WorldWideScience

Sample records for water leaf water

  1. Leaf Relative Water Content Estimated from Leaf Reflectance and Transmittance

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. In the research we report here, we used optical polarization techniques to monitor the light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both change nonlinearly. The result show that the nonlinearities cancel in the ratio R/T, which appears linearly related to RWC for RWC less than 90%. The results suggest that potentially leaf water status and perhaps even canopy water status could be monitored starting from leaf and canopy optical measurements.

  2. Chloroplast Response to Low Leaf Water Potentials

    Science.gov (United States)

    Boyer, J. S.; Potter, J. R.

    1973-01-01

    The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves. PMID:16658486

  3. Wind increases leaf water use efficiency.

    Science.gov (United States)

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  4. Leaf Water Repellency as an Adaptation to Cloud Forest Environments

    Science.gov (United States)

    Holder, C. D.

    2006-12-01

    Fog persistency and high precipitation totals contribute to the unique ecohydrology of tropical montane cloud forests. The persistence of water droplets on leaf surfaces in cloud forests inhibits photosynthetic carbon exchange because carbon dioxide diffuses slower in water than air. Adaptations that reduce water retention on leaf surfaces may increase photosynthetic capacity of cloud forests. The hypothesis of this study was that 12 cloud forest species from the Sierra de las Minas, Guatemala have a higher degree of leaf water repellency than 12 species from tropical dry forests in Chiquimula, Guatemala and 12 species from foothills-grassland vegetation in Colorado (USA). Leaf water repellency was measured as the contact angle between the leaf surface and the line tangent to the water droplet passing through the point of contact between the droplet and the leaf surface. Leaf water repellency was significantly different between the three study areas; however, leaf water repellency of 12 species in the Sierra de las Minas was lower than 12 species in Chiquimula and 12 species in Colorado. Leaf water repellency of abaxial surfaces of all species in the cloud forest was greater than leaf water repellency of adaxial surfaces. The low values of leaf water repellency in cloud forest species may be influenced by presence of epiphylls or the loss of epicuticular wax on the leaf surfaces because of high precipitation totals and longer leaf life-span. High leaf water repellency in dry climates may be an adaptation to increase hydrological inputs underneath the canopy.

  5. Spectroscopic determination of leaf water content using linear ...

    African Journals Online (AJOL)

    In order to detect crop water status with fast, non-destructive monitoring based on its spectral characteristics, this study measured 33 groups of peach tree leaf reflectance spectra (350 to 1075 nm). Linear regression and backpropagation artificial neural network methods were used to establish peach tree leaf water content ...

  6. Effects of altitude on transpiration, leaf vapor pressure deficit and leaf water potential in oriental beech

    Directory of Open Access Journals (Sweden)

    Fatih Bayraktar

    2015-04-01

    Full Text Available This study was designed to determine the effect of altitude on transpiration, leaf vapor pressure deficit and leaf water potential in oriental beech (Fagus orientalis Lipsky. The study area was located in Ortaköy, Artvin, and the experimental area had the same soil structure and aspect. The study showed that transpiration and leaf vapor pressure deficit increased but leaf water potential decreased by altitudinal gradient

  7. A simplified GIS approach to modeling global leaf water isoscapes.

    Directory of Open Access Journals (Sweden)

    Jason B West

    Full Text Available The stable hydrogen (delta(2H and oxygen (delta(18O isotope ratios of organic and inorganic materials record biological and physical processes through the effects of substrate isotopic composition and fractionations that occur as reactions proceed. At large scales, these processes can exhibit spatial predictability because of the effects of coherent climatic patterns over the Earth's surface. Attempts to model spatial variation in the stable isotope ratios of water have been made for decades. Leaf water has a particular importance for some applications, including plant organic materials that record spatial and temporal climate variability and that may be a source of food for migrating animals. It is also an important source of the variability in the isotopic composition of atmospheric gases. Although efforts to model global-scale leaf water isotope ratio spatial variation have been made (especially of delta(18O, significant uncertainty remains in models and their execution across spatial domains. We introduce here a Geographic Information System (GIS approach to the generation of global, spatially-explicit isotope landscapes (= isoscapes of "climate normal" leaf water isotope ratios. We evaluate the approach and the resulting products by comparison with simulation model outputs and point measurements, where obtainable, over the Earth's surface. The isoscapes were generated using biophysical models of isotope fractionation and spatially continuous precipitation isotope and climate layers as input model drivers. Leaf water delta(18O isoscapes produced here generally agreed with latitudinal averages from GCM/biophysical model products, as well as mean values from point measurements. These results show global-scale spatial coherence in leaf water isotope ratios, similar to that observed for precipitation and validate the GIS approach to modeling leaf water isotopes. These results demonstrate that relatively simple models of leaf water enrichment

  8. MONITORING ON PLANT LEAF WATER POTENTIAL USING NIR SPECTROSCOPY FOR WATER STRESS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Diding Suhandy

    2012-12-01

    Full Text Available The performance of the calibration model with temperature compensation for on-plant leaf water potential (LWP determination in tomato plants was evaluated. During a cycle of water stress, the on-plant LWP measurement was conducted. The result showed that the LWP values under water stress and recovery from water stress could be monitored well. It showed that a real time monitoring of the LWP values using NIR spectroscopy could be possible.   Keywords: water stress, real time monitoring of leaf water potential, NIR spectroscopy, plant response-based

  9. Molluscicidal activity of crude water leaf extracts of Alternanthera ...

    African Journals Online (AJOL)

    Administrator

    2007-02-19

    Feb 19, 2007 ... while the evaporated crude water extract had LC50 of 48.07 (42.81 – 54.28) for the dried leaf extract. For the fresh leaves the ... Key words: Alternanthera sesselis, crude water extract, molluscicidal activity, bioavailability, schistomiasis control. ... (Brown, 1980). Although the snails do not play an active.

  10. Isotopic Controls of Rainwater and Water Vapor on Mangrove Leaf Water and Lipid Biomarkers

    Science.gov (United States)

    Ladd, N.; Wolfshorndl, M.; Sachs, J. P.

    2015-12-01

    Hydrogen isotope ratios (2H/1H or δ2H) of sedimentary mangrove lipid biomarkers can be used as a proxy of past salinity and water isotopes. This approach is based on the observation that apparent 2H/1H fractionation between surface water and mangrove lipids increases with surface water salinity in six species of mangroves with different salt management strategies growing at sites spanning a range of relative humidities throughout Australia and Micronesia. In order to more robustly apply mangrove lipid δ2H as a paleoclimate proxy, we investigated the cause of the correlation between apparent 2H fractionation and salinity. We present results from two related experiments that assessed controls on isotopes of mangrove leaf water, the direct source of hydrogen in lipids: (1) Measurements of natural δ2H in precipitation, surface water, and mangrove tissue water from a series of lakes with varying salinity and water isotope composition in Palau, and (2) measurements of mangrove tissue water and treatment water from a controlled simulation in which mangroves were treated with artificial rain of varying isotopic composition. Rainwater 2H/1H fluctuations of 30‰ over a one-month period explain up to 65% of the variance in leaf water δ2H for Bruguiera gymnorhiza mangroves from Palau despite lake water isotope differences among sites of up to 35‰. This indicates that in humid tropical settings, leaf water isotopes are more closely related to those of precipitation and water vapor than to those of lake surface water, explaining the observed change in apparent fractionation in B. gymnorhiza lipids with salinity. The relationship between leaf water and rainwater isotopes may be due to either equilibration of leaf water with water vapor in the nearly saturated air or direct foliar uptake of rain and/or dew. Foliar uptake is an important water source for many plants, but has not been documented in mangroves. We tested the capacity for mangroves to perform this function by

  11. Adaptation of Leaf Water Relations to Climatic and Habitat Water Availability

    Directory of Open Access Journals (Sweden)

    Patrick J. Mitchell

    2015-06-01

    Full Text Available Successful management of forest systems requires a deeper understanding of the role of ecophysiological traits in enabling adaptation to high temperature and water deficit under current and anticipated changes in climate. A key attribute of leaf water relations is the water potential at zero turgor (πtlp, because it defines the operating water potentials over which plants actively control growth and gas exchange. This study examines the drivers of variation in πtlp with respect to species climate of origin and habitat water availability. We compiled a water relations database for 174 woody species occupying clearly delineated gradients in temperature and precipitation across the Australian continent. A significant proportion of the variability in πtlp (~35% could be explained by climatic water deficit and its interaction with summertime maximum temperature, demonstrating the strong selective pressure of aridity and high temperature in shaping leaf water relations among Australian species. Habitat water availability (midday leaf water potential, was also a significant predictor of πtlp (R2 = 0.43, highlighting the importance of species ecohydrologic niche under a set of climatic conditions. Shifts in πtlp in response to both climatic and site-based drivers of water availability emphasises its adaptive significance and its suitability as a predictor of plant performance under future climatic change.

  12. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  13. Species differences in seedling growth and leaf water response to ...

    African Journals Online (AJOL)

    The diurnal pattern of change in stomatal conductance and leaf water potential of T. ivorensis and G. cedrata were similar in lower R:FR ratio but opposite in higher R:FR. This results show that the response of seedlings to changes in R:FR is different for different species and is more of morphological change rather than ...

  14. [Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].

    Science.gov (United States)

    Wu, Jian; Chen, Tai-sheng; Pan, Li-xin

    2015-07-01

    Leaf water content is an important factor affecting tree spectral characteristics. So Exploring the leaf spectral characteristics change rule of the same tree under the condition of different leaf water content and the spectral differences of different tree leaves under the condition of the same leaf water content are not only the keys of hyperspectral vegetation remote sensing information identification but also the theoretical support of research on vegetation spectrum change as the differences in leaf water content. The spectrometer was used to observe six species of tree leaves, and the reflectivity and first order differential spectrum of different leaf water content were obtained. Then, the spectral characteristics of each tree species leaves under the condition of different leaf water content were analyzed, and the spectral differences of different tree species leaves under the condition of the same leaf water content were compared to explore possible bands of the leaf water content identification by hyperspectral remote sensing. Results show that the spectra of each tree leaf have changed a lot with the change of the leaf water content, but the change laws are different. Leaf spectral of different tree species has lager differences in some wavelength range under the condition of same leaf water content, and it provides some possibility for high precision identification of tree species.

  15. An unusual burn caused by hot argy wormwood leaf water

    Directory of Open Access Journals (Sweden)

    Feng Guo

    2011-09-01

    Full Text Available An unusual burn case caused by hot wormwood leaf water was discussed. A 29-year-old woman sustained a 7% second-degree burn on both buttocks and left thigh. This case report highlights a rare cause of a chemical burn that may become more common with increasing use of this Chinese traditional medicine. The prevention measures of this burn injury were also presented.

  16. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass

    OpenAIRE

    Xu, Zhenzhu; Zhou, Guangsheng

    2008-01-01

    Responses of plant leaf stomatal conductance and photosynthesis to water deficit have been extensively reported; however, little is known concerning the relationships of stomatal density with regard to water status and gas exchange. The responses of stomatal density to leaf water status were determined, and correlation with specific leaf area (SLA) in a photosynthetic study of a perennial grass, Leymus chinensis, subjected to different soil moisture contents. Moderate water deficits had posit...

  17. Acclimation of photosynthesis to low leaf water potentials

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, M.A.; Boyer, J.S.

    1984-01-01

    Photosynthesis is reduced at low leaf water potentials (PSI/sub l/) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. The authors evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and PSI/sub l/, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower PSI/sub l/ in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantum yield and the capacity to fix CO/sub 2/ at all partial pressures of CO/sub 2/, and in vitro by photosystem II activity of isolated organelles, was inhibited at low PSI/sub l/ but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low PSI/sub l/. 32 references, 8 figures.

  18. Acclimation of Photosynthesis to Low Leaf Water Potentials 1

    Science.gov (United States)

    Matthews, Mark A.; Boyer, John S.

    1984-01-01

    Photosynthesis is reduced at low leaf water potentials (Ψl) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. We evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and Ψl, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower Ψl, in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantum yield and the capacity to fix CO2 at all partial pressures of CO2, and in vitro by photosystem II activity of isolated organelles, was inhibited at low Ψl but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low Ψl. PMID:16663372

  19. Water

    Science.gov (United States)

    ... environment and your health: Green living Sun Water Health effects of water pollution How to protect yourself from water pollution Air Chemicals Noise Quizzes Links to more information girlshealth glossary girlshealth. ...

  20. Water use of tree lines: importance of leaf area and micrometeorology in sub-humid Kenya

    NARCIS (Netherlands)

    Radersma, S.; Ong, C.K.; Coe, R.

    2006-01-01

    In this research the relative importance of leaf area and microclimatic factors in determining water use of tree lines was examined in sub-humid Western Kenya. Measurements of tree water-use by a heat-balance technique, leaf area, bulk air saturation deficit, daily radiation, and soil water content

  1. Water

    Science.gov (United States)

    Leopold, Luna Bergere; Baldwin, Helene L.

    1962-01-01

    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  2. Water

    Science.gov (United States)

    ... the tap as described). 3. In all situations, drink or cook only with water that comes out of the tap cold. Water that comes out of the tap warm or hot can contain much higher levels of lead. Boiling ...

  3. Leaf water storage increases with salinity and aridity in the mangrove Avicennia marina: integration of leaf structure, osmotic adjustment and access to multiple water sources.

    Science.gov (United States)

    Nguyen, Hoa T; Meir, Patrick; Sack, Lawren; Evans, John R; Oliveira, Rafael S; Ball, Marilyn C

    2017-08-01

    Leaf structure and water relations were studied in a temperate population of Avicennia marina subsp. australasica along a natural salinity gradient [28 to 49 parts per thousand (ppt)] and compared with two subspecies grown naturally in similar soil salinities to those of subsp. australasica but under different climates: subsp. eucalyptifolia (salinity 30 ppt, wet tropics) and subsp. marina (salinity 46 ppt, arid tropics). Leaf thickness, leaf dry mass per area and water content increased with salinity and aridity. Turgor loss point declined with increase in soil salinity, driven mainly by differences in osmotic potential at full turgor. Nevertheless, a high modulus of elasticity (ε) contributed to maintenance of high cell hydration at turgor loss point. Despite similarity among leaves in leaf water storage capacitance, total leaf water storage increased with increasing salinity and aridity. The time that stored water alone could sustain an evaporation rate of 1 mmol m -2  s -1 ranged from 77 to 126 min from subspecies eucalyptifolia to ssp. marina, respectively. Achieving full leaf hydration or turgor would require water from sources other than the roots, emphasizing the importance of multiple water sources to growth and survival of Avicennia marina across gradients in salinity and aridity. © 2017 John Wiley & Sons Ltd.

  4. MEASURING LEAF WATER CONTENT USING MULTISPECTRAL TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    S. Junttila

    2017-10-01

    Full Text Available Climate change is increasing the amount and intensity of disturbance events, i.e. drought, pest insect outbreaks and fungal pathogens, in forests worldwide. Leaf water content (LWC is an early indicator of tree stress that can be measured remotely using multispectral terrestrial laser scanning (MS-TLS. LWC affects leaf reflectance in the shortwave infrared spectrum which can be used to predict LWC from spatially explicit MS-TLS intensity data. Here, we investigated the relationship between LWC and MS-TLS intensity features at 690 nm, 905 nm and 1550 nm wavelengths with Norway spruce seedlings in greenhouse conditions. We found that a simple ratio of 905 nm and 1550 nm wavelengths was able to explain 84 % of the variation (R2 in LWC with a respective prediction accuracy of 0.0041 g/cm2. Our results showed that MS-TLS can be used to estimate LWC with a reasonable accuracy in environmentally stable conditions.

  5. Assessment of nutritional quality of water hyacinth leaf protein concentrate

    Directory of Open Access Journals (Sweden)

    Oyeyemi Adeyemi

    2016-09-01

    Full Text Available This study was embarked upon to convert water hyacinth, an environmental nuisance, to a natural resource for economic development. Water hyacinth leaf protein concentrate (WHLPC was extracted in edible form and determination of its physicochemical characteristics, total alkaloids and phenolic compounds was done. Analysis of proximate composition and amino acid profile of the WHLPC was also done. The level of heavy metals (mg/kg in WHLPC was found to be Cd (0.02 ± 0.001, Cr (0.13 ± 0.001, Pd (0.003 ± 0.001 and Hg (0.02 ± 0.001 while concentrations of Pb, Pt, Sn, Fe, Cu, Zn, Ni and Co were found to be 0.001 ± 0.00. Level of all heavy metals was found to be within safe limit. Proximate analysis revealed that protein in WHLPC accounted for 50% of its nutrients, carbohydrate accounted for 33% of its nutrients while fat, ash and fibre made up the remaining nutrients. Amino acid analysis showed that WHLPC contained 17 out of 20 common amino acids, particularly, Phe (3.67%, Leu (5.01%. Level of total alkaloids and phenolic compounds was 16.6 mg/kg and 6.0 mg/kg respectively. Evidence from this study suggests that WHLPC is a good source of leaf protein concentrate (LPC; it is nutritious and acutely non toxic.

  6. How Does Leaf Anatomy Influence Water Transport outside the Xylem?

    Science.gov (United States)

    Buckley, Thomas N; John, Grace P; Scoffoni, Christine; Sack, Lawren

    2015-08-01

    Leaves are arguably the most complex and important physicobiological systems in the ecosphere. Yet, water transport outside the leaf xylem remains poorly understood, despite its impacts on stomatal function and photosynthesis. We applied anatomical measurements from 14 diverse species to a novel model of water flow in an areole (the smallest region bounded by minor veins) to predict the impact of anatomical variation across species on outside-xylem hydraulic conductance (Kox). Several predictions verified previous correlational studies: (1) vein length per unit area is the strongest anatomical determinant of Kox, due to effects on hydraulic pathlength and bundle sheath (BS) surface area; (2) palisade mesophyll remains well hydrated in hypostomatous species, which may benefit photosynthesis, (3) BS extensions enhance Kox; and (4) the upper and lower epidermis are hydraulically sequestered from one another despite their proximity. Our findings also provided novel insights: (5) the BS contributes a minority of outside-xylem resistance; (6) vapor transport contributes up to two-thirds of Kox; (7) Kox is strongly enhanced by the proximity of veins to lower epidermis; and (8) Kox is strongly influenced by spongy mesophyll anatomy, decreasing with protoplast size and increasing with airspace fraction and cell wall thickness. Correlations between anatomy and Kox across species sometimes diverged from predicted causal effects, demonstrating the need for integrative models to resolve causation. For example, (9) Kox was enhanced far more in heterobaric species than predicted by their having BS extensions. Our approach provides detailed insights into the role of anatomical variation in leaf function. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Effect of Water Deficit Stress on the Physiology, Growth and Leaf ...

    African Journals Online (AJOL)

    The three water deficit levels were created by adding 0, 10 and 20% (w/v) polyethylene glycol 6000 (PEG 6000) to the nutrient solution. The results indicated that water deficit, especially severe water deficit (-0.96 MPa), severely affected the growth and physiology of sorghum. Water deficit stress reduced plant height, leaf ...

  8. Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age.

    Science.gov (United States)

    Fernández, Victoria; Sancho-Knapik, Domingo; Guzmán, Paula; Peguero-Pina, José Javier; Gil, Luis; Karabourniotis, George; Khayet, Mohamed; Fasseas, Costas; Heredia-Guerrero, José Alejandro; Heredia, Antonio; Gil-Pelegrín, Eustaquio

    2014-09-01

    Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology. © 2014 American Society of Plant Biologists. All Rights Reserved.

  9. Role of Aquaporins in a Composite Model of Water Transport in the Leaf

    Directory of Open Access Journals (Sweden)

    Adi Yaaran

    2016-06-01

    Full Text Available Water-transport pathways through the leaf are complex and include several checkpoints. Some of these checkpoints exhibit dynamic behavior that may be regulated by aquaporins (AQPs. To date, neither the relative weight of the different water pathways nor their molecular mechanisms are well understood. Here, we have collected evidence to support a putative composite model of water pathways in the leaf and the distribution of water across those pathways. We describe how water moves along a single transcellular path through the parenchyma and continues toward the mesophyll and stomata along transcellular, symplastic and apoplastic paths. We present evidence that points to a role for AQPs in regulating the relative weight of each path in the overall leaf water-transport system and the movement of water between these paths as a result of the integration of multiple signals, including transpiration demand, water potential and turgor. We also present a new theory, the hydraulic fuse theory, to explain effects of the leaf turgor-loss-point on water paths alternation and the subsequent reduction in leaf hydraulic conductivity. An improved understating of leaf water-balance management may lead to the development of crops that use water more efficiently, and responds better to environmental changes.

  10. Leucaena leucocephala leachate compromised membrane integrity, respiration and antioxidative defence of water hyacinth leaf tissues.

    Science.gov (United States)

    Chai, Tsun-Thai; Ooh, Keng-Fei; Ooi, Pei-Wan; Chue, Pei-Sing; Wong, Fai-Chu

    2013-12-01

    Water hyacinth is an invasive aquatic weed in many regions of the world. In this study, the bioherbicidal potential of allelopathic plant Leucaena leucocephala against water hyacinth was investigated using a leaf disc assay. L. leucocephala leachate enhanced electrolyte leakage from water hyacinth leaf discs in a concentration-dependent manner. Control experiments eliminated the possibilities that increased membrane permeability in the leachate-treated leaf discs was due to pH or osmotic effects of the leachate. Thus, the loss of membrane stability in the leachate-treated leaf discs was likely due to phytotoxins detected in the leachate, namely mimosine and phenolic constituents. Decline in tissue respiration was detected in leachate-treated water hyacinth leaf discs. This suggests that the L. leucocephala leachate may contain compounds which acted as respiratory inhibitors. Enhanced reactive oxygen species production coincided with inhibition of catalase and ascorbate peroxidase activities in the leachate-treated water hyacinth leaf tissues. The injurious effects of L. leucocephala leachate on water hyacinth leaf discs probably involved direct inhibition of antioxidant enzymes in addition to direct involvement of some allelochemicals in reactive oxygen species formation. In summary, the toxic effects of L. leucocephala leachate on water hyacinth leaf discs likely lay in its ability to effectively compromise the membrane integrity, tissue respiration and antioxidant defence of the latter.

  11. Pulvinus activity, leaf movement and leaf water-use efficiency of bush bean ( Phaseplus vulgaris L.) in a hot environment

    Science.gov (United States)

    Raeini-Sarjaz, Mahmoud; Chalavi, Vida

    2008-11-01

    Pulvinus activity of Phaseolus species in response to environmental stimuli plays an essential role in heliotropic leaf movement. The aims of this study were to monitor the continuous daily pulvinus movement and pulvinus temperature, and to evaluate the effects of leaf movements, on a hot day, on instantaneous leaf water-use efficiency (WUEi), leaf gas exchange, and leaf temperature. Potted plants of Phaseolus vulgaris L. var. Provider were grown in Chicot sandy loam soil under well-watered conditions in a greenhouse. When the second trifoliate leaf was completely extended, one plant was selected to measure pulvinus movement using a beta-ray gauging (BRG) meter with a point source of thallium-204 (204Tl). Leaf gas exchange measurements took place on similar leaflets of three plants at an air temperature interval of 33-42°C by a steady-state LI-6200 photosynthesis system. A copper-constantan thermocouple was used to monitor pulvinus temperature. Pulvinus bending followed the daily diurnal rhythm. Significant correlations were found between the leaf-incident angle and the stomatal conductance ( R 2 = 0.54; P photosynthesis rate ( R 2 = 0.84; P light intensity and air temperature and influenced leaf gas exchange.

  12. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available , and of the remaining 2,5 percent, some 70 percent is frozen in the polar caps and around 30 percent is present as soil moisture or in underground aquifers. Less than 1 percent is thus accessible for direct use by humans, animals and plants. Consequently... be serviced with harvested water and/or grey water. Conserve and reuse cooling tower water by using efficient systems and strategies. Avoid ?once-through systems? commonly used for evaporation coolers, ice makers, hydraulic equipment, and air compressors...

  13. Predicting tree water use and drought tolerance from leaf traits in the Los Angeles urban ecosystem

    Science.gov (United States)

    John, G. P.; Scoffoni, C.; Sack, L.

    2013-12-01

    Urban green space provides a suite of valuable ecosystem services. In semiarid systems, like Los Angeles, trees rely primarily on irrigation water for transpiration. Managers may need to reduce irrigation associated with urban trees given climate change, urban expansion, and the steady decrease in available freshwater. While leaf and whole plant water relations have been extensively studied, we are only now gaining a detailed understanding of diverse leaf anatomical designs, and their use for predicting physiology and water use at landscape scale. For 50 diverse urban species, we quantified leaf anatomical and physiological traits important to tree drought tolerance and water use efficiency including turgor loss point, vein architecture, cellular anatomy, leaf mass per unit area, and petiole and leaf dimensions. We hypothesized detailed relationships to develop models relating leaf functional traits to tree water relations. These models provide key insights regarding the role of anatomical designs in leaf stress tolerance and water use efficiency. Additionally we predicted how traits measured at the leaf level would scale with existing data for individuals at the whole plant level. We tested our predictions by determining correlations between leaf level anatomical traits and drought tolerance. Additionally, we determined correlations between functional traits, physiology and water use, and the climate of origin for the urban species. Leaf level measurements will be valuable for rapid estimation of more difficult to measure whole plant water relations traits important at the landscape scale. The Los Angeles urban ecosystem can serve as a model for other semiarid system and provide more informed system wide water conservation strategies.

  14. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  15. The relationships between leaf economics and hydraulic traits of woody plants depend on water availability.

    Science.gov (United States)

    Yin, Qiulong; Wang, Lei; Lei, Maolin; Dang, Han; Quan, Jiaxin; Tian, Tingting; Chai, Yongfu; Yue, Ming

    2018-04-15

    Leaf economics and hydraulic traits are simultaneously involved in the process of trading water for CO 2 , but the relationships between these two suites of traits remain ambiguous. Recently, Li et al. (2015) reported that leaf economics and hydraulic traits were decoupled in five tropical-subtropical forests in China. We tested the hypothesis that the relationships between economics and hydraulic traits may depend on water availability. We analysed five leaf economics traits, four hydraulic traits and anatomical structures of 47 woody species on the Loess Plateau with poor water availability and compared those data with Li et al. (2015) obtained in tropical-subtropical regions with adequate water. The results showed that plants on the Loess Plateau tend to have higher leaf tissue density (TD), leaf nitrogen concentrations and venation density (VD) and lower stomatal guard cell length (SL) and maximum stomatal conductance to water vapour (g wmax ). VD showed positive correlations with leaf nitrogen concentrations, palisade tissue thickness (PT) and ratio of palisade tissue thickness to spongy tissue thickness (PT/ST). Principal component analysis (PCA) showed a result opposite from those of tropical-subtropical regions: leaf economics and hydraulic traits were coupled on the Loess Plateau. A stable correlation between these two suites of traits may be more cost-effective on the Loess Plateau, where water availability is poor. The correlation of leaf economics and hydraulic traits may be a type of adaptation mechanism in arid conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis

    NARCIS (Netherlands)

    Ullah, S.; Skidmore, A.K.; Naeem, M.; Schlerf, M.

    2012-01-01

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid

  17. Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species.

    Science.gov (United States)

    Sandra Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer; Jose A. Hinojosa; William A. Hoffman; Augusto C. Franco

    2004-01-01

    The impact of nocturnal water loss and recharge of stem water storage on predawn disequilibrium between leaf (ΨL) and soil (Ψ S) water potentials was studied in three dominant tropical savanna woody species in central Brazil (Cerrado). Sap flow continued throughout the night during the dry season and...

  18. Estimating Leaf Water Status from Vis-Nir Reflectance and Transmittance

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2017-01-01

    Remotely sensing the water status of plant canopies remains a long term goal of remote sensing research. Established approaches involve measurements in the thermal infrared and the 900-2000nm reflective infrared. Less popular UV-visible-NIR techniques presumably deserve research attention, because photochemical changes linked to plant water status manifest spectral light scattering and absorption changes. Here we monitored the visible and NIR light reflected from the leaf interior as well as the leaf transmittance as the relative water content of corn (Zeamays L.) leaves decreased. Our results highlight the importance of both scattering effects and effects due to absorption by leaf pigments.

  19. Photosynthesis, Transpiration, Leaf Temperature, and Stomatal Activity of Cotton Plants under Varying Water Potentials.

    Science.gov (United States)

    Pallas, J E; Michel, B E; Harris, D G

    1967-01-01

    Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg.Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential.Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4 degrees above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects.Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels.Apparent photosynthesis

  20. Leaf water repellency of species in Guatemala and Colorado (USA) and its significance to forest hydrology studies

    Science.gov (United States)

    Holder, Curtis D.

    2007-03-01

    SummaryFog persistency and high precipitation totals contribute to the unique ecohydrology of tropical montane cloud forests. The persistence of water droplets on leaf surfaces in cloud forests inhibits photosynthetic carbon exchange because carbon dioxide diffuses slower in water than air. Adaptations that reduce water retention on leaf surfaces may increase photosynthetic capacity of cloud forests. The objective of the present study was to determine if 12 cloud forest species from the Sierra de las Minas, Guatemala have a higher degree of leaf water repellency than 12 species from tropical dry forests in Chiquimula, Guatemala and 12 species from foothills-grassland vegetation in Colorado (USA). Leaf water repellency was measured as the contact angle between the leaf surface and the line tangent to the water droplet passing through the point of contact between the droplet and the leaf surface. Analysis of variance indicated that leaf water repellency was significantly different between the three study areas; however, the leaf water repellency of 12 species in the Sierra de las Minas was lower than 12 species in Chiquimula and lower than the leaf water repellency of 12 species in Colorado. Leaf water repellency of abaxial surfaces of all species in the cloud forest (Sierra de las Minas) was greater leaf water repellency of adaxial surfaces. The low values of leaf water repellency in cloud forest species may be influenced by presence of epiphylls or the loss of epicuticular wax on the leaf surfaces because of high precipitation totals and longer leaf life-span. High leaf water repellency in dry climates may be an adaptation to increase hydrological inputs underneath the canopy.

  1. Spectroscopic determination of leaf water content using linear ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-02-02

    Feb 2, 2012 ... Key words: Spectroscopy, crop water, linear regression, artificial neural network. ... performed to ease shortages of water resources and .... Modeling. Simple linear regression. Simple linear regression is the most basic modeling approach; because the modeling construction is simple and the model is.

  2. [Responses of tomato leaf photosynthesis to rapid water stress].

    Science.gov (United States)

    Han, Guo-Jun; Chen, Nian-lai; Huang, Hai-xia; Zhang, Ping; Zhang, Kai; Guo, Yan-hong

    2013-04-01

    By using polyethylene glycol (PEG-6000) solution to regulate the water potential of tomato (Lycopersicon esculentum) rhizosphere to simulate water stress, this paper studied the dynamic changes of net photosynthetic rate, dark respiratory rate and CO2 compensatory concentration of detached tomato leaves in the process of photosynthetic induction. Under 1000 micromol m-2 s-1 of light induction, the time required to reach the maximum net photosynthetic rate of water-stressed tomato leaves was shortened by 1/3, while the stomatal conductance was increased by 1.5 times, as compared to the non-stress control. Also, the light saturation point (LSP) of water-stressed tomato leaves was lowered by 65% to 85%, and the light compensation point (LCP) was increased by 75% to 100%, suggesting that the effective range of light utilized by tomato leaves was reduced. Furthermore, water stress decreased the maximum photosynthetic capacity of tomato leaves by 40%, but increased the dark respiration rate by about 45% . It was suggested that rapid water stress made the stomata of tomato leaves quickly opened, without initial photosynthetic induction stage. In conclusion, water stress could induce the decrease of plant light-energy use efficiency and potential, being the main reason for the decrease of plant productivity, and stomatal regulation could be the main physiological mechanism of tomato plants to adapt to rapid water stress.

  3. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture.

    Science.gov (United States)

    Locke, Anna M; Ort, Donald R

    2014-12-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K(leaf)), a measure of the leaf's water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K(leaf) would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K(leaf) was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K(leaf) were further correlated with decreases in g(s), although the relationship was not as strong as that with A. Separate experiments investigating the response of K(leaf) to drought demonstrated no acclimation of K(leaf) to drought conditions to protect against cavitation or loss of g(s) during drought and confirmed the effect of leaf age in K(leaf) observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K(leaf)becoming limiting to transpiration water flux. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  4. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply

    OpenAIRE

    Garcia, A.L.; Marcelis, L.F.M.; Garcia-Sanchez, F.; Nicolas, N.; Martinez, V.

    2007-01-01

    The responses of water relations, stomatal conductance (g(s)) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the water evapotranspirated by the plant the preceding day. Well-watered plants received 100 % of the water evapotranspirated. Two weeks before starting the drought period, the plants were fertilised wi...

  5. Current progress and challenges in engineering viable artificial leaf for solar water splitting

    Directory of Open Access Journals (Sweden)

    Phuc D. Nguyen

    2017-12-01

    Full Text Available Large scale production of H2, a clean fuel, can be realized with just water and solar light energy by employing a viable energy conversion device called artificial leaf. In this tutorial review, we discuss on advances achieved recently and technical challenges remained toward the creation of such a leaf. Development of key components like catalysts for water electrolysis process and light harvester for harvesting solar energy as well as strategies being developed for assembling these components to create a complete artificial leaf will be highlighted.

  6. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential.

    Science.gov (United States)

    Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David

    2017-07-01

    Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture

    Science.gov (United States)

    Locke, Anna M.; Ort, Donald R.

    2014-01-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701

  8. Compared leaf anatomy and water relations of commercial and traditional Prunus dulcis (Mill.) cultivars under rain-fed conditions

    DEFF Research Database (Denmark)

    Oliveira, I.; Meyer, A.; Afonso, S.

    2018-01-01

    Leaf anatomy and water relations of seven almond (Prunus dulcis Mill.) cultivars, traditional (Bonita, Casanova, Parada, Pegarinhos and Verdeal) and commercial (Ferragnès and Glorieta), grown under rain-fed conditions, were studied. The performed measurements included thickness of leaf tissues......, leaf area, leaf mass per unit area, density of leaf tissue, relative water content, succulence, water saturation deficit, water content at saturation and cuticular transpiration rate. Significant differences were observed in most of the studied parameters between cultivars. Overall results indicate...

  9. Temperature effect on leaf water deuterium enrichment and isotopic fractionation during leaf lipid biosynthesis: results from controlled growth of C3 and C4 land plants.

    Science.gov (United States)

    Zhou, Youping; Grice, Kliti; Chikaraishi, Yoshito; Stuart-Williams, Hilary; Farquhar, Graham D; Ohkouchi, Naohiko

    2011-02-01

    The hydrogen isotopic ratios ((2)H/(1)H) of land plant leaf water and the carbon-bound hydrogen of leaf wax lipids are valuable indicators for climatic, physiological, metabolic and geochemical studies. Temperature will exert a profound effect on the stable isotopic composition of leaf water and leaf lipids as it directly influences the isotopic equilibrium (IE) during leaf water evaporation and cellular water dissociation. It is also expected to affect the kinetics of enzymes involved in lipid biosynthesis, and therefore the balance of hydrogen inputs along different biochemical routes. We conducted a controlled growth experiment to examine the effect of temperature on the stable hydrogen isotopic composition of leaf water and the biological and biochemical isotopic fractionations during lipid biosynthesis. We find that leaf water (2)H enrichment at 20°C is lower than that at 30°C. This is contrary to the expectation that at lower temperatures leaf water should be more enriched in (2)H due to a larger equilibrium isotope effect associated with evapotranspiration from the leaf if all other variables are held constant. A hypothesis is presented to explain the apparent discrepancy whereby lower temperature-induced down-regulation of available aquaporin water channels and/or partial closure of transmembrane water channel forces water flow to "detour" to a more convoluted apoplastic pathway, effectively increasing the length over which diffusion acts against advection as described by the Péclet effect (Farquhar and Lloyd, 1993) and decreasing the average leaf water enrichment. The impact of temperature on leaf water enrichment is not reflected in the biological isotopic fractionation or the biochemical isotopic fractionation during lipid biosynthesis. Neither the biological nor biochemical fractionations at 20°C are significantly different from that at 30°C, implying that temperature has a negligible effect on the isotopic fractionation during lipid biosynthesis

  10. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes

    Science.gov (United States)

    Lechthaler, Silvia; Robert, Elisabeth M. R.; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W.

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0–5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl. PMID:27446125

  11. Rhizophoraceae Mangrove Saplings Use Hypocotyl and Leaf Water Storage Capacity to Cope with Soil Water Salinity Changes.

    Science.gov (United States)

    Lechthaler, Silvia; Robert, Elisabeth M R; Tonné, Nathalie; Prusova, Alena; Gerkema, Edo; Van As, Henk; Koedam, Nico; Windt, Carel W

    2016-01-01

    Some of the most striking features of Rhizophoraceae mangrove saplings are their voluminous cylinder-shaped hypocotyls and thickened leaves. The hypocotyls are known to serve as floats during seed dispersal (hydrochory) and store nutrients that allow the seedling to root and settle. In this study we investigate to what degree the hypocotyls and leaves can serve as water reservoirs once seedlings have settled, helping the plant to buffer the rapid water potential changes that are typical for the mangrove environment. We exposed saplings of two Rhizophoraceae species to three levels of salinity (15, 30, and 0-5‰, in that sequence) while non-invasively monitoring changes in hypocotyl and leaf water content by means of mobile NMR sensors. As a proxy for water content, changes in hypocotyl diameter and leaf thickness were monitored by means of dendrometers. Hypocotyl diameter variations were also monitored in the field on a Rhizophora species. The saplings were able to buffer rapid rhizosphere salinity changes using water stored in hypocotyls and leaves, but the largest water storage capacity was found in the leaves. We conclude that in Rhizophora and Bruguiera the hypocotyl offers the bulk of water buffering capacity during the dispersal phase and directly after settlement when only few leaves are present. As saplings develop more leaves, the significance of the leaves as a water storage organ becomes larger than that of the hypocotyl.

  12. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Joan Laur

    Full Text Available Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant. Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs. Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  13. [Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis].

    Science.gov (United States)

    Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping

    2013-01-01

    In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.

  14. Towards Estimating Water Stress through Leaf and Canopy Water Content Derived from Optical and Thermal Hyperspectral Data

    Science.gov (United States)

    Corbin, Amie; Timmermans, Joris; van der Tol, Christiaan; Verhoef, Wout

    2015-04-01

    A competition for available (drinkable) water has arisen. This competition originated due to increasing global population and the respective needs of this population. The water demand for human consumption and irrigation of food producing crops and biofuel related vegetation, has led to early indication of drought as a key issue in many studies. However, while drought monitoring systems might provide some reasonable predictions, at the time of visible symptoms of plant stress, a plant may already be critically affected. Consequently, pre-symptomatic non-destructive monitoring of plants is needed. In many studies of plant stress, this is performed by examining internal plant physiology through existing remote sensing techniques, with varying applications. However, a uniform remote sensing method for identifying early plant stress under drought conditions is still developing. In some instances, observations of vegetation water content are used to assess the impact of soil water deficit on the health of a plant or canopy. When considering water content as an indicator of water stress in a plant, this comments not only on the condition of the plant itself, but also provides indicators of photosynthetic activity and the susceptibility to drought. Several indices of canopy health currently exists (NDVI, DVI, SAVI, etc.) using optical and near infrared reflectance bands. However, these are considered inadequate for vegetation health investigations because such semi-empirical models result in less accuracy for canopy measurements. In response, a large amount of research has been conducted to estimate canopy health directly from considering the full spectral behaviour. In these studies , the canopy reflectance has been coupled to leaf parameters, by using coupling leaf radiative transfer models (RTM), such as PROSPECT, to a canopy RTM such as SAIL. The major shortcomings of these researches is that they have been conducted primarily for optical remote sensing. Recently

  15. Early Water Stress Detection Using Leaf-Level Measurements of Chlorophyll Fluorescence and Temperature Data

    Directory of Open Access Journals (Sweden)

    Zhuoya Ni

    2015-03-01

    Full Text Available The purpose of this paper was to investigate the early water stress in maize using leaf-level measurements of chlorophyll fluorescence and temperature. In this study, a series of diurnal measurements, such as leaf chlorophyll fluorescence (Fs, leaf spectrum, temperature and photosynthetically active radiation (PAR, were conducted for maize during gradient watering and filled watering experiments. Fraunhofer Line Discriminator methods (FLD and 3FLD were used to obtain fluorescence from leaves spectrum. This simulated work using the SCOPE model demonstrated the variations in fluorescence and temperature in stress levels expressed by different stress factors. In the field measurement, the gradient experiment revealed that chlorophyll fluorescence decreased for plants with water stress relative to well-water plants and Tleaf-Tair increased; the filled watering experiment stated that chlorophyll fluorescence of maize under water stress were similar to those of maize under well-watering condition. In addition, the relationships between the Fs, retrieved fluorescence, Tleaf-Tair and water content were analyzed. The Fs determination resulted to the best coefficients of determination for the normalized retrieved fluorescence FLD/PAR (R2 = 0.54, Tleaf-Tair (R2 = 0.48 and water content (R2 = 0.71. The normalized retrieved fluorescence yielded a good coefficient of determination for Tleaf-Tair (R2 = 0.48. This study demonstrated that chlorophyll fluorescence could reflect variations in the physiological states of plants during early water stress, and leaf temperature confirmed the chlorophyll fluorescence analysis results and improved the accuracy of the water stress detection.

  16. Triple oxygen isotope composition of leaf waters in Mpala, central Kenya

    Science.gov (United States)

    Li, Shuning; Levin, Naomi E.; Soderberg, Keir; Dennis, Kate J.; Caylor, Kelly K.

    2017-06-01

    Variations in triple oxygen isotopes have been used in studies of atmospheric photochemistry, global productivity and increasingly in studies of hydroclimate. Understanding the distribution of triple oxygen isotopes in plant waters is critical to studying the fluxes of oxygen isotopes between the atmosphere and hydrosphere, in which plants play an important role. In this paper we report triple oxygen isotope data for stem and leaf waters from Mpala, Kenya and explore how Δ17 O, the deviation from an expected relationship between 17O /16O and 18O /16O ratios, in plant waters vary with respect to relative humidity and deuterium excess (d-excess). We observe significant variation in Δ17 O among waters in leaves and stems from a single plant (up to 0.16‰ range in Δ17 O in leaf water in a plant over the course of a signal day), which correlates to changes in relative humidity. A steady state model for evaporation in leaf water reproduces the majority of variation in Δ17 O and d-excess we observed in leaf waters, except for samples that were collected in the morning, when relative humidity is high and the degree of fractionation in the system is minimal. The data and the steady state model indicate that the slope, λtransp, that links δ17 O and δ18 O values of stem and leaf waters and characterizes the fractionation during transpiration, is strongly influenced by the isotopic composition of ambient vapor when relative humidity is high. We observe a strong, positive relationship between d-excess and Δ17 O, with a slope 2.2 ± 0.2 per meg ‰-1, which is consistent with the observed relationship in tropical rainfall and in water in an evaporating open pan. The strong linear relationship between d-excess and Δ17 O should be typical for any process involving evaporation or any other fractionation that is governed by kinetic effects.

  17. Variability in leaf surface features and water efficiency utilisation in ...

    African Journals Online (AJOL)

    In addition physiological differences between the two forms are established with regard to photosynthetic rates, transpiration rates, and boundary layer and stomatal resistances. The C4 form was found to be more efficient with respect to water utilization efficiency. Keywords: alloteropsis semialata; botany; characteristics; ...

  18. Nodule and Leaf Nitrate Reductases and Nitrogen Fixation in Medicago sativa L. under Water Stress

    Science.gov (United States)

    Aparicio-Tejo, P.; Sánchez-Díaz, Manuel

    1982-01-01

    The effect of water stress on patterns of nitrate reductase activity in the leaves and nodules and on nitrogen fixation were investigated in Medicago sativa L. plants watered 1 week before drought with or without NO3−. Nitrogen fixation was decreased by water stress and also inhibited strongly by the presence of NO3−. During drought, leaf nitrate reductase activity (NRA) decreased significantly particularly in plants watered with NO3−, while with rewatering, leaf NRA recovery was quite important especially in the NO3−-watered plants. As water stress progressed, the nodular NRA increased both in plants watered with NO3− and in those without NO3− contrary to the behavior of the leaves. Beyond −15.105 pascal, nodular NRA began to decrease in plants watered with NO3−. This phenomenon was not observed in nodules of plants given water only. Upon rewatering, it was observed that in plants watered with NO3− the nodular NRA increased again, while in plants watered but not given NO3−, such activity began to decrease. Nitrogen fixation increased only in plants without NO3−. PMID:16662233

  19. Influence of soil drying on root development, water relations and leaf growth of Ceratonia siliqua L.

    Science.gov (United States)

    Rhizopoulou, S; Davies, W J

    1991-09-01

    Seedlings of Ceratonia siliqua L., an evergreen sclerophyll species native to the Mediterranean region, were grown in 30-cm deep tubes of John Innes II potting compost in a growth cabinet maintained at 15° C during a 12-h day where PAR was 400 μmol m-2 s-1. After a period of acclimatisation to the conditions in the cabinet during which plants were watered every day, water was withheld from the soil in some tubes for 24 days. These conditions may be regarded as a simulation of the natural situation. Estimates of leaf and root water potential and solute potential, leaf growth and root development were made at intervals during the soil drying cycle on both watered and unwatered plants. Water potential and solute potential measurements were made both on young expanding and on fully expanded leaves. During the experimental period, root growth of C. siliqua was not much affected by soil drying, and roots in both the watered and the unwatered columns penetrated to the bottom of the soil tubes by the end of the drying treatment. Expanded leaves showed significant limitation in stomatal conductance as soil drying progressed. Leaf water potential of fully expanded leaves of unwatered plants declined substantially. In contrast, water potential of young expanding leaves on unwatered plants declined to only a limited extent and turgor was sustained. As the soil dried, stomatal conductance of young leaves was always higher than that of mature leaves; also, placticity and elasticity of young leaves slowly decreased whereas mature leaves became stiff. Changing leaf cell wall properties may determine different patterns of water use as the leaves age. A mechanism of continuous diffusion of water through the soil towards the tip and pumping towards the young leaves is proposed.

  20. Effect of leaf Water potential on cold tolerance of Coffea arabica L.

    Directory of Open Access Journals (Sweden)

    Caramori Lázara Pereira Campos

    2002-01-01

    Full Text Available Young coffee plants from cultivar Mundo Novo of Coffea arabica were grown without irrigation for 32 consecutive days, to evaluate the effect of leaf water potential on damage caused by low temperatures, under controlled conditions. A wide range of leaf water potentials were evaluated, from - 0.45MPa (wet soil at the beginning of the experimental period, to - 4.8MPa (severe leaf wilting at the end. Results showed that under moderate water stress, there was a higher frequency of undamaged plants and lower frequency of severely damaged plants. These results help explain part of the regional variability observed after a frost and stress the importance of new studies associating cold and drought tolerance in coffee.

  1. Moderate water stress affects tomato leaf water relations in dependence on the nitrogen supply

    NARCIS (Netherlands)

    Garcia, A.L.; Marcelis, L.F.M.; Garcia-Sanchez, F.; Nicolas, N.; Martinez, V.

    2007-01-01

    The responses of water relations, stomatal conductance (g(s)) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the

  2. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Saleem, E-mail: ullah19488@itc.nl [Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Skidmore, Andrew K. [Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Naeem, Mohammad [Department of Chemistry, Abdul Wali Khan University Mardan (AWKUM), KPK (Pakistan); Schlerf, Martin [Centre de Recherche Public-Gabriel Lippmann (CRPGL), L-4422 Belvaux (Luxembourg)

    2012-10-15

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 {mu}m) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R{sup 2} = 0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R{sup 2} = 0.88, RMSE = 8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation. -- Highlights: Black-Right-Pointing-Pointer The mid and thermal infrared spectra are sensitive to variation in leaf water content. Black-Right-Pointing-Pointer Continuous wavelet analysis detected the variation caused by leaf water content. Black-Right-Pointing-Pointer The selected wavelet features are highly correlated with leaf water content. Black-Right-Pointing-Pointer Mid wave and thermal infrared spectra have the potential to estimate leaf water content.

  3. Variation among Soybean Cultivars in Mesophyll Conductance and Leaf Water Use Efficiency

    Directory of Open Access Journals (Sweden)

    James Bunce

    2016-12-01

    Full Text Available Improving water use efficiency (WUE may prove a useful way to adapt crop species to drought. Since the recognition of the importance of mesophyll conductance to CO2 movement from inside stomatal pores to the sites of photosynthetic carboxylation, there has been interest in how much intraspecific variation in mesophyll conductance (gm exists, and how such variation may impact leaf WUE within C3 species. In this study, the gm and leaf WUE of fifteen cultivars of soybeans grown under controlled conditions were measured under standardized environmental conditions. Leaf WUE varied by a factor of 2.6 among the cultivars, and gm varied by a factor of 8.6. However, there was no significant correlation (r = −0.047 between gm and leaf WUE. Leaf WUE was linearly related to the sub-stomatal CO2 concentration. The value of gm affected the ratio of maximum Rubisco carboxylation capacity calculated from the sub-stomatal CO2 concentration to that calculated from the CO2 concentration at the site of carboxylation. That is, variation in gm affected the efficiency of Rubisco carboxylation, but not leaf WUE. Nevertheless, there is considerable scope for genetically improving soybean leaf water use efficiency.

  4. Leaf area and water content changes after permanent and temporary storage.

    Directory of Open Access Journals (Sweden)

    Kevyn J Juneau

    Full Text Available Accurate measurements of leaf morphology must be taken to develop models of ecosystem productivity and climate change projections. Once leaves are removed from a plant they begin to lose water and degrade. If specimens cannot be measured immediately after harvest, it is important to store the leaves in a manner that reduces morphological changes. If preserved specimens are used, estimates that closely match fresh measurements need to be calculated. This study examined the change in leaf area after storage treatments and developed models that can be used to more accurately estimate initial leaf area. Fresh leaf area was measured from ten plant species then stored in one of two common storage treatments. After storage, leaf area was re-measured and comparisons were made between species and growth forms. Leaf area decreased the most after permanent storage treatments and the least after temporary storage. Pressed leaves shrunk over 18% while cold storage leaves shrunk under 4%. The woody dicot growth form shrunk the least in all treatments. Shrinkage was positively correlated with initial water content and dissection index, a measure of leaf shape and complexity.

  5. BOREAS TE-12 SSA Leaf Water Potential Data

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Walter-Shea, Elizabeth A.; Mesarch, Mark A.; Chen, L.; Yang, Litao

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-12 (Terrestrial Ecology) team collected water potential data in 1993 and 1994 from aspen, jack pine, and black spruce leaves/needles. Collections were made at the Southern Study Area Nipawin Fen Site (SSA FEN), Young Jack Pine (YJP), Young Aspen (YA), Old Aspen (OA), and Old Black Spruce (OBS) sites. Measurements were made using a pressure chamber on a platform in the field. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.

    Science.gov (United States)

    Zhu, Junqi; Dai, Zhanwu; Vivin, Philippe; Gambetta, Gregory A; Henke, Michael; Peccoux, Anthony; Ollat, Nathalie; Delrot, Serge

    2017-12-23

    Predicting both plant water status and leaf gas exchange under various environmental conditions is essential for anticipating the effects of climate change on plant growth and productivity. This study developed a functional-structural grapevine model which combines a mechanistic understanding of stomatal function and photosynthesis at the leaf level (i.e. extended Farqhuhar-von Caemmerer-Berry model) and the dynamics of water transport from soil to individual leaves (i.e. Tardieu-Davies model). The model included novel features that account for the effects of xylem embolism (fPLC) on leaf hydraulic conductance and residual stomatal conductance (g0), variable root and leaf hydraulic conductance, and the microclimate of individual organs. The model was calibrated with detailed datasets of leaf photosynthesis, leaf water potential, xylem sap abscisic acid (ABA) concentration and hourly whole-plant transpiration observed within a soil drying period, and validated with independent datasets of whole-plant transpiration under both well-watered and water-stressed conditions. The model well captured the effects of radiation, temperature, CO2 and vapour pressure deficit on leaf photosynthesis, transpiration, stomatal conductance and leaf water potential, and correctly reproduced the diurnal pattern and decline of water flux within the soil drying period. In silico analyses revealed that decreases in g0 with increasing fPLC were essential to avoid unrealistic drops in leaf water potential under severe water stress. Additionally, by varying the hydraulic conductance along the pathway (e.g. root and leaves) and changing the sensitivity of stomatal conductance to ABA and leaf water potential, the model can produce different water use behaviours (i.e. iso- and anisohydric). The robust performance of this model allows for modelling climate effects from individual plants to fields, and for modelling plants with complex, non-homogenous canopies. In addition, the model provides a

  7. Spectroscopic determination of leaf water content using linear ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-02-02

    Feb 2, 2012 ... spectral reflectance test. The collected leaves were promptly transferred into a cooler with ice to preserve their freshness. The leaf samples were then transported ... Before conducting measurements, a standard panel was used to calibrate the instrument. During measurements, the sensor probe was placed.

  8. Effects of spring prescribed fire on short-term, leaf-level photosynthesis and water use efficiency in longleaf pine

    Science.gov (United States)

    John K. Jackson; Dylan N. Dillaway; Michael C. Tyree; Mary Anne Sword Sayer

    2015-01-01

    Fire is a natural and important environmental disturbance influencing the structure, function, and composition of longleaf pine (Pinus palustris Mill.) ecosystems. However, recovery of young pines to leaf scorch may involve changes in leaf physiology, which could influence leaf water-use efficiency (WUE). This work is part of a larger seasonal...

