paper, firstly, we tried to verify the TPFIT code by comparing it with the existing 2-channel air-water mixing experimental results. Secondary, the TPFIT code was applied to simulation of steam-water two-phase flow in a model of two subchannels of a current BWRs and FLWRs rod bundle. The fluid mixing was observed at a gap between the subchannels. The existing two-phase flow correlation for fluid mixing is evaluated using detailed numerical simulation data. This data indicates that pressure difference between fluid channels is responsible for the fluid mixing, and thus the effects of the time average pressure difference and fluctuations must be incorporated in the two-phase flow correlation for fluid mixing. When inlet quality ratio of subchannels is relatively large, it is understood that evaluation precision of the existing two-phase flow correlations for fluid mixing are relatively low. (author)

  10. Origin of fecal contamination in waters from contrasted areas: stanols as Microbial Source Tracking markers.

    Science.gov (United States)

    Derrien, M; Jardé, E; Gruau, G; Pourcher, A M; Gourmelon, M; Jadas-Hécart, A; Pierson Wickmann, A C

    2012-09-01

    Improving the microbiological quality of coastal and river waters relies on the development of reliable markers that are capable of determining sources of fecal pollution. Recently, a principal component analysis (PCA) method based on six stanol compounds (i.e. 5β-cholestan-3β-ol (coprostanol), 5β-cholestan-3α-ol (epicoprostanol), 24-methyl-5α-cholestan-3β-ol (campestanol), 24-ethyl-5α-cholestan-3β-ol (sitostanol), 24-ethyl-5β-cholestan-3β-ol (24-ethylcoprostanol) and 24-ethyl-5β-cholestan-3α-ol (24-ethylepicoprostanol)) was shown to be suitable for distinguishing between porcine and bovine feces. In this study, we tested if this PCA method, using the above six stanols, could be used as a tool in "Microbial Source Tracking (MST)" methods in water from areas of intensive agriculture where diffuse fecal contamination is often marked by the co-existence of human and animal sources. In particular, well-defined and stable clusters were found in PCA score plots clustering samples of "pure" human, bovine and porcine feces along with runoff and diluted waters in which the source of contamination is known. A good consistency was also observed between the source assignments made by the 6-stanol-based PCA method and the microbial markers for river waters contaminated by fecal matter of unknown origin. More generally, the tests conducted in this study argue for the addition of the PCA method based on six stanols in the MST toolbox to help identify fecal contamination sources. The data presented in this study show that this addition would improve the determination of fecal contamination sources when the contamination levels are low to moderate. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Track structure of protons and other light ions in liquid water: applications of the LIonTrack code at the nanometer scale.

    Science.gov (United States)

    Bäckström, G; Galassi, M E; Tilly, N; Ahnesjö, A; Fernández-Varea, J M

    2013-06-01

    The LIonTrack (Light Ion Track) Monte Carlo (MC) code for the simulation of H(+), He(2+), and other light ions in liquid water is presented together with the results of a novel investigation of energy-deposition site properties from single ion tracks. The continuum distorted-wave formalism with the eikonal initial state approximation (CDW-EIS) is employed to generate the initial energy and angle of the electrons emitted in ionizing collisions of the ions with H2O molecules. The model of Dingfelder et al. ["Electron inelastic-scattering cross sections in liquid water," Radiat. Phys. Chem. 53, 1-18 (1998); "Comparisons of calculations with PARTRAC and NOREC: Transport of electrons in liquid water," Radiat. Res. 169, 584-594 (2008)] is linked to the general-purpose MC code PENELOPE/penEasy to simulate the inelastic interactions of the secondary electrons in liquid water. In this way, the extended PENELOPE/penEasy code may provide an improved description of the 3D distribution of energy deposits (EDs), making it suitable for applications at the micrometer and nanometer scales. Single-ionization cross sections calculated with the ab initio CDW-EIS formalism are compared to available experimental values, some of them reported very recently, and the theoretical electronic stopping powers are benchmarked against those recommended by the ICRU. The authors also analyze distinct aspects of the spatial patterns of EDs, such as the frequency of nearest-neighbor distances for various radiation qualities, and the variation of the mean specific energy imparted in nanoscopic targets located around the track. For 1 MeV/u particles, the C(6+) ions generate about 15 times more clusters of six EDs within an ED distance of 3 nm than H(+). On average clusters of two to three EDs for 1 MeV/u H(+) and clusters of four to five EDs for 1 MeV/u C(6+) could be expected for a modeling double strand break distance of 3.4 nm.

  12. Spark counting technique of alpha tracks on an aluminium oxide film

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Niwa, Takeo; Kawai, Hiroshi

    1984-01-01

    We have tried to use aluminium oxide film as a neutron detector film with a spark counter for neutron monitoring in the mixed field of neutron and gamma-rays near a reactor. The merits of this method are that (1) aluminium oxide is good electric insulator, (2) any desired thickness of the film can be prepared, (3) chemical etching of the thin film can be dispensed with. The relation between spark counts and numbers of alpha-particles which entered the aluminium oxide film 1 μm thick was linear in the range of 10 5 -10 7 alpha-particles. The sensitivity(ratio of the spark counts to irradiated numbers of alpha-particles) was approximately 10 -3 . (author)

  13. Oxide/water interfaces: how the surface chemistry modifies interfacial water properties

    International Nuclear Information System (INIS)

    Gaigeot, Marie-Pierre; Sprik, Michiel; Sulpizi, Marialore

    2012-01-01

    The organization of water at the interface with silica and alumina oxides is analysed using density functional theory-based molecular dynamics simulation (DFT-MD). The interfacial hydrogen bonding is investigated in detail and related to the chemistry of the oxide surfaces by computing the surface charge density and acidity. We find that water molecules hydrogen-bonded to the surface have different orientations depending on the strength of the hydrogen bonds and use this observation to explain the features in the surface vibrational spectra measured by sum frequency generation spectroscopy. In particular, ‘ice-like’ and ‘liquid-like’ features in these spectra are interpreted as the result of hydrogen bonds of different strengths between surface silanols/aluminols and water. (paper)

  14. Ultrastructural characterization of mesenchymal stromal cells labeled with ultrasmall superparamagnetic iron-oxide nanoparticles for clinical tracking studies

    DEFF Research Database (Denmark)

    Hansen, Louise; Hansen, Alastair B; Mathiasen, Anders B

    2014-01-01

    INTRODUCTION: To evaluate survival and engraftment of mesenchymal stromal cells (MSCs) in vivo, it is necessary to track implanted cells non-invasively with a method, which does not influence cellular ultrastructure and functional characteristics. Iron-oxide particles have been applied for cell...... sequence of trans-activator of transcription (TAT) (IODEX-TAT) and evaluate the effect of labeling on ultrastructure, viability, phenotype and proliferative capacity of the cells. MATERIALS AND METHODS: MSCs were labeled with 5 and 10 μg IODEX-TAT/10(5) cells for 2, 6 and 21 hours. IODEX-TAT uptake...... and cellular ultrastructure were determined by electron microscopy. Cell viability was determined by propidium iodide staining and cell proliferation capacity by 5-bromo-2-deoxyuridine (BrdU) incorporation. Maintenance of stem cell surface markers was determined by flow cytometry. Results. IODEX-TAT labeling...

  15. Hierarchical Load Tracking Control of a Grid-connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    DEFF Research Database (Denmark)

    Li, Yonghui; Wu, Qiuwei; Zhu, Haiyu

    2015-01-01

    efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active...... power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model......Based on the benchmark solid oxide fuel cell (SOFC) dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP) optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject...

  16. Myofibrillar protein oxidation affects filament charges, aggregation and water-holding

    NARCIS (Netherlands)

    Bao, Yulong; Boeren, Sjef; Ertbjerg, Per

    2018-01-01

    Hypochlorous acid (HClO) is a strong oxidant that is able to mediate protein oxidation. In order to study the effect of oxidation on charges, aggregation and water-holding of myofibrillar proteins, extracted myofibrils were oxidized by incubation with different concentrations of HClO (0, 1, 5,

  17. Adsorption of dodecylamine hydrochloride on graphene oxide in water

    Science.gov (United States)

    Chen, Peng; Li, Hongqiang; Song, Shaoxian; Weng, Xiaoqing; He, Dongsheng; Zhao, Yunliang

    Cationic surfactants in water are difficult to be degraded, leading to serious water pollution. In this work, graphene oxide (GO) was used as an adsorbent for removing Dodecylamine Hydrochloride (DACl), a representative cationic surfactant. X-ray diffraction (XRD), FT-IR spectroscopy and atomic force microscope (AFM) were used to characterize the prepared GO. The adsorption of DACl on GO have been investigated through measurements of adsorption capacity, zeta potential, FTIR, and X-ray photoelectron spectroscopy (XPS). The experimental results have shown that the adsorption kinetics could be described as a rate-limiting pseudo second-order process, and the adsorption isotherm agreed well with the Freundlich model. GO was a good adsorbent for DACl removal, compared with coal fly ash and powdered activated carbon. The adsorption process was endothermic, and could be attributed to electrostatic interaction and hydrogen bonding between DACl and GO.

  18. Tracking progress towards global drinking water and sanitation targets: A within and among country analysis.

    Science.gov (United States)

    Fuller, James A; Goldstick, Jason; Bartram, Jamie; Eisenberg, Joseph N S

    2016-01-15

    Global access to safe drinking water and sanitation has improved dramatically during the Millennium Development Goal (MDG) period. However, there is substantial heterogeneity in progress between countries and inequality within countries. We assessed countries' temporal patterns in access to drinking water and sanitation using publicly available data. We then classified countries using non-linear modeling techniques as having one of the following trajectories: 100% coverage, linear growth, linear decline, no change, saturation, acceleration, deceleration, negative acceleration, or negative deceleration. We further assessed the degree to which temporal profiles follow a sigmoidal pattern and how these patterns might vary within a given country between rural and urban settings. Among countries with more than 10 data points, between 15% and 38% showed a non-linear trajectory, depending on the indicator. Overall, countries' progress followed a sigmoidal trend, but some countries are making better progress and some worse progress than would be expected. We highlight several countries that are not on track to meet the MDG for water or sanitation, but whose access is accelerating, suggesting better performance during the coming years. Conversely, we also highlight several countries that have made sufficient progress to meet the MDG target, but in which access is decelerating. Patterns were heterogeneous and non-linearity was common. Characterization of these heterogeneous patterns will help policy makers allocate resources more effectively. For example, policy makers can identify countries that could make use of additional resources or might be in need of additional institutional capacity development to properly manage resources; this will be essential to meet the forthcoming Sustainable Development Goals. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater.

    Science.gov (United States)

    Tran, Ngoc Han; Gin, Karina Yew-Hoong; Ngo, Huu Hao

    2015-12-15

    The quality of surface waters/groundwater of a geographical region can be affected by anthropogenic activities, land use patterns and fecal pollution sources from humans and animals. Therefore, the development of an efficient fecal pollution source tracking toolbox for identifying the origin of the fecal pollution sources in surface waters/groundwater is especially helpful for improving management efforts and remediation actions of water resources in a more cost-effective and efficient manner. This review summarizes the updated knowledge on the use of fecal pollution source tracking markers for detecting, evaluating and characterizing fecal pollution sources in receiving surface waters and groundwater. The suitability of using chemical markers (i.e. fecal sterols, fluorescent whitening agents, pharmaceuticals and personal care products, and artificial sweeteners) and/or microbial markers (e.g. F+RNA coliphages, enteric viruses, and host-specific anaerobic bacterial 16S rDNA genetic markers) for tracking fecal pollution sources in receiving water bodies is discussed. In addition, this review also provides a comprehensive approach, which is based on the detection ratios (DR), detection frequencies (DF), and fate of potential microbial and chemical markers. DR and DF are considered as the key criteria for selecting appropriate markers for identifying and evaluating the impacts of fecal contamination in surface waters/groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Iron oxide hydroxide nanoflower assisted removal of arsenic from water

    Energy Technology Data Exchange (ETDEWEB)

    Raul, Prasanta Kumar, E-mail: prasanta.drdo@gmail.com [Defence Research Laboratory, Post Bag No. 2, Tezpur 784001, Assam (India); Devi, Rashmi Rekha; Umlong, Iohborlang M. [Defence Research Laboratory, Post Bag No. 2, Tezpur 784001, Assam (India); Thakur, Ashim Jyoti [Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam (India); Banerjee, Saumen; Veer, Vijay [Defence Research Laboratory, Post Bag No. 2, Tezpur 784001, Assam (India)

    2014-01-01

    Graphical abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. TEM image clearly reveals that the nanoparticle looks flower like morphology with average particle size less than 20 nm. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature and the data fitted to different isotherm models indicate the heterogeneity of the adsorbent surface. The material can be regenerated up to 70% using dilute hydrochloric acid and it would be utilized for de-arsenification purposes. - Highlights: • The work includes synthesis of iron oxide hydroxide nanoflower and its applicability for the removal of arsenic from water. • The nanoparticle was characterized using modern instrumental methods like FESEM, TEM, BET, XRD, etc. • The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature. • The sorption is multilayered on the heterogeneous surface of the nano adsorbent. • The mechanism of arsenic removal of IOH nanoflower follows both adsorption and ion-exchange. - Abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. The nanoparticle was characterized by X-ray powder diffraction analysis (XRD), BET surface area, FTIR, FESEM and TEM images. TEM image clearly reveals flower like morphology with average particle size less than 20 nm. The nanoflower morphology is also supported by FESEM images. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic and the data fitted to different isotherm models indicate the

  1. Photodegradation of neonicotinoid insecticides in water by semiconductor oxides.

    Science.gov (United States)

    Fenoll, José; Garrido, Isabel; Hellín, Pilar; Flores, Pilar; Navarro, Simón

    2015-10-01

    The photocatalytic degradation of three neonicotinoid insecticides (NIs), thiamethoxam (TH), imidacloprid (IM) and acetamiprid (AC), in pure water has been studied using zinc oxide (ZnO) and titanium dioxide (TiO2) as photocatalysts under natural sunlight and artificial light irradiation. Photocatalytic experiments showed that the addition of these chalcogenide oxides in tandem with the electron acceptor (Na2S2O8) strongly enhances the degradation rate of these compounds in comparison with those carried out with ZnO and TiO2 alone and photolytic tests. Comparison of catalysts showed that ZnO is the most efficient for the removal of such insecticides in optimal conditions and at constant volumetric rate of photon absorption. Thus, the complete disappearance of all the studied compounds was achieved after 10 and 30 min of artificial light irradiation, in the ZnO/Na2S2O8 and TiO2/Na2S2O8 systems, respectively. The highest degradation rate was noticed for IM, while the lowest rate constant was obtained for AC under artificial light irradiation. In addition, solar irradiation was more efficient compared to artificial light for the removal of these insecticides from water. The main photocatalytic intermediates detected during the degradation of NIs were identified.

  2. Nonaqueous electrocatalytic water oxidation by a surface-bound Ru(bda)(L)₂ complex.

    Science.gov (United States)

    Sheridan, Matthew V; Sherman, Benjamin D; Wee, Kyung-Ryang; Marquard, Seth L; Gold, Alexander S; Meyer, Thomas J

    2016-04-21

    The rate of electrocatalytic water oxidation by the heterogeneous water oxidation catalyst [Ru(bda)(4-O(CH2)3P(O3H2)2-pyr)2], , (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate) on metal oxide surfaces is greatly enhanced relative to water as the solvent. In these experiments with propylene carbonate (PC) as the nonaqueous solvent, water is the limiting reagent. Mechanistic studies point to atom proton transfer (APT) as the rate limiting step in water oxidation catalysis.

  3. Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests

    Energy Technology Data Exchange (ETDEWEB)

    Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-15

    Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at {approx}95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite [U(IV)] and metaschoepite [U(VI)]. This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water ({approx}95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO{sub 2} and eliminate H{sub 2} generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

  4. Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests

    International Nuclear Information System (INIS)

    Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-01-01

    Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at ∼95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite (U(IV)) and metaschoepite (U(VI)). This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water (∼95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO 2 and eliminate H 2 generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

  5. Effects of Gravity on Supercritical Water Oxidation (SCWO) Processes

    Science.gov (United States)

    Hegde, Uday; Hicks, Michael

    2013-01-01

    The effects of gravity on the fluid mechanics of supercritical water jets are being studied at NASA to develop a better understanding of flow behaviors for purposes of advancing supercritical water oxidation (SCWO) technologies for applications in reduced gravity environments. These studies provide guidance for the development of future SCWO experiments in new experimental platforms that will extend the current operational range of the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on board the International Space Station (ISS). The hydrodynamics of supercritical fluid jets is one of the basic unit processes of a SCWO reactor. These hydrodynamics are often complicated by significant changes in the thermo-physical properties that govern flow behavior (e.g., viscosity, thermal conductivity, specific heat, compressibility, etc), particularly when fluids transition from sub-critical to supercritical conditions. Experiments were conducted in a 150 ml reactor cell under constant pressure with water injections at various flow rates. Flow configurations included supercritical jets injected into either sub-critical or supercritical water. Profound gravitational influences were observed, particularly in the transition to turbulence, for the flow conditions under study. These results will be presented and the parameters of the flow that control jet behavior will be examined and discussed.

  6. Biological water-oxidizing complex: a nano-sized manganese-calcium oxide in a protein environment.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Moghaddam, Atefeh Nemati; Yang, Young Nam; Aro, Eva-Mari; Carpentier, Robert; Eaton-Rye, Julian J; Lee, Choon-Hwan; Allakhverdiev, Suleyman I

    2012-10-01

    The resolution of Photosystem II (PS II) crystals has been improved using isolated PS II from the thermophilic cyanobacterium Thermosynechococcus vulcanus. The new 1.9 Å resolution data have provided detailed information on the structure of the water-oxidizing complex (Umena et al. Nature 473: 55-61, 2011). The atomic level structure of the manganese-calcium cluster is important for understanding the mechanism of water oxidation and to design an efficient catalyst for water oxidation in artificial photosynthetic systems. Here, we have briefly reviewed our knowledge of the structure and function of the cluster.

  7. A Role for the Fifth G-Track in G-Quadruplex Forming Oncogene Promoter Sequences during Oxidative Stress: Do These "Spare Tires" Have an Evolved Function?

    Science.gov (United States)

    Fleming, Aaron M; Zhou, Jia; Wallace, Susan S; Burrows, Cynthia J

    2015-08-26

    Uncontrolled inflammation or oxidative stress generates electron-deficient species that oxidize the genome increasing its instability in cancer. The G-quadruplex (G4) sequences regulating the c-MYC , KRAS , VEGF , BCL-2 , HIF-1α , and RET oncogenes, as examples, are targets for oxidation at loop and 5'-core guanines (G) as showcased in this study by CO 3 •- oxidation of the VEGF G4. Products observed include 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), and 5-guanidinohydantoin (Gh). Our previous studies found that OG and Gh, when present in the four G-tracks of the solved structure for VEGF and c-MY C, were not substrates for the base excision repair (BER) DNA glycosylases in biologically relevant KCl solutions. We now hypothesize that a fifth G-track found a few nucleotides distant from the G4 tracks involved in folding can act as a "spare tire," facilitating extrusion of a damaged G-run into a large loop that then becomes a substrate for BER. Thermodynamic, spectroscopic, and DMS footprinting studies verified the fifth domain replacing a damaged G-track with OG or Gh at a loop or core position in the VEGF G4. These new "spare tire"-containing strands with Gh in loops are now found to be substrates for initiation of BER with the NEIL1, NEIL2, and NEIL3 DNA glycosylases. The results support a hypothesis in which regulatory G4s carry a "spare-tire" fifth G-track for aiding in the repair process when these sequences are damaged by radical oxygen species, a feature observed in a large number of these sequences. Furthermore, formation and repair of oxidized bases in promoter regions may constitute an additional example of epigenetic modification, in this case of guanine bases, to regulate gene expression in which the G4 sequences act as sensors of oxidative stress.

  8. Effect of fast-track cardiac anesthesia on myocardial oxidative damage, inflammation and nerve related peptides of patients undergoing cardiac operation

    Directory of Open Access Journals (Sweden)

    Xing-Tao Cai

    2016-01-01

    Full Text Available Objective: To study the effect of fast-track cardiac anesthesia on myocardial oxidative damage, inflammation and nerve related peptides of patients undergoing cardiac operation. Methods: Sixty patients with rheumatic heart disease undergoing heart valve surgery were randomly divided into the fast track group (n=30 and conventional group (n=30. Then myocardial injury indicators, mitochondrial oxidative stress indicators, inflammation indicators and nerverelated peptides of both groups were analyzed. Results: cTnI contents at T2-T4 points in time of both groups showed an increasing trend and the increasing trend of fast track group was weaker than that of conventional group; SOD contents as well as mitochondrial tristate respiratory function, respiratory control ratios and phosphorus oxygen ratios in myocardial tissue of fast track group were higher than those of conventional group, and MDA contents was lower than those of conventional group; plasma TNF-α, IL-6, IL-8, NSE, S100β and Aβ contents of fast track group were lower than those of conventional group. Conclusions: Fasttrack cardiac anesthesia can protect myocardial cells, reduce mitochondrial oxidative stress, relieve inflammation and improve nerve function; it is an ideal anesthesia method for cardiac operation.

  9. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code.

    Science.gov (United States)

    Champion, C; Le Loirec, C

    2006-04-07

    When biological matter is irradiated by charged particles, a wide variety of interactions occur, which lead to a deep modification of the cellular environment. To understand the fine structure of the microscopic distribution of energy deposits, Monte Carlo event-by-event simulations are particularly suitable. However, the development of these track-structure codes needs accurate interaction cross sections for all the electronic processes: ionization, excitation, positronium formation and even elastic scattering. Under these conditions, we have recently developed a Monte Carlo code for positrons in water, the latter being commonly used to simulate the biological medium. All the processes are studied in detail via theoretical differential and total cross-section calculations performed by using partial wave methods. Comparisons with existing theoretical and experimental data in terms of stopping powers, mean energy transfers and ranges show very good agreements. Moreover, thanks to the theoretical description of positronium formation, we have access, for the first time, to the complete kinematics of the electron capture process. Then, the present Monte Carlo code is able to describe the detailed positronium history, which will provide useful information for medical imaging (like positron emission tomography) where improvements are needed to define with the best accuracy the tumoural volumes.

  10. Hydrogen-water deuterium exchange over metal oxide promoted nickel catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sagert, N H; Shaw-Wood, P E; Pouteau, R M.L. [Atomic Energy of Canada Ltd., Pinawa, Manitoba. Whiteshell Nuclear Research Establishment

    1975-11-01

    Specific rates have been measured for hydrogen-water deuterium isotope exchange over unsupported nickel promoted with about 20% of various metal oxides. The oxides used were Cr/sub 2/O/sub 3/, MoO/sub 2/, MnO, WO/sub 2/-WO/sub 3/, and UO/sub 2/. Nickel surface areas, which are required to measure the specific rates, were determined by hydrogen chemisorption. Specific rates were measured as a function of temperature in the range 353 to 573 K and as a function of the partial pressure of hydrogen and water over a 10-fold range of partial pressure. The molybdenum and tungsten oxides gave the highest specific rates, and manganese and uranium oxides the lowest. Chromium oxide was intermediate, although it gave the highest rate per gram of catalyst. The orders with respect to hydrogen and water over molybdenum oxide and tungsten oxide promoted nickel were consistent with a mechanism in which nickel oxide is formed from the reaction of water with the catalyst, and then is reduced by hydrogen. Over manganese and uranium oxide promoted catalysts, these orders are consistent with a mechanism in which adsorbed water exchanges with chemisorbed hydrogen atoms on the nickel surface. Chromium oxide is intermediate. It was noted that those oxides which favored the nickel oxide route had electronic work functions closest to those of metallic nickel and nickel oxide.

  11. Study of water vapour adsorption kinetics on aluminium oxide materials

    Science.gov (United States)

    Livanova, Alesya; Meshcheryakov, Evgeniy; Reshetnikov, Sergey; Kurzina, Irina

    2017-11-01

    Adsorbents on the basis of active aluminum oxide are still of demand on the adsorbent-driers market. Despite comprehensive research of alumina adsorbents, and currently is an urgent task to improve their various characteristics, and especially the task of increasing the sorption capacity. In the present work kinetics of the processes of water vapours' adsorption at room temperature on the surface of desiccant samples has been studied. It was obtained on the basis of bayerite and pseudoboehmite experimentally. The samples of pseudoboehmite modified with sodium and potassium ions were taken as study objects. The influence of an adsorbent's grain size on the kinetics of water vapours' adsorption was studied. The 0.125-0.25 mm and 0.5-1.0 mm fractions of this sample were used. It has been revealed that the saturation water vapor fine powder (0.125-0.25 mm) is almost twofold faster in comparison with the sample of fraction 0.5-1.0 mm due to the decrease in diffusion resistance in the pores of the samples when moving from the sample of larger fraction to the fine-dispersed sample. It has been established that the adsorption capacity of the pseudoboehmite samples, modified by alkaline ions, is higher by ˜40 %, than for the original samples on the basis of bayerite and pseudoboehmite.

  12. Remote-Sensing and Automated Water Resources Tracking: Near Real-Time Decision Support for Water Managers Facing Drought and Flood

    Science.gov (United States)

    Reiter, M. E.; Elliott, N.; Veloz, S.; Love, F.; Moody, D.; Hickey, C.; Fitzgibbon, M.; Reynolds, M.; Esralew, R.

    2016-12-01

    Innovative approaches for tracking the Earth's natural resources, especially water which is essential for all living things, are essential during a time of rapid environmental change. The Central Valley is a nexus for water resources in California, draining the Sacramento and San Joaquin River watersheds. The distribution of water throughout California and the Central Valley, while dynamic, is highly managed through an extensive regional network of canals, levees, and pumps. Water allocation and delivery is determined through a complex set of rules based on water contracts, historic priority, and other California water policies. Furthermore, urban centers, agriculture, and the environment throughout the state are already competing for water, particularly during drought. Competition for water is likely to intensify as California is projected to experience continued increases in demand due to population growth and more arid growing conditions, while also having reduced or modified water supply due to climate change. As a result, it is difficult to understand or predict how water will be used to fulfill wildlife and wetland conservation needs. A better understanding of the spatial distribution of water in near real-time can facilitate adaptation of water resource management to changing conditions on the landscape, both over the near- and long-term. The Landsat satellite mission delivers imagery every 16-days from nearly every place on the earth at a high spatial resolution. We have integrated remote sensing of satellite data, classification modeling, bioinformatics, optimization, and ecological analyses to develop an automated near real-time water resources tracking and decision-support system for the Central Valley of California. Our innovative system has applications for coordinated water management in the Central Valley to support people, places, and wildlife and is being used to understand the factors that drive variation in the distribution and abundance of water

  13. Removal of organic pollutants from produced water using Fenton oxidation

    Directory of Open Access Journals (Sweden)

    Afzal Talia

    2018-01-01

    Full Text Available Produced water (PW is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L, [H2O2]/[Fe2+] molar ratio (2 to 75, and reaction time (30 to 200 minutes, on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O and hydrogen peroxide (H2O2 were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.

  14. Removal of organic pollutants from produced water using Fenton oxidation

    Science.gov (United States)

    Afzal, Talia; Hasnain Isa, Mohamed; Mustafa, Muhammad Raza ul

    2018-03-01

    Produced water (PW) is the largest stream of wastewater from oil and gas exploration. It is highly polluted and requires proper treatment before disposal. The main objective of this study was to investigate the effectiveness of Fenton oxidation in degradation of organic matter in PW. The role of operating factors viz., H2O2 concentration (0.12 × 10-3 moles/L to 3 moles/L), [H2O2]/[Fe2+] molar ratio (2 to 75), and reaction time (30 to 200 minutes), on COD removal was determined through a series of batch experiments conducted in acidic environment at room temperature. The experiments were conducted with 500 mL PW samples in 1L glass beakers covered on the outside with aluminum foil to protect them from sunlight. Pre-decided amounts of ferrous sulfate heptahydrate (FeSO4.7H2O) and hydrogen peroxide (H2O2) were added to initiate the Fenton reaction. An increase in COD removal was observed with increase in reaction time and [H2O2]/[Fe2+] molar ratio. COD removal also increased with H2O2 concentration up to 0.01 moles/L; further increase in H2O2 concentration decreased the COD removal efficiency. Over 90% COD removal was achieved under optimum reaction conditions. The study indicates that Fenton oxidation is effective for remediation of PW in terms of organic matter removal.

  15. Nitric oxide reduces oxidative damage induced by water stress in sunflower plants

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2015-06-01

    Full Text Available Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA and proline and reduced pirogalol peroxidase (PG-POD activity, but did not affect the activity of superoxide dismutase (SOD. When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

  16. Preliminary Study of Steam Generator Water Level Tracking by Three Different Methods Using RELAP5/MOD3

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Moon; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    It has been identified in the previous works that the tracking of a steam generator (SG) water level is important. However, three different parameters can be used as an indicator of the SG water level. These parameters are: (1) SG downcomer collapsed water level, (2) water mass inventory and (3) pressure differential between upper and low tap of SG. Instead the SG water level is calculated by either SG downcomer collapsed water level or water mass inventory. However, the pressure differential measurement is the most widely used method for estimating the SG water level in the experiment as well as in the industry In this paper, therefore, three events are analyzed to perform sensitivity study of the SG water level calculation with RELAP5/MOD3 and evaluate SG level difference by three parameters. In this paper, three events are analyzed using the system analysis code (RELAP5/MOD3) to check for the consistency among the downcomer collapsed water level, mass inventory and the pressure differential measurement methods. This is to identify the sensitivity of the nuclear power plant accident response when one of the above three parameters is selected as the representative parameter of the steam generator water level. It is confirmed that mass inventory method is not affected by shrinking and swelling effect and the reactor trip time is significantly different among three parameters during TLOFW. In addition, level recovery rate is different when LOMF occurs. Thus, the SG level sensitivity of SG water level tracking method using three parameters has to be further studied not only for the steady-state operation but also for understanding the nuclear power plant response under various transient scenarios.

  17. Tracking fine-scale seasonal evolution of surface water extent in Central Alaska and the Canadian Shield

    Science.gov (United States)

    Cooley, S. W.; Smith, L. C.; Pitcher, L. H.; Pavelsky, T.; Topp, S.

    2017-12-01

    Quantifying spatial and temporal variability in surface water storage at high latitudes is critical for assessing environmental sensitivity to climate change. Traditionally the tradeoff between high spatial and high temporal resolution space-borne optical imagery has limited the ability to track fine-scale changes in surface water extent. However, the recent launch of hundreds of earth-imaging CubeSats by commercial satellite companies such as Planet opens up new possibilities for monitoring surface water from space. In this study we present a comparison of seasonal evolution of surface water extent in two study areas with differing geologic, hydrologic and permafrost regimes, namely, the Yukon Flats in Central Alaska and the Canadian Shield north of Yellowknife, N.W.T. Using near-daily 3m Planet CubeSat imagery, we track individual lake surface area from break-up to freeze-up during summer 2017 and quantify the spatial and temporal variability in inundation extent. We validate our water delineation method and inundation extent time series using WorldView imagery, coincident in situ lake shoreline mapping and pressure transducer data for 19 lakes in the Northwest Territories and Alaska collected during the NASA Arctic Boreal Vulnerability Experiment (ABoVE) 2017 field campaign. The results of this analysis demonstrate the value of CubeSat imagery for dynamic surface water research particularly at high latitudes and illuminate fine-scale drivers of cold regions surface water extent.

  18. Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands

    International Nuclear Information System (INIS)

    Fester, J.; García-Melchor, M.; Walton, A. S.; Bajdich, M.

    2017-01-01

    Here, transition metal oxides show great promise as Earth-abundant catalysts for the oxygen evolution reaction in electrochemical water splitting. However, progress in the development of highly active oxide nanostructures is hampered by a lack of knowledge of the location and nature of the active sites. Here we show, through atom-resolved scanning tunnelling microscopy, X-ray spectroscopy and computational modelling, how hydroxyls form from water dissociation at under coordinated cobalt edge sites of cobalt oxide nanoislands. Surprisingly, we find that an additional water molecule acts to promote all the elementary steps of the dissociation process and subsequent hydrogen migration, revealing the important assisting role of a water molecule in its own dissociation process on a metal oxide. Inspired by the experimental findings, we theoretically model the oxygen evolution reaction activity of cobalt oxide nanoislands and show that the nanoparticle metal edges also display favourable adsorption energetics for water oxidation under electrochemical conditions.

  19. In situ Raman Spectroscopy of Oxide Films on Zirconium Alloy in Simulated PWR Primary Water Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pretransition zirconium oxide in high-temperature water chemistry. In this work, Raman spectroscopy was used for in situ investigations for characterizing the phase of zirconium oxide. In situ Raman spectroscopy is a well-suited technique for investigating in detail the characteristics of oxide films in a high-temperature corrosion environment. In previous studies, an in situ Raman system was developed for investigating the oxides on nickel-based alloys and low alloy steels in high-temperature water environment. Also, the early stage oxidation behavior of zirconium alloy with different dissolved hydrogen concentration environments in high temperature water was treated in the authors' previous study. In this study, a specific zirconium alloy was oxidized and investigated with in situ Raman spectroscopy for 100 d oxidation, which is close to the first transition time of the zirconium alloy oxidation. The ex situ investigation methods such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to further characterize the zirconium oxide structure. As oxidation time increased, the Raman peaks of tetragonal zirconium oxide were merged or became weaker. However, the monoclinic zirconium oxide peaks became distinct. The tetragonal zirconium oxide was just found near the O/M interface and this could explain the Raman spectra difference between the 30 d result and others.

  20. Water Injection on Commercial Aircraft to Reduce Airport Nitrogen Oxides

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Fucke, Lars; Eames, David J. H.

    2010-01-01

    The potential nitrogen oxide (NO(x) reductions, cost savings, and performance enhancements identified in these initial studies of waterinjection technology strongly suggest that it be further pursued. The potential for engine maintenance cost savings from this system should make it very attractive to airline operators and assure its implementation. Further system tradeoff studies and engine tests are needed to answer the optimal system design question. Namely, would a low-risk combustor injection system with 70- to 90-percent NO(x) reduction be preferable, or would a low-pressure compressor (LPC) misting system with only 50-percent NO(x) reduction but larger turbine inlet temperature reductions be preferable? The low-pressure compressor injection design and operability issues identified in the report need to be addressed because they might prevent implementation of the LPC type of water-misting system. If water-injection technology challenges are overcome, any of the systems studied would offer dramatic engine NO(x) reductions at the airport. Coupling this technology with future emissions-reduction technologies, such as fuel-cell auxiliary power units will allow the aviation sector to address the serious challenges of environmental stewardship, and NO(x) emissions will no longer be an issue at airports.

  1. Sea-urchin-like iron oxide nanostructures for water treatment

    International Nuclear Information System (INIS)

    Lee, Hyun Uk; Lee, Soon Chang; Lee, Young-Chul; Vrtnik, Stane; Kim, Changsoo; Lee, SangGap; Lee, Young Boo; Nam, Bora; Lee, Jae Won; Park, So Young; Lee, Sang Moon; Lee, Jouhahn

    2013-01-01

    Highlights: • The u-MFN were synthesized via a ultrasound irradiation and/or calcinations process. • The u-MFN exhibited excellent adsorption capacities. • The u-MFN also displayed excellent adsorption of organic polluent after recycling. • The u-MFN has the potential to be used as an efficient adsorbent material. -- Abstract: To obtain adsorbents with high capacities for removing heavy metals and organic pollutants capable of quick magnetic separation, we fabricated unique sea-urchin-like magnetic iron oxide (mixed γ-Fe 2 O 3 /Fe 3 O 4 phase) nanostructures (called u-MFN) with large surface areas (94.1 m 2 g −1 ) and strong magnetic properties (57.9 emu g −1 ) using a simple growth process and investigated their potential applications in water treatment. The u-MFN had excellent removal capabilities for the heavy metals As(V) (39.6 mg g −1 ) and Cr(VI) (35.0 mg g −1 ) and the organic pollutant Congo red (109.2 mg g −1 ). The u-MFN also displays excellent adsorption of Congo red after recycling. Because of its high adsorption capacity, fast adsorption rate, and quick magnetic separation from treated water, the u-MFN developed in the present study is expected to be an efficient magnetic adsorbent for heavy metals and organic pollutants in aqueous solutions

  2. Supercritical water oxidation of ion exchange resins: Degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.; Roubaud, A. [CEA Marcoule, DEN DTCD SPDE LFSM, F-30207 Bagnols Sur Ceze (France); Guichardon, P. [Ecole Cent Marseille, F-13451 Marseille 20 (France); Boutin, O. [Aix Marseille Univ, UMR CNRS 6181, F-13545 Aix En Provence 4 (France)

    2010-07-01

    Spent ion exchange resins are radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation could offer a viable treatment alternative to destroy the organic structure of resins and contain radioactivity. IER degradation experiments were carried out in a continuous supercritical water reactor. Total organic carbon degradation rates in the range of 95-98% were obtained depending on operating conditions. GC-MS chromatography analyses were carried out to determine intermediate products formed during the reaction. Around 50 species were identified for cationic and anionic resins. Degradation of poly-styrenic structure leads to the formation of low molecular weight compounds. Benzoic acid, phenol and acetic acid are the main compounds. However, other products are detected in appreciable yields such as phenolic species or heterocycles, for anionic IERs degradation. Intermediates produced by intramolecular rearrangements are also obtained. A radical degradation mechanism is proposed for each resin. In this overall mechanism, several hypotheses are foreseen, according to HOO center dot radical attack sites. (authors)

  3. On the crystalline structures of iron oxides formed during the removal process of iron in water

    International Nuclear Information System (INIS)

    Cho, Bongyeon; Fujita, Kenji; Oda, Katsuro; Ino, Hiromitsu

    1993-01-01

    The iron oxide samples collected from both filtration and batch reactors were analysed by X-ray diffraction and Moessbauer spectroscopy. In the filtration of water containing iron, the oxidized form of iron was determined to be ferrihydrite. In contrast, in the batch experiment without filtration, iron was oxidized to microcrystalline goethite. (orig.)

  4. Design requirements for the supercritical water oxidation test bed

    International Nuclear Information System (INIS)

    Svoboda, J.M.; Valentich, D.J.

    1994-05-01

    This report describes the design requirements for the supercritical water oxidation (SCWO) test bed that will be located at the Idaho National Engineering Laboratory (INEL). The test bed will process a maximum of 50 gph of waste plus the required volume of cooling water. The test bed will evaluate the performance of a number of SCWO reactor designs. The goal of the project is to select a reactor that can be scaled up for use in a full-size waste treatment facility to process US Department of Energy mixed wastes. EG ampersand G Idaho, Inc. will design and construct the SCWO test bed at the Water Reactor Research Test Facility (WRRTF), located in the northern region of the INEL. Private industry partners will develop and provide SCWO reactors to interface with the test bed. A number of reactor designs will be tested, including a transpiring wall, tube, and vessel-type reactor. The initial SCWO reactor evaluated will be a transpiring wall design. This design requirements report identifies parameters needed to proceed with preliminary and final design work for the SCWO test bed. A flow sheet and Process and Instrumentation Diagrams define the overall process and conditions of service and delineate equipment, piping, and instrumentation sizes and configuration Codes and standards that govern the safe engineering and design of systems and guidance that locates and interfaces test bed hardware are provided. Detailed technical requirements are addressed for design of piping, valves, instrumentation and control, vessels, tanks, pumps, electrical systems, and structural steel. The approach for conducting the preliminary and final designs and environmental and quality issues influencing the design are provided

  5. The suitability of silicon carbide for photocatalytic water oxidation

    Science.gov (United States)

    Aslam, M.; Qamar, M. T.; Ahmed, Ikram; Rehman, Ateeq Ur; Ali, Shahid; Ismail, I. M. I.; Hameed, Abdul

    2018-04-01

    Silicon carbide (SiC), owing to its extraordinary chemical stability and refractory properties, is widely used in the manufacturing industry. Despite the semiconducting nature and morphology-tuned band gap, its efficacy as photocatalysts has not been thoroughly investigated. The current study reports the synthesis, characterization and the evaluation of the capability of silicon carbide for hydrogen generation from water splitting. The optical characterization of the as-synthesized powder exposed the formation of multi-wavelength absorbing entities in synthetic process. The structural analysis by XRD and the fine microstructure analysis by HRTEM revealed the cubic 3C-SiC (β-SiC) and hexagonal α-polymorphs (2H-SiC and 6H-SiC) as major and minor phases, respectively. The Mott-Schottky analysis verified the n-type nature of the material with the flat band potential of - 0.7 V. In the electrochemical evaluation, the sharp increase in the peak currents in various potential ranges, under illumination, revealed the plausible potential of the material for the oxidation of water and generation of hydrogen. The generation of hydrogen and oxygen, as a consequence of water splitting in the actual photocatalytic experiments, was observed and measured. A significant increase in the yield of hydrogen was noticed in the presence of methanol as h + scavenger, whereas a retarding effect was offered by the Fe3+ entities that served as e - scavengers. The combined effect of both methanol and Fe3+ ions in the photocatalytic process was also investigated. Besides hydrogen gas, the other evolved gasses such as methane and carbon monoxide were also measured to estimate the mechanism of the process.

  6. Oxidation behavior of austenitic iron-base ODS alloy in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Behnamian, Y.; Dong, Z.; Zahiri, R.; Kohandehghan, A.; Mitlin, D., E-mail: behnamia@ualberta.ca, E-mail: zdong@ualberta.ca, E-mail: kohandeh@ualberta.ca, E-mail: rzahiris@ualberta.ca, E-mail: dave.mitlin@ualberta.ca [Univ. of Alberta, Edmondon, AB (Canada); Zhou, Z., E-mail: zhouzhj@mater.ustb.edu.cn [Univ. of Science and Tech. Beijing, Beijing (China); Chen, W.; Luo, J., E-mail: weixing.chen@ualberta.ca, E-mail: Jingli.luo@ualberta.ca [Univ. of Alberta, Edmonton, AB (Canada); Zheng, W., E-mail: wenyue@nrcan.gc.ca [Natural Resources Canada, Canmet MATERIALS, Hamilton, ON (Canada); Guzonas, D. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    In this study, the effect of exposure time on the corrosion of the 304 stainless steel based oxide dispersion strengthened alloy, SS304ODS, in supercritical water was investigated at 650 {sup o}C with constant dissolved oxygen concentration. The results show that the oxidation of SS304ODS in supercritical water followed a parabolic law at 650 {sup o}C. Discontinuous oxide scale with two distinct layers has formed after 550 hours. The inner layer was chromium-rich while the outer layer was iron-rich (Magnetite). The oxide islands grow with increasing the exposure time. With increasing exposure time, the quantity of oxide islands increased in which major preferential growth along oxide-substrate interface was observed. The possible mechanism of SS304ODS oxidation in supercritical water was also discussed. (author)

  7. Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2015-03-01

    Full Text Available Based on the benchmark solid oxide fuel cell (SOFC dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model.

  8. [Ultrasound induced the formation of nitric oxide and nitrosonium ions in water and aqueous solutions].

    Science.gov (United States)

    Stepuro, I I; Adamchuk, R I; Stepuro, V I

    2004-01-01

    Nitric oxide, nitrosonium ions, nitrites, and nitrates are formed in water saturated with air under the action of ultrasound. Nitrosonium ions react with water and hydrogen peroxide to form nitrites and nitrates in sonicated solution, correspondingly. Nitric oxide is practically completely released from sonicated water into the atmosphere and reacts with air oxygen, forming NOx compounds. The oxidation of nitric oxide in aqueous medium by hydroxyl radicals and dissolved oxygen is a minor route of the formation of nitrites and nitrates in ultrasonic field.

  9. DETERMINATION OF THE RATES AND PRODUCTS OF FERROUS IRON OXIDATION IN ARSENIC-CONTAMINATED POND WATER.

    Science.gov (United States)

    Dissolved ferrous iron and arsenic in the presence of insufficient oxygenated ground water is released into a pond. When the mixing of ferrous iron and oxygenated water within the pond occurs, the ferrous iron is oxidized and precipitated as an iron oxide. Groups of experiments...

  10. Emissions of nitrous oxide and methane from surface and ground waters in Germany

    International Nuclear Information System (INIS)

    Hiessl, H.

    1993-01-01

    The paper provides a first estimation of the contribution of inland freshwater systems (surface waters and ground waters) to the emission of the greenhouse gases nitrous oxide and methane in Germany. These amounts are compared to other main sources for the emission of nitrous oxide and methane. (orig.) [de

  11. Nitrite oxidizing bacteria for water treatment in coastal aquaculture system

    Science.gov (United States)

    Noorak, S.; Rakkhiaw, S.; Limjirakhajornt, K.; Uppabullung, A.; Keawtawee, T.; Sangnoi, Y.

    2018-04-01

    This research aimed to isolate and characterize nitrite oxidizing bacteria and to study their capability for water quality improvement. Fourteen strains of bacteria with nitrite-oxidizing character were isolated after 21 days of enrichment in Pep-Beef-NOB medium contained NaNO2. Two strains, SF-1 and SF-5, showed highest nitrite removal rate for 42.42% and 37.2%, respectively. These strains were determined an efficiency of open-system wastewater treatment for 14 days. The results showed that control, SF-1 and SF-5 had remove ammonia from day 1 to day 6. At the end of the study, ammonia was removed by the control, SF-1 and SF-5 for 81.27%, 70.1% and 69.82%, respectively. Nitrite concentration was lowest at day 8 with removal rate of 98.73%, 98.3% and 97.24% from control, SF-1 and SF-5, respectively. However, nitrite concentration in control experiment was increased again at day 11 whereas in SF-1 and SF-5 were increased at day 13. Chemical Oxygen Demand (COD) was decreased by 77.78%, 73.50% and 78.63% in the control, SF-1 and SF-5, respectively. Biological Oxygen Demand (BOD) in the control, SF-1 and SF-5 were reduced by 85.92%, 79.53% and 82.09%, respectively. Based on 16S rRNA gene, SF-1 and SF-5 were identified as Bacillus vietnamensis and B. firmus, respectively.

  12. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey.

    Science.gov (United States)

    Ma, Liping; Li, Bing; Jiang, Xiao-Tao; Wang, Yu-Lin; Xia, Yu; Li, An-Dong; Zhang, Tong

    2017-11-28

    Excesses of antibiotic resistance genes (ARGs), which are regarded as emerging environmental pollutants, have been observed in various environments. The incidence of ARGs in drinking water causes potential risks to human health and receives more attention from the public. However, ARGs harbored in drinking water remain largely unexplored. In this study, we aimed at establishing an antibiotic resistome catalogue in drinking water samples from a wide range of regions and to explore the potential hosts of ARGs. A catalogue of antibiotic resistome in drinking water was established, and the host-tracking of ARGs was conducted through a large-scale survey using metagenomic approach. The drinking water samples were collected at the point of use in 25 cities in mainland China, Hong Kong, Macau, Taiwan, South Africa, Singapore and the USA. In total, 181 ARG subtypes belonging to 16 ARG types were detected with an abundance range of 2.8 × 10 -2 to 4.2 × 10 -1 copies of ARG per cell. The highest abundance was found in northern China (Henan Province). Bacitracin, multidrug, aminoglycoside, sulfonamide, and beta-lactam resistance genes were dominant in drinking water. Of the drinking water samples tested, 84% had a higher ARG abundance than typical environmental ecosystems of sediment and soil. Metagenomic assembly-based host-tracking analysis identified Acidovorax, Acinetobacter, Aeromonas, Methylobacterium, Methyloversatilis, Mycobacterium, Polaromonas, and Pseudomonas as the hosts of ARGs. Moreover, potential horizontal transfer of ARGs in drinking water systems was proposed by network and Procrustes analyses. The antibiotic resistome catalogue compiled using a large-scale survey provides a useful reference for future studies on the global surveillance and risk management of ARGs in drinking water. .

  13. p-Type Transparent Conducting Oxide/n-Type Semiconductor Heterojunctions for Efficient and Stable Solar Water Oxidation.

    Science.gov (United States)

    Chen, Le; Yang, Jinhui; Klaus, Shannon; Lee, Lyman J; Woods-Robinson, Rachel; Ma, Jie; Lum, Yanwei; Cooper, Jason K; Toma, Francesca M; Wang, Lin-Wang; Sharp, Ian D; Bell, Alexis T; Ager, Joel W

    2015-08-05

    Achieving stable operation of photoanodes used as components of solar water splitting devices is critical to realizing the promise of this renewable energy technology. It is shown that p-type transparent conducting oxides (p-TCOs) can function both as a selective hole contact and corrosion protection layer for photoanodes used in light-driven water oxidation. Using NiCo2O4 as the p-TCO and n-type Si as a prototypical light absorber, a rectifying heterojunction capable of light driven water oxidation was created. By placing the charge separating junction in the Si using a np(+) structure and by incorporating a highly active heterogeneous Ni-Fe oxygen evolution catalyst, efficient light-driven water oxidation can be achieved. In this structure, oxygen evolution under AM1.5G illumination occurs at 0.95 V vs RHE, and the current density at the reversible potential for water oxidation (1.23 V vs RHE) is >25 mA cm(-2). Stable operation was confirmed by observing a constant current density over 72 h and by sensitive measurements of corrosion products in the electrolyte. In situ Raman spectroscopy was employed to investigate structural transformation of NiCo2O4 during electrochemical oxidation. The interface between the light absorber and p-TCO is crucial to produce selective hole conduction to the surface under illumination. For example, annealing to produce more crystalline NiCo2O4 produces only small changes in its hole conductivity, while a thicker SiOx layer is formed at the n-Si/p-NiCo2O4 interface, greatly reducing the PEC performance. The generality of the p-TCO protection approach is demonstrated by multihour, stable, water oxidation with n-InP/p-NiCo2O4 heterojunction photoanodes.

  14. Sea-urchin-like iron oxide nanostructures for water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Uk, E-mail: leeho@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Soon Chang [Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Young-Chul [Department of Biological Engineering, College of Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Vrtnik, Stane; Kim, Changsoo; Lee, SangGap [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Young Boo; Nam, Bora [Jeonju Center, Korea Basic Science Institute, Jeonju 561-756 (Korea, Republic of); Lee, Jae Won [Department of Energy Engineering, Dankook University, Cheonan 330-714 (Korea, Republic of); Park, So Young; Lee, Sang Moon [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of); Lee, Jouhahn, E-mail: jouhahn@kbsi.re.kr [Division of Materials Science, Korea Basic Science Institute, Daejeon 305-333 (Korea, Republic of)

    2013-11-15

    Highlights: • The u-MFN were synthesized via a ultrasound irradiation and/or calcinations process. • The u-MFN exhibited excellent adsorption capacities. • The u-MFN also displayed excellent adsorption of organic polluent after recycling. • The u-MFN has the potential to be used as an efficient adsorbent material. -- Abstract: To obtain adsorbents with high capacities for removing heavy metals and organic pollutants capable of quick magnetic separation, we fabricated unique sea-urchin-like magnetic iron oxide (mixed γ-Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} phase) nanostructures (called u-MFN) with large surface areas (94.1 m{sup 2} g{sup −1}) and strong magnetic properties (57.9 emu g{sup −1}) using a simple growth process and investigated their potential applications in water treatment. The u-MFN had excellent removal capabilities for the heavy metals As(V) (39.6 mg g{sup −1}) and Cr(VI) (35.0 mg g{sup −1}) and the organic pollutant Congo red (109.2 mg g{sup −1}). The u-MFN also displays excellent adsorption of Congo red after recycling. Because of its high adsorption capacity, fast adsorption rate, and quick magnetic separation from treated water, the u-MFN developed in the present study is expected to be an efficient magnetic adsorbent for heavy metals and organic pollutants in aqueous solutions.

  15. The Behavior of the Ru-bda Water Oxidation Catalysts at Low Oxidation States.

    Science.gov (United States)

    Matheu, Roc; Ghaderian, Abolfazl; Francas, Laia; Chernev, Petko; Ertem, Mehmed; Benet-Buchholz, Jordi; Batista, Victor; Haumann, Michael; Gimbert-Suriñach, Carolina; Sala, Xavier; Llobet, Antoni

    2018-06-13

    The Ru complex [RuII(bda-κ-N2O2)(N-NH2)2], 1, (bda2- = (2,2'-bipyridine)-6,6'-dicarboxylate; N-NH2 = 4-(pyridin-4-yl)aniline) is used as a synthetic intermediate to prepare Ru-bda complexes that contain the NO+, acetonitrile (MeCN) or H2O ligands at oxidation states II and III. Complex 1 reacts with excess NO+ to form a Ru complex where the aryl amine ligands N-NH2 in 1 are transformed into diazonium salts (N-N2+ = 4-(pyridin-4-yl)benzenediazonium)) together with the formation of a new Ru-NO group at the equatorial zone, to generate [RuII(bda-κ-N2O)(NO)(N-N2)2]3+, 23+. Similarly, complex 1 can also react with a coordinating solvent, such as MeCN, at room temperature leading to complex [RuII(bda-κ-N2O)(MeCN)(N-NH2)2], 3. Finally in acidic aqueous solutions solvent water coordinates the Ru center forming {[RuII(bda-κ-(NO)3)(H2O)(N-NH3)2](H2O)n}2+, 42+, that is strongly hydrogen bonded with additional water molecules at the second coordination sphere. We have additionally characterized the one electron oxidized complex {[RuIII(bda-κ-(NO)3.5)(H2O)(N-NH3)2](H2O)n}3+, 53+. The coordination mode of the complexes has been studied both in the solid state and in solution through single-crystal XRD, X-ray absorption spectroscopy, variable-temperature NMR and DFT calculations. While the κ-N2O is the main coordination mode for 23+ and 3, an equilibrium that involves isomers with κ-N2O and κ-NO2 coordination modes and neighboring hydrogen bonded water molecules is observed for 42+ and 53+. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dynamics of the water dimer + nitric oxide collision

    Energy Technology Data Exchange (ETDEWEB)

    Ree, Jong Baik [Dept. of Chemistry Education, Chonnam National University, Gwangju (Korea, Republic of); Kim, Yoo Hang [Dept. of Chemistry, Inha University, Incheon (Korea, Republic of); Shin, Hyung Kyu [Dept. of Chemistry, University of Nevada, Nevada (Korea, Republic of)

    2017-02-15

    Collision-induced intermolecular energy transfer and intramolecular vibrational redistribution in the collision of a water dimer and nitric oxide are studied by use of quasiclassical procedures. Intermolecular energy flow is shown to occur mainly through a direct-mode mechanism transferring relatively large amounts in strong collisions. About a quarter of the energy initially deposited in the dimer transfers to the ground state NO, while the rest redistributes among internal motions of the collision system. The main portion of initial energy deposited in the dimer redistributes in the stretches of the donor monomer through the 1:1 resonance followed by in the bend through the 1:2 resonance. Energy transfer from the excited NO to the ground-state dimer is equally efficient, transferring more than half the initial excitation to the donor monomer, the efficiency that is attributed to the internal modes operating as energy reservoirs. The hydrogen bond shares about 15% of the initial excitation stored in both dimer-to-NO and NO-to-dimer processes as a result of strong coupling of the hydrogen bond with the proton-donor OH bond of the monomer. A small fraction of collisions proceeds through a complex-mode mechanism and lead to NO dissociation, the dissociated O atom showing a propensity to form a new hydrogen bond.

  17. Morphologically different WO3 nanocrystals in photoelectrochemical water oxidation

    International Nuclear Information System (INIS)

    Biswas, Soumya Kanti; Baeg, Jin-Ook; Moon, Sang-Jin; Kong, Ki-jeong; So, Won-Wook

    2012-01-01

    Different morphologies of WO 3 nanocrystals such as nanorods and nanoplates have been obtained under hydrothermal conditions using ammonium metatungstate as the precursor in presence of different organic acids such as citric, oxalic, and tartaric acid in the reaction medium. Detailed characterization of the crystal structure, particle morphology, and optical band gap of the synthesized powders have been done by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and solid-state UV–visible spectroscopy study. The as-synthesized materials are WO 3 hydrates with orthorhombic phase which transform to the hexagonal WO 3 through dehydration upon heating at 350 °C. The resultant products are crystalline with nanoscale dimensions. Finally, the photoactivity of the synthesized materials annealed at 500 °C has been compared employing in photoelectrochemical water oxidation under the illumination of AM 1.5G simulated solar light (100 mWcm −2 ). The photocurrent measurements upon irradiation of light exhibit obvious photocatalytic activity with a photocurrent of about 0.77, 0.61, and 0.65 mAcm −2 for the WO 3 film derived with the oxalic acid, tartaric, and citric acid assisting agents, respectively, at 1.8 V versus Ag/AgCl electrode.

  18. Copper oxide--copper sulfate water-splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Foh, S. E.; Schreiber, J. D.; Dafler, J. R.

    1978-08-01

    A hybrid copper oxide--copper sulfate thermochemical water-splitting cycle, IGT's H-5, has been demonstrated in the laboratory with recycled materials. The optimum configuration and operating conditions for the electrolytic hydrogen-producing step have not yet been defined. With cooperative funding (A.G.A./G.R.I./DOE) a conceptual flowsheet was developed for this cycle and a load-line efficiency of about 37% calculated. This figure is the result of a single iteration on the original base case flow sheet and compares well with the values calculated for other processes at this stage of development. An iterative optimization of process conditions would improve efficiency. The data required to perform an economic analysis are not yet available and the electrolysis step must be more fully defined. An attractive process efficiency, relatively few corrosive materials, and few gas-phase separations are attributes of Cycle H-5 that lead us to believe hydrogen costs (to be developed during future analyses) would be improved significantly over similar processes analyzed to date.

  19. Amine binding and oxidation at the catalytic site for photosynthetic water oxidation

    Science.gov (United States)

    Ouellette, Anthony J. A.; Anderson, Lorraine B.; Barry, Bridgette A.

    1998-01-01

    Photosynthetic water oxidation occurs at the Mn-containing catalytic site of photosystem II (PSII). By the use of 14C-labeled amines and SDS-denaturing PAGE, covalent adducts derived from primary amines and the PSII subunits, CP47, D2/D1, and the Mn-stabilizing protein, can be observed. When PSII contains the 18- and 24-kDa extrinsic proteins, which restrict access to the active site, no 14C labeling is obtained. NaCl, but not Na2SO4, competes with 14C labeling in Mn-containing PSII preparations, and the concentration dependence of this competition parallels the activation of oxygen evolution. Formation of 14C-labeled adducts is observed in the presence or in the absence of a functional manganese cluster. However, no significant Cl− effect on 14C labeling is observed in the absence of the Mn cluster. Isolation and quantitation of the 14C-labeled aldehyde product, produced from [14C]benzylamine, gives yields of 1.8 ± 0.3 mol/mol PSII and 2.9 ± 0.2 mol/mol in Mn-containing and Mn-depleted PSII, respectively. The corresponding specific activities are 0.40 ± 0.07 μmol(μmol PSII-hr)−1 and 0.64 ± 0.04 μmol(μmol PSII-hr)−1. Cl− suppresses the production of [14C]benzaldehyde in Mn-containing PSII, but does not suppress the production in Mn-depleted preparations. Control experiments show that these oxidation reactions do not involve the redox-active tyrosines, D and Z. Our results suggest the presence of one or more activated carbonyl groups in protein subunits that form the active site of PSII. PMID:9482863

  20. The burnup dependence of light water reactor spent fuel oxidation

    International Nuclear Information System (INIS)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO 2 is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO 2 to higher oxides. The oxidation of UO 2 has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO 2 oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO 2 to UO 2.4 was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO 2.4 to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO 2 oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO 2 and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5)

  1. Session 6: Water depollution from aniline and phenol by air oxidation and adsorptive-catalytic oxidation in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynkin, N.M.; Batygina, M.V.; Noskov, A.S. [Boreskov Institute of Catalysis of Siberian Branch of Russian Academy of Sciences, Pr. Ak. Lavrentieva (Russian Federation)

    2004-07-01

    This paper is devoted to development of carbon catalysts and application of catalytic wet air oxidation for deep cleaning of polluted waters. The described catalysts and method are solving the problem of development environmentally reliable method for fluids treatment and allow carrying out the adsorption of pollutants on carbon CAPM (catalytically active porous material) with following regeneration of the CAPM without the loss of adsorptive qualities. The experiments have shown a principal capability simultaneously to use carbon CAPM as adsorbent and either as catalyst, or as a catalyst support for oxidation of aniline and phenol in water solutions. (authors)

  2. RATES OF IRON OXIDATION AND ARSENIC SORPTION DURING GROUND WATER-SURFACE WATER MIXING AT A HAZARDOUS WASTE SITE

    Science.gov (United States)

    The fate of arsenic discharged from contaminated ground water to a pond at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption. Laboratory experiments were conducted using site-derived water to assess the impact...

  3. Influence of water on the anodic oxidation mechanism of ...

    African Journals Online (AJOL)

    Diethylenetriamine was oxidised in different electrolytes on platinum electrode. In non-aqueous electrolyte, an irreversible oxidation peak characteristic of DETA oxidation appears on the voltammogram followed by a constant current until the higher limit of the sweeping potential domain is attained. The following successive ...

  4. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream.

    Science.gov (United States)

    Nishizawa, Manabu; Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-08-01

    Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of

  5. Estimation of Oxidation Kinetics and Oxide Scale Void Position of Ferritic-Martensitic Steels in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Li Sun

    2017-01-01

    Full Text Available Exfoliation of oxide scales from high-temperature heating surfaces of power boilers threatened the safety of supercritical power generating units. According to available space model, the oxidation kinetics of two ferritic-martensitic steels are developed to predict in supercritical water at 400°C, 500°C, and 600°C. The iron diffusion coefficients in magnetite and Fe-Cr spinel are extrapolated from studies of Backhaus and Töpfer. According to Fe-Cr-O ternary phase diagram, oxygen partial pressure at the steel/Fe-Cr spinel oxide interface is determined. The oxygen partial pressure at the magnetite/supercritical water interface meets the equivalent oxygen partial pressure when system equilibrium has been attained. The relative error between calculated values and experimental values is analyzed and the reasons of error are suggested. The research results show that the results of simulation at 600°C are approximately close to experimental results. The iron diffusion coefficient is discontinuous in the duplex scale of two ferritic-martensitic steels. The simulation results of thicknesses of the oxide scale on tubes (T91 of final superheater of a 600 MW supercritical boiler are compared with field measurement data and calculation results by Adrian’s method. The calculated void positions of oxide scales are in good agreement with a cross-sectional SEM image of the oxide layers.

  6. Water surface coverage effects on reactivity of plasma oxidized Ti films

    International Nuclear Information System (INIS)

    Pranevicius, L.; Pranevicius, L.L.; Vilkinis, P.; Baltaragis, S.; Gedvilas, K.

    2014-01-01

    Highlights: • The reactivity of Ti films immersed in water vapor plasma depends on the surface water coverage. • The adsorbed water monolayers are disintegrated into atomic constituents on the hydrophilic TiO 2 under plasma radiation. • The TiO 2 surface covered by water multilayer loses its ability to split adsorbed water molecules under plasma radiation. - Abstract: The behavior of the adsorbed water on the surface of thin sputter deposited Ti films maintained at room temperature was investigated in dependence on the thickness of the resulting adsorbed water layer, controllably injecting water vapor into plasma. The surface morphology and microstructure were used to characterize the surfaces of plasma treated titanium films. Presented experimental results showed that titanium films immersed in water vapor plasma at pressure of 10–100 Pa promoted the photocatalytic activity of overall water splitting. The surfaces of plasma oxidized titanium covered by an adsorbed hydroxyl-rich island structure water layer and activated by plasma radiation became highly chemically reactive. As water vapor pressure increased up to 300–500 Pa, the formed water multilayer diminished the water oxidation and, consequently, water splitting efficiency decreased. Analysis of the experimental results gave important insights into the role an adsorbed water layer on surface of titanium exposed to water vapor plasma on its chemical activity and plasma activated electrochemical processes, and elucidated the surface reactions that could lead to the split of water molecules

  7. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films.

    Science.gov (United States)

    Sun, Ke; Saadi, Fadl H; Lichterman, Michael F; Hale, William G; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T; Omelchenko, Stefan T; He, Jr-Hau; Papadantonakis, Kimberly M; Brunschwig, Bruce S; Lewis, Nathan S

    2015-03-24

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g).

  8. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    KAUST Repository

    Sun, Ke

    2015-03-11

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). © 2015, National Academy of Sciences. All rights reserved.

  9. The Manipulation of Hydrophobicity in Catalyst Design for Applications of Aerobic Alcohols Oxidation and Electrocatalytic Water Oxidation

    KAUST Repository

    Chen, Batian

    2016-05-17

    Hydrophobicity is the generalized characteristic of non-polar substances that brings about their exclusion from aqueous phases. This property, entropic in its nature, drives key self-assembly and phase separation processes in water. Protein folding, the formation of DNA double helix, the existence of lipid bilayers and the wetting properties of leaf surfaces are all due to hydrophobic interactions. Inspired by Nature, we aimed to use hydrophobicity for creating novel and improved catalytic systems. (I) A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. (II) An enzyme-inspired catalytic system based on a rationally designed multifunctional surfactant was developed. The resulting micelles feature metal-binding sites and stable free radical moieties as well as fluorous pockets that attract and preconcentrate molecular oxygen. In the presence of copper ions, the micelles effect chemoselective aerobic alcohol oxidation under ambient conditions in water, a transformation that is challenging to achieve nonenzymatically. (III) Development of a facile means of photo/electrocatalytic water splitting is one of the main barriers to establishing of a solar hydrogen economy. Of the two half-reactions involved in splitting water into O2 and H2, water oxidation presents the most challenge due to its mechanistic complexity. A practical water oxidation catalyst must be highly active, yet inexpensive and indefinitely stable under harsh oxidative conditions. Here, I shall describe the synthesis of a library of molecular water oxidation catalysts based on the Co complex of tris(2-benzimidazolylmethyl)amine, (BimH)3. A wide range of catalysts differing in their electronic properties

  10. Leveraging Earth Observations to Improve Data Resolution and Tracking of Sustainable Development Goals in Water Resources and Public Health

    Science.gov (United States)

    Akanda, A. S.; Nusrat, F.; Hasan, M. A.; Fallatah, O.

    2017-12-01

    Water scarcity affects more than 40 per cent of the world population and is projected to rise substantially, affecting safe water and sanitation access globally. The recently released WHO/UNICEF Joint Monitoring Programme (JMP) 2017 report on global water and sanitation access paints a grim picture across the planet; approximately 30% people worldwide, or 2.1 billion, still lack access to safe, readily available clean water, and 60% people worldwide, or 4.5 billion ppl, lack safely managed sanitation. Meanwhile, demand for water and competition for water resources are sharply rising amid growing uncertainty of climate change and its impacts on water resources. The United Nations Agenda 2030 Sustainable Development Goals (SDGs) call for substantially increasing water-use efficiency across all sectors and ensuring sustainable withdrawals and supply of freshwater to address water scarcity, providing clean water and sanitation for all, increasing international cooperation over transboundary surface and groundwater resources (under Goal 6), as well as ending preventable deaths of newborns and children under 5 years of age, and end the epidemics of neglected tropical and water-borne diseases (under Goal 3). Data availability in developing regions, especially at the appropriate resolution in both space and time, has been a recurring problem for various technological and institutional reasons. Earth observation techniques provide the most cost-effective and encompassing tool to monitor these regions, large transboundary river basins and aquifer systems, and water resources vulnerabilities to climate change around the globe. University of Rhode Island, with US and international collaborators, is using earth observations to develop tools to analyze, monitor and support decision-makers to track their progress towards SDGs with better data resolution and accuracy. Here, we provide case studies on 1) providing safe water and sanitation access South Asia through safe water

  11. Homing and Tracking of Iron Oxide Labelled Mesenchymal Stem Cells After Infusion in Traumatic Brain Injury Mice: a Longitudinal In Vivo MRI Study.

    Science.gov (United States)

    Mishra, Sushanta Kumar; Khushu, Subash; Singh, Ajay K; Gangenahalli, Gurudutta

    2018-06-17

    Stem cells transplantation has emerged as a promising alternative therapeutic due to its potency at injury site. The need to monitor and non-invasively track the infused stem cells is a significant challenge in the development of regenerative medicine. Thus, in vivo tracking to monitor infused stem cells is especially vital. In this manuscript, we have described an effective in vitro labelling method of MSCs, a serial in vivo tracking of implanted stem cells at traumatic brain injury (TBI) site through 7 T magnetic resonance imaging (MRI). Proper homing of infused MSCs was carried out at different time points using histological analysis and Prussian blue staining. Longitudinal in vivo tracking of infused MSCs were performed up to 21 days in different groups through MRI using relaxometry technique. Results demonstrated that MSCs incubated with iron oxide-poly-L-lysine complex (IO-PLL) at a ratio of 50:1.5 μg/ml and a time period of 6 h was optimised to increase labelling efficiency. T2*-weighted images and relaxation study demonstrated a significant signal loss and effective decrease in transverse relaxation time on day-3 at injury site after systemic transplantation, revealed maximum number of stem cells homing to the lesion area. MRI results further correlate with histological and Prussian blue staining in different time periods. Decrease in negative signal and increase in relaxation times were observed after day-14, may indicate damage tissue replacement with healthy tissue. MSCs tracking with synthesized negative contrast agent represent a great advantage during both in vitro and in vivo analysis. The proposed absolute bias correction based relaxometry analysis could be extrapolated for stem cell tracking and therapies in various neurodegenerative diseases.

  12. Oxidation by UV and ozone of organic contaminants dissolved in deionized and raw mains water

    International Nuclear Information System (INIS)

    Francis, P.D.

    1987-01-01

    Organic contaminants dissolved in deionized pretreated and raw mains water were reacted with ultraviolet light and ozone. Ozone first was used for partial oxidation followed by ozone combined with ultraviolet radiation to produce total oxidation. The reduction of total organic carbon (TOC) level and direct oxidation of halogenated compounds were measured throughout the treatment process. The rate of TOC reduction was compared for ozone injected upstream and inside the reactor

  13. Surface chemistry of metals and their oxides in high temperature water

    International Nuclear Information System (INIS)

    Tomlinson, M.

    1975-01-01

    Examination of oxide and metal surfaces in water at high temperature by a broad spectrum of techniques is bringing understanding of corrosion product movement and alleviation of activity transport in CANDU-type reactor primary coolant circuits. (Author)

  14. The reaction of monochloramine and hydroxylamine: implications for ammonia–oxidizing bacteria in chloraminated drinking water

    Science.gov (United States)

    Drinking water chloramine use may promote ammonia–oxidizing bacteria (AOB) growth because of naturally occurring ammonia, residual ammonia remaining from chloramine formation, and ammonia released from chloramine decay and demand. A rapid chloramine residual loss is often associa...

  15. Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A Combined Experimental and Theoretical Investigation

    KAUST Repository

    de Ruiter, J. M.; Purchase, R. L.; Monti, A.; van der Ham, C. J. M.; Gullo, M. P.; Joya, K. S.; D'Angelantonio, M.; Barbieri, A.; Hetterscheid, D. G. H.; de Groot, H. J. M.; Buda, F.

    2016-01-01

    derivatives). The proposed catalytic cycle and intermediates are examined using density functional theory (DFT), radiation chemistry, spectroscopic techniques, and electrochemistry to establish the water oxidation mechanism. The stability of the catalyst

  16. Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR)

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Justine P. [Johns Hopkins Univ., Baltimore, MD (United States)

    2015-03-03

    Isotopic Studies of O-O Bond Formation During Water Oxidation (SISGR) Research during the project period focused primarily on mechanisms of water oxidation by structurally defined transition metal complexes. Competitive oxygen isotope fractionation of water, mediated by oxidized precursors or reduced catalysts together with ceric, Ce(IV), ammonium nitrate in aqueous media, afforded oxygen-18 kinetic isotope effects (O-18 KIEs). Measurement, calculation, and interpretation of O-18 KIEs, described in the accompanying report has important ramifications for the production of electricity and solar hydrogen (as fuel). The catalysis division of BES has acknowledged that understanding mechanisms of transition metal catalyzed water oxidation has major ramifications, potentially leading to transformation of the global economy and natural environment in years to come. Yet, because of program restructuring and decreased availability of funds, it was recommended that the Solar Photochemistry sub-division of BES would be a more appropriate parent program for support of continued research.

  17. Synthesis and characterization of a mesoporous hydrous zirconium oxide used for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Bortun, Anatoly; Bortun, Mila; Pardini, James; Khainakov, Sergei A.; Garcia, Jose R.

    2010-01-01

    Powder (20-50 μm) mesoporous hydrous zirconium oxide was prepared from a zirconium salt granular precursor. The effect of some process parameters on product morphology, porous structure and adsorption performance has been studied. The use of hydrous zirconium oxide for selective arsenic removal from drinking water is discussed.

  18. Photocatalytic Oxidation in Drinking Water Treatment Using Hypochlorite and Titanium Dioxide

    NARCIS (Netherlands)

    El-Kalliny, A.S.M.

    2013-01-01

    The main focus of this thesis is to study the advanced oxidation processes (AOPs) of water pollutants via UV/hypochlorite (homogeneous AOPs), and UV solar light/TiO2 (heterogeneous AOPs) in which the highly oxidative hydroxyl radicals (•OH) are produced. These radicals are capable of destructing the

  19. Organosilane oxidation by water catalysed by large gold nanoparticles in a membrane reactor

    NARCIS (Netherlands)

    Gitis, V.; Beerthuis, R.; Shiju, N.R.; Rothenberg, G.

    2014-01-01

    We show that gold nanoparticles catalyse the oxidation of organosilanes using water as oxidant at ambient conditions. Remarkably, monodispersions of small gold particles (3.5 nm diameter) and large ones (6-18 nm diameter) give equally good conversion rates. This is important because separating large

  20. Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Woodley, John

    2009-01-01

    The aerobic oxidation of 5-hydroxymethylfurfural, a versatile biomass-derived chemical, is examined in water with a titania-supported gold-nanoparticle catalyst at ambient temperature (30 degrees C). The selectivity of the reaction towords 2,5-furandicarboxylic acid and the intermediate oxidation...

  1. The emulsifying and tribological properties of modified graphene oxide in oil-in-water emulsion

    NARCIS (Netherlands)

    Wu, Yinglei; Zeng, Xiangqiong; Ren, Tianhui; de Vries, Erik G.; van der Heide, Emile

    2017-01-01

    Graphene oxide (GO) was asymmetric chemically modified with myristyltrimethylammonium bromide (TTAB) to get modified graphene oxide (MGO). This MGO was used as an emulsifier and additive in oil-in-water emulsion. The emulsifying tests showed MGO greatly improved the stability of base emulsion and

  2. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    Science.gov (United States)

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  3. Synthesis of superconducting cobalt oxyhydrates using a novel method: Electrolyzed and oxidized water

    International Nuclear Information System (INIS)

    Liu, C.-J.; Wu, T.-H.; Hsu, L.-L.; Wang, J.-S.; Chen, S.-Y.

    2007-01-01

    By deintercalation of Na + followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of γ-Na 0.7 CoO 2 undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na 0.35 (H 2 O) 1.3 CoO 2-δ with the c-axis expanded from c ∼ 10.9 A to c ∼ 19.6 A. In this paper, we demonstrate that the superconducting phase of c ∼ 19.6 A can be directly obtained by simply immersing γ-Na 0.7 CoO 2 powders in electrolyzed/oxidized (EO) water, which is readily available from a commercial electrolyzed water generator. We found that high oxidation-reduction potential of EO water drives the oxidation of the cobalt ions accompanying by the formation of the superconductive c ∼ 19.6 A phase. Our results demonstrate how EO water can be used to oxidize the cobalt ions and hence form superconducting cobalt oxyhydrates in a clean and simple way and may provide an economic and environment-friendly route to oxidize the transition metal of complex metal oxides

  4. Synthesis of superconducting cobalt oxyhydrates using a novel method: Electrolyzed and oxidized water

    Science.gov (United States)

    Liu, Chia-Jyi; Wu, Tsung-Hsien; Hsu, Lin-Li; Wang, Jung-Sheng; Chen, Shu-Yo

    2007-09-01

    By deintercalation of Na+ followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of γ-Na0.7CoO2 undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na0.35(H2O)1.3CoO2-δ with the c-axis expanded from c ≈ 10.9 Å to c ≈ 19.6 Å. In this paper, we demonstrate that the superconducting phase of c ≈ 19.6 Å can be directly obtained by simply immersing γ-Na0.7CoO2 powders in electrolyzed/oxidized (EO) water, which is readily available from a commercial electrolyzed water generator. We found that high oxidation-reduction potential of EO water drives the oxidation of the cobalt ions accompanying by the formation of the superconductive c ≈ 19.6 Å phase. Our results demonstrate how EO water can be used to oxidize the cobalt ions and hence form superconducting cobalt oxyhydrates in a clean and simple way and may provide an economic and environment-friendly route to oxidize the transition metal of complex metal oxides.

  5. Synthesis of superconducting cobalt oxyhydrates using a novel method: Electrolyzed and oxidized water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-J. [Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan (China)], E-mail: liucj@cc.ncue.edu.tw; Wu, T.-H.; Hsu, L.-L.; Wang, J.-S.; Chen, S.-Y. [Department of Physics, National Changhua University of Education, Changhua 50007, Taiwan (China)

    2007-09-01

    By deintercalation of Na{sup +} followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of {gamma}-Na{sub 0.7}CoO{sub 2} undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na{sub 0.35}(H{sub 2}O){sub 1.3}CoO{sub 2-{delta}} with the c-axis expanded from c {approx} 10.9 A to c {approx} 19.6 A. In this paper, we demonstrate that the superconducting phase of c {approx} 19.6 A can be directly obtained by simply immersing {gamma}-Na{sub 0.7}CoO{sub 2} powders in electrolyzed/oxidized (EO) water, which is readily available from a commercial electrolyzed water generator. We found that high oxidation-reduction potential of EO water drives the oxidation of the cobalt ions accompanying by the formation of the superconductive c {approx} 19.6 A phase. Our results demonstrate how EO water can be used to oxidize the cobalt ions and hence form superconducting cobalt oxyhydrates in a clean and simple way and may provide an economic and environment-friendly route to oxidize the transition metal of complex metal oxides.

  6. Design and operational parameters of transportable supercritical water oxidation waste destruction unit

    International Nuclear Information System (INIS)

    McFarland, R.D.; Brewer, G.R.; Rofer, C.K.

    1991-12-01

    Supercritical water oxidation (SCWO) is the destruction of hazardous waste by oxidation in the presence of water at temperatures and pressures above its critical point. A 1 gal/h SCWO waste destruction unit (WDU) has been designed, built, and operated at Los Alamos National Laboratory. This unit is transportable and is intended to demonstrate the SCWO technology on wastes at Department of Energy sites. This report describes the design of the WDU and the preliminary testing phase leading to demonstration

  7. Iron oxidation kinetics and phosphorus immobilization at the groundwater-surface water interface

    Science.gov (United States)

    van der Grift, Bas; Rozemeijer, Joachim; Griffioen, Jasper; van der Velde, Ype

    2014-05-01

    Eutrophication of freshwater environments following diffuse nutrient loads is a widely recognized water quality problem in catchments. Fluxes of non-point P sources to surface waters originate from surface runoff and flow from soil water and groundwater into surface water. The availability of P in surface waters is controlled strongly by biogeochemical nutrient cycling processes at the soil-water interface. The mechanisms and rates of the iron oxidation process with associated binding of phosphate during exfiltration of anaerobic Fe(II) bearing groundwater are among the key unknowns in P retention processes in surface waters in delta areas where the shallow groundwater is typically pH-neutral to slightly acid, anoxic, iron-rich. We developed an experimental field set-up to study the dynamics in Fe(II) oxidation and mechanisms of P immobilization at the groundwater-surface water interface in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. The exfiltrating groundwater was captured in in-stream reservoirs constructed in the ditch. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and ditch water, we quantified Fe(II) oxidation kinetics and P immobilization processes across the seasons. This study showed that seasonal changes in climatic conditions affect the Fe(II) oxidation process. In winter time the dissolved iron concentrations in the in-stream reservoirs reached the levels of the anaerobic groundwater. In summer time, the dissolved iron concentrations of the water in the reservoirs are low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into the reservoirs. Higher discharges, lower temperatures and lower pH of the exfiltrated groundwater in winter compared to summer shifts the location of the redox transition zone

  8. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.

    Science.gov (United States)

    Duan, Lele; Wang, Lei; Li, Fusheng; Li, Fei; Sun, Licheng

    2015-07-21

    The oxygen evolving complex (OEC) of the natural photosynthesis system II (PSII) oxidizes water to produce oxygen and reducing equivalents (protons and electrons). The oxygen released from PSII provides the oxygen source of our atmosphere; the reducing equivalents are used to reduce carbon dioxide to organic products, which support almost all organisms on the Earth planet. The first photosynthetic organisms able to split water were proposed to be cyanobacteria-like ones appearing ca. 2.5 billion years ago. Since then, nature has chosen a sustainable way by using solar energy to develop itself. Inspired by nature, human beings started to mimic the functions of the natural photosynthesis system and proposed the concept of artificial photosynthesis (AP) with the view to creating energy-sustainable societies and reducing the impact on the Earth environments. Water oxidation is a highly energy demanding reaction and essential to produce reducing equivalents for fuel production, and thereby effective water oxidation catalysts (WOCs) are required to catalyze water oxidation and reduce the energy loss. X-ray crystallographic studies on PSII have revealed that the OEC consists of a Mn4CaO5 cluster surrounded by oxygen rich ligands, such as oxyl, oxo, and carboxylate ligands. These negatively charged, oxygen rich ligands strongly stabilize the high valent states of the Mn cluster and play vital roles in effective water oxidation catalysis with low overpotential. This Account describes our endeavors to design effective Ru WOCs with low overpotential, large turnover number, and high turnover frequency by introducing negatively charged ligands, such as carboxylate. Negatively charged ligands stabilized the high valent states of Ru catalysts, as evidenced by the low oxidation potentials. Meanwhile, the oxygen production rates of our Ru catalysts were improved dramatically as well. Thanks to the strong electron donation ability of carboxylate containing ligands, a seven

  9. Oxygen as a product of water radiolysis in high-LET tracks. II. Radiobiological implications

    International Nuclear Information System (INIS)

    Baverstock, K.F.; Burns, W.G.

    1981-01-01

    Consideration is given to the possibility that molecular oxygen generated in the tracks of energetic heavy ions is responsible for the reduction in oxygen enhancement ratio (OER) with increasing linear energy transfer (LET) observed for the loss of reproductive capacity caused by radiation in many cellular organisms. Yields of oxygen relationship of OER to LET for two organisms, Chlamydomonas reinhardii and Shigella flexneri, using a simple diffusion kinetic model for radiobiological action which takes account of the diffusion of oxygen after its formation. The results of these calculations show that the model accounts well for the shape of the OER vs. LET relationship

  10. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    Science.gov (United States)

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Effects of water turbidity and different temperatures on oxidative stress in caddisfly (Stenopsyche marmorata) larvae.