  9. Effect of Leaf Water Potential on Internal Humidity and CO2 Dissolution: Reverse Transpiration and Improved Water Use Efficiency under Negative Pressure

    Science.gov (United States)

    Vesala, Timo; Sevanto, Sanna; Grönholm, Tiia; Salmon, Yann; Nikinmaa, Eero; Hari, Pertti; Hölttä, Teemu

    2017-01-01

    The pull of water from the soil to the leaves causes water in the transpiration stream to be under negative pressure decreasing the water potential below zero. The osmotic concentration also contributes to the decrease in leaf water potential but with much lesser extent. Thus, the surface tension force is approximately balanced by a force induced by negative water potential resulting in concavely curved water-air interfaces in leaves. The lowered water potential causes a reduction in the equilibrium water vapor pressure in internal (sub-stomatal/intercellular) cavities in relation to that over water with the potential of zero, i.e., over the flat surface. The curved surface causes a reduction also in the equilibrium vapor pressure of dissolved CO2, thus enhancing its physical solubility to water. Although the water vapor reduction is acknowledged by plant physiologists its consequences for water vapor exchange at low water potential values have received very little attention. Consequences of the enhanced CO2 solubility to a leaf water-carbon budget have not been considered at all before this study. We use theoretical calculations and modeling to show how the reduction in the vapor pressures affects transpiration and carbon assimilation rates. Our results indicate that the reduction in vapor pressures of water and CO2 could enhance plant water use efficiency up to about 10% at a leaf water potential of −2 MPa, and much more when water potential decreases further. The low water potential allows for a direct stomatal water vapor uptake from the ambient air even at sub-100% relative humidity values. This alone could explain the observed rates of foliar water uptake by e.g., the coastal redwood in the fog belt region of coastal California provided the stomata are sufficiently open. The omission of the reduction in the water vapor pressure causes a bias in the estimates of the stomatal conductance and leaf internal CO2 concentration based on leaf gas exchange

  10. The Effects of Crude Neem Leaf Acetone-Water Extract on ...

    African Journals Online (AJOL)

    Alasia Datonye

    loss, the hemostatic system which include platelets, vascular endothelial cells, and plasma coagulation proteins. 9 come into play . To generate clot, both the intrinsic and. The Effects of Crude Neem Leaf Acetone-Water Extract on Prothrombin Time (PT) and Activated Partial Thromboplastin Time (APTT) in Albino Wistar ...

  11. Retrieval of leaf water content spanning the visible to thermal infrared spectra

    CSIR Research Space (South Africa)

    Ullah, S

    2014-05-01

    Full Text Available The objective of this study was to investigate the entire spectra (from visible to the thermal infrared; 0.390 µm -14.0 µm) to retrieve leaf water content in a consistent manner. Narrow-band spectral indices (calculated from all possible two band...

  12. Coordination of leaf and stem water transport properties in tropical forest trees

    Science.gov (United States)

    Frederick C. Meinzer; David R. Woodruff; Jean-Christophe Domec; Guillermo Goldstein; Paula I. Campanello; Genoveva M. Gatti; Randol Villalobos-Vega

    2008-01-01

    Stomatal regulation of transpiration constrains leaf water potential (ψ l) within species-specific ranges that presumably avoid excessive tension and embolism in the stem xylem upstream. However, the hydraulic resistance of leaves can be highly variable over short time scales, uncoupling tension in the xylem of leaves from that in the...

  13. Growth and yield response to plant density of water leaf ( Talinum ...

    African Journals Online (AJOL)

    The effects of different planting spaces (15cm x 15cm, 20cm x 20cm, 25cm x 25cm and 30cm x 30cm) on the growth and yield of Talinum triangulare (Water leaf) were investigated in two cropping seasons from 2012 to 2013 (rainy and dry seasons) at University of Port Harcourt Teaching and Research farm, Port Harcourt, ...

  14. CDOM PRODUCTION BY MANGROVE LEAF LITTER AND SARGASSUM COLONIES IN FLORIDA KEYS COASTAL WATERS

    Science.gov (United States)

    We have investigated the importance of leaf litter from red mangroves (Rhizophora mangle) and living Sargassum plants as sources of chromophoric dissolved organic matter (CDOM) to the coastal ocean waters and coral reef system of the Florida Keys. The magnitude of UVB exposure t...

  15. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions

    NARCIS (Netherlands)

    Zhu, L.; Peppel, van de A.C.; Li, X.; Welander, M.

    2004-01-01

    Leaf water potential and endogenous cytokinins in xylem sap of young apple trees treated with or without paclobutrazol (PBZ) under drought stress conditions were investigated. Three drought and rewatering cycles were used in the experiments and leaf water potential was measured every 2-4 days during

  16. Wettability, Polarity, and Water Absorption of Holm Oak Leaves: Effect of Leaf Side and Age1[OPEN

    Science.gov (United States)

    Fernández, Victoria; Sancho-Knapik, Domingo; Guzmán, Paula; Peguero-Pina, José Javier; Gil, Luis; Karabourniotis, George; Khayet, Mohamed; Fasseas, Costas; Heredia-Guerrero, José Alejandro; Heredia, Antonio; Gil-Pelegrín, Eustaquio

    2014-01-01

    Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology. PMID:24913938

  17. Does elevated CO2 protect photosynthesis from damage by high temperature via modifying leaf water status in maize seedlings?

    Science.gov (United States)

    Because high temperatures under field conditions are associated with high water vapor pressure deficits, often causing leaf desiccation, we hypothesized that decreased stomatal conductance at elevated carbon dioxide may increase leaf water potential and protect photosynthesis in C4 species from dama...

  18. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest.

    Science.gov (United States)

    Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang

    2012-07-01

    The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure-volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (D(h)) and higher mass-based photosynthetic rate (A(m)); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π(0)) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, A(m), and dry season π(0). Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, D(h), as well as dry season π(0). Both wood density and leaf density were closely correlated with leaf water-stress tolerance and A(m). The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves.

  19. DIURNAL CHANGES IN LEAF PHOTOSYNTHESIS AND RELATIVE WATER CONTENT OF GRAPEVINE

    Directory of Open Access Journals (Sweden)

    Monica Popescu

    2014-11-01

    Full Text Available Variation in light intensity, air temperature and relative air humidity leads to diurnal variations of photosynthetic rate and leaf relative water content. In order to determine the diurnal changes in net photosynthetic rate of vine plants and influence of the main environmental factors, gas exchange in the vine leaves were measure using a portable plant CO2 analysis package. The results show that diurnal changes in photosynthetic rate could be interpreted as single-peak curve, with a maximum at noon (10.794 μmol CO2 m-2 s-1. Leaf relative water content has maximum value in the morning; the values may slightly decrease during the day (day of June, with normal temperature, no rain, no water restriction in soil.

  20. Transpiration and leaf growth of potato clones in response to soil water deficit

    Directory of Open Access Journals (Sweden)

    André Trevisan de Souza

    2014-04-01

    Full Text Available Potato (Solanum tuberosum ssp. Tuberosum crop is particularly susceptible to water deficit because of its small and shallow root system. The fraction of transpirable soil water (FTSW approach has been widely used in the evaluation of plant responses to water deficit in different crops. The FTSW 34 threshold (when stomatal closure starts is a trait of particular interest because it is an indicator of tolerance to water deficit. The FTSW threshold for decline in transpiration and leaf growth was evaluated in a drying soil to identify potato clones tolerant to water deficit. Two greenhouse experiments were carried out in pots, with three advanced clones and the cultivar Asterix. The FTSW, transpiration and leaf growth were measured on a daily basis, during the period of soil drying. FTSW was an efficient method to separate potato clones with regard to their response to water deficit. The advancedclones SMINIA 02106-11 and SMINIA 00017-6 are more tolerant to soil water deficit than the cultivar Asterix, and the clone SMINIA 793101-3 is more tolerant only under high solar radiation.

  1. Improving agronomic water use efficiency in tomato by rootstock-mediated hormonal regulation of leaf biomass.

    Science.gov (United States)

    Cantero-Navarro, Elena; Romero-Aranda, Remedios; Fernández-Muñoz, Rafael; Martínez-Andújar, Cristina; Pérez-Alfocea, Francisco; Albacete, Alfonso

    2016-10-01

    Water availability is the most important factor limiting food production, thus developing new scientific strategies to allow crops to more efficiently use water could be crucial in a world with a growing population. Tomato is a highly water consuming crop and improving its water use efficiency (WUE) implies positive economic and environmental effects. This work aimed to study and exploit root-derived hormonal traits to improve WUE in tomato by grafting on selected rootstocks. Firstly, root-related hormonal parameters associated to WUE were identified in a population of recombinant inbred lines (RILs) derived from the wild tomato species Solanum pimpinellifolium. A principal component analysis (PCA) revealed that some hormonal traits were associated with productivity (plant biomass and photosynthesis) and WUE in the RIL population. Leaf ABA concentration was associated to the first component (PC1) of the PCA, which explained a 60% of the variance in WUE, while the ethylene precursor ACC and the ratio ACC/ABA were also associated to PC1 but in the opposite direction. Secondly, we selected RILs according to their extreme biomass (high, B, low, b) and water use (high, W, low, w), and studied the differential effect of shoot and root on WUE by reciprocal grafting. In absence of any imposed stress, there were no rootstock effects on vegetative shoot growth and water relations. Finally, we exploited the previously identified root-related hormonal traits by grafting a commercial tomato variety onto the selected RILs to improve WUE. Interestingly, rootstocks that induced low biomass and water use, 'bw', improved fruit yield and WUE (defined as fruit yield/water use) by up to 40% compared to self-grafted plants. Although other hormonal factors appear implicated in this response, xylem ACC concentration seems an important root-derived trait that inhibits leaf growth but does not limit fruit yield. Thus tomato WUE can be improved exploiting rootstock-derived hormonal signals

  2. An accurate retrieval of leaf water content from mid to thermal infrared spectra using continuous wavelet analysis.

    Science.gov (United States)

    Ullah, Saleem; Skidmore, Andrew K; Naeem, Mohammad; Schlerf, Martin

    2012-10-15

    Leaf water content determines plant health, vitality, photosynthetic efficiency and is an important indicator of drought assessment. The retrieval of leaf water content from the visible to shortwave infrared spectra is well known. Here for the first time, we estimated leaf water content from the mid to thermal infrared (2.5-14.0 μm) spectra, based on continuous wavelet analysis. The dataset comprised 394 spectra from nine plant species, with different water contents achieved through progressive drying. To identify the spectral feature most sensitive to the variations in leaf water content, first the Directional Hemispherical Reflectance (DHR) spectra were transformed into a wavelet power scalogram, and then linear relations were established between the wavelet power scalogram and leaf water content. The six individual wavelet features identified in the mid infrared yielded high correlations with leaf water content (R(2)=0.86 maximum, 0.83 minimum), as well as low RMSE (minimum 8.56%, maximum 9.27%). The combination of four wavelet features produced the most accurate model (R(2)=0.88, RMSE=8.00%). The models were consistent in terms of accuracy estimation for both calibration and validation datasets, indicating that leaf water content can be accurately retrieved from the mid to thermal infrared domain of the electromagnetic radiation. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Limited Effects of Water Absorption on Reducing the Accuracy of Leaf Nitrogen Estimation

    Directory of Open Access Journals (Sweden)

    Blowman J. Wang

    2017-03-01

    Full Text Available Nitrogen is an essential nutrient in many terrestrial ecosystems because it affects vegetation’s primary production. Due to the variety of nitrogen-containing substances and the differences in their composition across species, statistical approaches are now dominant in remote sensing retrieval of leaf nitrogen content. Many studies remove spectral regions characterized by strong water absorptions before retrieving nitrogen content, because water is believed to mask the absorption features of nitrogen. The objectives of this study are to discuss the necessity of this practice and to explore how water absorption affects leaf nitrogen estimation. Spectral measurements and chemical analyses for Maize, Sawtooth Oak, and Sweetgum leaves were carried out in 2014. The leaf optical properties model PROSPECT5 was used to eliminate the influences of water on the measured reflectance spectra. The inversion accuracy of PROPECT5 for chlorophyll, carotenoid, water, and dry matter of Maize was also discussed. Measured, simulated, and water-removed spectra were used to: (1 find the optimal nitrogen-related spectral index; and (2 regress with the area-based leaf nitrogen concentration (LNC using the partial least square regression technique (PLSR. Two types of spectral indices were selected in this study: Normalized Difference Spectral Index (NDSI and Ratio Spectral Index (RSI. Additionally, first-order derivative forms of measured, simulated, and water-removed spectra were devised to search for the optimal spectral indices. Finally, species-specific optimal indices and cross-species optimal indices, as well as their root mean square errors (RMSE and coefficients of determination (R2, were obtained. The Ending Top Percentile (ETP, an indicator of the performance of cross-species optimal indices, was also calculated. PLSR was combined with leave-one-out cross validation (LOOCV for each species. The predicted root mean square errors (RMSEP and predicted R2 were

  4. Effects of Lantana camara leaf extract on the activity of superoxide dismutase and accumulation of H2O2 in water hyacinth leaf.

    Science.gov (United States)

    Zheng, Hui-Qiong; Wei, Ning; Wang, Liu-Fa; He, Ping

    2006-04-01

    Water hyacinth (Eichhornia crassipes) is one of the most productive plants, but is also a troublesome weed in the world. In order to protect the public water system from chemical herbicides pollution, biological method has been suggested to control the growth and the reproduction of this weed. Lantana (Lantana camara L.) is an important weed of the family Verbenaceae and its leaf extract is highly toxic to water hyacinth. The results of this study showed that the extract of lantana leaves suppressed the emergence of leaf buds of water hyacinth plant, and caused the decay of its leaves by foliar spraying. In addition, the increase of SOD activity in water hyacinth leaves was in accordance with the accumulation of H(2)O(2) and the increase in degree of membrane peroxidation, while the activity of catalase, which might remove the excessive H(2)O(2) in water hyacinth leaves, was inhibited by treatment with lantana extract. At tissue level, high H(2)O(2) histochemical labeling was detected in guard cells after treatment with lantana extract. This overproduction of H(2)O(2) could kill the leaf cells and cause leaf necrosis in the treated plant. Therefore, the high toxicity of lantana leaf extract to water hyacinth might be due to oxidative stress.

  5. Chloride regulates leaf cell size and water relations in tobacco plants.

    Science.gov (United States)

    Franco-Navarro, Juan D; Brumós, Javier; Rosales, Miguel A; Cubero-Font, Paloma; Talón, Manuel; Colmenero-Flores, José M

    2016-02-01

    Chloride (Cl(-)) is a micronutrient that accumulates to macronutrient levels since it is normally available in nature and actively taken up by higher plants. Besides a role as an unspecific cell osmoticum, no clear biological roles have been explicitly associated with Cl(-) when accumulated to macronutrient concentrations. To address this question, the glycophyte tobacco (Nicotiana tabacum L. var. Habana) has been treated with a basal nutrient solution supplemented with one of three salt combinations containing the same cationic balance: Cl(-)-based (CL), nitrate-based (N), and sulphate+phosphate-based (SP) treatments. Under non-saline conditions (up to 5 mM Cl(-)) and no water limitation, Cl(-) specifically stimulated higher leaf cell size and led to a moderate increase of plant fresh and dry biomass mainly due to higher shoot expansion. When applied in the 1-5 mM range, Cl(-) played specific roles in regulating leaf osmotic potential and turgor, allowing plants to improve leaf water balance parameters. In addition, Cl(-) also altered water relations at the whole-plant level through reduction of plant transpiration. This was a consequence of a lower stomatal conductance, which resulted in lower water loss and greater photosynthetic and integrated water-use efficiency. In contrast to Cl(-), these effects were not observed for essential anionic macronutrients such as nitrate, sulphate, and phosphate. We propose that the abundant uptake and accumulation of Cl(-) responds to adaptive functions improving water homeostasis in higher plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Effects of water stress on irradiance acclimation of leaf traits in almond trees.

    Science.gov (United States)

    Egea, Gregorio; González-Real, María M; Baille, Alain; Nortes, Pedro A; Conesa, María R; Ruiz-Salleres, Isabel

    2012-04-01

    Photosynthetic acclimation to highly variable local irradiance within the tree crown plays a primary role in determining tree carbon uptake. This study explores the plasticity of leaf structural and physiological traits in response to the interactive effects of ontogeny, water stress and irradiance in adult almond trees that have been subjected to three water regimes (full irrigation, deficit irrigation and rain-fed) for a 3-year period (2006-08) in a semiarid climate. Leaf structural (dry mass per unit area, N and chlorophyll content) and photosynthetic (maximum net CO(2) assimilation, A(max), maximum stomatal conductance, g(s,max), and mesophyll conductance, g(m)) traits and stem-to-leaf hydraulic conductance (K(s-l)) were determined throughout the 2008 growing season in leaves of outer south-facing (S-leaves) and inner northwest-facing (NW-leaves) shoots. Leaf plasticity was quantified by means of an exposure adjustment coefficient (ε=1-X(NW)/X(S)) for each trait (X) of S- and NW-leaves. Photosynthetic traits and K(s-l) exhibited higher irradiance-elicited plasticity (higher ε) than structural traits in all treatments, with the highest and lowest plasticity being observed in the fully irrigated and rain-fed trees, respectively. Our results suggest that water stress modulates the irradiance-elicited plasticity of almond leaves through changes in crown architecture. Such changes lead to a more even distribution of within-crown irradiance, and hence of the photosynthetic capacity, as water stress intensifies. Ontogeny drove seasonal changes only in the ε of area- and mass-based N content and mass-based chlorophyll content, while no leaf age-dependent effect was observed on ε as regards the physiological traits. Our results also indicate that the irradiance-elicited plasticity of A(max) is mainly driven by changes in leaf dry mass per unit area, in g(m) and, most likely, in the partitioning of the leaf N content.

  7. Effects of leaf age within growth stages of pepper and sorghum plants on leaf thickness, water, chlorophyll, and light reflectance. [in spectral vegetation discrimination

    Science.gov (United States)

    Gausman, H. W.; Cardenas, R.; Berumen, A.

    1974-01-01

    Pepper and sorghum plants (characterized by porous and compact leaf mesophylls, respectively) were used to study the influence of leaf age on light reflectance. Measurements were limited to the upper five nodal positions within each growth stage, since upper leaves make up most of the reflectance surfaces remotely sensed. The increase in leaf thickness and water content with increasing leaf age was taken into consideration, since each of these factors affects the reflectance as well as the selection of spectral wavelength intervals for optimum discrimination of vegetation.

  8. Differences in water depth determine leaf-litter decomposition in streams: implications on impact assessment reliability

    Directory of Open Access Journals (Sweden)

    Martínez A.

    2016-01-01

    Full Text Available Leaf-litter decomposition is a widespread functional indicator to assess the stream ecosystem status. However, the spatial location of leaf-bags could distort the impact assessment since intrinsic features of a given site have an important role in the spatial distribution of macroinvertebrates, which could affect decomposition rate. A source of variability that can be easily controlled is the water depth at which bags are incubated in stream bed. Therefore, we tested if water depth within a same mesohabitat (riffles can determine decomposition rates. Due to the seasonal variability of macroinvertebrate assemblages in temperate regions, the study was performed in autumn-winter and spring to test the consistency of the findings. In three streams from North of Spain 15 mesh bags with alder leaves were placed in riffles covering a gradient of depths. Depth had a positive effect on decomposition rates and biomass of associated total invertebrates and shredders in autumn-winter, fauna variables helping to explain the differences in rates. In spring, depth affected negatively rates, the observed variability being weakly explained by invertebrates, which did not show differences along depth. Despite the opposite trend between seasons, water depth influences the decomposition rates, which may reduce or increase differences among systems if the water depth distribution is greatly biased. Our study highlights the importance of covering a similar range of water depths in the different systems being compared.

  9. Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species

    Science.gov (United States)

    Daniel M. Johnson; David R. Woodruff; Katherien A. McCulloh; Frederick C. Meinzer

    2009-01-01

    The objectives of this study were to measure Kleaf, using a rehydration kinetics method, (1) in the laboratory (under controlled conditions) across a range of water potentials to construct vulnerability curves (VC) and (2) over the course of the day in the field along with leaf water potential and stomatal conductance. The results presented here...

  10. From leaf to whole-plant water use efficiency (WUE in complex canopies: Limitations of leaf WUE as a selection target

    Directory of Open Access Journals (Sweden)

    Hipólito Medrano

    2015-06-01

    Full Text Available Plant water use efficiency (WUE is becoming a key issue in semiarid areas, where crop production relies on the use of large volumes of water. Improving WUE is necessary for securing environmental sustainability of food production in these areas. Given that climate change predictions include increases in temperature and drought in semiarid regions, improving crop WUE is mandatory for global food production. WUE is commonly measured at the leaf level, because portable equipment for measuring leaf gas exchange rates facilitates the simultaneous measurement of photosynthesis and transpiration. However, when those measurements are compared with daily integrals or whole-plant estimates of WUE, the two sometimes do not agree. Scaling up from single-leaf to whole-plant WUE was tested in grapevines in different experiments by comparison of daily integrals of instantaneous water use efficiency [ratio between CO2 assimilation (AN and transpiration (E; AN/E] with midday AN/E measurements, showing a low correlation, being worse with increasing water stress. We sought to evaluate the importance of spatial and temporal variation in carbon and water balances at the leaf and plant levels. The leaf position (governing average light interception in the canopy showed a marked effect on instantaneous and daily integrals of leaf WUE. Night transpiration and respiration rates were also evaluated, as well as respiration contributions to total carbon balance. Two main components were identified as filling the gap between leaf and whole plant WUE: the large effect of leaf position on daily carbon gain and water loss and the large flux of carbon losses by dark respiration. These results show that WUE evaluation among genotypes or treatments needs to be revised.

  11. Determination of Leaf Water Content by Visible and Near-Infrared Spectrometry and Multivariate Calibration in Miscanthus

    Directory of Open Access Journals (Sweden)

    Xiaoli Jin

    2017-05-01

    Full Text Available Leaf water content is one of the most common physiological parameters limiting efficiency of photosynthesis and biomass productivity in plants including Miscanthus. Therefore, it is of great significance to determine or predict the water content quickly and non-destructively. In this study, we explored the relationship between leaf water content and diffuse reflectance spectra in Miscanthus. Three multivariate calibrations including partial least squares (PLS, least squares support vector machine regression (LSSVR, and radial basis function (RBF neural network (NN were developed for the models of leaf water content determination. The non-linear models including RBF_LSSVR and RBF_NN showed higher accuracy than the PLS and Lin_LSSVR models. Moreover, 75 sensitive wavelengths were identified to be closely associated with the leaf water content in Miscanthus. The RBF_LSSVR and RBF_NN models for predicting leaf water content, based on 75 characteristic wavelengths, obtained the high determination coefficients of 0.9838 and 0.9899, respectively. The results indicated the non-linear models were more accurate than the linear models using both wavelength intervals. These results demonstrated that visible and near-infrared (VIS/NIR spectroscopy combined with RBF_LSSVR or RBF_NN is a useful, non-destructive tool for determinations of the leaf water content in Miscanthus, and thus very helpful for development of drought-resistant varieties in Miscanthus.

  12. Non-invasive assessment of leaf water status using a dual-mode microwave resonator.

    Science.gov (United States)

    Dadshani, Said; Kurakin, Andriy; Amanov, Shukhrat; Hein, Benedikt; Rongen, Heinz; Cranstone, Steve; Blievernicht, Ulrich; Menzel, Elmar; Léon, Jens; Klein, Norbert; Ballvora, Agim

    2015-01-01

    The water status in plant leaves is a good indicator for the water status in the whole plant revealing stress if the water supply is reduced. The analysis of dynamic aspects of water availability in plant tissues provides useful information for the understanding of the mechanistic basis of drought stress tolerance, which may lead to improved plant breeding and management practices. The determination of the water content in plant tissues during plant development has been a challenge and is currently feasible based on destructive analysis only. We present here the application of a non-invasive quantitative method to determine the volumetric water content of leaves and the ionic conductivity of the leaf juice from non-invasive microwave measurements at two different frequencies by one sensor device. A semi-open microwave cavity loaded with a ceramic dielectric resonator and a metallic lumped-element capacitor- and inductor structure was employed for non-invasive microwave measurements at 150 MHz and 2.4 Gigahertz on potato, maize, canola and wheat leaves. Three leaves detached from each plant were chosen, representing three developmental stages being representative for tissue of various age. Clear correlations between the leaf- induced resonance frequency shifts and changes of the inverse resonator quality factor at 2.4 GHz to the gravimetrically determined drying status of the leaves were found. Moreover, the ionic conductivity of Maize leaves, as determined from the ratio of the inverse quality factor and frequency shift at 150 MHz by use of cavity perturbation theory, was found to be in good agreement with direct measurements on plant juice. In conjunction with a compact battery- powered circuit board- microwave electronic module and a user-friendly software interface, this method enables rapid in-vivo water amount assessment of plants by a handheld device for potential use in the field.

  13. Factors controlling plasticity of leaf morphology in Robinia pseudoacacia: III. biophysical constraints on leaf expansion under long-term water stress

    Science.gov (United States)

    Yanxiang ​Zhang; Maria Alejandra Equiza; Quanshui Zheng; Melvin T. Tyree

    2011-01-01

    In this article, we measured the relative growth rate (RGR) of leaves of Robinia pseudoacacia seedlings under well-watered and water-stressed conditions (mid-day Ψw = leaf water potential estimated with a pressure bomb of −0.48 and −0.98 MPa, respectively). Pressure–volume (PV) curves were done on growing leaves at 25, 50 and 95% of the mature size...

  14. Impacts of water stress, environment and rootstock on the diurnal behaviour of stem water potential and leaf conductance in pistachio (Pistacia vera L.

    Directory of Open Access Journals (Sweden)

    Houssem Memmi

    2016-06-01

    Full Text Available Little information is available on the diurnal behaviour of water potential and leaf conductance on pistachio trees despite their relevance to fine tune irrigation strategies. Mature pistachio trees were subject to simultaneous measurements of stem water potential (Ψx and leaf conductance (gl during the day, at three important periods of the irrigation season. Trees were grown on three different rootstocks and water regimes. An initial baseline relating Ψx to air vapor pressure deficit (VPD is presented for irrigation scheduling in pistachio. Ψx was closely correlated with VPD but with a different fit according to the degree of water stress. No evidence of the variation of Ψx in relation to the phenology of the tree was observed. Furthermore, midday Ψx showed more accuracy to indicate a situation of water stress than predawn water potential. Under well irrigated conditions, gl was positively correlated with VPD during stage II of growth reaching its peak when VPD reached its maximum value (around 4 kPa. This behaviour changed during stage III of fruit growth suggesting a reliance of stomatal behaviour to the phenological stage independently to the tree water status. The levels of water stress reached were translated in a slow recovery of tree water status and leaf conductance (more than 40 days. Regarding rootstocks, P. integerrima showed little adaptation to water shortage compared to the two other rootstocks under the studied conditions.

  15. The δ18O of Atmospheric Water Vapour is Recorded in the Oxygen Isotope Ratios of Leaf water and Organic Molecules at High Relative Humidity

    Science.gov (United States)

    Lehmann, M. M.; Goldsmith, G. R.; Schmid, L.; Siegwolf, R. T.; Gessler, A.; Saurer, M.

    2016-12-01

    The oxygen stable isotope ratios (δ18O) of water and organic molecules in plants hold information about plant physiology, ecohydrology, and environmental conditions. For instance, the δ18O ratio of leaf water reflects both the δ18O ratios of water in the soil and in the atmosphere. This water, which is incorporated into organic molecules at the time of synthesis, thus serves to record the environment in which the plant was growing. However, how δ18O of atmospheric water vapour affects the δ18O ratio of organic molecules remains poorly understood. In order to investigate the effects of fog and rain (e.g. high atmospheric water availability) on δ18O ratios of leaf water and organic molecules, we exposed oak tree saplings (Quercus robur) in wet and dry soil treatments to 18O-depleted water vapour at ca. 90% relative humidity for 5 h. We harvested plant material over 24 h to trace the movement of the isotopic label in water and organics throughout the plant from the leaves to the stem. The atmospheric water vapour caused a strong 18O-depletion in leaf and xylem water, as well as in leaf carbohydrates, with the most negative ratios observed at the end of the fogging. Moreover, the label was clearly observed in twig and stem phloem carbohydrates following a short delay. A detailed compound-specific isotope analysis of the leaf carbohydrates revealed that the label caused an 18O-depletion in fructose, glucose, and sucrose. Quercitol, an oak-specific alditol, did not show 18O-depletion. Clear soil moisture treatment effects were only observed for twig phloem carbohydrates, with a stronger 18O-depletion in wet plants than in dry plants, suggesting retarded leaf-to-phloem sugar export in trees under drought. We demonstrate that labelling with 18O-depleted water is a potential tool to trace the movement and incorporation of oxygen stable isotopes in plants. We clearly show that changes in δ18O of atmospheric water vapour are quickly imprinted on leaf water and

  16. Effect of root pruning and irrigation regimes on leaf water relations and xylem ABA and ionic concentrations in pear trees

    DEFF Research Database (Denmark)

    Wang, Yufei; Bertelsen, Marianne G.; Petersen, Karen Koefoed

    2014-01-01

    pruning caused water deficit stress in pear trees. Further RP trees had significantly lower concentrations of total cations and anions and the sum of cations and anions than the NP trees implying root pruning decreased acquisition of nutrients from the soil. In the root pruned trees, the leaf water......Root pruning is an effective approach for controlling vegetative growth of pear trees (Pyrus communis L.), yet the underlying mechanisms for such effect remain largely elusive. A two-year field experiment was conducted to investigate the effect of root pruning and irrigation regimes on leaf water...... relation characteristics, stomatal conductance and xylem sap abscisic acid (ABA) and ionic concentrations. Results showed that leaf water potential, leaf turgor and stomatal conductance of root pruning (RP) treatment was significantly lower than those of non-root pruning (NP) treatment indicating that root...

  17. Final report on the safety assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice,aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice,aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract.

    Science.gov (United States)

    2007-01-01

    Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic

  18. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates

    Science.gov (United States)

    Background and Aims: Vulnerability of the leaf hydraulic pathway to water-stress-induced dysfunction is a key component of drought tolerance in plants and may be important in defining species’ climatic range. However, the generality of the association between leaf hydraulic vulnerability and climate...

  19. Opportunities for improving leaf water use efficiency under climate change conditions.

    Science.gov (United States)

    Gago, Jorge; Douthe, Cyril; Florez-Sarasa, Igor; Escalona, Jose M; Galmes, Jeroni; Fernie, Alisdair R; Flexas, Jaume; Medrano, Hipolito

    2014-09-01

    WUEi (intrinsic water use efficiency) is a complex (multi)-trait, that depends on several physiological processes, driving plant productivity and its relation with a changing environment. Climatic change predictions estimate increases in temperature and drought in the semi-arid regions, rendering improved water use efficiency is a mandatory objective to maintain the current global food supply. The aims of this review were (i) to identify through a meta-analysis the leaf traits mostly related to intrinsic water use efficiency (WUEi, the ratio between A - net photosynthesis and gs - stomatal conductance), based on a newly compiled dataset covering more than 200 species/varieties and 106 genus of C3 plants (ii) to describe the main potential targets for WUEi improvement via biotechnological manipulations and (iii) to introduce emergent and innovative technologies including UAVs (Unmanned Aerial Vehicles) to scale up levels from leaf to whole plant water status. We confirmed that increases in gm/gs and Vcmax/gs ratios are systematically related with increases in WUEi maintained across species, habitats, and environmental conditions. Other emergent opportunities to improve WUEi are described such as the relationship between photosynthesis and respiration and their link with metabolomics. Finally, we outline our hypothesis that we are observing the advent of a "smart" agriculture, wherein new technologies, such as UAVs equipped with remote sensors will rapidly facilitate an efficient water use regulating the irrigation schedule and determination, under field conditions, of cultivars with improved water use efficiency. We, therefore, conclude that the multi-disciplinary challenge toward WUE has only just begun. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Capacitive water release and internal leaf water relocation delay drought-induced cavitation in African Maesopsis eminii.

    Science.gov (United States)

    Epila, Jackie; De Baerdemaeker, Niels J F; Vergeynst, Lidewei L; Maes, Wouter H; Beeckman, Hans; Steppe, Kathy

    2017-04-01

    The impact of drought on the hydraulic functioning of important African tree species, like Maesopsis eminii Engl., is poorly understood. To map the hydraulic response to drought-induced cavitation, sole reliance on the water potential at which 50% loss of xylem hydraulic conductivity (ψ50) occurs might be limiting and at times misleading as the value alone does not give a comprehensive overview of strategies evoked by M. eminii to cope with drought. This article therefore uses a methodological framework to study the different aspects of drought-induced cavitation and water relations in M. eminii. Hydraulic functioning of whole-branch segments was investigated during bench-top dehydration. Cumulative acoustic emissions and continuous weight measurements were used to quantify M. eminii's vulnerability to drought-induced cavitation and hydraulic capacitance. Wood structural traits, including wood density, vessel area, diameter and wall thickness, vessel grouping index, solitary vessel index and vessel wall reinforcement, were used to underpin observed physiological responses. On average, M. eminii's ψ50 (±SE) was -1.9 ± 0.1 MPa, portraying its xylem as drought vulnerable, just as one would expect for a common tropical pioneer. However, M. eminii additionally employed an interesting desiccation delay strategy, fuelled by internal relocation of leaf water, hydraulic capacitance and the presence of parenchyma around the xylem vessels. Our findings suggest that exclusive dependence on ψ50 would have misdirected our assessments of M. eminii's drought stress vulnerability. Hydraulic capacitance linked to anatomy and leaf-water relocation behaviour was equally important to better understand M. eminii's drought survival strategies. Because our study was conducted on branches of 3-year-old greenhouse-grown M. eminii seedlings, the findings cannot be simply extrapolated to adult M. eminii trees or their mature wood, because structural and physiological plant properties

  1. Modeling stomatal conductance in the Earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum

    Science.gov (United States)

    Bonan, G. B.; Williams, M.; Fisher, R. A.; Oleson, K. W.

    2014-05-01

    The empirical Ball-Berry stomatal conductance model is commonly used in Earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must both be empirically parameterized. We evaluated the Ball-Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil-plant-atmosphere continuum (SPA) to numerically optimize photosynthetic carbon gain per unit water loss while preventing leaf water potential dropping below a critical minimum level. We evaluated two alternative optimization algorithms: intrinsic water-use efficiency (Δ An/Δ gs, the marginal carbon gain of stomatal opening) and water-use efficiency (Δ An/Δ El, the marginal carbon gain of water loss). We implemented the stomatal models in a multi-layer plant canopy model, to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using: (1) leaf analyses; (2) canopy net radiation, sensible heat flux, latent heat flux, and gross primary production at six AmeriFlux sites spanning 51 site-years; and (3) parameter sensitivity analyses. Without soil moisture stress, the performance of the SPA stomatal conductance model was generally comparable to or somewhat better than the Ball-Berry model in flux tower simulations, but was significantly better than the Ball-Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from the physiological theory linking leaf water-use efficiency and water flow to and from the leaf along the soil-to-leaf pathway rather than being imposed a priori, as in the Ball-Berry model. Similar functional dependence of gs on Ds emerged from the water-use efficiency optimization. Sensitivity analyses showed that two parameters (stomatal efficiency and

  2. Development of pressurised hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts.

    Science.gov (United States)

    Matshediso, Phatsimo G; Cukrowska, Ewa; Chimuka, Luke

    2015-04-01

    Pressurised hot water extraction (PHWE) is a "green" technology which can be used for the extraction of essential components in Moringa oleifera leaf extracts. The behaviour of three flavonols (myricetin, quercetin and kaempferol) and total phenolic content (TPC) in Moringa leaf powder were investigated at various temperatures using PHWE. The TPC of extracts from PHWE were investigated using two indicators. These are reducing activity and the radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). Flavonols content in the PHWE extracts were analysed on high performance liquid chromatography with ultra violet (HPLC-UV) detection. The concentration of kaempferol and myricetin started decreasing at 150 °C while that of quercetin remained steady with extraction temperature. Optimum extraction temperature for flavonols and DPPH radical scavenging activity was found to be 100 °C. The TPC increased with temperature until 150 °C and then decreased while the reducing activity increased. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Leaf water 18 O and 2 H maps show directional enrichment discrepancy in Colocasia esculenta.

    Science.gov (United States)

    Gerlein-Safdi, Cynthia; Gauthier, Paul P G; Sinkler, Craig James; Caylor, Kelly Krispin

    2017-10-01

    Spatial patterns of leaf water isotopes are challenging to predict because of the intricate link between vein and lamina water. Many models have attempted to predict these patterns, but to date, most have focused on monocots with parallel veins. These provide a simple system to study, but do not represent the majority of plant species. Here, a new protocol is developed using a Picarro induction module coupled to a cavity ringdown spectrometer to obtain maps of the leaf water isotopes (18 O and 2 H). The technique is applied to Colocasia esculenta leaves. The results are compared with isotope ratio mass spectrometry. In C. esculenta, a large enrichment in the radial direction is observed, but not in the longitudinal direction. The string-of-lakes model fails to predict the observed patterns, while the Farquhar-Gan model is more successful, especially when enrichment is accounted for along the radial direction. Our results show that reticulate-veined leaves experience a larger enrichment along the axis of the secondary veins than along the midrib. We hypothesize that this is due to the lower major/minor vein ratio that leads to longer pathways between major veins and sites of evaporation. © 2017 John Wiley & Sons Ltd.

  4. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] and reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential ('leaf) if leaf hydraulic conductance (Kleaf) is insufficient to su...

  5. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    Science.gov (United States)

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  6. Final report on the safety assessment of Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, and Mentha Piperita (Peppermint) Leaf Water.

    Science.gov (United States)

    Nair, B

    2001-01-01

    Mentha Piperita (Peppermint) Oil, Mentha Piperita (Peppermint) Leaf Extract, Mentha Piperita (Peppermint) Leaf, Mentha Piperita (Peppermint) Leaf Water are obtained from the Mentha piperita plant. The oil is currently used in cosmetic formulations as a fragrance component, but previously had been also described as a denaturant. The extract and leaves are described as biological additives, but only the extract is reported to be used. Peppermint Water is described as a flavoring agent or fragrance component, but is not currently in use. Peppermint Oil is used at a concentration of menthol and menthone. Other possible constituents include pulegone, menthofuran, and limone. Most of the safety test data concern Peppermint Oil. The oil is considered to present the "worst case scenario" because of its many constituents, so data on the oil were considered relevant to the entire group of ingredients. Peppermint Oil was minimally toxic in acute oral studies. Short-term and sub-chronic oral studies reported cystlike lesions in the cerebellum in rats that were given doses of Peppermint Oil containing pulegone, pulegone alone, or large amounts (>200 mg/kg/day) of menthone. Pulegone is also a recognized hepatotoxin. Repeated intradermal dosing with Peppermint Oil produced moderate and severe reactions in rabbits, although Peppermint Oil did not appear to be phototoxic. Peppermint Oil was negative in the Ames test and a mouse lymphoma mutagenesis assay but gave equivocal results in a Chinese hamster fibroblast cell chromosome aberration assay. In a carcinogenicity study of toothpaste and its components, no apparent differences were noted between mice treated with Peppermint Oil and those treated with the toothpaste base. Isolated clinical cases of irritation and/or sensitization to Peppermint Oil and/or its constituents have been reported, but Peppermint Oil (8%) was not a sensitizer when tested using a maximization protocol. It was expected that dermal absorption of Peppermint

  7. 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction

    Science.gov (United States)

    Zhu, Xi; Wang, Tiejun; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Niemann, K. Olaf

    2015-12-01

    Leaf water content (LWC) plays an important role in agriculture and forestry management. It can be used to assess drought conditions and wildfire susceptibility. Terrestrial laser scanner (TLS) data have been widely used in forested environments for retrieving geometrically-based biophysical parameters. Recent studies have also shown the potential of using radiometric information (backscatter intensity) for estimating LWC. However, the usefulness of backscatter intensity data has been limited by leaf surface characteristics, and incidence angle effects. To explore the idea of using LiDAR intensity data to assess LWC we normalized (for both angular effects and leaf surface properties) shortwave infrared TLS data (1550 nm). A reflectance model describing both diffuse and specular reflectance was applied to remove strong specular backscatter intensity at a perpendicular angle. Leaves with different surface properties were collected from eight broadleaf plant species for modeling the relationship between LWC and backscatter intensity. Reference reflectors (Spectralon from Labsphere, Inc.) were used to build a look-up table to compensate for incidence angle effects. Results showed that before removing the specular influences, there was no significant correlation (R2 = 0.01, P > 0.05) between the backscatter intensity at a perpendicular angle and LWC. After the removal of the specular influences, a significant correlation emerged (R2 = 0.74, P < 0.05). The agreement between measured and TLS-derived LWC demonstrated a significant reduction of RMSE (root mean square error, from 0.008 to 0.003 g/cm2) after correcting for the incidence angle effect. We show that it is possible to use TLS to estimate LWC for selected broadleaved plants with an R2 of 0.76 (significance level α = 0.05) at leaf level. Further investigations of leaf surface and internal structure will likely result in improvements of 3D LWC mapping for studying physiology and ecology in vegetation.

  8. Specific leaf areas of the tank bromeliad Guzmania monostachia perform distinct functions in response to water shortage.

    Science.gov (United States)

    Freschi, Luciano; Takahashi, Cassia Ayumi; Cambui, Camila Aguetoni; Semprebom, Thais Ribeiro; Cruz, Aline Bertinatto; Mioto, Paulo Tamoso; de Melo Versieux, Leonardo; Calvente, Alice; Latansio-Aidar, Sabrina Ribeiro; Aidar, Marcos Pereira Marinho; Mercier, Helenice

    2010-05-01

    Leaves comprise most of the vegetative body of tank bromeliads and are usually subjected to strong longitudinal gradients. For instance, while the leaf base is in contact with the water accumulated in the tank, the more light-exposed middle and upper leaf sections have no direct access to this water reservoir. Therefore, the present study attempted to investigate whether different leaf portions of Guzmania monostachia, a tank-forming C(3)-CAM bromeliad, play distinct physiological roles in response to water shortage, which is a major abiotic constraint in the epiphytic habitat. Internal and external morphological features, relative water content, pigment composition and the degree of CAM expression were evaluated in basal, middle and apical leaf portions in order to allow the establishment of correlations between the structure and the functional importance of each leaf region. Results indicated that besides marked structural differences, a high level of functional specialization is also present along the leaves of this bromeliad. When the tank water was depleted, the abundant hydrenchyma of basal leaf portions was the main reservoir for maintaining a stable water status in the photosynthetic tissues of the apical region. In contrast, the CAM pathway was intensified specifically in the upper leaf section, which is in agreement with the presence of features more suitable for the occurrence of photosynthesis at this portion. Gas exchange data indicated that internal recycling of respiratory CO(2) accounted for virtually all nighttime acid accumulation, characterizing a typical CAM-idling pathway in the drought-exposed plants. Altogether, these data reveal a remarkable physiological complexity along the leaves of G. monostachia, which might be a key adaptation to the intermittent water supply of the epiphytic niche. Copyright 2009 Elsevier GmbH. All rights reserved.

  9. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential if leaf hydraulic conductance is insufficient to supply water to in...

  10. Natural recovery and leaf water potential after fire influenced by salvage logging and induced drought stress

    Directory of Open Access Journals (Sweden)

    D. Moya

    2013-01-01

    Full Text Available Salvage logging is one of the most common emergency actions in the short-term management after a fire. Several studies have been carried out and some obtained positive results which incite to carry it out but other, found negative effects on seedling establishment and regeneration. In addition, climatic changes will have large impacts on vegetation productivity and resilience since the regional models for south-eastern Spain predicts a rainfall decrease of about 20% and temperature increase of 4.5 ºC. Our aim was to determine how short-term forest management and induced drought affect the ecosystem recovery in Aleppo pine stands naturally recovered after a fire.In summer 2009, a mid-high severity fire burned 968 ha of Aleppo pine (Pinus halepensis Mill. forest in south-eastern Spain. Six months later, a salvage logging was carried out. The Aleppo pine recruitment was negligible. During summer 2010, twelve square plots (2m x 2m were set in the three scenarios: control, salvaged and drought induced. The surface cover and soil water availability for three dominant understory species were recorded in four field campaigns: Spring-2010, Fall-2010, Spring-2011 and Fall-2011.The season, management and the target species showed significant differences in growing and water stress. In general, Esparto grass showed lower water stress, mainly in Fall, a higher increase of total coverage. Both effects were showing their highest values in non-salvaged areas and no drought. Changes in leaf water potential and soil water content after the drought season influence the survival and development of individuals.Our results indicate that soil water content and ecosystem response can be modified by short-term silvicultural treatments. Therefore, management after fire could cause opposite effects to those initially foreseen, since they depend on fire severity, and type of ecosystem management response. So, their application must be evaluated and assessed before

  11. Water, Nitrogen and Plant Density Affect the Response of Leaf Appearance of Direct Seeded Rice to Thermal Time

    Directory of Open Access Journals (Sweden)

    Maite MARTÍNEZ-EIXARCH

    2013-01-01

    Full Text Available Field experiments were conducted in the Ebro Delta area (Spain, from 2007 to 2009 with two rice varieties: Gleva and Tebre. The experimental treatments included a series of seed rates, two different water management systems and two different nitrogen fertilization times. The number of leaves on the main stems and their emergence time were periodically tagged. The results indicated that the final leaf number on the main stems in the two rice varieties was quite stable over a three-year period despite of the differences in their respective growth cycles. Interaction between nitrogen fertilization and water management influenced the final leaf number on the main stems. Plant density also had a significant influence on the rate of leaf appearance by extending the phyllochron and postponing the onset of intraspecific competition after the emergence of the 7th leaf on the main stems. Final leaf number on the main stems was negatively related to plant density. A relationship between leaf appearance and thermal time was established with a strong nonlinear function. In direct-seeded rice, the length of the phyllochron increases exponentially in line with the advance of plant development. A general model, derived from 2-year experimental data, was developed and satisfactorily validated; it had a root mean square error of 0.3 leaf. An exponential model can be used to predict leaf emergence in direct-seeded rice.

  12. Patterns of leaf conductance and water potential of five Himalayan tree species.

    Science.gov (United States)

    Poudyal, K; Jha, P K; Zobel, D B; Thapa, C B

    2004-06-01

    We studied variations in water relations and drought response in five Himalayan tree species (Schima wallichii (DC.) Korth. (chilaune) and Castanopsis indica (Roxb.) Miq. (dhale katus) at an elevation of 1400 m, Quercus lanata Smith (banjh) and Rhododendron arboreum Smith (lali gurans) at 2020 m, and Quercus semecarpifolia Smith (khasru) at 2130 m) at Phulchowki Hill, Kathmandu, Nepal. Soil water potential at 15 (Psi(s15)) and 30 cm (Psi(s30)) depths, tree water potential at predawn (Psi(pd)) and midday (Psi(md)), and leaf conductance during the morning (g(wAM)) and afternoon (g(wPM)) were observed from December 1998 to April 2001, except during the monsoon months. There was significant variation among sites, species and months in Psi(pd), Psi(md), g(wAM) and g(wPM), and among months for all species for Psi(s15). Mean Psi(pd) and Psi(md) were lowest in Q. semecarpifolia (-0.40 and -1.18 MPa, respectively) and highest in S. wallichii (-0.20 and -0.63 MPa, respectively). The minimum Psi value for all species (-0.70 to -1.79 MPa) was observed in March 1999, after 4 months of unusually low rainfall. Some patterns of Psi(pd) were related to phenology and leaf damage. During leafing, Psi(pd) often increased. Mean g(wAM) and g(wPM) were highest in Q. semecarpifolia (172 and 190 mmol m(-2) s(-1), respectively) and lowest in C. indica (78 and 74 mmol m(-2) s(-1), respectively). Soil water potential (Psi) at 15 cm depth correlated with plant Psi in all species, but rarely with g(wAM) and not with g(wPM). Plant Psi declined with increasing elevation, whereas g(w) increased. As Psi(pd) declined, so did maximal g(w), but overall, g(w) was correlated with Psi(pd) only for R. arboreum. Schima wallichii maintained high Psi, with low stomatal conductance, as did Castanopsis indica, except that C. indica had low Psi during dry months. Rhododendron arboreum maintained high Psi(pd) and g(w), despite low soil Psi. Quercus lanata had low g(w) and low Psi(pd) in some months, but showed

  13. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees.

    Science.gov (United States)

    Sandra J. Bucci; Guillermo Goldstein; Frederick C. Meinzer; Augusto C. Franco; Paula Campanello; Fabián G. Scholz

    2005-01-01

    Seasonal regulation of leaf water potential (ΨL) was studied in eight dominant woody savanna species growing in Brazilian savanna (Cerrado) sites that experience a 5-month dry season. Despite marked seasonal variation in precipitation and air saturation deficit (D), seasonal differences in midday minimum Ψ...

  14. Height-Related Trends in Leaf Xylem Anatomy and Shoot Hydraulic Characteristics in a Tall Conifer: Safety versus Efficiency in Water Transport

    National Research Council Canada - National Science Library

    D. R. Woodruff; F. C. Meinzer; B. Lachenbruch

    2008-01-01

    Hydraulic vulnerability of Douglas-fir (Pseudotsuga menziesii) branchlets decreases with height, allowing shoots at greater height to maintain hydraulic conductance at more negative leaf water potentials...

  15. Leaf water enrichment of stable water isotopes (δ18O and δD) in a mature oil palm plantation in Jambi province, Indonesia.

    Science.gov (United States)

    Bonazza, Mattia; Tjoa, Aiyen; Knohl, Alexander

    2017-04-01

    During the last few decades, Indonesia experienced rapid and large scale land-use change towards intensively managed crops, one of them is oil palm. This transition results in warmer and dryer conditions in microclimate. The impacts on the hydrological cycle and on water-use by plants are, however, not yet completely clear. Water stable isotopes are useful tracers of the hydrological processes and can provide means to partition evapotranspiration into evaporation and transpiration. A key parameter, however, is the enrichment of water stable isotope in plant tissue such as leaves that can provide estimates on the isotopic composition of transpiration. Here we present the results of a field campaign conducted in a mature oil palm plantation in Jambi province, Indonesia. We combined continuous measurements of water vapor isotopic composition and mixing ratio with isotopic analysis of water stored in different pools like oil palm leaves, epiphytes, trunk organic matter and soil collected over a three days period. Leaf enrichment varied from -2 ‰ to 10 ‰ relative to source (ground) water. The temporal variability followed Craig and Gordon model predictions for leaf water enrichment. An improved agreement was reached after considering the Péclet effect with an appropriate value of the characteristic length (L). Measured stomatal conductance (gs) on two different sets of leaves (top and bottom canopy) was mainly controlled by radiation (photosynthetically active radiation) and vapor pressure deficit. We assume that this control could be explained in conditions where soil water content is not representing a limiting factor. Understanding leaf water enrichment provides one step towards partitioning ET.

  16. Investigating the Relationship Between Liquid Water and Leaf Area in Clonal Populus

    Science.gov (United States)

    Roberts, Dar; Brown, K.; Green, R.; Ustin, S.; Hinckley, T.

    1998-01-01

    Leaf Area Index (LAI) is one of the most commonly employed biophysical parameters used to characterize vegetation canopies and scale leaf physiological processes to larger scales. For example, LAI is a critical parameter used in regional scale estimates of evapotranspiration, photosynthesis, primary productivity, and carbon cycling (Running et al., 1989; Dorman and Sellers, 1989; Potter et al., 1993). LAI is typically estimated using ratio-based techniques, such as the Normalized Difference Vegetation Index (NDVI: e.g. Tucker 1979; Asrar et al., 1989; Sellers 1985, 1987). The physical basis behind this relationship depends on the high spectral contrast between scattered near-infrared (NIR) and absorbed red radiation in canopies. As the number of leaves present in a canopy increases over a unit area, NIR reflectance increases, while red reflectance decreases, resulting in an increase in the ratio. Through time series and image compositing, NDVI provides an additional temporal measure of how these parameters change, providing a means to monitor fluxes and productivity (Tucker et al., 1983). NDVI, while highly successful for agriculture and grassland ecosystems has been found to be less successful in evergreen chaparral and forested ecosystems (Badhwar et al., 1986; Gamon et al., 1993; Hall et al., 1995). Typically, the relationship between NDVI and LAI becomes progressively more asymptotic at LAI values above three (Sellers, 1985), although linear relationships have been observed in conifers at LAis as high as 13 (Spanner et al., 1990). In this paper, we explore an alternative approach for estimating LAI for remotely sensed data from AVIRIS based on estimates of canopy liquid water. Our primary objective is to test the hypothesis that the depth of the liquid water bands expressed in canopy reflectance spectra at 960, 1200, 1400 and 1900 nm increases with increasing LAI in canopies. This study builds from work by Roberts et al. (1997), in which liquid water was shown

  17. Differences in the stimulation of cyclic electron flow in two tropical ferns under water stress are related to leaf anatomy.

    Science.gov (United States)

    Wang, Ji-Hua; Li, Shen-Chong; Sun, Mei; Huang, Wei; Cao, Hua; Xu, Feng; Zhou, Ning-Ning; Zhang, Shi-Bao

    2013-03-01

    Cyclic electron flow (CEF) plays an important role in photoprotection for angiosperms under environmental stresses. However, ferns are more sensitive to drought and their water transport systems are not as efficient as those of angiosperms, it is unclear whether CEF also contributes to photoprotection in these plants. Using Microsorum punctatum and Paraleptochillus decurrens, we studied the electron fluxes through both photosystem I (PSI) and photosystem II (PSII) under water stress and their leaf anatomies. Our goal was to determine if CEF functions in the photoprotection of these ferns and, if so, whether CEF stimulation is related to leaf anatomy. Compared with P. decurrens, M. punctatum had thicker leaves and cuticles and higher water storage capacity, but lower stomatal density and slower rate of water loss. During induced drought, the decrease in leaf water potential (Ψ(leaf) ) was more pronounced in P. decurrens than in M. punctatum. For both species, the decline in Ψ(leaf) was associated with a lower effective PSII quantum yield, photochemical quantum yield of PSI and electron transport rate (ETR), whereas increases were found in the quantum yield of regulated energy dissipation, CEF and CEF/ETR(II) ratio. Values for CEF and the CEF/ETR(II) ratio peaked in M. punctatum at a light intensity of 500-600 µmol m(-2) s(-1) vs only 150-200 µmol m(-2) s(-1) in P. decurrens. Therefore, our results indicate that the stimulation of CEF in tropical ferns contributes to their photoprotection under water stress, and is related to their respective drought tolerance and leaf anatomy. Copyright © Physiologia Plantarum 2012.

  18. Gas exchange and leaf contents in bell pepper under energized water and biofertilizer doses

    Directory of Open Access Journals (Sweden)

    Francisca R. M. Borges

    2016-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of energized water and bovine biofertilizer doses on the gas exchange and NPK contents in leaves of yellow bell pepper plants. The experiment was conducted at the experimental area of the Federal University of Ceará, in Fortaleza-CE, Brazil, from June to November 2011. The experiment was set in a randomized block design, in a split-plot scheme; the plots were composed of treatments with energized and non-energized water and the subplots of five doses of liquid biofertilizer (0, 250, 500, 750 and 1000 mL plant-1 week-1. The following variables were analyzed: transpiration, stomatal conductance, photosynthesis and leaf contents of nitrogen (N, phosphorus (P and potassium (K. Water energization did not allow significant increases in the analyzed variables. The use of biofertilizer as the only source of fertilization was sufficient to provide the nutrients N, P and K at appropriate levels for the bell pepper crop.