    Science.gov (United States)

    Suzuki, Jumpei; Imamura, Masahiro; Nakano, Daisuke; Yamamoto, Ryosuke; Fujita, Masafumi

    2018-07-15

    Anthropogenic water turbidity derived from suspended solids (SS) is caused by reservoir sediment management practices such as drawdown flushing. Turbid water induces stress in many aquatic organisms, but the effects of turbidity on oxidative stress responses in aquatic insects have not yet been demonstrated. Here, we examined antioxidant responses, oxidative damage, and energy reserves in caddisfly (Stenopsyche marmorata) larvae exposed to turbid water (0 mg SS L -1 , 500 mg SS L -1 , and 2000 mg SS L -1 ) at different temperatures. We evaluated the combined effects of turbid water and temperature by measuring oxidative stress and using metabolic biomarkers. No turbidity level was significantly lethal to S. marmorata larvae. Moreover, there were no significant differences in antioxidant response or oxidative damage between the control and turbid water treatments at a low temperature (10 °C). However, at a high temperature (25 °C), turbid water modulated the activity of the antioxidant enzymes superoxide dismutase and catalase and the oxygen radical absorbance capacity as an indicator of the redox state of the insect larvae. Antioxidant defenses require energy, and high temperature was associated with low energy reserves, which might limit the capability of organisms to counteract reactive oxygen species. Moreover, co-exposure to turbid water and high temperature caused fluctuation of antioxidant defenses and increased the oxidative damage caused by the production of reactive oxygen species. Furthermore, the combined effect of high temperature and turbid water on antioxidant defenses and oxidative damage was larger than the individual effects. Therefore, our results demonstrate that exposure to both turbid water and high temperature generates additive and synergistic interactions causing oxidative stress in this aquatic insect species. Copyright © 2018. Published by Elsevier B.V.

  12. Utility of remote sensing-based surface energy balance models to track water stress in rain-fed switchgrass under dry and wet conditions

    Science.gov (United States)

    The ability of remote sensing-based surface energy balance (SEB) models to track water stress in rain-fed switchgrass has not been explored yet. In this paper, the theoretical framework of crop water stress index (CWSI) was utilized to estimate CWSI in rain-fed switchgrass (Panicum virgatum L.) usin...

  13. Optimal Load-Tracking Operation of Grid-Connected Solid Oxide Fuel Cells through Set Point Scheduling and Combined L1-MPC Control

    Directory of Open Access Journals (Sweden)

    Siwei Han

    2018-03-01

    Full Text Available An optimal load-tracking operation strategy for a grid-connected tubular solid oxide fuel cell (SOFC is studied based on the steady-state analysis of the system thermodynamics and electrochemistry. Control of the SOFC is achieved by a two-level hierarchical control system. In the upper level, optimal setpoints of output voltage and the current corresponding to unit load demand is obtained through a nonlinear optimization by minimizing the SOFC’s internal power waste. In the lower level, a combined L1-MPC control strategy is designed to achieve fast set point tracking under system nonlinearities, while maintaining a constant fuel utilization factor. To prevent fuel starvation during the transient state resulting from the output power surging, a fuel flow constraint is imposed on the MPC with direct electron balance calculation. The proposed control schemes are testified on the grid-connected SOFC model.

  14. Efficient electrochemical water oxidation in neutral and near-neutral systems by nanoscale silver-oxide catalyst

    KAUST Repository

    Joya, Khurram Saleem; Ahmad, Zahoor; Joya, Yasir Faheem; Garcia Esparza, Angel T.; de Groot, Huub

    2016-01-01

    In electrocatalytic water splitting systems pursuing for renewable energy using sun light, developing robust, stable and easy accessible materials operating under mild chemical conditions is pivotal. We present here unique nano-particulate type silver-oxide (AgOx-NP) based robust and highly stable electrocatalyst for efficient water oxidation. The AgOx-NP is generated in situ in a HCO3–/CO2 system under benign conditions. Mircographs show that they exhibit nanoscale box type squared nano-bipyramidal configuration. The oxygen generation is initiated at low overpotential, and a sustained O2 evolution current density of > 1.1 mA cm–2 is achieved during prolonged-period water electrolysis. The AgOx-NP electrocatalyst performs exceptionally well in metal-ions free neutral or near-neutral carbonate, phosphate and borate buffers relative to recently reported Co-oxide and Ni-oxide based heterogeneous electrocatalysts, which are unstable in metal-ions free electrolyte and tend to degrade with time and lose catalytic performance during long-term experimental tests.

  15. Efficient electrochemical water oxidation in neutral and near-neutral systems by nanoscale silver-oxide catalyst

    KAUST Repository

    Joya, Khurram Saleem

    2016-07-19

    In electrocatalytic water splitting systems pursuing for renewable energy using sun light, developing robust, stable and easy accessible materials operating under mild chemical conditions is pivotal. We present here unique nano-particulate type silver-oxide (AgOx-NP) based robust and highly stable electrocatalyst for efficient water oxidation. The AgOx-NP is generated in situ in a HCO3–/CO2 system under benign conditions. Mircographs show that they exhibit nanoscale box type squared nano-bipyramidal configuration. The oxygen generation is initiated at low overpotential, and a sustained O2 evolution current density of > 1.1 mA cm–2 is achieved during prolonged-period water electrolysis. The AgOx-NP electrocatalyst performs exceptionally well in metal-ions free neutral or near-neutral carbonate, phosphate and borate buffers relative to recently reported Co-oxide and Ni-oxide based heterogeneous electrocatalysts, which are unstable in metal-ions free electrolyte and tend to degrade with time and lose catalytic performance during long-term experimental tests.

  16. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    Science.gov (United States)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-11-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from groundwater into surface water in an agricultural experimental catchment of a small lowland river. We physically separated tube drain effluent from groundwater discharge before it entered a ditch in an agricultural field. Through continuous discharge measurements and weekly water quality sampling of groundwater, tube drain water, exfiltrated groundwater, and surface water, we investigated Fe(II) oxidation kinetics and P immobilization processes. The oxidation rate inferred from our field measurements closely agreed with the general rate law for abiotic oxidation of Fe(II) by O2. Seasonal changes in climatic conditions affected the Fe(II) oxidation process. Lower pH and lower temperatures in winter (compared to summer) resulted in low Fe oxidation rates. After exfiltration to the surface water, it took a couple of days to more than a week before complete oxidation of Fe(II) is reached. In summer time, Fe oxidation rates were much higher. The Fe concentrations in the exfiltrated groundwater were low, indicating that dissolved Fe(II) is completely oxidized prior to inflow into a ditch. While the Fe oxidation rates reduce drastically from summer to winter, P concentrations remained high in the groundwater and an order of magnitude lower in the surface water throughout the year. This study shows very fast immobilization of dissolved P during the initial stage of the Fe(II) oxidation process which results in P-depleted water before Fe(II) is completely depleted. This cannot be explained by surface complexation of phosphate to freshly formed Fe-oxyhydroxides but indicates the formation of Fe(III)-phosphate precipitates. The formation of Fe(III)-phosphates at redox gradients

  17. Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"

    Science.gov (United States)

    Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.

    2015-01-01

    Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified

  18. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    Energy Technology Data Exchange (ETDEWEB)

    Gui Minghui; Smuleac, Vasile [University of Kentucky, Department of Chemical and Materials Engineering (United States); Ormsbee, Lindell E. [University of Kentucky, Department of Civil Engineering (United States); Sedlak, David L. [University of California at Berkeley, Department of Civil and Environmental Engineering (United States); Bhattacharyya, Dibakar, E-mail: db@engr.uky.edu [University of Kentucky, Department of Chemical and Materials Engineering (United States)

    2012-05-15

    The potential for using hydroxyl radical (OH{sup Bullet }) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H{sub 2}O{sub 2} addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80-100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Moessbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H{sub 2}O{sub 2} by NP surface generated OH{sup Bullet} were investigated. Depending on the ratio of iron and H{sub 2}O{sub 2}, TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  19. Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water

    International Nuclear Information System (INIS)

    Gui Minghui; Smuleac, Vasile; Ormsbee, Lindell E.; Sedlak, David L.; Bhattacharyya, Dibakar

    2012-01-01

    The potential for using hydroxyl radical (OH • ) reactions catalyzed by iron oxide nanoparticles (NPs) to remediate toxic organic compounds was investigated. Iron oxide NPs were synthesized by controlled oxidation of iron NPs prior to their use for contaminant oxidation (by H 2 O 2 addition) at near-neutral pH values. Cross-linked polyacrylic acid (PAA) functionalized polyvinylidene fluoride (PVDF) microfiltration membranes were prepared by in situ polymerization of acrylic acid inside the membrane pores. Iron and iron oxide NPs (80–100 nm) were directly synthesized in the polymer matrix of PAA/PVDF membranes, which prevented the agglomeration of particles and controlled the particle size. The conversion of iron to iron oxide in aqueous solution with air oxidation was studied based on X-ray diffraction, Mössbauer spectroscopy and BET surface area test methods. Trichloroethylene (TCE) was selected as the model contaminant because of its environmental importance. Degradations of TCE and H 2 O 2 by NP surface generated OH • were investigated. Depending on the ratio of iron and H 2 O 2 , TCE conversions as high as 100 % (with about 91 % dechlorination) were obtained. TCE dechlorination was also achieved in real groundwater samples with the reactive membranes.

  20. Systematic tracking, visualizing, and interpreting of consumer feedback for drinking water quality.

    Science.gov (United States)

    Dietrich, Andrea M; Phetxumphou, Katherine; Gallagher, Daniel L

    2014-12-01

    Consumer feedback and complaints provide utilities with useful data about consumer perceptions of aesthetic water quality in the distribution system. This research provides a systematic approach to interpret consumer complaint water quality data provided by four water utilities that recorded consumer complaints, but did not routinely process the data. The utilities tended to write down a myriad of descriptors that were too numerous or contained a variety of spellings so that electronic "harvesting" was not possible and much manual labor was required to categorize the complaints into majors areas, such as suggested by the Drinking Water Taste and Odor Wheel or existing check-sheets. When the consumer complaint data were categorized and visualized using spider (or radar) and run-time plots, major taste, odor, and appearance patterns emerged that clarified the issue and could provide guidance to the utility on the nature and extent of the problem. A caveat is that while humans readily identify visual issues with the water, such as color, cloudiness, or rust, describing specific tastes and odors in drinking water is acknowledged to be much more difficult for humans to achieve without training. This was demonstrated with two utility groups and a group of consumers identifying the odors of orange, 2-methylisoborneol, and dimethyl trisulfide. All three groups readily and succinctly identified the familiar orange odor. The two utility groups were much more able to identify the musty odor of 2-methylisoborneol, which was likely familiar to them from their work with raw and finished water. Dimethyl trisulfide, a garlic-onion odor associated with sulfur compounds in drinking water, was the least familiar to all three groups, although the laboratory staff did best. These results indicate that utility personnel should be tolerant of consumers who can assuredly say the water is different, but cannot describe the problem. Also, it indicates that a T&O program at a utility would

  1. Light-water-reactor pressure-vessel surveillance dosimetry using solid-state track recorders

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.; Preston, C.C.

    1983-07-01

    The accumulation of neutron dose by the pressure vessel of an operating nuclear power plant results in damage in the form of steel embrittlement. In order to ascertain the safe operating lifetime of the reactor pressure vessel, dosimetric measurements must be made to evaluate the neutron dose to the pressure vessel and relate this dose to the cumulative radiation damage. Advanced dosimetry techniques are being evaluated for surveillance of operating reactors. Solid-state track recorder (SSTR) techniques are included among these advanced dosimetry techniques. Described herein are low neutron fluence calibration and standardization measurements that are being carried out in pressure vessel mockup benchmark neutron fields in the USA, Belgium, and England. In addition, high fluence SSTR dosimetry capsules have been irradiated with metallurgical specimens in a pressure vessel mockup facility. The design and deployment of advances SSTR dosimetry capsules in operating power reactors are also described

  2. Zirconium metal-water oxidation kinetics. V. Oxidation of Zircaloy in high pressure steam

    International Nuclear Information System (INIS)

    Pawel, R.E.; Cathcart, J.V.; Campbell, J.J.; Jury, S.H.

    1977-12-01

    A series of scoping tests to determine the influence of steam pressure on the isothermal oxidation kinetics of Zircaloy-4 PWR tubing was undertaken. The oxidation experiments were conducted in flowing steam at 3.45, 6.90, and 10.34 MPa (500, 1000, and 1500 psi) at 905 0 C (1661 0 F), and at 3.45 and 6.90 MPa at 1101 0 C (2014 0 F). A comparison of the results of these experiments with those obtained for oxidation in steam at atmospheric pressure under similar conditions indicated that measurable enhancement of the oxidation rate occurred with increasing pressure at 905 0 C, but not at 1100 0 C

  3. Radiation damage of uranium-thorium oxide, irradiated in water

    International Nuclear Information System (INIS)

    Bloem, P.J.C.; Nagel, W.; Plas, T. van der; Kema, N.V.

    1977-01-01

    A suspension in water of spherical particles of UO 2 -ThO 2 with diameter 5μm has been considered as the working fluid in an aqueous, homogeneous, thermal nuclear reactor. Irradiation experiments have shown that these particles suffer a gradual breakdown when irradiated in water. This behaviour is markedly different from that shown on irradiation in absence of water. As damage was defined the amount of solid dissolved by an etching liquid. Electron microscopic pictures showed that at higher irradiation temperatures in water the actual damage was larger than the etching values indicated. (orig.) [de

  4. Extraction of uranium (VI) from sea water using hydrous metalic oxide binded with hydrophilic polymers

    International Nuclear Information System (INIS)

    Shigetomi, Yasumasa; Kojima, Takehiro; Kamba, Hideaki

    1978-01-01

    In the past five years, many researches have been made to extract U(VI) from sea water. This is a report of the extraction of U(VI) from sea water using hydrous titanium oxide binded with hydrophilic polymers, the apparatus for the adsorption and the separation of U(VI) by means of ion exchange. (author)

  5. Measurements of the oxidation state and concentration of plutonium in interstitial waters of the Irish Sea

    International Nuclear Information System (INIS)

    Nelson, D.M.; Lovett, M.B.

    1980-01-01

    The question of plutonium movement in interstitial waters resulting from diffusion along concentration gradients or from advective flow is addressed. The results of measurements of both the concentration and the oxidation state of plutonium in interstitial water collected from sediments near the Windscale discharge, in the solid phases of these sediments and in seawater and suspended solids collected at the coring locations are discussed

  6. Photo- and chemocatalytic oxidation of dyes in water.

    Science.gov (United States)

    Du, Wei-Ning; Chen, Shyi-Tien

    2018-01-15

    Three commonly used dyes, Acid Red-114 (AR-114), Reactive Black-5 (RB-5), and Disperse Black EX-SF (DB-EX-SF), were treated in a pH-neutral liquid with ultraviolet (UV) light by two reactive methods: photocatalysis with titanium dioxide (TiO 2 ), and/or chemocatalysis with hydrogen peroxide (H 2 O 2 ) as the oxidant and various ferrous-based electron mediators as catalysts. Important factors for dye oxidation were determined through bifactorial experiments. The optimum combinations and doses of the three key reagents, namely TiO 2 , H 2 O 2 , and EDTA-Fe, were also determined. The degradation kinetics of the studied dyes at their optimum doses reveal that the oxidation reactions are pseudo-first-order in nature, and that certain dyes are selectively degraded more by one method than the other. The overall results suggest that co-treatment using more than one oxidative method is beneficial for the treatment of wastewater from dyeing processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fission product release by fuel oxidation after water ingress

    International Nuclear Information System (INIS)

    Schreiber.

    1990-01-01

    On the basis of data obtained by a literature search, a computer code has been established for the calculation of the degree of oxidation of the fuel in the damaged fuel particles, and hence of the fission product release as a function of the time period of steam ingress. (orig.) [de

  8. Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water

    Czech Academy of Sciences Publication Activity Database

    Marjanovic, B.; Juranic, I.; Mentus, S.; Ciric-Marjanovic, G.; Holler, Petr

    2010-01-01

    Roč. 64, č. 6 (2010), s. 783-790 ISSN 0366-6352 R&D Projects: GA AV ČR IAA400500905 Institutional research plan: CEZ:AV0Z40500505 Keywords : anilinium 5-sulfosalicylate * peroxydisulfate * oxidative polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.754, year: 2010

  9. Enhanced electrochemical water oxidation: the impact of nanoclusters and nanocavities

    NARCIS (Netherlands)

    Zhang, X.; Cao, C.; Bieberle, A.

    2017-01-01

    The structures of transition metal surfaces and metal oxides are commonly believed to have a significant effect on the catalytic reactions. Density functional theory calculations are therefore used in this study to investigate the oxygen evolution reaction (OER) over nanostructured, i.e. nanocluster

  10. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen; McCabe, Matthew; Griffiths, Alan; Wang, Lixin

    2015-01-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining

  11. Experimental study on a new solar boiling water system with holistic track solar funnel concentrator

    International Nuclear Information System (INIS)

    Xiaodi, Xue; Hongfei, Zheng; Kaiyan, He; Zhili, Chen; Tao, Tao; Guo, Xie

    2010-01-01

    A new solar boiling water system with conventional vacuum-tube solar collector as primary heater and the holistic solar funnel concentrator as secondary heater had been designed. In this paper, the system was measured out door and its performance was analyzed. The configuration and operation principle of the system are described. Variations of the boiled water yield, the temperature of the stove and the solar irradiance with local time have been measured. Main factors affecting the system performance have been analyzed. The experimental results indicate that the system produced large amount of boiled water. And the performance of the system has been found closely related to the solar radiance. When the solar radiance is above 600 W/m 2 , the boiled water yield rate of the system has reached 20 kg/h and its total energy efficiency has exceeded 40%.

  12. Water versus DNA: new insights into proton track-structure modelling in radiobiology and radiotherapy.

    Science.gov (United States)

    Champion, C; Quinto, M A; Monti, J M; Galassi, M E; Weck, P F; Fojón, O A; Hanssen, J; Rivarola, R D

    2015-10-21

    Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence-expressed in terms of total cross sections-as well as their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.

  13. Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms.

    Science.gov (United States)

    Koepke, Sara J; Light, Kenneth M; VanNatta, Peter E; Wiley, Keaton M; Kieber-Emmons, Matthew T

    2017-06-28

    Deployment of solar fuels derived from water requires robust oxygen-evolving catalysts made from earth abundant materials. Copper has recently received much attention in this regard. Mechanistic parallels between Cu and single-site Ru/Ir/Mn water oxidation catalysts, including intermediacy of terminal Cu oxo/oxyl species, are prevalent in the literature; however, intermediacy of late transition metal oxo species would be remarkable given the high d-electron count would fill antibonding orbitals, making these species high in energy. This may suggest alternate pathways are at work in copper-based water oxidation. This report characterizes a dinuclear copper water oxidation catalyst, {[(L)Cu(II)] 2 -(μ-OH) 2 }(OTf) 2 (L = Me 2 TMPA = bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine) in which water oxidation proceeds with high Faradaic efficiency (>90%) and moderate rates (33 s -1 at ∼1 V overpotential, pH 12.5). A large kinetic isotope effect (k H /k D = 20) suggests proton coupled electron transfer in the initial oxidation as the rate-determining step. This species partially dissociates in aqueous solution at pH 12.5 to generate a mononuclear {[(L)Cu(II)(OH)]} + adduct (K eq = 0.0041). Calculations that reproduce the experimental findings reveal that oxidation of either the mononuclear or dinuclear species results in a common dinuclear intermediate, {[LCu(III)] 2 -(μ-O) 2 } 2+ , which avoids formation of terminal Cu(IV)═O/Cu(III)-O • intermediates. Calculations further reveal that both intermolecular water nucleophilic attack and redox isomerization of {[LCu(III)] 2 -(μ-O) 2 } 2+ are energetically accessible pathways for O-O bond formation. The consequences of these findings are discussed in relation to differences in water oxidation pathways between Cu catalysts and catalysts based on Ru, Ir, and Mn.

  14. Piloting water quality testing coupled with a national socioeconomic survey in Yogyakarta province, Indonesia, towards tracking of Sustainable Development Goal 6.

    Science.gov (United States)

    Cronin, Aidan A; Odagiri, Mitsunori; Arsyad, Bheta; Nuryetty, Mariet Tetty; Amannullah, Gantjang; Santoso, Hari; Darundiyah, Kristin; Nasution, Nur 'Aisyah

    2017-10-01

    There remains a pressing need for systematic water quality monitoring strategies to assess drinking water safety and to track progress towards the Sustainable Development Goals (SDG). This study incorporated water quality testing into an existing national socioeconomic survey in Yogyakarta province, Indonesia; the first such study in Indonesia in terms of SDG tracking. Multivariate regression analysis assessed the association between faecal and nitrate contamination and drinking water sources household drinking water adjusted for wealth, education level, type of water sources and type of sanitation facilities. The survey observed widespread faecal contamination in both sources for drinking water (89.2%, 95%CI: 86.9-91.5%; n=720) and household drinking water (67.1%, 95%CI: 64.1-70.1%; n=917) as measured by Escherichia coli. This was despite widespread improved drinking water source coverage (85.3%) and commonly self-reported boiling practices (82.2%). E.coli concentration levels in household drinking water were associated with wealth, education levels of a household head, and type of water source (i.e. vender water or local sources). Following the proposed SDG definition for Target 6.1 (water) and 6.2 (sanitation), the estimated proportion of households with access to safely managed drinking water and sanitation was 8.5% and 45.5%, respectively in the study areas, indicating substantial difference from improved drinking water (82.2%) and improved sanitation coverage (70.9%) as per the MDGs targets. The greatest contamination and risk factors were found in the poorest households indicating the urgent need for targeted and effective interventions here. There is suggested evidence that sub-surface leaching from on-site sanitation adversely impacts on drinking water sources, which underscores the need for further technical assistance in promoting latrine construction. Urgent action is still needed to strengthen systematic monitoring efforts towards tracking SDG Goal 6

  15. ARSENIC MOBILITY FROM IRON OXIDE SOLIDS PRODUCED DURING WATER TREATMENT

    Science.gov (United States)

    The Arsenic Rule under the Safe Drinking Water Act will require certain drinking water suppliers to add to or modify their existing treatment in order to comply with the new 10 ppb arsenic standard. One of the treatment options is co-precipitation of arsenic with iron. This tre...

  16. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour.

    Science.gov (United States)

    Martin, T L; Coe, C; Bagot, P A J; Morrall, P; Smith, G D W; Scott, T; Moody, M P

    2016-07-12

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  17. Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapour

    Science.gov (United States)

    Martin, T. L.; Coe, C.; Bagot, P. A. J.; Morrall, P.; Smith, G. D. W.; Scott, T.; Moody, M. P.

    2016-07-01

    Understanding the corrosion of uranium is important for its safe, long-term storage. Uranium metal corrodes rapidly in air, but the exact mechanism remains subject to debate. Atom Probe Tomography was used to investigate the surface microstructure of metallic depleted uranium specimens following polishing and exposure to moist air. A complex, corrugated metal-oxide interface was observed, with approximately 60 at.% oxygen content within the oxide. Interestingly, a very thin (~5 nm) interfacial layer of uranium hydride was observed at the oxide-metal interface. Exposure to deuterated water vapour produced an equivalent deuteride signal at the metal-oxide interface, confirming the hydride as originating via the water vapour oxidation mechanism. Hydroxide ions were detected uniformly throughout the oxide, yet showed reduced prominence at the metal interface. These results support a proposed mechanism for the oxidation of uranium in water vapour environments where the transport of hydroxyl species and the formation of hydride are key to understanding the observed behaviour.

  18. Molecular water oxidation mechanisms followed by transition metals: state of the art.

    Science.gov (United States)

    Sala, Xavier; Maji, Somnath; Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Llobet, Antoni

    2014-02-18

    One clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae. Despite its importance for biology and renewable energy, the mechanism of this reaction is not fully understood. Transition metal water oxidation catalysts in homogeneous media offer a superb platform for researchers to investigate and extract the crucial information to describe the different steps involved in this complex reaction accurately. The mechanistic information extracted at a molecular level allows researchers to understand both the factors that govern this reaction and the ones that derail the system to cause decomposition. As a result, rugged and efficient water oxidation catalysts with potential technological applications can be developed. In this Account, we discuss the current mechanistic understanding of the water oxidation reaction catalyzed by transition metals in the homogeneous phase, based on work developed in our laboratories and complemented by research from other groups. Rather than reviewing all of the catalysts described to date, we focus systematically on the several key elements and their rationale from molecules studied in homogeneous media. We organize these catalysts based on how the crucial oxygen-oxygen bond step takes place, whether via a water nucleophilic attack or via the interaction of two M-O units, rather than based on the nuclearity of the water oxidation catalysts. Furthermore we have used DFT methodology to characterize key intermediates and transition states. The combination of both theory and experiments has allowed us to get a complete view of the water oxidation cycle for the different catalysts studied. Finally, we also describe the various deactivation pathways for

  19. Water corrosion test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    As a part of feasibility study of ODS steel cladding, its water corrosion resistance was examined under water pool condition. Although addition of Cr is effective for preventing water corrosion, excessive Cr addition leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, water corrosion test was conducted for these ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) Corrosion rate of 9Cr-ODS martensitic and 12Cr-ODS ferritic steel are significantly small and no pitting was observed. Thus, these ODS steels have superior resistance for water corrosion under the condition of 60degC and pH8-12. (2) It was showed that 9Cr-ODS martensitic steel and 12Cr-ODS ferritic steel have comparable water corrosion resistance to that of PNC316 and PNC-FMS at 60degC for 1,000h under varying pH of 8, 10. Water corrosion resistance of these alloys is slightly larger than that of PNC316 and PNC-FMS at pH12 without significant difference of appearance and uneven condition. (author)

  20. Scattering data for modelling positron tracks in gaseous and liquid water

    International Nuclear Information System (INIS)

    Blanco, F; Roldán, A M; Krupa, K; García, G; McEachran, R P; Machacek, J R; Buckman, S J; Sullivan, J P; White, R D; Marjanović, S; Petrović, Z Lj; Brunger, M J; Chiari, L; Limão-Vieira, P

    2016-01-01

    We present in this study a self-consistent set of scattering cross sections for positron collisions with water molecules, in the energy range 0.1–10 000 eV, with the prime motivation being to provide data for modelling purposes. The structure of the database is based on a new model potential calculation, including interference terms, which provides differential and integral elastic as well as integral inelastic positron scattering cross sections for water molecules over the whole energy range considered here. Experimental and theoretical data available in the literature have been integrated into the database after a careful analysis of their uncertainties and their self-consistency. These data have been used as input parameters for a step-by-step Monte Carlo simulation procedure, providing valuable information on energy deposition, positron range, and the relative percentages of specific interactions (e.g. positronium formation, direct ionisation, electronic, vibrational and rotational excitations) in gaseous and liquid water. (paper)

  1. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    Science.gov (United States)

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  2. Magnetic resonance imaging with superparamagnetic iron oxide fails to track the long-term fate of mesenchymal stem cells transplanted into heart.

    Science.gov (United States)

    Ma, Ning; Cheng, Huaibing; Lu, Minjie; Liu, Qiong; Chen, Xiuyu; Yin, Gang; Zhu, Hao; Zhang, Lianfeng; Meng, Xianmin; Tang, Yue; Zhao, Shihua

    2015-03-12

    MRI for in vivo stem cell tracking remains controversial. Here we tested the hypothesis that MRI can track the long-term fate of the superparamagnetic iron oxide (SPIO) nanoparticles labelled mesenchymal stem cells (MSCs) following intramyocardially injection in AMI rats. MSCs (1 × 10(6)) from male rats doubly labeled with SPIO and DAPI were injected 2 weeks after myocardial infarction. The control group received cell-free media injection. In vivo serial MRI was performed at 24 hours before cell delivery (baseline), 3 days, 1, 2, and 4 weeks after cell delivery, respectively. Serial follow-up MRI demonstrated large persistent intramyocardial signal-voids representing SPIO during the follow-up of 4 weeks, and MSCs did not moderate the left ventricular dysfunction. The TUNEL analysis confirmed that MSCs engrafted underwent apoptosis. The histopathological studies revealed that the site of cell injection was infiltrated by inflammatory cells progressively and the iron-positive cells were macrophages identified by CD68 staining, but very few or no DAPI-positive stem cells at 4 weeks after cells transplantation. The presence of engrafted cells was confirmed by real-time PCR, which showed that the amount of Y-chromosome-specific SRY gene was consistent with the results. MRI may not reliably track the long-term fate of SPIO-labeled MSCs engraftment in heart.

  3. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells.

    Science.gov (United States)

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-05

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  4. The oxidation of PET track-etched membranes by hydrogen peroxide as an effective method to increase efficiency of UV-induced graft polymerization

    Directory of Open Access Journals (Sweden)

    Il'ya Korolkov

    2015-12-01

    Full Text Available In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate (PET TeMs oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid (PAA chains inside the membrane nanochannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  5. Zirconium metal-water oxidation kinetics. III. Oxygen diffusion in oxide and alpha Zircaloy phases

    International Nuclear Information System (INIS)

    Pawel, R.E.

    1976-10-01

    The reaction of Zircaloy in steam at elevated temperature involves the growth of discrete layers of oxide and oxygen-rich alpha Zircaloy from the parent beta phase. The multiphase, moving boundary diffusion problem involved is encountered in a number of important reaction schemes in addition to that of Zircaloy-oxygen and can be completely (albeitly ideally) characterized through an appropriate model in terms of oxygen diffusion coefficients and equilibrium concentrations for the various phases. Conversely, kinetic data for phase growth and total oxygen consumption rates can be used to compute diffusion coefficients. Equations are developed that express the oxygen diffusion coefficients in the oxide and alpha phases in terms of the reaction rate constants and equilibrium solubility values. These equations were applied to recent experimental kinetic data on the steam oxidation of Zircaloy-4 to determine the effective oxygen diffusion coefficients in these phases over the temperature range 1000--1500 0 C

  6. Spacecraft Water Regeneration by Catalytic Wet Air Oxidation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop advanced catalysts for a volatile removal assembly used to purify spacecraft water. The innovation of the proposed...

  7. Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A Combined Experimental and Theoretical Investigation

    KAUST Repository

    de Ruiter, J. M.

    2016-09-20

    One of the key challenges in designing light-driven artificial photosynthesis devices is the optimization of the catalytic water oxidation process. For this optimization it is crucial to establish the catalytic mechanism and the intermediates of the catalytic cycle, yet a full description is often difficult to obtain using only experimental data. Here we consider a series of mononuclear ruthenium water oxidation catalysts of the form [Ru(cy)(L)(H2O)](2+) (cy = p-cymene, L = 2,2\\'-bipyridine and its derivatives). The proposed catalytic cycle and intermediates are examined using density functional theory (DFT), radiation chemistry, spectroscopic techniques, and electrochemistry to establish the water oxidation mechanism. The stability of the catalyst is investigated using online electrochemical mass spectrometry (OLEMS). The comparison between the calculated absorption spectra of the proposed intermediates with experimental spectra, as well as free energy calculations with electrochemical data, provides strong evidence for the proposed pathway: a water oxidation catalytic cycle involving four proton-coupled electron transfer (PCET) steps. The thermodynamic bottleneck is identified as the third PCET step, which involves O-O bond formation. The good agreement between the optical and thermodynamic data and DFT predictions further confirms the general applicability of this methodology as a powerful tool in the characterization of water oxidation catalysts and for the interpretation of experimental observables.

  8. The anti-aging and anti-oxidation effects of tea water extract in Caenorhabditis elegans.

    Science.gov (United States)

    Fei, Tianyi; Fei, Jian; Huang, Fang; Xie, Tianpei; Xu, Jifeng; Zhou, Yi; Yang, Ping

    2017-10-15

    Tea includes puer tea, black tea, green tea and many others. By using model organism Caenorhabditis elegans, the anti-aging and anti-oxidation effects of tea water extract were systemically examined in this study. We found that water extract of puer tea, black tea and green tea all increased the lifespan of worms, postponed Aβ-induced progressive paralysis in Alzheimer's disease transgenic worms, and improved the tolerance of worms to the oxidative stress induced by heavy metal Cr 6+ . Moreover, the anti-oxidation effects of tea water extract at low concentration were different among 4 kinds of brands of green tea. The underlying mechanisms were further explored using genetically manipulated-mutant worms. The anti-oxidative stress effects of green tea water extract depend on the dietary restriction and germline signaling pathways, but not the FOXO and mitochondrial respiratory chain signals. Therefore, tea water extract provides benefits of anti-aging, anti-AD and anti-oxidation. Copyright © 2017. Published by Elsevier Inc.

  9. Operational comparison of TLD albedo dosemeters and etched-track detectors in the PuO2-UO2 mixed oxide fuel fabrication facilities

    International Nuclear Information System (INIS)

    Tsujimura, N.; Takada, C.; Yoshida, T.; Momose, T.

    2005-01-01

    Full text: The authors carried out an operational study that compared the use of TLD albedo dosemeters with etched-track detector in plutonium environments of Japan Nuclear Cycle Development Institute, Tokai Works. A selected group of workers engaged in the fabrication process of MOX (PuO 2 -UO 2 mixed oxide) fuel wore both TLD albedo dosemeters and etched-track detectors over a period from 1991 to 1993. The TLD albedo dosemeter is the Panasonic model UD-809P and the etched-track detector is the NEUTRAK (polyallyl diglycol carbonate + 1mm-t polyethylene radiator) commercially available from Nagase-Landauer Ltd. Both dosemeters were issued and read monthly. It was found that the TL readings were generally proportional to the counted etch-pits, and thus the dose equivalent results obtained from TLD albedo dosemeter agreed with those from etched-track detector within a factor of 1.5. This result indicates that, in the workplaces of the MOX plants, the neutron spectrum remained almost constant in terms of time and space, and the appropriate range of field-specific correction with spectrum variations could be small in albedo dosimetry. In addition, the calibrations of both dosemeters in the workplaces and in a bare and moderated 252 Cf calibration field were performed for quantitative validation for the results from the operational comparison. In the former experiments, locations were selected that were representative of typical neutron measurements according to the prior neutron spectra measurements with the multi-sphere spectrometer. In the latter experiments, the workplace environments were simulated by using a 252 Cf source surrounded with cylindrical steel/PMMA moderators. From both experiments, the relationship between TL readings and counted etch-pits with neutron spectrum variation was determined. As expected, the relationship obtained from the simulated workplace field calibration reproduced that from the operational comparison. (author)

  10. Electrochemical degradation of clofibric acid in water by anodic oxidation

    International Nuclear Information System (INIS)

    Sires, Ignasi; Cabot, Pere Lluis; Centellas, Francesc; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Arias, Conchita; Brillas, Enric

    2006-01-01

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical (·OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl 2 . Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with ·OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO 2 with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed

  11. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Sires, Ignasi [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2006-10-05

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ({center_dot}OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl{sub 2}. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with {center_dot}OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO{sub 2} with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed.

  12. Ex-situ tracking solid oxide cell electrode microstructural evolution in a redox cycle by high resolution ptychographic nanotomography

    DEFF Research Database (Denmark)

    De Angelis, Salvatore; Jørgensen, Peter Stanley; Esposito, Vincenzo

    2017-01-01

    , the nickel and pore networks undergo major reorganization and the formation of internal voids is observed in the nickel-oxide particles after the oxidation. These observations are discussed in terms of reaction kinetics, electrode mechanical stress and the consequences of redox cycling on electrode...... towards this aim by visualizing a complete redox cycle in a solid oxide cell (SOC) electrode. The experiment demonstrates synchrotron-based ptychography as a method of imaging SOC electrodes, providing an unprecedented combination of 3D image quality and spatial resolution among non-destructive imaging...

  13. Characterization of interfacial reactions and oxide films on 316L stainless steel in various simulated PWR primary water environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junjie; Xiao, Qian [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Lu, Zhanpeng, E-mail: zplu@t.shu.edu.cn [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China); State Key Laboratory of Advanced Special Steels, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, 149 Yanchang Road, Shanghai, 200072 (China); Ru, Xiangkun; Peng, Hao; Xiong, Qi; Li, Hongjuan [Institute of Materials Science, School of Materials Science and Engineering, Shanghai University, Mailbox 269, 149 Yanchang Road, Shanghai, 200072 (China)

    2017-06-15

    The effect of water chemistry on the electrochemical and oxidizing behaviors of 316L SS was investigated in hydrogenated, deaerated and oxygenated PWR primary water at 310 °C. Water chemistry significantly influenced the electrochemical impedance spectroscopy parameters. The highest charge-transfer resistance and oxide-film resistance occurred in oxygenated water. The highest electric double-layer capacitance and constant phase element of the oxide film were in hydrogenated water. The oxide films formed in deaerated and hydrogenated environments were similar in composition but different in morphology. An oxide film with spinel outer particles and a compact and Cr-rich inner layer was formed in both hydrogenated and deaerated water. Larger and more loosely distributed outer oxide particles were formed in deaerated water. In oxygenated water, an oxide film with hematite outer particles and a porous and Ni-rich inner layer was formed. The reaction kinetics parameters obtained by electrochemical impedance spectroscopy measurements and oxidation film properties relating to the steady or quasi-steady state conditions in the time-period of measurements could provide fundamental information for understanding stress corrosion cracking processes and controlling parameters. - Highlights: •Long-term EIS measurements of 316L SS in simulated PWR primary water. •Highest charge-transfer resistance and oxide film resistance in oxygenated water. •Highest electric double-layer capacitance and oxide film CPE in hydrogenated water. •Similar compositions, different shapes of oxides in deaerated/hydrogenated water. •Inner layer Cr-rich in hydrogenated/deaerated water, Ni-rich in oxygenated water.

  14. The influence of water vapor and sulfur dioxide on the catalytic decomposition of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Yalamas, C.; Heinisch, R.; Barz, M. [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik; Cournil, M. [Ecole Nationale Superieure des Mines, 42 - Saint-Etienne (France)

    2001-03-01

    For the nitrous oxide decomposition three groups of catalysts such as metals on support, hydrotalcites, and perovskites were studied relating to their activity in the presence of vapor or sulfur dioxide, in the temperature range from 200 to 500 C. It was found that the water vapor strongly inhibates the nitrous oxide decomposition at T=200-400 C. The sulfur dioxide poisons the catalysts, in particular the perovskites. (orig.)

  15. Mechanism of water oxidation by [Ru(bda)(L)2]: the return of the "blue dimer".

    Science.gov (United States)

    Concepcion, Javier J; Zhong, Diane K; Szalda, David J; Muckerman, James T; Fujita, Etsuko

    2015-03-07

    We describe here a combined solution-surface-DFT calculations study for complexes of the type [Ru(bda)(L)2] including X-ray structure of intermediates and their reactivity, as well as pH-dependent electrochemistry and spectroelectrochemistry. These studies shed light on the mechanism of water oxidation by [Ru(bda)(L)2], revealing key features unavailable from solution studies with sacrificial oxidants.

  16. Water oxidation catalyzed by molecular di- and nonanuclear Fe complexes: importance of a proper ligand framework.

    Science.gov (United States)

    Das, Biswanath; Lee, Bao-Lin; Karlsson, Erik A; Åkermark, Torbjörn; Shatskiy, Andrey; Demeshko, Serhiy; Liao, Rong-Zhen; Laine, Tanja M; Haukka, Matti; Zeglio, Erica; Abdel-Magied, Ahmed F; Siegbahn, Per E M; Meyer, Franc; Kärkäs, Markus D; Johnston, Eric V; Nordlander, Ebbe; Åkermark, Björn

    2016-09-14

    The synthesis of two molecular iron complexes, a dinuclear iron(iii,iii) complex and a nonanuclear iron complex, based on the dinucleating ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid) is described. The two iron complexes were found to drive the oxidation of water by the one-electron oxidant [Ru(bpy)3](3+).

  17. Model-Based Water Wall Fault Detection and Diagnosis of FBC Boiler Using Strong Tracking Filter

    Directory of Open Access Journals (Sweden)

    Li Sun

    2014-01-01

    Full Text Available Fluidized bed combustion (FBC boilers have received increasing attention in recent decades. The erosion issue on the water wall is one of the most common and serious faults for FBC boilers. Unlike direct measurement of tube thickness used by ultrasonic methods, the wastage of water wall is reconsidered equally as the variation of the overall heat transfer coefficient in the furnace. In this paper, a model-based approach is presented to estimate internal states and heat transfer coefficient dually from the noisy measurable outputs. The estimated parameter is compared with the normal value. Then the modified Bayesian algorithm is adopted for fault detection and diagnosis (FDD. The simulation results demonstrate that the approach is feasible and effective.

  18. Femtosecond pump–probe spectroscopy of graphene oxide in water

    International Nuclear Information System (INIS)

    Shang, Jingzhi; Ma, Lin; Li, Jiewei; Ai, Wei; Yu, Ting; Gurzadyan, Gagik G

    2014-01-01

    Transient absorption properties of aqueous graphene oxide (GO) have been studied by use of femtosecond pump–probe spectroscopy. Excited state absorption and photobleaching are observed in the wide spectral range. The observed fast three lifetime components are attributed to the absorption of upper excited states and localized states, which is confirmed by both laser induced absorption and transmission kinetics. The longest time component is assigned to the lowest excited state of GO, which mainly originates from the sp2 domains. With the increase of the excitation power, two-quantum absorption occurs, which results in an additional rise-time component of the observed transients. (paper)

  19. Light water reactor mixed-oxide fuel irradiation experiment

    International Nuclear Information System (INIS)

    Hodge, S.A.; Cowell, B.S.; Chang, G.S.; Ryskamp, J.M.

    1998-01-01

    The United States Department of Energy Office of Fissile Materials Disposition is sponsoring and Oak Ridge National Laboratory (ORNL) is leading an irradiation experiment to test mixed uranium-plutonium oxide (MOX) fuel made from weapons-grade (WG) plutonium. In this multiyear program, sealed capsules containing MOX fuel pellets fabricated at Los Alamos National Laboratory (LANL) are being irradiated in the Advanced Test Reactor (ATR) at the Idaho National Engineering and Environmental Laboratory (INEEL). The planned experiments will investigate the utilization of dry-processed plutonium, the effects of WG plutonium isotopics on MOX performance, and any material interactions of gallium with Zircaloy cladding

  20. Influence of Adsorbed Water on the Oxygen Evolution Reaction on Oxides

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Vojvodic, Aleksandra

    2015-01-01

    We study the interface between adsorbed water and stoichiometric, defect-free (110) rutile oxide surfaces of TiO2, RuO2, and IrO2 in order to understand how water influences the stabilities of the intermediates of the oxygen evolution reaction (OER). In our model the water is treated as explicitly...... molecules binding to bridging oxygens. The third chain interacts weakly and predominantly with the H2O molecules of the second layer, resembling bulk water. We find that the stability of the water layer close to the oxide surface is almost the same as the one found on flat metal surfaces, such as the Pt(111...... of RuO2 and IrO2, while it is increased by similar to 0.4 eV for TiO2....

  1. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents.

    Science.gov (United States)

    Dos Santos, Alexsandro Jhones; Costa, Emily Cintia Tossi de Araújo; da Silva, Djalma Ribeiro; Garcia-Segura, Sergi; Martínez-Huitle, Carlos Alberto

    2018-03-01

    Water scarcity is one of the major concerns worldwide. In order to secure this appreciated natural resource, management and development of water treatment technologies are mandatory. One feasible alternative is the consideration of water recycling/reuse at the household scale. Here, the treatment of actual washing machine effluent by electrochemical advanced oxidation processes was considered. Electrochemical oxidation and electro-Fenton technologies can be applied as decentralized small-scale water treatment devices. Therefore, efficient decolorization and total organic abatement have been followed. The results demonstrate the promising performance of solar photoelectro-Fenton process, where complete color and organic removal was attained after 240 min of treatment under optimum conditions by applying a current density of 66.6 mA cm -2 . Thus, electrochemical technologies emerge as promising water-sustainable approaches.

  2. Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode

    Science.gov (United States)

    Shangguan, M.; Heise, S.; Bender, M.; Dick, G.; Ramatschi, M.; Wickert, J.

    2015-01-01

    Slant-integrated water vapor (SIWV) data derived from GPS STDs (slant total delays), which provide the spatial information on tropospheric water vapor, have a high potential for assimilation to weather models or for nowcasting or reconstruction of the 3-D humidity field with tomographic techniques. Therefore, the accuracy of GPS STD is important, and independent observations are needed to estimate the quality of GPS STD. In 2012 the GFZ (German Research Centre for Geosciences) started to operate a microwave radiometer in the vicinity of the Potsdam GPS station. The water vapor content along the line of sight between a ground station and a GPS satellite can be derived from GPS data and directly measured by a water vapor radiometer (WVR) at the same time. In this study we present the validation results of SIWV observed by a ground-based GPS receiver and a WVR. The validation covers 184 days of data with dry and wet humidity conditions. SIWV data from GPS and WVR generally show good agreement with a mean bias of -0.4 kg m-2 and an rms (root mean square) of 3.15 kg m-2. The differences in SIWV show an elevation dependent on an rms of 7.13 kg m-2 below 15° but of 1.76 kg m-2 above 15°. Nevertheless, this elevation dependence is not observed regarding relative deviations. The relation between the differences and possible influencing factors (elevation angles, pressure, temperature and relative humidity) are analyzed in this study. Besides the elevation, dependencies between the atmospheric humidity conditions, temperature and the differences in SIWV are found.

  3. Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery

    Directory of Open Access Journals (Sweden)

    Sarah W. Cooley

    2017-12-01

    Full Text Available Recent deployments of CubeSat imagers by companies such as Planet may advance hydrological remote sensing by providing an unprecedented combination of high temporal and high spatial resolution imagery at the global scale. With approximately 170 CubeSats orbiting at full operational capacity, the Planet CubeSat constellation currently offers an average revisit time of <1 day for the Arctic and near-daily revisit time globally at 3 m spatial resolution. Such data have numerous potential applications for water resource monitoring, hydrologic modeling and hydrologic research. Here we evaluate Planet CubeSat imaging capabilities and potential scientific utility for surface water studies in the Yukon Flats, a large sub-Arctic wetland in north central Alaska. We find that surface water areas delineated from Planet imagery have a normalized root mean square error (NRMSE of <11% and geolocation accuracy of <10 m as compared with manual delineations from high resolution (0.3–0.5 m WorldView-2/3 panchromatic satellite imagery. For a 625 km2 subarea of the Yukon Flats, our time series analysis reveals that roughly one quarter of 268 lakes analyzed responded to changes in Yukon River discharge over the period 23 June–1 October 2016, one half steadily contracted, and one quarter remained unchanged. The spatial pattern of observed lake changes is heterogeneous. While connections to Yukon River control the hydrologically connected lakes, the behavior of other lakes is complex, likely driven by a combination of intricate flow paths, underlying geology and permafrost. Limitations of Planet CubeSat imagery include a lack of an automated cloud mask, geolocation inaccuracies, and inconsistent radiometric calibration across multiple platforms. Although these challenges must be addressed before Planet CubeSat imagery can achieve its full potential for large-scale hydrologic research, we conclude that CubeSat imagery offers a powerful new tool for the study and

  4. Solid State Track Recorder fission rate measurements in low power light water reactor pressure vessel mockups

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Kellogg, L.S.

    1985-01-01

    The results of extensive SSTR measurements made at the Pool Critical Assembly (PCA) facility at Oak Ridge National Laboratory have been reported previously. Measurements were made at key locations in PCA which is an idealized mockup of the water gap, thermal shield, pressure vessel geometry of a light water reactor. Recently, additional SSTR fission rate measurements have been carried out for 237-Np, 238-U, and 235-U in key locations in the NESTOR Shielding and Dosimetry Improvement Program (NESDIP) mockup facility located at Winfrith, England. NESDIP is a replica of the PCA facility, and comparisons will be made between PCA and NESDIP measurements. The results of measurements made at the engineering mockup at the VENUS critical assembly at CEN/SCK, Mol, Belgium will also be reported. Measurements were made at selected radial and azimuthal locations in VENUS, which models the in-core and near-core regions of a pressurized water reactor. Comparisons of absolute SSTR fission rates with absolute fission rates made with the Mol miniature fission chamber will be reported. Absolute fission rate comparisons have also been made between the NBS fission chamber, radiometric fission foils, and SSTRs, and these results will be summarized

  5. Water clarity of the Upper Great Lakes: tracking changes between 1998-2012

    Science.gov (United States)

    Yousef, F.; Shuchman, R. A.; Sayers, M.; Fahnenstiel, G.; Henareh Khalyani, A.

    2016-12-01

    Water clarity trends in three upper Great Lakes, Lakes Superior, Michigan, and Huron, were assessed via satellite imagery from 1998 to 2012. Water attenuation coefficients (Kd490) from SeaWiFS and Aqua MODIS satellites compared favorably with in situ measurements. Significant temporal and spatial trends and differences in Kd490 were noted within all three of the lakes. Lake-wide average Kd490 for Lake Superior did not exhibited any changes between 1998 and 2012. Annual Kd490 values for Lake Huron, however, showed a significant negative trend during the study period using both SeaWiFS and MODIS datasets. Similarly, annual Kd490 values of Lake Michigan declined between 1998 and 2010. Additionally, Kd490 trend for depths >90m in northern Lake Michigan reversed (increased) after 2007. Photic depth increased significantly in both Lake Michigan (≃5m), and Lake Huron (≃10m) when comparing annual Kd490 for pre- (1998-2001) and post-mussel (2006-2010). At seasonal level, significant decreases in Kd490 in lakes Michigan and Huron were mainly noted for the spring/fall/winter mixing periods. After current changes in water clarity, lake-wide photic depths in lakes Michigan and Huron superseded Lake Superior; thus, making Lake Superior no longer the clearest Great Lake. Combination of several factors (filtering activities of quagga mussels [Dreissena bugensis rostriformis], phosphorus abatement, climate change, etc.) are likely responsible for these large changes.

  6. Computational Modeling of Cobalt-based Water Oxidation: Current Status and Future Challenges

    Science.gov (United States)

    Schilling, Mauro; Luber, Sandra

    2018-04-01

    A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysis. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability towards real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.

  7. Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges

    Directory of Open Access Journals (Sweden)

    Mauro Schilling

    2018-04-01

    Full Text Available A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context, mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysts. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability toward real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.

  8. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    KAUST Repository

    Parkes, Stephen

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  9. Selective oxidation of organic compounds in waste water by ozone-based oxidation processes

    NARCIS (Netherlands)

    Boncz, M.A.

    2002-01-01

    For many different types of waste water, treatment systems have been implemented in the past decades. Waste water treatment is usually performed by biological processes, either aerobic or anaerobic, complemented with physical / chemical post treatment techniques.

  10. Trail Creek I: Assessing the Water Quality of Streams using Fecal Indicator Bacteria and Microbial Source Tracking

    Science.gov (United States)

    Saintil, T.; Radcliffe, D. E.; Rasmussen, T. C.; Kannan, A.

    2017-12-01

    Fecal coliforms are indicators for disease-causing pathogens. The United States Environmental Protection Agency (US. EPA) recommends the use of E. coli and Enterococci because they are highly correlated with pathogenic organisms in recreational waters. This standard method helps to determine the overall water quality and the potential health risks. Studies have shown that it is difficult to estimate the exact sources of fecal contamination because both human and certain animal species contain E. coli and Enterococci in their waste. Certain strains of E. coli and Enterococci are also able to survive outside of their hosts, which should not be the case for an appropriate fecal indicator. As a result, microbial source tracking (MST) studies use gene specific markers to identify the possible contributors to water pollution whether human or animal. Trail Creek is a second-order stream located in Athens-Clarke County, GA. The 33-km2 watershed is approximately 64% forests, 18% pastures and 16% residential communities. Trail Creek is on the TMDL list and an extended study on the relationships between the different factors causing elevated fecal bacteria is needed. Synoptic sampling events were conducted during baseflow conditions at six locations. Storm sampling events (> 8 mm) were captured using automated samplers at two locations. These samplers were equipped with pressure transducers which record stage at 30-minute intervals. The samples were analyzed for fecal coliform, E. Coli and Enterococci. Water quality parameters including temperature, specific conductance, dissolved oxygen, pH, and turbidity were also recorded. Relationships between the parameters and fecal indicator bacteria show inconsistent patterns and high variability. Using quantitative PCR and MST techniques, the human specific marker (HF183) and ruminant marker (Rum2Bac) were used to identify the fecal sources in both baseflow and storm samples. The presence and abundance of the different markers at

  11. The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles.

    Science.gov (United States)

    Esteban, N; Unsworth, R K F; Gourlay, J B Q; Hays, G C

    2018-03-21

    Our understanding of global seagrass ecosystems comes largely from regions characterized by human impacts with limited data from habitats defined as notionally pristine. Seagrass assessments also largely focus on shallow-water coastal habitats with comparatively few studies on offshore deep-water seagrasses. We satellite tracked green turtles (Chelonia mydas), which are known to forage on seagrasses, to a remote, pristine deep-water environment in the Western Indian Ocean, the Great Chagos Bank, which lies in the heart of one of the world's largest marine protected areas (MPAs). Subsequently we used in-situ SCUBA and baited video surveys to survey the day-time sites occupied by turtles and discovered extensive monospecific seagrass meadows of Thalassodendron ciliatum. At three sites that extended over 128 km, mean seagrass cover was 74% (mean range 67-88% across the 3 sites at depths to 29 m. The mean species richness of fish in seagrass meadows was 11 species per site (mean range 8-14 across the 3 sites). High fish abundance (e.g. Siganus sutor: mean MaxN.site -1  = 38.0, SD = 53.7, n = 5) and large predatory shark (Carcharhinus amblyrhynchos) (mean MaxN.site -1  = 1.5, SD = 0.4, n = 5) were recorded at all sites. Such observations of seagrass meadows with large top predators, are limited in the literature. Given that the Great Chagos Bank extends over approximately 12,500 km 2 and many other large deep submerged banks exist across the world's oceans, our results suggest that deep-water seagrass may be far more abundant than previously suspected. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  13. Hot water extraction with in situ wet oxidation: Kinetics of PAHs removal from soil

    International Nuclear Information System (INIS)

    Dadkhah, Ali A.; Akgerman, Aydin

    2006-01-01

    Finding environmentally friendly and cost-effective methods to remediate soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is currently a major concern of researchers. In this study, a series of small-scale semi-continuous extractions - with and without in situ wet oxidation - were performed on soils polluted with PAHs, using subcritical water (i.e. liquid water at high temperatures and pressures, but below the critical point) as the removal agent. Experiments were performed in a 300 mL reactor using an aged soil sample. To find the desorption isotherms and oxidation reaction rates, semi-continuous experiments with residence times of 1 and 2 h were performed using aged soil at 250 deg. C and hydrogen peroxide as oxidizing agent. In all combined extraction and oxidation flow experiments, PAHs in the remaining soil after the experiments were almost undetectable. In combined extraction and oxidation no PAHs could be detected in the liquid phase after the first 30 min of the experiments. Based on these results, extraction with hot water, if combined with oxidation, should reduce the cost of remediation and can be used as a feasible alternative technique for remediating contaminated soils and sediments

  14. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    Science.gov (United States)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 °C). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  15. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    International Nuclear Information System (INIS)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 ℃). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr- 4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  16. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto

    2016-06-10

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  17. An Alternative Reaction Pathway for Iridium Catalyzed Water Oxidation Driven by CAN

    KAUST Repository

    Bucci, Alberto; Menendez Rodriguez, Gabriel; Bellachioma, Gianfranco; Zuccaccia, Cristiano; Poater, Albert; Cavallo, Luigi; Macchioni, Alceo

    2016-01-01

    The generation of solar fuels by means of a photosynthetic apparatus strongly relies on the development of an efficient water oxidation catalyst (WOC). Cerium ammonium nitrate (CAN) is the most commonly used sacrificial oxidant to explore the potentiality of WOCs. It is usually assumed that CAN has the unique role to oxidatively energize WOCs, making them capable to offer a low energy reaction pathway to transform H2O to O2. Herein we show that CAN might have a much more relevant and direct role in WO, mainly related to the capture and liberation of O–O containing molecular moieties.

  18. Possibilities of practical usage of dispersed aluminim oxidation by liquid water

    Science.gov (United States)

    Larichev, M. N.; Laricheva, O. O.; Shaitura, N. S.; Shkolnikov, E. I.

    2012-12-01

    The goal of this work is to show the possibility of practical usage of the environmentally pure oxidation process of preliminarily dispersed aluminum (aluminum powders of the ASD or PAD grade according to TU (Technical Specifications) 48-5-226-87, which are serially produced in industry) with liquid water in order to obtain gaseous hydrogen in volumes sufficient to provide the operation of energizers based on airhydrogen fuel cells (AHFC) for portable and stationary devices (up to 3 kW). It is shown that the synthesis of aluminum oxides-hydroxides with the specified phase and chemical compositions as well as the particle shape and size can be provided simultaneously with producing commercial hydrogen. The practical usage of hydrogen, which is formed in the oxidation reaction of metallic aluminum with liquid water at pressures close to atmospheric (particularly, to service AHFCs), requires reaction intensification to increase the oxidation rate of aluminum. In this work, we considered the aspects of practical implementation of thermal, ultrasonic, and chemical activation as well as their combinations for this purpose. As the chemical activator of oxidation, we used the additives of calcium oxide (<5% of the mass of oxidized aluminum). Application of each activation method affects the phase and chemical compositions as well as the structure of formed aluminum hydroxides, which provides the possibility of their reproducible production. Thus, simultaneously with the production of commercial hydrogen, solid oxidation products satisfying the needs of industry in aluminum oxides and having the specified composition, purity, and particle shape and size can be synthesized. The acquired experimental results and elements of the design of specially developed industrial apparatuses, which were used when performing this work, can be applied when designing the model of the hydrogen generator—the prototype of the hydrogen generator for portable and stationary devices or devices

  19. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Michael M. Bobek

    2012-10-01

    Full Text Available A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM and electron dispersive X-ray spectroscopy (EDS, the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  20. The Effect of the Concentration of Oxidant, Cr(VI), on the Iron Oxidation in Saline Water

    Science.gov (United States)

    Ahn, H.; Jo, H. Y.; Ryu, J. H.; Koh, Y. K.

    2014-12-01

    Deep geological disposal is currently considered as the most appropriate method to isolate high level radioactive wastes (HLRWs) from the ecosystem. If groundwater seeps into underground disposal facilities, water molecules can be dissociated to radicals or peroxides, which can oxidize metal canisters and HLRWs. The oxidized radionuclides with a high solubility can be dissolved in the groundwater. Some dissolved radionuclides can act as oxidants. The continuous radiolysis of water molecules, which results from continuous seepage of groundwater, can enable the continuous production of the radioactive oxidants, resulting in an increase in concentration of oxidants. In this study, the effect of oxidant concentration on iron oxidation in the presence of salt was evaluated. Zero valent iron (ZVI) particles were reacted with Cr(VI) solutions with initial Cr(VI) concentrations ranged from 50 to 300 mg/L in reactors. The initial pH and NaCl concentration were fixed at 3 and 0.5 M, respectively. An increase in the initial Cr(VI) concentration caused an increase in the rate and extend of H2 gas production. The decrement of Cr(VI) was increased as the initial Cr(VI) concentration was increased. The penetration of H+ ions in the presence Cl- ions through the passive film on the ZVI particles caused the reaction between H+ ions and ZVI particles, producing H2 gas and Fe2+ ions. The passive film was damaged during the reaction due to the eruption of H2 gas or peptization by Cl- ions. The Fe2+ ions were reacted with Cr(VI) ions in the solution, producing Fe(III)-Cr(III) (oxy)hydroxides on the passive film of ZVI particles or in the solution as colloidal particles. The Fe(III)-Cr(III) (oxy)hydroxides tends to be precipitated as colloidal particles at a high Cr(VI) concentration and precipitated on the passive film at a low Cr(VI) concentration. The passive film was repaired or thickened by additional formation of Fe(III)-Cr(III) (oxy)hydroxides at a lower Cr(VI) concentration.

  1. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media

    Science.gov (United States)

    Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.

    2018-01-01

    Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

  2. Using Iron-Manganese Co-Oxide Filter Film to Remove Ammonium from Surface Water.

    Science.gov (United States)

    Zhang, Ruifeng; Huang, Tinglin; Wen, Gang; Chen, Yongpan; Cao, Xin; Zhang, Beibei

    2017-07-19

    An iron-manganese co-oxide filter film (MeO x ) has been proven to be a good catalyst for the chemical catalytic oxidation of ammonium in groundwater. Compared with groundwater, surface water is generally used more widely and has characteristics that make ammonium removal more difficult. In this study, MeO x was used to remove ammonium from surface water. It indicated that the average ammonium removal efficiency of MeO x was greater than 90%, even though the water quality changed dramatically and the water temperature was reduced to about 6-8 °C. Then, through inactivating microorganisms, it showed that the removal capability of MeO x included both biological (accounted for about 41.05%) and chemical catalytic oxidation and chemical catalytic oxidation (accounted for about 58.95%). The investigation of the characterizations suggested that MeO x was formed by abiotic ways and the main elements on the surface of MeO x were distributed homogenously. The analysis of the catalytic oxidation process indicated that ammonia nitrogen may interact with MeO x as both ammonia molecules and ammonium ions and the active species of O₂ were possibly • O and O₂ - .

  3. CALCIUM OXIDE SINTERING IN ATMOSPHERES CONTAINING WATER AND CARBON DIOXIDE

    Science.gov (United States)

    The paper gives results of measurements of the effects of water vapor and CO2 on the sintering rate of nascent CaO, as a function of partial pressure and temperature using CaO prepared by rapid decomposition of CaCO3 and CA(OH)2. Each gas strongly catalyzed the sintering process ...

  4. Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery

    Science.gov (United States)

    Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.

    2010-04-01

    Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.

  5. Origin of fecal contamination in waters from contrasted areas: Stanols as Microbial Source Tracking markers

    OpenAIRE

    Derrien, M.; Jarde, E.; Gruau, G.; Pourcher, A. M.; Gourmelon, Michele; Jadas-hecart, Alain; Wickmann, A. C. Pierson

    2012-01-01

    Improving the microbiological quality of coastal and river waters relies on the development of reliable markers that are capable of determining sources of fecal pollution. Recently, a principal component analysis (PCA) method based on six stanol compounds (i.e. 5 beta-cholestan-3 beta-ol (coprostanol), 5 beta-cholestan-3 alpha-ol (epicoprostanol), 24-methyl-5 alpha-cholestan-3 beta-ol (campestanol), 24-ethyl-5 alpha-cholestan-3 beta-ol (sitostanol), 24-ethyl-5 beta-cholestan-3 beta-ol (24-eth...

  6. Graphene oxide/ferroferric oxide/polyethylenimine nanocomposites for Congo red adsorption from water.

    Science.gov (United States)

    Wang, Lina; Mao, Changming; Sui, Ning; Liu, Manhong; Yu, William W

    2017-04-01

    Graphene oxide/ferroferric oxide/polyethylenimine (GO/Fe 3 O 4 /PEI) nanocomposites were synthesized by an in situ growth of Fe 3 O 4 nanoparticles on GO sheets, and then modified by PEI. The GO/Fe 3 O 4 /PEI nanocomposites showed extremely high removal efficiency for anionic dye Congo Red (CR) due to the positively charged PEI molecules (methylene blue was also tested but with low adsorption capacity due to its cationic property). The CR removal capacity was 574.7 mg g -1 , higher than most of reported results. The adsorption kinetics could be well described by a pseudo-second-order model. Furthermore, GO/Fe 3 O 4 /PEI nanocomposites could be easily recycled by magnetic separation. The removal efficiency remained above 70% after five cycles.

  7. Iron Is the Active Site in Nickel/Iron Water Oxidation Electrocatalysts

    Directory of Open Access Journals (Sweden)

    Bryan M. Hunter

    2018-04-01

    Full Text Available Efficient catalysis of the oxygen-evolution half-reaction (OER is a pivotal requirement for the development of practical solar-driven water splitting devices. Heterogeneous OER electrocatalysts containing first-row transition metal oxides and hydroxides have attracted considerable recent interest, owing in part to the high abundance and low cost of starting materials. Among the best performing OER electrocatalysts are mixed Fe/Ni layered double hydroxides (LDH. A review of the available experimental data leads to the conclusion that iron is the active site for [NiFe]-LDH-catalyzed alkaline water oxidation.

  8. Bromorhodamines - new singlet oxygen photosensitizers for oxidative water and wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Slivka, L.; Alekseeva, V.; Kuznetsova, N.; Marinina, L.; Savvina, L.; Kaliya, O.; Lukyanets, E.; Vorozhtsov, G. [Organic Intermediates and Dyes Inst., Moscow (Russian Federation); Krasnovsky, A.; Butorina, D. [Inst. of Biochemistry RAS, Moscow (Russian Federation)

    2003-07-01

    The cationic mono-, di- and tetrabromoderivatives of rhodamine 123 have been synthesized and studied as sensitizers for singlet oxygen formation in application for oxidative water treatment. Singlet oxygen quantum yields for compounds under investigation have been determined by using its near IR luminescence at 1270 nm. Bromorhodamines123 have been shown to sensitize the formation of singlet oxygen in aqueous solution with high quantum yields. Efficient oxidation of tryptophan in aqueous solutions sensitized by dibromorhodamine 123 has been demonstrated. This dye was tested as sensitizer for photodynamic treatment of water contaminated with coliform bacteria. It was shown to participate in the photosensitization of coliform bacteria, resulting in their efficient killing. (orig.)

  9. Tracking an atmospheric river in a warmer climate: from water vapor to economic impacts

    Science.gov (United States)

    Dominguez, Francina; Dall'erba, Sandy; Huang, Shuyi; Avelino, Andre; Mehran, Ali; Hu, Huancui; Schmidt, Arthur; Schick, Lawrence; Lettenmaier, Dennis

    2018-03-01

    Atmospheric rivers (ARs) account for more than 75 % of heavy precipitation events and nearly all of the extreme flooding events along the Olympic Mountains and western Cascade Mountains of western Washington state. In a warmer climate, ARs in this region are projected to become more frequent and intense, primarily due to increases in atmospheric water vapor. However, it is unclear how the changes in water vapor transport will affect regional flooding and associated economic impacts. In this work we present an integrated modeling system to quantify the atmospheric-hydrologic-hydraulic and economic impacts of the December 2007 AR event that impacted the Chehalis River basin in western Washington. We use the modeling system to project impacts under a hypothetical scenario in which the same December 2007 event occurs in a warmer climate. This method allows us to incorporate different types of uncertainty, including (a) alternative future radiative forcings, (b) different responses of the climate system to future radiative forcings and (c) different responses of the surface hydrologic system. In the warming scenario, AR integrated vapor transport increases; however, these changes do not translate into generalized increases in precipitation throughout the basin. The changes in precipitation translate into spatially heterogeneous changes in sub-basin runoff and increased streamflow along the entire Chehalis main stem. Economic losses due to stock damages increase moderately, but losses in terms of business interruption are significant. Our integrated modeling tool provides communities in the Chehalis region with a range of possible future physical and economic impacts associated with AR flooding.

  10. Caramel, uranium oxide fuel plates for water cooled reactors

    International Nuclear Information System (INIS)

    Bussy, Pierre; Delafosse, Jacques; Lestiboudois, Guy; Cerles, J.-M.; Schwartz, J.-P.

    1979-01-01

    The fuel is composed of thin plates assembled parallel to each other to form bundles or assemblies. Each plate is composed of a pavement of uranium oxide pellets, insulated from each other by a zircaloy cladding. The 235 U enrichment does not exceed 8%. The range of uses for this fuel extends from electric power generating reactors to irradiation reactors for research work. A parametric study in test loops has made it possible to determine the operating limits of this thick fuel, without bursting. The resulting diagram gives the permissible power densities, with and without cycling for specific burn-ups beyond 50,000 MWd/t. The thinnest plates were also irradiated in total in the form of advance assemblies irradiated in the core of the OSIRIS pile prior to its transformation. This transformation and the operation of this reactor with a core of 'Caramel' elements is the main trial experiment of this fuel [fr

  11. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters

    Science.gov (United States)

    Before new, rapid quantitative PCR (qPCR) methods for recreational water quality assessment and microbial source tracking (MST) can be useful in a regulatory context, an understanding of the ability of the method to detect a DNA target (marker) when the contaminant soure has been...

  12. Electrochemical Water Oxidation by a Catalyst-Modified Metal-Organic Framework Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shaoyang; Pineda-Galvan, Yuliana; Maza, William A.; Epley, Charity C.; Zhu, Jie; Kessinger, Matthew C.; Pushkar, Yulia; Morris, Amanda J. (VP); (Purdue)

    2016-12-15

    Water oxidation, a key component in artificial photosynthesis, requires high overpotentials and exhibits slow reaction kinetics that necessitates the use of stable and efficient heterogeneous water-oxidation catalysts (WOCs). Here, we report the synthesis of UiO-67 metal–organic framework (MOF) thin films doped with [Ru(tpy)(dcbpy)OH2]2+ (tpy=2,2':6',2''-terpyridine, dcbpy=5,5'-dicarboxy-2,2'-bipyridine) on conducting surfaces and their propensity for electrochemical water oxidation. The electrocatalyst oxidized water with a turnover frequency (TOF) of (0.2±0.1) s-1 at 1.71 V versus the normal hydrogen electrode (NHE) in buffered solution (pH~7) and exhibited structural and electrochemical stability. The electroactive sites were distributed throughout the MOF thin film on the basis of scan-ratedependent voltammetry studies. This work demonstrates a promising way to immobilize large concentrations of electroactive WOCs into a highly robust MOF scaffold and paves the way for future photoelectrochemical water-splitting systems.

  13. Effect of yttria addition on the stability of porous chromium oxide ceramics in supercritical water

    International Nuclear Information System (INIS)

    Dong Ziqiang; Chen Weixing; Zheng Wenyue; Guzonas, Dave

    2013-01-01

    Porous chromium oxide (Cr 2 O 3 ) ceramics were prepared by oxidizing highly porous chromium carbides that were obtained by a reactive sintering method, and were evaluated at temperatures ranging from 375 °C to 625 °C in supercritical water (SCW) environments with a fixed pressure of 25–30 MPa. Reactive element yttrium was introduced to the porous oxide ceramic by adding various amounts of yttria of 5, 10 and 20 wt.%, respectively, prior to reactive sintering. The exposure in SCW shows that the porous chromium oxide is quite stable in SCW at 375 °C. However, the stability decreased with increasing temperature. It is well known that chromium oxide can be oxidized to soluble chromium (VI) species in SCW when oxygen is present. Adding yttria increases the stability of chromium oxide in SCW environments. However, adding yttria higher than 5 wt.% increased the weight loss of porous chromium oxide samples because of the direct dissociation of Y 2 O 3 in SCW.

  14. Synthesis of Porous Europium Oxide Particles for Photoelectrochemical Water Splitting

    International Nuclear Information System (INIS)

    Zeng, Cheng-Hui; Zheng, Kai; Lou, Kai-Li; Meng, Xiao-Ting; Yan, Zi-Qiao; Ye, Zhen-Ni; Su, Rui-Rui; Zhong, Shengliang

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • Porous Eu 2 O 3 particles were synthesized by a facile electrochemical method. • Porous Eu 2 O 3 NPs were firstly implemented as photoanode for PEC water splitting. • The Eu 2 O 3 NPs exhibited good PEC performance and stability. - Abstract: In this paper, we report the facile electrochemical synthesis of porous Eu 2 O 3 particles (NPs) and their implementation as photoanode for photoelectrochemical (PEC) water splitting for the first time. These porous Eu 2 O 3 NPs exhibit a significant photocurrent density of 40 μA cm −2 at 0.6 V vs. Ag/AgCl in 1 M KOH electrolyte under white light irradiation (Xe lamp, 100 mW cm −2 ). Moreover, the as-synthesized Eu 2 O 3 NPs have an excellent PEC stability with no obvious decay in its photocurrent after 100 min irradiation

  15. Nitrification and the ammonia-oxidizing communities in the central Baltic Sea water column

    Science.gov (United States)

    Jäntti, Helena; Ward, Bess B.; Dippner, Joachim W.; Hietanen, Susanna

    2018-03-01

    The redoxclines that form between the oxic and anoxic water layers in the central Baltic Sea are sites of intensive nitrogen cycling. To gain better understanding of nitrification, we measured the biogeochemical properties along with potential nitrification rates and analyzed the assemblages of ammonia-oxidizing bacteria and archaea using functional gene microarrays. To estimate nitrification in the entire water column, we constructed a regression model for the nitrification rates and applied it to the conditions prevailing in the area in 2008-2012. The highest ammonia oxidation rates were found in a thin layer at the top of the redoxcline and the rates quickly decreased below detection limit when oxygen was exhausted. This is probably because extensive suboxic layers, which are known to harbor pelagic nitrification, are formed only for short periods after inflows in the Baltic Sea. The nitrification rates were some of the highest measured in the water columns, but the thickness of the layer where conditions were favorable for nitrification, was very small and it remained fairly stable between years. However, the depth of the nitrification layer varied substantially between years, particularly in the eastern Gotland Basin (EGB) due to turbulence in the water column. The ammonia oxidizer communities clustered differently between the eastern and western Gotland Basin (WGB) and the composition of ammonia-oxidizing assemblages correlated with the environmental variables. The ammonia oxidizer community composition was more even in the EGB, which may be related to physical instability of the redoxcline that does not allow predominance of a single archetype, whereas in the WGB, where the position of the redoxcline is more constant, the ammonia-oxidizing community was less even. Overall the ammonia-oxidizing communities in the Baltic Sea redoxclines were very evenly distributed compared to other marine environments where microarrays have been applied previously.

  16. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    Science.gov (United States)

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Oxidative Stress State Is Associated with Left Ventricular Mechanics Changes, Measured by Speckle Tracking in Essential Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Luis Antonio Moreno-Ruíz

    2015-01-01

    Full Text Available The oxidative stress state is characterized by an increase in oxygen reactive species that overwhelms the antioxidant defense; we do not know if these pathological changes are correlated with alterations in left ventricular mechanics. The aim was correlating the oxidative stress state with the left ventricular global longitudinal strain (GLS and the left ventricular end diastolic pressure (LVEDP. Twenty-five patients with essential hypertension and 25 controls paired by age and gender were studied. All of the participants were subjected to echocardiography and biochemical determination of oxidative stress markers. The hypertensive patients, compared with control subjects, had significantly (p<0.05 higher levels of oxidized proteins (5.03±1.05 versus 4.06±0.63 nmol/mg, lower levels of extracellular superoxide dismutase (EC-SOD activity (0.045±0.02 versus 0.082±0.02 U/mg, higher LVEDP (16.2±4.5 versus 11.3±1.6 mm Hg, and lower GLS (−12% versus −16%. Both groups had preserved ejection fraction and the results showed a positive correlation of oxidized proteins with GLS (r=0.386, p=0.006 and LVEDP (r=0.389, p=0.005; we also found a negative correlation of EC-SOD activity with GLS (r=-0.404, p=0.004 and LVEDP (r=-0.347, p=0.014.

  18. Tracking an atmospheric river in a warmer climate: from water vapor to economic impacts

    Directory of Open Access Journals (Sweden)

    F. Dominguez

    2018-03-01

    Full Text Available Atmospheric rivers (ARs account for more than 75 % of heavy precipitation events and nearly all of the extreme flooding events along the Olympic Mountains and western Cascade Mountains of western Washington state. In a warmer climate, ARs in this region are projected to become more frequent and intense, primarily due to increases in atmospheric water vapor. However, it is unclear how the changes in water vapor transport will affect regional flooding and associated economic impacts. In this work we present an integrated modeling system to quantify the atmospheric–hydrologic–hydraulic and economic impacts of the December 2007 AR event that impacted the Chehalis River basin in western Washington. We use the modeling system to project impacts under a hypothetical scenario in which the same December 2007 event occurs in a warmer climate. This method allows us to incorporate different types of uncertainty, including (a alternative future radiative forcings, (b different responses of the climate system to future radiative forcings and (c different responses of the surface hydrologic system. In the warming scenario, AR integrated vapor transport increases; however, these changes do not translate into generalized increases in precipitation throughout the basin. The changes in precipitation translate into spatially heterogeneous changes in sub-basin runoff and increased streamflow along the entire Chehalis main stem. Economic losses due to stock damages increase moderately, but losses in terms of business interruption are significant. Our integrated modeling tool provides communities in the Chehalis region with a range of possible future physical and economic impacts associated with AR flooding.

  19. Stable Water Oxidation in Acid Using Manganese-Modified TiO2 Protective Coatings.

    Science.gov (United States)

    Siddiqi, Georges; Luo, Zhenya; Xie, Yujun; Pan, Zhenhua; Zhu, Qianhong; Röhr, Jason A; Cha, Judy J; Hu, Shu

    2018-06-06

    Accomplishing acid-stable water oxidation is a critical matter for achieving both long-lasting water-splitting devices and other fuel-forming electro- and photocatalytic processes. Because water oxidation releases protons into the local electrolytic environment, it becomes increasingly acidic during device operation, which leads to corrosion of the photoactive component and hence loss in device performance and lifetime. In this work, we show that thin films of manganese-modified titania, (Ti,Mn)O x , topped with an iridium catalyst, can be used in a coating stabilization scheme for acid-stable water oxidation. We achieved a device lifetime of more than 100 h in pH = 0 acid. We successfully grew (Ti,Mn)O x coatings with uniform elemental distributions over a wide range of manganese compositions using atomic layer deposition (ALD), and using X-ray photoelectron spectroscopy, we show that (Ti,Mn)O x films grown in this manner give rise to closer-to-valence-band Fermi levels, which can be further tuned with annealing. In contrast to the normally n-type or intrinsic TiO 2 coatings, annealed (Ti,Mn)O x films can make direct charge transfer to a Fe(CN) 6 3-/4- redox couple dissolved in aqueous electrolytes. Using the Fe(CN) 6 3-/4- redox, we further demonstrated anodic charge transfer through the (Ti,Mn)O x films to high work function metals, such as iridium and gold, which is not previously possible with ALD-grown TiO 2 . We correlated changes in the crystallinity (amorphous to rutile TiO 2 ) and oxidation state (2+ to 3+) of the annealed (Ti,Mn)O x films to their hole conductivity and electrochemical stability in acid. Finally, by combining (Ti,Mn)O x coatings with iridium, an acid-stable water-oxidation anode, using acid-sensitive conductive fluorine-doped tin oxides, was achieved.

  20. Application of Metal Oxide Heterostructures in Arsenic Removal from Contaminated Water

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-01-01

    Full Text Available It has become one of the major environmental problems for people worldwide to be exposed to high arsenic concentrations through contaminated drinking water, and even the long-term intake of small doses of arsenic has a carcinogenic effect. As an efficient and economic approach for the purification of arsenic-containing water, the adsorbents in adsorption processes have been widely studied. Among a variety of adsorbents reported, the metal oxide heterostructures with high surface area and specific affinity for arsenic adsorption from aqueous systems have demonstrated a promising performance in practical applications. This review paper aims to summarize briefly the metal oxide heterostructures in arsenic removal from contaminated water, so as to provide efficient, economic, and robust solutions for water purification.

  1. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    Science.gov (United States)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  2. Supercritical water oxidation test bed effluent treatment study

    International Nuclear Information System (INIS)

    Barnes, C.M.

    1994-04-01

    This report presents effluent treatment options for a 50 h Supercritical Water Test Unit. Effluent compositions are calculated for eight simulated waste streams, using different assumed cases. Variations in effluent composition with different reactor designs and operating schemes are discussed. Requirements for final effluent compositions are briefly reviewed. A comparison is made of two general schemes. The first is one in which the effluent is cooled and effluent treatment is primarily done in the liquid phase. In the second scheme, most treatment is performed with the effluent in the gas phase. Several unit operations are also discussed, including neutralization, mercury removal, and evaporation

  3. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burchell, Timothy D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  4. In situ Investigation of Oxide Films on Zirconium Alloy in PWR Primary Water Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    Zirconium alloys are used as fuel cladding materials in nuclear power reactors, because these materials have a very low thermal neutron capture cross section as well as desirable mechanical properties. However, the Fukushima accident shows that the oxidation behavior of zirconium alloy is an important issue because the zirconium alloy functions as a shield of nuclear material (i.e., uranium, fission gas), and the degradation on zirconium cladding directly causes severe accident on nuclear power plant. Therefore, to ensure the safety of nuclear power reactors, the performance and sustainability of nuclear fuel should be understood. Currently, the water-metal interface is regarded as the rate-controlling site governing the rapid oxidation transition in high-burn-up fuels. Zirconium oxide is formed at the water-metal interface, and its structure and phase play an important role in determining its mechanical properties. In the early stage of the oxidation process, zirconium oxide with both tetragonal and monoclinic phases is formed. With an increase in the oxidation time to 150 h, the unstable tetragonal phase disappears and the monoclinic phase is dominant and possibly because of the stress relaxation according to previous and present results.

  5. Iron oxides nanoparticles for heavy metals removing from industrial waters

    Energy Technology Data Exchange (ETDEWEB)

    SORA, Sergiu; Mariana, Ion Rodica [Valahia University, Targoviste (Russian Federation); Raluca, Van-Staden; Jacobus-Frederick, Van-Staden [Laboratory of Electrochemistry and PATLAB Bucharest, National Institute of Research for Electrochemistry and Condensed Matter, Bucharest (Romania)

    2011-07-01

    In the environment, the iron oxides may be useful for depollution process by means of a wide range of redox reactions. Hexavalent chromium (CrVI) is a toxic form of chromium, whereas the trivalent form is not. Reduction of CrVI to CrIII is, thus, a detoxifying process and takes place in soils and sediments under anoxic conditions. Hexavalent Cr reacts with magnetite to form CrIII. The reaction yields to a surficial transformation of magnetite into maghemite. Substitution of a large range of cations can be easily induced in magnetite and maghemite because tetrahedral as well as octahedral positions are available. Dissolution curves indicated that Co, Ni and Zn were randomly distributed within the structure and replaced octahedral Fe. In contrast, Cu, Mn and Cd appear to be concentrated near the surface of the crystals. Trace amounts of chromate ions adsorbed on magnetite are reduced to Cr (III) at the surface of Fe ions. A solid state reaction in which the surface layers of magnetite are converted into maghemite appears to be involved: as more chromate is adsorbed, further reduction is halted. Key words: magnetite nanoparticles.

  6. Water reactivity with mixed oxide (U,Pu)O2 surfaces

    International Nuclear Information System (INIS)

    Gaillard, Jeremy

    2013-01-01

    The interaction of water with actinides oxide surfaces remains poorly understood. The adsorption of water on PuO 2 surface and (U,Pu)O 2 surface leads to hydrogen generation through radiolysis but also surface evolution. The study of water interaction with mixed oxide (U,Pu)O 2 and PuO 2 surfaces requires the implementation of non intrusive techniques. The study of the hydration of CeO 2 surface is used to study the effectiveness of different techniques. The results show that the water adsorption leads to the surface evolution through the formation of a hydroxide superficial layer. The reactivity of water on the surface depends on the calcination temperature of the oxide precursor. The thermal treatment of hydrated surfaces can regenerate the surface. The study on CeO 2 hydration emphasizes the relevancies of these techniques in studying the hydration of surfaces. The hydrogen generation through water radiolysis is studied with an experimental methodology based on constant relative humidity in the radiolysis cell. The hydrogen accumulation is linear for the first hours and then tends to a steady state content. A mechanism of hydrogen consumption is proposed to explain the existence of the steady state of hydrogen content. This mechanism enables to explain also the evolution of the oxide surface during hydrogen generation experiments as shown by the evolution of hydrogen accumulation kinetics. The accumulation kinetics depends on the dose rate, specific surface area and the relative humidity but also on the oxide aging. The plutonium percentage appears to be a crucial parameter in hydrogen accumulation kinetics. (author) [fr

  7. Water activity of aqueous solutions of ethylene oxide-propylene oxide block copolymers and maltodextrins

    Directory of Open Access Journals (Sweden)

    N. D. D. Carareto

    2010-03-01

    Full Text Available The water activity of aqueous solutions of EO-PO block copolymers of six different molar masses and EO/PO ratios and of maltodextrins of three different molar masses was determined at 298.15 K. The results showed that these aqueous solutions present a negative deviation from Raoult's law. The Flory-Huggins and UNIFAC excess Gibbs energy models were employed to model the experimental data. While a good agreement was obtained with the Flory-Huggins equation, discrepancies were observed when predicting the experimental behavior with the UNIFAC model. The water activities of ternary systems formed by a synthetic polymer, maltodextrin and water were also measured and used to test the predictive capability of both models.

  8. Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production.