  19. Leaf gas exchange in cowpea and CO2 efflux in soil irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Wanderson J. de Oliveira

    Full Text Available ABSTRACT Leaf gas exchanges in plants and soil respiration are important tools for assessing the effects of salinity on the soil-plant system. An experiment was conducted with cowpea irrigated with saline water (0, 2.5, 5.0, 7.5, 10.0 and 12.5 dS m-1 prepared with two sources: NaCl and a mixture of Ca, Mg, Na, K and Cl ions in a randomized block design and a 6 x 2 factorial scheme, with four replicates, totaling 48 experimental plots. At 20 days after planting (DAP, plants were evaluated for net photosynthesis (A, stomatal conductance (gs and transpiration (E using the Infra-Red Gas Analyzer (Model XT6400- LICOR, and water use efficiency, intrinsic water use efficiency and instantaneous efficiency of carboxylation were calculated. At 60 DAP, the soil CO2 efflux (soil respiration was determined with a camera (Model 6400-09- LICOR. Salinity caused reductions in A, gs and E. However, the salt source did not have significant effect on these variables. Soil CO2 efflux was reduced with the increase in the electrical conductivity, especially in the mixture of ions.

  20. Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis.

    Science.gov (United States)

    Cheng, Tao; Rivard, Benoit; Sánchez-Azofeifa, Arturo G; Féret, Jean-Baptiste; Jacquemoud, Stephane; Ustin, Susan L

    2012-08-15

    Leaf water content is an important variable for understanding plant physiological properties. This study evaluates a spectral analysis approach, continuous wavelet analysis (CWA), for the spectroscopic estimation of leaf gravimetric water content (GWC, %) and determines robust spectral indicators of GWC across a wide range of plant species from different ecosystems. CWA is both applied to the Leaf Optical Properties Experiment (LOPEX) data set and a synthetic data set consisting of leaf reflectance spectra simulated using the leaf optical properties spectra (PROSPECT) model. The results for the two data sets, including wavelet feature selection and GWC prediction derived using those features, are compared to the results obtained from a previous study for leaf samples collected in the Republic of Panamá (PANAMA), to assess the predictive capabilities and robustness of CWA across species. Furthermore, predictive models of GWC using wavelet features derived from PROSPECT simulations are examined to assess their applicability to measured data. The two measured data sets (LOPEX and PANAMA) reveal five common wavelet feature regions that correlate well with leaf GWC. All three data sets display common wavelet features in three wavelength regions that span 1732-1736 nm at scale 4, 1874-1878 nm at scale 6, and 1338-1341 nm at scale 7 and produce accurate estimates of leaf GWC. This confirms the applicability of the wavelet-based methodology for estimating leaf GWC for leaves representative of various ecosystems. The PROSPECT-derived predictive models perform well on the LOPEX data set but are less successful on the PANAMA data set. The selection of high-scale and low-scale features emphasizes significant changes in both overall amplitude over broad spectral regions and local spectral shape over narrower regions in response to changes in leaf GWC. The wavelet-based spectral analysis tool adds a new dimension to the modeling of plant physiological properties with

  1. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera.

    Science.gov (United States)

    Tombesi, Sergio; Nardini, Andrea; Farinelli, Daniela; Palliotti, Alberto

    2014-11-01

    Current understanding of physiological mechanisms governing stomatal behavior under water stress conditions is still incomplete and controversial. It has been proposed that coordination of stomatal kinetics with xylem vulnerability to cavitation [vulnerability curve (VC)] leads to different levels of isohydry/anisohydry in different plant species/cultivars. In this study, this hypothesis is tested in Vitis vinifera cultivars displaying contrasting stomatal behavior under drought stress. The cv Montepulciano (MP, near-isohydric) and Sangiovese (SG, anisohydric) were compared in terms of stomatal response to leaf and stem water potential, as possibly correlated to different petiole hydraulic conductivity (k(petiole)) and VC, as well as to leaf water relations parameters. MP leaves showed almost complete stomatal closure at higher leaf and stem water potentials than SG leaves. Moreover, MP petioles had higher maximum k(petiole) and were more vulnerable to cavitation than SG. Water potential at the turgor loss point was higher in MP than in SG. In SG, the percentage reduction of stomatal conductance (PLg(s)) under water stress was almost linearly correlated with corresponding percentage loss of k(petiole) (PLC), while in MP PLg(s) was less influenced by PLC. Our results suggest that V. vinifera near-isohydric and anisohydric genotypes differ in terms of xylem vulnerability to cavitation as well as in terms of k(petiole) and that the coordination of these traits leads to their different stomatal responses under water stress conditions. © 2014 Scandinavian Plant Physiology Society.

  2. Effect of drought stress on leaf soluble sugar content, leaf rolling index and relative water content of proso millet (Panicum miliaceum L. genotypes

    Directory of Open Access Journals (Sweden)

    mohamad javad seghatol eslami

    2009-06-01

    Full Text Available With respect to water shortage in arid and semi- arid regions, the study about drought stress effects on crop plants and selection of resistance cultivars, are among the most important goals in the agricultural researches. In order to examine drought stress effects on millet, an experiment was conducted in Birjand and Sarbisheh, simultaneously. In this experiment, five irrigation treatments (well-watered, drought stress in vegetative stage, in ear emergence stage, in seed filling stage and in vegetative and seed filling stage and five proso millet genotypes (Native, K-C-M.2, K-C-M.4, K-C-M.6 and K-C-M.9 were compared in a split plot design along with three replications. Drought stress increased grain protein content, leaf rolling index and soluble sugars concentration and decreased seed germination and leaf RWC. Although seed protein content and germination percentage of genotypes were not significantly different, there were some differences among leaf rolling index, RWC and soluble sugar content of these genotypes. The results of this study indicated that leaf sugar content, RWC and leaf rolling index can not be considered as the only parameters for selection of high yield genotypes. Therefore, it is recommended that some other factors should also be used apart from the above mentioned ones.

  3. BOREAS TE-6 Predawn Leaf Water Potentials and Foliage Moisture Contents

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Vogel, Jason G.

    2000-01-01

    The BOREAS TE-6 team collected several data sets to examine the influence of vegetation, climate, and their interactions on the major carbon fluxes for boreal forest species. This data set contains summaries of predawn leaf water potentials and foliage moisture contents collected at the TF and CEV sites that had canopy access towers. The data were collected on a nearly weekly basis from early June to late August 1994 by TE-06, members of the BOREAS staff, and employees of Environment Canada. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  4. How Does Leaf Anatomy Influence Water Transport outside the Xylem?1[OPEN

    Science.gov (United States)

    Buckley, Thomas N.; Scoffoni, Christine; Sack, Lawren

    2015-01-01

    Leaves are arguably the most complex and important physicobiological systems in the ecosphere. Yet, water transport outside the leaf xylem remains poorly understood, despite its impacts on stomatal function and photosynthesis. We applied anatomical measurements from 14 diverse species to a novel model of water flow in an areole (the smallest region bounded by minor veins) to predict the impact of anatomical variation across species on outside-xylem hydraulic conductance (Kox). Several predictions verified previous correlational studies: (1) vein length per unit area is the strongest anatomical determinant of Kox, due to effects on hydraulic pathlength and bundle sheath (BS) surface area; (2) palisade mesophyll remains well hydrated in hypostomatous species, which may benefit photosynthesis, (3) BS extensions enhance Kox; and (4) the upper and lower epidermis are hydraulically sequestered from one another despite their proximity. Our findings also provided novel insights: (5) the BS contributes a minority of outside-xylem resistance; (6) vapor transport contributes up to two-thirds of Kox; (7) Kox is strongly enhanced by the proximity of veins to lower epidermis; and (8) Kox is strongly influenced by spongy mesophyll anatomy, decreasing with protoplast size and increasing with airspace fraction and cell wall thickness. Correlations between anatomy and Kox across species sometimes diverged from predicted causal effects, demonstrating the need for integrative models to resolve causation. For example, (9) Kox was enhanced far more in heterobaric species than predicted by their having BS extensions. Our approach provides detailed insights into the role of anatomical variation in leaf function. PMID:26084922

  5. Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of Arabidopsis thaliana to water deficit.

    Science.gov (United States)

    Sperdouli, Ilektra; Moustakas, Michael

    2014-07-01

    We examined whether young and mature leaves of Arabidopsis thaliana in their response to mild water deficit (MiWD) and moderate water deficit (MoWD), behave differentially, and whether photosynthetic acclimation to water deficit correlates with increased proline and sugar accumulation. We observed that with increasing water deficit, leaf relative water content decreased, while proline and sugar accumulation increased in both leaf-developmental stages. Under both MiWD and MoWD, young leaves showed less water loss and accumulated higher level of metabolites compared to mature leaves. This, leaf age-related increase in metabolite accumulation that was significantly higher under MoWD, allowed young leaves to cope with oxidative damage by maintaining their base levels of lipid peroxidation. Thus, acclimation of young leaves to MoWD, involves a better homeostasis of reactive oxygen species (ROS), that was achieved among others by (1) increased sugar accumulation and (2) either increased proline synthesis and/or decreased proline catabolism, that decrease the NADPH/NADP(+) ratio, resulting in a higher level of oxidized state of quinone A and thus in a reduced excitation pressure, and by (3) stimulation of the photoprotective mechanism of non-photochemical quenching, that reflects the dissipation of excess excitation energy in the form of harmless heat, thus protecting the plant from the damaging effects of ROS.

  6. Combining leaf physiology, hyperspectral imaging and partial least squares-regression (PLS-R) for grapevine water status assessment

    Science.gov (United States)

    Rapaport, Tal; Hochberg, Uri; Shoshany, Maxim; Karnieli, Arnon; Rachmilevitch, Shimon

    2015-11-01

    Physiological measurements are considered to be the most accurate way of assessing plant water status, but they might also be time-consuming, costly and intrusive. Since visible (VIS)-to-shortwave infrared (SWIR) imaging spectrometers are able to monitor various bio-chemical alterations in the leaf, such narrow-band instruments may offer a faster, less expensive and non-destructive alternative. This requires an intelligent downsizing of broad and noisy hyperspectra into the few most physiologically-sensitive wavelengths. In the current study, hyperspectral signatures of water-stressed grapevine leaves (Vitis vinifera L. cv. Cabernet Sauvignon) were correlated to values of midday leaf water potential (Ψl), stomatal conductance (gs) and non-photochemical quenching (NPQ) under controlled conditions, using the partial least squares-regression (PLS-R) technique. It was found that opposite reflectance trends at 530-550 nm and around 1500 nm - associated with independent changes in photoprotective pigment contents and water availability, respectively - were indicative of stress-induced alterations in Ψl, gs and NPQ. Furthermore, combining the spectral responses at these VIS and SWIR regions yielded three normalized water balance indices (WABIs), which were superior to various widely-used reflectance models in predicting physiological values at both the leaf and canopy levels. The potential of the novel WABI formulations also under field conditions demonstrates their applicability for water status monitoring and irrigation scheduling.

  7. Type 3 metallothioneins respond to water deficit in leaf and in the cambial zone of white poplar (Populus alba).

    Science.gov (United States)

    Berta, Monica; Giovannelli, Alessio; Potenza, Emilio; Traversi, Maria Laura; Racchi, Milvia Luisa

    2009-03-15

    The involvement of metallothioneins (MTs) in response to plant water stress and recovery was assessed by analyzing gene expression in leaves and in the cambial zone of white poplar. One-year-old plants were submitted to two different watering regimes: irrigation was withheld for 9d and then resumed until day 17, or soil moisture was maintained to field capacity by irrigation during the experiment. Changes in leaves and stem water relations, gas exchange and CO(2) assimilation were recorded. The expression profiles of MT genes were analyzed in developing leaves and the cambial zone at maximum stress levels and after recovery and compared with the watered controls. Whole-plant water relations were significantly affected by water deprivation, though a complete recovery of plant water status was reached after resumption of watering. Withholding irrigation resulted in a significant decrease of leaf turgor potential and relative water content without a significant increase of the osmotic potential at full turgor. Similarly, stem water content decreased, leading to a marked increase of stem shrinkage, confirming that mild water stress affected primarily tissue water status. Following water depletion, the transcript analysis of MT genes revealed increased expression of type 3a and 3b MT genes in cambial tissues, and particularly in leaves. After water resumption, transcription decreased, suggesting that the changes in gene expression were related to water deficit. The results indicate that in leaves and, for the first time, in the cambial zone, type 3 MTs respond in a specific manner to changes in water status. These results are consistent with the regulatory cis-elements present in the 5' flanking region of type 3 MT genes.

  8. Leaf-litter leachate concentration promotes heterotrophy in freshwater biofilms: Understanding consequences of water scarcity.

    Science.gov (United States)

    Martínez, Aingeru; Kominoski, John Stephen; Larrañaga, Aitor

    2017-12-01

    Climate change is increasing overall temporal variability in precipitation resulting in a seasonal water availability, both increasing periods of flooding and water scarcity. During low water availability periods, the concentration of leachates from riparian vegetation increases, subsequently increasing dissolved organic matter (DOM). Moreover, shifts in riparian vegetation by land use changes impact the quantity and quality of DOM. Our objective was to test effects of increasing DOM concentrations from Eucalyptus grandis (one of the most cultivated tree species in the world) leachates on the metabolism (respiration, R; gross primary productivity, GPP) and extracellular enzyme activities (EEAs) of freshwater biofilms. To test effects of DOM concentrations on freshwater biofilm functions, we incubated commercial cellulose sponges in a freshwater pond to allow biofilm colonization, and then exposed biofilms to five different concentrations of leaf-litter leachates of E. grandis for five days. To test if responses to DOM concentrations varied with colonization stage of biofilms, we measured treatment effects on biofilms colonizing standard substrates after one, two, three and four weeks of colonization. Increases in leachates concentrations enhanced biofilm heterotrophy, increasing R rates and decreasing GPP. Leachate concentrations did not affect biofilm EEAs, and changes in biofilm metabolism were not explained by treatment-induced changes in biofilm biomass or stoichiometry. We detected the lowest production:respiration ratios, i.e. more heterotrophic assemblages, with the most concentrated leachate solution and the most advanced biofilm colonization stages. Shifts in quantity of dissolved organic matter in freshwaters may further influence ecosystem metabolism and carbon processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit.

    Science.gov (United States)

    Paudel, Indira; Naor, Amos; Gal, Yoni; Cohen, Shabtai

    2015-04-01

    For isohydric trees mid-day water uptake is stable and depends on soil water status, reflected in pre-dawn leaf water potential (Ψpd) and mid-day stem water potential (Ψmd), tree hydraulic conductance and a more-or-less constant leaf water potential (Ψl) for much of the day, maintained by the stomata. Stabilization of Ψl can be represented by a linear relationship between canopy resistance (Rc) and vapor pressure deficit (D), and the slope (BD) is proportional to the steady-state water uptake. By analyzing sap flow (SF), meteorological and Ψmd measurements during a series of wetting and drying (D/W) cycles in a nectarine orchard, we found that for the range of Ψmd relevant for irrigated orchards the slope of the relationship of Rc to D, BD is a linear function of Ψmd. Rc was simulated using the above relationships, and its changes in the morning and evening were simulated using a rectangular hyperbolic relationship between leaf conductance and photosynthetic irradiance, fitted to leaf-level measurements. The latter was integrated with one-leaf, two-leaf and integrative radiation models, and the latter gave the best results. Simulated Rc was used in the Penman-Monteith equation to simulate tree transpiration, which was validated by comparing with SF from a separate data set. The model gave accurate estimates of diurnal and daily total tree transpiration for the range of Ψmds used in regular and deficit irrigation. Diurnal changes in tree water content were determined from the difference between simulated transpiration and measured SF. Changes in water content caused a time lag of 90-105 min between transpiration and SF for Ψmd between -0.8 and -1.55 MPa, and water depletion reached 3 l h(-1) before noon. Estimated mean diurnal changes in water content were 5.5 l day(-1) tree(-1) at Ψmd of -0.9 MPa and increased to 12.5 l day(-1) tree(-1) at -1.45 MPa, equivalent to 6.5 and 16.5% of daily tree water use, respectively. Sixteen percent

  10. Modelling non-steady-state isotope enrichment of leaf water in a gas-exchange cuvette environment.

    Science.gov (United States)

    Song, Xin; Simonin, Kevin A; Loucos, Karen E; Barbour, Margaret M

    2015-12-01

    The combined use of a gas-exchange system and laser-based isotope measurement is a tool of growing interest in plant ecophysiological studies, owing to its relevance for assessing isotopic variability in leaf water and/or transpiration under non-steady-state (NSS) conditions. However, the current Farquhar & Cernusak (F&C) NSS leaf water model, originally developed for open-field scenarios, is unsuited for use in a gas-exchange cuvette environment where isotope composition of water vapour (δv ) is intrinsically linked to that of transpiration (δE ). Here, we modified the F&C model to make it directly compatible with the δv -δE dynamic characteristic of a typical cuvette setting. The resultant new model suggests a role of 'net-flux' (rather than 'gross-flux' as suggested by the original F&C model)-based leaf water turnover rate in controlling the time constant (τ) for the approach to steady sate. The validity of the new model was subsequently confirmed in a cuvette experiment involving cotton leaves, for which we demonstrated close agreement between τ values predicted from the model and those measured from NSS variations in isotope enrichment of transpiration. Hence, we recommend that our new model be incorporated into future isotope studies involving a cuvette condition where the transpiration flux directly influences δv . There is an increasing popularity among plant ecophysiologists to use a gas-exchange system coupled to laser-based isotope measurement for investigating non-steady state (NSS) isotopic variability in leaf water (and/or transpiration); however, the current Farquhar & Cernusak (F&C) NSS leaf water model is unsuited for use in a gas-exchange cuvette environment due to its implicit assumption of isotope composition of water vapor (δv ) being constant and independent of that of transpiration (δE ). In the present study, we modified the F&C model to make it compatible with the dynamic relationship between δv and δE as is typically associated

  11. The effect of strobilurins on leaf gas exchange, water use efficiency and ABA content in grapevine under field conditions.

    Science.gov (United States)

    Diaz-Espejo, Antonio; Cuevas, María Victoria; Ribas-Carbo, Miquel; Flexas, Jaume; Martorell, Sebastian; Fernández, José Enrique

    2012-03-01

    Strobilurins are one of the most important classes of agricultural fungicides. In addition to their anti-fungal effect, strobilurins have been reported to produce simultaneous effects in plant physiology. This study investigated whether the use of strobilurin fungicide improved water use efficiency in leaves of grapevines grown under field conditions in a Mediterranean climate in southern Spain. Fungicide was applied three times in the vineyard and measurements of leaf gas exchange, plant water status, abscisic acid concentration in sap ([ABA]), and carbon isotope composition in leaves were performed before and after applications. No clear effect on stomatal conductance, leaf water potential and intrinsic water use efficiency was found after three fungicide applications. ABA concentration was observed to increase after fungicide application on the first day, vanishing three days later. Despite this transient effect, evolution of [ABA] matched well with the evolution of leaf carbon isotope ratio, which can be used as a surrogate for plant water use efficiency. Morning stomatal conductance was negatively correlated to [ABA]. Yield was enhanced in strobilurin treated plants, whereas fruit quality remained unaltered. Published by Elsevier GmbH.

  12. Plasticity in the Huber value contributes to homeostasis in leaf water relations of a mallee Eucalypt with variation to groundwater depth.

    Science.gov (United States)

    Carter, Jennifer L; White, Donald A

    2009-11-01

    Information on how vegetation adapts to differences in water supply is critical for predicting vegetation survival, growth and water use, which, in turn, has important impacts on site hydrology. Many field studies assess adaptation to water stress by comparing between disparate sites, which makes it difficult to distinguish between physiological or morphological changes and long-term genetic adaptation. When planting trees into new environments, the phenotypic adaptations of a species to water stress will be of primary interest. This study examined the response to water availability of Eucalyptus kochii ssp. borealis (C. Gardner) D. Nicolle, commonly integrated with agriculture in south-western Australia for environmental and economic benefits. By choosing a site where the groundwater depth varied but where climate and soil type were the same, we were able to isolate tree response to water supply. Tree growth, leaf area and stand water use were much larger for trees over shallow groundwater than for trees over a deep water table below a silcrete hardpan. However, water use on a leaf area basis was similar in trees over deep and shallow groundwater, as were the minimum leaf water potential observed over different seasons and the turgor loss point. We conclude that homeostasis in leaf water use and water relations was maintained through a combination of stomatal control and adjustment of sapwood-to-leaf area ratios (Huber value). Differences in the Huber value with groundwater depth were associated with different sapwood-specific conductivity and water use on a sapwood area basis. Knowledge of the coordination between water supply, leaf area, sapwood area and leaf transpiration rate for different species will be important when predicting stand water use.

  13. Effects of Leaf Removal and Applied Water on Flavonoid Accumulation in Grapevine (Vitis vinifera L. cv. Merlot) Berry in a Hot Climate.

    Science.gov (United States)

    Yu, Runze; Cook, Michael G; Yacco, Ralph S; Watrelot, Aude A; Gambetta, Gregory; Kennedy, James A; Kurtural, S Kaan

    2016-11-02

    The relationships between variations in grapevine (Vitis vinifera L. cv. Merlot) fruit zone light exposure and water deficits and the resulting berry flavonoid composition were investigated in a hot climate. The experimental design involved application of mechanical leaf removal (control, pre-bloom, post-fruit set) and differing water deficits (sustained deficit irrigation and regulated deficit irrigation). Flavonol and anthocyanin concentrations were measured by C18 reversed-phased HPLC and increased with pre-bloom leaf removal in 2013, but with post-fruit set leaf removal in 2014. Proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Post-fruit set leaf removal increased total proanthocyanidin concentration in both years, whereas no effect was observed with applied water amounts. Mean degree of polymerization of skin proanthocyanidins increased with post-fruit set leaf removal compared to pre-bloom, whereas water deficit had no effect. Conversion yield was greater with post-fruit set leaf removal. Seed proanthocyanidin concentration was rarely affected by applied treatments. The application of post-fruit set leaf removal, regardless of water deficit. increased the proportion of proanthocyanidins derived from the skin, whereas no leaf removal or pre-bloom leaf removal regardless of water deficit increased the proportion of seed-derived proanthocyanidins. The study provides fundamental information to viticulturists and winemakers on how to manage red wine grape low molecular weight phenolics and polymeric proanthocyanidin composition in a hot climate.

  14. Effect of different soil water content effect on genotype expession in photosynthetic efficiency and leaf temperature in sunflower

    Directory of Open Access Journals (Sweden)

    Markulj-Kulundžić Antonela

    2016-01-01

    Full Text Available Sunflower (Helianthus annuus L. has high needs for water but can tolerate drought very well because, under stress conditions, its well developed root system can supply water and mineral nutrients from deeper soil layers. Reduced water content in soil affects plant growth and development, photosynthetic rate and causes rapid leaf senescence. In this study, we measured maximum quantum yield of photosystem II (Fv/Fm, photosynthetic performance index (PIABS and leaf temperature (LT on 13 sunflower genotypes at different soil water contents. By calculating stress tolerance indices (STI of Fv/Fm and PIABS parameters we evaluated drought tolerance for every tested sunflower genotype at given soil water contents. The experiment was set up in vegetation pots in two treatments with different soil water contents (60% and 80% of field water capacity in three replications. Based on the obtained results for Fv/Fm and PIABS and STI values of Fv/Fm and PIABS parameters, we concluded that genotypes 5 and 12 had higher tolerance at both treatments, as opposed to genotypes 2 and 13 which were less tolerant. These analyses will help breeders to select genotypes adapted to different farming areas which is, along with the use of recommended production practices, the background for profitable sunflower production.

  15. Non-invasive assessment of leaf water status using a dual-mode microwave resonator

    OpenAIRE

    Dadshani, Said; Kurakin, Andriy; Amanov, Shukhrat; Hein, Benedikt; Rongen, Heinz; Cranstone, Steve; Blievernicht, Ulrich; Menzel, Elmar; L?on, Jens; Klein, Norbert; Ballvora, Agim

    2015-01-01

    The water status in plant leaves is a good indicator for the water status in the whole plant revealing stress if the water supply is reduced. The analysis of dynamic aspects of water availability in plant tissues provides useful information for the understanding of the mechanistic basis of drought stress tolerance, which may lead to improved plant breeding and management practices. The determination of the water content in plant tissues during plant development has been a challenge and is cur...

  16. Retrieval of vertical leaf water content using terrestrial full-waveform lidar

    Science.gov (United States)

    Zhu, Xi; Skidmore, Andrew K.; Darvishzadeh, Roshanak; Wang, Tiejun

    2016-10-01

    The vertical distribution of leaf water content (LWC) within plant canopy plays an important role in light penetration and scattering, thus affecting reflectance simulation with radiative transfer models. Although passive remote sensing techniques have been widely applied to estimate LWC, they are unable to retrieve the LWC vertical distribution within canopy. By providing vertical information, terrestrial LiDAR can potentially overcome this limitation. In this paper we investigated the applicability of the terrestrial full-waveform LiDAR to estimate the LWC vertical profile within the canopy of individual plants. A standard radiometric calibration was applied to convert the amplitude and the echo width to a physically well-defined radiometric quantity, namely the backscatter coefficient. However, the backscatter coefficient is strongly affected by the incidence angle between the laser beam and the leaf normal. In order to compensate for incidence angle effects, reference reflectors (Spectralon from Labsphere, Inc.) were used to build a look-up table to calibrated the backscatter coefficient. Our results showed that the backscatter coefficient had a strong correlation (R2 = 0.66) with LWC after correcting for the incidence angle effect. Good agreements were achieved between the predicted vertical profile of LWC and the measured vertical profile of LWC with a mean RMSE (root mean square error) value of 0.001 g/cm2 and a mean MAPE (mean absolute percent error) value of 4.46 %. Our study successfully demonstrated the feasibility of retrieving LWC vertical distribution within plant canopy from a terrestrial full-waveform LiDAR.

  17. Integrating satellite retrieved leaf chlorophyll into land surface models for constraining simulations of water and carbon fluxes

    KAUST Repository

    Houborg, Rasmus

    2013-07-01

    In terrestrial biosphere models, key biochemical controls on carbon uptake by vegetation canopies are typically assigned fixed literature-based values for broad categories of vegetation types although in reality significant spatial and temporal variability exists. Satellite remote sensing can support modeling efforts by offering distributed information on important land surface characteristics, which would be very difficult to obtain otherwise. This study investigates the utility of satellite based retrievals of leaf chlorophyll for estimating leaf photosynthetic capacity and for constraining model simulations of water and carbon fluxes. © 2013 IEEE.

  18. Leaf Water Relationships and Canopy Temperature as Criteria to Distinguish Maize Hybrids under Drought Stress

    Directory of Open Access Journals (Sweden)

    Abbas Maleki

    2014-05-01

    Full Text Available This research aimed at studying the physiologic traits of maize different hybrids and considering them as screening criteria to select the drought tolerant hybrids. The experiment was conducted using a randomized complete block design with three replications and in a split-plot arrangement. The treatments were as follows: Maize Hybrids (including SC400, ZP434, SC524, ZP599, BC66, SC704 and irrigation regimes (including optimum; 100% FC, moderate; 75% FC, and severe stress; 50% FC. Results showed that drought stress significantly affects most of the studied indices. These indices also had significant differences in the above mentioned hybrids. Indices of leaf relative water content and temperature of the canopy varied significantly under drought stress. So, they could be used as suitable criteria to measure the level of stress effect on the plant and also to lay out the irrigation schedule. Findings of the study suggest that blistering is the best growth stage to screen the hybrids and among the studied indices, the ELWL is the best item for screening.

  19. Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy

    Science.gov (United States)

    Castro-Camus, E.; Palomar, M.; Covarrubias, A. A.

    2013-10-01

    The declining water availability for agriculture is becoming problematic for many countries. Therefore the study of plants under water restriction is acquiring extraordinary importance. Botanists currently follow the dehydration of plants comparing the fresh and dry weight of excised organs, or measuring their osmotic or water potentials; these are destructive methods inappropriate for in-vivo determination of plants' hydration dynamics. Water is opaque in the terahertz band, while dehydrated biological tissues are partially transparent. We used terahertz spectroscopy to study the water dynamics of Arabidopsis thaliana by comparing the dehydration kinetics of leaves from plants under well-irrigated and water deficit conditions. We also present measurements of the effect of dark-light cycles and abscisic acid on its water dynamics. The measurements we present provide a new perspective on the water dynamics of plants under different external stimuli and confirm that terahertz can be an excellent non-contact probe of in-vivo tissue hydration.

  20. Remote sensing leaf water stress in coffee (Coffea arabica) using secondary effects of water absorption and random forests

    Science.gov (United States)

    Chemura, Abel; Mutanga, Onisimo; Dube, Timothy

    2017-08-01

    Water management is an important component in agriculture, particularly for perennial tree crops such as coffee. Proper detection and monitoring of water stress therefore plays an important role not only in mitigating the associated adverse impacts on crop growth and productivity but also in reducing expensive and environmentally unsustainable irrigation practices. Current methods for water stress detection in coffee production mainly involve monitoring plant physiological characteristics and soil conditions. In this study, we tested the ability of selected wavebands in the VIS/NIR range to predict plant water content (PWC) in coffee using the random forest algorithm. An experiment was set up such that coffee plants were exposed to different levels of water stress and reflectance and plant water content measured. In selecting appropriate parameters, cross-correlation identified 11 wavebands, reflectance difference identified 16 and reflectance sensitivity identified 22 variables related to PWC. Only three wavebands (485 nm, 670 nm and 885 nm) were identified by at least two methods as significant. The selected wavebands were trained (n = 36) and tested on independent data (n = 24) after being integrated into the random forest algorithm to predict coffee PWC. The results showed that the reflectance sensitivity selected bands performed the best in water stress detection (r = 0.87, RMSE = 4.91% and pBias = 0.9%), when compared to reflectance difference (r = 0.79, RMSE = 6.19 and pBias = 2.5%) and cross-correlation selected wavebands (r = 0.75, RMSE = 6.52 and pBias = 1.6). These results indicate that it is possible to reliably predict PWC using wavebands in the VIS/NIR range that correspond with many of the available multispectral scanners using random forests and further research at field and landscape scale is required to operationalize these findings.

  1. Genetic variability for leaf growth rate and duration under water deficit in sunflower: analysis of responses at cell, organ, and plant level.

    Science.gov (United States)

    Pereyra-Irujo, Gustavo A; Velázquez, Luciano; Lechner, Leandra; Aguirrezábal, Luis A N

    2008-01-01

    Plants under water deficit reduce leaf growth, thereby reducing transpiration rate at the expense of reduced photosynthesis. The objective of this work was to analyse the response of leaf growth to water deficit in several sunflower genotypes in order to identify and quantitatively describe sources of genetic variability for this trait that could be used to develop crop varieties adapted to specific scenarios. The genetic variability of the response of leaf growth to water deficit was assessed among 18 sunflower (Helianthus annuus L.) inbred lines representing a broad range of genetic diversity. Plants were subjected to long-term, constant-level, water-deficit treatments, and the response to water deficit quantified by means of growth models at cell-, leaf-, and plant-scale. Significant variation among lines was found for the response of leaf expansion rate and of leaf growth duration, with an equal contribution of these responses to the variability in the reduction of leaf area. Increased leaf growth duration under water deficit is usually suggested to be caused by changes in the activity of cell-wall enzymes, but the present results suggest that the duration of epidermal cell division plays a key role in this response. Intrinsic genotypic responses of rate and duration at a cellular scale were linked to genotypic differences in whole-plant leaf area profile to water deficit. The results suggest that rate and duration responses are the result of different physiological mechanisms, and therefore capable of being combined to increase the variability in leaf area response to water deficit.

  2. Evaluation of neural network modeing to calculate well-watered leaf temperature of wine grape

    Science.gov (United States)

    Mild to moderate water stress is desirable in wine grape for controlling vine vigor and optimizing fruit yield and quality, but precision irrigation management is hindered by the lack of a reliable method to easily quantify and monitor vine water status. The crop water stress index (CWSI) that effec...

  3. Coordination and transport of water and carbohydrates in the coupled soil-root-xylem-phloem leaf system

    Science.gov (United States)

    Katul, Gabriel; Huang, Cheng-Wei

    2017-04-01

    In response to varying environmental conditions, stomatal pores act as biological valves that dynamically adjust their size thereby determining the rate of CO2 assimilation and water loss (i.e., transpiration) to the atmosphere. Although the significance of this biotic control on gas exchange is rarely disputed, representing parsimoniously all the underlying mechanisms responsible for stomatal kinetics remain a subject of some debate. It has been conjectured that stomatal control in seed plants (i.e., angiosperm and gymnosperm) represents a compromise between biochemical demand for CO2 and prevention of excessive water loss. This view has been amended at the whole-plant level, where xylem hydraulics and sucrose transport efficiency in phloem appear to impose additional constraints on gas exchange. If such additional constraints impact stomatal opening and closure, then seed plants may have evolved coordinated photosynthetic-hydraulic-sugar transporting machinery that confers some competitive advantages in fluctuating environmental conditions. Thus, a stomatal optimization model that explicitly considers xylem hydraulics and maximum sucrose transport is developed to explore this coordination in the leaf-xylem-phloem system. The model is then applied to progressive drought conditions. The main findings from the model calculations are that (1) the predicted stomatal conductance from the conventional stomatal optimization theory at the leaf and the newly proposed models converge, suggesting a tight coordination in the leaf-xylem-phloem system; (2) stomatal control is mainly limited by the water supply function of the soil-xylem hydraulic system especially when the water flux through the transpiration stream is significantly larger than water exchange between xylem and phloem; (3) thus, xylem limitation imposed on the supply function can be used to differentiate species with different water use strategy across the spectrum of isohydric to anisohydric behavior.

  4. Importance of water source in controlling leaf leaching losses in a dwarf red mangrove ( Rhizophora mangle L.) wetland

    Science.gov (United States)

    Davis, Stephen E., III; Childers, Daniel L.

    2007-01-01

    The southern Everglades mangrove ecotone is characterized by extensive dwarf Rhizophora mangle L. shrub forests with a seasonally variable water source (Everglades - NE Florida Bay) and residence times ranging from short to long. We conducted a leaf leaching experiment to understand the influence that water source and its corresponding water quality have on (1) the early decay of R. mangle leaves and (2) the early exchange of total organic carbon (TOC) and total phosphorus (TP) between leaves and the water column. Newly senesced leaves collected from lower Taylor River (FL) were incubated in bottles containing water from one of three sources (Everglades, ambient mangrove, and Florida Bay) that spanned a range of salinity from 0 to 32‰, [TOC] from 710 to 1400 μM, and [TP] from 0.17 to 0.33 μM. We poisoned half the bottles in order to quantify abiotic processes (i.e., leaching) and assumed that non-poisoned bottles represented both biotic (i.e., microbial) and abiotic processes. We sacrificed bottles after 1,2, 5, 10, and 21 days of incubation and quantified changes in leaf mass and changes in water column [TOC] and [TP]. We saw 10-20% loss of leaf mass after 24 h—independent of water treatment—that leveled off by Day 21. After 3 weeks, non-poisoned leaves lost more mass than poisoned leaves, and there was only an effect of salinity on mass loss in poisoned incubations—with greatest leaching-associated losses in Everglades freshwater. Normalized concentrations of TOC in the water column increased by more than two orders of magnitude after 21 days with no effect of salinity and no difference between poisoned and non-poisoned treatments. However, normalized [TP] was lower in non-poisoned incubations as a result of immobilization by epiphytic microbes. This immobilization was greatest in Everglades freshwater and reflects the high P demand in this ecosystem. Immobilization of leached P in mangrove water and Florida Bay water was delayed by several days and may

  5. Monitoring of sap flow, leaf water potential, stomatal conductance, and latex yield of rubber trees under irrigation management

    Directory of Open Access Journals (Sweden)

    Prapaporn Tongsawang

    2008-08-01

    Full Text Available To investigate the physiological responses and latex yield of rubber trees under irrigation management, an experiment was established at Songkhla Province, southern Thailand. The sap flow of rubber trees was measured by heat-pulse technique. First, the anatomy of sapwood and the optimum depth for implanting the sap flow sensor probe were determined. Then, the diurnal changes of the physiological responses (sap flow, leaf water potential, and stomatal conductance and latex yield under three regimes of irrigation (T1: no irrigation, T2: irrigation at 1.0 crop evapotranspiration (ETc and T3: irrigation at0.5 ETc were determined. The results showed that xylem vessels in sapwood were homogeneous and the optimum depth for implanting the sap flow sensor probes was 10 mm beneath the cambium. In the measurements of diurnal changes of the physiological responses, it was found that stomatal conductance and sap flow rates were related to radiation. Sap flow and stomatal conductance increased from the morning to the midday. Then they decreased slowly during the afternoon. However,leaf water potential changes showed an opposite effect. Among the three treatments, the results showed that sap flow, leaf water potential and stomatal conductance in T2 were highest. The trees in T2 also exhibited the highest latex yield from April to July 2006, which was significantly different from those of T3 and T1. This implied that latex yield increased with an increase of sap flow.

  6. Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature

    National Research Council Canada - National Science Library

    Lauchlan H. Fraser; Amber Greenall; Cameron Carlyle; Roy Turkington; Cynthia Ross Friedman

    .... The primary objective of this study was to test how manipulation of water and temperature would influence the plasticity of stomatal density and leaf area of bluebunch wheatgrass, Pseudoroegneria spicata...

  7. Trade-offs between light interception and leaf water shedding: a comparison of shade- and sun-adapted species in a subtropical rainforest.

    Science.gov (United States)

    Meng, Fengqun; Cao, Rui; Yang, Dongmei; Niklas, Karl J; Sun, Shucun

    2014-01-01

    Species in high-rainfall regions have two major alternative approaches to quickly drain off water, i.e., increasing leaf inclination angles relative to the horizontal plane, or developing long leaf drip tips. We hypothesized that shade-adapted species will have more pronounced leaf drip tips but not greater inclination angles (which can reduce the ability to intercept light) compared to sun-adapted species and that length of leaf drip tips will be negatively correlated with photosynthetic capacity [characterized by light-saturated net photosynthetic rates (Amax), associated light compensation points (LCP), and light saturation points (LSP)]. We tested this hypothesis by measuring morphological and physiological traits that are associated with light-interception and water shedding for seven shade-adapted shrub species, ten sun-adapted understory shrub species, and 15 sun-adapted tree species in a subtropical Chinese rainforest, where mean annual precipitation is around 1,600 mm. Shade-adapted understory species had lower LMA, Amax, LSP, and LCP compared to understory or canopy sun-adapted species; their leaf and twig inclination angles were significantly smaller and leaf drip tips were significantly longer than those in sun-adapted species. This suggests that shade-adapted understory species tend to develop pronounced leaf drip tips but not large leaf inclination angles to shed water. The length of leaf drip tips was negatively correlated with leaf inclination angles and photosynthetic capacity. These relationships were consistent between ordinary regression and phylogenetic generalized least squares analyses. Our study illustrates the trade-offs between light interception and leaf water shedding and indicates that length of leaf drip tips can be used as an indicator of adaptation to shady conditions and overall photosynthetic performance of shrub species in subtropical rainforests.

  8. Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars?

    Science.gov (United States)

    Jean-Christophe Domec; Daniel M. Johnson

    2012-01-01

    Due to the diurnal and seasonal fluctuations in leaf-to-air vapor pressure deficit (D), one of the key regulatory roles played by stomata is to limit transpiration-induced leaf water deficit. Different types of plants are known to vary in the sensitivity of stomatal conductance (gs) to D with important consequences for their survival and growth. Plants that minimize...

  9. Soil water effect on crop growth, leaf gas exchange, water and radiation use efficiency of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel in semi-arid Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Danilo Scordia

    2015-12-01

    Full Text Available Great effort has been placed to identify the most suited bioenergy crop under different environments and management practices, however, there is still need to find new genetic resources for constrained areas. For instance, South Mediterranean area is strongly affected by prolonged drought, high vapour pressure deficit (VPD and extremely high temperatures during summertime. In the present work we investigated the soil water effect on crop growth and leaf gas exchange of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel, a perennial, rhizomatous, herbaceous grass. Furthermore, the net increase of biomass production per unit light intercepted [radiation use efficiency (RUE] and per unit water transpired [water use efficiency (WUE] was also studied. To this end a field trial was carried out imposing three levels of soil water availability (I100, I50 and I0, corresponding to 100%, 50% and 0% of ETm restutition under a semi-arid Mediterranean environment. Leaf area index (LAI, stem height, biomass dry matter yield, CO2 assimilation rate, and transpiration rate resulted significantly affected by measurement time and irrigation treatment, with the highest values in I100 and the lowest in I0. RUE was the highest in I100 followed by I50 and I0; on the other hand, WUE was higher in I0 than I50 and I100. At LAI values greater than 2.0, 85% photosynthetically active radiation was intercepted by the Saccharum stand, irrespective of the irrigation treatment. Saccharum spontaneum spp. aegyptiacum is a potential species for biomass production in environment characterized by drought stress, high temperatures and high VPD, as those of Southern Europe and similar semi-arid areas.

  10. Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress

    Science.gov (United States)

    Water stress (WS) predisposes peanut plants to fungal infection resulting in pre-harvest aflatoxin contamination. Major changes during water stress including oxidative stress, lead to destruction of photosynthetic apparatus and other macromolecules within cells. Two peanut cultivars with diverse dro...

  11. Leaf Temperature of Maize and Crop Water Stress Index with Variable Irrigation and Nitrogen Supply

    Science.gov (United States)

    Water scarcity due to changing climate, population growth, and economic development is a major threat to the sustainability of irrigated agriculture in the Western United States and other regions around the world. Water stress indices based on crop canopy temperature can be useful for assessing plan...

  12. Dynamics of leaf water relations components in co-occurring iso- and anisohydric conifer species

    Science.gov (United States)

    Frederick Meinzer; David Woodruff; Danielle Marias; Katherine McCulloh; Sanna Sevanto

    2014-01-01

    Because iso- and anisohydric species differ in stomatal regulation of the rate and magnitude of fluctuations in shoot water potential, they may be expected to show differences in the plasticity of their shoot water relations components, but explicit comparisons of this nature have rarely been made. We subjected excised shoots of co-occurring anisohydric Juniperus...

  13. Predicting leaf wax n-alkane 2H/1H ratios: controlled water source and humidity experiments with hydroponically grown trees confirm predictions of Craig-Gordon model.

    Science.gov (United States)

    Tipple, Brett J; Berke, Melissa A; Hambach, Bastian; Roden, John S; Ehleringer, James R

    2015-06-01

    The extent to which both water source and atmospheric humidity affect δ(2)H values of terrestrial plant leaf waxes will affect the interpretations of δ(2)H variation of leaf waxes as a proxy for hydrological conditions. To elucidate the effects of these parameters, we conducted a long-term experiment in which we grew two tree species, Populus fremontii and Betula occidentalis, hydroponically under combinations of six isotopically distinct waters and two different atmospheric humidities. We observed that leaf n-alkane δ(2)H values of both species were linearly related to source water δ(2)H values, but with slope differences associated with differing humidities. When a modified version of the Craig-Gordon model incorporating plant factors was used to predict the δ(2)H values of leaf water, all modelled leaf water values fit the same linear relationship with n-alkane δ(2)H values. These observations suggested a relatively constant biosynthetic fractionation factor between leaf water and n-alkanes. However, our calculations indicated a small difference in the biosynthetic fractionation factor between the two species, consistent with small differences calculated for species in other studies. At present, it remains unclear if these apparent interspecies differences in biosynthetic fractionation reflect species-specific biochemistry or a common biosynthetic fractionation factor with insufficient model parameterization. © 2014 John Wiley & Sons Ltd.

  14. Hurdle enhancement of slightly acidic electrolyzed water antimicrobial efficacy on Chinese cabbage, lettuce, sesame leaf and spinach using ultrasonication and water wash.

    Science.gov (United States)

    Forghani, Fereidoun; Oh, Deog-Hwan

    2013-10-01

    Slightly acidic electrolyzed water (SAEW) is well known as a good sanitizer against foodborne pathogens on fresh vegetables. However, microbial reductions from SAEW treatment are not enough to ensure produce safety. Therefore, it is necessary to improve its antimicrobial efficiency by combining it with other appropriate approaches. This study examined the microbicidal activity of SAEW (pH 5.2-5.5, oxidation reduction potential 500-600 mV, available chlorine concentration 21-22 mg/l) on Chinese cabbage, lettuce, sesame leaf and spinach, four common fresh vegetables in Korea under same laboratory conditions. Subsequently, effects of ultrasonication and water wash to enhance the sanitizing efficacy of SAEW were studied, separately. Finally, an optimized simple and easy approach consisting of simultaneous SAEW treatment with ultrasonication (3 min) followed by water wash (150 rpm, 1 min) was developed (SAEW + US-WW). This newly developed hurdle treatment significantly enhanced the microbial reductions compared to SAEW treatment alone, SAEW treatment with ultrasonication (SAEW + US) and SAEW treatment followed by water wash (SAEW-WW) at room temperature (23 ± 2 °C). Microbial reductions of yeasts and molds, total bacteria count and inoculated Escherichia coli O157:H7 and Listeria monocytogenes were in the range of 1.76-2.8 log cfu/g on different samples using the new hurdle approach. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The content of secondary phenol metabolites in pruned leaves of Aloe arborescens, a comparison between two methods: leaf exudates and leaf water extract.

    Science.gov (United States)

    Gutterman, Yitzchak; Chauser-Volfson, Elena

    2008-10-01

    Aloe arborescens plants, originating from the deserts of South Africa, are grown in the Introduction Garden at Sede Boker in the Negev Desert of Israel. In previous studies, we developed agro-technical methods to raise the content of secondary phenol metabolites (SPhMs) in the Aloe leaves. Plants that are subjected to repeated leaf pruning respond by increasing the content of their SPhMs. The SPhMs found in Aloe arborescens include barbaloin, aloenin and derivatives of aloeresin. Such compounds are used for many purposes, including human skin protection from sun and fire burns and high radiation, as products of the pharmaceutics and cosmetics industries, and as food supplements for treating stomach ulcers and diabetes. In the current study, the SPhMs were separated from pruned leaves of the same A. arborescens plants at the same time by two methods: (1) exudation by squeezing the tissues of the leaves, (2) immersion of the leaves' pruned cut bottom in water and collection of the extract. The exudates and extract were frozen, freeze-dried to a powder and the SPhMs were then separated by chromatography. The yield of powder from water extraction from pruned leaves was much lower than the yield from the exudates. However, higher percentages of the powder from the water extraction contained SPhMs (between 80 and 92.7%). The content of powder in leaf exudates from pruned leaves was much higher because the SPhMs were squeezed out from the cells and tissues. However, the percentages of SPhMs in this powder were much lower (between 39 and 62%).

  16. Adaptive phenotypic plasticity of Pseudoroegneria spicata: response of stomatal density, leaf area and biomass to changes in water supply and increased temperature.

    Science.gov (United States)

    Fraser, Lauchlan H; Greenall, Amber; Carlyle, Cameron; Turkington, Roy; Friedman, Cynthia Ross

    2009-03-01

    Changes in rainfall and temperature brought about through climate change may affect plant species distribution and community composition of grasslands. The primary objective of this study was to test how manipulation of water and temperature would influence the plasticity of stomatal density and leaf area of bluebunch wheatgrass, Pseudoroegneria spicata. It was hypothesized that: (1) an increased water supply will increase biomass and leaf area and decrease stomatal density, while a reduced water supply will cause the opposite effect; (2) an increase in temperature will reduce biomass and leaf area and increase stomatal density; and (3) the combinations of water and temperature treatments can be aligned along a stress gradient and that stomatal density will be highest at high stress. Methods The three water supply treatments were (1) ambient, (2) increased approx. 30% more than ambient through weekly watering and (3) decreased approx. 30 % less than ambient by rain shades. The two temperature treatments were (1) ambient and (2) increased approx. 1-3 degrees C by using open-top chambers. At the end of the second experimental growing season, above-ground biomass was harvested, oven-dried and weighed, tillers from bluebunch wheatgrass plants sampled, and the abaxial stomatal density and leaf area of tillers were measured. The first hypothesis was partially supported--reducing water supply increased stomatal density, but increasing water supply reduced leaf area. The second hypothesis was rejected. Finally, the third hypothesis could not be fully supported--rather than a linear response there appears to be a parabolic stomatal density response to stress. Overall, the abaxial stomatal density and leaf area of bluebunch wheatgrass were plastic in their response to water and temperature manipulations. Although bluebunch wheatgrass has the potential to adapt to changing climate, the grass is limited in its ability to respond to a combination of reduced water and increased

  17. Water, Water Everywhere

    Science.gov (United States)

    Keeler, Rusty

    2009-01-01

    Everybody knows that children love water and how great water play is for children. The author discusses ways to add water to one's playscape that fully comply with health and safety regulations and are still fun for children. He stresses the importance of creating water play that provides children with the opportunity to interact with water.

  18. Effects of iron chlorosis and iron resupply on leaf xylem architecture, water relations, gas exchange and stomatal performance of field-grown peach (Prunus persica).

    Science.gov (United States)

    Eichert, Thomas; Peguero-Pina, José Javier; Gil-Pelegrín, Eustaquio; Heredia, Antonio; Fernández, Victoria

    2010-01-01

    There is increasing evidence suggesting that iron (Fe) deficiency induces not only leaf chlorosis and a decline of photosynthesis, but also structural changes in leaf morphology, which might affect the functionality of leaves. In this study, we investigated the effects of Fe deficiency on the water relations of peach (Prunus persica (L.) Batsch.) leaves and the responses of previously chlorotic leaves to Fe resupply via the root or the leaf. Iron deficiency induced a decline of maximum potential photosystem II (PSII) efficiency (F(V)/F(M)), of rates of net photosynthesis and transpiration and of water use efficiency. Iron chlorosis was associated with a reduction of leaf xylem vessel size and of leaf hydraulic conductance. In the course of the day, water potentials in chlorotic leaves remained higher (less negative) than in green leaves. In chlorotic leaves, normal stomatal functioning was disturbed, as evidenced by the lack of opening upon withdrawal of external CO(2) and stomatal closure after sudden illumination of previously darkened leaves. We conclude that the Fe deficiency induced limitations of xylem conductivity elicited a water saving strategy, which poses an additional challenge to plant growth on high pH, calcareous soils. Fertilisation with Fe improved photosynthetic performance but the proper xylem structure and water relations of leaves were not fully restored, indicating that Fe must be available at the first stages of leaf growth and development.

  19. Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water

    Science.gov (United States)

    Roth-Nebelsick, A.; Ebner, M.; Miranda, T.; Gottschalk, V.; Voigt, D.; Gorb, S.; Stegmaier, T.; Sarsour, J.; Linke, M.; Konrad, W.

    2012-01-01

    The Namib grass Stipagrostis sabulicola relies, to a large degree, upon fog for its water supply and is able to guide collected water towards the plant base. This directed irrigation of the plant base allows an efficient and rapid uptake of the fog water by the shallow roots. In this contribution, the mechanisms for this directed water flow are analysed. Stipagrostis sabulicola has a highly irregular surface. Advancing contact angle is 98° ± 5° and the receding angle is 56° ± 9°, with a mean of both values of approximately 77°. The surface is thus not hydrophobic, shows a substantial contact angle hysteresis and therefore, allows the development of pinned drops of a substantial size. The key factor for the water conduction is the presence of grooves within the leaf surface that run parallel to the long axis of the plant. These grooves provide a guided downslide of drops that have exceeded the maximum size for attachment. It also leads to a minimum of inefficient drop scattering around the plant. The combination of these surface traits together with the tall and upright stature of S. sabulicola contributes to a highly efficient natural fog-collecting system that enables this species to thrive in a hyperarid environment. PMID:22356817

  20. Effect of different soil water potential on leaf transpiration and on stomatal conductance in poinsettia

    Directory of Open Access Journals (Sweden)

    Jacek S. Nowak

    2013-12-01

    Full Text Available Euphorbia pulcherrima Wild.'Lilo' was grown in containers in 60% peat, 30% perlite and 10% clay (v/v mixture, with different irrigation treatments based on soil water potential. Plants were watered at two levels of drought stress: -50kPa or wilting. The treatments were applied at different stages of plant development for a month or soil was brought to the moisture stress only twice. Additionally, some plants were watered at -50 kPa during the entire cultivation period while the control plants were watered at -5kPa. Plants were also kept at maximum possible moisture level (watering at -0,5kPa or close to it (-1.OkPa through the entire growing period. Soil water potential was measured with tensiometer. Drought stress applied during entire cultivation period or during the flushing stage caused significant reduction in transpiration and conductance of leaves. Stress applied during bract coloration stage had not as great effect on the stomatal conductance and transpiration of leaves as the similar stress applied during the flushing stage. High soil moisture increased stomatal conductance and transpiration rate, respectively by 130% and 52% (flushing stage, and 72% and 150% (bract coloration stage at maximum, compared to the control.

  1. Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange.

    Science.gov (United States)

    Zou, Ying-Ning; Srivastava, A K; Ni, Qiu-Dan; Wu, Qiang-Sheng

    2015-01-01

    Arbuscular mycorrhizas possess well developed extraradical mycelium (ERM) network that enlarge the surrounding soil for better acquisition of water and nutrients, besides soil aggregation. Distinction in ERM functioning was studied under a rootbox system, which consisted of root+hyphae and root-free hyphae compartments separated by 37-μm nylon mesh with an air gap. Trifoliate orange (Poncirus trifoliata) seedlings were inoculated with Funneliformis mosseae in root+hyphae compartment, and the ERM network was established between the two compartments. The ERM network of air gap was disrupted before 8 h of the harvest (one time disruption) or multiple disruptions during seedlings acclimation. Our results showed that mycorrhizal inoculation induced a significant increase in growth (plant height, stem diameter, and leaf, stem, and root biomass) and physiological characters (leaf relative water content, leaf water potential, and transpiration rate), irrespective of ERM status. Easily-extractable glomalin-related soil protein (EE-GRSP) and total GRSP (T-GRSP) concentration and mean weight diameter (MWD, an indicator of soil aggregate stability) were significantly higher in mycorrhizosphere of root+hyphae and root-free hyphae compartments than non-mycorrhizosphere. One time disruption of ERM network did not influence plant growth and soil properties but only notably decreased leaf water. Periodical disruption of ERM network at weekly interval markedly inhibited the mycorrhizal roles on plant growth, leaf water, GRSP production, and MWD in root+hyphae and hyphae chambers. EE-GRSP was the most responsive GRSP fraction to changes in leaf water and MWD under root+hyphae and hyphae conditions. It suggests that effect of peridical disruption of ERM network was more impactful than one-time disruption of ERM network with regard to leaf water, plant growth, and aggregate stability responses, thereby, implying ERM network aided in developing the host plant metabolically more active.