    Science.gov (United States)

    Lavonen, E E; Kothawala, D N; Tranvik, L J; Gonsior, M; Schmitt-Kopplin, P; Köhler, S J

    2015-11-15

    Absorbance, 3D fluorescence and ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) were used to explain patterns in the removal of chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) at the molecular level during drinking water production at four large drinking water treatment plants in Sweden. When dissolved organic carbon (DOC) removal was low, shifts in the dissolved organic matter (DOM) composition could not be detected with commonly used DOC-normalized parameters (e.g. specific UV254 absorbance - SUVA), but was clearly observed by using differential absorbance and fluorescence or ESI-FT-ICR-MS. In addition, we took a novel approach by identifying how optical parameters were correlated to the elemental composition of DOM by using rank correlation to connect optical properties to chemical formulas assigned to mass peaks from FT-ICR-MS analyses. Coagulation treatment selectively removed FDOM at longer emission wavelengths (450-600 nm), which significantly correlated with chemical formulas containing oxidized carbon (average carbon oxidation state ≥ 0), low hydrogen to carbon ratios (H/C: average ± SD = 0.83 ± 0.13), and abundant oxygen-containing functional groups (O/C = 0.62 ± 0.10). Slow sand filtration was less efficient in removing DOM, yet selectively targeted FDOM at shorter emission wavelengths (between 300 and 450 nm), which commonly represents algal rather than terrestrial sources. This shorter wavelength FDOM correlated with chemical formulas containing reduced carbon (average carbon oxidation state ≤ 0), with relatively few carbon-carbon double bonds (H/C = 1.32 ± 0.16) and less oxygen per carbon (O/C = 0.43 ± 0.10) than those removed during coagulation. By coupling optical approaches with FT-ICR-MS to characterize DOM, we were for the first time able to confirm the molecular composition of absorbing and fluorescing DOM selectively targeted during drinking

  9. Oxidative treatment of a waste water stream from a molasses processing using ozone and advanced oxidation technologies

    International Nuclear Information System (INIS)

    Gehringer, P.; Szinovatz, W.; Eschweiler, H.; Haberl, R.

    1994-08-01

    The discoloration of a biologically pretreated waste water stream from a molasses processing by ozonation and two advanced oxidation processes (O 3 /H 2 O 2 and O 3 /γ-irradiation, respectively) was studied. Colour removal occurred with all three processes with almost the same efficiency. The main difference of the methods applied was reflected by the BOD increase during the discoloration period. By ozonation it was much higher than by AOPs but it also appeared with AOPs. AOPs were, therefore, not apt for an effective BOD control during discoloration. (authors)

  10. Sex differences in a virtual water maze: an eye tracking and pupillometry study.

    Science.gov (United States)

    Mueller, Sven C; Jackson, Carl P T; Skelton, Ron W

    2008-11-21

    Sex differences in human spatial navigation are well known. However, the exact strategies that males and females employ in order to navigate successfully around the environment are unclear. While some researchers propose that males prefer environment-centred (allocentric) and females prefer self-centred (egocentric) navigation, these findings have proved difficult to replicate. In the present study we examined eye movements and physiological measures of memory (pupillometry) in order to compare visual scanning of spatial orientation using a human virtual analogue of the Morris Water Maze task. Twelve women and twelve men (average age=24 years) were trained on a visible platform and had to locate an invisible platform over a series of trials. On all but the first trial, participants' eye movements were recorded for 3s and they were asked to orient themselves in the environment. While the behavioural data replicated previous findings of improved spatial performance for males relative to females, distinct sex differences in eye movements were found. Males tended to explore consistently more space early on while females demonstrated initially longer fixation durations and increases in pupil diameter usually associated with memory processing. The eye movement data provides novel insight into differences in navigational strategies between the sexes.

  11. A novel radial water tread maze tracks age-related cognitive decline in mice

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2013-10-01

    Full Text Available There is currently no treatment and cure for age-related dementia and cognitive impairment in humans. Mice suffer from age-related cognitive decline just as people do, but assessment is challenging because of cumbersome and at times stressful performance tasks. We developed a novel radial water tread (RWT maze and tested male C57BL/6 (B6 and C57BL/6 x Balb/c F1 (CB6F1 mice at ages 4, 12, 20, and 28 months. B6 mice showed a consistent learning experience and memory retention that gradually decreased with age. CB6F1 mice showed a moderate learning experience in the 4 and 12 month groups, which was not evident in the 20 and 28 month groups. In conclusion, CB6F1 mice showed more severe age-related cognitive impairment compared to B6 mice and might be a suitable model for intervention studies. In addition, the RWT maze has a number of operational advantages compared to currently accepted tasks and can be used to assess age-related cognition impairment in B6 and CB6F1 mice as early as 12 months of age.

  12. Oxidative dissolution of unirradiated Mimas MOX fuel (U/Pu oxides) in carbonated water under oxic and anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Odorowski, Mélina [CEA/DEN/DTCD/SECM/LMPA, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); MINES ParisTech, PSL Research University, Centre de Géosciences, 35 rue St Honoré, 77305 Fontainebleau (France); Jégou, Christophe, E-mail: christophe.jegou@cea.fr [CEA/DEN/DTCD/SECM/LMPA, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); De Windt, Laurent [MINES ParisTech, PSL Research University, Centre de Géosciences, 35 rue St Honoré, 77305 Fontainebleau (France); Broudic, Véronique; Peuget, Sylvain; Magnin, Magali; Tribet, Magaly [CEA/DEN/DTCD/SECM/LMPA, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Martin, Christelle [Agence nationale pour la gestion des déchets radioactifs (Andra), DRD/CM, 1-7 rue Jean-Monnet, 92298 Châtenay-Malabry Cedex (France)

    2016-01-15

    Few studies exist concerning the alteration of Mimas Mixed-OXide (MOX) fuel, a mixed plutonium and uranium oxide, and data is needed to better understand its behavior under leaching, especially for radioactive waste disposal. In this study, two leaching experiments were conducted on unirradiated MOX fuel with a strong alpha activity (1.3 × 10{sup 9} Bq.g{sub MOX}{sup −1} reproducing the alpha activity of spent MOX fuel with a burnup of 47 GWd·t{sub HM}{sup −1} after 60 years of decay), one under air (oxic conditions) for 5 months and the other under argon (anoxic conditions with [O{sub 2}] < 1 ppm) for one year in carbonated water (10{sup −2} mol L{sup −1}). For each experiment, solution samples were taken over time and Eh and pH were monitored. The uranium in solution was assayed using a kinetic phosphorescence analyzer (KPA), plutonium and americium were analyzed by a radiochemical route, and H{sub 2}O{sub 2} generated by the water radiolysis was quantified by chemiluminescence. Surface characterizations were performed before and after leaching using Scanning Electron Microscopy (SEM), Electron Probe Microanalyzer (EPMA) and Raman spectroscopy. Solubility diagrams were calculated to support data discussion. The uranium releases from MOX pellets under both oxic and anoxic conditions were similar, demonstrating the predominant effect of alpha radiolysis on the oxidative dissolution of the pellets. The uranium released was found to be mostly in solution as carbonate species according to modeling, whereas the Am and Pu released were significantly sorbed or precipitated onto the TiO{sub 2} reactor. An intermediate fraction of Am (12%) was also present as colloids. SEM and EPMA results indicated a preferential dissolution of the UO{sub 2} matrix compared to the Pu-enriched agglomerates, and Raman spectroscopy showed the Pu-enriched agglomerates were slightly oxidized during leaching. Unlike Pu-enriched zones, the UO{sub 2} grains were much more

  13. Alpha Radiolysis of Sorbed Water on Uranium Oxides and Uranium Oxyfluorides

    Energy Technology Data Exchange (ETDEWEB)

    Icenhour, A.S.

    2003-09-10

    The radiolysis of sorbed water and other impurities contained in actinide oxides has been the focus of a number of studies related to the establishment of criteria for the safe storage and transport of these materials. Gamma radiolysis studies have previously been performed on uranium oxides and oxyfluorides (UO{sub 3}, U{sub 3}O{sub 8}, and UO{sub 2}F{sub 2}) to evaluate the long-term storage characteristics of {sup 233}U. This report describes a similar study for alpha radiolysis. Uranium oxides and oxyfluorides (with {sup 238}U as the surrogate for {sup 233}U) were subjected to relatively high alpha radiation doses (235 to 634 MGy) by doping with {sup 244}Cm. The typical irradiation time for these samples was about 1.5 years, which would be equivalent to more than 50 years irradiation by a {sup 233}U sample. Both dry and wet (up to 10 wt % water) samples were examined in an effort to identify the gas pressure and composition changes that occurred as a result of radiolysis. This study shows that several competing reactions occur during radiolysis, with the net effect that only very low pressures of hydrogen, nitrogen, and carbon dioxide are generated from the water, nitrate, and carbon impurities, respectively, associated with the oxides. In the absence of nitrate impurities, no pressures greater than 1000 torr are generated. Usually, however, the oxygen in the air atmosphere over the oxides is consumed with the corresponding oxidation of the uranium oxide. In the presence of up to 10 wt % water, the oxides first show a small pressure rise followed by a net decrease due to the oxygen consumption and the attainment of a steady-state pressure where the rate of generation of gaseous components is balanced by their recombination and/or consumption in the oxide phase. These results clearly demonstrate that alpha radiolysis of either wet or dry {sup 233}U oxides will not produce deleterious pressures or gaseous components that could compromise the long-term storage of

  14. Effect of Support in Heterogeneous Ruthenium Catalysts Used for the Selective Aerobic Oxidation of HMF in Water

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Heterogeneous ruthenium-based catalysts were applied in the selective, aerobic oxidation of 5-hydroxymethylfurfural, a versatile biomass-derived chemical, to form 2,5-furandicarboxylic acid. The oxidation reactions were performed in water with dioxygen as the oxidant at different pressures without...

  15. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    Science.gov (United States)

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  16. Synthesis of tungsten oxide, silver, and gold nanoparticles by radio frequency plasma in water

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Nomura, Shinfuku; Mukasa, Shinobu; Toyota, Hiromichi; Inoue, Toru; Usui, Tomoya

    2013-01-01

    Highlights: •RF plasma in water was used for nanoparticle synthesis. •Nanoparticles were produced from erosion of metallic electrode. •Rectangular and spherical tungsten oxide nanoparticles were produced. •No oxidations of the silver and gold spherical nanoparticles were produced. -- Abstract: A process for synthesis of nanoparticles using plasma in water generated by a radio frequency of 27.12 MHz is proposed. Tungsten oxide, silver, and gold nanoparticles were produced at 20 kPa through erosion of a metallic electrode exposed to plasma. Characterization of the produced nanoparticles was carried out by XRD, absorption spectrum, and TEM. The nanoparticle sizes were compared with those produced by a similar technique using plasma in liquid

  17. COMPARISON OF METHODS FOR ETHYLHEXYL 4-METHOXYCINNAMATE ACID ESTER OXIDATION IN WATER MEDIUM

    Directory of Open Access Journals (Sweden)

    Waldemar Studziński

    2017-07-01

    Full Text Available The aim of studies was to compare an impact of oxidizing agents on degradation of ethylhexyl 4-methoxycinnamate acid (EHMC. The oxidation reaction was carried out in the presence of sodium hypochlorite, hydrogen peroxide and ozone with/without UV radiation. EHMC degradation and analysis of products were performed using gas chromatograph coupled with mass spectrometry detector. The most effective method of EHMC degradation turned out to be ozonation with participation of UV radiation. In this system, degradation proceeded the most quickly and generated formation of small amount of by-products (2-propyl-1-pentanol; 4-metoxybenzaldehyde and Z-EHMC. Under the influence of sodium hypochlorite, the numerous chloroorganic products were formed, which can cause secondary contamination of water. Application of appropriate oxidation processes can contribute to degradation of micropollutants and thus to improvement of water quality.

  18. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes.

    Science.gov (United States)

    Nidheesh, P V; Zhou, Minghua; Oturan, Mehmet A

    2018-04-01

    Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Computationally Probing the Performance of Hybrid, Heterogeneous, and Homogeneous Iridium-Based Catalysts for Water Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    García-Melchor, Max [SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford CA (United States); Vilella, Laia [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST),Tarragona (Spain); Departament de Quimica, Universitat Autonoma de Barcelona, Barcelona (Spain); López, Núria [Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Tarragona (Spain); Vojvodic, Aleksandra [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park CA (United States)

    2016-04-29

    An attractive strategy to improve the performance of water oxidation catalysts would be to anchor a homogeneous molecular catalyst on a heterogeneous solid surface to create a hybrid catalyst. The idea of this combined system is to take advantage of the individual properties of each of the two catalyst components. We use Density Functional Theory to determine the stability and activity of a model hybrid water oxidation catalyst consisting of a dimeric Ir complex attached on the IrO2(110) surface through two oxygen atoms. We find that homogeneous catalysts can be bound to its matrix oxide without losing significant activity. Hence, designing hybrid systems that benefit from both the high tunability of activity of homogeneous catalysts and the stability of heterogeneous systems seems feasible.

  20. Ion exchange resins destruction in a stirred supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Leybros, A.; Roubaud, A.; Guichardon, P.; Boutin, O.

    2010-01-01

    Spent ion exchange resins (IERs) are radioactive process wastes for which there is no satisfactory industrial treatment. Supercritical water oxidation offers a viable treatment alternative to destroy the organic structure of resins, used to remove radioactivity. Up to now, studies carried out in supercritical water for IER destruction showed that degradation rates higher than 99% are difficult to obtain even using a catalyst or a large oxidant excess. In this study, a co-fuel, isopropanol, has been used in order to improve degradation rates by initiating the oxidation reaction and increasing temperature of the reaction medium. Concentrations up to 20 wt% were tested for anionic and cationic resins. Total organic carbon reduction rates higher than 99% were obtained from this process, without the use of a catalyst. The influence of operating parameters such as IERs feed concentration, nature and counterions of exchanged IERs were also studied. (authors)

  1. Tracking the Structural and Electronic Configurations of a Cobalt Proton Reduction Catalyst in Water

    Energy Technology Data Exchange (ETDEWEB)

    Moonshiram, Dooshaye; Gimbert-Suriñach, Carolina [Institute; Guda, Alexander [International; Picon, Antonio; Lehmann, C. Stefan; Zhang, Xiaoyi; Doumy, Gilles; March, Anne Marie; Benet-Buchholz, Jordi [Institute; Soldatov, Alexander [International; Llobet, Antoni [Institute; Departament; Southworth, Stephen H.

    2016-08-09

    Time resolved X-ray absorption spectroscopy (X-TAS) has been used to study the light induced hydrogen evolution reaction catalyzed by a highly stable cobalt complex, [Ru(bpy)3]2+ photosensitizer and an equimolar mixture of sodium ascorbate/ascorbic acid electron donor in pure water. XANES and EXAFS analysis of a binary mixture of the octahedral Co(III) pre-catalyst and [Ru(bpy)3]2+ after illumination, revealed in-situ formation of a square pyramidal Co(II) intermediate, with electron transfer kinetics of 51 ns. On the other hand, X-TAS experiments of the complete photocatalytic system in the presence of the electron donor showed the formation of a square planar Co(I) intermediate species within a few nanoseconds followed by its decay in the microsecond timescales. The Co(I) structural assignment is supported by calculations based on density functional theory (DFT). At longer reaction times, we observe the formation of the initial Co(III) species concomitant to the decay of Co(I), thus closing the catalytic cycle. The experimental X-ray absorption spectra of the molecular species formed along the catalytic cycle are modeled using a combination of molecular orbital DFT calculations (DFT-MO) and Finite Difference Method (FDM). These findings allowed us to unequivocally assign the full mechanistic pathway followed by the catalyst as well as to determine the rate limiting step of the process, which consists in the protonation of the Co(I). This study provides a complete kinetics scheme for the hydrogen evolution reaction by a cobalt catalyst, revealing unique information for the development of better catalysts for the reductive side of hydrogen fuel cells.

  2. TiO2-Based Advanced Oxidation Nanotechnologies For Water Purification And Reuse

    Science.gov (United States)

    TiO2 photocatalysis, one of the UV-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness of TiO2 to generate ...

  3. The Oxidative Stress Response in Elite Water Polo Players: Effects of Genetic Background

    Directory of Open Access Journals (Sweden)

    Mercurio Vecchio

    2017-01-01

    Full Text Available Acute exercise is known to induce oxidative stress. Here we assessed the effects of gene polymorphisms SOD2 A16V, CAT −844 G>A, and GPx-1 rs1800668 C>T on oxidative stress markers in 28 elite water polo male players prior to and after a routinely programmed friendly match. The mean plasma concentrations of derivatives of reactive oxygen metabolites (dROMs, as well as lactic dehydrogenase (LDH activity, creatine kinase (CK activity, CK-MB, and myoglobin, were significantly increased after exercise, while blood antioxidant potential (BAP and total free thiols were significantly decreased, compared with those measured before exercise. Advanced oxidation protein products (AOPP were also increased after exercise but not significantly. We observed that water polo players having either AV16 or VV16 SOD genotype exhibited a significant increase of postexercise AOPP, LDH, CK, and myoglobin plasma levels in comparison with wild-type athletes. Water polo players having either CAT −844 GA or GPx1 CT genotype showed a significant increase of postexercise dROMs plasma levels and, respectively, GPx and CAT enzyme activities in comparison with wild-type subjects. These preliminary results suggest that the screening for gene variants of antioxidant enzymes could be useful to assess individual susceptibility to oxidative stress and muscle damage in water polo players.

  4. The Oxidative Stress Response in Elite Water Polo Players: Effects of Genetic Background.

    Science.gov (United States)

    Vecchio, Mercurio; Currò, Monica; Trimarchi, Fabio; Naccari, Sergio; Caccamo, Daniela; Ientile, Riccardo; Barreca, Davide; Di Mauro, Debora

    2017-01-01

    Acute exercise is known to induce oxidative stress. Here we assessed the effects of gene polymorphisms SOD2 A16V, CAT -844 G>A, and GPx-1 rs1800668 C>T on oxidative stress markers in 28 elite water polo male players prior to and after a routinely programmed friendly match. The mean plasma concentrations of derivatives of reactive oxygen metabolites (dROMs), as well as lactic dehydrogenase (LDH) activity, creatine kinase (CK) activity, CK-MB, and myoglobin, were significantly increased after exercise, while blood antioxidant potential (BAP) and total free thiols were significantly decreased, compared with those measured before exercise. Advanced oxidation protein products (AOPP) were also increased after exercise but not significantly. We observed that water polo players having either AV16 or VV16 SOD genotype exhibited a significant increase of postexercise AOPP, LDH, CK, and myoglobin plasma levels in comparison with wild-type athletes. Water polo players having either CAT -844 GA or GPx1 CT genotype showed a significant increase of postexercise dROMs plasma levels and, respectively, GPx and CAT enzyme activities in comparison with wild-type subjects. These preliminary results suggest that the screening for gene variants of antioxidant enzymes could be useful to assess individual susceptibility to oxidative stress and muscle damage in water polo players.

  5. Oxidation of X20 in Water Vapour: The Effect of Temperature and Oxygen Partial Pressure

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Montgomery, Melanie; Somers, Marcel A. J.

    2009-01-01

    The oxidation behaviour of X20 in various mixtures of water, oxygen and hydrogen was investigated at temperatures between 500 C and 700 C (time: 336 h). The samples were characterised using reflected light microscopy and scanning electron microscopy equipped with energy dispersive spectroscopy...

  6. Emulsification technique affects oxidative stability of fish oil-in-water emulsion

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jensen, Louise Helene Søgaard

    of this study was therefore to compare lipid oxidation in 10% fish oil-in-water emulsions prepared by two different kinds of high pressure homogenizers i.e. a microfluidizer and a two valve high pressure homogenizer. Emulsions were made with equal droplet sizes, and with either 1% sodium caseinate or 1% whey...

  7. Emulsification technique affects oxidative stability of fish oil-in-water emulsions

    DEFF Research Database (Denmark)

    Horn, Anna Frisenfeldt; Nielsen, Nina Skall; Jensen, Louise Helene Søgaard

    of this study was to compare lipid oxidation in 10% fish oil-in-water emulsions prepared by two different kinds of high pressure homogenizers i.e. a microfluidizer and a two valve high pressure homogenizer. Emulsions were made with equal droplet sizes, and with either 1% sodium caseinate or 1% whey protein...

  8. Multifunctional Silver Coated E-33/Iron Oxide Water Filters: Inhibition of Biofilm Growth and Arsenic Removal

    Science.gov (United States)

    Bayoxide® E33 (E-33, Goethite) is a widely used commercial material for arsenic adsorption. It is a mixture of iron oxyhydroxide and oxides. E-33 is primarily used to remove arsenic from water and to a lesser extent, other anions, but generally lacks multifunctuality. It is a non...

  9. Tritium removal from air streams by catalytic oxidation and water adsorption

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1976-06-01

    An effective method of capturing tritium from air streams is by catalytic oxidation followed by water adsorption on a microporous solid adsorbent. Performance of a burner/dryer combination is illustrated by overall mass balance equations. Engineering design methods for packed bed reactors and adsorbers are reviewed, emphasizing the experimental data needed for design and the effect of operating conditions on system performance

  10. Corrosion of gadolinium aluminate-aluminium oxide samples in fully desalinated water at 575 K

    International Nuclear Information System (INIS)

    Hattenbach, K.; Zimmermann, H.U.

    1978-07-01

    Corrosion tests have been carried out for 1 1/2 years on gadolinium aluminate/aluminium oxide samples (burnable poison for ship propulsion reactors) with and without cans at 575 K in fully desalinated water. It was found that this substance is highly corrosion-resistant. (orig./HP) [de

  11. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    resistance increased both in the high and low frequency region, which indicates a strong poisoning of the water gas shift reaction and thus a lack of hydrogen fuel in addition to the poisoning of the electrochemical hydrogen oxidation. All poisoning effects are reversible under the applied operating...

  12. Destabilization of the hydrogen-bond structure of water by the osmolyte trimethylamine N-oxide

    NARCIS (Netherlands)

    Rezus, Y.L.A.; Bakker, H.J.

    2009-01-01

    We use femtosecond mid-infrared pump−probe spectroscopy to investigate the effects of the osmolyte trimethylamine N-oxide (TMAO) on the structural dynamics of water. As a comparison, we also investigate the effects of other amphiphilic molecules: tetramethylurea (TMU), urea, proline, and

  13. Fe(II) oxidation kinetics and Fe hydroxyphosphate precipitation upon aeration of anaerobic (ground)water

    NARCIS (Netherlands)

    van der Grift, B.; Griffioen, J.; Behrends, T.; Wassen, M.J.; Schot, P.P.; Osté, Leonard

    2015-01-01

    Exfiltration of anaerobic Fe-rich groundwater into surface water plays an important role in controlling the transport of phosphate (P) from agricultural areas to the sea. Previous laboratory and field studies showed that Fe(II) oxidation upon aeration leads to effective immobilization of dissolved P

  14. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    Van Der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; Van Der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters through co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  15. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water.

    NARCIS (Netherlands)

    Grift, van der B.; Rozemeijer, J.C.; Griffioen, J.; Velde, van der Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and 5 P immobilization along the flow-path

  16. Iron oxidation kinetics and phosphate immobilization along the flow-path from groundwater into surface water

    NARCIS (Netherlands)

    van der Grift, B.; Rozemeijer, J. C.; Griffioen, J.; van der Velde, Y.

    2014-01-01

    The retention of phosphorus in surface waters though co-precipitation of phosphate with Fe-oxyhydroxides during exfiltration of anaerobic Fe(II) rich groundwater is not well understood. We developed an experimental field set-up to study Fe(II) oxidation and P immobilization along the flow-path from

  17. Star block-copolymers: Enzyme-inspired catalysts for oxidation of alcohols in water

    KAUST Repository

    Mugemana, Clement

    2014-01-01

    A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. This journal is © the Partner Organisations 2014.

  18. Heats of immersion in the thorium oxide-water system at elevated temperatures

    International Nuclear Information System (INIS)

    Holmes, H.F.

    1976-01-01

    The surface properties of ThO 2 were studied by heat of immersion calorimetry at 25 to 200 0 C. Results show that the integral heat of immersion of thorium oxide contains contributions which reflect considerable interaction with several layers of water adjacent to the oxide surface. It would be desirable to know the heat capacity changes which occur in the multilayer adsorption of water on an oxide surface. However, such data are not available and their acquisition would be an extremely difficult task. Structuring (a negative ΔCp) of several layers of water (by increased hydrogen bonding) adjacent to an oxide surface could explain an increase in the heat of immersion as the immersion temperature is increased. The more energetic, heterogeneous, high-surface-area samples are expected to induce more order in the adjacent water layers than the less energetic samples. This interpretation is similar to that offered for the temperature dependence of the heat of solution of the alkali halides

  19. Oxidation kinetics of model compounds of metabolic waste in supercritical water

    Science.gov (United States)

    Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.

    1990-01-01

    In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.

  20. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition

    DEFF Research Database (Denmark)

    Konhauser, Kurt; Amskold, Larry; Lalonde, Stefan

    2007-01-01

    to the rise of atmospheric oxygen and the development of a protective ozone layer, the Earth's surface was subjected to high levels of ultraviolet radiation. Bulk ocean waters that were anoxic at this time could have supported high concentrations of dissolved Fe(II). Under such conditions, dissolved ferrous...... for biology [Fran??ois, L.M., 1986, Extensive deposition of banded iron formations was possible without photosynthesis. Nature 320, 352-354]. Here, we evaluate the potential importance of photochemical oxidation using a combination of experiments and thermodynamic models. The experiments simulate......-type systems, then we are driven to conclude that oxide-facies BIF are the product of a rapid, non-photochemical oxidative process, the most likely candidates being direct or indirect biological oxidation, and that a significant fraction of BIF could have initially been deposited as ferrous minerals. ?? 2007...

  1. Determination of absorbed dose to water in a clinical carbon ion beam by means of fluorescent nuclear track detectors, ionization chambers, and water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Osinga-Blaettermann, Julia-Maria

    2016-12-20

    Until now, dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as of high-energy photons. This is mainly caused by the threefold higher uncertainty of the k{sub Q,Q{sub 0}}-factor of ionization chambers, which is derived by calculations due to a lack of experimental data. The current thesis comprises two major aims with respect to the dosimetry of carbon ion beams: first, the investigation of the potential of fluorescent nuclear track detectors for fluence-based dosimetry and second, the experimental determination of the k{sub Q,Q{sub 0}}-factor. The direct comparison of fluence- and ionization-based measurements has shown a significant discrepancy of 4.5 %, which re-opened the discussion on the accuracy of calculated k{sub Q,Q{sub 0}}-factors. Therefore, absorbed dose to water measurements by means of water calorimetry have been performed allowing for the direct calibration of ionization chambers and thus for the experimental determination of k{sub Q,Q{sub 0}}. For the first time it could be shown that the experimental determination of k{sub Q,Q{sub 0}} for carbon ion beams is achievable with a standard measurement uncertainty of 0.8 %. This corresponds to a threefold reduction of the uncertainty compared to calculated values and therefore enables to significantly decrease the overall uncertainty related to ionization-based dosimetry of clinical carbon ion beams.

  2. Dynamic contact angle of water-based titanium oxide nanofluid

    Science.gov (United States)

    2013-01-01

    This paper presents an investigation into spreading dynamics and dynamic contact angle of TiO2-deionized water nanofluids. Two mechanisms of energy dissipation, (1) contact line friction and (2) wedge film viscosity, govern the dynamics of contact line motion. The primary stage of spreading has the contact line friction as the dominant dissipative mechanism. At the secondary stage of spreading, the wedge film viscosity is the dominant dissipative mechanism. A theoretical model based on combination of molecular kinetic theory and hydrodynamic theory which incorporates non-Newtonian viscosity of solutions is used. The model agreement with experimental data is reasonable. Complex interparticle interactions, local pinning of the contact line, and variations in solid–liquid interfacial tension are attributed to errors. PMID:23759071

  3. Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron, M.; Bluhm, H.; Tatarkhanov, M.; Ketteler, G.; Shimizu, T.K.; Mugarza, A.; Deng, Xingyi; Herranz, T.; Yamamoto, S.; Nilsson, A.

    2008-09-01

    The authors discuss the role of the presence of dangling H bonds from water or from surface hydroxyl species on the wetting behavior of surfaces. Using Scanning Tunneling and Atomic Force Microscopies, and Photoelectron Spectroscopy, they have examined a variety of surfaces, including mica, oxides, and pure metals. They find that in all cases, the availability of free, dangling H-bonds at the surface is crucial for the subsequent growth of wetting water films. In the case of mica electrostatic forces and H-bonding to surface O atoms determine the water orientation in the first layer and also in subsequent layers with a strong influence in its wetting characteristics. In the case of oxides like TiO{sub 2}, Cu{sub 2}O, SiO{sub 2} and Al{sub 2}O{sub 3}, surface hydroxyls form readily on defects upon exposure to water vapor and help nucleate the subsequent growth of molecular water films. On pure metals, such as Pt, Pd, and Ru, the structure of the first water layer and whether or not it exhibits dangling H bonds is again crucial. Dangling H-bonds are provided by molecules with their plane oriented vertically, or by OH groups formed by the partial dissociation of water. By tying the two II atoms of the water molecules into strong H-bonds with pre-adsorbed O on Ru can also quench the wettability of the surface.

  4. Pore water geochemistry and the oxidation of sedimentary organic matter: Hatteras Abyssal Plain 1981

    International Nuclear Information System (INIS)

    Heggie, D.; Lewis, T.; Graham, D.

    1985-01-01

    This report presents the pore water geochemistry from R/V an Endeavor cruise to an area of the Hatteras Abyssal Plain between 31 0 45' - 34 0 00'N and 69 0 37.5 - 72 0 07.5'W. The authors report on the down core variations of the products of organic matter oxidation, the stoichiometry of reactions and make a preliminary assessment of the rates of organic matter oxidation at several core locations. The authors found concentrations of total inorganic nitrogen species; nitrate, nitrite and ammonia in pore waters to be less than those predicted from a model of organic matter oxidation (Froelich et al. 1979) in sediments. The observations indicate that nitrogen is depleted over carbon as compared to typical marine organic matter. The down-core nitrate profiles over the study area were used to infer depths at which oxygen is near totally consumed in the sediments and hence to compute rates of oxygen consumption. The authors found oxygen consumption rates to vary by nearly an order of magnitude between core locations (1.7 - >15μmO 2 cm -2 yr -1 ). A simple model which combines the computed rates of oxidant consumption and the stoichiometry of organic matter oxidation was used to make estimates of organic carbon oxidation rates. These latter were found to vary between 1.3 and > 11.5 μm C cm -2 yr -1 . Highest carbon oxidation rates were found at the western boundary of the study area, and in all cases oxygen consumption was responsible for >85% of carbon oxidized. 11 references, 5 figures, 4 tables

  5. Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems.

    Science.gov (United States)

    Luo, Ping; Roca, Alejandro; Tiede, Karen; Privett, Katie; Jiang, Jiachao; Pinkstone, John; Ma, Guibin; Veinot, Jonathan; Boxall, Alisatair

    2018-02-01

    Novel applications of nanotechnology may lead to the release of engineered nanoparticles (ENPs), which result in concerns over their potential environmental hazardous impact. It is essential for the research workers to be able to quantitatively characterise ENPs in the environment and subsequently to assist the risk assessment of the ENPs. This study hence explored the application of nanoparticle tracking system (NTA) to quantitatively describe the behaviour of the ENPs in natural sediment-water systems. The NTA allows the measurement of both particle number concentration (PNC) and particle size distribution (PSD) of the ENPs. The developed NTA method was applied to a range of gold and magnetite ENPs with a selection of surface properties. The results showed that the positively-charged ENPs interacted more strongly with the sediment than neutral and negatively-charged ENPs. It was also found that the citrate coated Au ENPs had a higher distribution percentage (53%) than 11-mercaptoundecanoic acid coated Au ENPs (20%) and citrate coated magnetite ENPs (21%). The principles of the electrostatic interactions between hard (and soft) acids and bases (HSAB) are used to explain such behaviours; the hard base coating (i.e. citrate ions) will interact more strongly with hard acid (i.e. magnetite) than soft acid (i.e. gold). The results indicate that NTA is a complementary method to existing approaches to characterise the fate and behaviour of ENPs in natural sediment. Copyright © 2017. Published by Elsevier B.V.

  6. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water.

    Science.gov (United States)

    Bajdich, Michal; García-Mota, Mónica; Vojvodic, Aleksandra; Nørskov, Jens K; Bell, Alexis T

    2013-09-11

    The presence of layered cobalt oxides has been identified experimentally in Co-based anodes under oxygen-evolving conditions. In this work, we report the results of theoretical investigations of the relative stability of layered and spinel bulk phases of Co oxides, as well as the stability of selected surfaces as a function of applied potential and pH. We then study the oxygen evolution reaction (OER) on these surfaces and obtain activity trends at experimentally relevant electro-chemical conditions. Our calculated volume Pourbaix diagram shows that β-CoOOH is the active phase where the OER occurs in alkaline media. We calculate relative surface stabilities and adsorbate coverages of the most stable low-index surfaces of β-CoOOH: (0001), (0112), and (1014). We find that at low applied potentials, the (1014) surface is the most stable, while the (0112) surface is the more stable at higher potentials. Next, we compare the theoretical overpotentials for all three surfaces and find that the (1014) surface is the most active one as characterized by an overpotential of η = 0.48 V. The high activity of the (1014) surface can be attributed to the observation that the resting state of Co in the active site is Co(3+) during the OER, whereas Co is in the Co(4+) state in the less active surfaces. Lastly, we demonstrate that the overpotential of the (1014) surface can be lowered further by surface substitution of Co by Ni. This finding could explain the experimentally observed enhancement in the OER activity of Ni(y)Co(1-y)O(x) thin films with increasing Ni content. All energetics in this work were obtained from density functional theory using the Hubbard-U correction.

  7. Tracking changes of river morphology in Ayeyarwady River in Myanmar using earth observations and surface water mapping tool

    Science.gov (United States)

    Piman, T.; Schellekens, J.; Haag, A.; Donchyts, G.; Apirumanekul, C.; Hlaing, K. T.

    2017-12-01

    River morphology changes is one of the key issues in Ayeyarwady River in Myanmar which cause impacts on navigation, riverine habitats, agriculture lands, communities and livelihoods near the bank of the river. This study is aimed to track the changes in river morphology in the middle reach of Ayeyarwady River over last 30 years from 1984-2014 to improve understanding of riverbank dynamic, erosion and deposition procress. Earth observations including LandSat-7, LandSat-8, Digital Elevation Model from SRTM Plus and, ASTER-2 GoogleMap and Open Street Map were obtained for the study. GIS and remote sensing tools were used to analyze changes in river morphology while surface water mapping tool was applied to determine how the dynamic behaviour of the surface river and effect of river morphology changes. The tool consists of two components: (1) a Google Earth Engine (GEE) javascript or python application that performs image analysis and (2) a user-friendly site/app using Google's appspot.com that exposes the application to the users. The results of this study shown that the fluvial morphology in the middle reach of Ayeyarwady River is continuously changing under the influence of high water flows in particularly from extreme flood events and land use change from mining and deforestation. It was observed that some meandering sections of the riverbank were straightened, which results in the movement of sediment downstream and created new sections of meandering riverbank. Several large islands have formed due to the stabilization by vegetation and is enforced by sedimentation while many small bars were formed and migrated dynamically due to changes in water levels and flow velocity in the wet and dry seasons. The main channel was changed to secondary channel in some sections of the river. This results a constant shift of the navigation route. We also found that some villages were facing riverbank erosion which can force villagers to relocate. The study results demonstrated

  8. Understanding flocculation mechanism of graphene oxide for organic dyes from water: Experimental and molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-11-01

    Full Text Available Flocculation treatment processes play an important role in water and wastewater pretreatment. Here we investigate experimentally and theoretically the possibility of using graphene oxide (GO as a flocculant to remove methylene blue (MB from water. Experimental results show that GO can remove almost all MB from aqueous solutions at its optimal dosages and molecular dynamics simulations indicate that MB cations quickly congregate around GO in water. Furthermore, PIXEL energy contribution analysis reveals that most of the strong interactions between GO and MB are of a van der Waals (London dispersion character. These results offer new insights for shedding light on the molecular mechanism of interaction between GO and organic pollutants.

  9. Pu(V) as the stable form of oxidized plutonium in natural waters

    International Nuclear Information System (INIS)

    Orlandini, K.A.; Penrose, W.R.; Nelson, D.M.

    1986-01-01

    This work presents analytical evidence supporting the proposition that Pu(V) is the sole or predominant form of oxidized plutonium in natural waters. Two independent methods, the selective adsorption of Pu(VI) by silica gel, and the somewhat less selective coprecipitation of Pu(V) with calcium carbonate, were developed to separate Pu(V) from Pu(VI). Measurements of ambient plutonium in several natural waters by these methods found only Pu(V). In laboratory tracer studies, Pu(VI) was shown to be highly unstable in dilute bicarbonate solution and in Lake Michigan water, reducing in first-order fashion to Pu(V). (orig.)

  10. Engineering Interfacial Energetics: A Novel Hybrid System of Metal Oxide Quantum Dots and Cobalt Complex for Photocatalytic Water Oxidation

    International Nuclear Information System (INIS)

    Niu, Fujun; Shen, Shaohua; Wang, Jian; Guo, Liejin

    2016-01-01

    Graphical abstract: A cobalt complex engineers the interfacial energetics of metal oxide quantum dots (n- or p-type) and electrolytes for highly efficient O_2 generation under visible light irradiation. - Highlights: • A noble-metal-free hybrid photocatalytic system using a single-site cobalt catalyst was developed for O_2 generation. • Considerable activity and excellent stability for O_2 production were achieved by this novel system. • CoSlp engineered the QDs/electrolyte interfacical energetics for efficient hole transfer. - Abstract: Here we reported a novel hybrid photocatalytic water oxidation system, containing metal oxide (n-Fe_2O_3 or p-Co_3O_4) quantum dots (QDs) as light harvester, a salophen cobalt(II) complex (CoSlp) as redox catalyst and persulfate (S_2O_8"2"−) as sacrificial electron acceptor, for oxygen generation from fully aqueous solution. The n-Fe_2O_3 QDs/CoSlp and p-Co_3O_4 QDs/CoSlp systems exhibited good O_2 evolution performances, giving turnover numbers (TONs) of ca. 33 and ca. 35 over CoSlp after visible light irradiation for 72 h, respectively. The excellent photocatalytic performance could be ascribed to the efficient hole transfer from QDs to CoSlp catalyst, leading to reduced photogenerated charge recombination, as well as the CoSlp engineered interfacial band bending of QDs, increasing the driving force or decreasing the energy barrier for hole transfer and then benefiting the following O_2 generation at the QDs/electrolyte interface. The present work successfully demonstrated a novel hybrid system for photocatalytic O_2 evolution from fully aqueous solution; and the essential role of cobalt complexes in engineering the interfacial energetics of semiconductors (n- or p-type) and electrolytes could be informative for designing efficient systems for solar water splitting.

  11. Electrochemical oxidation of drug residues in water by the example of tetracycline, gentamicin and Aspirin {sup trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Weichgrebe, D.; Danilova, E.; Rosenwinkel, K.H. [Inst. of Water Quality and Waste Management, Univ. of Hannover, Hannover (Germany); Vedenjapin, A.; Baturova, M. [Inst. of Organic Chemistry, Russian Academy of Science, Moscow (Russian Federation)

    2003-07-01

    The electrochemical oxidation as a method to destroy drug residues like Aspirin {sup trademark}, tetracycline or gentamicin in water was investigated with C-Anode (modified by manganese oxides) and Pt Anode. The mechanism of Aspirin {sup trademark} and tetracycline oxidation and the influence of the biocide effect was observed using GC-MS and three different microbiological tests. In general the biological availability increases with progressive oxidation of the antibiotics. (orig.)

  12. Model simulating oxidation of Zircalot-4 at 400 (C in water vapor. Influence of thermal cycling and structure

    International Nuclear Information System (INIS)

    Garcia, Eduardo A.; Beranguer, G.

    1998-01-01

    This work gives a model simulating the oxidation of Zircaloy-4 in water vapor at 400 (C with different precipitates and granular sizes. The model combines diffusion with inter linked porosity, defining also an interface in the oxide separating phases of inter linked porosity from non inter linked porosity in the (PI/PnL) oxide, which spreads in a discrete way in time and is capable of reproducing kinetics of experimental oxidation

  13. Pebax®1657/Graphene oxide composite membranes for improved water vapor separation

    KAUST Repository

    Akhtar, Faheem Hassan

    2016-11-02

    In this study composite mixed matrix membranes containing hydrophilic microphase-separated block copolymer (Pebax® 1657) and graphene oxide nanosheets were prepared using a dip coating method. Water vapor and N2 gas permeation were measured as a function of different parameters: (i) layer thickness, (ii) content of graphene oxide (GO), and (iii) content of reduced GO. Surprisingly, a concentration of only 2 wt% of GO nanosheets well dispersed in the Pebax layer boosted the selectivity 8 times by decreasing the water vapor permeance by only 12% whereas N2 gas permeance decreased by 70%. Using reduced GO instead, the water vapor permeance declined by up to 16% with no influence on the N2 gas permeance. We correlated the permeation properties of the mixed matrix membranes with different models and found, that both the modified Nielsen model and the Cussler model give good correlation with experimental findings.

  14. Pebax®1657/Graphene oxide composite membranes for improved water vapor separation

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Peinemann, Klaus-Viktor

    2016-01-01

    In this study composite mixed matrix membranes containing hydrophilic microphase-separated block copolymer (Pebax® 1657) and graphene oxide nanosheets were prepared using a dip coating method. Water vapor and N2 gas permeation were measured as a function of different parameters: (i) layer thickness, (ii) content of graphene oxide (GO), and (iii) content of reduced GO. Surprisingly, a concentration of only 2 wt% of GO nanosheets well dispersed in the Pebax layer boosted the selectivity 8 times by decreasing the water vapor permeance by only 12% whereas N2 gas permeance decreased by 70%. Using reduced GO instead, the water vapor permeance declined by up to 16% with no influence on the N2 gas permeance. We correlated the permeation properties of the mixed matrix membranes with different models and found, that both the modified Nielsen model and the Cussler model give good correlation with experimental findings.

  15. Effect of supplementation of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives.

    Science.gov (United States)

    Talikoti, Prashanth; Bobby, Zachariah; Hamide, Abdoul

    2015-01-01

    The objective of the study was to evaluate the effect of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives. Sixty prehypertensives were recruited and randomized into 2 groups of 30 each. One group received water-soluble vitamins and the other placebo for 4 months. Further increase in blood pressure was not observed in the vitamin group which increased significantly in the placebo group at the end of 4 months. Malonedialdehyde and protein carbonylation were reduced during the course of treatment with vitamins whereas in the placebo group there was an increase in the level of malondialdehyde. In conclusion, supplementation of water-soluble vitamins in prehypertension reduces oxidative stress and its progression to hypertension.

  16. Permanganate oxidation of sulfur compounds to prevent poisoning of Pd catalysts in water treatment processes.

    Science.gov (United States)

    Angeles-Wedler, Dalia; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2008-08-01

    The practical application of Pd-catalyzed water treatment processes is impeded by catalyst poisoning by reduced sulfur compounds (RSCs). In this study, the potential of permanganate as a selective oxidant for the removal of microbially generated RSCs in water and as a regeneration agent for S-poisoned catalysts was evaluated. Hydrodechlorination using Pd/Al2O3 was carried out as a probe reaction in permanganate-pretreated water. The activity of the Pd catalysts in the successfully pretreated reaction medium was similar to that in deionized water. The catalyst showed no deactivation behavior in the presence of permanganate at a concentration level or = 0.08 mM, a significant but temporary inhibition of the catalytic dechlorination was observed. Unprotected Pd/Al2O3, which had been completely poisoned by sulfide, was reactivated by a combined treatment with permanganate and hydrazine. However, the anthropogenic water pollutants thiophene and carbon disulfide were resistant against permanganate. Together with the preoxidation of catalyst poisons, hydrophobic protection of the catalysts was studied. Pd/zeolite and various hydrophobically coated catalysts showed a higher stability against ionic poisons and permanganate than the uncoated catalyst. By means of a combination of oxidative water pretreatment and hydrophobic catalyst protection, we provide a new tool to harness the potential of Pd-catalyzed hydrodehalogenation for the treatment of real waters.

  17. Arsenic and antimony removal from drinking water by adsorption on granular ferric oxide.

    Science.gov (United States)

    Sazakli, Eleni; Zouvelou, Stavroula V; Kalavrouziotis, Ioannis; Leotsinidis, Michalis

    2015-01-01

    Arsenic and antimony occur in drinking water due to natural weathering or anthropogenic activities. There has been growing concern about their impact on health. The aim of this study was to assess the efficiency of a granular ferric oxide adsorbent medium to remove arsenic and antimony from drinking water via rapid small-scale column tests (RSSCTs). Three different water matrices - deionized, raw water treated with a reverse osmosis domestic device and raw water - were spiked with arsenic and/or antimony to a concentration of 100 μg L⁻¹. Both elements were successfully adsorbed onto the medium. The loadings until the guideline value was exceeded in the effluent were found to be 0.35-1.63 mg g⁻¹ for arsenic and 0.12-2.11 mg g⁻¹ for antimony, depending on the water matrix. Adsorption of one element was not substantially affected by the presence of the other. Aeration did not affect significantly the adsorption capacity. Granular ferric oxide could be employed for the simultaneous removal of arsenic and antimony from drinking water, whereas full-scale systems should be assessed via laboratory tests before their implementation.

  18. Oxidation of PCEA nuclear graphite by low water concentrations in helium

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I., E-mail: ContescuCI@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087 (United States); Mee, Robert W. [Department of Business Analytics and Statistics, University of Tennessee, Knoxville, TN 37996-0525 (United States); Wang, Peng [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087 (United States); Romanova, Anna V.; Burchell, Timothy D. [Department of Business Analytics and Statistics, University of Tennessee, Knoxville, TN 37996-0525 (United States)

    2014-10-15

    Accelerated oxidation tests were performed to determine kinetic parameters of the chronic oxidation reaction (i.e. slow, continuous, and persistent) of PCEA graphite in contact with helium coolant containing low moisture concentrations in high temperature gas-cooled reactors. To the authors’ knowledge such a study has not been done since the detailed analysis of reaction of H-451 graphite with steam (Velasquez, Hightower, Burnette, 1978). Since that H-451 graphite is now unavailable, it is urgently needed to characterize chronic oxidation behavior of new graphite grades that are being considered for use in gas-cooled reactors. The Langmuir–Hinshelwood mechanism of carbon oxidation by water results in a non-linear reaction rate expression, with at least six different parameters. They were determined in accelerated oxidation experiments that covered a large range of temperatures (800–1100 °C), and partial pressures of water (15–850 Pa) and hydrogen (30–150 Pa) and used graphite specimens thin enough (4 mm) in order to avoid diffusion effects. Data analysis employed a statistical method based on multiple likelihood estimation of parameters and simultaneous fitting of non-linear equations. The results show significant material-specific differences between graphite grades PCEA and H-451 which were attributed to microstructural dissimilarity between the two materials. It is concluded that kinetic data cannot be transferred from one graphite grade to another.

  19. Studies of the role of water in the electrocatalysis of methanol oxidation

    Science.gov (United States)

    Lin, Andrew S.; Kowalak, Albert D.; O'Grady, William E.

    The oxidation of methanol has been carried out on electrodes prepared by evaporating Pt directly onto a Nafion membrane and then introducing the methanol either in the gas-fed mode or directly from the electrolyte in the electrolyte-fed mode. It was found that the oxidation carried out using a gas-fed electrode was shifted 100-150 mV more cathodic than the electrolyte-fed electrode. A similar set of experiments was carried out using hydrophobic gas-diffusion electrodes and similar results were obtained. These results suggest that the mechanism of the methanol oxidation reaction depends on the nature of the surroundings and the orientation of the methanol with respect to the electrode surface. In the electrolyte-fed configuration the methanol will be in a hydrogen-bonded water cluster allowing the carbon end of the molecule to more readily approach the catalyst surface. While in the gas-fed configuration the methanol will interact with the water or oxidic surface through the hydroxyl end of the molecule. Clearly, these two possible mechanisms will lead to different products and one may enhance the rate of the direct oxidation of methanol as observed in this work.

  20. Adsorption of Cadmium Ions from Water on Double-walled Carbon Nanotubes/Iron Oxide Composite

    Directory of Open Access Journals (Sweden)

    Karima Seffah

    2017-12-01

    Full Text Available A new material (DWCNT/iron oxide for heavy metals removal was developed by combining the adsorption features of double-walled carbon nanotubes with the magnetic properties of iron oxides. Batch experiments were applied in order to evaluate adsorption capacity of the DWCNT/iron oxide composite for cadmium ions. The influence of operating parameters such as pH value, amount of adsorbent, initial adsorbate concentration and agitation speed was studied. The adsorption capacity of the DWCNT/iron oxide adsorbent for Cd2+ ions was 20.8 mg g-1, which is at the state of the art. The obtained results revealed that DWCNT/iron oxide composite is a very promising adsorbent for removal of Cd2+ ions from water under natural conditions. The advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process.

  1. Effect of Leaves of Caesalpinia decapetala on Oxidative Stability of Oil-in-Water Emulsions

    Directory of Open Access Journals (Sweden)

    María Gabriela Gallego

    2017-03-01

    Full Text Available Caesalpinia decapetala (Roth Alston (Fabaceae (CD is used in folk medicine to prevent colds and treat bronchitis. This plant has antitumor and antioxidant activity. The antioxidant effects of an extract from Caesalpinia decapetala (Fabaceae were assessed by storage of model food oil-in-water emulsions with analysis of primary and secondary oxidation products. The antioxidant capacity of the plant extract was evaluated by the diphenylpicrylhydrazyl (DPPH, Trolox equivalent antioxidant capacity (TEAC, oxygen radical absorbance capacity (ORAC and ferric reducing antioxidant power (FRAP assays and by electron paramagnetic resonance (EPR spectroscopy. Lyophilized extracts of CD were added at concentrations of 0.002%, 0.02% and 0.2% into oil-in-water emulsions, which were stored for 30 days at 33 ± 1 °C, and then, oxidative stability was evaluated. The CD extract had high antioxidant activity (700 ± 70 µmol Trolox/g dry plant for the ORAC assay, mainly due to its phenolic components: gallic acid, quercetin, catechin, 4-hydroxybenzoic acid and p-coumaric acid. At a concentration of 0.2%, the extract significantly reduced the oxidative deterioration of oil-in-water emulsions. The results of the present study show the possibility of utilizing CD as a promising source of natural antioxidants for retarding lipid oxidation in the food and cosmetic industries.

  2. REMOVAL OF ORGANIC DYES FROM CONTAMINATED WATER USING COFE2O4 /REDUCED GRAPHENE OXIDE NANOCOMPOSITE

    Directory of Open Access Journals (Sweden)

    F. Sakhaei

    2016-12-01

    Full Text Available Up to now, lots of materials such as active carbon, iron, manganese, zirconium, and metal oxides have been widely used for removal of dyes from contaminated water. Among these, ferrite nanoparticle is an interesting magnetic material due to its moderate saturation magnetization, excellent chemical stability and mechanical hardness. Graphene, a new class of 2D carbonaceous material with atom thick layer features, has attracted much attention recently due to its high specific surface area. Reduced graphene oxide (rGO has also been of great interest because of its unique properties, which are similar to those of graphene, such as specific surface area, making it an ideal candidate for dye removal. Thus far, few works have been carried out on the preparation of CoFe2O4-rGO composite and its applications in removal of contaminants from water. In this paper, CoFe2O4 reduced graphene oxide nanocomposite was fabricated using hydrothermal process. During the hydrothermal process, the reduction of graphene oxide and growth of CoFe2O4 simultaneously occurred on the carbon basal planes under the conditions generated in the hydrothermal system. The samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy contaminant and UV-Vis spectroscopy as the analytical method. The experimental results suggest that this material has great potential for treating Congo red contaminated water.

  3. Metal release behavior of surface oxidized stainless steels into flowing high temperature pure water

    International Nuclear Information System (INIS)

    Fujiwara, Kazuo; Tomari, Haruo; Nakayama, Takenori; Shimogori, Kazutoshi; Ishigure, Kenkichi; Matsuura, Chihiro; Fujita, Norihiko; Ono, Shoichi.

    1987-01-01

    In order to clarify the effect of oxidation treatment of Type 304 SS on the inhibition of metal release into high temperature pure water, metal release rate of individual alloying element into flowing deionized water containing 50 ppb dissolved oxygen was measured as the function of exposure time on representative specimens oxidized in air and steam. The behavior of metal release was also discussed in relation to the structure of surface films. Among the alloying elements the amount of Fe ion, Cr ion and Fe crud in high temperature pure water tended to saturate with the exposure time and that of Ni ion and Co ion tended to increase monotonously with the exposure time for all specimens tested. And the treatment of steam-oxidation was the most effective to decrease the metal release of alloying elements and the treatment by air-oxidation also decreased the metal release. These tendencies were confirmed to correlate well with the structure of the surface films as it was in the results in the static autoclave test. (author)

  4. Self-propagating solar light reduction of graphite oxide in water

    Energy Technology Data Exchange (ETDEWEB)

    Todorova, N.; Giannakopoulou, T.; Boukos, N.; Vermisoglou, E. [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece); Lekakou, C. [Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom); Trapalis, C., E-mail: c.trapalis@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 153 41 Attikis (Greece)

    2017-01-01

    Highlights: • Graphite oxide was partially reduced by solar light irradiation in water media. • No addition of catalysts nor reductive agent were used for the reduction. • Specific capacitance increased stepwise with increase of irradiation time. • Self-propagating reduction of graphene oxide by solar light is suggested. - Abstract: Graphite Oxide (GtO) is commonly used as an intermediate material for preparation of graphene in the form of reduced graphene oxide (rGO). Being a semiconductor with tunable band gap rGO is often coupled with various photocatalysts to enhance their visible light activity. The behavior of such rGO-based composites could be affected after prolonged exposure to solar light. In the present work, the alteration of the GtO properties under solar light irradiation is investigated. Water dispersions of GtO manufactured by oxidation of natural graphite via Hummers method were irradiated into solar light simulator for different periods of time without addition of catalysts or reductive agent. The FT-IR analysis of the treated dispersions revealed gradual reduction of the GtO with the increase of the irradiation time. The XRD, FT-IR and XPS analyses of the obtained solid materials confirmed the transition of GtO to rGO under solar light irradiation. The reduction of the GtO was also manifested by the CV measurements that revealed stepwise increase of the specific capacitance connected with the restoration of the sp{sup 2} domains. Photothermal self-propagating reduction of graphene oxide in aqueous media under solar light irradiation is suggested as a possible mechanism. The self-photoreduction of GtO utilizing solar light provides a green, sustainable route towards preparation of reduced graphene oxide. However, the instability of the GtO and partially reduced GO under irradiation should be considered when choosing the field of its application.

  5. Comparative study of water chemistry and surface oxide composition on alloy 600 steam generator tubing

    International Nuclear Information System (INIS)

    Bjoernkvist, L.; Norring, K.; Nyborg, L.

    1993-01-01

    The Ringhals 3 steam generators experience secondary IGSCC on the tubes at support plate locations. Its sister unit Ringhals 4 is so far without IGSCC. Extensive work has been carried out in order to determine the local chemistry in crevices and the composition of deposits and oxide films on the tubes. Hot soaks of the SG:s at zero power has been performed and the water chemistry in occluded crevices of the SGs was predicted to be alkaline, pH 300degreesC = 10. In addition to eddy current testing, a large number of tubes have been pulled and destructively examined. These analysis include SEM/EDS characterization of TSP crevice deposits and Auger electron spectroscopy (AES) with depth profiling to reveal the composition of the tube OD oxide film. The AES analysis show an outer oxide rich in Fe 3 O 4 , mostly deposited. The actual Alloy 600 oxide is found below the magnetite and is 1-2 μm thick. The composition profile of the oxide exhibits a Cr-depletion relative to Ni in the outer part of the oxide, whereas an enrichment is found in depth. In order to correlate the water chemistry to the oxide composition profiles and deposits on pulled tubes, reference samples were prepared in an autoclave. The environments were chosen similar to the predicted Ringhals 3 and 4 crevice chemistry. Exposure both in an alkaline (pH 320degreesC∼ 9.9) and an acidic (pH 320degreesC ∼4.3) environment, containing sodium, chloride and sulphate, was studied. Some samples were also found on the Alloy 600 samples exposed to alkaline environment. Thus the prediction of alkaline chemistry was verified. The enrichment of chromium relative to nickel was shown to be potential and time dependent resulting in an increased Cr/Ni ratio at Cr-max with increasing potential and time

  6. Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment.

    Science.gov (United States)

    Pérez, G; Fernández-Alba, A R; Urtiaga, A M; Ortiz, I

    2010-05-01

    This work investigates the application of the electro-oxidation technology provided with boron doped diamond (BDD), an electrode material which has shown outstanding properties in oxidation of organic and inorganic compounds, for the treatment of reverse osmosis (RO) concentrates generated in tertiary wastewater treatment plants (WWTP). Chemical oxygen demand (COD), ammonium and several anions were measured during the electro-oxidation process, and the influence of the applied current density (20-200A/m(2)) was analysed on process kinetics. Analytical assessment showed that several emerging pollutants (pharmaceuticals, personal care products, stimulants, etc.) were presented both in the effluent of the secondary WWTP as well as in the RO concentrate. For this reason, a group of 10 emerging pollutants, those found with higher concentrations, was selected in order to test whether electro-oxidation can be also applied for their mitigation. In the removal of emerging pollutants the electrical current density in the range 20-100A/m(2) did not show influence likely due to the mass transfer resistance developed in the process when the oxidized solutes are present in such low concentrations. Their removal rates were fitted to first order expressions, and the apparent kinetic constants for the anodic oxidation of each compound were calculated. Finally, the formation of trihalomethanes (THMs) has been checked; concluding that after selecting the appropriate operational conditions the attained concentration is lower than the standards for drinking water established in European and EPA regulations. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Ceramic media amended with metal oxide for the capture of viruses in drinking water.

    Science.gov (United States)

    Brown, J; Sobsey, M D

    2009-04-01

    Ceramic materials that can adsorb and/or inactivate viruses in water may find widespread application in low-tech drinking-water treatment technologies in developing countries, where porous ceramic filters and ceramic granular media filters are increasingly promoted for that purpose. We examined the adsorption and subsequent inactivation of bacteriophages MS2 and (phiX-174 on five ceramic media in batch adsorption studies to determine media suitability for use in a ceramic water filter application. The media examined were a kaolinitic ceramic medium and four kaolinitic ceramic media amended with iron or aluminium oxides that had been incorporated into the kaolinitic clays before firing. Batch adsorption tests indicate increased sorption and inactivation of surrogate viruses by media amended with Fe and Al oxide, with FeOOH-amended ceramic inactivating all bacteriophages up to 8 log10. Unmodified ceramic was a poor adsorbent of bacteriophages at less than 1 log10 adsorption-inactivation and high recovery of sorbed phages. These studies suggest that contact with ceramic media, modified with electropositive Fe or Al oxides, can reduce bacteriophages in waters to a greater extent than unmodified ceramic.

  8. Chemical oxidation methods in the closure of paper mill water circulations; Hapetustekniikoiden kaeyttoe metsaeteollisuuden vesikiertojen sulkemisessa - EKT 04

    Energy Technology Data Exchange (ETDEWEB)

    Laari, A; Kallas, J [Lappeenranta Univ. of Technology (Finland); Korhonen, S [Kuopio Univ. (Finland); Tuhkanen, T [Mikkelin Ammattikorkeakoulu, Mikkeli (Finland)

    1999-12-31

    When water circulations are closed some harmful compounds tend to accumulate in the circulation waters. These compounds include lipophilic extractives, like resin and fatty acids, triglycerides and sterols, but also other compounds, like lignins, lignans and sugars. Microbial growth will increase due to elevated organic concentrations. The purpose of this project is to find out the possibilities of the use of ozonation and wet oxidation in the treatment of paper mill water circulations. In chemical oxidation organic matter is destroyed in oxidation reactions. Especially lipophilic extractives are selectively oxidated by ozone. Chemical oxidation reactions are carried out in gas-liquid reactors, where ozone or oxygen are transferred from gas to liquid phase where the oxidation reactions happen. One target of the project is to estimate kinetic parameters for different groups of compounds on the basis of experimental data. Kinetic parameters are then used in modelling of reactors and in estimation of process costs. (orig.)

  9. Chemical oxidation methods in the closure of paper mill water circulations; Hapetustekniikoiden kaeyttoe metsaeteollisuuden vesikiertojen sulkemisessa - EKT 04

    Energy Technology Data Exchange (ETDEWEB)

    Laari, A.; Kallas, J. [Lappeenranta Univ. of Technology (Finland); Korhonen, S. [Kuopio Univ. (Finland); Tuhkanen, T. [Mikkelin Ammattikorkeakoulu, Mikkeli (Finland)

    1998-12-31

    When water circulations are closed some harmful compounds tend to accumulate in the circulation waters. These compounds include lipophilic extractives, like resin and fatty acids, triglycerides and sterols, but also other compounds, like lignins, lignans and sugars. Microbial growth will increase due to elevated organic concentrations. The purpose of this project is to find out the possibilities of the use of ozonation and wet oxidation in the treatment of paper mill water circulations. In chemical oxidation organic matter is destroyed in oxidation reactions. Especially lipophilic extractives are selectively oxidated by ozone. Chemical oxidation reactions are carried out in gas-liquid reactors, where ozone or oxygen are transferred from gas to liquid phase where the oxidation reactions happen. One target of the project is to estimate kinetic parameters for different groups of compounds on the basis of experimental data. Kinetic parameters are then used in modelling of reactors and in estimation of process costs. (orig.)

  10. Tracking Single DNA Nanodevices in Hierarchically Meso-Macroporous Antimony-Doped Tin Oxide Demonstrates Finite Confinement.

    Science.gov (United States)

    Mieritz, Daniel; Li, Xiang; Volosin, Alex; Liu, Minghui; Yan, Hao; Walter, Nils G; Seo, Dong-Kyun

    2017-06-27

    Housing bio-nano guest devices based on DNA nanostructures within porous, conducting, inorganic host materials promise valuable applications in solar energy conversion, chemical catalysis, and analyte sensing. Herein, we report a single-template synthetic development of hierarchically porous, transparent conductive metal oxide coatings whose pores are freely accessible by large biomacromolecules. Their hierarchal pore structure is bimodal with a larger number of closely packed open macropores (∼200 nm) at the higher rank and with the remaining space being filled with a gel network of antimony-doped tin oxide (ATO) nanoparticles that is highly porous with a broad size range of textual pores mainly from 20-100 nm at the lower rank. The employed carbon black template not only creates the large open macropores but also retains the highly structured gel network as holey pore walls. Single molecule fluorescence microscopic studies with fluorophore-labeled DNA nanotweezers reveal a detailed view of multimodal diffusion dynamics of the biomacromolecules inside the hierarchically porous structure. Two diffusion constants were parsed from trajectory analyses that were attributed to free diffusion (diffusion constant D = 2.2 μm 2 /s) and to diffusion within an average confinement length of 210 nm (D = 0.12 μm 2 /s), consistent with the average macropore size of the coating. Despite its holey nature, the ATO gel network acts as an efficient barrier to the diffusion of the DNA nanostructures, which is strongly indicative of physical interactions between the molecules and the pore nanostructure.

  11. Effects of Water Molecule on CO Oxidation by OH: Reaction Pathways, Kinetic Barriers, and Rate Constants.

    Science.gov (United States)

    Zhang, Linyao; Yang, Li; Zhao, Yijun; Zhang, Jiaxu; Feng, Dongdong; Sun, Shaozeng

    2017-07-06

    The water dilute oxy-fuel combustion is a clean combustion technology for near-zero emission power; and the presence of water molecule could have both kinetic and dynamic effects on combustion reactions. The reaction OH + CO → CO 2 + H, one of the most important elementary reactions, has been investigated by extensive electronic structure calculations. And the effects of a single water molecule on CO oxidation have been studied by considering the preformed OH(H 2 O) complex reacts with CO. The results show little change in the reaction pathways, but the additional water molecule actually increases the vibrationally adiabatic energy barriers (V a G ). Further thermal rate constant calculations in the temperature range of 200 to 2000 K demonstrate that the total low-pressure limit rate constant for the water assisted OH(H 2 O) + CO → CO 2 + H 2 O + H reaction is 1-2 orders lower than that of the water unassisted one, which is consistent with the change of V a G . Therefore, the hydrated radical OH(H 2 O) would actually slow down the oxidation of CO. Meanwhile, comparisons show that the M06-2X/aug-cc-pVDZ method gives a much better estimation in energy and thus is recommended to be employed for direct dynamics simulations.

  12. Relationship between oxide film structures and corrosion resistance of SUS 304 L stainless steel in high temperature pure water

    International Nuclear Information System (INIS)

    Yamanaka, Kazuo; Matsuda, Yasushi.

    1990-01-01

    The effect of various oxidation conditions on metal release of SUS304L stainless steels in deaerated pure water at 488 K was investigated. The behavior of metal release was also discussed in relation to the surface films which were formed by various oxidation treatments. The results obtained are as follows: (1) The oxidation treatment in high purity argon gas at high temperatures for short time such as 1273 K - 2 min (120S) was effective to decrease the metal dissolution, and the oxide films primarily consisted of spinel type double oxide layer containing high concentration of Mn and Cr. (2) The oxidation treatments in non-deaerated pure water at 561 K for 24∼336 h (86.4∼1209.6 ks) were furthermore effective to decrease the metal dissolution. (3) It may be concluded that the key factors controlling the metal release are thickness, structure and compactness together with compositions of surface oxide films. (author)

  13. The BWR [Boiling Water Reactor] Emergency Operating Procedures Tracking System (EOPTS): Evaluation by control-room operating crews

    International Nuclear Information System (INIS)

    Spurgin, A.J.; Orvis, D.D.; Spurgin, J.P.; Luna, C.J.

    1990-05-01

    This report presents the results of a project sponsored by the Electric Power Research Institute (EPRI) and Taiwan Power Company (TPC) and conducted by APG and TPC to perform evaluation of the Emergency Operating Procedures Tracking System (EOPTS). The EOPTS is an expert system employing artificial intelligence techniques developed by EPRI for Boiling Water Reactor (BWR) plants based on emergency operating procedures (EOPs). EOPTS is a computerized decision aid used to assist plant operators in efficient and reliable use of EOPs. The main objective of this project was to evaluate the EOPTS and determine how an operator aid of this type could noticeably improve the response time and the reliability of control room crews to multi-failure scenarios. A secondary objective was to collect data on how crew performance was affected. Experiments results indicate that the EOPTS measurably improves crew performance over crews using the EOP flow charts. Time-comparison measurements indicate that crews using the EOPTS perform required actions more quickly than do those using the flowcharts. The results indicate that crews using the EOPTS are not only faster and more consistent in their actions but make fewer errors. In addition, they have a higher likelihood of recovering from the errors that they do make. Use of the EOPTS in the control room should result in faster termination and mitigation of accidents and reduced risk of power plant operations. Recommendations are made towards possible applications of the EOPTS to operator training and evaluation, and for the applicability of the evaluation methodology developed for this project to the evaluation of similar operator aides. 17 refs., 14 figs., 14 tabs

  14. Methane oxidation with low O2/CH4 ratios in the present of water: Combustion or reforming

    International Nuclear Information System (INIS)

    Geng, Haojie; Yang, Zhongqing; Zhang, Li; Ran, Jingyu; Yan, Yunfei

    2017-01-01

    Highlights: • Copper catalyst displays an inhibitory effect of water while cobalt catalyst does not. • Both catalysts show their catalytic ability for oxidation and reforming reaction. • Oxidation precedes reforming in methane reaction over both catalysts. • Water participates in reforming reaction and shows increasing effect in high temperature. - Abstract: This paper investigates the reaction of methane over copper and cobalt catalysts under oxygen-deficient conditions with added water. A fixed-bed reactor, TPD analysis, in situ DRIFTS study, and temperature detection were used to test the activity of the methane reaction, water adsorption on the metal surface, OH group behavior, and the endothermic and exothermic processes of the reaction. The results show that the inhibitory effect of water mainly occurs at a low temperature and methane conversion decreases when water is introduced into the feed. Water easily adsorbs on metal clusters and forms OH groups at low temperatures. Copper tends to adsorb more water than cobalt and shows a stronger inhibitory effect. The DRIFTS spectra of the Cu catalyst show strong OH peaks during the reaction, of which the magnitudes increase with the water pressure. When the reaction temperature rises (750 °C), water begins to serve as an oxidant and participates in the reforming reaction. Both catalysts show a transition process between the oxidation and reforming reactions as the temperature increases. Co displays a better catalytic performance in the reforming reaction. Oxidation precedes reforming; water does not participate in the reaction if the oxygen is not fully consumed.

  15. Temperature responsive track membranes

    International Nuclear Information System (INIS)

    Omichi, H.; Yoshido, M.; Asano, M.; Tamada, H.

    1994-01-01

    A new track membrane was synthesized by introducing polymeric hydrogel to films. Such a monomer as amino acid group containing acryloyl or methacryloyl was either co-polymerized with diethylene glycol-bis-ally carbonate followed by on beam irradiation and chemical etching, or graft co-polymerized onto a particle track membrane of CR-39. The pore size was controlled in water by changing the water temperature. Some films other than CR-39 were also examined. (author). 11 refs, 7 figs

  16. Self-limiting and complete oxidation of silicon nanostructures produced by laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Vaccaro, L.; Messina, F.; Camarda, P.; Gelardi, F. M.; Cannas, M., E-mail: marco.cannas@unipa.it [Dipartimento di Fisica e Chimica, Università di Palermo, Via Archirafi 36, I-90123 Palermo (Italy); Popescu, R.; Schneider, R.; Gerthsen, D. [Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Engesserstrasse 7, 76131 Karlsruhe (Germany)

    2016-07-14

    Oxidized Silicon nanomaterials produced by 1064 nm pulsed laser ablation in deionized water are investigated. High-resolution transmission electron microscopy coupled with energy dispersive X-ray spectroscopy allows to characterize the structural and chemical properties at a sub-nanometric scale. This analysis clarifies that laser ablation induces both self-limiting and complete oxidation processes which produce polycrystalline Si surrounded by a layer of SiO{sub 2} and amorphous fully oxidized SiO{sub 2}, respectively. These nanostructures exhibit a composite luminescence spectrum which is investigated by time-resolved spectroscopy with a tunable laser excitation. The origin of the observed luminescence bands agrees with the two structural typologies: Si nanocrystals emit a μs-decaying red band; defects of SiO{sub 2} give rise to a ns-decaying UV band and two overlapping blue bands with lifetime in the ns and ms timescale.

  17. Oxygen transfer rate estimation in oxidation ditches from clean water measurements.

    Science.gov (United States)

    Abusam, A; Keesman, K J; Meinema, K; Van Straten, G

    2001-06-01

    Standard methods for the determination of oxygen transfer rate are based on assumptions that are not valid for oxidation ditches. This paper presents a realistic and simple new method to be used in the estimation of oxygen transfer rate in oxidation ditches from clean water measurements. The new method uses a loop-of-CSTRs model, which can be easily incorporated within control algorithms, for modelling oxidation ditches. Further, this method assumes zero oxygen transfer rates (KLa) in the unaerated CSTRs. Application of a formal estimation procedure to real data revealed that the aeration constant (k = KLaVA, where VA is the volume of the aerated CSTR) can be determined significantly more accurately than KLa and VA. Therefore, the new method estimates k instead of KLa. From application to real data, this method proved to be more accurate than the commonly used Dutch standard method (STORA, 1980).

  18. Measurement of water kinetics with deuterium oxide in lactating dairy cows

    International Nuclear Information System (INIS)

    Odwongo, W.O.; Conrad, H.R.; Staubus, A.E.; Harrison, J.H.

    1985-01-01

    Following intravenous infusion with approximately 300 mg deuterium oxide per kg body weight, blood was drawn from lactating Holsteins (Trial 1, n = 4, and Trial 2, n = 5) at suitable intervals for up to 12 days while the cows were maintained on dietary regimens to which they were well adapted. Time results for deuterium oxide concentration in blood were described best by the three-compartment open model system, which showed that the central, shallow peripheral, and deep peripheral body water compartments contained 27.1, 25.0, and 23.2% body weight in trial 1 and 33.7, 27.1, and 19.9% body weight in trial 2. Total body water estimates averaged 75.3 and 80.7% body weight during trials 1 and 2. Estimates for biological half-life of water were 4.6 and 3.2 days and those for water turnover were 68.9 and 109.7 liters/day, respectively. The data fitted the two-compartment open model system when observations made prior to 25 min post-administration were excluded from the analyses, because the central and shallow peripheral compartments were apparently lumped into one. Blood sampling at 0.5, 1, and 1.5 days following infusion and thereafter at 1-day intervals was adequate for the estimates of the one compartment open model system. Estimates of total body water, water biological half-life, and water turnover were similar for the different models. It is concluded that the three-compartment open model provides greater detail and insight into the water dynamics of lactating dairy cows having regular access to food and water, whereas the two- and one-compartment open model systems provide good approximations only

  19. Study mechanism of growth and spallation of oxide scales formed after T91 steel oxidation in water vapor at 550 C

    International Nuclear Information System (INIS)

    Demizieux, Marie-Christine

    2015-01-01

    In the framework of the development of Generation IV reactors and specifically in the new Sodium Fast Reactor (SFR) project, Fe-9Cr ferritic-martensitic steels are candidates as structural materials for steam generators. Indeed, Fe-9Cr steels are already widely used in high temperature steam environments - like boilers and steam turbines- for their combination of creep strength and high thermal properties. Many studies have been focused on Fe-9Cr steels oxidation behavior between 550 C-700 C.Depending on the oxidizing environment, formation of a triplex (Fe-Cr spinel/magnetite/hematite) or duplex (Fe-Cr spinel/magnetite) oxide scales are reported.. Besides, for long time exposure in steam, the exfoliation of oxide scales can cause serious problems such as tube obstruction and steam turbine erosion. Consequently, this work has been dedicated to study, on the one hand the oxidation kinetics of T91 steel in water vapor environments, and on the other hand, the mechanisms leading to the spallation of the oxide scale. Oxidation tests have been carried out at 550 C in pure water vapor and in Ar/D_2O/H_2 environments with different hydrogen contents. Based on an analytical resolution, a quantitative modeling has shown that the 'available space model' proposed in the literature for duplex oxide scale formation well reproduces both scales growth kinetics and spinel oxide stoichiometry. Then, oxidized samples have been precisely characterized and it turns out that buckling then spalling of the oxide scale is always located in the magnetite layer. Voids observed in the magnetite layer are major initiation sites of de-cohesion of the outer oxide scale. A mechanism of formation of these voids has been proposed, in accordance with the mechanism of duplex scale formation. The derived model based on the assumption that vacancies accumulate where the iron vacancies flux divergence is maximal gives a good estimation of the location of pores inside the magnetite layer. Then, in order

  20. Water absorption in thermally grown oxides on SiC and Si: Bulk oxide and interface properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gang [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States); Xu, Can; Feldman, Leonard C. [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States); Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States); Yakshinskiy, Boris; Wielunski, Leszek; Gustafsson, Torgny [Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States); Bloch, Joseph [Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854 (United States); NRCN, Beer-Sheva 84190 (Israel); Dhar, Sarit [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)

    2014-11-10

    We combine nuclear reaction analysis and electrical measurements to study the effect of water exposure (D{sub 2}O) on the n-type 4H-SiC carbon face (0001{sup ¯}) MOS system and to compare to standard silicon based structures. We find that: (1) The bulk of the oxides on Si and SiC behave essentially the same with respect to deuterium accumulation; (2) there is a significant difference in accumulation of deuterium at the semiconductor/dielectric interface, the SiC C-face structure absorbs an order of magnitude more D than pure Si; (3) standard interface passivation schemes such as NO annealing greatly reduce the interfacial D accumulation; and (4) the effective interfacial charge after D{sub 2}O exposure is proportional to the total D amount at the interface.

  1. Reduction in exhaled nitric oxide tracks improved patient inhaler compliance in difficult asthma-a case study.

    Science.gov (United States)

    Hunt, Eoin; Flynn, Deirdre; MacHale, Elaine; Costello, Richard W; Murphy, Desmond M

    2017-12-26

    Exhaled nitric oxide is believed be a useful surrogate for airways inflammation while non-adherence with therapy is known to be associated with worsening of asthma control. We present the case of a 49-year-old female with steroid-dependent asthma and an exacerbation rate of >20/year. She was enrolled in a 3-month-long prospective study using a validated diagnostic inhaler device that provided objective evidence of inhaler compliance. Fractional exhaled nitric oxide (FeNO), peak expiratory flow rates, asthma control questionnaires were measured throughout the study period. Peripheral eosinophil count was obtained prior to the study, during the study, and immediately afterwards. Improvement in compliance at the end of the study led to significant improvements in lung function peak expiratory flow rate (PEFR), and objective scores of asthma. There was an observed improvement in PEFR after 4 weeks, with an associated decrease in FeNO from 92 to 9 ppb that plateaued over the remainder of the study. Her eosinophil count was 0.79 × 10 9 /litre prior to starting in the study, 0.37 × 10 9 /litre after 2 months, and 0.1 × 10 9 /litre at the end of the study. We believe that this is the first case study to objectively prove that improvements in compliance can lead to dramatic reductions in the overall inflammatory airway response and in particular that improvements in patient compliance are mirrored by marked reduction in FeNO levels. These changes occurred in tandem with an observed clinical improvement in our patient.

  2. Generation of an electromotive force by hydrogen-to-water oxidation with Pt-coated oxidized titanium foils

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, Klaus; El Achhab, Mhamed [Department of Materials Science, Institute for Experimental Condensed Matter Physics, Heinrich-Heine University, 40225 Duesseldorf, Universitaetsstrasse 1 (Germany)

    2011-12-15

    We show that chemically induced current densities up to 20 mA cm{sup -2} and an electromotive force (EMF) up to 465 mV are generated during the hydrogen-to-water-oxidation over Pt/TiO{sub 2}/Ti devices. We prepare the samples by plasma electrolytic oxidation (PEO) of titanium foils and deposition of Pt contact paste. This process yields porous structures and, depending on the anodization voltage, Schottky diode-type current-voltage curves of various ideality parameters. Our experiments demonstrate that Pt coated anodized titanium can also be utilized as hydrogen sensor; the system offers a number of advantages such as a wide temperature range of operation from -40 to 80 C, quick response and decay times of signals, and good electrical stability. Idealized sketch of the Pt coated anodized Ti foil and application as hydrogen sensor and electric generator. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Magnetic resonance cell-tracking studies: spectrophotometry-based method for the quantification of cellular iron content after loading with superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Böhm, Ingrid

    2011-08-01

    The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI). Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT) whole-body system. Mean peak wavelengths λ(peak) was determined at A(720 nm) (range 719-722 nm). Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r  =  .9958; p  =  2.2 × 10(-12)). The limit of detection was 0.01 μg Fe/mL (0.1785 mM), and the limit of quantification was 0.04 μg Fe/mL (0.714 mM). Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T(2)-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside).

  4. Magnetic Resonance Cell-Tracking Studies: Spectrophotometry-Based Method for the Quantification of Cellular Iron Content after Loading with Superparamagnetic Iron Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ingrid Böhm

    2011-07-01

    Full Text Available The purpose of this article is to present a user-friendly tool for quantifying the iron content of superparamagnetic labeled cells before cell tracking by magnetic resonance imaging (MRI. Iron quantification was evaluated by using Prussian blue staining and spectrophotometry. White blood cells were labeled with superparamagnetic iron oxide (SPIO nanoparticles. Labeling was confirmed by light microscopy. Subsequently, the cells were embedded in a phantom and scanned on a 3 T magnetic resonance tomography (MRT whole-body system. Mean peak wavelengths Λpeak was determined at A720nm (range 719–722 nm. Linearity was proven for the measuring range 0.5 to 10 μg Fe/mL (r = .9958; p = 2.2 × 10−12. The limit of detection was 0.01 μg Fe/mL (0.1785 mM, and the limit of quantification was 0.04 μg Fe/mL (0.714 mM. Accuracy was demonstrated by comparison with atomic absorption spectrometry. Precision and robustness were also proven. On T2-weighted images, signal intensity varied according to the iron concentration of SPIO-labeled cells. Absorption spectrophotometry is both a highly sensitive and user-friendly technique that is feasible for quantifying the iron content of magnetically labeled cells. The presented data suggest that spectrophotometry is a promising tool for promoting the implementation of magnetic resonance-based cell tracking in routine clinical applications (from bench to bedside.

  5. Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water

    Directory of Open Access Journals (Sweden)

    Spadaro Salvatore

    2018-01-01

    Full Text Available he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay

  6. Surface Interrogation Scanning Electrochemical Microscopy for a Photoelectrochemical Reaction: Water Oxidation on a Hematite Surface.

    Science.gov (United States)

    Kim, Jae Young; Ahn, Hyun S; Bard, Allen J

    2018-03-06

    To understand the pathway of a photoelectrochemical (PEC) reaction, quantitative knowledge of reaction intermediates is important. We describe here surface interrogation scanning electrochemical microscopy for this purpose (PEC SI-SECM), where a light pulse to a photoactive semiconductor film at a given potential generates intermediates that are then analyzed by a tip generated titrant at known times after the light pulse. The improvements were demonstrated for photoelectrochemical water oxidation (oxygen evolution) reaction on a hematite surface. The density of photoactive sites, proposed to be Fe 4+ species, on a hematite surface was successfully quantified, and the photoelectrochemical water oxidation reaction dynamics were elucidated by time-dependent redox titration experiments. The new configuration of PEC SI-SECM should find expanded usage to understand and investigate more complicated PEC reactions with other materials.

  7. Role of synergism effect of mixed metal oxides on molecular hydrogen formation from photocatalitic water splitting

    International Nuclear Information System (INIS)

    Mahmudov, H.M.; Ismayilova, M.K.; Jafarova, N.A.; Azizova, K.V.

    2017-01-01

    The paper deals with hydrogen production using photocatalysis. In particular, we focus on the role of synergism on the reaction rate. For hydrogen production presented photocatalyst is composed of nanoAl_2O_3 and dispers TiO_2. Yet, the presence of the two mixed metal oxides together results in considerable enhancement of the reaction rate. The main reason for this is the increase of the charge carriers lifetime allowing for electron transfer to hydrogen ions and hole transfer to oxygen ions. It was investigated the mechanism of water splitting in presence of mixed nanocatalysed. It has been shown that the effect occurs during irradiation as a result of photooxidation of water with mixed metal oxides catalyst.

  8. Carrier dynamics of a visible-light-responsive Ta3N5 photoanode for water oxidation

    KAUST Repository

    Ziani, Ahmed; Nurlaela, Ela; Dhawale, Dattatray Sadashiv; Silva, Diego Alves; Alarousu, Erkki; Mohammed, Omar F.; Takanabe, Kazuhiro

    2015-01-01

    The physicochemical properties of a tantalum nitride (Ta3N5) photoanode were investigated in detail to understand the fundamental aspects associated with the photoelectrochemical (PEC) water oxidation. The Ta3N5 thin films were synthesized using DC magnetron sputtering followed by annealing in air and nitridation under ammonia (NH3). A polycrystalline structure with a dense morphology of the monoclinic Ta3N5 films was obtained. A relatively low absorption coefficient (104 to 105 cm-1) in the visible light range was measured for Ta3N5, consistent with the nature of the indirect band-gap. Ultra-fast spectroscopic measurements revealed that the Ta3N5 with different thicknesses films possess low transport properties and fast carrier recombination (<10 ps). These critical kinetic properties of Ta3N5 as a photoanode may necessitate high overpotentials to achieve appreciable photocurrents for water oxidation (onset ∼0.6 V vs. RHE). This journal is

  9. Catalytic Water Oxidation by a Bio-inspired Nickel Complex with Redox Active Ligand

    Science.gov (United States)

    Wang, Dong; Bruner, Charlie O.