  2. Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange

    Directory of Open Access Journals (Sweden)

    Ying-Ning eZou

    2015-03-01

    Full Text Available Arbuscular mycorrhizas possess well developed extraradical mycelium (ERM network that enlarge the surrounding soil for better acquisition of water and nutrients, besides soil aggregation. Distinction in ERM functioning was studied under a rootbox system, which consisted of root+hyphae and root-free hyphae compartments separated by 37-μm nylon mesh with an air gap. Trifoliate orange (Poncirus trifoliata seedlings were inoculated with Funneliformis mosseae in root+hyphae compartment, and the ERM network was established between the two compartments. The ERM network of air gap was disrupted before 8 h of the harvest (one time disruption or multiple disruptions during seedlings acclimation. Our results showed that mycorrhizal inoculation induced a significant increase in growth (plant height, stem diameter, and leaf, stem, and root biomass and physiological characters (leaf relative water content, leaf water potential, and transpiration rate, irrespective of ERM status. Easily-extractable glomalin-related soil protein (EE-GRSP and total GRSP (T-GRSP concentration and mean weight diameter (MWD, an indicator of soil aggregate stability were significantly higher in mycorrhizosphere of root+hyphae and root-free hyphae compartments than non-mycorrhizosphere. One time disruption of ERM network did not influence plant growth and soil properties but only notably decreased leaf water. Periodical disruption of ERM network at weekly interval markedly inhibited the mycorrhizal roles on plant growth, leaf water, GRSP production, and MWD in root+hyphae and hyphae chambers. EE-GRSP was the most responsive GRSP fraction to changes in leaf water and MWD under root+hyphae and hyphae conditions. It suggests that effect of peridical disruption of ERM network was more impactful than one-time disruption of ERM network with regard to leaf water, plant growth, and aggregate stability responses, thereby, implying ERM network aided in developing the host plant metabolically

  3. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens.

    Science.gov (United States)

    Krishnaraj, C; Jagan, E G; Rajasekar, S; Selvakumar, P; Kalaichelvan, P T; Mohan, N

    2010-03-01

    In the present study, biosynthesis of silver nanoparticles and its activity on water borne bacterial pathogens were investigated. Silver nanoparticles were rapidly synthesized using leaf extract of Acalypha indica and the formation of nanoparticles was observed within 30min. The results recorded from UV-vis spectrum, scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) support the biosynthesis and characterization of silver nanoparticles. From high-resolution transmission electron microscopy (HRTEM) analysis, the size of the silver nanoparticles was measured 20-30nm. Further, the antibacterial activity of synthesized silver nanoparticles showed effective inhibitory activity against water borne pathogens Viz., Escherichia coli and Vibrio cholerae. Silver nanoparticles 10microg/ml were recorded as the minimal inhibitory concentration (MIC) against E. coli and V. cholerae. Alteration in membrane permeability and respiration of the silver nanoparticle treated bacterial cells were evident from the activity of silver nanoparticles.

  4. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake.

    Science.gov (United States)

    Borrell, Andrew K; Mullet, John E; George-Jaeggli, Barbara; van Oosterom, Erik J; Hammer, Graeme L; Klein, Patricia E; Jordan, David R

    2014-11-01

    Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Stomatal clustering in Begonia associates with the kinetics of leaf gaseous exchange and influences water use efficiency.

    Science.gov (United States)

    Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R

    2017-04-01

    Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Leaf and whole-tree water use relations of Australian rainforest species

    Science.gov (United States)

    Ishida, Yoko; Laurance, Susan; Liddell, Michael; Lloyd, Jonathan

    2015-04-01

    Climate change induces drought events and may therefore cause significant impact on tropical rainforests, where most plants are reliant on high water availability - potentially affecting the distribution, composition and abundance of plant species. Using an experimental approach, we are studying the effects of a simulated drought on lowland rainforest plants at the Daintree Rainforest Observatory (DRO), in tropical northern Australia. Before to build up the rainout infrastructure, we installed sap flow meters (HRM) on 62 rainforest trees. Eight tree species were selected with diverse ecological strategies including wood density values ranging from 0.34 to 0.88 g/cm3 and could be replicated within a 1ha plot: Alstonia scholaris (Apocynaceae), Argyrondendron peralatum (Malvaceae), Elaeocarpus angustifolius (Elaeocarpaceae), Endiandra microneura (Lauraceae), Myristica globosa (Myristicaceae), Syzygium graveolens (Myrtaceae), Normanbya normanbyi (Arecaceae), and Castanospermum australe (Fabaceae). Our preliminary results from sap flow data obtained from October 2013 to December of 2014 showed differences in the amount of water used by our trees varied in response to species, size and climate. For example Syzygium graveolens has used a maximum of 60 litres/day while Argyrondendrum peralatum used 13 litres/day. Other potential causes for differential water-use between species and the implications of our research will be discussed. We will continue to monitor sap flow during the rainfall exclusion (2014 to 2016) to determine the effects of plant physiological traits on water use strategies.

  7. Detecting leaf pulvinar movements on NDVI time series of desert trees: a new approach for water stress detection.

    Science.gov (United States)

    Chávez, Roberto O; Clevers, Jan G P W; Verbesselt, Jan; Naulin, Paulette I; Herold, Martin

    2014-01-01

    Heliotropic leaf movement or leaf 'solar tracking' occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI), should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays) making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (ΔNDVI mo-mi) and between winter and summer (ΔNDVI W-S). In this paper, we showed that the ΔNDVI mo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ΔNDVI W-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ΔNDVI mo-mi and ΔNDVI W-S. For an 11-year time series without rainfall events, Landsat ΔNDVI W-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ΔNDVI mo-mi and ΔNDVI W-S have potential to detect early water stress of paraheliotropic vegetation.

  8. Detecting leaf pulvinar movements on NDVI time series of desert trees: a new approach for water stress detection.

    Directory of Open Access Journals (Sweden)

    Roberto O Chávez

    Full Text Available Heliotropic leaf movement or leaf 'solar tracking' occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI, should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (ΔNDVI mo-mi and between winter and summer (ΔNDVI W-S. In this paper, we showed that the ΔNDVI mo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ΔNDVI W-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ΔNDVI mo-mi and ΔNDVI W-S. For an 11-year time series without rainfall events, Landsat ΔNDVI W-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ΔNDVI mo-mi and ΔNDVI W-S have potential to detect early water stress of paraheliotropic vegetation.

  9. Transcriptomics analyses of soybean leaf and root samples during water-deficit

    Directory of Open Access Journals (Sweden)

    Prateek Tripathi

    2015-09-01

    Full Text Available Drought being a major challenge for crop productivity and yield affects multigenic and quantitative traits. It is also well documented that water stress shows a cross talk with other abiotic stresses such as high temperature and high light intensities (Tripathi et al., 2013 [1]. In this report, we documented the details of the methods and quality controls used and considered in our time course-based transcriptome profile of soybean plants under water deficit conditions using microarray technology. The findings of this study are recently published by the Rushton lab in BMC Genomics for a comparative study of tobacco and Soybean (Rabara et al., 2015 [2]. The raw microarray data set is deposited in GEO database with accession number GSE49537.

  10. Transcriptomics analyses of soybean leaf and root samples during water-deficit.

    Science.gov (United States)

    Tripathi, Prateek; Rabara, Roel C; Shen, Qingxi J; Rushton, Paul J

    2015-09-01

    Drought being a major challenge for crop productivity and yield affects multigenic and quantitative traits. It is also well documented that water stress shows a cross talk with other abiotic stresses such as high temperature and high light intensities (Tripathi et al., 2013) [1]. In this report, we documented the details of the methods and quality controls used and considered in our time course-based transcriptome profile of soybean plants under water deficit conditions using microarray technology. The findings of this study are recently published by the Rushton lab in BMC Genomics for a comparative study of tobacco and Soybean (Rabara et al., 2015) [2]. The raw microarray data set is deposited in GEO database with accession number GSE49537.

  11. Seasonality of Leaf and Fig Production in Ficus squamosa, a Fig Tree with Seeds Dispersed by Water.

    Directory of Open Access Journals (Sweden)

    Pornwiwan Pothasin

    Full Text Available The phenology of plants reflects selection generated by seasonal climatic factors and interactions with other plants and animals, within constraints imposed by their phylogenetic history. Fig trees (Ficus need to produce figs year-round to support their short-lived fig wasp pollinators, but this requirement is partially de-coupled in dioecious species, where female trees only develop seeds, not pollinator offspring. This allows female trees to concentrate seed production at more favorable times of the year. Ficus squamosa is a riparian species whose dispersal is mainly by water, rather than animals. Seeds can float and travel in long distances. We recorded the leaf and reproductive phenology of 174 individuals for three years in Chiang Mai, Northern Thailand. New leaves were produced throughout the year. Fig production occurred year-round, but with large seasonal variations that correlated with temperature and rainfall. Female and male trees initiated maximal fig crops at different times, with production in female trees confined mainly to the rainy season and male figs concentrating fig production in the preceding months, but also often bearing figs continually. Ficus squamosa concentrates seed production by female plants at times when water levels are high, favouring dispersal by water, and asynchronous flowering within male trees allow fig wasps to cycle there, providing them with potential benefits by maintaining pollinators for times when female figs become available to pollinate.

  12. WATER EXTRACT OF SWEET POTATO LEAF IMPROVED LIPID PROFILE AND BLOOD SOD CONTENT OF RATS WITH HIGH CHOLESTEROL DIET

    Directory of Open Access Journals (Sweden)

    I Wayan Sumardika

    2013-04-01

    Full Text Available Food stuffs with high flavonoids content  are believed to prevent various diseases caused by oxidative stress because of its antioxidants effect.  Purple sweet potato leaves have been proved containing high flavonoids, and can be developed very easily. To prove antioxidant and hypolipidemic properties of the water extract of purple sweet potato leaves, one research was conducted in the Department of Pharmacology, Faculty of Medicine, Udayana University. The study design was randomized control group pre- and post-test.  Twenty adult male wistar rats were divided into two groups of 10 rats. Both groups of rats were given high-cholesterol diet for three months to induce dyslipidemia. Control group of 10 rats were given only high-cholesterol diet alone, whereas the treatment group also treated with purple sweet potato leaf water extract with a dose of 6 cc per day divided into two doses. Before treatment and after treatment, lipid profile and blood SOD levels were measured. The results showed a decrease in total cholesterol, triglycerides and LDL cholesterol significantly in the treated group (P = 0.0001. In the treatment group there was also an increase in HDL cholesterol and blood SOD which was significantly differ than the control group (P = 0.0001. From the results of this study, it can be concluded that administration of water extract of purple sweet potato leaves can improve the lipid profile and increase blood SOD of rat given high-cholesterol diet.

  13. Seasonality of Leaf and Fig Production in Ficus squamosa, a Fig Tree with Seeds Dispersed by Water.

    Science.gov (United States)

    Pothasin, Pornwiwan; Compton, Stephen G; Wangpakapattanawong, Prasit

    2016-01-01

    The phenology of plants reflects selection generated by seasonal climatic factors and interactions with other plants and animals, within constraints imposed by their phylogenetic history. Fig trees (Ficus) need to produce figs year-round to support their short-lived fig wasp pollinators, but this requirement is partially de-coupled in dioecious species, where female trees only develop seeds, not pollinator offspring. This allows female trees to concentrate seed production at more favorable times of the year. Ficus squamosa is a riparian species whose dispersal is mainly by water, rather than animals. Seeds can float and travel in long distances. We recorded the leaf and reproductive phenology of 174 individuals for three years in Chiang Mai, Northern Thailand. New leaves were produced throughout the year. Fig production occurred year-round, but with large seasonal variations that correlated with temperature and rainfall. Female and male trees initiated maximal fig crops at different times, with production in female trees confined mainly to the rainy season and male figs concentrating fig production in the preceding months, but also often bearing figs continually. Ficus squamosa concentrates seed production by female plants at times when water levels are high, favouring dispersal by water, and asynchronous flowering within male trees allow fig wasps to cycle there, providing them with potential benefits by maintaining pollinators for times when female figs become available to pollinate.

  14. Influences of Leaf Area Index estimations on water balance modeling in a Mediterranean semi-arid basin

    Directory of Open Access Journals (Sweden)

    V. Gigante

    2009-06-01

    Full Text Available In the present work, the role played by vegetation parameters, necessary to the hydrological distributed modeling, is investigated focusing on the correct use of remote sensing products for the evaluation of hydrological losses in the soil water balance. The research was carried out over a medium-sized river basin in Southern Italy, where the vegetation status is characterised through a data-set of multi-temporal NDVI images. The model adopted uses one layer of vegetation whose status is defined by the Leaf Area Index (LAI, which is often obtained from NDVI images. The inherent problem is that the vegetation heterogeneity – including soil disturbances – has a large influence on the spectral bands and so the relation between LAI and NDVI is not unambiguous.

    We present a rationale for the basin scale calibration of a non-linear NDVI-LAI regression, based on the comparison between NDVI values and literature LAI estimations of the vegetation cover in recognized landscape elements of the study catchment. Adopting a process-based model (DREAM with a distributed parameterisation, the influence of different NDVI-LAI regression models on main features of water balance predictions is investigated. The results show a significant sensitivity of the hydrological losses and soil water regime to the alternative LAI estimations. These crucially affects the model performances especially in low-flows simulation and in the identification of the intermittent regime.

  15. Toward a better δDalkanes paleoclimate proxy; Partitioning of seasonal water sources and xylem-leaf deuterium enrichment according to plant growth form and phenology

    Science.gov (United States)

    Wispelaere, Lien; Bodé, Samuel; Herve-Fernández, Pedro; Hemp, Andreas; Verschuren, Dirk; Boeckx, Pascal

    2016-04-01

    The DeepCHALLA consortium is preparing an ICDP (International Continental Drilling Program) deep-drilling project on Lake Challa, a crater lake near Mt. Kilimanjaro in equatorial East Africa, where the climate is tropical semi-arid climate and characterized by two distinct rainy seasons. The main objective of this project is to acquire high-resolution and accurately dated proxy data of continental climate and ecosystem change near the Equator over 250,000 years. One of the paleoclimate proxies to be used is the hydrogen-isotopic composition of sedimentary n-alkanes (δDalkanes) derived from fossil plant leaf wax. However, this requires a better understanding of seasonal variability in the isotopic composition of precipitation, and of the fractionation of its hydrogen during incorporation in the plant waxes. In addition, recent studies have described the existence of "two water worlds", resulting in an additional deviation of the isotopic composition of the water taken up by plants. In this study, we measured the δD and δ18O of local precipitation, lake water, and xylem and leaf water from different plant species, seasons and sites with varying distances to Lake Challa. We use these data to set up a local meteoric water line (LMWL), and to assess spatial and temporal patterns of water utilization by local plants. Our data show a seasonal change in water-isotope partitioning with plants tapping water from isotopically lighter water sources during the dry seasons, as indicated by more negative xylem δD values and higher offsets from precipitation (i.e. greater distances from the LMWL), therefore supporting the "two water worlds" hypothesis. Surprisingly, trees appear to preferentially exploit isotopically more enriched sources of soil water, suggesting shallower water sources, than shrubs. Plants located at the lake shore use a mixture of precipitation and lake water, reflected in enriched xylem δD values and in the intersection of 2H and 18O with the LMWL. Leaf-water

  16. Increased water salinity applied to tomato plants accelerates the development of the leaf miner Tuta absoluta through bottom-up effects

    Science.gov (United States)

    Han, Peng; Wang, Zhi-jian; Lavoir, Anne-Violette; Michel, Thomas; Seassau, Aurélie; Zheng, Wen-yan; Niu, Chang-ying; Desneux, Nicolas

    2016-01-01

    Variation in resource inputs to plants may trigger bottom-up effects on herbivorous insects. We examined the effects of water input: optimal water vs. limited water; water salinity: with vs. without addition of 100 mM NaCl; and their interactions on tomato plants (Solanum lycopersicum), and consequently, the bottom-up effects on the tomato leaf miner, Tuta absoluta (Meytick) (Lepidoptera: Gelechiidae). Plant growth was significantly impeded by limited water input and NaCl addition. In terms of leaf chemical defense, the production of tomatidine significantly increased with limited water and NaCl addition, and a similar but non-significant trend was observed for the other glycoalkaloids. Tuta absoluta survival did not vary with the water and salinity treatments, but the treatment “optimal water-high salinity” increased the development rate without lowering pupal mass. Our results suggest that caution should be used in the IPM program against T. absoluta when irrigating tomato crops with saline water. PMID:27619473

  17. Analysis of leaf water relations in leaves of two olive (Olea europaea) cultivars differing in tolerance to salinity.

    Science.gov (United States)

    Gucci, R; Lombardini, L; Tattini, M

    1997-01-01

    One-year-old rooted cuttings of olive (Olea europaea L. cvs. Frantoio and Leccino) were grown either hydroponically or in soil in a greenhouse. Plants were exposed to NaCl treatments (0, 100, and 200 mM) for 35 days, followed by 30 to 34 days of relief from salt stress to determine whether previously demonstrated genotypic differences in tolerance to salinity were related to water relations parameters. Exposure to high salt concentrations resulted in reductions in predawn water potential (Psi(w)), osmotic potential at full turgor (Psi(piFT)), osmotic potential at turgor loss point (Psi(piTLP)), and relative water content (RWC) in both cultivars, regardless of the growth substrate. Leaf Psi(w) and RWC returned to values similar to those of controls by the end of the relief period. The effect of salinity on Psi(pi) appeared earlier in Leccino than in Frantoio. Values for Psi(piFT) were -2.50, -2.87, and -3.16 MPa for the 0, 100, and 200 mM salt-treated Frantoio plants, respectively, and -2.23, -2.87, and -3.37 MPa for the corresponding Leccino plants. Recovery of Psi(pi) was complete for plants in the 100 mM salt treatment, but not for plants in the 200 mM salt treatment, which maintained an increased pressure potential (Psi(pi)) compared to control plants. Net solute accumulation was higher in Leccino, the salt-sensitive cultivar, than in Frantoio. In controls of both cultivars, cations contributed 39.9 to 42.0% of the total Psi(piFT), mannitol and glucose contributed 27.1 to 30.8%, and other soluble carbohydrates contributed 3.1 to 3.6%. The osmotic contribution of Na(+) increased from 0.1-2.1% for non-treated plants to 8.6-15.5% and 15.6-20.0% for the 100 mM and 200 mM salt-treated plants, respectively. The mannitol contribution to Psi(piFT) reached a maximum of 9.1% at the end of the salinization period. We conclude that differences between the two cultivars in leaf water relations reflect differences in the exclusion capacities for Na(+) and Cl(-) ions.

  18. Nebulized water cooling of the canopy affects leaf temperature, berry composition and wine quality of Sauvignon blanc.

    Science.gov (United States)

    Paciello, Pericle; Mencarelli, Fabio; Palliotti, Alberto; Ceccantoni, Brunella; Thibon, Cécile; Darriet, Philippe; Pasquini, Massimiliano; Bellincontro, Andrea

    2017-03-01

    The present paper details a new technique based on spraying nebulized water on vine canopy to counteract the negative impact of the current wave of hot summers with temperatures above 30 °C, which usually determine negative effects on vine yield, grape composition and wine quality. The automatized spraying system was able to maintain air temperature at below 30 °C (the threshold temperature to start spraying) for all of August 2013, when in the canopy of uncooled vines the temperature was as high as 36 °C. The maintenance of temperature below 30 °C reduced leaf stress linked to high temperature and irradiance regimes as highlighted by the decrease of H2 O2 content and catalase activity in the leaves. A higher amount of total polyphenols and organic acids and lower sugars characterized the grapes of cooled vines. Wine from these grapes had a higher content of some volatile thiols like 3-sulfanylhexanol (3SH) and 3-sulfanylhexylacetate (3SHA), and lower content of 4-methyl-4-sulfanylpentan-2-one (4MSP). Under conditions of high temperature and irradiance regimes, water nebulization on the vine canopy can represent a valid solution to reduce and/or avoid oxidative stress and associated effects in the leaves, ensure a regular berry ripening and maintain high wine quality. The consumption of water during nebulization was acceptable, being 180 L ha(-1) min(-1) , which lasted an average of about 1 min to reduce the temperature below the threshold value of 30 °C. A total of 85-90 hL (from 0.8 to 0.9 mm) of water per hectare per day was required. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Water Balance, Hormone Homeostasis, and Sugar Signaling Are All Involved in Tomato Resistance to Tomato Yellow Leaf Curl Virus.

    Science.gov (United States)

    Sade, Dagan; Sade, Nir; Shriki, Oz; Lerner, Stephen; Gebremedhin, Alem; Karavani, Asaf; Brotman, Yariv; Osorio, Sonia; Fernie, Alisdair R; Willmitzer, Lothar; Czosnek, Henryk; Moshelion, Menachem

    2014-08-01

    Vacuolar water movement is largely controlled by membrane channels called tonoplast-intrinsic aquaporins (TIP-AQPs). Some TIP-AQP genes, such as TIP2;2 and TIP1;1, are up-regulated upon exposure to biotic stress. Moreover, TIP1;1 transcript levels are higher in leaves of a tomato (Solanum lycopersicum) line resistant to Tomato yellow leaf curl virus (TYLCV) than in those of a susceptible line with a similar genetic background. Virus-induced silencing of TIP1;1 in the tomato resistant line and the use of an Arabidopsis (Arabidopsis thaliana) tip1;1 null mutant showed that resistance to TYLCV is severely compromised in the absence of TIP1:1. Constitutive expression of tomato TIP2;2 in transgenic TYLCV-susceptible tomato and Arabidopsis plants was correlated with increased TYLCV resistance, increased transpiration, decreased abscisic acid levels, and increased salicylic acid levels at the early stages of infection. We propose that TIP-AQPs affect the induction of leaf abscisic acid, which leads to increased levels of transpiration and gas exchange, as well as better salicylic acid signaling. © 2014 American Society of Plant Biologists. All Rights Reserved.

  20. Smallholder Food and Water Security in the Face of Climatic Stress and the Coffee Leaf Rust: Lessons from Nicaragua

    Science.gov (United States)

    Stewart, I. T.; Bacon, C. M.; Sundstrom, W.

    2015-12-01

    Smallholder farmers in Nicaragua and throughout much of Central America preserve forest biodiversity and contribute to the sustainable production of coffee and other crops while, paradoxically, they themselves must cope with recurring periods of seasonal hunger. Smallholder food and water security in the region is affected by hurricanes, periodic drought events, climatic changes, an on-going outbreak of the coffee leaf rust, and fluctuations in food prices. Using regression analysis, our research examines what factors strengthened resilience to these hazards at the household level over the 1981 - 2014 time period. To this end, we integrate qualitative research on coping responses and local institutions, a participatory survey of 368 households, and an analysis of hydro-climatic data. Our results indicate that coping responses to the coffee leaf rust outbreak and the 2014 drought are comparable in severity to those used to endure Hurricane Mitch in 1998, and a severe 2009 drought. Higher smallholder resilience to stresses affecting food and water security is associated with larger farms, off-farm employment, more on-farm food production, higher numbers of fruit trees, and greater coffee harvests. Households that reported more severe coping responses to hazards earlier in the study period tended to be more strongly impacted by later hazards and reported generally greater seasonal hunger. Affiliation with local farmer-to-farmer institutions prioritizing either subsistence-oriented production or sales to international fair-trade markets did not correlate strongly with coping responses; however, subsistence-oriented institutions promote several resilience-enhancing practices. Lessons learned by adapting to past hazards may be used to develop adaptation and mitigation strategies for smallholders under continued climate variability and change.

  1. A comparison of Bt transgene, hybrid background, water stress, and insect stress effects on corn leaf and ear injury and subsequent yield.

    Science.gov (United States)

    Brewer, Michael J; Odvody, Gary N; Anderson, Darwin J; Remmers, Jeffrey C

    2014-06-01

    Experimentally manipulated water and insect stresses were applied to field-grown corn with different Bacillus thuringiensis (Bt) transgenes and no Bt transgenes, and different nontransgenic hybrid backgrounds (2011 and 2012, Corpus Christi, TX). Differences in leaf injury, ear injury, and yield were detected among experimental factors and their interactions. Under high and low water stress, injury from noctuid larvae (Lepidoptera: Noctuidae) on leaves during vegetative growth (primarily from fall armyworm, Spodoptera frugiperda J.E. Smith) and on developing ears (primarily from corn earworm, Helicoverpa zea [Boddie]) was lowest on more recent releases of Bt hybrids (newer Bt hybrids) expressing Cry1A.105+Cry2Ab2 and Cry 3Bb1, compared with earlier Bt hybrids (older Bt hybrids) expressing Cry1Ab and Cry3Bb1 and non-Bt hybrids. High water stress led to increased leaf injury under substantial fall armyworm feeding pressure in 2011 (as high as 8.7 on a 1-9 scale of increasing injury). In contrast, ear injury by corn earworm (as high as 20 cm(2) of surface area of injury) was greater in low water stress conditions. Six hybrid backgrounds did not influence leaf injury, while ear injury differences across hybrid backgrounds were detected for non-Bt and older Bt hybrid versions. While newer Bt hybrids expressing Cry1A.105+Cry2Ab2 and Cry 3Bb1 had consistent low leaf injury and high yield and low but less consistent ear injury across six hybrid backgrounds, water stress was a key factor that influenced yield. Bt transgenes played a more variable and lesser role when interacting with water stress to affect yield. These results exemplify the interplay of water and insect stress with plant injury and yield, their interactions with Bt transgenes, and the importance of these interactions in considering strategies for Bt transgene use where water stress is common.

  2. Lotus leaf-inspired CVD grown graphene for a water repellant flexible transparent electrode.

    Science.gov (United States)

    Yoon, Jong-Chul; Yoon, Chang-Sung; Lee, Jung-Soo; Jang, Ji-Hyun

    2013-11-21

    By simply heating commercial copper foil under an oxygen atmosphere and subsequently annealing CuO under a hydrogen atmosphere, the 3D Cu structures in the form of double hierarchical bumps are generated. The contact angle of a lotus leaf-inspired graphene grown on the reconstructed 3D Cu structures is 154.2°.

  3. Leaf silica concentration in Serengeti grasses increases with watering but not clipping: insights from a common garden study and literature review.

    Science.gov (United States)

    Quigley, Kathleen M; Anderson, T M

    2014-01-01

    Grasses (Poaceae) lack the complex biochemical pathways and structural defenses employed by other plant families; instead they deposit microscopic silica (SiO2) granules in their leaf blades (i.e., phytoliths) as a putative defense strategy. Silica accumulation in grasses has generally been considered an inducible defense; other research suggests silica accumulation occurs by passive diffusion and should therefore be closely coupled with whole plant transpiration. We tested the hypothesis that grasses increase leaf silica concentration in response to artificial defoliation in a common garden study in the Serengeti ecosystem of East Africa. Additionally, a watering treatment tested the alternative hypothesis that leaf silica was largely driven by plant water status. Leaf silica content of two dominant C4 Serengeti grass species, Themeda triandra and Digitaria macroblephara, was quantified after a 10-month clipping × water experiment in which defoliation occurred approximately every 2 months and supplementary water was added every 2 weeks. Themeda had greater silica content than Digitaria, and Themeda also varied in foliar silica content according to collection site. Clipping had no significant effect on leaf silica in either species and watering significantly increased silica content of the dominant tall grass species, Themeda, but not the lawn species, Digitaria. Our data, and those collected as part of a supplementary literature review, suggest that silicon induction responses are contingent upon a combination of plant identity (i.e., species, genotype, life history limitations) and environmental factors (i.e., precipitation, soil nutrients, grazing intensity). Specifically, we propose that an interaction between plant functional type and water balance plays an especially important role in determining silica uptake and accumulation.

  4. Leaf silica concentration in Serengeti grasses increases with watering but not clipping: insights from a common garden study and literature review

    Directory of Open Access Journals (Sweden)

    Kathleen M Quigley

    2014-10-01

    Full Text Available Grasses (Poaceae lack the complex biochemical pathways and structural defenses employed by other plant families; instead they deposit microscopic silica (SiO2 granules in their leaf blades (i.e. phytoliths as a putative defense strategy. Silica accumulation in grasses has generally been considered an inducible defense; other research suggests silica accumulation occurs by passive diffusion and should therefore be closely coupled with whole plant transpiration. We tested the hypothesis that grasses increase leaf silica concentration in response to artificial defoliation in a common garden study in the Serengeti ecosystem of East Africa. Additionally, a watering treatment tested the alternative hypothesis that leaf silica was largely driven by plant water status. Leaf silica content of two dominant C4 Serengeti grass species, Themeda triandra and Digitaria macroblephara, was quantified after a 10-month clipping x water experiment in which defoliation occurred approximately every two months and supplementary water was added every two weeks. Themeda had greater silica content than Digitaria, and Themeda also varied in foliar silica content according to collection site. Clipping had no significant effect on leaf silica in either species and watering significantly increased silica content of the dominant tall grass species, Themeda, but not the lawn species, Digitaria. Our data, and those collected as part of a supplementary literature review, suggest that silicon induction responses are contingent upon a combination of plant identity (i.e., species, genotype, life history limitations and environmental factors (i.e., precipitation, soil nutrients, grazing intensity. Specifically, we propose that an interaction between plant functional type and water balance plays an especially important role in determining silica uptake and accumulation.

  5. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange.

    Directory of Open Access Journals (Sweden)

    Shmuel Assouline

    Full Text Available Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss. Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d and size (s, and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d, exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.

  6. Storage effects on quantity and composition of dissolved organic carbon and nitrogen of lake water, leaf leachate and peat soil water.

    Science.gov (United States)

    Heinz, Marlen; Zak, Dominik

    2018-03-01

    This study aimed to evaluate the effects of freezing and cold storage at 4 °C on bulk dissolved organic carbon (DOC) and nitrogen (DON) concentration and SEC fractions determined with size exclusion chromatography (SEC), as well as on spectral properties of dissolved organic matter (DOM) analyzed with fluorescence spectroscopy. In order to account for differences in DOM composition and source we analyzed storage effects for three different sample types, including a lake water sample representing freshwater DOM, a leaf litter leachate of Phragmites australis representing a terrestrial, 'fresh' DOM source and peatland porewater samples. According to our findings one week of cold storage can bias DOC and DON determination. Overall, the determination of DOC and DON concentration with SEC analysis for all three sample types were little susceptible to alterations due to freezing. The findings derived for the sampling locations investigated here may not apply for other sampling locations and/or sample types. However, DOC size fractions and DON concentration of formerly frozen samples should be interpreted with caution when sample concentrations are high. Alteration of some optical properties (HIX and SUVA 254 ) due to freezing were evident, and therefore we recommend immediate analysis of samples for spectral analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Regulation effect of water storage in deeper soil layers on root physiological characteristics and leaf photosynthetic traits of cotton with drip irrigation under mulch].

    Science.gov (United States)

    Luo, Hong-Hai; Zhang, Hong-Zhi; Du, Ming-Wei; Huang, Jian-Jun; Zhang, Ya-Li; Zhang, Wang-Feng

    2009-06-01

    A soil column culture experiment was conducted under the ecological and climatic conditions of Xinjiang to study the effects of water storage in deeper (> 60 cm) soil layers on the root physiological characteristics and leaf photosynthetic traits of cotton variety Xinluzao 13. Two treatments were installed, i.e., well-watered and no watering. The moisture content in plough layer was controlled at 70% +/- 5% and 55% +/- 5% of field capacity by drip irrigation under mulch during growth season. It was shown that the water storage in deeper soil layers enhanced the SOD activity and the vigor of cotton root, and increased the water use efficiency of plant as well as the leaf water potential, chlorophyll content, and net photosynthesis rate, which finally led to a higher yield of seed cotton and higher water use efficiency. Under well-watered condition and when the moisture content in plough layer was maintained at 55% of field capacity, the senescence of roots in middle and lower soil layers was slower, and the higher root vigor compensated the negative effects of impaired photosynthesis caused by water deficit to some extent. The yield of seed cotton was lower when the moisture content in plough layer was maintained at 55% of field capacity than at 70% of field capacity, but no significant difference was observed in the water use efficiency. Our results emphasized the importance of pre-sowing irrigation in winter or in spring to increase the water storage of deeper soil layers. In addition, proper cultivation practices and less frequent drip irrigation (longer intervals between successive rounds of irrigation) were also essential for conserving irrigation water and achieving higher yield.

  8. EFFECT OF FENNEL WATER EXTRACTS ON REDUCTION OF FEEDING OF PEA LEAF WEEVIL

    Directory of Open Access Journals (Sweden)

    Barbara Biniaś

    2016-11-01

    Full Text Available The objective of the study was to examine the effect of aqueous extracts from fennel (Foeniculum vulgare Mill. seeds at 2%, 5%, 10% and 20% concentrations on the feeding of peal leaf weevil (Sitona lineatus L. on broad bean (Vicia faba L.. The experiment was conducted in the laboratory, in six replicates. Feeding intensity assessment was conducted by dipping leaves of broad bean in respective solutions of the extracts and determining the area of broad bean leaves, eaten by pea leaf weevil beetle in the 12 hour intervals. In addition, absolute deterrence index and palatability index were calculated. As a result of the observation no significant limiting effect of fennel seed aqueous extracts on the feeding of the pea leaf weevil females was shown. All of the used fennel extracts had inhibitory effect on the feeding of male S. linetaus and the strongest effect of extracts was observed in the first 36 hours of the experiment. The high values of the palatability index (particularly for the females with relatively low absolute deterrence index, indicate limited possibilities of the use of aqueous extracts from fennel seeds for the protection against the feeding of the beetles from the genus Sitona.

  9. Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index

    Science.gov (United States)

    Precision irrigation management in wine grape production is hindered by the lack of a reliable method to easily quantify and monitor vine water status. Mild to moderate water stress is desirable in wine grape for controlling vine vigor and optimizing fruit yield and quality. A crop water stress ind...

  10. Drinking Water

    Science.gov (United States)

    ... the safest water supplies in the world, but drinking water quality can vary from place to place. It ... water supplier must give you annual reports on drinking water. The reports include where your water came from ...

  11. Water Contamination

    Science.gov (United States)

    ... Statistics Training & Education Policy & Recommendations Fast Facts Healthy Water Sites Healthy Water Drinking Water Healthy Swimming Global ... type=”submit” value=”Submit” /> Healthy Water Home Water Contamination Recommend on Facebook Tweet Share Compartir On ...

  12. Effects of leaf water evaporative 2 H-enrichment and biosynthetic fractionation on leaf wax n-alkane δ2 H values in C3 and C4 grasses.

    Science.gov (United States)

    Gamarra, B; Sachse, D; Kahmen, A

    2016-11-01

    Leaf wax n-alkane δ2 H values carry important information about environmental and ecophysiological processes in plants. However, the physiological and biochemical drivers that shape leaf wax n-alkane δ2 H values are not completely understood. It is particularly unclear why n-alkanes in grasses are typically 2 H-depleted compared with plants from other taxonomic groups such as dicotyledonous plants and why C3 grasses are 2 H-depleted compared with C4 grasses. To resolve these uncertainties, we quantified the effects of leaf water evaporative 2 H-enrichment and biosynthetic hydrogen isotope fractionation on n-alkane δ2 H values for a range of C3 and C4 grasses grown in climate-controlled chambers. We found that only a fraction of leaf water evaporative 2 H-enrichment is imprinted on the leaf wax n-alkane δ2 H values in grasses. This is interesting, as previous studies have shown in dicotyledonous plants a nearly complete transfer of this 2 H-enrichment to the n-alkane δ2 H values. We thus infer that the typically observed 2 H-depletion of n-alkanes in grasses (as opposed to dicots) is because only a fraction of the leaf water evaporative 2 H-enrichment is imprinted on the δ2 H values. Our experiments also show that differences in n-alkane δ2 H values between C3 and C4 grasses are largely the result of systematic differences in biosynthetic fractionation between these two plant groups, which was on average -198‰ and-159‰ for C3 and C4 grasses, respectively. © 2016 John Wiley & Sons Ltd.

  13. Functional diversity of carbon-gain, water-use, and leaf-allocation traits in trees of a threatened lowland dry forest in Hawaii.

    Science.gov (United States)

    Sandquist, Darren R; Cordell, Susan

    2007-09-01

    We examined carbon-gain, water-use, and leaf-allocation traits for six tree species of a Hawaiian dry forest to better understand the functional diversity within this threatened ecosystem. Tropical dry forests are among the most endangered ecosystems on Earth, and in Hawaii, as elsewhere, declining biodiversity threatens ecosystem processes that may depend on forest functional diversity. We found broad variation among species including a two-fold difference for mean photosynthetic rate, a greater than three-fold difference for predawn water potential, and a nearly three-fold difference for leaf life span. Principal component analysis showed a clear separation of species based on carbon-gain vs. water-use related axes, and δ(13)C analysis revealed differing limitations (supply vs. demand) on carbon assimilation. The broad functional variation not only spanned traditional classifications (avoiders vs. tolerators), but also included unusual strategies (e.g., fast growth with drought tolerance). Correlations among traits, including leaf life span, leaf mass per area, and %N, followed typical global patterns, but some exceptions appeared as a result of unique life-history characteristics, such as latex-rich sap and root parasitism. Elucidating functional variation provides important information that can be used to link plant biodiversity with ecosystem processes and also facilitate the management and preservation of tropical dry forests and other threatened communities.

  14. Carbon Isotope Composition of Carbohydrates and Polyols in Leaf and Phloem Sap of Phaseolus vulgaris L. Influences Predictions of Plant Water Use Efficiency.

    Science.gov (United States)

    Smith, Millicent; Wild, Birgit; Richter, Andreas; Simonin, Kevin; Merchant, Andrew

    2016-08-01

    The use of carbon isotope abundance (δ(13)C) to assess plant carbon acquisition and water use has significant potential for use in crop management and plant improvement programs. Utilizing Phaseolus vulgaris L. as a model system, this study demonstrates the occurrence and sensitivity of carbon isotope fractionation during the onset of abiotic stresses between leaf and phloem carbon pools. In addition to gas exchange data, compound-specific measures of carbon isotope abundance and concentrations of soluble components of phloem sap were compared with major carbohydrate and sugar alcohol pools in leaf tissue. Differences in both δ(13)C and concentration of metabolites were found in leaf and phloem tissues, the magnitude of which responded to changing environmental conditions. These changes have inplications for the modeling of leaf-level gas exchange based upon δ(13)C natural abundance. Estimates of δ(13)C of low molecular weight carbohydrates and polyols increased the precision of predictions of water use efficiency compared with those based on bulk soluble carbon. The use of this technique requires consideration of the dynamics of the δ(13)C pool under investigation. Understanding the dynamics of changes in δ(13)C during movement and incorporation into heterotrophic tissues is vital for the continued development of tools that provide information on plant physiological performance relating to water use. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. An ATP-binding cassette subfamily G full transporter is essential for the retention of leaf water in both wild barley and rice.

    Science.gov (United States)

    Chen, Guoxiong; Komatsuda, Takao; Ma, Jian Feng; Nawrath, Christiane; Pourkheirandish, Mohammad; Tagiri, Akemi; Hu, Yin-Gang; Sameri, Mohammad; Li, Xinrong; Zhao, Xin; Liu, Yubing; Li, Chao; Ma, Xiaoying; Wang, Aidong; Nair, Sudha; Wang, Ning; Miyao, Akio; Sakuma, Shun; Yamaji, Naoki; Zheng, Xiuting; Nevo, Eviatar

    2011-07-26

    Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.

  16. Daily Changes in CO2 and Water Vapor Exchange, Chlorophyll Fluorescence, and Leaf Water Relations in the Halophyte Mesembryanthemum crystallinum during the Induction of Crassulacean Acid Metabolism in Response to High NaCl Salinity 1

    Science.gov (United States)

    Winter, Klaus; Gademann, Rolf

    1991-01-01

    Simultaneous measurements of net CO2 exchange, water vapor exchange, and leaf water relations were performed in Mesembryanthemum crystallinum during the development of crassulacean acid metabolism (CAM) in response to high NaCl salinity in the rooting medium. Determinations of chlorophyll a fluorescence were used to estimate relative changes in electron transport rate. Alterations in leaf mass per unit area, which—on a short-term basis—largely reflect changes in water content, were recorded continuously with a beta-gauge. Turgor pressure of mesophyll cells was determined with a pressure probe. As reported previously (K Winter, DJ von Willert [1972] Z Pflanzenphysiol 67: 166-170), recently expanded leaves of plants grown under nonsaline conditions showed gas-exchange characteristics of a C3 plant. Although these plants were not exposed to any particular stress treatment, water content and turgor pressure regularly decreased toward the end of the 12 hour light periods and recovered during the following 12 hours of darkness. When the NaCl concentration of the rooting medium was raised to 400 millimolar, in increments of 100 millimolar given at the onset of the photoperiods for 4 consecutive days, leaf water content and turgor pressure decreased by as much as 30 and 60%, respectively, during the course of the photoperiods. These transient decreases probably triggered the induction of the biochemical machinery which is required for CAM to operate. After several days at 400 millimolar NaCl, when leaves showed features typical of CAM, overall turgor pressure and leaf mass per unit area had increased above the levels before onset of the salt treatment, and diurnal alterations in leaf water content were reduced. Net carbon gain during photoperiods and average intercellular CO2 partial pressures at which net CO2 uptake occurred, progressively decreased upon salinization. Reversible diurnal depressions in leaf conductance and net CO2 uptake, with minima recorded in the

  17. Potencial da água na folha como um indicador de déficit hídrico em milho Leaf water potential as an indicator of water deficit in maize

    Directory of Open Access Journals (Sweden)

    JOÃO ITO BERGONCI

    2000-08-01

    Full Text Available Este trabalho foi desenvolvido na Estação Experimental Agronômica da Universidade Federal do Rio Grande do Sul, localizada no município de Eldorado do Sul, nos anos agrícolas de 1993/94 e 1994/95. O objetivo foi avaliar o potencial da água na folha como indicador do déficit hídrico, em milho (Zea mays L., relacionando-o ao potencial da água no solo. O experimento constou de três níveis de irrigação, desde a capacidade de campo até a ausência de irrigação. Os valores do potencial mínimo da água na folha foram desde -1,2 a -1,5 MPa em plantas irrigadas (na capacidade de campo e de -1,6 a -2,0 MPa em plantas não irrigadas. O potencial mínimo da água na folha correlacionou-se com o potencial matricial da água no solo a 45 cm de profundidade (r² = 0,73, e mostrou ser um indicador adequado de déficit hídrico. O potencial da água na folha ao entardecer mostrou relação com o potencial mínimo da água na folha, indicando, assim, que pode ser utilizado como indicador de déficit hídrico. O potencial foliar de base apresentou diferenças evidentes entre os tratamentos extremos, mas não teve relação consistente com o potencial mínimo da água na folha.This study was carried out at the Agronomic Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, RS, Brazil, during the agricultural seasons of 1993/94 and 1994/95. The objective was to evaluate the leaf water potential as an indicator of the water deficit in maize (Zea mays L., and its relation with the soil water potential. The experiment comprised three levels of irrigation, from field capacity to absence of irrigation. The values of the minimum leaf water potential ranged from -1.2 to -1.5 MPa in irrigated plants (field capacity and from -1.6 to -2.0 MPa in nonirrigated plants. The minimum leaf water potential was well correlated to the matric water potential measured at 45 cm deep (r² = 0.73. The sunset leaf water potential showed

  18. Healthy Water

    Science.gov (United States)

    ... recreational water activities like swimming, also helps promote healthy living. Often, water’s vital role is most apparent during an emergency or disaster. We launched the Healthy Water website to provide answers to your water- ...

  19. Crop coefficient approaches based on fixed estimates of leaf resistance are not appropriate for estimating water use of citrus

    CSIR Research Space (South Africa)

    Taylor, NJ

    2015-03-01

    Full Text Available The estimation of crop water use is critical for accurate irrigation scheduling and water licenses. However, the direct measurement of crop water use is too expensive and time-consuming to be performed under all possible conditions, which...

  20. Association of root, specific leaf area and SPAD chlorophyll meter reading to water use efficiency of peanut under different available soil water

    Science.gov (United States)

    Drought is the major abiotic constraint affecting peanut productivity and quality worldwide. There is a pressing need to improve the water use efficiency (WUE) of rain-fed peanut production. Breeding varieties with high water use efficiency is seen as providing part of the solution. The objective...

  1. Evidence of hydraulic lift for pre-rainy season leaf out and dry-season stem water enrichment in Sclerocarya birrea, a tropical agroforestry tree

    Science.gov (United States)

    Ceperley, Natalie; Mande, Theophile; Rinaldo, Andrea; Parlange, Marc B.

    2014-05-01

    We use stable isotopes of water as tracers to follow water use by five Sclerocarya birrea trees in a catchment in South Eastern Burkina Faso interspersed with millet fields, gallery forest, Sudanian savanna, and fallow fields. Isotopic ratios were determined from water extracted from stems of the trees and sub-canopy soil of two of them, while nearby ground water, precipitation, and surface water was sampled weekly. A unique configuration of sensors connected with a wireless sensor network of meteorological stations measured sub-canopy shading, the temperature and humidity in the canopy, through-fall, and soil moisture under two of the trees. Both water extracted from sap and water extracted from soil is extremely enriched in the dry season, but drop to levels close to the ground water in February or March, which coincides with the growth of leaves. Dates of leaf out were confirmed by changes in δDH and δO18 concentrations of water, photographic documentation & pixel analysis, and analysis of sub-canopy radiation and proceeded the rise in humidity and flow that was later detected in the sub-canopy soil, the trunk of the tree (sap-flow), and atmosphere (canopy VPD). Examination of the isotopic signature suggests that size of tree plays an important role in duration and timing of this leaf-out as well as the degree of enrichment during the peak of the dry season. Further examination of the isotopic signatures of the roots suggested that the trees are performing hydraulic redistribution, or lifting the ground water and "sharing it" with the soil in the rooting zone in the dry season. The enriched level of xylem in this case is a product of water loss, and enrichment, along the travel path of the water from the roots to the tip of the stem, as evidenced by the variation according to size of tree. Vapor pressure deficit, soil water, and soil moisture interactions support this picture of interacting controls, separate from hydrologic triggers on the water movement in

  2. Anti-cholesterol activity test of tanjung (Mimusops elengi L.) leaf extract in the water using in vivo method in mice (Mus musculus L.) DDY-strain

    Science.gov (United States)

    Tristantini, Dewi; Pradana, Bhayangkara Tegar

    2017-02-01

    High cholesterol level in blood is one of deadly cardiovascular disease's causes which is triggered by accumulation of cholesterol patching in blood vessels through heart and using synthetic medicine has several side effect. However, tanjung (M. elengi) which abundant in Indonesia is believed that it can strengthen and clean plaque in blood vessels wall. In this study, anti-cholesterol activity of tanjung (M. elengi) leaf extract in the water will be tested by in vivo method to 6 group of mice (Mus musculus) DDY-strain. The result showed that tanjung (M. elengi) leaf extract has significant effect to decrease total cholesterol level of mice, more extract given to mice, it will give higher cholesterol decreasing. TE 3 can decrease cholesterol level as much as 36%. In this study, it can be concluded that tanjung (M. elengi) leaf extract can be used as cholesterol decreasing medicine.

  3. Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport.

    Science.gov (United States)

    Woodruff, D R; Meinzer, F C; Lachenbruch, B

    2008-01-01

    Hydraulic vulnerability of Douglas-fir (Pseudotsuga menziesii) branchlets decreases with height, allowing shoots at greater height to maintain hydraulic conductance (K shoot) at more negative leaf water potentials (Psi l). To determine the basis for this trend shoot hydraulic and tracheid anatomical properties of foliage from the tops of Douglas-fir trees were analysed along a height gradient from 5 to 55 m. Values of Psi l at which K shoot was substantially reduced, declined with height by 0.012 Mpa m(-1). Maximum K shoot was reduced by 0.082 mmol m(-2) MPa(-1) s(-1) for every 1 m increase in height. Total tracheid lumen area per needle cross-section, hydraulic mean diameter of leaf tracheid lumens, total number of tracheids per needle cross-section and leaf tracheid length decreased with height by 18.4 microm(2) m(-1), 0.029 microm m(-1), 0.42 m(-1) and 5.3 microm m(-1), respectively. Tracheid thickness-to-span ratio (tw/b)2 increased with height by 1.04 x 10(-3) m(-1) and pit number per tracheid decreased with height by 0.07 m(-1). Leaf anatomical adjustments that enhanced the ability to cope with vertical gradients of increasing xylem tension were attained at the expense of reduced water transport capacity and efficiency, possibly contributing to height-related decline in growth of Douglas fir.

  4. Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species.

    Science.gov (United States)

    Cao, X; Jia, J B; Li, H; Li, M C; Luo, J; Liang, Z S; Liu, T X; Liu, W G; Peng, C H; Luo, Z B

    2012-07-01

    Although fast-growing Populus species consume a large amount of water for biomass production, there are considerable variations in water use efficiency (WUE) across different poplar species. To compare differences in growth, WUE and anatomical properties of leaf and xylem and to examine the relationship between photosynthesis/WUE and anatomical properties of leaf and xylem, cuttings of six poplar species were grown in a botanical garden. The growth performance, photosynthesis, intrinsic WUE (WUE(i) ), stable carbon isotope composition (δ(13) C) and anatomical properties of leaf and xylem were analysed in these poplar plants. Significant differences were found in growth, photosynthesis, WUE(i) and anatomical properties among the examined species. Populus cathayana was the clone with the fastest growth and the lowest WUE(i) /δ(13) C, whereas P. × euramericana had a considerable growth increment and the highest WUE(i) /δ(13) C. Among the analysed poplar species, the highest total stomatal density in P. cathayana was correlated with its highest stomatal conductance (g(s) ) and lowest WUE(i) /δ(13) C. Moreover, significant correlations were observed between WUE(i) and abaxial stomatal density and stem vessel lumen area. These data suggest that photosynthesis, WUE(i) and δ(13) C are associated with leaf and xylem anatomy and there are tradeoffs between growth and WUE(i) . It is anticipated that some poplar species, e.g. P. × euramericana, are better candidates for water-limited regions and others, e.g. P. cathayana, may be better for water-abundant areas. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. The Antiradical Activity of Insoluble Water Suji (Pleomele angustifolia N.E. Brown) Leaf Extract and Its Application as Natural Colorant in Bread product

    OpenAIRE

    Jokopriyambodo, Wahyu

    2014-01-01

    Currently, there are some synthetic colouring agents present in food products. The synthetic colouring agents are supposed to give deleterious effect to human health; therefore, natural coloring agents derived from plant is continuously explored to replace the synthetic ones. Suji (Pleomele angustifolia) leaf is one of the potential plant to be used as natural coloring agents. The aim of this study is to explore the natural colour potency and antiradical activity of insoluble water extract of...

  6. Using Leaf Chlorophyll to Parameterize Light-Use-Efficiency Within a Thermal-Based Carbon, Water and Energy Exchange Model

    Science.gov (United States)

    Houlborg, Rasmus; Anderson, Martha C.; Daughtry, C. S. T.; Kustas, W. P.; Rodell, Matthew

    2010-01-01

    Chlorophylls absorb photosynthetically active radiation and thus function as vital pigments for photosynthesis, which makes leaf chlorophyll content (C(sub ab) useful for monitoring vegetation productivity and an important indicator of the overall plant physiological condition. This study investigates the utility of integrating remotely sensed estimates of C(sub ab) into a thermal-based Two-Source Energy Balance (TSEB) model that estimates land-surface CO2 and energy fluxes using an analytical, light-use-efficiency (LUE) based model of canopy resistance. The LUE model component computes canopy-scale carbon assimilation and transpiration fluxes and incorporates LUE modifications from a nominal (species-dependent) value (LUE(sub n)) in response to short term variations in environmental conditions, However LUE(sub n) may need adjustment on a daily timescale to accommodate changes in plant phenology, physiological condition and nutrient status. Day to day variations in LUE(sub n) were assessed for a heterogeneous corn crop field in Maryland, U,S.A. through model calibration with eddy covariance CO2 flux tower observations. The optimized daily LUE(sub n) values were then compared to estimates of C(sub ab) integrated from gridded maps of chlorophyll content weighted over the tower flux source area. The time continuous maps of daily C(sub ab) over the study field were generated by focusing in-situ measurements with retrievals generated with an integrated radiative transfer modeling tool (accurate to within +/-10%) using at-sensor radiances in green, red and near-infrared wavelengths acquired with an aircraft imaging system. The resultant daily changes in C(sub ab) within the tower flux source area generally correlated well with corresponding changes in daily calibrated LUE(sub n) derived from the tower flux data, and hourly water, energy and carbon flux estimation accuracies from TSEB were significantly improved when using C(sub ab) for delineating spatio

  7. Hydro-ecological Effects on the Isotopic Composition of Soil and Leaf Water in Humid Deciduous Forests of Southern United States.

    Science.gov (United States)

    Mora, G.; Jahren, A. H.

    2001-05-01

    Paleoclimatic information inferred from the oxygen and hydrogen isotope abundance of fossil plant tissues and biomarkers relies on the observed close relationship between values of δ D and δ 18O for rainwater and environmental parameters (i.e., temperature, humidity, etc). However, the isotope content of rainwater can be altered during its passage through the canopy and the soil zone. Moreover, large isotope fractionations can occur after water enters the vascular system of plants as a result of leaf evaporation and biological processes. A number of studies, for instance, have addressed the effect of soil evaporation in arid and semi-arid regions that produces an enrichment of up to 20‰ in 18O and 80‰ in D in soil and stem water. Little is known, however, about fractionation effects in highly productive sub-tropical/temperate areas. With this study, we seek to evaluate evaporation effect on three humid deciduous forests of southern United States located along a 460-km transect that shows a precipitation gradient of about 200-mm in annual precipitation. The predominant tree species at the studied sites include dogwood, sugar gum, and silver maple. Rainwater was collected for isotopic determinations at the three localities, showing values that plot along the Meteoric Water Line. No significant difference (up to 0.4‰ for δ 18O and 4‰ for δ D) was observed in the isotopic composition of open rainfall and throughfall precipitation at the three sites. Soil water was cryogenically extracted from samples collected every 25-cm at the three sites during the growing season of 1997. Soil water from the upper soil horizons at the wettest site (Saint Bernard Park, Mississippi) showed isotopic values similar to those of rainfall. Moreover, isotopic values for soil water at this site were similar with depth, having a maximum difference of about 0.3‰ for δ 18O and of about 2‰ for δ D. Isotopic values for soil water at the driest locality (Natchez Lake, Arkansas

  8. Geoecohydrological mechanisms couple soil and leaf water dynamics and facilitate species coexistence in shallow soils of a tropical semiarid mixed forest.