    2017-01-01

    The oxidation of water to dioxygen is important in natural photosynthesis. One of nature’s strategies for managing such multi-electron transfer reactions is to employ redox active metal-organic cofactor arrays. One prototype example is the copper-tyrosinate active site found in galactose oxidase. In this work, we have implemented such a strategy to develop a bio-inspired nickel-phenolate complex capable of catalyzing the oxidation of water to O2 electrochemically at neutral pH with a modest overpotential. The employment of the redox-active ligand turned out to be a useful strategy to avoid the formation of high-valent nickel intermediates while a reasonable turnover rate (0.15 s−1) is retained. PMID:29099176

  10. Oxidative polymerization of lignins by laccase in water-acetone mixture.

    Science.gov (United States)

    Fiţigău, Ionița Firuța; Peter, Francisc; Boeriu, Carmen Gabriela

    2013-01-01

    The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw Reactivity of lignin substrates in laccase-catalyzed reactions was determined by monitoring the oxygen consumption. The oxidation reactions in 50% acetone in water mixture proceed with high rate for all tested lignins. Polymerization products were analyzed by size exclusion chromatography, FT-IR, and (31)P-NMR and evidence of important lignin modifications after incubation with laccase. Lignin polymers with higher molecular weight (Mw up to 17500 g/mol) were obtained. The obtained polymers have potential for applications in bioplastics, adhesives and as polymeric dispersants.

  11. Fullerene-reduced graphene oxide composites obtained by ultrashort laser ablation of fullerite in water

    Energy Technology Data Exchange (ETDEWEB)

    De Bonis, A., E-mail: angela.debonis@unibas.it [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Curcio, M. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050, Tito Scalo (PZ) (Italy); Rau, J.V. [CNR-ISM, Via del Fosso del Cavaliere, 100-00133, Rome (Italy); Galasso, A.; Teghil, R. [Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10-85100, Potenza (Italy)

    2015-05-01

    Highlights: • Laser ablation of a fullerite target in water performed by an ultra-short laser source has been reported. • The formation of reduced graphene oxide has been described considering the laser ablation in liquid mechanism. • Fullerene-reduced graphene oxide composite, in the form of self assembled microtubes, has been described. - Abstract: The laser ablation in liquid of carbon-based solid targets is of particular interest thanks to the possibility of obtaining different carbon allotropes by varying the experimental parameters employed. The ablation of a fullerite target in water using a frequency-doubled Nd:glass laser source with a pulse duration of 250 fs and a frequency repetition rate of 10 Hz is presented. The obtained products have been characterized by transmission electron and atomic force microscopies and by X-ray photoelectron and micro-Raman spectroscopies. During the femtosecond laser ablation, the collapse of fullerene cages has been considered with the consequent formation of graphene oxide (GO) and its successive hydrogenation. The process of self-assembling in microtube structures of the formed reduced graphene oxide-fullerene composites has then been reported.

  12. Partial oxidation of landfill leachate in supercritical water: Optimization by response surface methodology

    International Nuclear Information System (INIS)

    Gong, Yanmeng; Wang, Shuzhong; Xu, Haidong; Guo, Yang; Tang, Xingying

    2015-01-01

    Highlights: • Partial oxidation of landfill leachate in supercritical water was investigated. • The process was optimized by Box–Behnken design and response surface methodology. • GY H2 , TRE and CR could exhibit up to 14.32 mmol·gTOC −1 , 82.54% and 94.56%. • Small amounts of oxidant can decrease the generation of tar and char. - Abstract: To achieve the maximum H 2 yield (GY H2 ), TOC removal rate (TRE) and carbon recovery rate (CR), response surface methodology was applied to optimize the process parameters for supercritical water partial oxidation (SWPO) of landfill leachate in a batch reactor. Quadratic polynomial models for GY H2 , CR and TRE were established with Box–Behnken design. GY H2 , CR and TRE reached up to 14.32 mmol·gTOC −1 , 82.54% and 94.56% under optimum conditions, respectively. TRE was invariably above 91.87%. In contrast, TC removal rate (TR) only changed from 8.76% to 32.98%. Furthermore, carbonate and bicarbonate were the most abundant carbonaceous substances in product, whereas CO 2 and H 2 were the most abundant gaseous products. As a product of nitrogen-containing organics, NH 3 has an important effect on gas composition. The carbon balance cannot be reached duo to the formation of tar and char. CR increased with the increase of temperature and oxidation coefficient

  13. UO{sub 2} surface oxidation by mixtures of water vapor and hydrogen as a function of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Espriu-Gascon, A., E-mail: alexandra.espriu@upc.edu [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Llorca, J.; Domínguez, M. [Institut de Tècniques Energètiques (INTE), Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Giménez, J.; Casas, I. [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, E-08243 Manresa (Spain)

    2015-12-15

    In the present work, X-Ray Photoelectron Spectroscopy (XPS) was used to study the effect of water vapor on the UO{sub 2} surface as a function of temperature. The experiments were performed in situ inside a high pressure chamber attached to the XPS instrument. UO{sub 2} samples were put in contact with either hydrogen or argon streams, saturated with water at room temperature, and the sample surface evolution was analyzed by XPS. In the case of the water vapor/argon experiments, one experiment at 350 °C was performed and, in the case of the water vapor/hydrogen experiments, the temperatures used inside the reactor were 60, 120, 200 and 350 °C. On one hand, in presence of argon, the results obtained showed that the water vapor in the argon stream oxidized 93% of the U(IV) in the sample surface. On the other hand, the degree of UO{sub 2} surface oxidation showed a different dependence on the temperature in the experiments performed in the presence of hydrogen: the maximum surface oxidation occurred at 120 °C, where 65.4% of U(IV) in the sample surface was oxidized, while at higher temperatures, the surface oxidation decreased. This observation is attributed to the increase of hydrogen reducing effect when temperature increases which prevents part of the oxidation of the UO{sub 2} surface by the water vapor. - Highlights: • UO{sub 2} surface has been oxidized by water vapor in an argon stream at 350 °C. • H{sub 2} reduced more uranium oxidation produced by water at 350 °C when compared to Ar. • In H{sub 2} presence, the uranium oxidation produced by water depends on the temperature.

  14. Effect of tolvaptan on renal water and sodium excretion and blood pressure during nitric oxide inhibition

    DEFF Research Database (Denmark)

    Therwani, Safa Al; Rosenbæk, Jeppe Bakkestrøm; Mose, Frank Holden

    2017-01-01

    BACKGROUND: Tolvaptan is a selective vasopressin receptor antagonist. Nitric Oxide (NO) promotes renal water and sodium excretion, but the effect is unknown in the nephron's principal cells. In a dose-response study, we measured the effect of tolvaptan on renal handling of water and sodium....... CONCLUSIONS: During baseline, fractional excretion of sodium was unchanged. During tolvaptan with NO-inhibition, renal water excretion was reduced dose dependently, and renal sodium excretion was reduced unrelated to the dose, partly via an AVP dependent mechanism. Thus, tolvaptan antagonized the reduction...... in renal water and sodium excretion during NO-inhibition. Most likely, the lack of decrease in AQP2 excretion by tolvaptan could be attributed to a counteracting effect of the high level of p-AVP....

  15. Transformation of pharmaceuticals during oxidation/disinfection processes in drinking water treatment.

    Science.gov (United States)

    Postigo, Cristina; Richardson, Susan D

    2014-08-30

    Pharmaceuticals are emerging contaminants of concern and are widespread in the environment. While the levels of these substances in finished drinking waters are generally considered too low for human health concern, there are now concerns about their disinfection by-products (DBPs) that can form during drinking water treatment, which in some cases have been proven to be more toxic than the parent compounds. The present manuscript reviews the transformation products of pharmaceuticals generated in water during different disinfection processes, i.e. chlorination, ozonation, chloramination, chlorine dioxide, UV, and UV/hydrogen peroxide, and the main reaction pathways taking place. Most of the findings considered for this review come from controlled laboratory studies involving reactions of pharmaceuticals with these oxidants used in drinking water treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Oxidative treatments used to make water potable; Tratamientos oxidativos en la potabilizacion del agua

    Energy Technology Data Exchange (ETDEWEB)

    Gracia, R.; Cortes, S.; Sarasa, J.; Ormad, P.; Ovelleiro, J. L. [Universidad de Zaragoza (Spain)

    1999-08-01

    It is studied with pre-ozonation replacing pre-chlorination during drinking-water treatment for improving the water quality since the discovery of potentially harmful chlorination by products such as trihalomethanes (THM). Raw Ebro river (Spain) water is ozonated in the presence of titanium dioxide (TiO{sub 2}) supported on alumina as a catalyst and later chlorinated. It is shown that using this catalyst during ozonation of the natural water allowed reductions in organic matter and therefore in THM formation. Characterization of the organic compounds resulting from oxidation techniques was made by concentrating the sample through liquid-liquid extraction, along with the gas chromatography/mass spectrometry (GC/MS). THMs were measured by an head space connected to a gas chromatograph equipped with an electron capture detector (GC/ECD). (Author) 12 refs.

  17. Enzyme-inspired functional surfactant for aerobic oxidation of activated alcohols to aldehydes in water

    KAUST Repository

    Chen, Batian

    2015-02-06

    We describe an enzyme-inspired catalytic system based on a rationally designed multifunctional amphiphile. The resulting micelles feature metal-binding sites and stable free radical moieties as well as fluorous pockets that attract and preconcentrate molecular oxygen. In the presence of copper ions, the micelles effect chemoselective aerobic alcohol oxidation under ambient conditions in water, a transformation that is challenging to achieve nonenzymatically.

  18. Enzyme-inspired functional surfactant for aerobic oxidation of activated alcohols to aldehydes in water

    KAUST Repository

    Chen, Batian; Bukhriakov, Konstantin; Sougrat, Rachid; Rodionov, Valentin

    2015-01-01

    We describe an enzyme-inspired catalytic system based on a rationally designed multifunctional amphiphile. The resulting micelles feature metal-binding sites and stable free radical moieties as well as fluorous pockets that attract and preconcentrate molecular oxygen. In the presence of copper ions, the micelles effect chemoselective aerobic alcohol oxidation under ambient conditions in water, a transformation that is challenging to achieve nonenzymatically.

  19. Synthesis of magnetic iron oxide nanoparticles toward arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Starbird Perez, Ricardo; Montero Campos, Virginia

    2015-01-01

    A high contact area material is supplied to be used in the treatment of water contaminated with arsenic. Synthesis of iron nanoparticles is reported with superparamagnetic properties, stabilized with stearic acid. The characterization is performed through spectrophotometric, thermogravimetric and electronic transmission techniques. The presence of an emulsifier is evidenced and determinant for the stabilization of the iron oxide phase (maghemite or magnetite) with magnetic properties. The material is obtained and shows suitable properties to be used in the treatment of water for human consumption. (author) [es

  20. Solvation of graphite oxide in water-methanol binary polar solvents

    Energy Technology Data Exchange (ETDEWEB)

    You, Shujie; Yu, Junchun; Sundqvist, Bertil; Talyzin, Alexandr V. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden)

    2012-12-15

    The phase transition between two solvated phases was studied by DSC for graphite oxide (GO) powders immersed in water-methanol mixtures of various compositions. GO forms solid solvates with two different compositions when immersed in methanol. Reversible phase transition between two solvate states due to insertion/desertion of methanol monolayer occurs upon temperature variations. The temperature point and the enthalpy ({Delta}H) of the phase transition are maximal for pure methanol and decrease linearly with increase of water fraction up to 30%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Advanced oxidation in waste water treatment; Oxidacion avanzada en el tratamiento de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Baraza, J.; Esplugas, S. [Universitat de Barcelona (Spain)

    2000-07-01

    The treatment of waste waters and, sometimes, drinking water, using advanced oxidation processes is reviewed on the basis of the studies carried out in which the hydroxyl radical plays an important part, with different techniques and reagents offering a broad range of possibilities. A distinction is made between photochemical an non-photochemical processes. A simple presentation of the fundamentals of each method is made together with a wide-ranging review of the literature and the results obtained in the degradation of certain contaminants resistant to conventional chemical treatments. (Author) 43 refs.

  2. Antioxidant effect of water and acetone extracts of Fucus vesiculosuson oxidative stability of skin care emulsions

    DEFF Research Database (Denmark)

    Poyato, Candelaria; Thomsen, Birgitte Raagaard; Hermund, Ditte Baun

    2017-01-01

    A water and an acetone extract of the Icelandic brown algae Fucus vesiculosus were evaluated as potential natural sources of antioxidant compounds in skin care emulsions. To assess their efficacy in inhibiting lipid oxidation caused by photo- or thermoxidation, they were stored in darkness and room...... temperature. High temperature also caused greater increments in the droplet size of the emulsions. The analysis of the tocopherol content, peroxide value and volatile compounds during the storage revealed that, whereas both water and acetone extracts showed (at 2 mg/g of emulsion) protective effect against...

  3. One- or two-electron water oxidation, hydroxyl radical, or H_2O_2 evolution

    International Nuclear Information System (INIS)

    Siahrostami, Samira; Li, Guo-Ling; Viswanathan, Venkatasubramanian; Nørskov, Jens K.

    2017-01-01

    Electrochemical or photoelectrochemcial oxidation of water to form hydrogen peroxide (H_2O_2) or hydroxyl radicals (•OH) offers a very attractive route to water disinfection, and the first process could be the basis for a clean way to produce hydrogen peroxide. A major obstacle in the development of effective catalysts for these reactions is that the electrocatalyst must suppress the thermodynamically favored four-electron pathway leading to O_2 evolution. Here, we develop a thermochemical picture of the catalyst properties that determine selectivity toward the one, two, and four electron processes leading to •OH, H_2O_2, and O_2.

  4. Water dissociation and CO oxidation over Au/anatase catalyst. A DFT-D2 study

    Science.gov (United States)

    Saqlain, Muhammad Adnan; Hussain, Akhtar; Siddiq, Muhammad; Leitão, Alexandre A.

    2018-03-01

    With the help of DFT-D2 methodology, we have investigated the adsorption of water on clean anatase(001) and Au/anatase(001). In the former case, adsorption energies of H2O differ to small extent computed employing GGA = PW91 and DFT-D2 methods. While the GGA = PW91 predicts that water would desorb close to 650 K on the TiO2 surface, the DFT-D2 predicts that desorption is most likely to occur above 700 K. A comparison of water adsorption on TiO2 and Au/TiO2 surfaces shows that the TiO2 prefers dimer adsorption whereas the Au/TiO2 prefers monomer adsorption. We found that the diffusion of surface hydroxyls on to the Au cluster from the Au/TiO2 periphery is unlikely and it seems that the CO oxidation would occur at the Au/TiO2 boundary. The results show that water dissociation and CO oxidation steps occur easily on Au/TiO2 indicating that this could be good alternative catalyst for water gas shift reaction industry.

  5. Chlorination of bromide-containing waters: enhanced bromate formation in the presence of synthetic metal oxides and deposits formed in drinking water distribution systems.

    Science.gov (United States)

    Liu, Chao; von Gunten, Urs; Croué, Jean-Philippe

    2013-09-15

    Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate > sulfate > bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Chlorination of bromide-containing waters: Enhanced bromate formation in the presence ofsynthetic metal oxides and deposits formed indrinking water distribution systems

    KAUST Repository

    Liu, Chao; von Gunten, Urs; Croue, Jean-Philippe

    2013-01-01

    Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate>>sulfate>bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. © 2013 Elsevier Ltd.

  7. Chlorination of bromide-containing waters: Enhanced bromate formation in the presence ofsynthetic metal oxides and deposits formed indrinking water distribution systems

    KAUST Repository

    Liu, Chao

    2013-09-01

    Bromate formation from the reaction between chlorine and bromide in homogeneous solution is a slow process. The present study investigated metal oxides enhanced bromate formation during chlorination of bromide-containing waters. Selected metal oxides enhanced the decay of hypobromous acid (HOBr), a requisite intermediate during the oxidation of bromide to bromate, via (i) disproportionation to bromate in the presence of nickel oxide (NiO) and cupric oxide (CuO), (ii) oxidation of a metal to a higher valence state in the presence of cuprous oxide (Cu2O) and (iii) oxygen formation by NiO and CuO. Goethite (α-FeOOH) did not enhance either of these pathways. Non-charged species of metal oxides seem to be responsible for the catalytic disproportionation which shows its highest rate in the pH range near the pKa of HOBr. Due to the ability to catalyze HOBr disproportionation, bromate was formed during chlorination of bromide-containing waters in the presence of CuO and NiO, whereas no bromate was detected in the presence of Cu2O and α-FeOOH for analogous conditions. The inhibition ability of coexisting anions on bromate formation at pH 8.6 follows the sequence of phosphate>>sulfate>bicarbonate/carbonate. A black deposit in a water pipe harvested from a drinking water distribution system exerted significant residual oxidant decay and bromate formation during chlorination of bromide-containing waters. Energy dispersive spectroscopy (EDS) analyses showed that the black deposit contained copper (14%, atomic percentage) and nickel (1.8%, atomic percentage). Cupric oxide was further confirmed by X-ray diffraction (XRD). These results indicate that bromate formation may be of concern during chlorination of bromide-containing waters in distribution systems containing CuO and/or NiO. © 2013 Elsevier Ltd.

  8. Graphene oxide papers with high water adsorption capacity for air dehumidification.

    Science.gov (United States)

    Liu, Renlong; Gong, Tao; Zhang, Kan; Lee, Changgu

    2017-08-29

    Graphene oxide (GO) has shown a high potential to adsorb and store water molecules due to the oxygen-containing functional groups on its hydrophilic surface. In this study, we characterized the water absorbing properties of graphene oxide in the form of papers. We fabricated three kinds of graphene oxide papers, two with rich oxygen functional groups and one with partial chemical reduction, to vary the oxygen/carbon ratio and found that the paper with high oxygen content has higher moisture adsorption capability. For the GO paper with reduction, the overall moisture absorbance was reduced. However, the absorbance at high humidity was significantly improved due to direct formation of multilayer water vapor in the system, which derived from the weak interaction between the adsorbent and the adsorbate. To demonstrate one application of GO papers as a desiccant, we tested grape fruits with and without GO paper. The fruits with a GO paper exhibited longer-term preservation with delayed mold gathering because of desiccation effect from the paper. Our results suggest that GO will find numerous practical applications as a desiccant and is a promising material for moisture desiccation and food preservation.

  9. Titanium-iridium oxide layer coating to suppress photocorrosion during photocatalytic water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yongwoo; Lee, Hyunjoo [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kwon, Yongwoo; Lee, Hyunjoo [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-12-15

    Photocatalysts with a small band gap energy have received a great deal of interest due their high solar conversion efficiencies. Cuprous oxide (Cu{sub 2}O) has attracted attention because of its small bandgap energy, a direct bandgap structure, its suitable band structure for water splitting, high absorption coefficient, non-toxicity, and its large abundance. However, it has poor stability due to the fickle oxidation states of copper. To enhance the stability and the production rate of hydrogen and oxygen, a TiIrOX overlayer was successfully formed on the Cu{sub 2}O under various synthesis conditions. The composition and oxidation state of the Ir species in the overlayer were optimized through the control of the Ir precursor and the amount of water. The Ir/Ti precursor molar ratio was linearly related to the surface Ir/Ti molar ratio. The addition of water converted the Ir precursor to IrO{sub 2}. The thickness of the overlayer was controlled by differing the synthesis times of the coating. Then, the largest amounts of hydrogen and oxygen were produced through the optimization of the TiIrOX overlayer with a higher IrO{sub 2} fraction and a thicker overlayer.

  10. Partial oxidation of n-hexadecane through decomposition of hydrogen peroxide in supercritical water

    KAUST Repository

    Alshammari, Y.M.

    2015-01-01

    © 2014 The Institution of Chemical Engineers. This work reports the experimental analysis of partial oxidation of n-hexadecane under supercritical water conditions. A novel reactor flow system was developed which allows for total decomposition of hydrogen peroxide in a separate reactor followed partial oxidation of n-hexadecane in a gasification reactor instead of having both reactions in one reactor. The kinetics of hydrothermal decomposition of hydrogen peroxide was studied in order to confirm its full conversion into water and oxygen under the desired partial oxidation conditions, and the kinetic data were found in a good agreement with previously reported literature. The gas yield and gasification efficiency were investigated under different operating parameters. Furthermore, the profile of C-C/C=C ratio was studied which showed the favourable conditions for maximising yields of n-alkanes via hydrogenation of their corresponding 1-alkenes. Enhanced hydrogenation of 1-alkenes was observed at higher O/C ratios and higher residence times, shown by the increase in the C-C/C=C ratio to more than unity, while increasing the temperature has shown much less effect on the C-C/C=C ratio at the current experimental conditions. In addition, GC-MS analysis of liquid samples revealed the formation of heavy oxygenated compounds which may suggest a new addition reaction to account for their formation under the current experimental conditions. Results show new promising routes for hydrogen production with in situ hydrogenation of heavy hydrocarbons in a supercritical water reactor.

  11. Supercritical Water Oxidation: A Solution for the Elimination of Back-End Organic Reprocessing Wastes

    International Nuclear Information System (INIS)

    Leybros, A.; Roubaud, A.; Turc, H.A.; Fournel, B.

    2008-01-01

    Supercritical water oxidation (SCWO) is a very efficient technique for total elimination of organic wastes from reprocessing activities on the way of 'zero wastes' facilities. This technology uses the properties of supercritical water (P > 221 bars and T > 647 K) to obtain a good mixing between oxygen (the oxidant) and the organic waste. Thereby, the oxidation reaction is fast and complete. Using the SCWO process, contamination contained in organic materials like spent solvents can be confined in a closed space, like a reactor in a glovebox. A new application is tested for the treatment of solid organic wastes like ion exchange resins (IER). Experiments are made with suspensions of IER in water and isopropyl-alcohol. A nuclear version of the process with the double shell reactor has been constructed and is being tested. The aim of this work is to obtain a treatment capacity of 1 kg/h for the nuclear version with the same global set-up, concept of process and security as well as contamination management as for a 200 g/h pilot. (authors)

  12. Supercritical Water Oxidation: A Solution for the Elimination of Back-End Organic Reprocessing Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Leybros, A.; Roubaud, A.; Turc, H.A.; Fournel, B. [Supercritical fluids and membranes Laboratory, CEA Valrho, BP 17171, 30207 Bagnols/Ceze Cedex (France)

    2008-07-01

    Supercritical water oxidation (SCWO) is a very efficient technique for total elimination of organic wastes from reprocessing activities on the way of 'zero wastes' facilities. This technology uses the properties of supercritical water (P > 221 bars and T > 647 K) to obtain a good mixing between oxygen (the oxidant) and the organic waste. Thereby, the oxidation reaction is fast and complete. Using the SCWO process, contamination contained in organic materials like spent solvents can be confined in a closed space, like a reactor in a glovebox. A new application is tested for the treatment of solid organic wastes like ion exchange resins (IER). Experiments are made with suspensions of IER in water and isopropyl-alcohol. A nuclear version of the process with the double shell reactor has been constructed and is being tested. The aim of this work is to obtain a treatment capacity of 1 kg/h for the nuclear version with the same global set-up, concept of process and security as well as contamination management as for a 200 g/h pilot. (authors)

  13. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO(sub 2), bulk TiO(sub 2), and CuO supported on Al(sub 2) O(sub 3). We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO(sub 2) yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO(sub 2) and TiO(sub 2) catalysts enhance both the phenol disappearance and CO(sub 2) formation rates during SCWO. MnO(sub 2) does not affect the selectivity to CO(sub 2), or to the phenol dimers at a given phenol conversion. However, the selectivities to CO(sub 2) are increased and the selectivities to phenol dimers are decreased in the presence of TiO(sub 2) , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  14. The influence of water on the oxygen-silver interaction and on the oxidative dehydrogenation of methanol

    NARCIS (Netherlands)

    Lefferts, Leon; Van Ommen, Jan G.; Ross, Julian R H

    1988-01-01

    Experiments carried out using temperature-programmed desorption and reduction could detect no interaction between water and silver at 200 °C. However, separate experiments on the effect of water on the oxidative dehydrogenation of methanol over a silver catalyst showed that water affected the

  15. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  16. Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking

    Directory of Open Access Journals (Sweden)

    Sibov TT

    2014-01-01

    Full Text Available Tatiana T Sibov,1,2 Lorena F Pavon,1 Liza A Miyaki,1 Javier B Mamani,1 Leopoldo P Nucci,1,2 Larissa T Alvarim,1,3 Paulo H Silveira,1 Luciana C Marti,1 LF Gamarra1–31Hospital Israelita Albert Einstein, São Paulo, Brazil; 2Departamento de Neurologia e Neurociências, Universidade Federal de São Paulo, São Paulo, Brazil; 3Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, BrazilAbstract: Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh, their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson's disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 105 cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model.Keywords: mesenchymal stem cells, multimodal iron oxide nanoparticles, Rhodamine, magnetic resonance imaging, Parkinson's disease

  17. Superparamagnetic iron oxide nanoparticles function as a long-term, multi-modal imaging label for non-invasive tracking of implanted progenitor cells.

    Directory of Open Access Journals (Sweden)

    Christina A Pacak

    Full Text Available The purpose of this study was to determine the ability of superparamagnetic iron oxide (SPIO nanoparticles to function as a long-term tracking label for multi-modal imaging of implanted engineered tissues containing muscle-derived progenitor cells using magnetic resonance imaging (MRI and X-ray micro-computed tomography (μCT. SPIO-labeled primary myoblasts were embedded in fibrin sealant and imaged to obtain intensity data by MRI or radio-opacity information by μCT. Each imaging modality displayed a detection gradient that matched increasing SPIO concentrations. Labeled cells were then incorporated in fibrin sealant, injected into the atrioventricular groove of rat hearts, and imaged in vivo and ex vivo for up to 1 year. Transplanted cells were identified in intact animals and isolated hearts using both imaging modalities. MRI was better able to detect minuscule amounts of SPIO nanoparticles, while μCT more precisely identified the location of heavily-labeled cells. Histological analyses confirmed that iron oxide particles were confined to viable, skeletal muscle-derived cells in the implant at the expected location based on MRI and μCT. These analyses showed no evidence of phagocytosis of labeled cells by macrophages or release of nanoparticles from transplanted cells. In conclusion, we established that SPIO nanoparticles function as a sensitive and specific long-term label for MRI and μCT, respectively. Our findings will enable investigators interested in regenerative therapies to non-invasively and serially acquire complementary, high-resolution images of transplanted cells for one year using a single label.

  18. Semiconductor Metal Oxide Sensors in Water and Water Based Biological Systems

    Directory of Open Access Journals (Sweden)

    Marina V. Strobkova

    2003-10-01

    Full Text Available The results of implementation of In2O3-based semiconductor sensors for oxygen concentration evaluation in water and the LB-nutrient media (15.5 g/l Luria Broth Base, Miller (Sigma, Lot-1900 and NaCl without bacteria and with E.coli bacteria before and after UV-irradiation are presented.

  19. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G.C.; Tucker, P.M.; Lewis, R.A. (Central Electricity Generating Board, Berkeley (UK). Berkeley Nuclear Labs.)

    1984-08-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH/sup -/ is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface.

  20. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    International Nuclear Information System (INIS)

    Allen, G.C.; Tucker, P.M.; Lewis, R.A.

    1984-01-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH - is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface. (author)

  1. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    International Nuclear Information System (INIS)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-01-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  2. Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit.

    Science.gov (United States)

    Silveira, Neidiquele M; Frungillo, Lucas; Marcos, Fernanda C C; Pelegrino, Milena T; Miranda, Marcela T; Seabra, Amedea B; Salgado, Ione; Machado, Eduardo C; Ribeiro, Rafael V

    2016-07-01

    Nitric oxide (NO)-mediated redox signaling plays a role in alleviating the negative impact of water stress in sugarcane plants by improving root growth and photosynthesis. Drought is an environmental limitation affecting sugarcane growth and yield. The redox-active molecule nitric oxide (NO) is known to modulate plant responses to stressful conditions. NO may react with glutathione (GSH) to form S-nitrosoglutathione (GSNO), which is considered the main reservoir of NO in cells. Here, we investigate the role of NO in alleviating the effects of water deficit on growth and photosynthesis of sugarcane plants. Well-hydrated plants were compared to plants under drought and sprayed with mock (water) or GSNO at concentrations ranging from 10 to 1000 μM. Leaf GSNO sprayed plants showed significant improvement of relative water content and leaf and root dry matter under drought compared to mock-sprayed plants. Additionally, plants sprayed with GSNO (≥ 100 μM) showed higher leaf gas exchange and photochemical activity as compared to mock-sprayed plants under water deficit and after rehydration. Surprisingly, a raise in the total S-nitrosothiols content was observed in leaves sprayed with GSH or GSNO, suggesting a long-term role of NO-mediated responses to water deficit. Experiments with leaf discs fumigated with NO gas also suggested a role of NO in drought tolerance of sugarcane plants. Overall, our data indicate that the NO-mediated redox signaling plays a role in alleviating the negative effects of water stress in sugarcane plants by protecting the photosynthetic apparatus and improving shoot and root growth.

  3. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Okoli, Chuka [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden); Boutonnet, Magali; Jaeras, Sven [Royal Institute of Technology (KTH), Chemical Technology (Sweden); Rajarao-Kuttuva, Gunaratna, E-mail: gkr@kth.se [Royal Institute of Technology (KTH), Environmental Microbiology (Sweden)

    2012-10-15

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  4. Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment

    Science.gov (United States)

    Okoli, Chuka; Boutonnet, Magali; Järås, Sven; Rajarao-Kuttuva, Gunaratna

    2012-10-01

    Recent advances in nanoscience suggest that the existing issues involving water quality could be resolved or greatly improved using nanomaterials, especially magnetic iron oxide nanoparticles. Magnetic nanoparticles have been synthesized for the development and use, in association with natural coagulant protein for water treatment. The nanoparticles size, morphology, structure, and magnetic properties were characterized by transmission electron microscope, X-ray diffraction, and superconducting quantum interference device magnetometry. Purified Moringa oleifera protein was attached onto microemulsions-prepared magnetic iron oxide nanoparticles (ME-MION) to form stable protein-functionalized magnetic nanoparticles (PMO+ME-MION). The turbidity removal efficiency in both synthetic and surface water samples were investigated and compared with the commonly used synthetic coagulant (alum) as well as PMO. More than 90 % turbidity could be removed from the surface waters within 12 min by magnetic separation of PMO+ME-MION; whereas gravimetrically, 70 % removal in high and low turbid waters can be achieved within 60 min. In contrast, alum requires 180 min to reduce the turbidity of low turbid water sample. These data support the advantage of separation with external magnetic field (magnetophoresis) over gravitational force. Time kinetics studies show a significant enhancement in ME-MION efficiency after binding with PMO implying the availability of large surface of the ME-MION. The coagulated particles (impurities) can be removed from PMO+ME-MION by washing with mild detergent or cleaning solution. To our knowledge, this is the first report on surface water turbidity removal using protein-functionalized magnetic nanoparticle.

  5. Tracking nitrous oxide emission processes at a suburban site with semicontinuous, in situ measurements of isotopic composition

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Hüglin, Christoph; Zellweger, Christoph; Tuzson, Béla; Ibraim, Erkan; Emmenegger, Lukas; Mohn, Joachim

    2017-02-01

    The isotopic composition of atmospheric nitrous oxide (N2O) was measured semicontinuously, at ˜35 min frequency in intermittent periods of 1-6 days over one and a half years, using preconcentration coupled to a quantum cascade laser spectrometer at the suburban site of Dübendorf, Switzerland. The achieved measurement repeatability was 0.08‰, 0.11‰, and 0.10‰ for δ18O, site preference, and δ15Nbulk respectively, which is better than or equal to standard flask sampling-based isotope ratio mass spectrometry performance. The observed mean diurnal cycle reflected the buildup of N2O from isotopically light sources on an isotopically heavy tropospheric background. The measurements were used to determine the source isotopic composition, which varied significantly compared to chemical and meteorological parameters monitored at the site. FLEXPART-COSMO transport modeling in combination with modified Emissions Database for Global Atmospheric Research inventory emissions was used to model N2O mole fractions at the site. Additionally, isotopic signatures were estimated for different source categories using literature data and used to simulate N2O isotopic composition over the measurement period. The model was able to capture variability in N2O mole fraction well, but simulations of isotopic composition showed little agreement with observations. In particular, measured source isotopic composition exhibited one magnitude larger variability than simulated, clearly indicating that the range of isotopic source signatures estimated from literature significantly underestimates true variability of source signatures. Source δ18O signature was found to be the most sensitive tracer for urban/industry versus agricultural N2O. δ15Nbulk and site preference may provide more insight into microbial and chemical emission processes than partitioning of anthropogenic source categories.

  6. Oxidation of organics in water in microfluidic electrochemical reactors: Theoretical model and experiments

    International Nuclear Information System (INIS)

    Scialdone, Onofrio; Guarisco, Chiara; Galia, Alessandro

    2011-01-01

    The electrochemical oxidation of organics in water performed in micro reactors on boron doped diamond (BDD) anode was investigated both theoretically and experimentally in order to find the influence of various operative parameters on the conversion and the current efficiency CE of the process. The electrochemical oxidation of formic acid (FA) was selected as a model case. High conversions for a single passage of the electrolytic solution inside the cell were obtained by operating with proper residence times and low distances between cathode and anode. The effect of initial concentration, flow rate and current density was investigated in detail. Theoretical predictions were in very good agreement with experimental results for both mass transfer control, oxidation reaction control and mixed kinetic regimes in spite of the fact that no adjustable parameters was used. Mass transfer process was successfully modelled by considering for simplicity a constant Sh number (e.g., a constant mass transfer coefficient k m ) for a process performed with no high values of the current intensity to minimize the effect of the gas bubbling on the flowdynamic pattern. For mixed kinetic regimes, two different modelling approaches were used. In the first one, the oxidation of organics at BDD was assumed to be mass transfer controlled and to occur with an intrinsic 100% CE when applied current density is higher than the limiting current density. In the second case, the CE of the process was modelled assuming that the competition between organic and water oxidation depends only on the electrodic material and on the nature and the concentration of the organic. In the latter case a better agreement between experimental data and theoretical predictions was observed.

  7. Photochemical oxidation processes for the elimination of phenyl-urea herbicides in waters

    International Nuclear Information System (INIS)

    Benitez, F. Javier; Real, Francisco J.; Acero, Juan L.; Garcia, Carolina

    2006-01-01

    Four phenyl-urea herbicides (linuron, chlorotoluron, diuron, and isoproturon) were individually photooxidized by monochromatic UV radiation in ultra-pure aqueous solutions. The influence of pH and temperature on the photodegradation process was established, and the first-order rate constants and quantum yields were evaluated. The sequence of photodecomposition rates was: linuron > chlorotoluron > diuron > isoproturon. The simultaneous photooxidation of mixtures of the selected herbicides in several types of waters was then performed by means of UV radiation alone, and by UV radiation combined with hydrogen peroxide. The types of waters used were: ultra-pure water, a commercial mineral water, a groundwater, and a lake water. The influence of the independent variables in these processes - the presence or absence of tert-butyl alcohol, types of herbicide and waters, and concentration of hydrogen peroxide - were established and discussed. A kinetic study was performed using a competitive kinetic model that allowed various rate constants to be evaluated for each herbicide. This kinetic model allows one to predict the elimination of these phenyl-urea herbicides in contaminated waters by the oxidation systems used (UV alone and combined UV/H 2 O 2 ). The herbicide concentrations predicted by this model agree well with the experimental results that were obtained

  8. Coagulation effectiveness of graphene oxide for the removal of turbidity from raw surface water.

    Science.gov (United States)

    Aboubaraka, Abdelmeguid E; Aboelfetoh, Eman F; Ebeid, El-Zeiny M

    2017-08-01

    This study presents the performance of graphene oxide (GO) as a coagulant in turbidity removal from naturally and artificially turbid raw surface water. GO is considered an excellent alternative to alum, the more common coagulant used in water treatment processes, to reduce the environmental release of aluminum. Effects of GO dosage, pH, and temperature on its coagulation ability were studied to determine the ideal turbidity removal conditions. The turbidity removal was ≥95% for all levels of turbid raw surface water (20, 100, and 200 NTU) at optimum conditions. The role of alkalinity in inducing turbidity removal by GO coagulation was much more pronounced upon using raw surface water samples compared with that using artificially turbid deionized water samples. Moreover, GO demonstrated high-performance removal of biological contaminants such as algae, heterotrophic bacteria, and fecal coliform bacteria by 99.0%, 98.8% and 96.0%, respectively, at a dosage of 40 mg/L. Concerning the possible environmental release of GO into the treated water following filtration process, there was no residual GO in a wide range of pH values. The outcomes of the study highlight the excellent coagulation performance of GO for the removal of turbidity and biological contaminants from raw surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Photochemical oxidation processes for the elimination of phenyl-urea herbicides in waters

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, F. Javier [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)]. E-mail: javben@unex.es; Real, Francisco J. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain); Acero, Juan L. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain); Garcia, Carolina [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2006-11-16

    Four phenyl-urea herbicides (linuron, chlorotoluron, diuron, and isoproturon) were individually photooxidized by monochromatic UV radiation in ultra-pure aqueous solutions. The influence of pH and temperature on the photodegradation process was established, and the first-order rate constants and quantum yields were evaluated. The sequence of photodecomposition rates was: linuron > chlorotoluron > diuron > isoproturon. The simultaneous photooxidation of mixtures of the selected herbicides in several types of waters was then performed by means of UV radiation alone, and by UV radiation combined with hydrogen peroxide. The types of waters used were: ultra-pure water, a commercial mineral water, a groundwater, and a lake water. The influence of the independent variables in these processes - the presence or absence of tert-butyl alcohol, types of herbicide and waters, and concentration of hydrogen peroxide - were established and discussed. A kinetic study was performed using a competitive kinetic model that allowed various rate constants to be evaluated for each herbicide. This kinetic model allows one to predict the elimination of these phenyl-urea herbicides in contaminated waters by the oxidation systems used (UV alone and combined UV/H{sub 2}O{sub 2}). The herbicide concentrations predicted by this model agree well with the experimental results that were obtained.

  10. Ellipsometry measurements of thickness of oxide and water layers on spherical and flat silicon surfaces

    International Nuclear Information System (INIS)

    Kenny, M.J.; Netterfield, R.; Wielunski, L.S.

    1998-01-01

    Full text: Ellipsometry has been used to measure the thickness of oxide layers on single crystal silicon surfaces, both flat and spherical and also to measure the extent of adsorption of moisture on the surface as a function of partial water vapour pressure. The measurements form part of an international collaborative project to make a precise determination of the Avogadro constant (ΔN A /N A -8 ) which will then be used to obtain an absolute definition of the kilogram, rather than one in terms of an artefact. Typically the native oxide layer on a cleaned silicon wafer is about 2 nm thick. On a polished sphere this oxide layer is typically 8 to 10 nm thick, the increased thickness being attributed to parameters related to the polishing process. Ellipsometry measurements on an 89 mm diameter polished silicon sphere at both VUW and CSIRO indicated a SiO 2 layer at 7 to 10 nm thick. It was observed that this thickness varied regularly. The crystal orientation of the sphere was determined using electron patterns generated from an electron microscope and the oxide layer was then measured through 180 arcs of great circles along (110) and (100) planes. It was observed that the thickness varied systematically with orientation. The minimum thickness was 7.4 nm at the axis (softest direction in silicon) and the greatest thickness was 9.5 nm at the axis (hardest direction in silicon). This is similar to an orientation dependent cubic pattern which has been observed to be superimposed on polished silicon spheres. At VUW, the sphere was placed in an evacuated bell jar and the ellipsometry signal was observed as the water vapour pressure was progressively increased up to saturation. The amount of water vapour adsorbed at saturation was one or two monolayers, indicating that the sphere does not wet

  11. DNA damage and oxidative stress in human liver cell L-02 caused by surface water extracts during drinking water treatment in a waterworks in China.

    Science.gov (United States)

    Xie, Shao-Hua; Liu, Ai-Lin; Chen, Yan-Yan; Zhang, Li; Zhang, Hui-Juan; Jin, Bang-Xiong; Lu, Wen-Hong; Li, Xiao-Yan; Lu, Wen-Qing

    2010-04-01

    Because of the daily and life-long exposure to disinfection by-products formed during drinking water treatment, potential adverse human health risk of drinking water disinfection is of great concern. Toxicological studies have shown that drinking water treatment increases the genotoxicity of surface water. Drinking water treatment is comprised of different potabilization steps, which greatly influence the levels of genotoxic products in the surface water and thus may alter the toxicity and genotoxicity of surface water. The aim of the present study was to understand the influence of specific steps on toxicity and genotoxicity during the treatment of surface water in a water treatment plant using liquid chlorine as the disinfectant in China. An integrated approach of the comet and oxidative stress assays was used in the study, and the results showed that both the prechlorination and postchlorination steps increased DNA damage and oxidative stress caused by water extracts in human derived L-02 cells while the tube settling and filtration steps had the opposite effect. This research also highlighted the usefulness of an integrated approach of the comet and oxidative stress assays in evaluating the genotoxicity of surface water during drinking water treatment. Copyright 2009 Wiley-Liss, Inc.

  12. Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes.

    Science.gov (United States)

    Domínguez, Joaquín R; Muñoz-Peña, Maria J; González, Teresa; Palo, Patricia; Cuerda-Correa, Eduardo M

    2016-10-01

    The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO - . The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.