    Science.gov (United States)

    Rodríguez-Robles, Ulises; Arredondo, J Tulio; Huber-Sannwald, Elisabeth; Vargas, Rodrigo

    2015-07-01

    Trees growing on shallow rocky soils must have exceptional adaptations when underlying weathered bedrock has no deep fractures for water storage. Under semiarid conditions, hydrology of shallow soils is expected to decouple from plant hydrology, as soils dry out as a result of rapid evaporation and competition for water increases between coexisting tree species. Gas exchange and plant-water relations were monitored for 15 months for Pinus cembroides and Quercus potosina tree species in a tropical semiarid forest growing on c. 20-cm-deep soils over impermeable volcanic bedrock. Soil and leaf water potential maintained a relatively constant offset throughout the year in spite of high intra-annual fluctuations reaching up to 5 MPa. Thus, hydrology of shallow soils did not decouple from hydrology of trees even in the driest period. A combination of redistribution mechanisms of water stored in weathered bedrock and hypodermic flow accessible to oak provided the source of water supply to shallow soils, where most of the actively growing roots occurred. This study demonstrates a unique geoecohydrological mechanism that maintains a tightly coupled hydrology between shallow rocky soils and trees, as well as species coexistence in this mixed forest, where oak facilitates water access to pine. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Water citizenship

    DEFF Research Database (Denmark)

    Paerregaard, Karsten; Stensrud, Astrid Bredholt; Andersen, Astrid Oberborbeck

    2016-01-01

    This article examines the implementation of Peru’s new water law and discusses how it produces new forms of water citizenship. Inspired by the global paradigm of “integrated water resources management,” the law aims to include all citizens in the management of the country’s water resources...... by embracing a “new water culture.” We ask what forms of water citizenship emerge from the new water law and how they engage with local water practices and affect existing relations of inequality. We answer these questions ethnographically by comparing previous water legislation and how the new law currently...... is negotiated and contested in three localities in Peru’s southern highlands. We argue that the law creates a new water culture that views water as a substance that is measurable, quantifiable, and taxable, but that it neglects other ways of valuing water. We conclude that water citizenship emerges from...

  10. Responses to flooding of plant water relations and leaf gas exchange in tropical tolerant trees of a black-water wetland

    Directory of Open Access Journals (Sweden)

    Ana eHerrera

    2013-05-01

    Full Text Available This review summarizes the research on physiological responses to flooding of trees in the seasonal black-water wetland of the Mapire River in Venezuela. Inter-annual variability was found during eight years of sampling, in spite of which a general picture emerged of increased stomatal conductance (gs and photosynthetic rate (PN during the flooded period to values as high as or higher than in plants in drained wet soil. Models explaining the initial inhibitory responses and the acclimation to flooding are proposed. In the inhibitory phase of flooding, hypoxia generated by flooding causes a decrease in root water absorption and stomatal closure. An increase with flooding in xylem water potential ( suggests that flooding does not cause water deficit. The PN decreases due to changes in relative stomatal and non-stomatal limitations to photosynthesis; an increase in the latter is due to reduced chlorophyll and total soluble protein content. Total non-structural carbohydrates accumulate in leaves but their content begins to decrease during the acclimatized phase at full flooding, coinciding with the resumption of high gs and PN. The reversal of the diminution in gs is associated, in some but not all species, to the growth of adventitious roots. The occurrence of morpho-anatomical and biochemical adaptations which improve oxygen supply would cause the acclimation, including increased water absorption by the roots, increased rubisco and chlorophyll contents and ultimately increased PN. Therefore, trees would perform as if flooding did not signify a stress to their physiology.

  11. Water Safety

    Science.gov (United States)

    ... School Counselors Kidney Stones Brain and Nervous System Water Safety KidsHealth > For Teens > Water Safety Print A ... tied to alcohol use. previous continue At the Water Park OK, so you do more splashing than ...

  12. Water pollution

    OpenAIRE

    Institute, Marine

    2013-01-01

    Students will learn about what causes water pollution and how to be environmentally aware. *Note: Students should understand the concept of the water cycle before moving onto water pollution (see Lesson Plan “Oceans all Around Us”).

  13. Water Safety

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Water Safety KidsHealth / For Parents / Water Safety What's in ... remains your best measure of protection. Making Kids Water Wise It's important to teach your kids proper ...

  14. Fluoridated Water

    Science.gov (United States)

    ... Genetics Services Directory Cancer Prevention Overview Research Fluoridated Water On This Page What is fluoride, and where is it found? What is water fluoridation? When did water fluoridation begin in the ...

  15. Parasites: Water

    Science.gov (United States)

    ... Tropical Diseases Laboratory Diagnostic Assistance [DPDx] Parasites Home Water Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir Parasites can live in natural water sources. When outdoors, treat your water before drinking ...

  16. Factors controlling plasticity of leaf morphology in Robinia pseudoacacia L. II: the impact of water stress on leaf morphology of seedlings grown in a controlled environment chamber

    Science.gov (United States)

    M.T. Tyree

    2012-01-01

    Context. The cause of morphological plasticity of leaves within the crowns of tall trees still debated. Whether it is driven by irradiance or hydraulic constraints is inconclusive. In a previous study, we hypothesized that water stress caused between-site and within-tree morphological variability in mature Robinia trees.

  17. Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage.

    Science.gov (United States)

    Nio, S A; Cawthray, G R; Wade, L J; Colmer, T D

    2011-10-01

    This study examined expression of osmotic adjustment (OA) and accumulation of solutes in wheat (Triticum aestivum L.) leaves in response to water deficit (WD) imposed at the reproductive stage. Two contrasting cultivars, Hartog and Sunco (putatively high and low in OA capacity, respectively), were grown in deep (viz. 80 cm) pots in a controlled environment. In a sandy substrate, leaf OA was 5-times greater in Hartog compared with Sunco. At 21 d of WD treatment, K(+) only accounted for 12% of OA in Hartog and 48% in Sunco with less OA (i.e. tissue K(+) led to different proportions owing to different magnitudes of OA). Glycinebetaine and proline also increased under WD, but these were not significant osmotica on a whole tissue basis. Hartog accumulated dry matter faster than Sunco under WD, and this was consistent with greater water extraction by Hartog than by Sunco. In a second experiment on Hartog, with loam added to the sand to increase water-holding capacity and thus enable a longer draw-down period, leaf OA increased to 0.37 MPa at 37 d of withholding water. K(+) increased up to 16 d of drying and then decreased towards 37 d. Glycinebetaine, proline, glucose and fructose all increased during the draw-down period, although with different dynamics; e.g. glycinebetaine increased linearly whereas glucose showed an exponential increase. By contrast, sucrose declined. K(+) was the major contributor to OA (viz. 54%) up to 30 d of drying, whereas glycinebetaine, proline and glucose were major contributors later (at d 37 these organic solutes each accounted for 19, 21 and 21% of OA). Thus, the various solutes that contributed to leaf OA in wheat cv. Hartog accumulated at different times as WD developed. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Leaf surface traits and water storage retention affect photosynthetic responses to leaf surface wetness among wet tropical forest and semiarid savanna plants.

    Science.gov (United States)

    Aparecido, Luiza M T; Miller, Gretchen R; Cahill, Anthony T; Moore, Georgianne W

    2017-10-01

    While it is reasonable to predict that photosynthetic rates are inhibited while leaves are wet, leaf gas exchange measurements during wet conditions are challenging to obtain due to equipment limitations and the complexity of canopy-atmosphere interactions in forested environments. Thus, the objective of this study was to evaluate responses of seven tropical and three semiarid savanna plant species to simulated leaf wetness and test the hypotheses that (i) leaf wetness reduces photosynthetic rates (Anet), (ii) leaf traits explain different responses among species and (iii) leaves from wet environments are better adapted for wet leaf conditions than those from drier environments. The two sites were a tropical rainforest in northern Costa Rica with ~4200 mm annual rainfall and a savanna in central Texas with ~1100 mm. Gas exchange measurements were collected under dry and wet conditions on five sun-exposed leaf replicates from each species. Additional measurements included leaf wetness duration and stomatal density. We found that Anet responses varied greatly among species, but all plants maintained a baseline of activity under wet leaf conditions, suggesting that abaxial leaf Anet was a significant percentage of total leaf Anet for amphistomatous species. Among tropical species, Anet responses immediately after wetting ranged from -31% (Senna alata (L.) Roxb.) to +21% (Zamia skinneri Warsz. Ex. A. Dietr.), while all savanna species declined (up to -48%). After 10 min of drying, most species recovered Anet towards the observed status prior to wetting or surpassed it, with the exception of Quercus stellata Wangenh., a savanna species, which remained 13% below Anet dry. The combination of leaf wetness duration and leaf traits, such as stomatal density, trichomes or wax, most likely influenced Anet responses positively or negatively. There was also overlap between leaf traits and Anet responses of savanna and tropical plants. It is possible that these species converge

  19. Soil Moisture and Excavation Behaviour in the Chaco Leaf-Cutting Ant (Atta vollenweideri): Digging Performance and Prevention of Water Inflow into the Nest

    Science.gov (United States)

    Pielström, Steffen; Roces, Flavio

    2014-01-01

    The Chaco leaf-cutting ant Atta vollenweideri is native to the clay-heavy soils of the Gran Chaco region in South America. Because of seasonal floods, colonies are regularly exposed to varying moisture across the soil profile, a factor that not only strongly influences workers' digging performance during nest building, but also determines the suitability of the soil for the rearing of the colony's symbiotic fungus. In this study, we investigated the effects of varying soil moisture on behaviours associated with underground nest building in A. vollenweideri. This was done in a series of laboratory experiments using standardised, plastic clay-water mixtures with gravimetric water contents ranging from relatively brittle material to mixtures close to the liquid limit. Our experiments showed that preference and group-level digging rate increased with increasing water content, but then dropped considerably for extremely moist materials. The production of vibrational recruitment signals during digging showed, on the contrary, a slightly negative linear correlation with soil moisture. Workers formed and carried clay pellets at higher rates in moist clay, even at the highest water content tested. Hence, their weak preference and low group-level excavation rate observed for that mixture cannot be explained by any inability to work with the material. More likely, extremely high moistures may indicate locations unsuitable for nest building. To test this hypothesis, we simulated a situation in which workers excavated an upward tunnel below accumulated surface water. The ants stopped digging about 12 mm below the interface soil/water, a behaviour representing a possible adaptation to the threat of water inflow field colonies are exposed to while digging under seasonally flooded soils. Possible roles of soil water in the temporal and spatial pattern of nest growth are discussed. PMID:24748382

  20. Safety of purified decolorized (low anthraquinone) whole leaf Aloe vera (L) Burm. f. juice in a 3-month drinking water toxicity study in F344 rats.

    Science.gov (United States)

    Shao, A; Broadmeadow, A; Goddard, G; Bejar, E; Frankos, V

    2013-07-01

    Decolorized (purified, low anthraquinone) whole leaf Aloe vera (L.) Burm. f. juice was administered at concentrations of 0%, 0.5%, 1% and 2% in the drinking water of F344Du rats for 3 months without any adverse effect. The no-observed-adverse-effect level (NOAEL) in this study was considered to be >2%w/v (>1845 mg/kg bodyweight/day for males and >2920 mg/kg bodyweight for females). The test material contained total anthraquinones at Aloe vera extracts tested in other studies have resulted in an increased incidence and severity of diarrhea and colon adenomas and carcinomas. The results of this study supports the assertion that the high levels of anthraquinone present in orally administered, non-purified whole leaf Aloe vera extract may be responsible for the adverse effects observed on the colon. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake

    National Research Council Canada - National Science Library

    Borrell, Andrew K; Mullet, John E; George-Jaeggli, Barbara; van Oosterom, Erik J; Hammer, Graeme L; Klein, Patricia E; Jordan, David R

    2014-01-01

    Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield...

  2. Fire water

    Energy Technology Data Exchange (ETDEWEB)

    Thorpe, K. [Lawrence Webster Forrest Ltd. (United Kingdom)

    2001-01-01

    The article focuses on the value of water in fighting fires and discusses why refineries should identify water supply and distribution in contingency planning against fire. In the event of a fire, water will be required for (i) extinguishing the fire; (ii) protection of equipment and (iii) confinement of the fire. The thought process for identifying the water demand in the event of a fire is outlined. Tables give data on (a) water rates for cooling storage tanks; (b) water rates for cooling process units (c) guide to water requirements for various sizes of process units and (d) pumping requirements.

  3. Phloem sap and leaf δ13C, carbohydrates, and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment

    Science.gov (United States)

    Merchant, Andrew; Peuke, Andreas D.; Keitel, Claudia; Macfarlane, Craig; Warren, Charles R.; Adams, Mark A.

    2010-01-01

    Phloem is a central conduit for the distribution of photoassimilate, nutrients, and signals among plant organs. A revised technique was used to collect phloem sap from small woody plants in order to assess changes in composition induced by water deficit and flooding. Bled phloem sap δ13C and sugar concentrations were compared to δ13C of bulk material, soluble carbon extracts, and the neutral sugar fraction from leaves. Amino acid composition and inorganic ions of the phloem sap was also analysed. Quantitative, systematic changes were detected in phloem sap composition and δ13C in response to altered water availability. Phloem sap δ13C was more sensitive to changes of water availability than the δ13C of bulk leaf, the soluble carbon fraction, and the neutral soluble fraction of leaves. Changes in water availability also resulted in significant changes in phloem sugar (sucrose and raffinose), inorganic nutrient (potassium), and amino acid (phenylalanine) concentrations with important implications for the maintenance of phloem function and biomass partitioning. The differences in carbohydrate and amino acid composition as well as the δ13C in the phloem, along with a new model system for phloem research, offer an improved understanding of the phloem-mediated signal, nutrient, and photoassimilate transduction in relation to water availability. PMID:20211969

  4. Elimination of {sup 137}Cs from trefoil (leaf and stem), ``Mitsuba``, cryptotaenia japonica hassk, boiled in a distilled and salted waters

    Energy Technology Data Exchange (ETDEWEB)

    Motegi, Misako; Miyake, Sadaaki; Ohsawa, Takashi; Nakazawa, Kiyoaki [Saitama Inst. of Public Health (Japan); Izumo, Yoshiro

    1999-07-01

    Elimination of {sup 137}Cs from highly accumulated trefoil (leaf and stem) through boiling in distilled and salted water were investigated in relation to study the effect of cooking and processing on biochemical states of radionuclides (RI) contaminating in foods. {sup 137}Cs was hardly eliminated from the trefoil immersed in a distilled water at room temperature (about 15degC) during 10 min. {sup 137}Cs was considerably eliminated from the trefoil when boiled in a distilled water, 0.3-3.0% salt concentration of the water and soy sauce: about 40-60% (after 2 min), 70-85% (5 min) and 80-90% (10 min), respectively. Elimination of {sup 137}Cs in the soy sauce (e.g. 77.0{+-}2.9%, at 1% salt concentration after 10 min) was restrictive comparing to that in the salt water (93.4{+-}2.3%). These results are expected to contribute to evaluate the radiation exposure to man when a boiled trefoil contaminating with {sup 137}Cs was ingested. (author)

  5. Regional scale impacts of Tamarix leaf beetles (Diorhabda carinulata) on the water availability of western U.S. rivers as determined by multi-scale remote sensing methods

    Science.gov (United States)

    Nagler, Pamela L.; Brown, Tim; Hultine, Kevin R.; van Riper, Charles; Bean, Daniel W.; Dennison, Philip E.; Murray, R. Scott; Glenn, Edward P.

    2012-01-01

    Tamarix leaf beetles (Diorhabda carinulata) have been widely released on western U.S. rivers to control introduced shrubs in the genus Tamarix. Part of the motivation to control Tamarix is to salvage water for human use. Information is needed on the impact of beetles on Tamarix seasonal leaf production and subsequent water use overwide areas andmultiple cycles of annual defoliation.Herewe combine ground data with high resolution phenocam imagery and moderate resolution (Landsat) and coarser resolution (MODIS) satellite imagery to test the effects of beetles on Tamarix evapotranspiration (ET) and leaf phenology at sites on six western rivers. Satellite imagery covered the period 2000 to 2010 which encompassed years before and after beetle release at each study site. Phenocam images showed that beetles reduced green leaf cover of individual canopies by about 30% during a 6-8 week period in summer, but plants produced new leaves after beetles became dormant in August, and over three years no net reduction in peak summer leaf production was noted. ETwas estimated by vegetation index methods, and both Landsat and MODIS analyses showed that beetles reduced ET markedly in the first year of defoliation, but ET recovered in subsequent years. Over all six sites, ET decreased by 14% to 15% by Landsat and MODIS estimates, respectively. However, resultswere variable among sites, ranging fromno apparent effect on ET to substantial reduction in ET. Baseline ET rates before defoliation were low, 394 mmyr-1 by Landsat and 314 mm yr-1 by MODIS estimates (20-25% of potential ET), further constraining the amount of water that could be salvaged. Beetle-Tamarix interactions are in their early stage of development on this continent and it is too soon to predict the eventual extent towhich Tamarix populationswill be reduced. The utility of remote sensing methods for monitoring defoliation was constrained by the small area covered by each phenocamimage, the low temporal resolution of

  6. Differences in effectiveness of water steeping from green tea leaf and black tea leaf as hemostasis effect on wound cut-tail mice (Mus musculus

    Directory of Open Access Journals (Sweden)

    Hasmawati Hasan

    2016-12-01

    Full Text Available Tooth extraction is a simple procedure that is frequently performed in the practice of dentistry. Bleeding is a common complications of tooth extraction. There are several materials or methods that may be used to control the bleeding. To minimize side effect, it might need natural ingredients as a replacement. Tannin and flavonoid is a compounds that can reduce bleeding time. Green tea and black tea are plants that have these compounds with different concentrations. Aims of this study is to determine the differences in the effectiveness of water steeping green tea leaves and black tea leaves as a hemostasis effect on wound cut-tail mice (Mus musculus. This is an experimental research with study design post-test only control group design. Samples were 30 male mice which divided into three groups. One negative control group (aquadest and two treatment group (green tea and black tea. Mice that match the criteria is cutted the tail equal to 3 mm from the tip of the tail, then the ingredients is applied to the wound. Blood is dripped on absorbent paper until bleeding stop and data were analyzed using Kruskal-Wallis. There are significant differences between negative control group and the treatment group. In the treatment groups there were significant differences in the bleeding time between green tea group and black tea group. As a conclusion, water steeping from green tea leaves have a better effect than black leaves tea as hemostasis on wound cut-tail mice.

  7. Leaf area index drives soil water availability and extreme drought-related mortality under elevated CO2 in a temperate grassland model system.

    Science.gov (United States)

    Manea, Anthony; Leishman, Michelle R

    2014-01-01

    The magnitude and frequency of climatic extremes, such as drought, are predicted to increase under future climate change conditions. However, little is known about how other factors such as CO2 concentration will modify plant community responses to these extreme climatic events, even though such modifications are highly likely. We asked whether the response of grasslands to repeat extreme drought events is modified by elevated CO2, and if so, what are the underlying mechanisms? We grew grassland mesocosms consisting of 10 co-occurring grass species common to the Cumberland Plain Woodland of western Sydney under ambient and elevated CO2 and subjected them to repeated extreme drought treatments. The 10 species included a mix of C3, C4, native and exotic species. We hypothesized that a reduction in the stomatal conductance of the grasses under elevated CO2 would be offset by increases in the leaf area index thus the retention of soil water and the consequent vulnerability of the grasses to extreme drought would not differ between the CO2 treatments. Our results did not support this hypothesis: soil water content was significantly lower in the mesocosms grown under elevated CO2 and extreme drought-related mortality of the grasses was greater. The C4 and native grasses had significantly higher leaf area index under elevated CO2 levels. This offset the reduction in the stomatal conductance of the exotic grasses as well as increased rainfall interception, resulting in reduced soil water content in the elevated CO2 mesocosms. Our results suggest that projected increases in net primary productivity globally of grasslands in a high CO2 world may be limited by reduced soil water availability in the future.

  8. Leaf area index drives soil water availability and extreme drought-related mortality under elevated CO2 in a temperate grassland model system.

    Directory of Open Access Journals (Sweden)

    Anthony Manea

    Full Text Available The magnitude and frequency of climatic extremes, such as drought, are predicted to increase under future climate change conditions. However, little is known about how other factors such as CO2 concentration will modify plant community responses to these extreme climatic events, even though such modifications are highly likely. We asked whether the response of grasslands to repeat extreme drought events is modified by elevated CO2, and if so, what are the underlying mechanisms? We grew grassland mesocosms consisting of 10 co-occurring grass species common to the Cumberland Plain Woodland of western Sydney under ambient and elevated CO2 and subjected them to repeated extreme drought treatments. The 10 species included a mix of C3, C4, native and exotic species. We hypothesized that a reduction in the stomatal conductance of the grasses under elevated CO2 would be offset by increases in the leaf area index thus the retention of soil water and the consequent vulnerability of the grasses to extreme drought would not differ between the CO2 treatments. Our results did not support this hypothesis: soil water content was significantly lower in the mesocosms grown under elevated CO2 and extreme drought-related mortality of the grasses was greater. The C4 and native grasses had significantly higher leaf area index under elevated CO2 levels. This offset the reduction in the stomatal conductance of the exotic grasses as well as increased rainfall interception, resulting in reduced soil water content in the elevated CO2 mesocosms. Our results suggest that projected increases in net primary productivity globally of grasslands in a high CO2 world may be limited by reduced soil water availability in the future.

  9. Leaf d15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability

    Directory of Open Access Journals (Sweden)

    Idoia eAriz

    2015-08-01

    Full Text Available The natural 15N/14N isotope composition (δ15N of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L. plants were subjected to distinct conditions of [CO2] (400 versus 700 mol mol-1, temperature (ambient versus ambient + 4ºC and water availability (fully watered versus water deficiency - WD. As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP contents detected at 700 mol mol-1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g. photosynthesis, TSP, N demand and water transpiration to environmental conditions.

  10. Water Reuse: Using Reclaimed Water For Irrigation

    OpenAIRE

    Haering, Kathryn; Evanylo, Gregory K.; Benham, Brian Leslie, 1960-; Goatley, Michael

    2009-01-01

    Describes water reuse and reclaimed water, explains how reclaimed water is produced, options for water reuse, water reuse regulations, and agronomic concerns with water reuse, and provides several case studies of water reuse.

  11. Water tight.

    Science.gov (United States)

    Postel, S

    1993-01-01

    Many cities worldwide have gone beyond the limits of their water supply. Growing urban populations increase their demand for water, thereby straining local water supplies and requiring engineers to seek our even more distant water sources. It is costly to build and maintain reservoirs, canals, pumping stations, pipes, sewers, and treatment plants. Water supply activities require much energy and chemicals, thereby contributing to environmental pollution. Many cities are beginning to manage the water supply rather than trying to keep up with demand. Pumping ground water for Mexico City's 18 million residents (500,000 people added/year) surpasses natural replenishment by 50% to 80%, resulting in falling water tables and compressed aquifers. Mexico City now ambitiously promotes replacement of conventional toilets with 1.6 gallon toilets (by late 1991, this had saved almost 7.4 billion gallons of water/year). Continued high rural-urban migration and high birth rates could negate any savings, however. Waterloo, Ontario, has also used conservation efforts to manage water demand. These efforts include retrofit kits to make plumbing fixtures more efficient, efficiency standards for plumbing fixtures, and reduction of water use outdoors. San Jose, California, has distributed water savings devices to about 220,000 households with a 90% cooperation rate. Boston, Massachusetts, not only promoted water saving devices but also repaired leaks and had an information campaign. Increasing water rates to actually reflect true costs also leads to water conservation, but not all cities in developing countries use water meters. All households in Edmonton, Alberta, are metered and its water use is 1/2 of that of Calgary, where only some households are metered. Tucson, Arizona, reduced per capita water use 16% by raising water rates and curbing water use on hot days. Bogor, Indonesia, reduced water use almost 30% by increasing water rates. In the US, more and more states are mandating use

  12. DETERMINATION OF LEAD (Pb, IRON (Fe AND MANGANESE (Mn CONCENTRATION IN SEWAGE WATER AND VEGETABLE LEAF SAMPLES

    Directory of Open Access Journals (Sweden)

    Muhammad Umar Hayat

    2015-04-01

    Full Text Available Application of waste water for irrigation purposes has increased over the past years. This waste water contains high amounts of trace elements and heavy metals.Many of these are non-essential and toxic to plants, animals and human beings. The use of polluted water in the immediate surroundings of big cities in Pakistan is a common practice for growing of vegetables. When this water applied for long time in irrigation, these heavy metals may accumulate in soil and that may be toxic to plants and also cause deterioration of soil. The present study revealed that heavy metal content was above the toxicity level in leafy vegetables grown in the area of Lahore. This study showed that among the different tested plant species, the amount of heavy metals was more in leaves than fruits. Plants whose fruits grow below the soil showed higher concentration of heavy metals while other showed less concentration whose edible portion was above the ground level. Leafy vegetables (spinach, cabbage, coriander etc showed higher concentration in leaves than in fruits. The concentration of heavy metals in upper layer of soil (0 -15 cm is higher than the lower layer (15-30 cm. The reason behind is that the upper layer was receiving sewage water permanently while the penetration of sewage water below 15 cm was less. The increase in heavy metal accumulation in different plant species and their different parts is not constant and is not in proportion to the increase in heavy metal concentration in soil irrigated with sewage wastewater.

  13. Branding water.

    Science.gov (United States)

    Dolnicar, Sara; Hurlimann, Anna; Grün, Bettina

    2014-06-15

    Branding is a key strategy widely used in commercial marketing to make products more attractive to consumers. With the exception of bottled water, branding has largely not been adopted in the water context although public acceptance is critical to the implementation of water augmentation projects. Based on responses from 6247 study participants collected between 2009 and 2012, this study shows that (1) different kinds of water - specifically recycled water, desalinated water, tap water and rainwater from personal rainwater tanks - are each perceived very differently by the public, (2) external events out of the control of water managers, such as serious droughts or floods, had a minimal effect on people's perceptions of water, (3) perceptions of water were stable over time, and (4) certain water attributes are anticipated to be more effective to use in public communication campaigns aiming at increasing public acceptance for drinking purposes. The results from this study can be used by a diverse range of water stakeholders to increase public acceptance and adoption of water from alternative sources. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Genetic control and combining ability of flag leaf area and relative water content traits of bread wheat cultivars under drought stress condition

    Directory of Open Access Journals (Sweden)

    Golparvar Ahmad Reza

    2013-01-01

    Full Text Available In order to compare mode of inheritance, combining ability, heterosis and gene action in genetic control of traits flag leaf area, relative water content and grain filling rate of bread wheat under drought stress, a study was conducted on 8 cultivars using of Griffing’s method2 in fixed model. Mean square of general combining ability was significant also for all traits and mean square of specific combining ability was significant also for all traits except relative water content of leaf which show importance of both additive and dominant effects of genes in heredity of these traits under stress. GCA to SCA mean square ratio was significant for none of traits. Results of this study showed that non additive effects of genes were more important than additive effect for all traits. According to results we can understand that genetic improvement of mentioned traits will have low genetic efficiency by selection from the best crosses of early generations. Then it is better to delay selection until advanced generations and increase in heritability of these traits.

  15. Water SA

    African Journals Online (AJOL)

    This journal publishes refereed, original work in all branches of water science, technology, engineering and policy. This includes: water resource development; the hydrological cycle; surface hydrology; geohydrology, hydropedology and hydrometeorology; limnology; freshwater and estuarine ecology; salinisation; treatment ...

  16. Water Pollution

    Science.gov (United States)

    Bowen, H. J. M.

    1975-01-01

    Deals with water pollution in the following categories: a global view, self purification, local pollution, difficulties in chemical analysis, and remedies for water pollution. Emphasizes the extent to which man's activities have modified the cycles of certain elements. (GS)

  17. Water Pollution

    Science.gov (United States)

    ... NIEHS Doing? Further Reading For Educators Introduction Water pollution is any contamination of water with chemicals or other foreign substances that are detrimental to human, plant, or animal health. These pollutants include fertilizers and pesticides from agricultural ...

  18. Water Resilience

    Science.gov (United States)

    The Drinking Water and Wastewater Resiliency site provides tools and resources for drinking water and wastewater utilities in the full spectrum of emergency management which includes prevention, mitigation, preparedness, response and recovery.

  19. Leaf water relations and sapflow in eastern cottonwood (Populus deltoides Bartr.) trees planted for phytoremediation of a groundwater pollutant

    Science.gov (United States)

    James M. Vose; Wayne T. Swank; Gregory J. Harvey; Barton D. Clinton; Christine Sobek

    2000-01-01

    Plants that remediate groundwater pollutants may offer a feasible alternative to the traditional and more expensive practices. Because its success depends on water use, this approach requires a complete understanding of species-specific transpiration patterns. The objectives of this study were (1) to quantify tree and stand-level transpiration in two age classes (whips...

  20. Hydrologic, abiotic and biotic interactions: plant density, windspeed, leaf size and groundwater all affect oak water use efficiency

    Science.gov (United States)

    Darin J. Law; Deborah M. Finch

    2011-01-01

    Plant water use in drylands can be complex due to variation in hydrologic, abiotic and biotic factors, particularly near ephemeral or intermittent streams. Plant use of groundwater may be important but is usually uncertain. Disturbances like fire contribute to complex spatiotemporal heterogeneity. Improved understanding of how such hydrologic, abiotic, and biotic...

  1. Water quality

    Science.gov (United States)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  2. Detecting leaf pulvinar movements on NDVI time series of desert trees: A new approach for water stress detection

    NARCIS (Netherlands)

    Chávez Oyanadel, R.O.; Clevers, J.G.P.W.; Verbesselt, J.; Naulin, P.; Herold, M.

    2014-01-01

    Heliotropic leaf movement or leaf ‘solar tracking’ occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices,

  3. Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf- and ecosystem-scales in a northern Great Plains grassland.

    Science.gov (United States)

    Flanagan, Lawrence B; Farquhar, Graham D

    2014-02-01

    Measurements of the carbon (δ(13) Cm ) and oxygen (δ(18) Om ) isotope composition of C3 plant tissue provide important insights into controls on water-use efficiency. We investigated the causes of seasonal and inter-annual variability in water-use efficiency in a grassland near Lethbridge, Canada using stable isotope (leaf-scale) and eddy covariance measurements (ecosystem-scale). The positive relationship between δ(13) Cm and δ(18) Om values for samples collected during 1998-2001 indicated that variation in stomatal conductance and water stress-induced changes in the degree of stomatal limitation of net photosynthesis were the major controls on variation in δ(13) Cm and biomass production during this time. By comparison, the lack of a significant relationship between δ(13) Cm and δ(18) Om values during 2002, 2003 and 2006 demonstrated that water stress was not a significant limitation on photosynthesis and biomass production in these years. Water-use efficiency was higher in 2000 than 1999, consistent with expectations because of greater stomatal limitation of photosynthesis and lower leaf ci /ca during the drier conditions of 2000. Calculated values of leaf-scale water-use efficiency were 2-3 times higher than ecosystem-scale water-use efficiency, a difference that was likely due to carbon lost in root respiration and water lost during soil evaporation that was not accounted for by the stable isotope measurements. © 2013 John Wiley & Sons Ltd.

  4. Vegetation species composition and canopy architecture information expressed in leaf water absorption measured in the 1000 nm and 2200 spectral region by an imaging spectrometer

    Science.gov (United States)

    Green, Robert O.; Roberts, Dar A.

    1995-01-01

    Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring, and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local to regional and even synoptic scales. Classical approaches rely on vegetation indices such as the normalized difference vegetation index (NDVI) to estimate biophysical parameters such as leaf area index or intercepted photosynthetically active radiation (IPAR). Another approach is to apply a variety of classification schemes to map vegetation and thus extrapolate fine-scale information about specific sites to larger areas of similar composition. Imaging spectrometry provides additional information that is not obtainable through broad-band sensors and that may provide improved inputs both to direct biophysical estimates as well as classification schemes. Some of this capability has been demonstrated through improved discrimination of vegetation, estimates of canopy biochemistry, and liquid water estimates from vegetation. We investigate further the potential of leaf water absorption estimated from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data as a means for discriminating vegetation types and deriving canopy architectural information. We expand our analysis to incorporate liquid water estimates from two spectral regions, the 1000-nm region and the 2200-nm region. The study was conducted in the vicinity of Jasper Ridge, California, which is located on the San Francisco peninsula to the west of the Stanford University campus. AVIRIS data were acquired over Jasper Ridge, CA, on June 2, 1992, at 19:31 UTC. Spectra from three sites in this image were analyzed. These data are from an area of healthy grass, oak woodland, and redwood forest, respectively. For these analyses, the AVIRIS-measured upwelling radiance spectra for the entire Jasper

  5. Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations

    Science.gov (United States)

    Schull, M. A.; Anderson, M. C.; Houborg, R.; Gitelson, A.; Kustas, W. P.

    2015-03-01

    Recent studies have shown that estimates of leaf chlorophyll content (Chl), defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining estimates of canopy light use efficiency (LUE). Canopy LUE describes the amount of carbon assimilated by a vegetative canopy for a given amount of absorbed photosynthetically active radiation (APAR) and is a key parameter for modeling land-surface carbon fluxes. A carbon-enabled version of the remote-sensing-based two-source energy balance (TSEB) model simulates coupled canopy transpiration and carbon assimilation using an analytical sub-model of canopy resistance constrained by inputs of nominal LUE (βn), which is modulated within the model in response to varying conditions in light, humidity, ambient CO2 concentration, and temperature. Soil moisture constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly through thermal infrared measurements of land-surface temperature. We investigate the capability of using Chl estimates for capturing seasonal trends in the canopy βn from in situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize near Mead, Nebraska. The results show that field-measured Chl is nonlinearly related to βn, with variability primarily related to phenological changes during early growth and senescence. Utilizing seasonally varying βn inputs based on an empirical relationship with in situ measured Chl resulted in improvements in carbon flux estimates from the TSEB model, while adjusting the partitioning of total water loss between plant transpiration and soil evaporation. The observed Chl-βn relationship provides a functional mechanism for integrating remotely sensed Chl into the TSEB model, with the potential for improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes.

  6. Strontium Titanate Based Artificial Leaf Loaded with Reduction and Oxidation Cocatalysts for Selective CO2 Reduction Using Water as an Electron Donor.

    Science.gov (United States)

    Shoji, Shusaku; Yamaguchi, Akira; Sakai, Etsuo; Miyauchi, Masahiro

    2017-06-21

    Thin film of SrTiO3 nanorods loaded with reduction and oxidation cocatalysts drove the selective reduction of carbon dioxide (CO2) into carbon monoxide (CO), as well as caused the production of equivalent oxygen molecules through water oxidation under UV irradiation. The described film functioned as a free-standing plate without any bias potential application, similar to a natural leaf. The film was facilely fabricated by a simple hydrothermal and annealing treatment of a titanium substrate to produce the SrTiO3 nanorod film (STO film) followed by two steps of loading the reduction and oxidation cocatalysts onto the surface of the STO. As a reduction cocatalyst, a CuxO nanocluster was chosen to achieve selective reduction of CO2 into CO, whereas a cobalt- and phosphate-based cocatalyst (CoPi) facilitated oxidation on the STO surface to promote oxygen generation. For the photocatalysis test, a wireless film was simply set into an aqueous solution bubbled with CO2 in a reactor, and CO production was observed in the headspace of the reactor under UV irradiation. Compared to the bare STO film, the dual cocatalyst-loaded STO film exhibited 2.5 times higher CO generation. H2 production was very limited in our system, and the amount of molecules generated by the reduction reaction was almost twice that of the generated oxygen molecules, proving that water molecules acted as electron donors. Our artificial leaf consists of abundant and nontoxic natural elements and represents the first achievement of stoichiometric CO2 reduction using water as an electron donor by a free-standing natural leaflike plate form.

  7. Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations

    KAUST Repository

    Schull, M. A.

    2015-03-11

    Recent studies have shown that estimates of leaf chlorophyll content (Chl), defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining estimates of canopy light use efficiency (LUE). Canopy LUE describes the amount of carbon assimilated by a vegetative canopy for a given amount of absorbed photosynthetically active radiation (APAR) and is a key parameter for modeling land-surface carbon fluxes. A carbon-enabled version of the remote-sensing-based two-source energy balance (TSEB) model simulates coupled canopy transpiration and carbon assimilation using an analytical sub-model of canopy resistance constrained by inputs of nominal LUE (βn), which is modulated within the model in response to varying conditions in light, humidity, ambient CO2 concentration, and temperature. Soil moisture constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly through thermal infrared measurements of land-surface temperature. We investigate the capability of using Chl estimates for capturing seasonal trends in the canopy βn from in situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize near Mead, Nebraska. The results show that field-measured Chl is nonlinearly related to βn, with variability primarily related to phenological changes during early growth and senescence. Utilizing seasonally varying βn inputs based on an empirical relationship with in situ measured Chl resulted in improvements in carbon flux estimates from the TSEB model, while adjusting the partitioning of total water loss between plant transpiration and soil evaporation. The observed Chl-βn relationship provides a functional mechanism for integrating remotely sensed Chl into the TSEB model, with the potential for improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes.

  8. Differential effects of severe water stress on linear and cyclic electron fluxes through Photosystem I in spinach leaf discs in CO(2)-enriched air.

    Science.gov (United States)

    Jia, Husen; Oguchi, Riichi; Hope, Alexander B; Barber, James; Chow, Wah Soon

    2008-10-01

    Linear and cyclic electron fluxes through Photosystem I in 1% CO(2) were quantified in spinach leaf tissue under severe water stress. Using actinic light with a peak at 697 nm for preferential light absorption by Photosystem I while also stimulating Photosystem II to improve redox poising, the cyclic electron flux after 60 s of illumination was a substantial proportion (33-44%) of the total electron flux through PSI at irradiances up to ~1,070 micromol photons m(-2) s(-1). At the maximum irradiance, the cyclic electron flux changed little with the progressive water loss from leaf tissue up to ~60%; by contrast, the linear electron flux was approximately halved. A reason for this differential effect of water stress on the capacity for cyclic and linear electron flow could be the increased crowding of soluble proteins in the stroma due to chloroplast shrinkage. Indeed the confinement of soluble proteins to a smaller chloroplast volume was indicated by cryo-scanning electron microscopy. It is known that the diffusion coefficient of large proteins is decreased when the background concentration of small proteins is raised; by contrast, the diffusion coefficient of small proteins is not affected by increasing the concentration of a large protein (Muramatsu and Minton in Proc Natl Acad Sci USA 85:2984-2988, 1988). Therefore, we suggest that linear electron flow, being coupled to the Calvin-Benson cycle, is limited by the diffusion of large macromolecules, especially the ribulose 1, 5-bisphosphate carboxylase/oxygenase complex. By contrast, cyclic electron flow, involving relatively small macromolecules such as ferredoxin, is less susceptible to inhibition by crowding in the stroma.

  9. Effects of atmospheric VPD, plant canopies, and low-water years on leaf stomatal conductance and photosynthetic water use efficiency in fifteen potential crop species for use in arid environments

    Science.gov (United States)

    Lue, A.; Jasoni, R. L.; Arnone, J.

    2011-12-01

    When evaluating the potential for growing alternative crop species in arid environments, high vapor pressure deficits (VPDs) that could potentially inhibit crop productivity by limiting stomatal conductance and CO2 uptake must be considered. The objective of this study was to quantify the effects of VPD and irrigation levels on leaf stomatal conductance (gs) and photosynthetic water use efficiency (PWUE) for a range of alternative crop species for aridland agriculture. We evaluated fifteen alternative crops in a field trial in the northern Nevada Walker River Basin. Plots of each species were subjected to two irrigation treatments, 4 and 2 acre-feet per growing season, to simulate normal-year and dry-year irrigation levels. We quantified gs and photosynthesis (A) under decreasing relative humidity (RH) (increasing VPDs) in 10% increments, from about 75% to 2%. About seventeen leaves per species were measured throughout the 2010 growing season over eleven days of samplings. Canopy air temperature and RH were logged in experimental plots to calculate diel and seasonal patterns in canopy VPD. Volumetric water content was also collected to quantify the effects of irrigation treatments on soil moisture and leaf gas exchange. Species varied in their gs and PWUE responses to increasing VPD. Stomatal conductance (gs) of leaves of all species generally increased initially as RH was lowered but then decreased at differing rates as RH dropped further. Average gs (across all measurement VPDs), maximum gs, maximum PWUE, and corresponding VPDs differed among species and between irrigation treatments. Some species (Medicago sativa, Leymus racemosus) showed higher gs across the range of measurement VPDs than other species (Bothrichloa ischaemum, Sorghastrum nutans), while some species exhibited maximum gs and maximum PWUE at higher VPDs (Erograstis tef, Calamovilfa longifolia) than other species (Leymus cinereus, Sorghastrum nutans). These results suggest that some species may

  10. Retrieval of Leaf Area Index (LAI and Soil Water Content (WC Using Hyperspectral Remote Sensing under Controlled Glass House Conditions for Spring Barley and Sugar Beet

    Directory of Open Access Journals (Sweden)

    Karsten Schulz

    2010-07-01

    Full Text Available Leaf area index (LAI and water content (WC in the root zone are two major hydro-meteorological parameters that exhibit a dominant control on water, energy and carbon fluxes, and are therefore important for any regional eco-hydrological or climatological study. To investigate the potential for retrieving these parameter from hyperspectral remote sensing, we have investigated plant spectral reflectance (400–2,500 nm, ASD FieldSpec3 for two major agricultural crops (sugar beet and spring barley in the mid-latitudes, treated under different water and nitrogen (N conditions in a greenhouse experiment over the growing period of 2008. Along with the spectral response, we have measured soil water content and LAI for 15 intensive measurement campaigns spread over the growing season and could demonstrate a significant response of plant reflectance characteristics to variations in water content and nutrient conditions. Linear and non-linear dimensionality analysis suggests that the full band reflectance information is well represented by the set of 28 vegetation spectral indices (SI and most of the variance is explained by three to a maximum of eight variables. Investigation of linear dependencies between LAI and soil WC and pre-selected SI’s indicate that: (1 linear regression using single SI is not sufficient to describe plant/soil variables over the range of experimental conditions, however, some improvement can be seen knowing crop species beforehand; (2 the improvement is superior when applying multiple linear regression using three explanatory SI’s approach. In addition to linear investigations, we applied the non-linear CART (Classification and Regression Trees technique, which finally did not show the potential for any improvement in the retrieval process.

  11. Contrasting water adhesion strengths of hydrophobic surfaces engraved with hierarchical grooves: lotus leaf and rose petal effects.

    Science.gov (United States)

    Zhang, Zhengqing; Ha, Man Yeong; Jang, Joonkyung

    2017-11-02

    The (de)wetting transitions of hierarchical grooves periodically engraved on a hydrophobic surface were investigated using a fully atomistic molecular dynamics simulation. The (meta) stable and transition states with sagging or depinning liquid surfaces were identified by calculating the free energy profiles of the (de)wetting transitions. The dewetting transitions for wide and narrow minor grooves have large and small activation free energies, respectively, exhibiting contrasting water adhesion forces as found for rose petals and lotus leaves.

  12. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water.

    Science.gov (United States)

    Schultz, Natalie M; Griffis, Timothy J; Lee, Xuhui; Baker, John M

    2011-11-15

    Plant water extracts typically contain organic materials that may cause spectral interference when using isotope ratio infrared spectroscopy (IRIS), resulting in errors in the measured isotope ratios. Manufacturers of IRIS instruments have developed post-processing software to identify the degree of contamination in water samples, and potentially correct the isotope ratios of water with known contaminants. Here, the correction method proposed by an IRIS manufacturer, Los Gatos Research, Inc., was employed and the results were compared with those obtained from isotope ratio mass spectrometry (IRMS). Deionized water was spiked with methanol and ethanol to create correction curves for δ(18)O and δ(2)H. The contamination effects of different sample types (leaf, stem, soil) and different species from agricultural fields, grasslands, and forests were compared. The average corrections in leaf samples ranged from 0.35 to 15.73‰ for δ(2)H and 0.28 to 9.27‰ for δ(18)O. The average corrections in stem samples ranged from 1.17 to 13.70‰ for δ(2)H and 0.47 to 7.97‰ for δ(18)O. There was no contamination observed in soil water. Cleaning plant samples with activated charcoal had minimal effects on the degree of spectral contamination, reducing the corrections, by on average, 0.44‰ for δ(2)H and 0.25‰ for δ(18)O. The correction method eliminated the discrepancies between IRMS and IRIS for δ(18)O, and greatly reduced the discrepancies for δ(2)H. The mean differences in isotope ratios between IRMS and the corrected IRIS method were 0.18‰ for δ(18)O, and -3.39‰ for δ(2)H. The inability to create an ethanol correction curve for δ(2)H probably caused the larger discrepancies. We conclude that ethanol and methanol are the primary compounds causing interference in IRIS analyzers, and that each individual analyzer will probably require customized correction curves. Copyright © 2011 John Wiley & Sons, Ltd.

  13. Water-Quality Data

    Science.gov (United States)

    ... Water Quality? [1.7MB PDF] Past featured science... Water Quality Data Today's Water Conditions Get continuous real- ... list of USGS water-quality data resources . USGS Water Science Areas Water Resources Groundwater Surface Water Water ...

  14. Contrasting responses of leaf stomatal characteristics to climate change: a considerable challenge to predict carbon and water cycles.

    Science.gov (United States)

    Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping

    2017-09-01

    Stomata control the cycling of water and carbon between plants and the atmosphere; however, no consistent conclusions have been drawn regarding the response of stomatal frequency to climate change. Here, we conducted a meta-analysis of 1854 globally obtained data series to determine the response of stomatal frequency to climate change, which including four plant life forms (over 900 species), at altitudes ranging from 0 to 4500 m and over a time span of more than one hundred thousand years. Stomatal frequency decreased with increasing CO2 concentration and increased with elevated temperature and drought stress; it was also dependent on the species and experimental conditions. The response of stomatal frequency to climate change showed a trade-off between stomatal control strategies and environmental factors, such as the CO2 concentration, temperature, and soil water availability. Moreover, threshold effects of elevated CO2 and temperature on stomatal frequency were detected, indicating that the response of stomatal density to increasing CO2 concentration will decrease over the next few years. The results also suggested that the stomatal index may be more reliable than stomatal density for determination of the historic CO2 concentration. Our findings indicate that the contrasting responses of stomata to climate change bring a considerable challenge in predicting future water and carbon cycles. © 2017 John Wiley & Sons Ltd.

  15. Investigation of the influence of liquid water films on O3 and PAN deposition on plant leaf surfaces treated with organic / inorganic compounds

    Science.gov (United States)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Kesselmeier, Jürgen; Sörgel, Matthias

    2016-04-01

    Liquid water films on environmental surfaces play an important role in various fields of interest (Burkhardt and Eiden, 1994). For example, the deposition of water soluble trace gases could be increased by surface moisture. Chameides and Stelson (1992) found out that the dissolution of trace gases in airborne particulate matter increases with rising water/solid ratio of the particles. Further, Flechard et al. (1999) concluded that deliquescent salt particles represent a potential sink for trace gases, depending on their chemical property. The formation of surface water films and its influence on the gas deposition was proposed by many previous studies (Fuentes and Gillespie, 1992, Burkhardt and Eiden, 1994, van Hove et al., 1989, Burkhardt et al., 1999, Flechard et al., 1999). In this study we investigate the influence of leaf surface water films on the deposition of O3 and PAN under controlled laboratory conditions. A twin cuvette system described in Sun et al. (2015) was used to control the environmental parameters such as light, temperature, trace gas mixing ratio and humidity. Furthermore, the leaf surface was treated with various organic and inorganic solutions to investigate the influence of deposited compounds on the electrical surface conductance of the leaves and the surface deposition of O3 and PAN at various relative humidities. The result shows that RHcrit, where the electrical surface conductance (G) increases exponentially, was 40 % during the light period and 50 % during the dark period. Furthermore, we observed that the formation of the leaf surface liquid film was depended on the deposited compounds on the leaf cuticles. For the O3 deposition on plants (Quercus ilex) a clear enhancement at rising environmental air humidity under light and dark condition was found. The increase during light conditions can be related partly to increasing stomatal conductance with higher RH. From the non-stomatal deposition measured in dark experiments, we could

  16. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of 'Katahdin'-derived potato cultivars.

    Science.gov (United States)

    Soltys-Kalina, Dorota; Plich, Jarosław; Strzelczyk-Żyta, Danuta; Śliwka, Jadwiga; Marczewski, Waldemar

    2016-03-01

    Drought tolerance in plants is a complex trait involving morphological, physiological, and biochemical mechanisms. Hundreds of genes underlie the response of plants to the stress. For crops, selecting cultivars that can produce economically significant yields under drought is a priority. Potato (Solanum tuberosum L.) is considered as drought sensitive crop, although cultivar-dependent differences in tolerance have been described. Cultivar 'Katahdin' possesses many appropriate characteristics and is widely used for breeding purposes worldwide; it also has enhanced tolerance to drought stress. In this study, we evaluated cv. 'Katahdin' and a half-sib family of 17 Katahdin-derived cultivars for leaf relative water content (RWC) and tuber yield under drought stress. The yields of cultivars 'Wauseon', 'Katahdin', 'Magura', 'Calrose', and 'Cayuga' did not significantly decline under drought stress. Among these five, Wauseon exhibited the lowest reduction in both tuber yield and relative water content under water shortage. The data showed that 'Wauseon' is the most attractive cultivar for studies of molecular and physiological processes under drought and for potato breeding due to low yield losses that correspond with high RWC values. This cultivar can serve as a reservoir of potentially useful genes to develop cultivars with enhanced tolerance to this abiotic stress.

  17. Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in-canopy light distribution

    DEFF Research Database (Denmark)

    Linderson, Maj-Lena; Mikkelsen, Teis Nørgaard; Ibrom, Andreas

    2012-01-01

    on incoming PAR below 500 μmol m−2 s−1 is independent, both of the canopy levels and of variations in the environmental parameters. The average WUEnormleaf for PAR above 500 μmol m−2 s−1 was found to be 5.5 μmol CO2 (mmol H2O)−1 hPa and, for the full range, 2.3 μmol CO2 (mmol H2O)−1 hPa. These results showed...... that WUE can be up-scaled from leaf to canopy on the basis of WUEnormleaf and the PAR distribution within the canopy. The up-scaling conducted was based on this WUEnormleaf – PAR relationship, the lightdistribution being assessed using the MAESTRA model, parameterized in accordance with measurements...

  18. Spatial patterns of D/H ratios in meteoric water, leaf waxes from plants, POM and sediments within a large fluvial Himalayan catchment

    Science.gov (United States)

    Sachse, D.; Hoffmann, B.; Bookhagen, B.; Feakins, S. J.; Kahmen, A.; Adhikari, D. P.

    2012-12-01

    The Arun Valley in eastern Nepal exhibits one of the steepest climatic gradients in the world with several meters of annual rainfall at the mountain front in the south and arid, cold conditions near the Tibetan Plateau in the north. This provides an excellent natural laboratory to analyse the spatial distribution of hydrogen isotope (D/H) ratio of meteoric waters and of plant leaf waxes in living plants, particulate organic matter (POM) and sediments within a catchment. The D/H ratio of leaf wax in soils and lake sediments has been shown to be a robust proxy of general hydrological conditions. Since substantial heterogeneity is observed between individual plants, long-term archives, such as soils and sediments are spatially and temporally integrating proxy records. In order to extract quantitative information from biological proxies in long-term sedimentary archives, it is important to understand these integrative processes expected with fluvial transport, but so far detailed catchment wide surveys of proxy heterogeneity are lacking. Here we studied the Nepalese part of the catchment of the Arun river, whose southern part is strongly affected by the summer precipitation associated with the Indian monsoon, whereas the upper reaches to the north are glacier-fed. We sampled across a steep altitudinal (73 to 1267m a.s.l.) and environmental gradient with spatially variable precipitation (from 800-4500 mm/year) and five different vegetation zones (from tropical to subtropical evergreen forests and finally alpine vegetation) along the less than 150 km the valley cuts through the Himalaya. We investigated how this gradient is recorded in the D/H ratio of water and/or leaf wax from different natural archives (meteoric water, plants, particulate organic material, soils, river sediments). We compare this dataset with climatological, ecological and remote sensing data from their respective catchments to evaluate sources of the observed heterogeneity. In particular, our aim is

  19. Mosquitocidal and water purification properties of Cynodon dactylon, Aloe vera, Hemidesmus indicus and Coleus amboinicus leaf extracts against the mosquito vectors.

    Science.gov (United States)

    Arjunan, Nareshkumar; Murugan, Kadarkarai; Madhiyazhagan, Pari; Kovendan, Kalimuthu; Prasannakumar, Kanagarajan; Thangamani, Sundaram; Barnard, Donald R

    2012-04-01

    Ethanolic extracts of Cynodon dactylon, Aloe vera, Hemidesmus indicus and Coleus amboinicus were tested for their toxicity effect on the third-instar larvae of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti. The leaves of C. dactylon, A. vera, H. indicus and C. amboinicus were collected from natural habitats (forests) in Western Ghats, Tamil Nadu, India. A total of 250 g of fresh, mature leaves were rinsed with distilled water and dried in shade. The dried leaves were put in Soxhlet apparatus and extract prepared using 100% ethanol for 72 h at 30-40°C. Dried residues were obtained from 100 g of extract evaporated to dryness in rotary vacuum evaporator. Larvicidal properties of ethanolic leaf extracts showed that the extracts are effective as mosquito control agents. The larval mortality was observed after 24 h exposure. No mortality was observed in the control. The median lethal concentration (LC(50)) values observed for the larvicidal activities are 0.44%, 0.51%, 0.59% and 0.68% for extracts of C. dactylon, A. vera, H. indicus and C. amboinicus, respectively. The observed mortality were statistically significant at P < 0.05 level. C. dactylon showed the highest mortality rate against the three species of mosquito larvae in laboratory and field. The selected plants were shown to exhibit water purification properties. Water quality parameters such as turbidity, pH and water clarity were analyzed in the water samples (pre-treatment and post-treatment of plant extracts) taken from the different breeding sites of mosquitoes. Water colour, turbidity and pH were reduced significantly after treatment with C. dactylon (13 HU, 31.5 mg/l and 6.9), H. indicus (13.8 HU, 33 mg/l and 7.1), A. vera (16 HU, 33.8 mg/l and 7.4) and C. amboinicus (21 HU, 35 mg/l and 7.5) extracts. The study proved that the extracts of C. dactylon, A. vera, H. indicus and C. amboinicus have both mosquitocidal and water sedimentation properties.

  20. Water Filter

    Science.gov (United States)

    1982-01-01

    A compact, lightweight electrolytic water sterilizer available through Ambassador Marketing, generates silver ions in concentrations of 50 to 100 parts per billion in water flow system. The silver ions serve as an effective bactericide/deodorizer. Tap water passes through filtering element of silver that has been chemically plated onto activated carbon. The silver inhibits bacterial growth and the activated carbon removes objectionable tastes and odors caused by addition of chlorine and other chemicals in municipal water supply. The three models available are a kitchen unit, a "Tourister" unit for portable use while traveling and a refrigerator unit that attaches to the ice cube water line. A filter will treat 5,000 to 10,000 gallons of water.

  1. Water decontamination

    Science.gov (United States)

    Roger Rowell

    2004-01-01

    For 1.5 to 2.5 billion people in the world, lack of clean water is a critical issue. It is estimated that by the year 2025 there will be an additional 2.5 billion people who will live in regions already lacking sufficient clean water. In the United States today, it is estimated that 90% of citizens live within 10 mi of a body of contaminated water. Large numbers of...

  2. Effect of Drought Stress on Leaf Water Status, Electrolyte Leakage, Photosynthesis Parameters and Chlorophyll Fluorescence of Two Kochia Ecotypes (Kochia scoparia Irrigated With Saline Water

    Directory of Open Access Journals (Sweden)

    A Masoumi

    2012-12-01

    Full Text Available Rainfall deficiency and the development of salinity in Iran are the most important factors for using new salt and drought-resistant plants instead of conventional crops. Kochia species have recently attracted the attention of researchers as a forage and fodder crop in marginal lands worldwide due to its drought and salt tolerant characteristics. This field experiment was performed at the Salinity Research Station of Ferdowsi University of Mashhad, Iran, in a split plot based on randomized complete block design with three replications in 2008. Drought stress, including four levels (control, no irrigation in vegetative stage, no irrigation at reproductive stage and no irrigation at maturity stage for four weeks, and two Kochia ecotypes (Birjand and Borujerd were allocated as main and sub plots, respectively. Relative water content, electrolyte leakage, photosynthesis parameters and chlorophyll fluorescence were assayed every two week from late vegetative stage. Results showed that drought stress decreased significantly measured parameters in plants under stress, in all stages. Plants completely recovered after eliminating stress and rewatering and recovered plants did not show significant difference with control. Electrolyte leaking and chlorophyll fluorescence showed the lowest change among the measured parameters. It can emphasize that resistant to stress conditions in this plant and cell wall is not damaged at this level of stress situation. Birjand ecotype from the arid region, revealed a better response than Borujerd ecotype to drought stress. Probably it returns to initial adaptation of Birjand. In general this plant can recover after severe drought stress well. It is possible to introduce this plant as a new fodder in arid and saline conditions.

  3. Water underground

    Science.gov (United States)

    de Graaf, Inge

    2015-04-01

    The world's largest assessable source of freshwater is hidden underground, but we do not know what is happening to it yet. In many places of the world groundwater is abstracted at unsustainable rates: more water is used than being recharged, leading to decreasing river discharges and declining groundwater levels. It is predicted that for many regions of the world unsustainable water use will increase, due to increasing human water use under changing climate. It would not be long before shortage causes widespread droughts and the first water war begins. Improving our knowledge about our hidden water is the first step to stop this. The world largest aquifers are mapped, but these maps do not mention how much water they contain or how fast water levels decline. If we can add a third dimension to the aquifer maps, so a thickness, and add geohydrological information we can estimate how much water is stored. Also data on groundwater age and how fast it is refilled is needed to predict the impact of human water use and climate change on the groundwater resource.

  4. Water Filters

    Science.gov (United States)

    1993-01-01

    The Aquaspace H2OME Guardian Water Filter, available through Western Water International, Inc., reduces lead in water supplies. The filter is mounted on the faucet and the filter cartridge is placed in the "dead space" between sink and wall. This filter is one of several new filtration devices using the Aquaspace compound filter media, which combines company developed and NASA technology. Aquaspace filters are used in industrial, commercial, residential, and recreational environments as well as by developing nations where water is highly contaminated.

  5. QTLs for cell wall-bound phenolics in relation to the photosynthetic apparatus activity and leaf water status under drought stress at different growth stages of triticale.

    Science.gov (United States)

    Hura, Tomasz; Tyrka, Mirosław; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga

    2017-04-01

    The present study aimed at identifying the regions of triticale genome responsible for cell wall saturation with phenolic compounds under drought stress during vegetative and generative growth. Moreover, the loci determining the activity of the photosynthetic apparatus, leaf water content (LWC) and osmotic potential (Ψ o) were identified, as leaf hydration and functioning of the photosynthetic apparatus under drought are associated with the content of cell wall-bound phenolics (CWPh). Compared with LWC and Ψ o, CWPh fluctuations were more strongly associated with changes in chlorophyll fluorescence. At the vegetative stage, CWPh fluctuations were due to the activity of three loci, of which only QCWPh.4B was also related to changes in F v/F m and ABS/CSm. In the other QTLs (QCWPh.6R.2 and QCWPh.6R.3), the genes of these loci determined also the changes in majority of chlorophyll fluorescence parameters. At the generative stage, the changes in CWPh in loci QCWPh.4B, QCWPh.3R and QCWPh.6R.1 corresponded to those in DIo/CSm. The locus QCWPh.6R.3, active at V stage, controlled majority of chlorophyll fluorescence parameters. This is the first study on mapping quantitative traits in triticale plants exposed to drought at different stages of development, and the first to present the loci for cell wall-bound phenolics.

  6. Source Water Protection Basics

    Science.gov (United States)

    Defines drinking water sources (source water), identifies drinking water sources, and describes source water assessments and protection, roles of government and organizations in drinking water source protection

  7. Occurrence and characterization of CaCO3-P coprecipitation on the leaf surface of Potamogeton crispus in water.

    Science.gov (United States)

    Liu, Guanglong; Guo, Wenwen; Yuan, Shaobo; Zhu, Hong; Yang, Tewu; Zhou, Yiyong; Zhu, Duanwei

    2016-11-01

    In this paper, the characterization of CaCO3-P coprecipitation on the leaf surface of Potamogeton crispus at various temperatures in pot experiments was investigated. White precipitates occurred on the leaf surfaces during the P. crispus growth period, and the chemical analysis demonstrates that the white precipitates contain Ca and P. The primary constituent of the white precipitates on the leaf of P. crispus was octacalcium phosphate (OCP) and hydroxyapatite. XRD characterization showed that the precipitates mostly consisted of crystals formed by calcium carbonate and hydroxyapatite, and the high calcium/phosphorus ratio indicated that the white coprecipitates were CaCO3-P. The scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDX) results confirmed that the precipitates on the surface of P. crispus leaves were carbonate-containing hydroxylapatite. In addition, no significant differences was observed in the structure of CaCO3-P coprecipitation between room temperature and consistent temperature treatments, which means that a little change in the temperature cannot change the process of Ca-P coprecipitation. Finally, coprecipitation of CaCO3-P on the leaf surface of P. crispus was proposed based on the morphology and structure analysis of CaCO3-P coprecipitation.

  8. Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees

    Science.gov (United States)

    Yong-Jiang Zhang; Frederick C. Meinzer; Qi Jin-Hua; Guillermo Goldstein; Cao. Kun-Fang

    2012-01-01

    Midday depressions in stomatal conductance (gs/>) and photosynthesis are common in plants. The aim of this study was to understand the hydraulic determinants of midday gs, the coordination between leaf and stem hydraulics and whether regulation of midday gs/> differed between...

  9. WATER TREATMENT

    Science.gov (United States)

    Pitman, R.W.; Conley, W.R. Jr.

    1962-12-01

    An automated system for adding clarifying chemicals to water in a water treatment plant is described. To a sample of the floc suspension polyacrylamide or similar filter aid chemicals are added, and the sample is then put through a fast filter. The resulting filtrate has the requisite properties for monitoring in an optical turbidimeter to control the automated system. (AEC)

  10. Water conservation

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2009-02-01

    Full Text Available This chapter describes water systems used in green buildings and sets out some objectives that could be aimed for. It also outlines some calculations that can be used to design water systems in green buildings. Finally, aspects of green building...

  11. Water Filters

    Science.gov (United States)

    1987-01-01

    A compact, lightweight electrolytic water filter generates silver ions in concentrations of 50 to 100 parts per billion in the water flow system. Silver ions serve as effective bactericide/deodorizers. Ray Ward requested and received from NASA a technical information package on the Shuttle filter, and used it as basis for his own initial development, a home use filter.

  12. Water Pollution

    Science.gov (United States)

    We all need clean water. People need it to grow crops and to operate factories, and for drinking and recreation. Fish and wildlife depend on ... and phosphorus make algae grow and can turn water green. Bacteria, often from sewage spills, can pollute ...

  13. Water tower

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    The water tower, being built on the highest point of the site, 460.5 m above the sea level. The tank will hold 750 m3 of water, and the tower will be topped by a knob which can serve as a geological survey reference mark.

  14. Water futures

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    2016-01-01

    This article explores the potential construction of a water reservoir in Peru’s Cordillera Blanca. Proposed by a peasant group, it would have served important productive purposes but have its intake within the perimeter of a national park. Thus, different notions about water and landscape emerge...... in the encounters between place-based practices and state-sponsored conservation efforts. Empirically tracing the efforts to construct the reservoir, the analytical focus of the article is on how different ways of knowing water within a particular landscape conjure and collide in the process. It is argued...... that the movement of water extends itself beyond the physical properties of the reservoir and irrigation channels as these are produced in encounters between different notions of the role of water in the landscape....

  15. Using Lidar to distinguish leaf area index in cottonwood trees and improve riparian water use estimates in the Upper San Pedro River Basin

    Science.gov (United States)

    Farid, A.; Goodrich, D.; Durcik, M.; Sorooshian, S.

    2007-12-01

    Estimation of riparian forest structural attributes, such as the Leaf Area Index (LAI), is an important step in identifying the amount of water use in riparian forest areas. In this research, small footprint lidar data were used to estimate biophysical properties of young, mature, and old cottonwood trees in the Upper San Pedro River Basin, Arizona, USA. Canopy height and maximum and mean laser heights were derived for the cottonwood trees from lidar data. Linear regression models were used to develop equations relating lidar height metrics with corresponding field measured LAI for each age class of cottonwoods. Four metrics (tree height, height of median energy, ground return ratio, and canopy return ratio) were derived by synthetically constructing a large footprint lidar waveform from small-footprint lidar data which were compared to ground-based high- resolution Intelligent Laser Ranging and Imaging System (ILRIS) scanner images. These four metrics were incorporated into a stepwise regression procedure to predict field-derived LAI for different age classes of cottonwoods. The Penman-Monteith model was then used to estimate transpiration of the cottonwoods using the lidar-derived canopy metrics. These transpiration estimates compared very well to ground-based sap flux transpiration estimates indicating lidar-derived LAI can be used to improve riparian cottonwood water-use estimates. Future research will attempt to fuse high spatial resolution multispectral or hyperspectral data and lidar data to improve classification results for species identification in the Upper San Pedro River Basin.

  16. Allelopathic Effect of Leaf Water Extract of Hoary alyssum (Berteroa incana L. at Rosette Stage on Seed Germination

    Directory of Open Access Journals (Sweden)

    H. Madani

    2012-07-01

    Full Text Available The allelopathic effects of leaves at rosette stage of the hoary alyssum (Berteroa incana L. against some associated grasses like, prairie June grass (Koeleria macrantha, Idaho fescue (Festuca idahoensis, blue-bunch wheatgrass (Pseudoroegneria spicata and cheat grass (Bromus tectorum and its own were investigated. The experiment al materials used were the leaf extracts and its allelopathic effects on seed germination and seedling emergence of the abave mentioned grasses in Petri dishes. According to our study, leaves of hoary alyssum rosettes at stage have the potential to reduce germination rate, root and shoot growth of pasture grasses and hoary alyssum itself due to its allelopathic effect. The leaf leachate solution bioassays also showed that the germination of cheat grass was more susceptible to 4% solution of allelopathic extract of leaves. Hoary alyssum leaf extract also exhibited allelopathic self-inhibition, in both seedling root and shoot growth at 2 and 4% concentrations. Self- inhibitory allelopathic effects of hoary alyssum could also be important in preventing seed germination and seedling establishment of neighboring plant.

  17. Visualizing water

    Science.gov (United States)

    Baart, F.; van Gils, A.; Hagenaars, G.; Donchyts, G.; Eisemann, E.; van Velzen, J. W.

    2016-12-01

    A compelling visualization is captivating, beautiful and narrative. Here we show how melding the skills of computer graphics, art, statistics, and environmental modeling can be used to generate innovative, attractive and very informative visualizations. We focus on the topic of visualizing forecasts and measurements of water (water level, waves, currents, density, and salinity). For the field of computer graphics and arts, water is an important topic because it occurs in many natural scenes. For environmental modeling and statistics, water is an important topic because the water is essential for transport, a healthy environment, fruitful agriculture, and a safe environment.The different disciplines take different approaches to visualizing water. In computer graphics, one focusses on creating water as realistic looking as possible. The focus on realistic perception (versus the focus on the physical balance pursued by environmental scientists) resulted in fascinating renderings, as seen in recent games and movies. Visualization techniques for statistical results have benefited from the advancement in design and journalism, resulting in enthralling infographics. The field of environmental modeling has absorbed advances in contemporary cartography as seen in the latest interactive data-driven maps. We systematically review the design emerging types of water visualizations. The examples that we analyze range from dynamically animated forecasts, interactive paintings, infographics, modern cartography to web-based photorealistic rendering. By characterizing the intended audience, the design choices, the scales (e.g. time, space), and the explorability we provide a set of guidelines and genres. The unique contributions of the different fields show how the innovations in the current state of the art of water visualization have benefited from inter-disciplinary collaborations.

  18. Water Filters

    Science.gov (United States)

    1988-01-01

    Seeking to find a more effective method of filtering potable water that was highly contaminated, Mike Pedersen, founder of Western Water International, learned that NASA had conducted extensive research in methods of purifying water on board manned spacecraft. The key is Aquaspace Compound, a proprietary WWI formula that scientifically blends various types of glandular activated charcoal with other active and inert ingredients. Aquaspace systems remove some substances; chlorine, by atomic adsorption, other types of organic chemicals by mechanical filtration and still others by catalytic reaction. Aquaspace filters are finding wide acceptance in industrial, commercial, residential and recreational applications in the U.S. and abroad.

  19. Water Purification

    Science.gov (United States)

    1994-01-01

    The Vision Catalyst Purifier employs the basic technology developed by NASA to purify water aboard the Apollo spacecraft. However, it also uses an "erosion" technique. The purifier kills bacteria, viruses, and algae by "catalytic corrosion." A cartridge contains a silver-impregnated alumina bed with a large surface area. The catalyst bed converts oxygen in a pool of water to its most oxidative state, killing over 99 percent of the bacteria within five seconds. The cartridge also releases into the pool low levels of ionic silver and copper through a controlled process of erosion. Because the water becomes electrochemically active, no electricity is required.

  20. Association of Escherichia coli O157:H7 with preharvest leaf lettuce upon exposure to contaminated irrigation water.

    Science.gov (United States)

    Wachtel, Marian R; Whitehand, Linda C; Mandrell, Robert E

    2002-01-01

    Recent foodborne outbreaks have linked infection by enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 to the consumption of contaminated lettuce. Contamination via food handler error and on-the-farm contamination are thought to be responsible for several outbreaks. Though recent studies have examined the application of EHEC to store-bought lettuce, little is known about the attachment of EHEC to growing plants. We investigated the association of lettuce seedlings with EHEC O157:H7 strains implicated in lettuce or fruit outbreaks using hydroponic and soil model systems. EHEC strains that express the green fluorescent protein were observed by stereomicroscopy and confocal laser scanning microscopy to determine adherence patterns on growing lettuce seedlings. Bacteria adhered preferentially to plant roots in both model systems and to seed coats in the hydroponic system. Two of five nonpathogenic E. coli strains showed decreased adherence to seedling roots in the hydroponic system. EHEC was associated with plants in as few as 3 days in soil, and contamination levels were dose-dependent. EHEC levels associated with young plants inoculated with a low dose suggested that the bacteria had multiplied. These data suggest that preharvest crop contamination via contaminated irrigation water can occur through plant roots.

  1. Plasticity of whole plant and leaf traits in Rubia peregrina in response to light, nutrient and water availability

    Science.gov (United States)

    Navas, Marie-Laure; Garnier, Eric

    2002-12-01

    This study aims at testing whether whole plant and aerial metamer traits of Rubia peregrina L., a small clonal shrub, differed in magnitude of response to variations in light, nutrient or water availability, comparing plants at the same age. The second aim was to test whether it was possible to identify a limited set of traits to assess phenotypic plasticity. Almost all traits significantly differed among treatments. These differences were partly due to changes in plant size for two whole plant and one metamer traits. No difference in grand plasticity, calculated with adjusted means correcting for size effect, was found between whole plant and aerial metamer traits. Some traits responded only to one resource (e.g. mean internode length to light) or two resources (e.g. SLA to light and nutrient). Root Mass Ratio was the most responsive of traits showing similar magnitude of plasticity to each of the three resources. These results suggest that (i) no clear difference in plasticity exists between whole plant and aerial metamer traits; (ii) allocation-related traits are of more general value than aerial metamer traits to assess the plasticity of a species.

  2. Water Fibers

    CERN Document Server

    Douvidzon, Mark L; Martin, Leopoldo L; Carmon, Tal

    2016-01-01

    Fibers constitute the backbone of modern communication and are used in laser surgeries; fibers also genarate coherent X-ray, guided-sound and supercontinuum. In contrast, fibers for capillary oscillations, which are unique to liquids, were rarely considered in optofluidics. Here we fabricate fibers by water bridging an optical tapered-coupler to a microlensed coupler. Our water fibers are held in air and their length can be longer than a millimeter. These hybrid fibers co-confine two important oscillations in nature: capillary- and electromagnetic-. We optically record vibrations in the water fiber, including an audio-rate fundamental and its 3 overtones in a harmonic series, that one can hear in soundtracks attached. Transforming Micro-Electro-Mechanical-Systems [MEMS] to Micro-Electro-Capillary-Systems [MECS], boosts the device softness by a million to accordingly improve its response to minute forces. Furthermore, MECS are compatible with water, which is a most important liquid in our world.

  3. Extraterrestrial Water

    Science.gov (United States)

    Kasting, J. F.

    2002-12-01

    Life as we know it, i.e., carbon-based organisms that rely on RNA and DNA for information storage and transfer, requires liquid water. Thus, the search for life elsewhere in the universe generally begins with a search for liquid water. In our own Solar System, Earth is the only planet (or moon) that has liquid water at its surface. Mars and Europa both probably have subsurface water. Researchers from NASA and elsewhere are hoping to eventually probe these subsurface reservoirs and determine whether life exists there. A more promising venue for finding extraterrestrial life is on Earth-like planets around other stars. Such planets can in principle be located and analyzed spectroscopically using large space-based telescopes like NASA's proposed Terrestrial Planet Finder (TPF) Mission (1). The chances of success for this mission depend critically on the abundance of Earth-like planets with liquid water at their surfaces because only there could a biota exist that would be widespread enough to modify the planet's atmosphere in a way that would be detectable. Models of planetary accretion suggest that most terrestrial planets should be endowed with substantial amounts of water (2). Climate models suggest that the "habitable zone" around solar-type stars is relatively wide so that water can remain liquid on a planet's surface for long times (3). Thus, the chances of finding water, and maybe life, elsewhere appear to be good. References: (1) Beichman, C. A., Woolf, N. J. and Lindensmith, C. A. The Terrestrial Planet Finder (TPF): A NASA Origins Program to Search for Habitable Planets (JPL Publication 99-3) (NASA Jet Propulsion Laboratory, Pasadena, CA, 1999). (2) Morbidelli, A., Chambers, J., Lunine, J. I., Petit, J. M., Robert, F., Valsecchi, G. B. and Cyr, K. E. Meteoritics and Planet. Sci. 35, 1309-1320 (2000). (3) Kasting, J. F., Whitmire, D. P. and Reynolds, R. T. Icarus 101, 108-128 (1993).

  4. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions

    Science.gov (United States)

    Yin, Xinyou

    2012-01-01

    To understand the physiological basis of genetic variation and resulting quantitative trait loci (QTLs) for photosynthesis in a rice (Oryza sativa L.) introgression line population, 13 lines were studied under drought and well-watered conditions, at flowering and grain filling. Simultaneous gas exchange and chlorophyll fluorescence measurements were conducted at various levels of incident irradiance and ambient CO2 to estimate parameters of a model that dissects photosynthesis into stomatal conductance (g s), mesophyll conductance (g m), electron transport capacity (J max), and Rubisco carboxylation capacity (V cmax). Significant genetic variation in these parameters was found, although drought and leaf age accounted for larger proportions of the total variation. Genetic variation in light-saturated photosynthesis and transpiration efficiency (TE) were mainly associated with variation in g s and g m. One previously mapped major QTL of photosynthesis was associated with variation in g s and g m, but also in J max and V cmax at flowering. Thus, g s and g m, which were demonstrated in the literature to be responsible for environmental variation in photosynthesis, were found also to be associated with genetic variation in photosynthesis. Furthermore, relationships between these parameters and leaf nitrogen or dry matter per unit area, which were previously found across environmental treatments, were shown to be valid for variation across genotypes. Finally, the extent to which photosynthesis rate and TE can be improved was evaluated. Virtual ideotypes were estimated to have 17.0% higher photosynthesis and 25.1% higher TE compared with the best genotype investigated. This analysis using introgression lines highlights possibilities of improving both photosynthesis and TE within the same genetic background. PMID:22888131

  5. Improving winter leaf area index estimation in evergreen coniferous forests and its significance in carbon and water fluxes modeling

    Science.gov (United States)

    Wang, R.; Chen, J. M.; Luo, X.

    2016-12-01

    Modeling of carbon and water fluxes at the continental and global scales requires remotely sensed LAI as inputs. For evergreen coniferous forests (ENF), severely underestimated winter LAI has been one of the issues for mostly available remote sensing products, which could cause negative bias in the modeling of Gross Primary Productivity (GPP) and evapotranspiration (ET). Unlike deciduous trees which shed all the leaves in winter, conifers retains part of their needles and the proportion of the retained needles depends on the needle longevity. In this work, the Boreal Ecosystem Productivity Simulator (BEPS) was used to model GPP and ET at eight FLUXNET Canada ENF sites. Two sets of LAI were used as the model inputs: the 250m 10-day University of Toronto (U of T) LAI product Version 2 and the corrected LAI based on the U of T LAI product and the needle longevity of the corresponding tree species at individual sites. Validating model daily GPP (gC/m2) against site measurements, the mean RMSE over eight sites decreases from 1.85 to 1.15, and the bias changes from -0.99 to -0.19. For daily ET (mm), mean RMSE decreases from 0.63 to 0.33, and the bias changes from -0.31 to -0.16. Most of the improvements occur in the beginning and at the end of the growing season when there is large correction of LAI and meanwhile temperature is still suitable for photosynthesis and transpiration. For the dormant season, the improvement in ET simulation mostly comes from the increased interception of precipitation brought by the elevated LAI during that time. The results indicate that model performance can be improved by the application the corrected LAI. Improving the winter RS LAI can make a large impact on land surface carbon and energy budget.

  6. Exposure of Lycopersicon Esculentum to Microcystin-LR: Effects in the Leaf Proteome and Toxin Translocation from Water to Leaves and Fruits

    Directory of Open Access Journals (Sweden)

    Daniel Gutiérrez-Praena

    2014-06-01

    Full Text Available Natural toxins such as those produced by freshwater cyanobacteria have been regarded as an emergent environmental threat. However, the impact of these water contaminants in agriculture is not yet fully understood. The aim of this work was to investigate microcystin-LR (MC-LR toxicity in Lycopersicon esculentum and the toxin accumulation in this horticultural crop. Adult plants (2 month-old grown in a greenhouse environment were exposed for 2 weeks to either pure MC-LR (100 μg/L or Microcystis aeruginosa crude extracts containing 100 μg/L MC-LR. Chlorophyll fluorescence was measured, leaf proteome investigated with two-dimensional gel electrophoresis and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF/TOF, and toxin bioaccumulation assessed by liquid chromatography-mass spectrometry (LC-MS/MS. Variations in several protein markers (ATP synthase subunits, Cytochrome b6-f complex iron-sulfur, oxygen-evolving enhancer proteins highlight the decrease of the capacity of plants to synthesize ATP and to perform photosynthesis, whereas variations in other proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and ribose-5-phosphate isomerase suggest an increase of carbon fixation and decrease of carbohydrate metabolism reactions in plants exposed to pure MC-LR and cyanobacterial extracts, respectively. MC-LR was found in roots (1635.21 μg/kg fw, green tomatoes (5.15–5.41 μg/kg fw, mature tomatoes (10.52–10.83 μg/kg fw, and leaves (12,298.18 μg/kg fw. The results raise concerns relative to food safety and point to the necessity of monitoring the bioaccumulation of water toxins in agricultural systems affected by cyanotoxin contamination.

  7. The Mediterranean evergreen Quercus ilex and the semi-deciduous Cistus albidus differ in their leaf gas exchange regulation and acclimation to repeated drought and re-watering cycles.

    Science.gov (United States)

    Galle, Alexander; Florez-Sarasa, Igor; Aououad, Hanan El; Flexas, Jaume

    2011-10-01

    Plants may exhibit some degree of acclimation after experiencing drought, but physiological adjustments to consecutive cycles of drought and re-watering (recovery) have scarcely been studied. The Mediterranean evergreen holm oak (Q. ilex) and the semi-deciduous rockrose (C. albidus) showed some degree of acclimation after the first of three drought cycles (S1, S2, and S3). For instance, during S2 and S3 both species retained higher relative leaf water contents than during S1, despite reaching similar leaf water potentials. However, both species showed remarkable differences in their photosynthetic acclimation to repeated drought cycles. Both species decreased photosynthesis to a similar extent during the three cycles (20-40% of control values). However, after S1 and S2, photosynthesis recovered only to 80% of control values in holm oak, due to persistently low stomatal (g(s)) and mesophyll (g(m)) conductances to CO(2). Moreover, leaf intrinsic water use efficiency (WUE) was kept almost constant in this species during the entire experiment. By contrast, photosynthesis of rockrose recovered almost completely after each drought cycle (90-100% of control values), while the WUE was largely and permanently increased (by 50-150%, depending on the day) after S1. This was due to a regulation which consisted in keeping g(s) low (recovering to 50-60% of control values after re-watering) while maintaining a high g(m) (even exceeding control values during re-watering). While the mechanisms to achieve such particular regulation of water and CO(2) diffusion in leaves are unknown, it clearly represents a unique acclimation feature of this species after a drought cycle, which allows it a much better performance during successive drought events. Thus, differences in the photosynthetic acclimation to repeated drought cycles can have important consequences on the relative fitness of different Mediterranean species or growth forms within the frame of climate change scenarios.

  8. Water Conservation and Water Storage

    Science.gov (United States)

    Narayanan, M.

    2014-12-01

    Water storage can be a viable part of the solution to water conservation. This means that we should include reservoirs. Regardless, one should evaluate all aspects of water conservation principles. Recent drought in California indicates that there is an urgent need to re-visit the techniques used to maintain the water supply-chain mechanism in the entire state. We all recognize the fact that fish and wildlife depend on the streams, rivers and wetlands for survival. It is a well-known fact that there is an immediate need to provide solid protection to all these resources. Laws and regulations should help meet the needs of natural systems. Farmers may be forced to drilling wells deeper than ever. But, they will be eventually depleting groundwater reserves. Needless to say that birds, fish and wildlife cannot access these groundwater table. California is talking a lot about conservation. Unfortunately, the conservation efforts have not established a strong visible hold. The Environmental Protection Agency has a plan called E2PLAN (Narayanan, 2012). It is EPA's plan for achieving energy and environmental performance, leadership, accountability, and carbon neutrality. In June 2011, the EPA published a comprehensive, multi-year planning document called Strategic Sustainability Performance Plan. The author has previously reported these in detail at the 2012 AGU fall meeting. References: Ziegler, Jay (15 JUNE 2014). The Conversation: Water conservation efforts aren't taking hold, but there are encouraging signs. THE SACRAMENTO BEE. California. Narayanan, Mysore. (2012). The Importance of Water Conservation in the 21st Century. 72nd AGU International Conference. Eos Transactions: American Geophysical Union, Vol. 92, No. 56, Fall Meeting Supplement, 2012. H31I - 1255.http://www.sacbee.com/2014/06/15/6479862/jay-ziegler-water-conservation.html#storylink=cpy

  9. Ultrahydrophobic water

    Science.gov (United States)

    Landgraf, J.; Kanitz, C.

    2017-05-01

    When a water drop falls on an oscillating soapy water surface it is observed that coalescence of the drop is inhibited because the drops are bouncing on the surface like on a trampoline. In our research we made experimental and theoretical investigations to an undeformable drop on a deformable bath. We described the vertical movement, predicted the critical bouncing threshold and also made experiments to the effects of an increased Weber number and the horizontal movement of the drop caused by a vertical movement.

  10. Water Condensation

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund

    2014-01-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...

  11. LBA-ECO CD-02 Oxygen Isotopes of Plant Tissue Water and Atmospheric Water Vapor

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the oxygen isotope signatures of water extracted from plant tissue (xylem from the stems and leaf tissue) and of atmospheric water...

  12. LBA-ECO CD-02 Oxygen Isotopes of Plant Tissue Water and Atmospheric Water Vapor

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the oxygen isotope signatures of water extracted from plant tissue (xylem from the stems and leaf tissue) and of atmospheric water vapor from...

  13. The drought-tolerant Solanum pennellii regulates leaf water loss and induces genes involved in amino acid and ethylene/jasmonate metabolism under dehydration.

    Science.gov (United States)

    Egea, Isabel; Albaladejo, Irene; Meco, Victoriano; Morales, Belén; Sevilla, Angel; Bolarin, Maria C; Flores, Francisco B

    2018-02-12

    Breeding for drought-tolerant crops is a pressing issue due to the increasing frequency and duration of droughts caused by climate change. Although important sources of variation for drought tolerance exist in wild relatives, the mechanisms and the key genes controlling tolerance in tomato are little known. The aim of this study is to determine the drought response of the tomato wild relative Solanum pennellii (Sp) compared with the cultivated tomato Solanum lycopersicum (Sl). The paper investigates the physiological and molecular responses in leaves of Sp and Sl plants without stress and moderate drought stress. Significant physiological differences between species were found, with Sp leaves showing greater ability to avoid water loss and oxidative damage. Leaf transcriptomic analysis carried out when leaves did not as yet show visual dehydration symptoms revealed important constitutive expression differences between Sp and Sl species. Genes linked to different physiological and metabolic processes were induced by drought in Sp, especially those involved in N assimilation, GOGAT/GS cycle and GABA-shunt. Up-regulation in Sp of genes linked to JA/ET biosynthesis and signaling pathways was also observed. In sum, genes involved in the amino acid metabolism together with genes linked to ET/JA seem to be key actors in the drought tolerance of the wild tomato species.

  14. The ameliorative effects of exogenous melatonin on grape cuttings under water-deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology.

    Science.gov (United States)

    Meng, Jiang-Fei; Xu, Teng-Fei; Wang, Zhi-Zhen; Fang, Yu-Lin; Xi, Zhu-Mei; Zhang, Zhen-Wen

    2014-09-01

    Grapes are an important economic crop and are widely cultivated around the world. Most grapes are grown in arid or semi-arid regions, and droughts take a heavy toll in grape and wine production areas. Developing effective drought-resistant cultivation measures is a priority for viticulture. Melatonin, an indoleamine, mediates many physiological processes in plants. Herein, we examined whether exogenously applied melatonin could improve the resistance of wine grape seedlings grown from cuttings to polyethylene glycol-induced water-deficient stress. The application of 10% polyethylene glycol (PEG) markedly inhibited the growth of cuttings, caused oxidative stress and damage from H2 O2 and O2∙-, and reduced the potential efficiency of Photosystem II and the amount of chlorophyll. Application of melatonin partially alleviated the oxidative injury to cuttings, slowed the decline in the potential efficiency of Photosystem II, and limited the effects on leaf thickness, spongy tissue, and stoma size after application of PEG. Melatonin treatment also helped preserve the internal lamellar system of chloroplasts and alleviated the ultrastructural damage induced by drought stress. This ameliorating effect may be ascribed to the enhanced activity of antioxidant enzymes, increased levels of nonenzymatic antioxidants, and increased amount of osmoprotectants (free proline). We conclude that the application of melatonin to wine grapes is effective in reducing drought stress. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Assessment of water pollution in the Brazilian Pampa biome by means of stress biomarkers in tadpoles of the leaf frog Phyllomedusa iheringii (Anura: Hylidae).

    Science.gov (United States)

    Santos, T G; Melo, R; Costa-Silva, D G; Nunes, Mem; Rodrigues, N R; Franco, J L

    2015-01-01

    The Brazilian Pampa biome is currently under constant threat due to increase of agriculture and improper management of urban effluents. Studies with a focus on the assessment of impacts caused by human activities in this biome are scarce. In the present study, we measured stress-related biomarkers in tadpoles of the leaf frog Phyllomedusa iheringii, an endemic species to the Pampa biome, and tested its suitability as a bioindicator for the assessment of potential aquatic contamination in selected ponds (S1 and S2) nearby agricultural areas in comparison to a reference site. A significant decrease in acetylcholinesterase activity was observed in S2 when compared to S1 and reference. The levels of total-hydroperoxides were increased in S2 site. In parallel, increased activity of the antioxidant enzymes catalase, superoxide dismutase and glutathione S-transferase were observed in S2 when compared to S1 and reference. Further studies are necessary in order to correlate the changes observed here with different chemical stressors in water, as well as to elucidate mechanisms of toxicity induced by pesticides in amphibian species endemic to the Pampa biome. Nevertheless, our study validates Phyllomedusa iheringii as a valuable bioindicator in environmental studies.

  16. Water Hyacinth

    Science.gov (United States)

    An important new reference book entitled the “Encyclopedia of Invasive Introduced Species” is being published by the University of California Press. We were invited to provide a chapter on water hyacinth, which is the world’s worst aquatic weed. In this chapter, we provide information on the origi...

  17. Water Spout

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2013-01-01

    During the AAPT summer meeting at Creighton University in 2011, Vacek Miglus and I took pictures of early apparatus at the Creighton physics department. The apparatus in the left-hand picture, shown with the spigot closed, appeared to be a liquid-level device: the water level was the same in both the narrow tube and the flaring glass vase.…

  18. Water Play

    Science.gov (United States)

    Cline, Jane E.; Smith, Brandy A.

    2016-01-01

    The inclusion of activities to develop sensory awareness, spatial thinking, and physical dexterity, operationalized through hands-on science lessons such as water play, have long been part of early childhood education. This practical article addresses Next Generation Science Standards K-2 ETS1-3 and K-2 ETS1-2 by having four-year-old…

  19. Drinking water

    OpenAIRE

    Kostik, Vesna

    2012-01-01

    Centre of reference laboratories as a part of Institute of Public Health- Skopje is consisted of following laboratories: - Laboratory of Sanitary Microbiology - Laboratory for Food Quality Control - Laboratory for Water Quality Control - Laboratory for Contaminants and Eco - toxicology - Laboratory for Testing of Metals - Laboratory for Radioecology - Laboratory for Ionizing Radiation - Laboratory for Testing common use items Lab...

  20. Water from (waste)water--the dependable water resource.

    Science.gov (United States)

    Asano, Takashi

    2002-01-01

    Water reclamation and reuse provides a unique and viable opportunity to augment traditional water supplies. As a multi-disciplined and important element of water resources development and management, water reuse can help to close the loop between water supply and wastewater disposal. Effective water reuse requires integration of water and reclaimed water supply functions. The successful development of this dependable water resource depends upon close examination and synthesis of elements from infrastructure and facilities planning, wastewater treatment plant siting, treatment process reliability, economic and financial analyses, and water utility management. In this paper, fundamental concepts of water reuse are discussed including definitions, historical developments, the role of water recycling in the hydrologic cycle, categories of water reuse, water quality criteria and regulatory requirements, and technological innovations for the safe use of reclaimed water. The paper emphasizes the integration of this alternative water supply into water resources planning, and the emergence of modern water reclamation and reuse practices from wastewater to reclaimed water to repurified water.

  1. Water Pressure. Water in Africa.

    Science.gov (United States)

    Garrett, Carly Sporer

    The Water in Africa Project was realized over a 2-year period by a team of Peace Corps volunteers. As part of an expanded, detailed design, resources were collected from over 90 volunteers serving in African countries, photos and stories were prepared, and standards-based learning units were created for K-12 students. This unit, "Water…

  2. Groundwater Waters

    OpenAIRE

    Ramón Llamas; Emilio Custodio

    1999-01-01

    The groundwaters released through springs constituted a basic element for the survival and progressive development of human beings. Man came to learn how to take better advantage of these waters by digging wells, irrigation channels, and galleries. Nevertheless, these activities do not require cooperation nor the collective agreement of relatively large groups of people, as in the case of creating the necessary structures to take advantage of the resources of surfacewaters. The construction a...

  3. Leaf stomata conductance, leaf water potential and soil water status ...

    African Journals Online (AJOL)

    Tropical semi-arid ecosystems are intricate ecosystems characterized by alternating dry-wet cycles. The question of how trees and grasses coexist under a considerable range of environmental and management conditions has been referred to as the "savanna problem" The practical significance of understanding the ...

  4. Water markets between Mexican water user associations

    NARCIS (Netherlands)

    Kloezen, W.H.

    1998-01-01

    Internationally, introducing water markets is regarded as a strong alternative institutional arrangement for managing irrigation water more effectively. Also in Mexico, the National Water Law of 1992 allows individual farmers as well as water user associations (WUA) to trade water. Although farmer

  5. Studies on water deficits on apical development and panicle ...

    African Journals Online (AJOL)

    Leaf primordium production was severely inhibited by periods of water deficit, with apparent cessation occurring around a dawn water potential of -1.0 MPa. Panicle initiation was delayed according to the duration of water deficit and the period of cessation of leaf primordium production. The duration of growth stages two ...

  6. Use spectral derivatives for estimating canopy water content

    NARCIS (Netherlands)

    Clevers, J.G.P.W.

    2010-01-01

    Hyperspectral remote sensing has demonstrated great potential for accurate retrieval of canopy water content (CWC). This CWC is defined by the product of the leaf equivalent water thickness (EWT) and the leaf area index (LAI). In this paper the spectral information provided by the canopy water

  7. Improved water does not mean safe water

    Science.gov (United States)

    MacDonald, L. H.; Guo, Y.; Schwab, K. J.

    2012-12-01

    This work presents a model for estimating global access to drinking water that meets World Health Organization (WHO) water quality guidelines. The currently accepted international estimate of global access to safe water, the WHO and United Nations Children's Fund's (UNICEF) Joint Monitoring Program (JMP) report, estimates the population with access to water service infrastructure that is classified as improved and unimproved. The JMP report uses access to improved water sources as a proxy for access to safe water, but improved water sources do not always meet drinking water quality guidelines. Therefore, this report likely overestimates the number of people with access to safe water. Based on the JMP estimate, the United Nations has recently announced that the world has reached the Millennium Development Goal (MDG) target for access to safe water. Our new framework employs a statistical model that incorporates source water quality, water supply interruptions, water storage practices, and point of use water treatment to estimate access to safe water, resulting in a figure that is lower than the JMP estimate of global access to safe water. We estimate that at least 28% of the world does not have access to safe water today, as compared to the JMP estimate of 12%. These findings indicate that much more work is needed on the international scale to meet the MDG target for access to safe water.

  8. Healing Waters

    Directory of Open Access Journals (Sweden)

    Cátedra Tomás, María

    2009-06-01

    Full Text Available Based on fieldwork in four different spas —two in Spain and two in Portugal— this paper shows the mutiple social mediations operating in water therapies in different contexts: from the local use inscribed in popular knowledge, including playful elements inserted in therapeutic practices under the illusion of a return to nature when nature itself has stopped being «natural», to others in which leisure time is an expression of an exclusive life style including a reevaluation of landscape as part of a time-bound aesthetics and as a refuge from urban stress. These different uses of water allow us to understand spas both as nature sanatoriums as well as a form of business where medical power bends to the interests of turistic enterpreneurs transformed into health advisors, linked to different conceptions not only of water but also of society itself.

    Focalizando la reflexión en cuatro balnearios diferentes —dos en España y dos en Portugal—, el artículo muestra las múltiples mediaciones sociales que operan en la terapéutica del agua en diferentes contextos: desde el uso local inserto en saberes populares, incluyendo lo lúdico en lo terapéutico que puede conectarse con la ilusión de un regreso a la naturaleza cuando ésta ya ha dejado de ser “natural”, a otros en los que el ocio es expresión de un estilo de vida exclusivo que incluye un acercamiento al paisaje como parte de la estética de una época y como refugio ante el stress urbano. Se observa así cómo estos usos del agua, que permiten concebir los balnearios bien como sanatorios de la naturaleza bien como negocios en los que el poder médico se pliega al de promotores turísticos convertidos en asesores de salud, se vinculan a concepciones diferentes no sólo del agua, sino de la sociedad misma y sus diferentes grupos.

  9. Allelopathic effects of leaf and corm water extract of saffron (Crocus sativus L. on germination and seedling growth of flixweed (Descurainia sophia L. and downy brome (Bromus tectorum L.

    Directory of Open Access Journals (Sweden)

    Zeinab Alipoor

    2015-04-01

    Full Text Available This study was conducted in two factorial experiment based on completely randomized design with three replications at research laboratory of faculty of agriculture in University of Birjand in 2013. Factors included saffron organs at 2 levels (leaves and corms and water extract concentrations at 5 levels (0, 0.5, 1, 1.5 and 2 percent.The allelopathic effects of saffron leaves and corms on seed germination and seedling growth characteristics of flixweed (Descurainia sophia L. and downy brome (Bromus tectorum L. were studied in two separate experiments. Results indicated lowest seed germination percentage of downy brome and flixweed were observed at concentration of 2% of corm extract (by 65% and 66% reduce compared to control, respectively. The rate of germination of downy brome decreased (by 71% compared to control with concentration of 2% of leaf extract but the rate of germination on flixweed was not significantly affected by extract concentrations. Different concentrations of leaf and corm extracts significantly decreased length and weight of plumule and radicals of two weeds. A logistic model provided a successful estimation of relationship between leaf water extract and germination percentage of two weeds. Based on orthogonal comparison tests, the allelopathic inhibition effects of saffron leaves and corms were more on downy brome and flixweed, respectively.

  10. PHOTOSYNTHETIC PERFORMANCE AND LEAF WATER POTENTIAL OF GULUPA (Passiflora edulis Sims, PASSIFLORACEAE IN THE REPRODUCTIVE PHASE IN THREE LOCATIONS IN THE COLOMBIAN ANDES

    Directory of Open Access Journals (Sweden)

    Laura Victoria PÉREZ MARTÍNEZ

    2014-08-01

    Full Text Available Gulupa, Passiflora edulis Sims (Passifloraceae, is an important fruit due to its organoleptic and nutritional characteristics and its demand in the international market; however, very few studies have been conducted for study its Ecophysiology. Until now, this crop has spread throughout the country through empirical knowledge without data that indicate the zones that are more suitable for its cultivation. For this reason, gas exchange, chlorophyll fluorescence (photosystem II operating efficiency and maximum quantum efficiency of photosystem II photochemistry and leaf water potential were measured in three different locations of Cundinamarca department (Chia [2610 m a.s.l., 14 °C], Granada [2230 m a.s.l., 15 °C] and Tena [2090 m a.s.l., 17 °C], whose climatic conditions were monitored with meteorological stations to evaluate the physiologic performance in each location related to the environmental factors. The results indicate that, even though the photosynthetic capacity was similar and high in Granada and Tena, the water status of the plant, the stomatal control of water loss and recovery of photosystems during the night were more efficient in Granada (p < 0.05. In Tena, the small differences between day and night temperature, humidity, and vapor pressure deficit (VPD limited the night water recovery in the plants. Meanwhile, in Chia, the increase of VPD during the day and the low temperatures decreased the water potential both during the day and during the night, as well as the recovery of photosystem II. Therefore, in conclusion the climatic conditions similar to Granada, which are 18/13 °C day/night, a VPD close to 0.5 KPa, and radiation that did not exceed 1000 μmol photons/m2s favored the good physiological performance of gulupaDesempeño fotosintético y potencial hídrico foliar de gulupa (Passiflora edulis Sims, Passifloraceae en estado reproductivo en tres localidades de los Andes colombianos La gulupa, Passiflora edulis Sims

  11. Genetically based polymorphisms in morphology and life history associated with putative host races of the water lily leaf beetle, Galerucella nymphaeae.

    Science.gov (United States)

    Pappers, Stephanie M; van der Velde, Gerard; Ouborg, N Joop; van Groenendael, Jan M

    2002-08-01

    A host race is a population that is partially reproductively isolated from other conspecific populations as a direct consequence of adaptation to a specific host. The initial step in host race formation is the establishment of genetically based polymorphisms in, for example, morphology, preference, or performance. In this study we investigated whether polymorphisms observed in Galerucella nymphaeae have a genetic component. Galerucella nymphaeae, the water lily leaf beetle, is a herbivore which feeds and oviposits on the plant hosts Nuphar lutea and Nymphaea alba (both Nymphaeaceae) and Rumex hydrolapathum and Polygonum amphibium (both Polygonaceae). A full reciprocal crossing scheme (16 crosses, each replicated 10 times) and subsequent transplantation of 1,001 egg clutches revealed a genetic basis for differences in body length and mandibular width. The heritability value of these traits, based on midparent-offspring regression, ranged between 0.53 and 0.83 for the different diets. Offspring from Nymphaeaceae parents were on average 12% larger and had on average 18% larger mandibles than offspring from Polygonaceae parents. Furthermore, highly significant correlations were found between feeding preference of the offspring and the feeding preference of their parents. Finally, two fitness components were measured: development time and survival. Development time was influenced by diet, survival both by cross type and diet, the latter of which suggest adaptation of the beetles. This suggestion is strengthened by a highly significant cross x diet interaction effect for development time as well as for survival, which is generally believed to indicate local adaptation. Although no absolute genetic incompatibility among putative host races was observed, survival of the between-host family offspring, on each diet separately, was lower than the survival of the within-host family offspring on that particular host. Survival of offspring of two Nymphaeaceae parents was about

  12. About Body Water

    Science.gov (United States)

    ... Video) Diabetic Retinopathy Additional Content Medical News About Body Water By James L. Lewis, III, MD, Attending ... here for the Professional Version Water Balance About Body Water Dehydration Dehydration Overhydration Water accounts for about ...

  13. Landscape Water Budget Tool

    Science.gov (United States)

    WaterSense created the Water Budget Tool as one option to help builders, landscape professionals, and irrigation professionals certified by a WaterSense labeled program meet the criteria specified in the WaterSense New Home Specification.

  14. Why Do Eyes Water?

    Science.gov (United States)

    ... for Educators Search English Español Why Do Eyes Water? KidsHealth / For Kids / Why Do Eyes Water? What's ... coming out of your nose. Why Do Eyes Water? Eyes water for lots of different reasons besides ...

  15. Lead and tap water

    Science.gov (United States)

    Water contaminated with lead ... The Environmental Protection Agency (EPA) monitors drinking water in the United States. It requires water suppliers to produce annual water quality reports. These reports include information about lead amounts, and they ...

  16. Bottled Water and Fluoride

    Science.gov (United States)

    ... What's this? Submit What's this? Submit Button Bottled Water Recommend on Facebook Tweet Share Compartir Consumers drink ... questions about bottled water and fluoride. Does bottled water contain fluoride? Bottled water products may contain fluoride, ...

  17. Water users associations and irrigation water pricing

    OpenAIRE

    Srđević, Zorica; Srđević, Bojan

    2012-01-01

    A brief review of contemporary discussion on irrigation water pricing and implementation of related strategies to collect annual fees is presented. Emphasis is on water pricing and its relation to water users associations' interests and real power. An example from Spain is provided to illustrate how contemporary multi-criteria analysis and its tools (AHP and TOPSIS) can be used to identify best irrigation water pricing and collection strategy; two water districts with 1500 farmers served as c...

  18. Vegetation ecological water requirement in South China

    Science.gov (United States)

    Wan, Long; Liu, Yuguo; Guan, Yinghui; Zhou, Jinxing; Cui, Ming

    2017-04-01

    South China covered about 20% of the total area of China, with two big rivers, Yangtze River and the Pearl River get through this area. The karst landform are widely distributed in this area. Intensive vegetation degradation and severe rocky desertification have threatened the local ecological security. Water has been a key factor limiting the eco-restoration and construction of the vegetation. However, we do not know whether the water can satisfy the vegetation ecological water demand in this area. In this study, we explored the minimum and suitable ecological water requirement and the water use efficiency in South China based on the MOD16 datasets. The results indicated that the mean value of the minimum ecological water requirement is 528.9mm in South China, and the suitable water requirement is 686.8mm. In many parts of the Sichuan, Yunnan, Hubei Provinces, water cannot meet the minimum ecological water requirements. There needs about 100-300mm to meet the minimum ecological water requirements in these areas. The ecological water requirements in the karst area and the non-karst area were 520mm and 532mm. Severer Rocky desertification areas need more ecological water than light and potential rocky desertification area. Water requirements are also different for the different land use type. The suitable ecological water requirement lack of 89mm-136mm in the Evergreen Needle-leaf Forest, Mixed Forest, Closed Scrubland and the Croplands. Water use efficiency in the Evergreen Broad-leaf forests, Evergreen Needle-leaf Forest, Mixed Forest, Closed Scrubland were more than 1kg/m3, but in the croplands was 0.9-1kg/m3, and in the grassland was only 0.6-0.8 kg/m3. This research could be helpful for improving water resource management and the rocky desertification management in South China.

  19. Turgor-mediated Leaf Movements in Analogy With Stomatal Function and Under the General Aspect of Water Flux Through the Plant: II. Rhythmic Transport of (86)Rb and (43)K in Trifolium repens L. and Oxalis acetosella L.

    Science.gov (United States)

    Maier-Maercker, U

    1984-08-01

    Microautoradiographic methods were applied to trace (86)Rb and (43)K during the migration within the transpiration stream of Trifolium repens L. and Oxalis acetosella L. During the dark phase of the diurnal cycle, ions moved through the petiole to the insertion of the leaf blade. There the movement stopped. In Oxalis the ions gathered in three distinct spots at the adaxial side of the insertion, each belonging to one of the downwards bending leaflets. In Trifolium the areas of ion accumulation were two little humps at the abaxial periphery of the nodal junction of the inwardly bending leaflets. During the phases of upward movement of the leaflets, Oxalis did not reveal a specific pattern of ion distribution within the pulvinus. However, when Trifolium was loaded during the phases of leaflet opening, (86)Rb and (43)K were mainly found within the parenchymatous bundle sheath of the three laminar pulvini and their junction towards the petiole. The conclusion was that ions are stored within small cells on the flexor side and are removed from there by regulatory processes controlling water and solute flux from the sites of storage to the evaporating surfaces of the leaf blade. Implications on the interpretation of nyctinastic leaf movements are discussed. Copyright © 1984 Gustav Fischer Verlag, Stuttgart. Published by Elsevier GmbH.. All rights reserved.

  20. Water Pollution. Project COMPSEP.

    Science.gov (United States)

    Lantz, H. B., Jr.

    This is an introductory program on water pollution. Examined are the cause and effect relationships of water pollution, sources of water pollution, and possible alternatives to effect solutions from our water pollution problems. Included is background information on water pollution, a glossary of pollution terminology, a script for a slide script…

  1. Service water assistance program

    Energy Technology Data Exchange (ETDEWEB)

    Munchausen, J.H. [EPRI Plant Support Engineering, Charlotte, NC (United States)

    1995-09-01

    The Service Water Assistance Program was developed to provide utility service water system engineers with a mechanism to quickly and efficiently address service water issues. Since its inception, its ability to assist utilities has resulted in a reduction in the operations and maintenance costs associated with service water systems and has provided a medium for EPRI awareness of industry service water issues.

  2. Global water governance

    NARCIS (Netherlands)

    Gupta, J.; Falkner, R.

    2013-01-01

    Although (fresh) water challenges are primarily local in nature, globalization has led to feedback effects that make many water challenges global in nature. This chapter examines global water governance. It discusses four phases of water governance, argues that water governance is dispersed and

  3. Water Relations of Seagrasses

    Science.gov (United States)

    Tyerman, Stephen D.