  13. Preparation and Application of Water-in-Oil Emulsions Stabilized by Modified Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Xiaoma Fei

    2016-08-01

    Full Text Available A series of alkyl chain modified graphene oxides (AmGO with different alkyl chain length and content was fabricated using a reducing reaction between graphene oxide (GO and alkyl amine. Then AmGO was used as a graphene-based particle emulsifier to stabilize Pickering emulsion. Compared with the emulsion stabilized by GO, which was oil-in-water type, all the emulsions stabilized by AmGO were water-in-oil type. The effects of alkyl chain length and alkyl chain content on the emulsion properties of AmGO were investigated. The emulsions stabilized by AmGO showed good stability within a wide range of pH (from pH = 1 to pH = 13 and salt concentrations (from 0.1 to 1000 mM. In addition, the application of water-in-oil emulsions stabilized by AmGO was investigated. AmGO/polyaniline nanocomposite (AmGO/PANi was prepared through an emulsion approach, and its supercapacitor performance was investigated. This research broadens the application of AmGO as a water-in-oil type emulsion stabilizer and in preparing graphene-based functional materials.

  14. Probabilistic analysis showing that a combination of bacteroides and methanobrevibacter source tracking markers is effective for identifying waters contaminated by human fecal pollution

    Science.gov (United States)

    Johnston, Christopher; Byappanahalli, Muruleedhara N.; Gibson, Jacqueline MacDonald; Ufnar, Jennifer A.; Whitman, Richard L.; Stewart, Jill R.

    2013-01-01

    Microbial source tracking assays to identify sources of waterborne contamination typically target genetic markers of host-specific microorganisms. However, no bacterial marker has been shown to be 100% host-specific, and cross-reactivity has been noted in studies evaluating known source samples. Using 485 challenge samples from 20 different human and animal fecal sources, this study evaluated microbial source tracking markers including the Bacteroides HF183 16S rRNA, M. smithii nifH, and Enterococcus esp gene targets that have been proposed as potential indicators of human fecal contamination. Bayes' Theorem was used to calculate the conditional probability that these markers or a combination of markers can correctly identify human sources of fecal pollution. All three human-associated markers were detected in 100% of the sewage samples analyzed. Bacteroides HF183 was the most effective marker for determining whether contamination was specifically from a human source, and greater than 98% certainty that contamination was from a human source was shown when both Bacteroides HF183 and M. smithii nifH markers were present. A high degree of certainty was attained even in cases where the prior probability of human fecal contamination was as low as 8.5%. The combination of Bacteroides HF183 and M. smithii nifH source tracking markers can help identify surface waters impacted by human fecal contamination, information useful for prioritizing restoration activities or assessing health risks from exposure to contaminated waters.

  15. Investigation of catalytic oxidation of diamond by water vapor and carbon dioxide in the presence of alkali melts of some rare earth oxides

    International Nuclear Information System (INIS)

    Kulakova, I.I.; Rudenko, A.P.; Sulejmenova, A.S.; Tolstopyatova, A.A.

    1978-01-01

    The results of an investigation of the catalytic oxydation of diamond by carbon dioxide and water vapors at 906 deg C in the presence of melts of some rare earth oxides in potassium hydroxide are given. The ion La 3+ was shown to possess the most catalytic activity. The earlier proposed mechanisms of the diamond oxidation by CO 2 and H 2 O were corroborated. The ions of rare earth elements were found to accelerate the different stages of the process

  16. Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking

    Science.gov (United States)

    Sibov, Tatiana T; Pavon, Lorena F; Miyaki, Liza A; Mamani, Javier B; Nucci, Leopoldo P; Alvarim, Larissa T; Silveira, Paulo H; Marti, Luciana C; Gamarra, LF

    2014-01-01

    Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson’s disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 105 cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model. PMID:24531365

  17. Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking.

    Science.gov (United States)

    Sibov, Tatiana T; Pavon, Lorena F; Miyaki, Liza A; Mamani, Javier B; Nucci, Leopoldo P; Alvarim, Larissa T; Silveira, Paulo H; Marti, Luciana C; Gamarra, Lf

    2014-01-01

    Here we describe multimodal iron oxide nanoparticles conjugated to Rhodamine-B (MION-Rh), their stability in culture medium, and subsequent validation of an in vitro protocol to label mesenchymal stem cells from umbilical cord blood (UC-MSC) with MION-Rh. These cells showed robust labeling in vitro without impairment of their functional properties, the viability of which were evaluated by proliferation kinetic and ultrastructural analyzes. Thus, labeled cells were infused into striatum of adult male rats of animal model that mimic late onset of Parkinson's disease and, after 15 days, it was observed that cells migrated along the medial forebrain bundle to the substantia nigra as hypointense spots in T2 magnetic resonance imaging. These data were supported by short-term magnetic resonance imaging. Studies were performed in vivo, which showed that about 5 × 10(5) cells could be efficiently detected in the short term following infusion. Our results indicate that these labeled cells can be efficiently tracked in a neurodegenerative disease model.

  18. Single-molecule tracking studies of flow-induced microdomain alignment in cylinder-forming polystyrene-poly(ethylene oxide) diblock copolymer films.

    Science.gov (United States)

    Tran-Ba, Khanh-Hoa; Higgins, Daniel A; Ito, Takashi

    2014-09-25

    Flow-based approaches are promising routes to preparation of aligned block copolymer microdomains within confined spaces. An in-depth characterization of such nanoscale morphologies within macroscopically nonuniform materials under ambient conditions is, however, often challenging. In this study, single-molecule tracking (SMT) methods were employed to probe the flow-induced alignment of cylindrical microdomains (ca. 22 nm in diameter) in polystyrene-poly(ethylene oxide) diblock copolymer (PS-b-PEO) films. Films of micrometer-scale thicknesses were prepared by overlaying a benzene solution droplet on a glass coverslip with a rectangular glass plate, followed by solvent evaporation under a nitrogen atmosphere. The microdomain alignment was quantitatively assessed from SMT data exhibiting the diffusional motions of individual sulforhodamine B fluorescent probes that preferentially partitioned into cylindrical PEO microdomains. Better overall microdomain orientation along the flow direction was observed near the substrate interface in films prepared at a higher flow rate, suggesting that the microdomain alignment was primarily induced by shear flow. The SMT data also revealed the presence of micrometer-scale grains consisting of highly ordered microdomains with coherent orientation. The results of this study provide insights into shear-based preparation of aligned cylindrical microdomains in block copolymer films from solutions within confined spaces.

  19. Superparamagnetic iron oxide nanoparticle-labeled cells as an effective vehicle for tracking the GFP gene marker using magnetic resonance imaging

    Science.gov (United States)

    Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D

    2010-01-01

    Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269

  20. Comparative studies of MOS-gate/oxide-passivated AlGaAs/InGaAs pHEMTs by using ozone water oxidation technique

    International Nuclear Information System (INIS)

    Lee, Ching-Sung; Hung, Chun-Tse; Chou, Bo-Yi; Hsu, Wei-Chou; Liu, Han-Yin; Ho, Chiu-Sheng; Lai, Ying-Nan

    2012-01-01

    Al 0.22 Ga 0.78 As/In 0.24 Ga 0.76 As pseudomorphic high-electron-mobility transistors (pHEMTs) with metal-oxide-semiconductor (MOS)-gate structure or oxide passivation by using ozone water oxidation treatment have been comprehensively investigated. Annihilated surface states, enhanced gate insulating property and improved device gain have been achieved by the devised MOS-gate structure and oxide passivation. The present MOS-gated or oxide-passivated pHEMTs have demonstrated superior device performances, including superior breakdown, device gain, noise figure, high-frequency characteristics and power performance. Temperature-dependent device characteristics of the present designs at 300–450 K are also studied. (paper)

  1. PERFORMANCE OF EVACUATED TUBE SOLAR COLLECTOR USING WATER-BASED TITANIUM OXIDE NANOFLUID

    Directory of Open Access Journals (Sweden)

    M. Mahendran

    2012-12-01

    Full Text Available Experiments are undertaken to determine the efficiency of an evacuated tube solar collector using water-based Titanium Oxide (TiO2 nanofluid at the Pekan Campus (3˚32’ N, 103˚25’ E, Faculty of Mechanical Engineering, University Malaysia Pahang, for the conversion of solar thermal energy. Malaysia lies in the equatorial zone with an average daily solar insolation of more than 900 W/m², which can reach a maximum of 1200 W/m² for most of the year. Traditionally water is pumped through the collector at an optimum flow rate, for the extraction of solar thermal energy. If the outlet temperature of the water is high, further circulation of the water through the collector is useless. This is due to the low thermal conductivity of water of 0.6 W/m.K compared to metals which is many orders higher. Hence it is necessary to reduce the surface temperature either by pumping water at a higher flow rate or by enhancing the fluid’s properties by the dispersion of nanoparticles. Pumping water at higher flow rates is not advantageous as the overall efficiency of the system is lowered. Liquids in which nanosized particles of metal or their oxides are dispersed in a base liquid such as water are known as 'Nanofluids'. This results in higher values of thermal conductivity compared to the base liquid. The thermal conductivity increases with the concentration and temperature of the nanofluid. The increase in thermal conductivity with temperature is advantageous for application in collectors as the solar insolation varies throughout the day, with a minimum in the morning reaching a maximum at 2.00p.m and reducing thereafter. The efficiency of the collector estimated using a TiO2 nanofluid of 0.3% concentration is about 0.73, compared to water which is about 0.58. The efficiency is enhanced by 16.7% maximum with 30–50nm sized TiO2 nanoparticles dispersed in the water, compared to the system working solely with water. The flow rate is fixed at 2.7 liters per

  2. The impact of water concentration on the catalytic oxidation of ethanol on platinum electrode in concentrated phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, A.P.M.; Previdello, B.A.F.; Varela, H.; Gonzalez, E.R. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, C.P. 780, CEP 13560-970 Sao Carlos, SP (Brazil)

    2010-01-15

    The electro-oxidation of ethanol on platinum in phosphoric acid opens the door to promote the oxidation reaction at higher temperatures. However, the effect of the presence of water is not well understood. In this work, the electro-oxidation of ethanol on platinum was studied in concentrated phosphoric acid containing different concentrations of water at room temperature. The results show that effect of bulk water on the rate electro-oxidation is highest at 0.60 V and decreases for increasing potentials. This was suggested as due to the increasing formation of oxygenated species on the electrode surface with potential, which in turn is more efficient than the increase of water content in the electrolyte. Altogether, these results were interpreted as an evidence of a Langmuir-Hinshelwood step involving oxygenated species as one of the adsorbed partners. (author)

  3. Research of catalysts for isotope enrichment of deuterium oxide in water - PX15-01/89 progress report

    International Nuclear Information System (INIS)

    1989-08-01

    The information about the development of research project for producing concentrate deuterium oxide by isotope enrichment in hydrogen-water contact systems combined with electrolysis are described. (C.G.C.)

  4. Amphiphilic hollow porous shell encapsulated Au@Pd bimetal nanoparticles for aerobic oxidation of alcohols in water

    KAUST Repository

    Zou, Houbing

    2015-01-01

    © The Royal Society of Chemistry 2015. This work describes the design, synthesis and analysis of an amphiphilic hollow mesoporous shell encapsulating catalytically active Au@Pd bimetal nanoparticles. The particles exhibited excellent catalytic activity and stability in the aerobic oxidation of primary and secondary alcohols to their corresponding aldehydes or ketones in water when using air as an oxidizing agent under atmospheric pressure.

  5. Effect of concentration variation in graphene oxide (GO) membranes for water flux optimization

    Science.gov (United States)

    Kumar, Shani; Garg, Amit; Chowdhuri, Arijit

    2018-05-01

    Graphene oxide, sister material of Graphene has generated tremendous research interest in fields of energy storage, catalyst material, adsorbent material for heavy metals and dyes, green energy production, drug delivery agent, a gas sensing material as well as in membrane based water purification and desalination systems1-3 etc. In this paper, we are reporting the effect of concentration variation in GO membranes on water flux. GO has been synthesized by Hummer's method with related characterizations like XRD, Raman, SEM and FTIR carried out. GO membranes have been developed using pressure assisted filtration assembly (Water Vac-100) over Cellulose Acetate membrane support (47 mm dia. and 0.45 µm pore size), Millipore.

  6. Advanced Oxidation Treatment of Drinking Water and Wastewater Using High-energy Electron Beam Irradiation

    Directory of Open Access Journals (Sweden)

    Abbas Behjat

    2007-03-01

    Full Text Available Application of electron beam as a strong oxidation method for disinfection of drinking water and wastewater has been investigated. Drinking water samples were prepared from wells in rock zones in Yazd Province. Wastewater samples were collected from Yazd Wastewater Treatment Plant. Samples were irradiated by 10 MeV electron beam accelerator at Yazd Radiation Processing Center. The irradiation dose range varied from 0.5-5 kGy. Biological parameters and microbial agents such as aerobic mesophiles and coliforms including E. coli count before and after irradiation versus irradiation dose were obtained using MPN method. The data obtained from irradiated water and wastewater were compared with un-irradiated (control samples. The results showed a removal of 90% of all microorganisms at irradiation doses below 5 kGy, suggesting electron beam irradiation as an effective method for disinfection of wastewater.

  7. Thermal bubble inkjet printing of water-based graphene oxide and graphene inks on heated substrate

    Science.gov (United States)

    Huang, Simin; Shen, Ruoxi; Qian, Bo; Li, Lingying; Wang, Wenhao; Lin, Guanghui; Zhang, Xiaofei; Li, Peng; Xie, Yonglin

    2018-04-01

    Stable-jetting water-based graphene oxide (GO) and graphene (GR) inks without any surfactant or stabilizer are prepared from an unstable-jetting water-based starting solvent, with many thermal bubble inkjet satellite drops, by simply increasing the material concentration. The concentration-dependent thermal bubble inkjet droplet generation process is studied in detail. To overcome the low concentration properties of water-based thermal bubble inkjet inks, the substrate temperature is tuned below 60 °C to achieve high-quality print lines. Due to the difference in hydrophilicity and hydrophobicity of the 2D materials, the printed GO lines show a different forming mechanism from that of the GR lines. The printed GO lines are reduced by thermal annealing and by ascorbic acid, respectively. The reduced GO lines exhibit electrical conductivity of the same order of magnitude as that of the GR lines.

  8. Oxidation-state distribution of plutonium in surface and subsurface waters at Thule, northwest Greenland

    DEFF Research Database (Denmark)

    McMahon, C.A.; Vintró, L.L.; Mitchell, P.I.

    2000-01-01

    (V, VI) (mean, 68 +/- 6%; n = 6), with little if any distinction apparent between surface and bottom waters. Further, the oxidation state distribution at stations close to the accident site is similar to that measured at Upernavik, remote from this site. It is also similar to the distribution observed...... in shelf waters at midlatitudes, suggesting that the underlying processes controlling plutonium speciation are insensitive to temperature over the range 0-25 degrees C. Measurements using tangential-flow ultrafiltration indicate that virtually all of the plutonium (including the fraction in a reduced...... chemical form) is present as fully dissolved species. Most of this plutonium would seem to be of weapons fallout origin, as the mean Pu-238/Pu-239,Pu-240 activity ratio in the water column (dissolved phase) at Thule (0.06 +/- 0.02; n = 10) is similar to the global fallout ratio at this latitude...

  9. Application of processes of advanced oxidation as phenol treatment in industrial residual waters of refinery

    International Nuclear Information System (INIS)

    Forero, Jorge Enrique; Ortiz, Olga Patricia; Rios, Fabian

    2005-01-01

    Although more efficient and economical processes for the treatment of sewage have been developed in recent years, the challenge they are facing-due to the greater knowledge of the effect that pollutants have on the environment, the greater consumption of water because of the development of human and industrial activity and the reduction of fresh water sources indicate that we are far from attaining the final solution. This affirmation specially applies to the pollutants, which are resistant to biological treatment processes, such as most of the aromatic compounds found in sewage of the petrochemical industries. In this document, the processes known as advanced oxidation will be explored. Theses have been reported as having the greatest potential in the treatment of these pollutants. Likewise the results of the application of these technologies with waters typical of the petroleum industry will be reported. These have previously been evaluated with processes of typical ozonization

  10. Application of secondary ion mass spectrometry to the study of a corrosion process: oxidation of uranium by water

    International Nuclear Information System (INIS)

    Cristy, S.S.; Condon, J.B.

    1985-01-01

    Corrosion of metals is an extremely important field with great economic and engineering implications at the Oak Ridge Y-12 Plant. To effectively combat corrosion, one must understand the processes occurring. This paper shows the utility of Secondary Ion Mass Spectrometry (SIMS) data for elucidating the processes occurring in one particular corrosion process - the oxidation of uranium by water - and for validating a theoretical model. It had long been known that the oxidation of uranium by water is retarded by the presence of oxygen gas and the retardation has been assumed to occur by site blocking at the surface. However, when alternate isotopic exposures were made, followed by exposure to a mixture of 16 O 2 and 18 OH 2 , the rapid exchange of 16 O and 18 O occurred in the oxide layer, but the further oxidation by water in this and subsequent exposures was retarded for up to 21 hours. This shows graphically that OH 2 is not held up at the surface and that the retarding mechanism is effective at the oxide/metal interface rather than at the surface. The effectiveness of the O 2 to retard the further water oxidation was much reduced if no water-formed oxide layer were present. The effectiveness was also crystallite related. 12 refs., 5 figs

  11. Atomically Monodisperse Nickel Nanoclusters as Highly Active Electrocatalysts for Water Oxidation

    KAUST Repository

    Joya, Khurram

    2016-04-08

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 and initiate the oxygen evolution at an amazingly low overpotential of ~1.51 V (vs RHE; η ≈ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm–2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec–1 is observed using Ni4(PET)8. These results are comparable to the state-of-the art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm–2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.

  12. Ammonia- and Nitrite-Oxidizing Bacterial Communities in a Pilot-Scale Chloraminated Drinking Water Distribution System

    OpenAIRE

    Regan, John M.; Harrington, Gregory W.; Noguera, Daniel R.

    2002-01-01

    Nitrification in drinking water distribution systems is a common operational problem for many utilities that use chloramines for secondary disinfection. The diversity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in the distribution systems of a pilot-scale chloraminated drinking water treatment system was characterized using terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene (ribosomal DNA [rDNA]) cloning and sequencing. For ammon...

  13. A three-region model for tracking a two-phase mixture water level in the micro-simulator

    International Nuclear Information System (INIS)

    Seok, Ho

    1994-02-01

    -site transient analysis, and engineering studies. The present simulator consists of three functional modules: plant module, graphic module, and man-machine interaction module. The plant module includes models for core kinetics, reactor coolant system, steam generator, main steam line, BOP, and control and protection system. Each of the model is optimized to obtain the capability of real-time simulation. For simulating the thermal-hydraulic behavior of reactor coolant system in the plant module, FISA-2/WS (Fully-Implicit Safety Analysis-2/WorkStation) is developed, which adopts an implicit algorithms for their inherent stability and efficiency in solving the stiff set of equations resulted from component models. It allows the use of a larger time-step than the Courant limit without any numerical instability, and it also guarantees reasonable accuracy. And the level tracking logic and the peak cladding temperature calculation model on the basis of the simple analytical model are used to track the two-phase water level in the core and to predict the cladding temperature in the uncovered region of the core under accidents, respectively. The graphic module is designed to provide the user with more information at a glance by dynamically displaying schematic diagrams of the systems, symbols indicating the operating status of each component, trend curves, and the main control room. Especially, the CONTROL ROOM menu is designed to enable user to perform his specific actions through the schematic diagrams of the main control panels in the similar way in which operators do them in the main control room for the KO-RI nuclear power plant unit 2. In each schematic diagram of 5 sections the indicators and alarms display the various operating parameter, alarm signals, and trip signals, and the user can control the various components by operating the corresponding switches in each section through the mouse. Also, user can initiate his actions through various system diagrams. As tools for the man

  14. Mechanism of Water Oxidation Catalyzed by a Dinuclear Ruthenium Complex Bridged by Anthraquinone

    Directory of Open Access Journals (Sweden)

    Tohru Wada

    2017-02-01

    Full Text Available We synthesized 1,8-bis(2,2′:6′,2″-terpyrid-4′-ylanthraquinone (btpyaq as a new dimerizing ligand and determined its single crystal structure by X-ray analysis. The dinuclear Ruthenium complex [Ru2(µ-Cl(bpy2(btpyaq](BF43 ([3](BF43, bpy = 2,2′-bipyridine was used as a catalyst for water oxidation to oxygen with (NH42[Ce(NO36] as the oxidant (turnover numbers = 248. The initial reaction rate of oxygen evolution was directly proportional to the concentration of the catalyst and independent of the oxidant concentration. The cyclic voltammogram of [3](BF43 in water at pH 1.3 showed an irreversible catalytic current above +1.6 V (vs. SCE, with two quasi-reversible waves and one irreversible wave at E1/2 = +0.62, +0.82 V, and Epa = +1.13 V, respectively. UV-vis and Raman spectra of [3](BF43 with controlled-potential electrolysis at +1.40 V revealed that [Ru(IV=O O=Ru(IV]4+ is stable under electrolysis conditions. [Ru(III, Ru(II] species are recovered after dissociation of an oxygen molecule from the active species in the catalytic cycle. These results clearly indicate that an O–O bond is formed via [Ru(V=O O=Ru(IV]5+.

  15. Impact of Phospholipids and Tocopherols on the Oxidative Stability of Soybean Oil-in-Water Emulsions.

    Science.gov (United States)

    Samdani, Gautam K; McClements, D Julian; Decker, Eric A

    2018-04-18

    Phospholipids have been shown to act synergistically with tocopherols and delay lipid oxidation in bulk oil. The synergistic activity between phospholipids and tocopherols is due to the ability of amino-group-containing phospholipids (e.g., phosphatidylethanolamine (PE) and phosphatidylserine (PS)) to convert oxidized tocopherol back into tocopherols. This study shows the effect of PE and PS on the antioxidant activity of different tocopherol homologues in oil-in-water emulsions. Effect of emulsifier type on the interaction between tocopherols and phospholipids was also studied. δ-Tocopherol and PE exhibited greater antioxidant activity as compared to α-tocopherol and PE. PS displayed 1.5-3 times greater synergism than PE with Tween 20 as emulsifier whereas both PE and PS had a similar antioxidant activity in the presence of α-tocopherol when bovine serum albumin was used as the emulsifier. This study is the first to show that PE and PS can act synergistically with tocopherols to inhibit lipid oxidation in oil-in-water emulsions and can present a new clean label antioxidant strategy for food emulsions.

  16. Promotion of Water-mediated Carbon Removal by Nanostructured Barium Oxide/nickel Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    L Yang; Y Choi; W Qin; H Chen; K Blinn; M Liu; P Liu; J Bai; T Tyson; M Liu

    2011-12-31

    The existing Ni-yttria-stabilized zirconia anodes in solid oxide fuel cells (SOFCs) perform poorly in carbon-containing fuels because of coking and deactivation at desired operating temperatures. Here we report a new anode with nanostructured barium oxide/nickel (BaO/Ni) interfaces for low-cost SOFCs, demonstrating high power density and stability in C{sub 3}H{sub 8}, CO and gasified carbon fuels at 750 C. Synchrotron-based X-ray analyses and microscopy reveal that nanosized BaO islands grow on the Ni surface, creating numerous nanostructured BaO/Ni interfaces that readily adsorb water and facilitate water-mediated carbon removal reactions. Density functional theory calculations predict that the dissociated OH from H2O on BaO reacts with C on Ni near the BaO/Ni interface to produce CO and H species, which are then electrochemically oxidized at the triple-phase boundaries of the anode. This anode offers potential for ushering in a new generation of SOFCs for efficient, low-emission conversion of readily available fuels to electricity.

  17. Zinc oxide nanocolloids prepared by picosecond pulsed laser ablation in water at different temperatures

    Science.gov (United States)

    D'Urso, Luisa; Spadaro, Salvatore; Bonsignore, Martina; Santangelo, Saveria; Compagnini, Giuseppe; Neri, Fortunato; Fazio, Enza

    2018-01-01

    Zinc oxide with wide direct band gap and high exciton binding energy is one of the most promising materials for ultraviolet (UV) light-emitting devices. It further exhibits good performance in the degradation of non-biodegradable pollutants under UV irradiation. In this work, zinc oxide (ZnO) and zinc oxide/gold (ZnO/Au) nanocolloids are prepared by picosecond pulsed laser ablation (ps-PLA), using a Zn and Au metallic targets in water media at room temperature (RT) and 80°C. ZnO and Au nanoparticles (NPs) with size in the 10-50 nm range are obtained at RT, while ZnO nanorods (NRs) are formed when water is maintained at 80°C during the ps-PLA process. Au NPs, added to ZnO colloids after the ablation process, decorate ZnO NRs. The crystalline phase of all ZnO nanocolloids is wurtzite. Methylene blue dye is used to investigate the photo-catalytic activity of all the synthesised nanocolloids, under UV light irradiation.

  18. Circulating oxidative stress caused by Psoroptes natalensis infestation in Indian water buffaloes.

    Science.gov (United States)

    Mahajan, Sumit; Panigrahi, Padma Nibash; Dey, Sahadeb; Dan, Ananya; Kumar, Akhilesh; Mahendran, K; Maurya, P S

    2017-09-01

    The present study reports the circulating oxidative stress associated with Psoroptes natalensis infestation in Indian water buffaloes. Three non-descriptive water buffaloes, age ranging between 4 and 9 years, presented to Referral Veterinary Polyclinic, IVRI, for treatment served as clinical subject. The infested animals were treated with Ivermectin subcutaneously and Amitraz topically along with antioxidant like ascorbic acid, Vitamin E and selenium. The level of lipid peroxidase was significantly higher (3.94 ± 0.34) in Psoroptes infested buffalo and was reduced significantly ( P  ≤ 0.05) after treatment (1.56 ± 0.40). The significantly higher levels of MDA before treatment signify the role of lipid peroxide mediated skin lesions in P. natalensis infested buffaloes. Similarly the activities of the body antioxidant like GSH and CAT were significantly higher ( P  ≤ 0.05) after treatment. The less level of the body antioxidant (GSH) and reduced activities of the antioxidant enzymes like CAT and SOD before treatment imply that Psoroptes mite-infested buffaloes were in a state of significant oxidative stress. The study provides information on oxidative stress indices in P. natalensis infested buffaloes and gives additional insight regarding the pathogenesis of the disease and its management.

  19. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenhua [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Guo, Xianglong, E-mail: guoxianglong@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China); Shen, Zhao [Department of Materials Science, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Zhang, Lefu, E-mail: lfzhang@sjtu.edu.cn [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240 (China)

    2017-04-01

    The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer. - Highlights: • We evaluated the corrosion resistance of three different Cr content ODS steels at 650 °C in supercritical water. • Corrosion behavior of ODS steels is rarely reported and ODS steel may be promising material for generation IV reactors. • We found total opposite phenomenon compared to Lee's work before. Our result may be more reasonable.

  20. Microbial oxidation of soluble sulfide in produced water from the Bakkeen Sands

    Energy Technology Data Exchange (ETDEWEB)

    Gevertz, D.; Zimmerman, S. [Agouron Institute, La Jolla, CA (United States); Jenneman, G.E. [Phillips Petroleum Company, Bartlesville, OK (United States)] [and others

    1995-12-31

    The presence of soluble sulfide in produced water results in problems for the petroleum industry due to its toxicity, odor, corrosive nature, and potential for wellbore plugging. Sulfide oxidation by indigenous nitrate-reducing bacteria (NRB) present in brine collected from wells at the Coleville Unit (CVU) in Saskatchewan, Canada, was investigated. Sulfide oxidation took place readily when nitrate and phosphate were added to brine enrichment cultures, resulting in a decrease in sulfide levels of 99-165 ppm to nondetectable levels (< 3.3 ppm). Produced water collected from a number of producing wells was screened to determine the time required for complete sulfide oxidation, in order to select candidate wells for treatment. Three wells were chosen, based on sulfide removal in 48 hours or less. These wells were treated down the backside of the annulus with a solution containing 10 mM KNO{sub 3} and 100 {mu}M NaH{sub 2}PO{sub 4}. Following a 24- to 72-hour shut-in, reductions in pretreatment sulfide levels of greater than 90% were observed for two of the wells, as well as sustained sulfide reductions of 50% for at least two days following startup. NRB populations in the produced brine were observed to increase significantly following treatment, but no significant increases in sulfate-reducing bacteria were observed. These results demonstrate the technical feasibility of stimulating indigenous populations of NRB to remediate and control sulfide in produced brine.

  1. Identification of significant process variables for a flow-through supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Rossi, R.E.

    1992-05-01

    The effects of four process variables on the destruction efficiency of a flow-through supercritical water oxidation reactor were investigated. These process variables included: (1) reactor throughput (GPH), (2) concentration of the surrogate waste (% acetone), (3) maximum reactor tube-wall temperature (OC), and (4) applied stoichiometric oxygen. The analysis was conducted utilizing two-level factorial experiments, steepest ascent methods, and central composite designs. This experimental protocol assures efficient experimentation and allows for an empirical response surface model of the system to be developed. This experimentation identified a significant positive effect for stoichiometric oxygen applied and temperature variations between 400 to 500 degrees C. The increase in destruction efficiency due to stoichiometric 0 2 provides strong evidence that supercritical water oxidations are catalyzed by excess oxygen, and the strong temperature effect is a result of large increases in the kinetic rates for this temperature range. However, increasing temperature between 550 to 650 degrees C does not provide substantial increases in destruction efficiency. In addition, destruction efficiency is significantly unproved by increasing the Reynolds number and residence time. The destruction efficiency of the reactor is also dependent upon the initial concentration of surrogate waste. This concentration dependence may indicate first-order supercritical CO kinetics is inadequate for describing all waste types and reactor configurations. Alternatively, it may indicate reactant mixing, caused by local turbulence at the oxidation fronts of these higher concentration waste streams, results in higher destruction efficiencies

  2. Electrochemical approach to evaluate the mechanism of photocatalytic water splitting on oxide photocatalysts

    International Nuclear Information System (INIS)

    Matsumoto, Yasumichi; Unal, Ugur; Tanaka, Noriyuki; Kudo, Akihiko; Kato, Hideki

    2004-01-01

    Photoelectrochemical measurements of TiO 2 , NaTaO 3 , and Cr or Sb doped TiO 2 and SrTiO 3 photocatalysts were carried out in H 2 and O 2 saturated electrolytes in order to evaluate the reverse reactions during water photolysis. The poor activity of TiO 2 as a result of reverse photoreactions of O 2 reduction and H 2 oxidation was revealed with the respective high cathodic and anodic photocurrents. The rise in the photocurrents at NaTaO 3 after La doping was in harmony with the doping-induced increase in the photocatalytic activity. NiO loading suppresses the O 2 photoreverse reactions, which declines photocatalytic activity, and/or promotes the photo-oxidation of water, because the O 2 photo-reduction current was scarcely observed near the flatband potential. Photocurrents of O 2 reduction and H 2 oxidation were observed under visible light for the Cr and Sb doped SrTiO 3 and TiO 2 , respectively. These phenomena are in harmony with the previous reports on the photocatalysts examined with sacrificial reagents

  3. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    Science.gov (United States)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in UV-A LEDs and semi

  4. Characterization of subcritical water oxidation with in situ monitoring and self-modeling curve resolution

    International Nuclear Information System (INIS)

    Gemperline, Paul J.; Yang Yu; Bian Zhihui

    2003-01-01

    In this paper, a subcritical water oxidation (SBWO) process was monitored using self-modeling curve resolution (SMCR) of in situ UV-Vis measurements to estimate time-dependant composition profiles of reactants, intermediates and products. A small laboratory scale reactor with UV-Vis fiber-optic probes and a flow cell was used to demonstrate the usefulness of SMCR for monitoring the destruction of model compounds phenol, benzoic acid, and aniline in a dilute aqueous solutions. Hydrogen peroxide was used as the oxidizing reagent at moderate temperature (150-250 deg. C) and pressure (60-90 atm) in a single phase. By use of in situ monitoring, reaction times were easily determined and conditions for efficient oxidations were easily diagnosed without the need for time consuming off-line reference measurements. For selected runs, the destruction of the model compound was confirmed by gas chromatography and chemical oxygen demand (COD) measurements. Suspected intermediate oxidation products were easily detected by the use of UV-Vis spectrometry and self-modeling curve resolution, but could not be detected by gas chromatography

  5. Partial oxidation of municipal sludge with activited carbon catalyst in supercritical water

    International Nuclear Information System (INIS)

    Guo Yang; Wang Shuzhong; Gong Yanmeng; Xu Donghai; Tang Xingying; Ma Honghe

    2010-01-01

    The partial oxidation (POX) characteristics of municipal sludge in supercritical water (SCW) were investigated by using batch reactor. Effects of reaction parameters such as oxidant equivalent ratio (OER), reaction time and temperature were investigated. Activated carbon (AC) could effectively improve the mole fraction of H 2 in gas product at low OER. However, high OER (greater than 0.3) not only led to the combustion reaction of CO and H 2 , but also caused corrosion of reactor inner wall. Hydrogenation and polymerization of the intermediate products are possible reasons for the relative low COD removal rate in our tests. Metal oxide leached from the reactor inner wall and the main components of the granular sludge were deposited in the AC catalyst. Reaction time had more significant effect on BET surface area of AC than OER had. Long reaction time led to the methanation reaction following hydrolysis and oxidation reaction of AC in SCW in the presence of oxygen. Correspondingly, the possible reaction mechanisms were proposed.

  6. A comparative view of radiation, photo and photocatalytically induced oxidation of water pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, N [Institute for Theoretical Chemistry and Radiation Chemistry, Univ. of Vienna, Vienna (Austria)

    1997-10-01

    Water resources are presently overloaded with biologically resistant (refractory) pollutants. Several oxidation methods have been developed for their degradation, the most efficient of which is irradiation treatment, particularly that based on e-beam processing in the presence of O{sub 2}/O{sub 3}. The next-best method is photoinduced pollutant oxidation with VUV- and/or UV-light, using H{sub 2}O{sub 2} or H{sub 2}O{sub 2}/O{sub 3} as an additional source of OH radicals. The photocatalytic method, using e.g. TiO{sub 2} as a catalyst in combination with oxidation agents such as H{sub 2}O{sub 2} or H{sub 2}O{sub 2}/O{sub 3}, is also recommended. The suitability of these three methods is illustrated by examples and they are briefly discussed and compared on the basis of the energy consumption and efficiency. Other methods, such as ozone treatment, the photo-Fenton process, ultrasonic and electrochemical treatments, as well as the well known biological process and thermal oxidation of refractory pollutants, are briefly mentioned. (author). 36 refs, 9 figs, 3 tabs.

  7. A comparative view of radiation, photo and photocatalytically induced oxidation of water pollutants

    International Nuclear Information System (INIS)

    Getoff, N.

    1997-01-01

    Water resources are presently overloaded with biologically resistant (refractory) pollutants. Several oxidation methods have been developed for their degradation, the most efficient of which is irradiation treatment, particularly that based on e-beam processing in the presence of O 2 /O 3 . The next-best method is photoinduced pollutant oxidation with VUV- and/or UV-light, using H 2 O 2 or H 2 O 2 /O 3 as an additional source of OH radicals. The photocatalytic method, using e.g. TiO 2 as a catalyst in combination with oxidation agents such as H 2 O 2 or H 2 O 2 /O 3 , is also recommended. The suitability of these three methods is illustrated by examples and they are briefly discussed and compared on the basis of the energy consumption and efficiency. Other methods, such as ozone treatment, the photo-Fenton process, ultrasonic and electrochemical treatments, as well as the well known biological process and thermal oxidation of refractory pollutants, are briefly mentioned. (author)

  8. Creatine Supplementation Increases Total Body Water in Soccer Players: a Deuterium Oxide Dilution Study.

    Science.gov (United States)

    Deminice, R; Rosa, F T; Pfrimer, K; Ferrioli, E; Jordao, A A; Freitas, E

    2016-02-01

    This study aimed to evaluate changes in total body water (TBW) in soccer athletes using a deuterium oxide dilution method and bioelectrical impedance (BIA) formulas after 7 days of creatine supplementation. In a double-blind controlled manner, 13 healthy (under-20) soccer players were divided randomly in 2 supplementation groups: Placebo (Pla, n=6) and creatine supplementation (CR, n=7). Before and after the supplementation period (0.3 g/kg/d during 7 days), TBW was determined by deuterium oxide dilution and BIA methods. 7 days of creatine supplementation lead to a large increase in TBW (2.3±1.0 L) determined by deuterium oxide dilution, and a small but significant increase in total body weight (1.0±0.4 kg) in Cr group compared to Pla. The Pla group did not experience any significant changes in TBW or body weight. Although 5 of 6 BIA equations were sensitive to determine TBW changes induced by creatine supplementation, the Kushner et al. 16 method presented the best concordance levels when compared to deuterium dilution method. In conclusion, 7-days of creatine supplementation increased TBW determined by deuterium oxide dilution or BIA formulas. BIA can be useful to determine TBW changes promoted by creatine supplementation in soccer athletes, with special concern for formula choice. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Influence of dissolved hydrogen on oxide film and PWSCC of Alloy 600 in PWR primary water

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tomokazu; Totsuka, Nobuo; Nakajima, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In order to investigate the influence of dissolved hydrogen (DH) on the corrosion behavior and PWSCC of Alloy 600 in primary water of PWR under actual operating temperature range, we carried out electrochemical polarization measurement, repassivation test, analysis of the oxide film on the alloy by AES, XPS and PWSCC test. In all cases, the content of DH was changed from 0 to 45 cc/kgH{sub 2}O. The anodic polarization curve reveals that the peak current density increases with increasing DH. The result of the repassivation test shows that the repassivation rate decreases with increasing DH, and the changes of the above two become larger between 11 and 22 cc/kgH{sub 2}O of DH. According to the results of oxide film analysis, it is seen that the oxide films formed below 11 cc/kgH{sub 2}O of DH are relatively thick and rich in Ni, but those formed at higher DH contents are relatively thin and rich in Cr and Fe. The susceptibility of the alloy to PWSCC has a peak at 11 cc/kgH{sub 2}O of DH, which reveals that the property of the oxide film may play important role in PWSCC of alloy. (author)

  10. Improving the performance of water desalination through ultra-permeable functionalized nanoporous graphene oxide membrane

    Science.gov (United States)

    Hosseini, Mostafa; Azamat, Jafar; Erfan-Niya, Hamid

    2018-01-01

    Molecular dynamics simulations were performed to investigate the water desalination performance of nanoporous graphene oxide (NPGO) membranes. The simulated systems consist of a NPGO as a membrane with a functionalized pore in its center immersed in an aqueous ionic solution and a graphene sheet as a barrier. The considered NPGO membranes are involved four types of pore with different size and chemistry. The results indicated that the NPGO membrane has effective efficiency in salt rejection as well as high performance in water flux. For all types of pore with the radius size of 2.9-4.5 Å, the NPGO shows salt rejection of >89%. Functional groups on the surface and edge of pores have a great effect on water flux. To precisely understand the effect of functional groups on the surface of nanostructured membranes, nanoporous graphene was simulated under the same condition for comparison. Hydrophilic groups on the surface make the NPGO as an ultra-permeable membrane. As a result, the obtained water flux for NPGO was about 77% greater than graphene. Also, it was found that the water flux of NPGO is 2-5 orders of magnitude greater than other existing reverse osmosis membranes. Therefore, the investigated systems can be recommended as a model for the water desalination.

  11. Spatiotemporal Dynamics of Ammonia-Oxidizing Thaumarchaeota in Distinct Arctic Water Masses

    Directory of Open Access Journals (Sweden)

    Oliver Müller

    2018-01-01

    Full Text Available One of the most abundant archaeal groups on Earth is the Thaumarchaeota. They are recognized as major contributors to marine ammonia oxidation, a crucial step in the biogeochemical cycling of nitrogen. Their universal success is attributed to a high genomic flexibility and niche adaptability. Based on differences in the gene coding for ammonia monooxygenase subunit A (amoA, two different ecotypes with distinct distribution patterns in the water column have been identified. We used high-throughput sequencing of 16S rRNA genes combined with archaeal amoA functional gene clone libraries to investigate which environmental factors are driving the distribution of Thaumarchaeota ecotypes in the Atlantic gateway to the Arctic Ocean through an annual cycle in 2014. We observed the characteristic vertical pattern of Thaumarchaeota abundance with high values in the mesopelagic (>200 m water throughout the entire year, but also in the epipelagic (<200 m water during the dark winter months (January, March and November. The Thaumarchaeota community was dominated by three OTUs which on average comprised 76% ± 11 and varied in relative abundance according to water mass characteristics and not to depth or ammonium concentration, as suggested in previous studies. The ratios of the abundance of the different OTU types were similar to that of the functional amoA water cluster types. Together, this suggests a strong selection of ecotypes within different water masses, supporting the general idea of water mass characteristics as an important factor in defining microbial community structure. If indeed, as suggested in this study, Thaumarchaeota population dynamics are controlled by a set of factors, described here as water mass characteristics and not just depth alone, then changes in water mass flow will inevitably affect the distribution of the different ecotypes.

  12. Photocatalytic segmented nanowires and single-step iron oxide nanotube synthesis: Templated electrodeposition as all-round tool

    NARCIS (Netherlands)

    Maas, M.G.; Rodijk, E.J.B.; Maijenburg, A.W.; ten Elshof, Johan E.; Blank, David H.A.; Nielsch, K.; Fontcuberta i Morral, A.; Holt, J.K.; Thomson, C.V.

    2010-01-01

    Templated electrodeposition was used to synthesize silver-zinc oxide nanowires and iron oxide (Fe2O3) nanotubes in polycarbonate track etched (PCTE) membranes. Metal/oxide segmented nanowires were made to produce hydrogen gas from a water/methanol mixture under ultraviolet irradiation. It was

  13. Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Novoselova, I.P. [Ural Federal University, Department of Magnetism and Magnetic Nanomaterials, Lenin Ave. 51, 620083 Yekaterinburg (Russian Federation); Immanuel Kant Baltic Federal University, Science and Technology Park “Fabrica”, Gaidara St. 6, 236022 Kaliningrad (Russian Federation); Safronov, A.P. [Ural Federal University, Department of Magnetism and Magnetic Nanomaterials, Le