    1982-01-01

    The stationary volumetric elastic modulus (εs) of the leaf cells of three seagrasses (Halophila ovalis (R.Br.) Hook, Zostera capricorni Aschers, and Posidonia australis Hook f.) was evaluated from estimates of εs plus intracellular osmotic pressure (εs + IIi) and IIi. The estimates of (εs + IIi) were made using a linear displacement transducer to measure very small changes in thickness of leaf tissue produced by changes in external osmotic pressure (IIo). εs increases with increasing turgor pressure in each of the species and the maximum values of εs are: 22 megapascals for H. ovalis, 17 megapascals for Z. capricorni, and 51 megapascals for P. australis. There is a hysteresis in thickness changes versus changes in IIo which indicates a hysteresis in the relationship between volume and turgor pressure. The hysteresis results in εs being different for swelling and for shrinking cells over the same range of IIo and this may be important in other aspects of plant-water relations. A new design of an apparatus employing a linear displacement transducer for measuring very small changes in tissue thickness is described. The new design has the advantages of virtually frictionless movement and a precision of 0.05 micrometer. PMID:16662326

  4. Water technology for specific water usage.

    Science.gov (United States)

    Frimmel, Fritz H

    2003-01-01

    Water is the basis for life and culture. In addition to the availability of water its quality has become a major issue in industrialized areas and in developing countries as well. Water usage has to be seen as part of the hydrological cycle. As a consequence water management has to be sustainable. The aim of the contribution is to give water usage oriented quality criteria and to focus on the technical means to achieve them. Water is used for many purposes, ranging from drinking and irrigation to a broad variety of technical processes. Most applications need specific hygienic, chemical and/or physical properties. To meet these demands separation and reaction principles are applied. The reuse of water and the application of water treatment with little or no waste and by-product formation is the way to go. Membrane separation and advanced oxidation including catalytic reactions are promising methods that apply natural processes in sustainable technical performance. Thus elimination of specific water constituents (e.g. salts and metals, microorganisms) and waste water cleaning (e.g. pollutants, nutrients and organic water) can be done efficiently. Learning from nature and helping nature with appropriate technology is a convincing strategy for sustainable water management.

  5. Water-polymer interaction during water uptake

    NARCIS (Netherlands)

    Baukh, V.; Huinink, H.P.; Adan, O.C.G.; Erich, S.J.F.; Ven, L.G.J. van der

    2011-01-01

    Water uptake by multilayer films plays an important role in their performance. Individual layers may consist of different polymeric phases. Understanding the water uptake in such systems requires knowledge of the water distribution, its state in the polymer, and influence on the polymeric phases.

  6. Water neutral: reducing and ofsetting water footprints

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert

    2008-01-01

    During the past few years the concept of the ‘water footprint’ has started to receive recognition within governments, non-governmental organizations, businesses and media as a useful indicator of water use. The increased interest in the water-footprint concept has prompted the question about what

  7. effect of water harvesting methods, nitrogen-phosphorus fertilizer

    African Journals Online (AJOL)

    DR. AMINU

    Phosphorus fertilizer rate and variety on leaf tissue N, and P, and soil moisture content of date palm plants over a period ... Key words: Water harvesting method, Nitrogen-Phosphorus fertilizer, Date palm variety, Leaf. Tissue N and P, and Soil .... 1997; Robert et al., 2004). Leaf tissue P: P was determined color metrically by.

  8. Emissão foliar, relações iônicas e produção do coqueiro irrigado com água salina Leaf emission, ionic relations and production of coconut irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Miguel Ferreira Neto

    2007-12-01

    Full Text Available A necessidade de uso de águas salinas na agricultura é crescente, devido à pressão sobre águas de boa qualidade, principalmente para consumo humano. Com este objetivo, foram estudados os efeitos de quatro níveis de condutividade elétrica da água de irrigação (CEa: 0,1; 5,0; 10,0 e 15,0dS m-1, obtidos mediante adição de NaCl sobre o desenvolvimento do coqueiro (Cocos nucifera L. cv. "Anão Verde", com 3,5 anos de idade. O experimento foi conduzido em blocos casualizados, em solo arenoso, irrigado por microaspersão, no município de Parnamirim-RN, no período de janeiro de 2000 a março de 2001. A salinidade da água aumentou os intervalos de emissão foliar e de inflorescência e o número de flores femininas, bem como os teores de Na e de Cl na folha número 14, acompanhado de relações antagônicas entre Na-Ca, Na-K e Cl-N e sinergismo entre Na-Mg, mas sem manifestar sintomas visuais de efeitos tóxicos. Os teores ótimos de Na e Cl na folha 14 foram, respectivamente, 0,207 e 0,580%.The necessity to use saline waters in agriculture has increased due to pressure on good quality water, principally, for human consumption. With this objective, the effects of four levels of electrical conductivity (0.1, 5.0, 10.0 and 15.0dS m-1 of irrigation water obtained by addition of NaCl were studied on the development of 3.5 years old coconut (Cocos nucifera L. cv. 'Anão Verde'. The experiment was conducted in a sandy soil adopting a completely randomized block design and micro sprinkler irrigation system in the municipality of Parnamirim - RN, Brazil, during the period of January, 2000 to March, 2001. The salinity of water increased the interval of leaf emission and inflorescences and the number of female flowers per inflorescence as well as the contents of Na and Cl in leaf 14, accompanied by antagonism between Na-Ca, Na-K and Cl-N, and synergism between Na-Mg but without any visual symptoms of toxic effects. The optimum levels of Na and Cl in

  9. Genetic control of water use efficiency and leaf carbon isotope discrimination in sunflower (Helianthus annuus L.) subjected to two drought scenarios.

    Science.gov (United States)

    Adiredjo, Afifuddin Latif; Navaud, Olivier; Muños, Stephane; Langlade, Nicolas B; Lamaze, Thierry; Grieu, Philippe

    2014-01-01

    High water use efficiency (WUE) can be achieved by coordination of biomass accumulation and water consumption. WUE is physiologically and genetically linked to carbon isotope discrimination (CID) in leaves of plants. A population of 148 recombinant inbred lines (RILs) of sunflower derived from a cross between XRQ and PSC8 lines was studied to identify quantitative trait loci (QTL) controlling WUE and CID, and to compare QTL associated with these traits in different drought scenarios. We conducted greenhouse experiments in 2011 and 2012 by using 100 balances which provided a daily measurement of water transpired, and we determined WUE, CID, biomass and cumulative water transpired by plants. Wide phenotypic variability, significant genotypic effects, and significant negative correlations between WUE and CID were observed in both experiments. A total of nine QTL controlling WUE and eight controlling CID were identified across the two experiments. A QTL for phenotypic response controlling WUE and CID was also significantly identified. The QTL for WUE were specific to the drought scenarios, whereas the QTL for CID were independent of the drought scenarios and could be found in all the experiments. Our results showed that the stable genomic regions controlling CID were located on the linkage groups 06 and 13 (LG06 and LG13). Three QTL for CID were co-localized with the QTL for WUE, biomass and cumulative water transpired. We found that CID and WUE are highly correlated and have common genetic control. Interestingly, the genetic control of these traits showed an interaction with the environment (between the two drought scenarios and control conditions). Our results open a way for breeding higher WUE by using CID and marker-assisted approaches and therefore help to maintain the stability of sunflower crop production.

  10. Alles is water

    NARCIS (Netherlands)

    Wal, van der A.

    2013-01-01

    Inaugurele rede bij de aanvaarding van buitengewoon hoogleraarschap in Electrochemical Water Treatment. De aandachtsgebieden in zijn professoraat richten zich achtereenvolgens op: a) energiezuinige ontzouting van water, b) selectieve verwijdering van ionen uit water, c) terugwinning van waardevolle

  11. Transboundary water interaction III

    NARCIS (Netherlands)

    Zeitoun, Mark; Cascão, Ana Elisa; Warner, Jeroen; Mirumachi, Naho; Matthews, Nathanial; Menga, Filippo; Farnum, Rebecca

    2017-01-01

    This paper serves international water conflict resolution efforts by examining the ways that states contest hegemonic transboundary water arrangements. The conceptual framework of dynamic transboundary water interaction that it presents integrates theories about change and counter-hegemony to

  12. Chloramines in Drinking Water

    Science.gov (United States)

    Chloramines are disinfectants used to treat drinking water. Chloramines are most commonly formed when ammonia is added to chlorine to treat drinking water. Chloramines provide longer-lasting disinfection as the water moves through pipes to consumers.

  13. Water Quality Monitoring

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Our water quality sampling program is to determine the quality of Moosehorn's lakes and a limited number of streams. Water quality is a measure of the body of water,...

  14. Water safety and drowning

    Science.gov (United States)

    ... among people of all ages. Learning and practicing water safety is important to prevent drowning accidents. ... Water safety tips for all ages include: Learn CPR . Never swim alone. Never dive into water unless ...

  15. Tsunamis: Water Quality

    Science.gov (United States)

    ... Transmission in Pet Shelters Protect Your Pets Tsunamis: Water Quality Language: English Español (Spanish) Recommend on Facebook ... about testing should be directed to local authorities. Water for Drinking, Cooking, and Personal Hygiene Safe water ...

  16. Bottled Water Basics

    Science.gov (United States)

    ... of dollars each year to buy it (Beverage Marketing Corporation, 2004) Some people drink bottled water as ... has been treated to meet the U.S. Pharmacopeia definition of purified water. Purified water is essentially free ...

  17. Hydrography - Water Resources

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Resource is a DEP primary facility type related to the Water Use Planning Program. The sub-facility types related to Water Resources that are included are:...

  18. Public Waters Inventory Maps

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme is a scanned and rectified version of the Minnesota DNR - Division of Waters "Public Waters Inventory" (PWI) maps. DNR Waters utilizes a small scale...

  19. Water relations of Eucalyptus nitens x Eucalyptus grandis : is there ...

    African Journals Online (AJOL)

    However, water stress reduced shoot hydraulic conductance and stem hydraulic conductivity with significant interclonal effects. Plant biomass, leaf area and leaf weight ratio were significantly lower in the water-stressed plants, but there were no differences between the clones. In conclusion, the waterstress treatment did not ...

  20. Estimating canopy water content using hyperspectral remote sensing data

    NARCIS (Netherlands)

    Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E.

    2010-01-01

    Hyperspectral remote sensing has demonstrated great potential for accurate retrieval of canopy water content (CWC). This CWC is defined by the product of the leaf equivalent water thickness (EWT) and the leaf area index (LAI). In this paper, in particular the spectral information provided by the

  1. Six weeks oral gavage of a Phyllanthus acidus leaf water extract decreased visceral fat, the serum lipid profile and liver lipid accumulation in middle-aged male rats.

    Science.gov (United States)

    Chongsa, Watchara; Radenahmad, Nisaudah; Jansakul, Chaweewan

    2014-08-08

    Advancing age is associated with an increased accumulation of visceral fat and liver lipid which is then responsible for an age-related risk for cardiovascular disease. Looking after ourselves well with suitable micronutrients could prevent disease or prolong our healthy cardiovascular functions. In Thai traditional medicine, leaves of Phyllanthus acidus (PA) have been used for many purposes including as an antihypertensive agent and to provide relief from a headache caused by hypertension. We aimed to investigate the effects of a chronic oral administration of PA extracts to middle-aged (12-14 months) rats on their body weight, food intake, body fats, liver and kidney functions, fasting blood glucose and lipid profiles, liver lipid accumulation and on blood pressure. Three different kinds of PA extracts were used: (1) a PA water extract, (2) a heated PA water extract, and (3) an n-butanol fraction of the PA water extract, prepared from fresh leaves of Phyllanthus acidus. The rats were orally gavaged with the three PA extracts at 1.0 g/kg body weight or, as a control, with distilled water once a day for 6 weeks. Fasting blood sugar, lipid profile and ALP, SGOT, SGPT, BUN and creatinine levels were measured by enzymatic methods. Liver lipid accumulation was measured using oil red O staining on fresh thin cryostat liver tissue sections. The animal basal blood pressure and heart rate were measured in anesthetized rats via a common carotid artery using a polygraph. Results showed that after 6 weeks of treatment using gavaged heated PA extract and PA n-butanol extract there were no changes in any of the parameters studied. However, the initial PA water extract caused a slight decrease in the animal body weight with no change in food intake. No changes were observed in the liver and kidney functions (serum ALP, SGOT, SGPT, BUN and creatinine did not change), nor did the fasting blood sugar or triglyceride levels differ significantly. Serum cholesterol, HDL and LDL levels

  2. Ecological Exposure Research: Water

    Science.gov (United States)

    Overview of ecological exposure water research, including invasive species, Functional Process Zones (FPZs), biomarkers, pharmaceuticals in water, headwater streams, DNA barcoding, wetland ecosystem services, and sediment remediation.

  3. Water Innovation and Technology

    Science.gov (United States)

    Water technologies are a specific sector that EPA works to address through the water technology cluster, aging infrastructure research, green infrastructure, and major industry meetings such as WEFTEC.

  4. Water Treatment Group

    Data.gov (United States)

    Federal Laboratory Consortium — This team researches and designs desalination, water treatment, and wastewater treatment systems. These systems remediate water containing hazardous c hemicals and...

  5. Hydrography - Water Bodies

    Data.gov (United States)

    California Department of Resources — The hydrography layer consists of flowing waters (rivers and streams), standing waters (lakes and ponds), and wetlands -- both natural and manmade. Two separate...

  6. World Water Day 2014 – Water & Energy

    Directory of Open Access Journals (Sweden)

    Wojciech Majewski

    2014-06-01

    Full Text Available World Water Day was established in 1992 at the United Nations conference – Environment and Development. It was approved to be held every year on 22 March under the heading, theme selected for a given year. The purpose of WWD was to draw the attention of societies, politicians and decision-makers to the fact that water is essential for life and for conducting economic and social activity. The first WWD was held in 1994 under the theme: Caring for our Water Resources is Everybody’s Business. For the subsequent 20 years, the WWD has been held under headings closely related to water and use of water resources. In 2014, the WWD subject has been extended by the issue of energy. It results from the fact that energy – just like water – is a factor essential for global economic and social development. Moreover, both these areas (water and energy are strictly related to each other and are interdependent.

  7. 2010 Water & Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  8. China's water scarcity.

    Science.gov (United States)

    Jiang, Yong

    2009-08-01

    China has been facing increasingly severe water scarcity, especially in the northern part of the country. China's water scarcity is characterized by insufficient local water resources as well as reduced water quality due to increasing pollution, both of which have caused serious impacts on society and the environment. Three factors contribute to China's water scarcity: uneven spatial distribution of water resources; rapid economic development and urbanization with a large and growing population; and poor water resource management. While it is nearly impossible to adjust the first two factors, improving water resource management represents a cost-effective option that can alleviate China's vulnerability to the issue. Improving water resource management is a long-term task requiring a holistic approach with constant effort. Water right institutions, market-based approaches, and capacity building should be the government's top priority to address the water scarcity issue.

  9. [Effects of water and nitrogen management modes on the leaf photosynthetic characters and yield formation of cotton with under-mulch drip irrigation].

    Science.gov (United States)

    Luo, Hong-Hai; Zhang, Hong-Zhi; Tao, Xian-Ping; Zhang, Ya-Li; Zhang, Wang-feng

    2013-02-01

    Taking different genotype cotton varieties as test materials, a soil column culture experiment was conducted to study the effects of water and nitrogen management modes on the photosynthetic characters and yield formation of cotton with under-mulch drip irrigation in Xinjiang, Northwest China. Under the management mode W4N2, i.e., pre-sowing irrigation + limited drip irrigation before full-flowering + abundant drip irrigation after full-flowering in combining with basal 20% N + topdressing 80% N, the chlorophyll content, net photosynthetic rate (Pn), stomatal conductance (gs) , actual photochemical efficiency of photosystem II (Psi PSII), and photochemical quenching coefficient (qp) at full-flowering stage all decreased significantly, the non-photochemical quenching (NPQ) increased, and the aboveground dry matter accumulation was inhibited, as compared with those under common drip irrigation. From full-flowering stage to boll-opening stage, the chlorophyll content, gs, Pn, Psi PSII, and qp increased with increasing water and nitrogen supply, and the aboveground dry matter accumulation was enhanced by compensation, which benefited the translocation and distribution of photosynthates to seed cotton. Under the fertilization mode of basal 20% N + topdressing 80% N, the seed cotton yield of Xinluzaol3 was the highest in treatment pre-sowing irrigation + common drip irrigation (W3), but that of Xinluzao43 was the highest in treatment pre-sowing irrigation + limited drip irrigation before full-flowering + abundant drip irrigation after full-flowering (W4). It was concluded that under the condition of pre-sowing irrigation, to appropriately decrease the water and nitrogen supply before full-flowering stage and increase the water and nitrogen supply at middle and late growth stages could extend the active photosynthesis duration and promote the photosynthates allocation to reproductive organ, which would fully exploit the yield-increasing potential of cotton with under

  10. UV-irradiation and leaching in water reduce the toxicity of imidacloprid-contaminated leaves to the aquatic leaf-shredding amphipod Gammarus fossarum.

    Science.gov (United States)

    Englert, Dominic; Zubrod, Jochen P; Neubauer, Christoph; Schulz, Ralf; Bundschuh, Mirco

    2018-01-27

    Systemic neonicotinoid insecticides such as imidacloprid are increasingly applied against insect pest infestations on forest trees. However, leaves falling from treated trees may reach nearby surface waters and potentially represent a neonicotinoid exposure source for aquatic invertebrates. Given imidacloprid's susceptibility towards photolysis and high water solubility, it was hypothesized that the leaves' toxicity might be modulated by UV-irradiation during decay on the forest floor, or by leaching and re-mobilization of the insecticide from leaves within the aquatic ecosystem. To test these hypotheses, the amphipod shredder Gammarus fossarum was fed (over 7 d; n = 30) with imidacloprid-contaminated black alder (Alnus glutinosa) leaves that had either been pre-treated (i.e., leached) in water for up to 7 d or UV-irradiated for 1 d (at intensities relevant during autumn in Central Europe) followed by a leaching duration of 1 d. Gammarids' feeding rate, serving as sublethal response variable, was reduced by up to 80% when consuming non-pretreated imidacloprid-contaminated leaves compared to imidacloprid-free leaves. Moreover, both leaching of imidacloprid from leaves (for 7 d) as well as UV-irradiation reduced the leaves' imidacloprid load (by 46 and 90%) thereby mitigating the effects on gammarids' feeding rate to levels comparable to the respective imidacloprid-free controls. Therefore, natural processes, such as UV-irradiation and re-mobilization of foliar insecticide residues in water, might be considered when evaluating the risks systemic insecticide applications in forests might pose for aquatic organisms in nearby streams. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Sustainability and Water

    Science.gov (United States)

    Sharma, Virender A.

    2009-07-01

    World's population numbered 6.1 billion in 2000 and is currently increasing at a rate of about 77 million per year. By 2025, the estimated total world population will be of the order of 7.9 billion. Water plays a central role in any systematic appraisal of life sustaining requirements. Water also strongly influences economic activity (both production and consumption) and social roles. Fresh water is distributed unevenly, with nearly 500 million people suffering water stress or serious water scarcity. Two-thirds of the world's population may be subjected to moderate to high water stress in 2025. It is estimated that by 2025, the total water use will increase by to 40%. The resources of water supply and recreation may also come under stress due to changes in climate such as water balance for Lake Balaton (Hungary). Conventional urban water systems such as water supply, wastewater, and storm water management are also currently going through stress and require major rethinking. To maintain urban water systems efficiently in the future, a flexibility approach will allow incorporation of new technologies and adaptation to external changes (for example society or climate change). Because water is an essential resource for sustaining health, both the quantity and quality of available water supplies must be improved. The impact of water quality on human health is severe, with millions of deaths each year from water-borne diseases, while water pollution and aquatic ecosystem destruction continue to rise. Additionally, emerging contaminants such as endocrine disruptor chemicals (EDCs), pharmaceuticals, and toxins in the water body are also of a great concern. An innovative ferrate(VI) technology is highly effective in removing these contaminants in water. This technology is green, which addresses problems associated with chlorination and ozonation for treating pollutants present in water and wastewater. Examples are presented to demonstrate the applications of ferrate

  12. Water Footprints and Sustainable Water Allocation

    Directory of Open Access Journals (Sweden)

    Arjen Y. Hoekstra

    2015-12-01

    Full Text Available Water Footprint Assessment (WFA is a quickly growing research field. This Special Issue contains a selection of papers advancing the field or showing innovative applications. The first seven papers are geographic WFA studies, from an urban to a continental scale; the next five papers have a global scope; the final five papers focus on water sustainability from the business point of view. The collection of papers shows that the historical picture of a town relying on its hinterland for its supply of water and food is no longer true: the water footprint of urban consumers is global. It has become clear that wise water governance is no longer the exclusive domain of government, even though water is and will remain a public resource with government in a primary role. With most water being used for producing our food and other consumer goods, and with product supply chains becoming increasingly complex and global, there is a growing awareness that consumers, companies and investors also have a key role. The interest in sustainable water use grows quickly, in both civil society and business communities, but the poor state of transparency of companies regarding their direct and indirect water use implies that there is still a long way to go before we can expect that companies effectively contribute to making water footprints more sustainable at a relevant scale.

  13. Water footprint of Ghana

    Science.gov (United States)

    Debrah, E. R.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; van der Zaag, P.

    2009-04-01

    Water is used in almost all human endeavour. Unlike oil, water does not have a substitute. There are many factors that affect the water consumption pattern of people. These include climatic condition, income level and agricultural practices among others. The water footprint concept has been developed in order to have an indicator of water use in relation to its consumption by people. The water footprint of a country is defined as the volume of water needed for the production of the goods and services consumed by the inhabitants of the country (Chapagain and Hoekstra, 2008). Due to the bulky nature of water, it is not in its raw state a tradable commodity though it could be traded through the exchange of goods and services from one point to the other. Closely linked to the water footprint concept is the virtual water concept. Virtual water can be defined as the volume of water required to produce a commodity or service (Chapagain and Hoekstra, 2008 and Allan, 1999). The international trade of these commodities implies flows of virtual water over large distances. The water footprint of a nation can therefore be assessed by quantifying the use of domestic water resources, taking out the virtual water flow that leaves the country and adding the virtual water flow that enters the country to it. This research focuses on the assessment and analysis of the water footprints of Ghana considering only the consumptive component of the water footprint. In addition to livestock, 13 crops were considered, 4 of which were cash crops. Data was analysed for the year 2001 to 2005 The most recent framework for the analysis of water footprint is offered by Chapagain and Hoekstra. This was adopted for the study. The water footprint calculations show that the water footprint of Ghana is about 20011 Gm³/yr. Base on this the average water footprint of a Ghanaian is 823 m³/cap/yr. Not only agricultural crops but also other products require water for their manufacture, aluminium being a

  14. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on the substantiation of a health claim related to olive leaf (Olea europaea L.) water extract and increase in glucose tolerance pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following an application from Comvita New Zealand Limited, submitted pursuant to Article 13(5) of Regulation (EC) No 1924/2006 via the Competent Authority of the United Kingdom, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver an opinion on the scientific...... substantiation of a health claim related to olive (Olea europaea L.) leaf water extract and increase in glucose tolerance. The food that is the subject of the health claim, olive leaf water extract standardised by its content of oleuropein, is sufficiently characterised. The claimed effect, an increase...

  15. Water, the intangible element

    NARCIS (Netherlands)

    Schotting, R.J.

    2009-01-01

    Water is the key to life. No living creature can survive without water. Too much water or polluted water are serious threats to mankind. Managing this intangible element is complex, not only in wet deltaic regions but also in the (semi-)arid regions of the world. Combined efforts of the

  16. Exploratorium: Exploring Water.

    Science.gov (United States)

    Brand, Judith, Ed.

    2001-01-01

    This issue of Exploratorium focuses on water and its varied uses in our environment. Articles include: (1) "Adventures with Water" (Eric Muller); (2) "Water: The Liquid of Life" (Karen E. Kalumuck); (3) "Water-Drop Projector" (Gorazd Planinsic); (4) "Waterways and Means" (Pearl Tesler); (5) "Explore Natural Phenomena in the Museum--and Just…

  17. Urbanizing rural waters

    NARCIS (Netherlands)

    Hommes, Lena; Boelens, Rutgerd

    2017-01-01

    This article studies how urbanization processes and associated rural-urban water transfers in the Lima region (Peru) create water control hierarchies that align the municipal drinking water company, hydropower plants and rural communities on unequal positions. By scrutinizing the history of water

  18. Waves and Water Beetles

    Science.gov (United States)

    Tucker, Vance A.

    1971-01-01

    Capillary and gravity water waves are related to the position, wavelength, and velocity of an object in flowing water. Water patterns are presented for ships and the whirling beetle with an explanation of how the design affects the objects velocity and the observed water wavelengths. (DS)

  19. Water in diet

    Science.gov (United States)

    ... You also get water through liquid foods and beverages, such as soup, milk, tea, coffee, soda, drinking water, and juices. Alcohol ... Try to choose water over sweetened drinks. These beverages can cause you to take in too many calories. Alternative Names Diet - water; H 2 O References Bistrian ...

  20. Water footprints of nations

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert

    The water footprint concept has been developed in order to have an indicator of water use in relation to consumption of people. The water footprint of a country is defined as the volume of water needed for the production of the goods and services consumed by the inhabitants of the country. Closely

  1. Potable water supply

    Science.gov (United States)

    Sauer, R. L.; Calley, D. J.

    1975-01-01

    The history and evolution of the Apollo potable water system is reviewed. Its operation in the space environment and in the spacecraft is described. Its performance is evaluated. The Apollo potable water system satisfied the dual purpose of providing metabolic water for the crewmen and water for spacecraft cooling.

  2. Water Management in Poland

    Directory of Open Access Journals (Sweden)

    Wojciech Majewski

    2015-03-01

    Full Text Available This paper presents the current situation in Polish water resources management. Discussed here are measures taken by the Ministry of Environment to introduce a new water law, as well as reforms of water management in Poland. The state of water resources in Poland are described, and the actions needed to improve this situation, taking into account possible climate changes and their impact on the use of water resources. Critically referred to is the introduction by the Ministry of Environment of charges for water abstraction by hydro power plants, and adverse effects for the energy and water management sectors are discussed.

  3. Water policy sinkhole

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.L.

    1983-10-01

    The pollution of both surface and ground waters and the withdrawal of ground water will present the US with a major water-quality and -supply problem unless changes are made in how we use water. If water is priced at market value instead of relying on federal subsidies, price signals could alter consumption patterns. Other changes that could help are removing restrictions on water transfers and allowing private ownership of waterways and appropriable rights to ground water. These steps, it is felt, would encourage responsible consumption and allocations. (DCK)

  4. Water use in California

    Science.gov (United States)

    Brandt, Justin; Sneed, Michelle; Rogers, Laurel Lynn; Metzger, Loren F.; Rewis, Diane; House, Sally F.

    2014-01-01

    As part of the USGS National Water Use Compilation, the California Water Science Center works in cooperation with local, State, and Federal agencies as well as academic and private organizations to collect and report total water withdrawals for California. The 2010 California water use data are aggregated here, in this website, for the first time. The California Water Science Center released these data ahead of the online USGS National Water Use Compilation circular report, in response to increased interest associated with current drought conditions. The national report is expected to be released late in 2014. The data on this website represents the most current California water use data available in the USGS National Water Use Compilation. It contains a section on water use in California for 2010. Water-use estimates are compiled by withdrawal source type, use category, and county. Withdrawal source types include groundwater, both fresh and saline,

  5. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  6. Research on the Effects of Water Stress on Growth Traits and Water Use Efficiency of Winter Wheat

    Directory of Open Access Journals (Sweden)

    Sun Shuhong

    2015-01-01

    Full Text Available This research about the effects of water stress at different growth stages on the crop growth traits has a practical significance in guiding water-saving irrigation. The box test method is adopted to test the water stress of winter wheat at different stages, observe the plant height, leaf area and yield, and analyze the water use efficiency under the condition of water stress. The results show that the water stress in each growth period will play an inhibiting role in the plant height and leaf area of winter wheat; the water stress duration at a single stage is relatively short, and rehydration crop has a certain compensatory growth without making a big difference; the continuous water stress stage plays a significantly inhibiting role in the plant height and leaf area.; water stress has a largest effect on the plant height in the elongation period; the heading period suffers from water stress, so the leaf area decreases rapidly; water stress at a single stage in the appropriate period can increase water use efficiency. Regulated deficit irrigation can reduce luxury water consumption, which has a little effect on the yield and plays a guiding role in water saving and stable yield.

  7. The power of water

    Science.gov (United States)

    Mavrodi, Aikaterini

    2017-04-01

    This programme has been designed to help students understand: 1. The connections between the Watershed Protection and the water they use, exploring the watersheds in the area of their residence. Students will be guided to understand a variety of concepts related to water use, efficiency, and students' own impacts on their watershed. 2. The water supply: Where does it come from? Once the students understand their home watershed the next key concept is to understand where the water they use at home comes from, from the faucet to the actual waterbody within their watershed that is the source of their drinking water. Students will understand the ways their local waterbodies are connected and the direction of the water. 3. Water efficiency. Once students understand where their water comes from, the activity moves on to the concepts of using water more efficiently by investigating how we use or waste water, where it comes from and where it goes after it goes down the drain. We will use several activities, for example to ask students to find how much water a faucet that loses 25 drips per minute would waste in one day, by using a drip calculator, or to ask students and members of their family, to complete a water use table. 4. City water company. The students also gain knowledge of how the City manages the water resources and how to manage water on personal basis.

  8. Gastroprotective effects of combination of hot water extracts of turmeric (Curcuma domestica L.), cardamom pods (Ammomum compactum S.) and sembung leaf (Blumea balsamifera DC.) against aspirin-induced gastric ulcer model in rats.

    Science.gov (United States)

    Mutmainah; Susilowati, Rina; Rahmawati, Nuning; Nugroho, Agung Endro

    2014-05-01

    To investigate the protective effect of the combination of turmeric (Curcuma domestica), cardamom pods (Amomum compactum) and sembung leaf (Blumea balsamifera) on gastric mucosa in aspirin-induced gastric ulcer model rats. Thirty male Wistar rats weighing 150-200 g were divided into 6 groups. Four groups were administered with the hot water extracts combination consisted of cardamom pods 36.6 mg/200 g body weight and sembung leaf 91.5 mg/200 g body weight (fixed doses). The herbal extracts combination were also consisted of turmeric in various doses i.e. 10 mg/200 g body weight in the second group, 30 mg/200 g body weight in the first and third groups, and 50 mg/200 g body weight in the fourth group. The fifth group rats received sucralfate 72 mg /200 g body weight. Ten minutes after receiving herbal extracts combinations or sucralfate, the rats were induced with aspirin 90 mg/200 g body weight except the first group. Another group (sixth group) only received aspirin without any protective agent. All treatments were adsministered orally for seven days. The number and area of the gastric ulcers were counted and measured macroscopically. Score of mucosal damage and the number of eosinophils as well as the number of mast cells were observed in paraffin sections stained with hematoxylin eosin and toluidine blue, respectively. The groups receiving herbal infuse combination exhibited less number and smaller area of gastric ulcers as well as smaller score of mucosal damage in comparison to those of aspirin group (Pturmeric (Curcuma domestica), cardamom pods (Amomum compactum) and sembung leaf (Blumea balsamifera) has potential gastroprotective effects.

  9. EFFECT OF SOIL WATER POTENTIAL ON TRANSPIRATION RATE IN CUCUMBER PLANTS

    OpenAIRE

    Cho, Tosio; Eguchi, Hiromi; Kuroda, Masaharu; Tanaka, Akira; Koutaki, Masahiro; Ng, Ah Lek; Matsui, Tsuyoshi

    1985-01-01

    In an attempt to examine the effect of soil water potential (pF) on transpiration rate, leaf temperature of cucumber plants was measured under various conditions of soil water potential, and transpiration rate was calculated from heat balance of the leaf. Transpiration rate decreased with reduction in soil water potential; transpiration rate dropped at soil water potentials lower than pF 3.0. This fact suggests that the reduction in soil water potential restricts water uptake in roots and cau...

  10. Do brassinosteroids mediate the water stress response?

    Science.gov (United States)

    Jager, Corinne E; Symons, Gregory M; Ross, John J; Reid, James B

    2008-06-01

    Brassinosteroids (BRs) have been suggested to increase the resistance of plants to a variety of stresses, including water stress. This is based on application studies, where exogenously applied bioactive BRs have been shown to improve various aspects of plant growth under water stress conditions. However, it is not known whether changes in endogenous BR levels are normally involved in mediating the plant's response to stress. We have utilized BR mutants in pea (Pisum sativum L.) to determine whether changes in endogenous BR levels are part of the plant's response to water stress and whether low endogenous BR levels alter the plant's ability to cope with water stress. In wild-type (WT) plants, we show that while water stress causes a significant increase in ABA levels, it does not result in altered BR levels in either apical, internode or leaf tissue. Furthermore, the plant's ability to increase ABA levels in response to water stress is not affected by BR deficiency, as there was no significant difference in ABA levels between WT, lkb (a BR-deficient mutant) and lka (a BR-perception mutant) plants before or 14 days after the cessation of watering. In addition, the effect of water stress on traits such as height, leaf size and water potential in lkb and lka was similar to that observed in WT plants. Therefore, it appears that, at least in pea, changes in endogenous BR levels are not normally part of the plant's response to water stress.

  11. Price of Water

    Science.gov (United States)

    Survilo, Josifs; Boreiko, Dmitrijs

    2009-01-01

    There are watercourses on the globe which as yet do not deliver up their energy to the needs of the people. How much energy their waters bear, is it worth to take away this energy? Those and alike questions must be (and they are) answered before start to build hydro power station. Similar problems must be solved to control hydro power plants in most gainful way which is known as hydrothermal coordination. The notion of price of water can be met lately in technical literature as one of numerical indices of these issues. The gross price of water and net price of water are considered in this paper. Gross price of 1 t water is the price of electric energy obtained by conversion of potential energy of 1 t of water, lifted to a height of power station water head. Net price of water is the difference between gross price and total expenses determined by hydro power station building and its exploitation costs in a year related to 1 m3 of water. If net price of water is positive, it is worth building power station. The greater net price is, the more urgent is the building. Net price of water grows with water head but it continues only to some height of the dam because further increase of head sharply increases capital outlay and other exploitation expenses. To maximize net price of water, optimization of net price function can be done. Net price of water diminishes when some amount of water is diverted for other needs. When amount of diverted water is out of discussion, no controversy can emerge. However when by diverted water some goods with some monetary worth can be obtained, the task must be solved how much water can be diverted so that the water of watercourse be used to the maximum benefit. The environmental issues must be taken into account as well.

  12. Ionic behavior of treated water at a water purification plant

    OpenAIRE

    Yanagida, Kazumi; Kawahigashi, Tatsuo

    2012-01-01

    [Abstract] Water at each processing stage in a water purification plant was extracted and analyzed to investigate changes of water quality. Investigations of water at each processing stage at the water purification plant are discussed herein.

  13. Book of Abstracts of the XII Portuguese-Spanish Symposium on Plant Water Relations (2014)

    OpenAIRE

    Coelho, Renato R. P.; Vaz, Margarida M.

    2014-01-01

    Contents PLENARY CONFERENCES AND THEMATIC CONFERENCES Molecular Mechanisms of Plant Adaptation to Drought Water Relations in the Irrigation Scheduling of Olive Orchards Physiological Limits for Plant-Based Water Stress Indicators Water Use in Montado Ecosystems Hydrological, Engineering and Physiological Approaches to Water Conservation From Leaf to Whole Plant Water Use Efficiency: Solving the Gaps Efficient Use of Water Under Mediterranean Conditions: Agronomic Too...

  14. Water resources data, Kentucky. Water year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  15. Municipal water resources management: evaluation of water ...

    African Journals Online (AJOL)

    Car wash can be defined as a facility used to clean the exterior and in some cases, the interior of motor vehicles. These facilities are common in Bauchi and other cities in Nigeria. They use water as a major input thereby causing serious challenges to water resources management. Car wash facilities in Bauchi depend on ...

  16. Water users' associations and integrated water resources ...

    African Journals Online (AJOL)

    Water Users' Associations (WU As), are important component of participatory governance arrangement for sustainable management of water resources in Ghana. At present, WUAs' are not organised in their respective sectors to function effectively. However, a number of the groups exist, evidenced by their governance ...

  17. Water-Borne Illnesses. Water in Africa.

    Science.gov (United States)

    Garrett, Carly Sporer

    The Water in Africa Project was realized over a 2-year period by a team of Peace Corps volunteers. As part of an expanded, detailed design, resources were collected from over 90 volunteers serving in African countries, photos and stories were prepared, and standards-based learning units were created for K-12 students. This unit, "Water-Borne…

  18. Seasonal and inter-annual photosynthetic response of representative C4 species to soil water content and leaf nitrogen concentration across a tropical seasonal floodplain

    NARCIS (Netherlands)

    Mantlana, K.B.; Arneth, A.; Veenendaal, E.M.; Wohland, P.; Wolski, P.; Kolle, O.; Lloyd, J.

    2008-01-01

    We examined the seasonal and inter-annual variation of leaf-level photosynthetic characteristics of three C4 perennial species, Cyperus articulatus, Panicum repens and Imperata cylindrica, and their response to environmental variables, to determine comparative physiological responses of plants

  19. Height-related trends in leaf xylem anatomy and shoot hydraulic characteristics in a tall conifer: safety versus efficiency in water transport

    Science.gov (United States)

    D.R. Woodruff; F.C. Meinzer; B. Lachenbruch

    2008-01-01

    Growth and aboveground biomass accumulation follow a common pattern as tree size increases, with productivity peaking when leaf area reaches its maximum and then declining as tree age and size increase. Age- and size-related declines in forest productivity are major considerations in setting the rotational age of commercial forests, and relate to issues of carbon...

  20. Relações hídricas e trocas gasosas em vinhedo sob cobertura plástica Water relations and leaf gas exchange in vineyard with plastic overhead cover

    Directory of Open Access Journals (Sweden)

    Geraldo Chavarria

    2008-12-01

    Full Text Available No presente estudo, determinaram-se as influências da cobertura plástica impermeável (CP sobre a demanda evaporativa atmosférica e o potencial da água no solo, bem como as conseqüências destas sobre as trocas gasosas foliares (fotossíntese, condutância estomática e transpiração e o potencial da água na folha da videira. As avaliações foram realizadas nos ciclos 2005/06 e 2006/07, em um vinhedo da cv. Moscato Giallo, conduzido em "Y", com cobertura plástica impermeável tipo ráfia (160 mm, em 12 fileiras com 35 m, deixando-se cinco fileiras sem cobertura (controle. Em ambas as áreas, avaliou-se o microclima quanto à temperatura do ar, umidade relativa do ar, radiação fotossinteticamente ativa e velocidade do vento, próximos ao dossel vegetativo. A CP aumentou a disponibilidade hídrica no solo nas entrelinhas e restringiu-a nas linhas, sobretudo em profundidades mais superficiais (0-10 cm. A CP também diminuiu a demanda evaporativa atmosférica, principalmente pela redução da velocidade do vento (-90%, aumentando o potencial da água na folha e a condutância estomática. De modo geral, a CP pode favorecer a condição hídrica e elevar a capacidade de assimilação de carbono em videiras.This study evaluated the plastic overhead cover (POC effect on evaporative demand of atmosphere and soil water content, as well as their consequences on gas exchange (photosynthesis, stomatal conductance and transpiration and leaf water potential in grapevine. The experiment was carried out during the 2005/06 and 2006/07 seasons, in a vineyard of 'Moscato Giallo', trained in "Y" and covered with an impermeable plastic cloth (2.65 m x 160 mm, in 12 rows with 35 m, with five rows left uncovered (control. In both areas, the microclimate was evaluated, in terms of air temperature, air relative humidity, radiation photosynthetically active and wind speed above the canopy. The POC increased the soil water content between rows and restricted it

  1. Necessidades hídricas de citros e macieiras a partir da área foliar e da energia solar Water requirements of citrus and apple trees as affected by leaf area and solar energy

    Directory of Open Access Journals (Sweden)

    André Belmont Pereira

    2009-09-01

    Full Text Available A energia solar é a fonte primária para a fotossíntese e a transpiração vegetal para que uma cultura expresse seu potencial produtivo em um dado local. O método proposto neste estudo pretende facilitar o cálculo do volume de água (litros/planta/dia necessário para uma irrigação localizada com o mínimo desperdício possível em pomares cítricos e de macieiras, utilizando-se de dados usualmente disponíveis, tais como área foliar, densidade de fluxo de radiação solar global, saldo de radiação e déficit de saturação de vapor médio diário do ar. Considerando-se que a irrigação localizada consome bem menos água do que o sistema de aspersão, e que a outorga de água para irrigação está cada vez mais limitada, tal estudo vem a ser certamente de grande importância para assegurar a autossustentabilidade da agricultura irrigada, especialmente em regiões áridas e semiáridas. Foram utilizados neste trabalho, para desenvolvimento da metodologia proposta, dados de fluxo de seiva medidos através do método de fluxo de calor, em pomar de lima-ácida-Tahiti com área foliar de 48 e 99 m², bem como em pomar de macieiras com área foliar aproximada de 5; 8; 9; 11; 16 e 21 m². Os resultados obtidos indicaram que a metodologia proposta, baseada na habilidade das plantas em converter energia solar fixada em água transpirada, mostrou-se viável para avaliar a lâmina de irrigação de plantas cítricas e macieiras nas localidades estudadas.Solar energy is the primary source for photosynthesis and transpiration in such a way as to assure the expression of the crop yield potential at a given site. The current methodology aims to ease the calculation of the water amount (liters/plant/day necessary for a localized irrigation scheduling with a minimal loss possible at both citrus and apple trees orchards by means of usual available data, such as leaf area, global solar radiation flux density, net radiation and air daily mean steam

  2. Measuring domestic water use

    DEFF Research Database (Denmark)

    Tamason, Charlotte C.; Bessias, Sophia; Villada, Adriana

    2016-01-01

    Objective: To present a systematic review of methods for measuring domestic water use in settings where water meters cannot be used. Methods: We systematically searched EMBASE, PubMed, Water Intelligence Online, Water Engineering and Development Center, IEEExplore, Scielo, and Science Direct...... databases for articles that reported methodologies for measuring water use at the household level where water metering infrastructure was absent or incomplete. A narrative review explored similarities and differences between the included studies and provide recommendations for future research in water use....... Results: A total of 21 studies were included in the review. Methods ranged from single-day to 14-consecutive-day visits, and water use recall ranged from 12 h to 7 days. Data were collected using questionnaires, observations or both. Many studies only collected information on water that was carried...

  3. Water Entrainment in Concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    This report gives a survey of different techniques for incorporation of designed, water-filled cavities in concrete: Water entrainment. Also an estimate of the optimum size of the water inclusions is given. Water entrainment can be used to avoid self-desiccation and self-desiccation shrinkage...... during hydration [1,26]. What is needed is some sort of container which retains the shape of the water when mixed into the concrete. The container may function based on several different physical or chemical principles. Cells and gels are examples of containers found in nature. A cell membrane provides...... a boundary to water, whereas a polymer network incorporates water in its intersticious space with its affinity due to interaction energy and polymer entropy. Such containers allow water to be stored as an entity. In relation to concrete the water encapsulation may be accomplished either before or after start...

  4. Sustainable Water Systems

    Directory of Open Access Journals (Sweden)

    Miklas Scholz

    2013-02-01

    Full Text Available Sustainable water systems often comprise complex combinations of traditional and new system components that mimic natural processes. These green systems aim to protect public health and safety, and restore natural and human landscapes. Green infrastructure elements such as most sustainable drainage systems trap storm water but may contaminate groundwater. There is a need to summarize recent trends in sustainable water systems management in a focused document. The aim of this special issue is therefore to disseminate and share scientific findings on novel sustainable water systems addressing recent problems and opportunities. This special issue focuses on the following key topics: climate change adaptation and vulnerability assessment of water resources systems; holistic water management; carbon credits; potable water savings; sustainable water technologies; nutrient management; holistic storm water reuse; water and wastewater infrastructure planning; ecological status of watercourses defined by the Water Framework Directive. The combined knowledge output advances the understanding of sustainable water, wastewater and storm water systems in the developed and developing world. The research highlights the need for integrated decision-support frameworks addressing the impact of climate change on local and national water resources management strategies involving all relevant stakeholders at all levels.

  5. Chemical composition of Solanum nigrum linn extract and induction of autophagy by leaf water extract and its major flavonoids in AU565 breast cancer cells.

    Science.gov (United States)

    Huang, Hsiu-Chen; Syu, Kai-Yang; Lin, Jen-Kun

    2010-08-11

    Solanum nigrum Linn (SN) belongs to the Solanaceae family, is a plant growing widely in south Asia, and has been used in traditional folk medicine. It is believed to have antipyretic, diuretic, anticancer, and hepatoprotective effects. During the summertime, this plant has been heavily used to supplement beverages to quench thirst on hot days in Taiwan and several southern Asian countries. In this study, the polyphenols and anthocyanidin in various parts of the SN plant were analyzed by HPLC. The leaves were found to be richer in polyphenols than stem and fruit. SN leaves contained the highest concentration of gentisic acid, luteolin, apigenin, kaempferol, and m-coumaric acid. However, the anthocyanidin existed only in the purple fruits. Additionally, the cytotoxicity of the leaf, stem, or fruit extract was evaluated against cancer cell lines and normal cells. The results showed that AU565 breast cancer cells were more sensitive to the extract. Furthermore, the results demonstrated a significant cytotoxic effect of SN leaf extract on AU565 cells that was mediated via two different mechanisms depending on the exposure concentrations. A low dose of SN leaf extract induced autophagy but not apoptosis. Higher doses (>100 microg/mL) of SN leaf extract could inhibit the level of p-Akt and cause cell death due to the induction of autophagy and apoptosis. However, these findings indicate that SN leaf extract induced cell death in breast cells via two distinct antineoplastic activities, the abilities to induce apoptosis and autophagy, therefore suggesting that it may provide a useful remedy to treat breast cancer.

  6. Water Microbiology. Bacterial Pathogens and Water

    Directory of Open Access Journals (Sweden)

    João P. S. Cabral

    2010-10-01

    Full Text Available Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers. Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  7. Water Microbiology. Bacterial Pathogens and Water

    Science.gov (United States)

    Cabral, João P. S.

    2010-01-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters. PMID:21139855

  8. Chlorophyll a fluorescence, under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions

    Directory of Open Access Journals (Sweden)

    Kumud B. Mishra

    2016-11-01

    Full Text Available Abstract Background Non-invasive and high-throughput monitoring of drought in plants from its initiation to visible symptoms is essential to quest drought tolerant varieties. Among the existing methods, chlorophyll a fluorescence (ChlF imaging has the potential to probe systematic changes in photosynthetic reactions; however, prerequisite of dark-adaptation limits its use for high-throughput screening. Results To improve the throughput monitoring of plants, we have exploited their light-adaptive strategy, and investigated possibilities of measuring ChlF transients under low ambient irradiance. We found that the ChlF transients and associated parameters of two contrasting Arabidopsis thaliana accessions, Rsch and Co, give almost similar information, when measured either after ~20 min dark-adaptation or in the presence of half of the adaptive growth-irradiance. The fluorescence parameters, effective quantum yield of PSII photochemistry (ΦPSII and fluorescence decrease ratio (R FD resulting from this approach enabled us to differentiate accessions that is often not possible by well-established dark-adapted fluorescence parameter maximum quantum efficiency of PSII photochemistry (F V/F M. Further, we screened ChlF transients in rosettes of well-watered and drought-stressed six A. thaliana accessions, under half of the adaptive growth-irradiance, without any prior dark-adaptation. Relative water content (RWC in leaves was also assayed and compared to the ChlF parameters. As expected, the RWC was significantly different in drought-stressed from that in well-watered plants in all the six investigated accessions on day-10 of induced drought; the maximum reduction in the RWC was obtained for Rsch (16%, whereas the minimum reduction was for Co (~7%. Drought induced changes were reflected in several features of ChlF transients; combinatorial images obtained from pattern recognition algorithms, trained on pixels of image sequence, improved the contrast

  9. Emergency Disinfection of Drinking Water

    Science.gov (United States)

    How to boil and disinfect water to kill most disease-causing microorganisms during emergency situations where regular water service has been interrupted and local authorities recommend using only bottled water, boiled water, or disinfected water.

  10. Human Beings And Water

    OpenAIRE

    Pakpahan, Putra Andika

    2016-01-01

    The writer of this paper on this writing is talking about the human beings and water. Water is one of the very fundamentally things that human beings need to keep their lives. Human beings sometimes do not realise that the water is very important for them because they actually cannot live their lives without the present of water. Human beings can keep their lives without rice, but cannot without water. For instances the use of water for human beings are domestic use, cooking, washing, bathing...

  11. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  12. Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO4 Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf.

    Science.gov (United States)

    Kim, Jin Hyun; Jo, Yimhyun; Kim, Ju Hun; Jang, Ji Wook; Kang, Hyun Jun; Lee, Young Hye; Kim, Dong Suk; Jun, Yongseok; Lee, Jae Sung

    2015-12-22

    A stand-alone, wireless solar water splitting device without external energy supply has been realized by combining in tandem a CH3NH3PbI3 perovskite single junction solar cell with a cobalt carbonate (Co-Ci)-catalyzed, extrinsic/intrinsic dual-doped BiVO4 (hydrogen-treated and 3 at% Mo-doped). The photoanode recorded one of the highest photoelectrochemical water oxidation activity (4.8 mA/cm(2) at 1.23 VRHE) under simulated 1 sun illumination. The oxygen evolution Co-Ci co-catalyst showed similar performance to best known cobalt phosphate (Co-Pi) (5.0 mA/cm(2) at 1.23 VRHE) on the same dual-doped BiVO4 photoanode, but with significantly better stability. A tandem artificial-leaf-type device produced stoichiometric hydrogen and oxygen with an average solar-to-hydrogen efficiency of 4.3% (wired), 3.0% (wireless) under simulated 1 sun illumination. Hence, our device based on a D4 tandem photoelectrochemical cell represents a meaningful advancement in performance and cost over the device based on a triple-junction solar cell-electrocatalyst combination.

  13. Investigating the role of total precipitable water and leaf area index in the decoupling of passive microwave brightness temperatures over snow-covered regions of forested terrain in North America

    Science.gov (United States)

    Xue, Y.; Forman, B. A.

    2015-12-01

    Snow is a significant contributor to the Earth's hydrologic cycle, energy cycle, and climate system due to its control of mass and energy exchanges at the land surface. In order to better protect and preserve this vital natural resource, it is essential to first quantify how much snow exists as a function of both time and space. Unfortunately, existing space-based snow mass (e.g., snow water equivalent [SWE]) estimation algorithms relying on passive microwave (PMW) brightness temperature (Tb) observations can significantly underestimate SWE, particularly in densely-forested regions since forest cover tends to modulate the snow-related portion of the Tb signal as measured from space. Both the overlying vegetation and the overlying atmosphere can attenuate surface microwave emission while simultaneously emitting its own radiation towards the satellite. A Tb decoupling process is explored here via parameterization of atmospheric and forest transmissivity as a function of satellite-derived total precipitable water (TPW) and leaf area index (LAI), respectively. This study also explores the sensitivity of the decoupled multi-frequency, multi-polarization Tb to different LAI retrieval algorithms. Preliminary results suggest the choice of LAI retrieval algorithm significantly affects the efficacy of the Tb decoupling procedure over snow-covered land, and therefore, an accurate representation of LAI as measured from space is integral for improved estimation of regional SWE using space-based passive microwave radiometers.

  14. Low water FGD technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Conventional flue gas desulphurisation (FGD) systems require large supplies of water. Technologies which reduce water usage are becoming more important with the large number of FGD systems being installed in response to ever tightening emission regulations. Reducing water loss is particularly important in arid regions of the world. This report reviews commercial and near commercial low water FGD processes for coal-fired power plants, including dry, semi-dry and multi-pollutant technologies. Wet scrubbers, the most widely deployed FGD technology, account for around 10–15% of the water losses in power plants with water cooling systems. This figure is considerably higher when dry/air cooling systems are employed. The evaporative water losses can be reduced by some 40–50% when the flue gas is cooled before it enters the wet scrubber, a common practice in Europe and Japan. Technologies are under development to capture over 20% of the water in the flue gas exiting the wet scrubber, enabling the power plant to become a water supplier instead of a consumer. The semi-dry spray dry scrubbers and circulating dry scrubbers consume some 60% less water than conventional wet scrubbers. The commercial dry sorbent injection processes have the lowest water consumption, consuming no water, or a minimal amount if the sorbent needs hydrating or the flue gas is humidified to improve performance. Commercial multi-pollutant systems are available that consume no water.

  15. Water-transporting proteins.

    Science.gov (United States)

    Zeuthen, Thomas

    2010-04-01

    Transport through lipids and aquaporins is osmotic and entirely driven by the difference in osmotic pressure. Water transport in cotransporters and uniporters is different: Water can be cotransported, energized by coupling to the substrate flux by a mechanism closely associated with protein. In the K(+)/Cl(-) and the Na(+)/K(+)/2Cl(-) cotransporters, water is entirely cotransported, while water transport in glucose uniporters and Na(+)-coupled transporters of nutrients and neurotransmitters takes place by both osmosis and cotransport. The molecular mechanism behind cotransport of water is not clear. It is associated with the substrate movements in aqueous pathways within the protein; a conventional unstirred layer mechanism can be ruled out, due to high rates of diffusion in the cytoplasm. The physiological roles of the various modes of water transport are reviewed in relation to epithelial transport. Epithelial water transport is energized by the movements of ions, but how the coupling takes place is uncertain. All epithelia can transport water uphill against an osmotic gradient, which is hard to explain by simple osmosis. Furthermore, genetic removal of aquaporins has not given support to osmosis as the exclusive mode of transport. Water cotransport can explain the coupling between ion and water transport, a major fraction of transepithelial water transport and uphill water transport. Aquaporins enhance water transport by utilizing osmotic gradients and cause the osmolarity of the transportate to approach isotonicity.

  16. Water use patterns of four co-occurring chaparral shrubs.

    Science.gov (United States)

    Davis, S D; Mooney, H A

    1986-09-01

    Mixed stands of chaparral in California usually contain several species of shrubs growing close to each other so that aerial branches and subterranean roots overlap. There is some evidence that roots are stratified relative to depth. It may be that root stratification promotes sharing of soil moisture resources. We examined this possibility by comparing seasonal water use patterns in a mixed stand of chaparral dominated by four species of shrubs: Quercus durata, Heteromeles arbutifolia, Adenostoma fasciculatum, and Rhamnus californica. We used a neutron probe and soil phychrometers to follow seasonal depletion and recharging of soil moisture and compared these patterns to seasonal patterns of predawn water potentials, diurnal leaf conductances, and diurnal leaf water potentials. Our results indicated that 1) Quercus was deeply rooted, having high water potentials and high leaf conductances throughout the summer drought period, 2) Heteromeles/Adenostoma were intermediate in rooting depth, water potentials, and leaf conductances, and 3) Rhamnus was shallow rooted, having the lowest water potentials and leaf conductances. During the peak of the drought, predawn water potentials for Quercus corresponded to soil water potentials at or below a depth of 2 m, predawn water potentials of Heteromeles/ Adenostoma corresponded to a depth of 0.75 m, and predawn water potentials of Rhamnus corresponded to a depth of 0.5 m. This study supports the concept that co-occurring shrubs of chaparral in California utilize a different base of soil moisture resources.

  17. Minimum hydraulic safety leads to maximum water-use efficiency in a forage grass.

    Science.gov (United States)

    Holloway-Phillips, Meisha-Marika; Brodribb, Timothy J

    2011-02-01

    Understanding how water-use regulation relates to biomass accumulation is imperative for improving crop production in water-limited environments. Here, we examine how the vulnerability of xylem to water stress-induced cavitation and the coordination between water transport capacity and assimilation (A) influences diurnal water-use efficiency (WUE) and dry-matter production in Lolium perenne L. - a commercial forage grass. Plants were exposed to a range of water stresses, causing up to 90% leaf death, by withholding water and then rewatering to observe the recovery process. Leaf hydraulic conductance (K(leaf) ) declined to 50% of maximum at a leaf water potential (ψ(leaf) ) of -1 MPa, whereas complete stomatal closure occurred well after this point, at -2.35 MPa, providing no protection against hydraulic dysfunction. Instantaneous A remained maximal until >70% of hydraulic conductivity had been lost. Post-stress rewatering showed that 95% loss of K(leaf) could be incurred before the recovery of gas exchange exceeded 1 d, with a rapid transition to leaf death after this point. Plants exposed to sustained soil water deficits through restricted nightly watering regimes did not suffer cumulative losses in K(leaf) ; instead, ψ(leaf) and gas exchange recovered diurnally. The effect was improved WUE during the day and optimal ψ(leaf) during the night for the maintenance of growth. © 2010 Blackwell Publishing Ltd.

  18. Differential response to water deficit stress in alfalfa ( Medicago ...

    African Journals Online (AJOL)

    The present study was fixed as objective to compare the response to water deficit (33% of field capacity, FC) stress of eight cultivars of Medicago sativa, originating from the Mediterranean basin. Comparison was performed on some key parameters such as growth, relative water content, leaf water potential, MDA tissue ...

  19. Water SA: Submissions

    African Journals Online (AJOL)

    This journal publishes refereed, original work in all branches of water science, technology, engineering and policy. This includes: water resource development; the hydrological cycle; surface hydrology; geohydrology, hydropedology and hydrometeorology; limnology; freshwater and estuarine ecology; salinisation; treatment ...

  20. Urban water trajectories

    CERN Document Server

    Allen, Adriana; Hofmann, Pascale; Teh, Tse-Hui

    2017-01-01

    Water is an essential element in the future of cities. It shapes cities’ locations, form, ecology, prosperity and health. The changing nature of urbanisation, climate change, water scarcity, environmental values, globalisation and social justice mean that the models of provision of water services and infrastructure that have dominated for the past two centuries are increasingly infeasible. Conventional arrangements for understanding and managing water in cities are being subverted by a range of natural, technological, political, economic and social changes. The prognosis for water in cities remains unclear, and multiple visions and discourses are emerging to fill the space left by the certainty of nineteenth century urban water planning and engineering. This book documents a sample of those different trajectories, in terms of water transformations, option, services and politics. Water is a key element shaping urban form, economies and lifestyles, part of the ongoing transformation of cities. Cities are face...

  1. Water Quality Analysis Simulation

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural...

  2. ERLN Water Focus Area

    Science.gov (United States)

    The Water Laboratory Alliance (WLA), within Environmental Response Laboratory Network, maintains analytical capability and capacity in the event of intentional and unintentional water contamination with chemical, biological and radiochemical contaminants.

  3. Clean Water Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Clean Water Act (CWA) establishes the basic structure for regulating discharges of pollutants into U.S. waters and regulating quality standards for surface...

  4. Modelling Ballast Water Transport

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Babu, M.T.; Vethamony, P.

    Ballast water discharges in the coastal environs have caused a great concern over the recent periods as they account for transporting marine organisms from one part of the world to the other. The movement of discharged ballast water as well...

  5. Alternative disinfectant water treatments

    Science.gov (United States)

    Alternative disinfestant water treatments are disinfestants not as commonly used by the horticultural industry. Chlorine products that produce hypochlorous acid are the main disinfestants used for treating irrigation water. Chlorine dioxide will be the primary disinfestant discussed as an alternativ...

  6. Smart Growth and Water

    Science.gov (United States)

    This page contains resources that communities can use to integrate green infrastructure into streets and neighborhoods to reduce stormwater runoff, use water more efficiently, and protect water from pollution.

  7. Metropolitan water management

    National Research Council Canada - National Science Library

    Milliken, J. Gordon; Taylor, Graham C

    1981-01-01

    This monograph is intended to inform interested and capable pesons, who happen not to be specialists in water resources planning, of the issues and alternative strategies related to metropolitan water supply...

  8. Water Supplies: Microbiological Analysis

    Science.gov (United States)

    Producing high-quality drinking water that is free of harmful microorganisms and maintaining its purity through distribution systems are essential for public health. Drinking water quality standards and guidelines for microbial contaminants vary within and among countries but typ...

  9. Water Quality Criteria

    Science.gov (United States)

    EPA develops water quality criteria based on the latest scientific knowledge to protect human health and aquatic life. This information serves as guidance to states and tribes in adopting water quality standards.

  10. Water Quality Analysis Simulation

    Science.gov (United States)

    The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural phenomena and man-made pollution for variious pollution management decisions.

  11. Virginia Water Central

    OpenAIRE

    Virginia Water Resources Research Center

    2011-01-01

    This newsletter features articles on water-related science, policy, and law. Distributed to state agency representatives, faculty, students and interested citizens, it aims to provide current information, statistics, news, and notices related to water resources in Virginia.

  12. Water Quality Protection Charges

    Data.gov (United States)

    Montgomery County of Maryland — The Water Quality Protection Charge (WQPC) is a line item on your property tax bill. WQPC funds many of the County's clean water initiatives including: • Restoration...

  13. SDWISFED Drinking Water Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — SDWIS/FED is EPA's national regulatory compliance database for the drinking water program. It includes information on the nation's 160,000 public water systems and...

  14. India's Underground Water Temples

    National Research Council Canada - National Science Library

    Samir S. Patel

    2011-01-01

    Patel features India's underground water temples--specifically in Gujarat. Accordingly, the stepwells of Gujarat are spiritual monuments to water and stark reminders of the increasing scarcity of this critical resource...

  15. Water on the Knee

    Science.gov (United States)

    ... your knee joint. Some people call this condition "water on the knee." A swollen knee may be ... Choose low-impact exercise. Certain activities, such as water aerobics and swimming, don't place continuous weight- ...

  16. Water Quality Monitoring Sites

    Data.gov (United States)

    Vermont Center for Geographic Information — Water Quality Monitoring Site identifies locations across the state of Vermont where water quality data has been collected, including habitat, chemistry, fish and/or...

  17. Drinking Water Action Plan

    Science.gov (United States)

    EPA's Drinking Water Action Plan serves as a national call to action, urging all levels of government, utilities, community organizations, and other stakeholders to work together to increase the safety and reliability of drinking water.

  18. Drink Water, Fight Fat?

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_165714.html Drink Water, Fight Fat? When you have it in place ... HealthDay News) -- If you choose a glass of water instead of a beer or a sugar-sweetened ...

  19. Water resources (Chapter 5)

    CSIR Research Space (South Africa)

    Hobbs, Philip

    2016-01-01

    Full Text Available Water availability/supply for shale gas development (SGD) in the assessment study area is severely constrained. Surface water availability is generally low, with large areas of non-perennial, episodic and ephemeral streams experiencing very high...

  20. Water Safety (Recreational)

    Science.gov (United States)

    Playing in the water - whether swimming, boating or diving - can be fun. It can also be dangerous, especially for children. Being safe can ... injuries and drowning. To stay safe in the water Avoid alcohol when swimming or boating Wear a ...

  1. State Water Districts

    Data.gov (United States)

    California Department of Resources — State Water Project District boundaries are areas where state contracts provide water to the district in California. This database is designed as a regions polygon...

  2. Private Water Districts

    Data.gov (United States)

    California Department of Resources — Private Water District boundaries are areas where private contracts provide water to the district in California. This database is designed as a regions polygon...

  3. VT Water Classifications

    Data.gov (United States)

    Vermont Center for Geographic Information — The Vermont Water Quality Standards (VTWQS) are rules intended to achieve the goals of the Vermont Surface Water Strategy, as well as the objective of the federal...

  4. Drinking Water Distribution Systems

    Science.gov (United States)

    Learn about an overview of drinking water distribution systems, the factors that degrade water quality in the distribution system, assessments of risk, future research about these risks, and how to reduce cross-connection control risk.

  5. Relações entre o potencial e a temperatura da folha de plantas de milho e sorgo submetidas a estresse hídrico = Relations between the potential and temperature of the corn and sorghum leafs submitted water stress

    Directory of Open Access Journals (Sweden)

    Pedro Abel Vieira Júnior

    2007-10-01

    Full Text Available Para avaliar o comportamento diário do potencial hídrico em plantas de milho e de sorgo submetidas a estresse hídrico, relacionando com as temperaturas foliar e ambiente, foram cultivadas, em vasos individuais em estufa, cinco plantas de cada espécie. Até o estádio fenológico de quatro folhas, o solo nos vasos foi mantido em capacidade de campo. Entre esse estádio e até próximo ao ponto de murcha a irrigação foi suspensa e foram monitoradas diariamente atemperatura ambiente (Tam, o potencial hídrico da folha (Ψfolha e a temperatura sobre a lâmina foliar (Tfoext. Nas plantas que apresentavam enrolamento das folhas, foram registradas astemperaturas (Tfoint da face interna do limbo enrolado. Também foram calculadas as médias horárias dos Ψ folha para ambas as espécies relacionando-os com a Tfoext, a Tfoint e as diferenças entreessas temperaturas. Ambas as espécies apresentaram comportamentos semelhantes quanto ao Ψ folha e entre 13 e 15 horas verificou-se o menor Ψ folha. Apesar da significativa relação inversa entrea Tfoext e o seu Ψ folha, em milho essa relação não apresenta acurácia para emprego da Tfoext no monitoramento do status hídrico da planta e a Tfoint é inferior à Tfoext, tornando-se um mecanismoque permite à planta a manutenção de seu metabolismo.To evaluate the daily behavior of the water potential in corn and of sorghum plants submitted to water stress, relating with the leaf and ambient temperature, were cultivated, in individual pots in greenhouse, five plants of each species. The plants were kept at field capacity until they reached the stage of four leaves. Between that stadium and close to the wilting point the irrigation was suspended and were monitored daily the ambient temperature (Tam, the water potential in the leaf (Ψ folha and the temperature on the leaf sheet (Tfoext. The plants whose leaves rolled up had their internal temperature measured (Tfoint. The average time of Ψ folha was

  6. Technology for Water Treatment (National Water Management)

    Science.gov (United States)

    1992-01-01

    The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  7. Water Saving for Development

    Science.gov (United States)

    Zacharias, Ierotheos

    2013-04-01

    The project "Water Saving for Development (WaS4D)" is financed by European Territorial Cooperational Programme, Greece-Italy 2007-2013, and aims at developing issues on water saving related to improvement of individual behaviors and implementing innovative actions and facilities in order to harmonize policies and start concrete actions for a sustainable water management, making also people and stakeholders awake to water as a vital resource, strategic for quality of life and territory competitiveness. Drinkable water saving culture & behavior, limited water resources, water supply optimization, water resources and demand management, water e-service & educational e-tools are the key words of WaS4D. In this frame the project objectives are: • Definition of water need for domestic and other than domestic purposes: regional and territorial hydro-balance; • promotion of locally available resources not currently being used - water recycling or reuse and rainwater harvesting; • scientific data implementation into Informative Territorial System and publication of geo-referred maps into the institutional web sites, to share information for water protection; • participated review of the regulatory framework for the promotion of water-efficient devices and practices by means of the definition of Action Plans, with defined targets up to brief (2015) and medium (2020) term; • building up water e-services, front-office for all the water issues in building agricultural, industrial and touristic sectors, to share information, procedures and instruments for the water management; • creation and publication of a user friendly software, a game, to promote sustainability for houses also addressed to young people; • creation of water info point into physical spaces called "Water House" to promote education, training, events and new advisory services to assist professionals involved in water uses and consumers; • implementation of participatory approach & networking for a

  8. Effects of Water Solutions on Extracting Green Tea Leaves

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2013-01-01

    Full Text Available This study investigates the effects of water solutions on the antioxidant content of green tea leaf extracts. Green teas prepared with tap water and distilled water were compared with respect to four antioxidant assays: total phenol content, reducing power, DMPD assay, and trolox equivalent antioxidant capacity assay. The results indicate that green tea prepared with distilled water exhibits higher antioxidant activity than that made with tap water. The high performance liquid chromatography showed that major constituents of green tea were found in higher concentrations in tea made with distilled water than in that made with tap water. This could be due to less calcium fixation in leaves and small water clusters. Water solutions composed of less mineralisation are more effective in promoting the quality of green tea leaf extracts.

  9. Save water, save money

    Science.gov (United States)

    ,; Fairfax County, VA

    1977-01-01

    The United States uses huge quantities of water. In 1976, for example, it was estimated that for each person in the U.S., about 2,000 gallons of water were used daily in homes, offices, farms, and factories. This means that roughly 420 billion gallons of water were pumped, piped, or diverted each day—about 15 percent more than in 1970. By the year 2000, our daily water needs will probably exceed 800 billion gallons.

  10. Exploding Water Drops

    Science.gov (United States)

    Reich, Gary

    2016-01-01

    Water has the unusual property that it expands on freezing, so that ice has a specific gravity of 0.92 compared to 1.0 for liquid water. The most familiar demonstration of this property is ice cubes floating in a glass of water. A more dramatic demonstration is the ice bomb shown in Fig. 1. Here a cast iron flask is filled with water and tightly…

  11. Response of the water status of soybean to changes in soil water potentials controlled by the water pressure in microporous tubes

    Science.gov (United States)

    Steinberg, S. L.; Henninger, D. L.

    1997-01-01

    Water transport through a microporous tube-soil-plant system was investigated by measuring the response of soil and plant water status to step change reductions in the water pressure within the tubes. Soybeans were germinated and grown in a porous ceramic 'soil' at a porous tube water pressure of -0.5 kpa for 28 d. During this time, the soil matric potential was nearly in equilibrium with tube water pressure. Water pressure in the porous tubes was then reduced to either -1.0, -1.5 or -2.0 kPa. Sap flow rates, leaf conductance and soil, root and leaf water potentials were measured before and after this change. A reduction in porous tube water pressure from -0.5 to -1.0 or -1.5 kPa did not result in any significant change in soil or plant water status. A reduction in porous tube water pressure to -2.0 kPa resulted in significant reductions in sap flow, leaf conductance, and soil, root and leaf water potentials. Hydraulic conductance, calculated as the transpiration rate/delta psi between two points in the water transport pathway, was used to analyse water transport through the tube-soil-plant continuum. At porous tube water pressures of -0.5 to-1.5 kPa soil moisture was readily available and hydraulic conductance of the plant limited water transport. At -2.0 kPa, hydraulic conductance of the bulk soil was the dominant factor in water movement.

  12. Irrigation water quality assessments

    Science.gov (United States)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  13. Water treatment method

    Science.gov (United States)

    Martin, Frank S.; Silver, Gary L.

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  14. Grey water biodegradability

    NARCIS (Netherlands)

    Abu Ghunmi, L.; Zeeman, G.; Fayyad, M.; Van Lier, J.B.

    2010-01-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different

  15. Nickel in tap water

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner; Nielsen, G D; Flyvholm, Morten

    1983-01-01

    Nickel analyses of tap water from several sources in Copenhagen gave up to 490 X 10(-6) g X 1(-1) in the first 250 ml portions. Hot water gave higher values than cold water. After flushing for 5 min, low values were found. Considerable variation from time to time and from tap to tap was found...

  16. PROPERTIES OF SWIMMING WATER

    Directory of Open Access Journals (Sweden)

    Tayfun KIR

    2004-10-01

    Full Text Available Swimming waters may be hazardous on human health. So, The physicians who work in the facilities, which include swimming areas, are responsible to prevent risks. To ensure hygiene of swimming water, European Swimming Water Directive offers microbiological, physical, and chemical criteria. [TAF Prev Med Bull 2004; 3(5.000: 103-104

  17. Electrically excited liquid water

    NARCIS (Netherlands)

    Wexler, A.D.

    2016-01-01

    Water is essential to a healthy and secure world. Developing new technologies which can take full advantage of the unique attributes of water is important for meeting the ever increasing global demand while reducing the production footprint. Water exhibits unexpected departures in more than 70

  18. Energy-Water Nexus

    Energy Technology Data Exchange (ETDEWEB)

    Horak, W.

    2010-07-26

    Conclusions of this presentation are: (1) energy and water are interconnected; (2) new energy sources will place increased demands on water supplies; (3) existing energy sources will be subjected to increasing restrictions on their water use; and (4) integrated decision support tools will need to be developed to help policy makers decide which policies and advanced technologies can address these issues.

  19. Up Goes the Water

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    Water is very important to plants. Plants need water to produce food and grow. Plants make their own food through a complex, sunlight-powered process called photosynthesis. Simply put, in photosynthesis, water absorbed by a plant's roots and carbon dioxide taken from the air by a plant's leaves combine to make the plant's food. This article…

  20. Quality of Drinking Water

    Science.gov (United States)

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  1. Water Conservation Resource List.

    Science.gov (United States)

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  2. Assessment of reclaimed water irrigation on growth, yield, and water-use efficiency of forage crops

    Science.gov (United States)

    Alkhamisi, S. A.; Abdelrahman, H. A.; Ahmed, M.; Goosen, M. F. A.

    2011-09-01

    Field experiments were conducted to determine the effect of water quality (reclaimed and fresh water), water quantity, and their interactions on the growth, yield, and water use efficiency of forage maize during two winter seasons in the Arabian Gulf. The plants irrigated with the reclaimed water had higher plant height than those irrigated with the fresh water. The leaf length and leaf area (cm2) did not show any significant differences among the interaction. Reclaimed water had shorter time for 50% male and female flowering of forage maize plants, indicating earlier maturity. Plants irrigated with reclaimed water had higher chlorophyll content for all levels of water applications. A significant difference in green forage yield was found among the interactions. Reclaimed water gave the highest green forage yield of 72.12 and 59.40 t/ha at 1.4ETo and 1.0ETo, respectively. Plants irrigated with the reclaimed water used water more efficiently [3.65 kg/m3 of DM (dry matter)] than those irrigated with the fresh water [2.91 kg/m3 of DM (dry matter)] for all water quantities. The enhanced growth in wastewater-irrigated crops, compared with fresh water-irrigated crops, was attributed primarily to higher nutrient content (e.g., nitrogen) and lower salinity of the reclaimed water. The study concluded that treated wastewater irrigation increased yields of forage crops and their water use efficiency. Cost-benefit analysis, studies on the use these forage crops as animal feed, and more in depth evaluation of possible crop and soil contamination were recommended.

  3. NASA Water Resources Program

    Science.gov (United States)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  4. Water access, water scarcity, and climate change.

    Science.gov (United States)

    Mukheibir, Pierre

    2010-05-01

    This article investigates the approaches of the various discourses operating in the water sector and how they address the issues of scarcity and equitable access under projected climate change impacts. Little synergy exists between the different approaches dealing with these issues. Whilst being a sustainable development and water resources management issue, a holistic view of access, scarcity and the projected impacts of climate change is not prevalent in these discourses. The climate change discourse too does not adequately bridge the gap between these issues. The projected impacts of climate change are likely to exacerbate the problems of scarcity and equitable access unless appropriate adaptation strategies are adopted and resilience is built. The successful delivery of accessible water services under projected climate change impacts therefore lies with an extension of the adaptive water management approach to include equitable access as a key driver.

  5. Water microbiology. Bacterial pathogens and water

    National Research Council Canada - National Science Library

    Cabral, João P S

    2010-01-01

    .... In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology...

  6. Water and poverty: Implications for water planning

    Science.gov (United States)

    Fass, S. M.

    1993-07-01

    Although it recognizes the tangible economic benefits to health and income that may derive from greater safety of supply and improved time savings in procurement, planning for improvements of urban water systems in developing countries has overlooked other ways in which water may influence health and income among the poor. In these populations the price of water may further affect health and labor productivity, both directly through its impact on nutrition and indirectly through its impact on housing size and quality and on residential density. What at first might seem a straightforward equity issue in planning may thus be an issue of economic efficiency as well. Failure to account for the fuller range of tangible benefits associated with improvements in water supply may lead to underestimation of returns to investment and therefore to economically inefficient investment.

  7. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  8. Effects of Nitrogen Application and Irrigation Water on Grain Yield and Water use Efficiency of Safflower in Isfahan

    Directory of Open Access Journals (Sweden)

    R. Maghami

    2014-04-01

    Full Text Available An experiment was conducted to evaluate the effects of different levels of nitrogen and irrigation on yield and yield components of safflower. Three nitrogen rates (0, 50 and 100 kg ha-1 under three irrigation levels (100% as control 80% as mild limited irrigation, and 60% of crop water requirement as severe limited irrigation were investigated using a factorial laid out in a randomized complete block design with four replications. Nitrogen application led to a significant increase in leaf chlorophyll content, photochemical efficiency, leaf relative water content, leaf proline content , leaf area index, shoot dry weight, , number of buttons per plant, number of grains per button, grain weight, grain yield, harvest index and water use efficiency. Photochemical efficiency, leaf relative water content, leaf area index, shoot dry weight, number of buttons per plant, number of grains per button, grain weight, grain yield, harvest index were decreased and leaf chlorophyll content, leaf proline content and water use efficiency were increased as the level of soil moisture was decreased. The highest amount of grain yield was obtained with application of 100 kg/ha nitrogen under irrigation regimes of 100 and 80% crop water requirement. While, the highest value of water use efficiency was obtained with application of 100 kg/ha nitrogen under irrigation regimes of 80 and 60% crop water requirement. According to the results obtained in this experiment, the application of 100 kg/ha nitrogen under irrigation regime of 80% crop water requirement seems to be appropriate to achive highest values for both safflower grain yield and water use efficiency.

  9. Virtual scarce water in China.

    Science.gov (United States)

    Feng, Kuishuang; Hubacek, Klaus; Pfister, Stephan; Yu, Yang; Sun, Laixiang

    2014-07-15

    Water footprints and virtual water flows have been promoted as important indicators to characterize human-induced water consumption. However, environmental impacts associated with water consumption are largely neglected in these analyses. Incorporating water scarcity into water consumption allows better understanding of what is causing water scarcity and which regions are suffering from it. In this study, we incorporate water scarcity and ecosystem impacts into multiregional input-output analysis to assess virtual water flows and associated impacts among 30 provinces in China. China, in particular its water-scarce regions, are facing a serious water crisis driven by rapid economic growth. Our findings show that inter-regional flows of virtual water reveal additional insights when water scarcity is taken into account. Consumption in highly developed coastal provinces is largely relying on water resources in the water-scarce northern provinces, such as Xinjiang, Hebei, and Inner Mongolia, thus significantly contributing to the water scarcity in these regions. In addition, many highly developed but water scarce regions, such as Shanghai, Beijing, and Tianjin, are already large importers of net virtual water at the expense of water resource depletion in other water scarce provinces. Thus, increasingly importing water-intensive goods from other water-scarce regions may just shift the pressure to other regions, but the overall water problems may still remain. Using the water footprint as a policy tool to alleviate water shortage may only work when water scarcity is taken into account and virtual water flows from water-poor regions are identified.

  10. Water: The Strangest Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Anders

    2009-02-24

    Water, H2O, is familiar to everyone - it shapes our bodies and our planet. But despite its abundance, water has remained a mystery, exhibiting many strange properties that are still not understood. Why does the liquid have an unusually large capacity to store heat? And why is it denser than ice? Now, using the intense X-ray beams from particle accelerators, investigations into water are leading to fundamental discoveries about the structure and arrangement of water molecules. This lecture will elucidate the many mysteries of water and discuss current studies that are revolutionizing the way we see and understand one of the most fundamental substances of life.

  11. GEOTHERMAL WATERS IN POLAND

    OpenAIRE

    Chrzan, T.

    2006-01-01

    This study presents the role of the geothermal waters mainly for the municipal heating, greenhouses, swimming pools, etc. Presently, two types of geothermal waters are used in the world. Waters of the temperatures higher than 130oC (steam) used mostly to drive turbines in geothermal power plants. Waters of low temperatures (20oC to 100oC) are used as a direct energy carrier for the municipal heating systems. The geothermal waters in Poland are presented in this paper.

  12. Water Economics and Policy

    Directory of Open Access Journals (Sweden)

    Julio Berbel

    2017-10-01

    Full Text Available Economics plays a double role in the field of water management, firstly as a powerful analytical tool supporting water allocation and policy decisions, and secondly in the form of policy instruments (water pricing, markets, etc.. This Special Issue presents a platform for sharing results connecting excellent interdisciplinary research applied to different regional and sectoral problems around the world. The 22 peer-reviewed papers collected in this Special Issue have been grouped into five broad categories: Water valuation and accounting; Economic instruments; Cost effectiveness and cost-benefit analysis; and Water productivity and Governance. They are briefly presented.

  13. Saving water through global trade

    OpenAIRE

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; H. H. G. Savenije

    2005-01-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. The report analyses the consequences of international virtual water flows on the global and national water budgets. The assessment shows that the total amount of water that would have been r...

  14. Space Station Water Quality

    Science.gov (United States)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  15. The Mars water cycle

    Science.gov (United States)

    Davies, D. W.

    1981-01-01

    A model has been developed to test the hypothesis that the observed seasonal and latitudinal distribution of water on Mars is controlled by the sublimation and condensation of surface ice deposits in the Arctic and Antarctic, and the meridional transport of water vapor. Besides reproducing the observed water vapor distribution, the model correctly reproduces the presence of a large permanent ice cap in the Arctic and not in the Antarctic. No permanent ice reservoirs are predicted in the temperate or equatorial zones. Wintertime ice deposits in the Arctic are shown to be the source of the large water vapor abundances observed in the Arctic summertime, and the moderate water vapor abundances in the northern temperate region. Model calculations suggest that a year without dust storms results in very little change in the water vapor distribution. The current water distribution appears to be the equilibrium distribution for present atmospheric conditions.

  16. Nitrate in drinking water

    DEFF Research Database (Denmark)

    Schullehner, Jörg; Hansen, Birgitte; Sigsgaard, Torben

    Annual nationwide exposure maps for nitrate in drinking water in Denmark from the 1970s until today will be presented based on the findings in Schullehner & Hansen (2014) and additional work on addressing the issue of private well users and estimating missing data. Drinking water supply in Denmark...... is highly decentralized and fully relying on simple treated groundwater. At the same time, Denmark has an intensive agriculture, making groundwater resources prone to nitrate pollution. Drinking water quality data covering the entire country for over 35 years are registered in the public database Jupiter....... In order to create annual maps of drinking water quality, these data had to be linked to 2,852 water supply areas, which were for the first time digitized, collected in one dataset and connected to the Jupiter database. Analyses of the drinking water quality maps showed that public water supplies...

  17. Altimetry for inland water

    DEFF Research Database (Denmark)

    Nielsen, Karina; Stenseng, Lars; Villadsen, Heidi

    2016-01-01

    With the globally decreasing amount of in-situ stations, satellite altimetry based water levels are an important supplement to obtain continuous time series of the worlds inland water. In this study we demonstrate two new services, that are related to inland water and altimetry. The first...... is Altimetry for inland water (AltWater), which is a new open service, that provides altimetry based time series for inland water. Currently, the service includes data from cryoSat- 2, but we intend to add other missions in future versions. The second,tsHydro, is a software package, that is implemented...... in the open source environment "R". The package enables the user to easily construct water level time series for lakes and rivers based on along-track altimetry data....

  18. Using EO-1 Hyperion to Simulate HyspIRI Products for a Coniferous Forest: The Fraction of PAR Absorbed by Chlorophyll (fAPAR(sub chl)) and Leaf Water Content(LWC)

    Science.gov (United States)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Gao, Bo-Cai; Cheng, Yen-Ben

    2012-01-01

    This paper presents development of prototype products for terrestrial ecosystems in preparation for the future imaging spectrometer planned for the Hyperspectral Infrared Imager (HyspIRI) mission. We present a successful demonstration example in a coniferous forest of two product prototypes: fraction of photosynthetically active radiation (PAR) absorbed by chlorophyll of a canopy (fAPARchl) and leaf water content (LWC), for future HyspIRI implementation at 60-m spatial resolution. For this, we used existing 30-m resolution imaging spectrometer data available from the Earth Observing One (EO-1) Hyperion satellite to simulate and prototype the level one radiometrically corrected radiance (L1R) images expected from the HyspIRI visible through shortwave infrared spectrometer. The HyspIRIlike images were atmospherically corrected to obtain surface reflectance and spectrally resampled to produce 60-m reflectance images for wavelength regions that were comparable to all seven of the MODerate resolution Imaging Spectroradiometer (MODIS) land bands. Thus, we developed MODIS-like surface reflectance in seven spectral bands at the HyspIRI-like spatial scale, which was utilized to derive fAPARchl and LWC with a coupled canopy-leaf radiative transfer model (PROSAIL2) for the coniferous forest. With this paper, we provide additional evidence that the fAPARchl product is more realistic in describing the physiologically active canopy than the traditional fAPAR parameter for the whole canopy (fAPARcanopy), and thus, it should replace it in ecosystem process models to reduce uncertainties in terrestrial carbon cycle and ecosystem studies.

  19. Using EO-1 Hyperion to Simulate HyspIRI Products for a Coniferous Forest: The Fraction of PAR Absorbed by Chlorophyll (fAPAR(sub chl)) and Leaf Water Content (LWC)

    Science.gov (United States)

    Zhang, Qingyuan; Middleton, Elizabeth M.; Gao, Bo-Cai; Cheng, Yen-Ben

    2011-01-01

    This study presents development of prototype products for terrestrial ecosystems in preparation for the future imaging spectrometer planned for the Hyperspectral Infrared Imager (HyspIRI) mission. We present a successful demonstration example in a coniferous forest of two product prototypes: fraction of photosynthetic active radiation (PAR) absorbed by chlorophyll of a canopy (fAPAR(sub chl)) and leaf water content (LWC), for future HyspIRI implementation at 60 m spatial resolution. For this, we used existing 30 m resolution imaging spectrometer data available from the Earth Observing One (EO-1) Hyperion satellite to simulate and prototype the level one radiometrically corrected radiance (L1R) images expected from the HyspIRI visible through shortwave infrared spectrometer. The HyspIRI-like images were atmospherically corrected to obtain surface reflectance, and spectrally resampled to produce 60 m reflectance images for wavelength regions that were comparable to all seven of the MODerate resolution Imaging Spectroradiometer (MODIS) land bands. Thus, we developed MODIS-like surface reflectance in seven spectral bands at the HyspIRI-like spatial scale, which was utilized to derive fAPARchl and LWC with a coupled canopy-leaf radiative transfer model (PROSAIL2) for the coniferous forest[1]. With this study, we provide additional evidence that the fAPARchl product is more realistic for describing the physiologically active canopy than the traditional fAPAR parameter for the whole canopy (fAPAR(sub canopy)), and thus should replace it in ecosystem process models to reduce uncertainties in terrestrial carbon cycle studies and ecosystem studies.

  20. Water Quality Assessment and Management

    Science.gov (United States)

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  1. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  2. Early successional forest habitats and water resources

    Science.gov (United States)

    James Vose; Chelcy Ford

    2011-01-01

    Tree harvests that create early successional habitats have direct and indirect impacts on water resources in forests of the Central Hardwood Region. Streamflow increases substantially immediately after timber harvest, but increases decline as leaf area recovers and biomass aggrades. Post-harvest increases in stormflow of 10–20%, generally do not contribute to...

  3. Optimisation of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and response surface methodology.

    Science.gov (United States)

    Mylonaki, Stefania; Kiassos, Elias; Makris, Dimitris P; Kefalas, Panagiotis

    2008-11-01

    An experimental setup based on a 2(3) full-factorial, central-composite design was implemented with the aim of optimising the recovery of polyphenols from olive leaves by employing reusable and nontoxic solutions composed of water/ethanol/citric acid as extracting media. The factors considered were (i) the pH of the medium, (ii) the extraction time and (iii) the ethanol concentration. The model obtained produced a satisfactory fit to the data with regard to total polyphenol extraction (R(2) = 0.91, p = 0.0139), but not for the antiradical activity of the extracts (R(2) = 0.67, p = 0.3734). The second-order polynomial equation obtained after analysing the experimental data indicated that ethanol concentration and time mostly affected the extraction yield, but that increased pH values were unfavourable in this regard. The maximum theoretical yield was calculated to be 250.2 +/- 76.8 mg gallic acid equivalent per g of dry, chlorophyll-free tissue under optimal conditions (60% EtOH, pH 2 and 5 h). Liquid chromatography-electrospray ionisation mass spectrometry of the optimally obtained extract revealed that the principal phytochemicals recovered were luteolin 7-O-glucoside, apigenin 7-O-rutinoside and oleuropein, accompanied by smaller amounts of luteolin 3',7-O-diglucoside, quercetin 3-O-rutinoside (rutin), luteolin 7-O-rutinoside and luteolin 3'-O-glucoside. Simple linear regression analysis between the total polyphenol and antiradical activity values gave a low and statistically insignificant correlation (R(2) = 0.273, p > 0.05), suggesting that it is not the sheer amount of polyphenols that provides high antioxidant potency; instead, this potency is probably achieved through interactions among the various phenolic constituents.

  4. Association of water-borne diseases morbidity pattern and water ...

    African Journals Online (AJOL)

    Association of water-borne diseases morbidity pattern and water quality in ... due to unsafe water, inadequate sanitation and poor hygiene among human population. ... Provision of adequate potable water remains the most important tool for ...

  5. Water en Land

    Directory of Open Access Journals (Sweden)

    P.J.E.M. van Dam

    2009-01-01

    Full Text Available Water and Dry LandWater management has always been a major concern. Dutch pragmatism certainly has roots in water management, but it is also rooted in the culture of meetings of the Dutch cities and in the attitude of the peasant who produced for the market very early on. Water control reached its height when we introduced reinforced concrete for hydraulic engineering. Around 1970, the ecological turning point caused a change in focus. Water managers became concerned about the quality of water, the creation of ‘new nature’ and the adaptation to water. In this way, we did not discard the assets of the Industrial Revolution, but rather put them into a new framework: more green in the blue. Water is by definition international. The Netherlands co-parented the international cooperation of the Rhine countries. Is this history part of our national consciousness? Can the water history of the South- and Eastern Netherlands also join in the national water history of the twentieth century?

  6. Solar water disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [Universal Recycled Water Systems, Orlando, FL (United States); Collier, R. [Enerscope, Inc., Merritt Island, FL (United States)

    1996-11-01

    Non-potable drinking water is a major problem for much of the world`s population. It has been estimated that from 15 to 20 million children under the age of 5 die from diarrheal conditions brought on by infected drinking water every year. This is equivalent to a fully-loaded DC-10 crashing every ten minutes of every day, 365 days a year. Heat is one of the most effective methods of disinfecting drinking water. Using conventional means of heating water (heating on an open-flamed stove) results in an extremely energy-intensive process. The main obstacle is that for areas of the world where potable water is a problem, fuel supplies are either too expensive, not available, or the source of devastating environmental problems (deforestation). The apparatus described is a solar-powered water disinfection device that can overcome most if not all of the barriers that presently limit technological solutions to drinking water problems. It uses a parabolic trough solar concentrator with a receiver tube that is also a counterflow heat exchanger. The system is totally self-contained utilizing a photovoltaic-powered water pump, and a standard automotive thermostat for water flow control. The system is designed for simplicity, reliability and the incorporation of technology readily accessible in most areas of the world. Experiments at the Florida Solar Energy Center have demonstrated up to 2,500 liters of safe drinking water per day with 28 square meters of solar concentrator.

  7. Water Recycling in Australia

    Directory of Open Access Journals (Sweden)

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  8. Kinetic analyses of plant water relocation using deuterium as tracer - reduced water flux of Arabidopsis pip2 aquaporin knockout mutants.

    Science.gov (United States)

    Da Ines, O; Graf, W; Franck, K I; Albert, A; Winkler, J B; Scherb, H; Stichler, W; Schäffner, A R

    2010-09-01

    Due to reduced evaporation and diffusion of water molecules containing heavier isotopes, leaf water possesses an elevated (18)O or (2)H steady-state content. This enrichment has been exploited in plant physiology and ecology to assess transpiration and leaf water relations. In contrast to these studies, in this work the (2)H content of the medium of hydroponically grown Arabidopsis thaliana was artificially raised, and the kinetics of (2)H increase in the aerial parts recorded during a short phase of 6-8 h, until a new equilibrium at a higher level was reached. A basic version of the enrichment models was modified to establish an equation that could be fitted to measured leaf (2)H content during uptake kinetics. The fitting parameters allowed estimation of the relative water flux q(leaf) into the Arabidopsis rosette. This approach is quasi-non-invasive, since plants are not manipulated during the uptake process, and therefore, offers a new tool for integrated analysis of plant water relations. The deuterium tracer method was employed to assess water relocation in Arabidopsis pip2;1 and pip2;2 aquaporin knockout plants. In both cases, q(leaf) was significantly reduced by about 20%. The organ and cellular expression patterns of both genes imply that changes in root hydraulic conductivity, as previously demonstrated for pip2;2 mutants, and leaf water uptake and distribution contributed in an integrated fashion to this reduced flux in intact plants.

  9. Curvas pressão-volume e expansão foliar em cultivares de algodoeiro submetidos à défcit hídrico Pressure-volume curves and leaf expansion in cotton cultivars under water deficit

    Directory of Open Access Journals (Sweden)

    Celso Jamil Marur

    1999-07-01

    Full Text Available Foi avaliado o comportamento de dois cultivares de algodoeiro em resposta ao déficit hídrico, utilizando-se a expansão foliar como parâmetro discriminatório, bem como a metodologia das curvas pressão-volume para comparar suas habilidades com relação ao ajustamento osmótico. Nos tratamentos estressados, os valores dos Ys em plena turgescência e em turgescência zero obtidos para 'IAC 13-1' foram 0,1 MPa menores do que os obtidos para 'IAC 20'. O ajustamento osmótico em plena turgescência foi de 0.15 e 0.03 MPa, e em turgescência zero foi de 0.18 e 0.07 MPa, respectivamente para os dois cultivares. Os menores valores obtidos para o cultivar 'IAC 13-1' parecem indicar que seus tecidos suportam o estresse por um tempo maior antes das células atingirem o estado de plasmólise. Os valores do módulo volumétrico de elasticidade aumentaram quando os dois cultivares foram submetidos ao estresse hídrico, sendo que o cultivar 'IAC 13-1' parece apresentar paredes celulares com maior elasticidade. Os valores de Ya, antes do amanhecer, em que ocorreu a paralização do crescimento da folha foram -1,04 MPa e -0,98 MPa para os cultivares 'IAC 13-1' e 'IAC 20', respectivamente, mas não detectou-se diferenças significativas entre os dois cultivares.The response of two cotton cultivars to water deficit was studied using leaf expansion and pressure-volume curves method to compare their ability in relation to osmotic adjustment. The osmotic potential at full saturation and at the turgor loss point, for 'IAC 13-1', were 0.1 MPa lower than for `IAC 20' under later stress. Osmotic adjustment at full saturation was 0.15 and 0.03 MPa, and at turgor loss point was 0.18 and 0.07 MPa for 'IAC 13-1'and 'IAC 20', respectively. The low osmotic potential values observed for 'IAC 13-1' suggests that the tissues support water deficit longer, before cells reach plasmolysis. The values for bulk modulus of elasticity were higher when both cultivars were under water

  10. Water Footprint and Virtual Water Trade of Brazil

    Directory of Open Access Journals (Sweden)

    Vicente de Paulo R. da Silva

    2016-11-01

    Full Text Available Freshwater scarcity has increased at an alarming rate worldwide; improved water management plays a vital role in increasing food production and security. This study aims to determine the water footprint of Brazil’s national food consumption, the virtual water flows associated with international trade in the main agricultural commodities, as well as water scarcity, water self-sufficiency and water dependency per Brazilian region. While previous country studies on water footprints and virtual water trade focused on virtual water importers or water-scarce countries, this is the first study to concentrate on a water-abundant virtual water-exporting country. Besides, it is the first study establishing international virtual water trade balances per state, which is relevant given the fact that water scarcity varies across states within the country, so the origin of virtual water exports matters. The results show that the average water footprint of Brazilian food consumption is 1619 m3/person/year. Beef contributes most (21% to this total. We find a net virtual water export of 54.8 billion m3/year, mainly to Europe, which imports 41% of the gross amount of the virtual water exported from Brazil. The northeast, the region with the highest water scarcity, has a net import of virtual water. The southeast, next in terms of water scarcity, shows large virtual water exports, mainly related to the export of sugar. The north, which has the most water, does not show a high virtual water export rate.

  11. What's in Your Water? An Educator's Guide to Water Quality.

    Science.gov (United States)

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  12. Cleaning and reusing backwash water of water treatment plants

    Science.gov (United States)

    Skolubovich, Yury; Voytov, Evgeny; Skolubovich, Alexey; Ilyina, Lilia

    2017-10-01

    The article deals with the treatment of wash water of water treatment plants open water sources. The results of experimental studies on the choice of effective reagent, cleaning and disposal of wash water of filters. The paper proposed a new two-stage purification technology and multiple reuse of wash water of water purification stations from open surface sources

  13. Development of waste water reuse water system for power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Kim, D.H.; Weon, D.Y.; Yoon, S.W.; Song, H.R. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    1. Status of waste water discharge at power plants 2. Present status of waste water reuse at power plants 3. Scheme of waste water reuse at power plants 4. Standardization of optimum system for waste water reuse at power plants 5. Establishment of low cost zero discharge system for waste water 6. Waste water treatment technology of chemical cleaning. (author). 132 figs., 72 tabs.

  14. Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long-term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VISNIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VISNIR R and T to leaf physiological changes linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf and perhaps of a plant canopy might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.

  15. Estimating the Relative Water Content of Single Leaves from Optical Polarization Measurements.

    Science.gov (United States)

    Vanderbilt, V. C.; Daughtry, C. S. T.; Dahlgren, R. P.

    2016-12-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. For monitoring canopy water status, existing approaches such as the Crop Water Stress Index and the Equivalent Water Thickness have limitations. The CWSI does not work well in humid regions, requires estimates of the vapor pressure deficit near the canopy during the remote sensing over-flight and, once stomata close, provides little information regarding the canopy water status. The EWI is based upon the physics of water-light interaction, not plant physiology. In this research, we applied optical polarization techniques to monitor the VIS/NIR light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both changed nonlinearly as each leaf dried, R increasing and T decreasing. Our results tie changes in the VIS/NIR R and T to leaf physiological changes - linking the light scattered out of the drying leaf interior to its relative water content and to changes in leaf cellular structure and pigments. Our results suggest remotely sensing the physiological water status of a single leaf - and perhaps of a plant canopy - might be possible in the future. However, using our approach to estimate the water status of a leaf does not appear possible at present, because our results display too much variability that we do not yet understand.

  16. Water Budget Quick Start Guide

    Science.gov (United States)

    WaterSense created the Water Budget Tool as one option to help builders, landscape professionals, and irrigation professionals certified by a WaterSense labeled program meet the criteria specified in the WaterSense New Home Specification.

  17. Quality matters for water scarcity

    Science.gov (United States)

    van Vliet, Michelle T. H.; Flörke, Martina; Wada, Yoshihide

    2017-11-01

    Quality requirements for water differ by intended use. Sustainable management of water resources for different uses will not only need to account for demand in water quantity, but also for water temperature and salinity, nutrient levels and other pollutants.

  18. Quiz: Water and Your Health

    Science.gov (United States)

    ... your health Quiz: Water and your health Quiz: Water and your health Clean water is an important part of being healthy. Do you know all of these fun facts about water? Take this quiz to find out! Then, test ...

  19. Sustaining Waters: From Hydrology to Drinking Water

    Science.gov (United States)

    Toch, S.

    2003-04-01

    Around the world, disastrous effects of floods and droughts are painful evidence of our continuing struggle between human resource demands and the sustainability of our hydrologic systems. Too much or too little rainfall is often deemed the culprit in these water crises, focussing on water "lacks and needs" instead of exploring the mechanisms of the hydrologic functions and processes that sustain us. Applicable to regions around the world, this unified approach is about our human and environmental qualities with user friendly concepts and how-to guides backed up by real life experiences. From the poorest parts of Africa to Urban France to the wealthest state in the USA, examples from surface to groundwater to marine environments demonstrate how the links between vulerable natural areas, and the basins that they support are integral to the availability, adequacy and accessibility of our drinking water. Watershed management can be an effective means for crisis intervention and pollution control. This project is geared as a reference for groups, individuals and agencies concerned with watershed management, a supplement for interdisciplinary high school through university curriculam, for professional development in technical and field assistance, and for community awareness in the trade-offs and consequences of resource decisions that affect hydrologic systems. This community-based project demonstrates how our human resource demands can be managed within ecological constraints. An inter-disciplinary process is developed that specifically assesses risk to human health from resource use practices, and explores the similarities and interations between our human needs and those of the ecosystems in which we all must live together. Disastrous conditions worldwide have triggered reactions in crisis relief rather than crisis prevention. Through a unified management approach to the preservation of water quality, the flows of water that connect all water users can serve as a

  20. Water transport in brain:

    DEFF Research Database (Denmark)

    MacAulay, Nanna; Hamann, Steffan; Zeuthen, Thomas

    2004-01-01

    It is generally accepted that cotransporters transport water in addition to their normal substrates, although the precise mechanism is debated; both active and passive modes of transport have been suggested. The magnitude of the water flux mediated by cotransporters may well be significant: both...... the number of cotransporters per cell and the unit water permeability are high. For example, the Na(+)-glutamate cotransporter (EAAT1) has a unit water permeability one tenth of that of aquaporin (AQP) 1. Cotransporters are widely distributed in the brain and participate in several vital functions: inorganic......(+)-lactate cotransporters. We have previously determined water transport capacities for these cotransporters in model systems (Xenopus oocytes, cell cultures, and in vitro preparations), and will discuss their role in water homeostasis of the astroglial cell under both normo- and pathophysiologal situations. Astroglia...

  1. Water's Hydrogen Bond Strength

    CERN Document Server

    Chaplin, Martin

    2007-01-01

    Water is necessary both for the evolution of life and its continuance. It possesses particular properties that cannot be found in other materials and that are required for life-giving processes. These properties are brought about by the hydrogen bonded environment particularly evident in liquid water. Each liquid water molecule is involved in about four hydrogen bonds with strengths considerably less than covalent bonds but considerably greater than the natural thermal energy. These hydrogen bonds are roughly tetrahedrally arranged such that when strongly formed the local clustering expands, decreasing the density. Such low density structuring naturally occurs at low and supercooled temperatures and gives rise to many physical and chemical properties that evidence the particular uniqueness of liquid water. If aqueous hydrogen bonds were actually somewhat stronger then water would behave similar to a glass, whereas if they were weaker then water would be a gas and only exist as a liquid at sub-zero temperature...

  2. Iodine mineral waters

    Directory of Open Access Journals (Sweden)

    Iluta Alexandru

    2011-11-01

    Full Text Available Iodine mineral waters are found especially in sub-Carpathian region, also in regions with Salif deposits. Waters are currently used iodine in drinking cure for chaps and Basedow. Are also indicated in balneology. Iodine water containing at least 1 mg L, there is pure iodine is usually given the nature of other types of mineral waters further: sodium chlorinated water (Bazna (50-70 mg iodine / l, Baile Govora (50 - 70 mg / l, Bălţăteşti (4-5 mg / l, salted Monteoru (30 mg / l, mine water mixed alkaline chlorination, sulphate, which are indicated for crenoterapie (hypo or isotonic to the bathrooms Olăneşti or Călimăneşti-Căciulata.

  3. Effect of water harvesting methods, nitrogen and phosphorus ...

    African Journals Online (AJOL)

    Effect of water harvesting methods, nitrogen and phosphorus fertilizer on leaf length of different date palm (phoenix d-) varieties. ... per experimental plot were sampled for the measurement of leaf length, given a total of 72 plants. Results from this study revealed that double square basin, the control, the perimeter square ...

  4. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Kostik, Vesna; Bauer, Biljana; Kavrakovski, Zoran

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  5. Indiana's Water Shortage Plan

    OpenAIRE

    Unterreiner, Jerry

    2011-01-01

    Indiana’s Water Shortage Plan was recently updated (2009) and established criteria to identify drought conditions and associated “Water Shortage Stages” designated as Normal, Watch, Warning, and Emergency. The three drought triggers are the 1-month Standardized Precipitation Index (SPI), U.S. Drought Monitor (USDM), and Percentage of Average Streamflow (28 streamflow gaging sites). The Water Shortage Stage is defined as Normal if no more than one indicator is outside of the normal ra...

  6. Forest water contamination

    Science.gov (United States)

    Roger M. Rowell

    2006-01-01

    Forests play a key role in cleaning water. Precipitation is “'filtered” through the tree canopy and filtered again throuph the organic matter on the forest floor. The water then seeps into the subsurface to replenish the ground water. Approximately 80% of the freshwater in the United States originates in the 650 million acres (265 million hectares) of forest that...

  7. Transboundary water interaction III

    OpenAIRE

    Zeitoun, Mark; Cascão, Ana Elisa; Warner, Jeroen; Mirumachi, Naho; Matthews, Nathanial; Menga, Filippo; Farnum, Rebecca

    2017-01-01

    This paper serves international water conflict resolution efforts by examining the ways that states contest hegemonic transboundary water arrangements. The conceptual framework of dynamic transboundary water interaction that it presents integrates theories about change and counter-hegemony to ascertain coercive, leverage, and liberating mechanisms through which contest and transformation of an arrangement occur. While the mechanisms can be active through sociopolitical processes either of com...

  8. Purified water quality study

    Energy Technology Data Exchange (ETDEWEB)

    Spinka, H.; Jackowski, P.

    2000-04-03

    Argonne National Laboratory (HEP) is examining the use of purified water for the detection medium in cosmic ray sensors. These sensors are to be deployed in a remote location in Argentina. The purpose of this study is to provide information and preliminary analysis of available water treatment options and associated costs. This information, along with the technical requirements of the sensors, will allow the project team to determine the required water quality to meet the overall project goals.

  9. Production of heavy water

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Larry S.; Brown, Sam W.; Phillips, Michael R.

    2017-06-06

    Disclosed are methods and apparatuses for producing heavy water. In one embodiment, a catalyst is treated with high purity air or a mixture of gaseous nitrogen and oxygen with gaseous deuterium all together flowing over the catalyst to produce the heavy water. In an alternate embodiment, the deuterium is combusted to form the heavy water. In an alternate embodiment, gaseous deuterium and gaseous oxygen is flowed into a fuel cell to produce the heavy water. In various embodiments, the deuterium may be produced by a thermal decomposition and distillation process that involves heating solid lithium deuteride to form liquid lithium deuteride and then extracting the gaseous deuterium from the liquid lithium deuteride.

  10. Water purification in Borexino

    Energy Technology Data Exchange (ETDEWEB)

    Giammarchi, M. [Infn Milano (Italy); Balata, M.; Ioannucci, L.; Nisi, S. [Laboratori Nazionali del Gran Sasso (Italy); Goretti, A.; Ianni, A. [Princeton University (United States); Miramonti, L. [Dip. di Fisica dell' Università di Milano e Infn (Italy)

    2013-08-08

    Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.

  11. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  12. Biological Water Quality Criteria

    Science.gov (United States)

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  13. Wetland Surface Water Processes

    National Research Council Canada - National Science Library

    1993-01-01

    .... Temporary storage includes channel, overbank, basin, and groundwater storage. Water is removed from the wetland through evaporation, plant transpiration, channel, overland and tidal flow, and groundwater recharge...

  14. Air/Water Purification

    Science.gov (United States)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  15. Water purification in Borexino

    Science.gov (United States)

    Giammarchi, M.; Balata, M.; Goretti, A.; Ianni, A.; Ioannucci, L.; Miramonti, L.; Nisi, S.

    2013-08-01

    Astroparticle Physics and Underground experiments searching for rare nuclear events, need high purity materials to act as detectors or detector shielding. Water has the advantage of being cheap, dense and easily available. Most of all, water can be purified to the goal of obatining a high level of radiopurity. Water Purification can be achieved by means of a combination of processes, including filtration, reverse osmosis, deionization and gas stripping. The Water Purification System for the Borexino experiment, will be described together with its main performances.

  16. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  17. Water - an inexhaustible resource?

    Science.gov (United States)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  18. Saving water through global trade

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.

    2005-01-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water

  19. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  20. Crop modeling: Studying the effect of water stress on the driving forces governing plant water potential

    Science.gov (United States)

    van Emmerik, T. H. M.; Mirfenderesgi, G.; Bohrer, G.; Steele-Dunne, S. C.; Van De Giesen, N.

    2015-12-01

    Water stress is one of the most important environmental factors that influence plant water dynamics. To prevent excessive water loss and physiological damage, plants can regulate transpiration by adjusting the stomatal aperture. This enhances survival, but also reduced photosynthesis and productivity. During periods of low water availability, stomatal regulation is a trade-off between optimization of either survival or production. Water stress defence mechanisms lead to significant changes in plant dynamics, e.g. leaf and stem water content. Recent research has shown that water content in a corn canopy can change up to 30% diurnally as a result of water stress, which has a considerable influence on radar backscatter from a corn canopy [1]. This highlighted the potential of water stress detection using radar. To fully explore the potential of water stress monitoring using radar, we need to understand the driving forces governing plant water potential. For this study, the recently developed the Finite-Element Tree-Crown Hydrodynamic model version 2 (FETCH2) model is applied to a corn canopy. FETCH2 is developed to resolve the hydrodynamic processes within a plant using the porous media analogy, allowing investigation of the influence of environmental stress factors on plant dynamics such as transpiration, photosynthesis, stomatal conductance, and leaf and stem water content. The model is parameterized and evaluated using a detailed dataset obtained during a three-month field experiment in Flevoland, the Netherlands, on a corn canopy. [1] van Emmerik, T., S. Steele-Dunne, J. Judge and N. van de Giesen: "Impact of Diurnal Variation in Vegetation Water Content on Radar Backscatter of Maize During Water Stress", Geosciences and Remote Sensing, IEEE Transactions on, vol. 52, issue 7, doi: 10.1109/TGRS.2014.2386142, 2015.